/* mpfr_round_raw_generic, mpfr_round_raw2, mpfr_round_raw, mpfr_round_prec, mpfr_can_round, mpfr_can_round_raw -- various rounding functions Copyright 1999, 2000, 2001, 2002 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "gmp.h" #include "gmp-impl.h" #include "mpfr.h" #include "mpfr-impl.h" #if (BITS_PER_MP_LIMB & (BITS_PER_MP_LIMB - 1)) #error "BITS_PER_MP_LIMB must be a power of 2" #endif /* * If flag = 0, puts in y the value of xp (with precision xprec and * sign 1 if negative=0, -1 otherwise) rounded to precision yprec and * direction rnd_mode. Supposes x is not zero nor NaN nor +/- Infinity * (i.e. *xp != 0). If inexp != NULL, computes the inexact flag of the * rounding. * * In case of even rounding when rnd = GMP_RNDN, returns 2 or -2. * * If flag = 1, just returns whether one should add 1 or not for rounding. * * Note: yprec may be < MPFR_PREC_MIN; in particular, it may be equal * to 1. In this case, the even rounding is done away from 0, which is * a natural generalization. Indeed, a number with 1-bit precision can * be seen as a denormalized number with more precision. */ int mpfr_round_raw_generic(mp_limb_t *yp, mp_limb_t *xp, mp_prec_t xprec, int neg, mp_prec_t yprec, mp_rnd_t rnd_mode, int *inexp, int flag) { mp_size_t xsize, nw; mp_limb_t himask, lomask; int rw, carry = 0; xsize = (xprec-1)/BITS_PER_MP_LIMB + 1; nw = yprec / BITS_PER_MP_LIMB; rw = yprec & (BITS_PER_MP_LIMB - 1); if (flag && !inexp && (rnd_mode==GMP_RNDZ || xprec <= yprec || (rnd_mode==GMP_RNDU && neg) || (rnd_mode==GMP_RNDD && neg==0))) return 0; if (rw) { nw++; lomask = ((MP_LIMB_T_ONE << (BITS_PER_MP_LIMB - rw)) - MP_LIMB_T_ONE); himask = ~lomask; } else { lomask = -1; himask = -1; } MPFR_ASSERTN(nw >= 1); if (xprec <= yprec) { /* No rounding is necessary. */ /* if yp=xp, maybe an overlap: MPN_COPY_DECR is ok when src <= dst */ MPFR_ASSERTN(nw >= xsize); if (inexp) *inexp = 0; if (flag) return 0; MPN_COPY_DECR(yp + (nw - xsize), xp, xsize); MPN_ZERO(yp, nw - xsize); } else { mp_limb_t sb; if ((rnd_mode == GMP_RNDU && neg) || (rnd_mode == GMP_RNDD && !neg)) rnd_mode = GMP_RNDZ; if (inexp || rnd_mode != GMP_RNDZ) { mp_size_t k; k = xsize - nw; if (!rw) k--; MPFR_ASSERTN(k >= 0); sb = xp[k] & lomask; /* First non-significant bits */ if (rnd_mode == GMP_RNDN) { mp_limb_t rbmask = MP_LIMB_T_ONE << (BITS_PER_MP_LIMB - rw - 1); if (sb & rbmask) /* rounding bit */ sb &= ~rbmask; /* it is 1, clear it */ else rnd_mode = GMP_RNDZ; /* it is 0, behave like rounding to 0 */ } while (sb == 0 && k > 0) sb = xp[--k]; if (rnd_mode == GMP_RNDN) { /* rounding to nearest, with rounding bit = 1 */ if (sb == 0) /* Even rounding. */ { sb = xp[xsize - nw] & (himask ^ (himask << 1)); if (inexp) *inexp = ((neg != 0) ^ (sb != 0)) ? MPFR_EVEN_INEX : -MPFR_EVEN_INEX; } else /* sb != 0 */ { if (inexp) *inexp = (neg == 0) ? 1 : -1; } } else if (inexp) *inexp = sb == 0 ? 0 : (((neg != 0) ^ (rnd_mode != GMP_RNDZ)) ? 1 : -1); } else sb = 0; if (flag) return sb != 0 && rnd_mode != GMP_RNDZ; if (sb != 0 && rnd_mode != GMP_RNDZ) carry = mpn_add_1(yp, xp + xsize - nw, nw, rw ? MP_LIMB_T_ONE << (BITS_PER_MP_LIMB - rw) : 1); else MPN_COPY_INCR(yp, xp + xsize - nw, nw); yp[0] &= himask; } return carry; } int mpfr_round_prec (mpfr_ptr x, mp_rnd_t rnd_mode, mp_prec_t prec) { mp_limb_t *tmp, *xp; int carry, inexact; mp_prec_t nw; TMP_DECL(marker); MPFR_ASSERTN(prec >= MPFR_PREC_MIN && prec <= MPFR_PREC_MAX); nw = 1 + (prec - 1) / BITS_PER_MP_LIMB; /* needed allocated limbs */ /* check if x has enough allocated space for the mantissa */ if (nw > MPFR_ABSSIZE(x)) { MPFR_MANT(x) = (mp_ptr) (*__gmp_reallocate_func) (MPFR_MANT(x), (size_t) MPFR_ABSSIZE(x) * BYTES_PER_MP_LIMB, (size_t) nw * BYTES_PER_MP_LIMB); MPFR_SET_ABSSIZE(x, nw); /* new number of allocated limbs */ } if (MPFR_IS_NAN(x)) MPFR_RET_NAN; if (MPFR_IS_INF(x)) return 0; /* infinity is exact */ /* x is a real number */ TMP_MARK(marker); tmp = TMP_ALLOC (nw * BYTES_PER_MP_LIMB); xp = MPFR_MANT(x); carry = mpfr_round_raw (tmp, xp, MPFR_PREC(x), MPFR_SIGN(x) < 0, prec, rnd_mode, &inexact); MPFR_PREC(x) = prec; if (carry) { mp_exp_t exp = MPFR_EXP(x); if (exp == __gmpfr_emax) (void) mpfr_set_overflow(x, rnd_mode, MPFR_SIGN(x)); else { MPFR_EXP(x)++; xp[nw - 1] = MPFR_LIMB_HIGHBIT; if (nw - 1 > 0) MPN_ZERO(xp, nw - 1); } } else MPN_COPY(xp, tmp, nw); TMP_FREE(marker); return inexact; } /* assumption: BITS_PER_MP_LIMB is a power of 2 */ /* assuming b is an approximation of x in direction rnd1 with error at most 2^(MPFR_EXP(b)-err), returns 1 if one is able to round exactly x to precision prec with direction rnd2, and 0 otherwise. Side effects: none. */ int mpfr_can_round (mpfr_ptr b, mp_exp_t err, mp_rnd_t rnd1, mp_rnd_t rnd2, mp_prec_t prec) { return MPFR_IS_ZERO(b) ? 0 : /* we cannot round if b=0 */ mpfr_can_round_raw (MPFR_MANT(b), (MPFR_PREC(b) - 1)/BITS_PER_MP_LIMB + 1, MPFR_SIGN(b), err, rnd1, rnd2, prec); } int mpfr_can_round_raw (mp_limb_t *bp, mp_size_t bn, int neg, mp_exp_t err0, mp_rnd_t rnd1, mp_rnd_t rnd2, mp_prec_t prec) { mp_prec_t err; mp_size_t k, k1, tn; int s, s1; mp_limb_t cc, cc2; mp_limb_t *tmp; TMP_DECL(marker); if (err0 < 0 || (mp_exp_unsigned_t) err0 <= prec) return 0; /* can't round */ neg = neg <= 0; /* if the error is smaller than ulp(b), then anyway it will propagate up to ulp(b) */ err = ((mp_exp_unsigned_t) err0 > (mp_prec_t) bn * BITS_PER_MP_LIMB) ? (mp_prec_t) bn * BITS_PER_MP_LIMB : err0; /* warning: if k = m*BITS_PER_MP_LIMB, consider limb m-1 and not m */ k = (err - 1) / BITS_PER_MP_LIMB; s = err % BITS_PER_MP_LIMB; if (s) s = BITS_PER_MP_LIMB - s; /* the error corresponds to bit s in limb k, the most significant limb being limb 0 */ k1 = (prec - 1) / BITS_PER_MP_LIMB; s1 = prec % BITS_PER_MP_LIMB; if (s1) s1 = BITS_PER_MP_LIMB - s1; /* the last significant bit is bit s1 in limb k1 */ /* don't need to consider the k1 most significant limbs */ k -= k1; bn -= k1; prec -= (mp_prec_t) k1 * BITS_PER_MP_LIMB; /* if when adding or subtracting (1 << s) in bp[bn-1-k], it does not change bp[bn-1] >> s1, then we can round */ if (rnd1 == GMP_RNDU) if (neg) rnd1 = GMP_RNDZ; if (rnd1 == GMP_RNDD) rnd1 = neg ? GMP_RNDU : GMP_RNDZ; /* in the sequel, RNDU = towards infinity, RNDZ = towards zero */ TMP_MARK(marker); tn = bn; k++; /* since we work with k+1 everywhere */ tmp = TMP_ALLOC(tn * BYTES_PER_MP_LIMB); if (bn > k) MPN_COPY (tmp, bp, bn - k); if (rnd1 != GMP_RNDN) { /* GMP_RNDZ or GMP_RNDU */ cc = (bp[bn - 1] >> s1) & 1; cc ^= mpfr_round_raw2(bp, bn, neg, rnd2, prec); /* now round b +/- 2^(MPFR_EXP(b)-err) */ cc2 = rnd1 == GMP_RNDZ ? mpn_add_1 (tmp + bn - k, bp + bn - k, k, MP_LIMB_T_ONE << s) : mpn_sub_1 (tmp + bn - k, bp + bn - k, k, MP_LIMB_T_ONE << s); } else { /* GMP_RNDN */ /* first round b+2^(MPFR_EXP(b)-err) */ cc = mpn_add_1 (tmp + bn - k, bp + bn - k, k, MP_LIMB_T_ONE << s); cc = (tmp[bn - 1] >> s1) & 1; /* gives 0 when cc=1 */ cc ^= mpfr_round_raw2 (tmp, bn, neg, rnd2, prec); /* now round b-2^(MPFR_EXP(b)-err) */ cc2 = mpn_sub_1 (tmp + bn - k, bp + bn - k, k, MP_LIMB_T_ONE << s); } if (cc2 && cc) { TMP_FREE(marker); return 0; } cc2 = (tmp[bn - 1] >> s1) & 1; cc2 ^= mpfr_round_raw2 (tmp, bn, neg, rnd2, prec); TMP_FREE(marker); return cc == cc2; }