/* mpfr_pow -- power function x^y Copyright 2001, 2002, 2003 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* return non zero iff x^y is exact. Assumes x and y are ordinary numbers (neither NaN nor Inf), and y is not zero. */ static int mpfr_pow_is_exact (mpfr_srcptr x, mpfr_srcptr y) { mp_exp_t d; unsigned long i, c; mp_limb_t *yp; mp_size_t ysize; if ((mpfr_sgn (x) < 0) && (mpfr_integer_p (y) == 0)) return 0; if (mpfr_sgn (y) < 0) return mpfr_cmp_si_2exp (x, MPFR_SIGN(x), MPFR_GET_EXP (x) - 1) == 0; /* compute d such that y = c*2^d with c odd integer */ ysize = 1 + (MPFR_PREC(y) - 1) / BITS_PER_MP_LIMB; d = MPFR_GET_EXP (y) - ysize * BITS_PER_MP_LIMB; /* since y is not zero, necessarily one of the mantissa limbs is not zero, thus we can simply loop until we find a non zero limb */ yp = MPFR_MANT(y); for (i = 0; yp[i] == 0; i++, d += BITS_PER_MP_LIMB); /* now yp[i] is not zero */ count_trailing_zeros (c, yp[i]); d += c; if (d < 0) { mpz_t a; mp_exp_t b; mpz_init (a); b = mpfr_get_z_exp (a, x); /* x = a * 2^b */ c = mpz_scan1 (a, 0); mpz_div_2exp (a, a, c); b += c; /* now a is odd */ while (d != 0) { if (mpz_perfect_square_p (a)) { d++; mpz_sqrt (a, a); } else { mpz_clear (a); return 0; } } mpz_clear (a); } return 1; } /* Return 1 if y is an odd integer, 0 otherwise. */ static int is_odd (mpfr_srcptr y) { mp_exp_t expo; mp_prec_t prec; mp_size_t yn; mp_limb_t *yp; MPFR_ASSERTN(MPFR_IS_FP(y)); if (MPFR_IS_ZERO(y)) return 0; expo = MPFR_GET_EXP (y); if (expo <= 0) return 0; /* |y| < 1 and not 0 */ prec = MPFR_PREC(y); if ((mpfr_prec_t) expo > prec) return 0; /* y is a multiple of 2^(expo-prec), thus not odd */ /* 0 < expo <= prec */ yn = (prec - 1) / BITS_PER_MP_LIMB; /* index of last limb */ yn -= (mp_size_t) (expo / BITS_PER_MP_LIMB); MPFR_ASSERTN(yn >= 0); /* now the index of the last limb containing bits of the fractional part */ yp = MPFR_MANT(y); if (expo % BITS_PER_MP_LIMB == 0 ? (yp[yn+1] & 1) == 0 || yp[yn] != 0 : yp[yn] << ((expo % BITS_PER_MP_LIMB) - 1) != MPFR_LIMB_HIGHBIT) return 0; while (--yn >= 0) if (yp[yn] != 0) return 0; return 1; } /* The computation of z = pow(x,y) is done by z = exp(y * log(x)) = x^y For the special cases, see Section F.9.4.4 of the C standard: _ pow(±0, y) = ±inf for y an odd integer < 0. _ pow(±0, y) = +inf for y < 0 and not an odd integer. _ pow(±0, y) = ±0 for y an odd integer > 0. _ pow(±0, y) = +0 for y > 0 and not an odd integer. _ pow(-1, ±inf) = 1. _ pow(+1, y) = 1 for any y, even a NaN. _ pow(x, ±0) = 1 for any x, even a NaN. _ pow(x, y) = NaN for finite x < 0 and finite non-integer y. _ pow(x, -inf) = +inf for |x| < 1. _ pow(x, -inf) = +0 for |x| > 1. _ pow(x, +inf) = +0 for |x| < 1. _ pow(x, +inf) = +inf for |x| > 1. _ pow(-inf, y) = -0 for y an odd integer < 0. _ pow(-inf, y) = +0 for y < 0 and not an odd integer. _ pow(-inf, y) = -inf for y an odd integer > 0. _ pow(-inf, y) = +inf for y > 0 and not an odd integer. _ pow(+inf, y) = +0 for y < 0. _ pow(+inf, y) = +inf for y > 0. */ int mpfr_pow (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mp_rnd_t rnd_mode) { int inexact = 1; if (MPFR_ARE_SINGULAR(x,y)) { /* pow(x, 0) returns 1 for any x, even a NaN. */ if (MPFR_UNLIKELY( MPFR_IS_ZERO(y) )) return mpfr_set_ui (z, 1, GMP_RNDN); else if (MPFR_IS_NAN(x)) { MPFR_SET_NAN(z); MPFR_RET_NAN; } else if (MPFR_IS_NAN(y)) { /* pow(+1, NaN) returns 1. */ if (mpfr_cmp_ui(x, 1) == 0) return mpfr_set_ui (z, 1, GMP_RNDN); MPFR_SET_NAN(z); MPFR_RET_NAN; } else if (MPFR_IS_INF(y)) { if (MPFR_IS_INF(x)) { MPFR_CLEAR_FLAGS(z); if (MPFR_IS_POS(y)) MPFR_SET_INF(z); else MPFR_SET_ZERO(z); MPFR_SET_POS(z); MPFR_RET(0); } else { mpfr_t one; int cmp; mpfr_init2(one, BITS_PER_MP_LIMB); mpfr_set_ui(one, 1, GMP_RNDN); cmp = mpfr_cmpabs(x, one) * MPFR_FROM_SIGN_TO_INT(MPFR_SIGN(y)); mpfr_clear(one); MPFR_CLEAR_FLAGS(z); MPFR_SET_POS(z); if (cmp > 0) { /* Return +inf. */ MPFR_SET_INF(z); MPFR_RET(0); } else if (cmp < 0) { /* Return +0. */ MPFR_SET_ZERO(z); MPFR_RET(0); } else { /* Return 1. */ return mpfr_set_ui (z, 1, GMP_RNDN); } } } MPFR_ASSERTD(MPFR_IS_FP(y)); if (MPFR_IS_INF(x)) { int negative; /* Determine the sign now, in case y and z are the same object */ negative = MPFR_IS_NEG(x) && is_odd(y); MPFR_CLEAR_FLAGS(z); if (MPFR_IS_POS(y)) MPFR_SET_INF(z); else MPFR_SET_ZERO(z); if (negative) MPFR_SET_NEG(z); else MPFR_SET_POS(z); MPFR_RET(0); } MPFR_ASSERTD(MPFR_IS_FP(x)); if (MPFR_IS_ZERO(x)) { int negative; /* Determine the sign now, in case y and z are the same object */ negative = MPFR_IS_NEG(x) && is_odd (y); MPFR_CLEAR_FLAGS(z); if (MPFR_IS_NEG(y)) MPFR_SET_INF(z); else MPFR_SET_ZERO(z); if (negative) MPFR_SET_NEG(z); else MPFR_SET_POS(z); MPFR_RET(0); } /* Should never reach this code */ MPFR_ASSERTN(0); return 0; } if (mpfr_cmp_ui (x, 1) == 0) /* 1^y is always 1 */ { mpfr_set_ui (z, 1, GMP_RNDN); MPFR_RET(0); } /* detect overflows: |x^y| >= 2^EMAX when (EXP(x)-1) * y >= EMAX for y > 0, or EXP(x) * y >= EMAX for y < 0 */ { double exy; int negative; exy = (double) (mpfr_sgn (y) > 0) ? MPFR_EXP(x) - 1 : MPFR_EXP(x); exy *= mpfr_get_d (y, GMP_RNDZ); if (exy >= (double) __gmpfr_emax) { negative = MPFR_SIGN(x) < 0 && is_odd (y); return mpfr_set_overflow (z, rnd_mode, negative ? -1 : 1); } } if (mpfr_integer_p (y)) { mpz_t zi; long int zii; int exptol; mpz_init (zi); exptol = mpfr_get_z_exp (zi, y); if (exptol > 0) mpz_mul_2exp (zi, zi, exptol); else mpz_tdiv_q_2exp (zi, zi, (unsigned long int) (-exptol)); zii = mpz_get_si (zi); mpz_clear (zi); return mpfr_pow_si (z, x, zii, rnd_mode); } if (MPFR_IS_NEG(x)) { MPFR_SET_NAN(z); MPFR_RET_NAN; } MPFR_CLEAR_FLAGS(z); /* General case */ { /* Declaration of the intermediary variable */ mpfr_t t, te, ti; int loop = 0, ok; /* Declaration of the size variable */ mp_prec_t Nx = MPFR_PREC(x); /* Precision of input variable */ mp_prec_t Ny = MPFR_PREC(y); /* Precision of input variable */ mp_prec_t Nz = MPFR_PREC(z); /* Precision of output variable */ mp_prec_t Nt; /* Precision of the intermediary variable */ long int err; /* Precision of error */ /* compute the precision of intermediary variable */ Nt = MAX(Nx, Ny); Nt = MAX(Nt, Nz); /* take account of the output precision too! */ /* the optimal number of bits : see algorithms.ps */ Nt = Nt + 5 + __gmpfr_ceil_log2 (Nt); /* initialise of intermediary variable */ mpfr_init (t); mpfr_init (ti); mpfr_init (te); do { loop ++; /* reactualisation of the precision */ mpfr_set_prec (t, Nt); mpfr_set_prec (ti, Nt); mpfr_set_prec (te, Nt); /* compute exp(y*ln(x)) */ mpfr_log (ti, x, GMP_RNDU); /* ln(x) */ mpfr_mul (te, y, ti, GMP_RNDU); /* y*ln(x) */ mpfr_exp (t, te, GMP_RNDN); /* exp(y*ln(x))*/ MPFR_ASSERTN(MPFR_IS_FP(te)); MPFR_ASSERTN(MPFR_NOTZERO(te)); /* otherwise MPFR_EXP(te) below doesn't exist */ /* estimate of the error -- see pow function in algorithms.ps */ err = Nt - (MPFR_GET_EXP (te) + 3); /* actualisation of the precision */ Nt += 10; ok = mpfr_can_round (t, err, GMP_RNDN, GMP_RNDZ, Nz + (rnd_mode == GMP_RNDN)); /* check exact power */ if (ok == 0 && loop == 1) { ok = mpfr_pow_is_exact (x, y); if (ok) inexact = 0; } } while (err < 0 || ok == 0); if (inexact) inexact = mpfr_set (z, t, rnd_mode); else /* result is exact: round to nearest and return inexact=0 */ mpfr_set (z, t, GMP_RNDN); mpfr_clear (t); mpfr_clear (ti); mpfr_clear (te); } return inexact; }