/* mpfr_sinh -- hyperbolic sine Copyright 2001-2016 Free Software Foundation, Inc. Contributed by the AriC and Caramba projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of sinh is done by sinh(x) = 1/2 [e^(x)-e^(-x)] */ int mpfr_sinh (mpfr_ptr y, mpfr_srcptr xt, mpfr_rnd_t rnd_mode) { mpfr_t x; int inexact; MPFR_LOG_FUNC (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (xt), mpfr_log_prec, xt, rnd_mode), ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (y), mpfr_log_prec, y, inexact)); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt))) { if (MPFR_IS_NAN (xt)) { MPFR_SET_NAN (y); MPFR_RET_NAN; } else if (MPFR_IS_INF (xt)) { MPFR_SET_INF (y); MPFR_SET_SAME_SIGN (y, xt); MPFR_RET (0); } else /* xt is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (xt)); MPFR_SET_ZERO (y); /* sinh(0) = 0 */ MPFR_SET_SAME_SIGN (y, xt); MPFR_RET (0); } } /* sinh(x) = x + x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP(xt), 2, 1, rnd_mode, {}); MPFR_TMP_INIT_ABS (x, xt); { mpfr_t t, ti; mpfr_exp_t d; mpfr_prec_t Nt; /* Precision of the intermediary variable */ long int err; /* Precision of error */ MPFR_ZIV_DECL (loop); MPFR_SAVE_EXPO_DECL (expo); MPFR_GROUP_DECL (group); MPFR_SAVE_EXPO_MARK (expo); /* compute the precision of intermediary variable */ Nt = MAX (MPFR_PREC (x), MPFR_PREC (y)); /* the optimal number of bits : see algorithms.ps */ Nt = Nt + MPFR_INT_CEIL_LOG2 (Nt) + 4; /* If x is near 0, exp(x) - 1/exp(x) = 2*x+x^3/3+O(x^5) */ if (MPFR_GET_EXP (x) < 0) Nt -= 2*MPFR_GET_EXP (x); /* initialize of intermediary variables */ MPFR_GROUP_INIT_2 (group, Nt, t, ti); /* First computation of sinh */ MPFR_ZIV_INIT (loop, Nt); for (;;) { MPFR_BLOCK_DECL (flags); /* compute sinh */ MPFR_BLOCK (flags, mpfr_exp (t, x, MPFR_RNDD)); if (MPFR_OVERFLOW (flags)) /* exp(x) does overflow */ { /* sinh(x) = 2 * sinh(x/2) * cosh(x/2) */ mpfr_div_2ui (ti, x, 1, MPFR_RNDD); /* exact */ /* t <- cosh(x/2): error(t) <= 1 ulp(t) */ MPFR_BLOCK (flags, mpfr_cosh (t, ti, MPFR_RNDD)); if (MPFR_OVERFLOW (flags)) /* when x>1 we have |sinh(x)| >= cosh(x/2), so sinh(x) overflows too */ { inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt)); MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW); break; } /* ti <- sinh(x/2): , error(ti) <= 1 ulp(ti) cannot overflow because 0 < sinh(x) < cosh(x) when x > 0 */ mpfr_sinh (ti, ti, MPFR_RNDD); /* multiplication below, error(t) <= 5 ulp(t) */ MPFR_BLOCK (flags, mpfr_mul (t, t, ti, MPFR_RNDD)); if (MPFR_OVERFLOW (flags)) { inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt)); MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW); break; } /* doubling below, exact */ MPFR_BLOCK (flags, mpfr_mul_2ui (t, t, 1, MPFR_RNDN)); if (MPFR_OVERFLOW (flags)) { inexact = mpfr_overflow (y, rnd_mode, MPFR_SIGN (xt)); MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, MPFR_FLAGS_OVERFLOW); break; } /* we have lost at most 3 bits of precision */ err = Nt - 3; if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, MPFR_PREC (y), rnd_mode))) { inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt)); break; } err = Nt; /* double the precision */ } else { d = MPFR_GET_EXP (t); mpfr_ui_div (ti, 1, t, MPFR_RNDU); /* 1/exp(x) */ mpfr_sub (t, t, ti, MPFR_RNDN); /* exp(x) - 1/exp(x) */ mpfr_div_2ui (t, t, 1, MPFR_RNDN); /* 1/2(exp(x) - 1/exp(x)) */ /* it may be that t is zero (in fact, it can only occur when te=1, and thus ti=1 too) */ if (MPFR_IS_ZERO (t)) err = Nt; /* double the precision */ else { /* calculation of the error */ d = d - MPFR_GET_EXP (t) + 2; /* error estimate: err = Nt-(__gmpfr_ceil_log2(1+pow(2,d)));*/ err = Nt - (MAX (d, 0) + 1); if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, MPFR_PREC (y), rnd_mode))) { inexact = mpfr_set4 (y, t, rnd_mode, MPFR_SIGN (xt)); break; } } } /* actualization of the precision */ Nt += err; MPFR_ZIV_NEXT (loop, Nt); MPFR_GROUP_REPREC_2 (group, Nt, t, ti); } MPFR_ZIV_FREE (loop); MPFR_GROUP_CLEAR (group); MPFR_SAVE_EXPO_FREE (expo); } return mpfr_check_range (y, inexact, rnd_mode); }