/* mpfr_log10 -- logarithm in base 10. Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of r=log10(a) r=log10(a)=log(a)/log(10) */ int mpfr_log10 (mpfr_ptr r, mpfr_srcptr a, mp_rnd_t rnd_mode) { int inexact; MPFR_SAVE_EXPO_DECL (expo); /* If a is NaN, the result is NaN */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a))) { if (MPFR_IS_NAN (a)) { MPFR_SET_NAN (r); MPFR_RET_NAN; } /* check for infinity before zero */ else if (MPFR_IS_INF (a)) { if (MPFR_IS_NEG (a)) /* log10(-Inf) = NaN */ { MPFR_SET_NAN (r); MPFR_RET_NAN; } else /* log10(+Inf) = +Inf */ { MPFR_SET_INF (r); MPFR_SET_POS (r); MPFR_RET (0); /* exact */ } } else /* a = 0 */ { MPFR_ASSERTD (MPFR_IS_ZERO (a)); MPFR_SET_INF (r); MPFR_SET_NEG (r); MPFR_RET (0); /* log10(0) is an exact -infinity */ } } /* If a is negative, the result is NaN */ if (MPFR_UNLIKELY (MPFR_IS_NEG (a))) { MPFR_SET_NAN (r); MPFR_RET_NAN; } /* If a is 1, the result is 0 */ if (mpfr_cmp_ui (a, 1) == 0) { MPFR_SET_ZERO (r); MPFR_SET_POS (r); MPFR_RET (0); /* result is exact */ } MPFR_SAVE_EXPO_MARK (expo); /* General case */ { /* Declaration of the intermediary variable */ mpfr_t t, tt; MPFR_ZIV_DECL (loop); /* Declaration of the size variable */ mp_prec_t Ny = MPFR_PREC(r); /* Precision of output variable */ mp_prec_t Nt; /* Precision of the intermediary variable */ mp_exp_t err; /* Precision of error */ /* compute the precision of intermediary variable */ /* the optimal number of bits : see algorithms.tex */ Nt = Ny + 4 + MPFR_INT_CEIL_LOG2 (Ny); /* initialise of intermediary variables */ mpfr_init2 (t, Nt); mpfr_init2 (tt, Nt); /* First computation of log10 */ MPFR_ZIV_INIT (loop, Nt); for (;;) { /* compute log10 */ mpfr_set_ui (t, 10, GMP_RNDN); /* 10 */ mpfr_log (t, t, GMP_RNDD); /* log(10) */ mpfr_log (tt, a, GMP_RNDN); /* log(a) */ mpfr_div (t, tt, t, GMP_RNDN); /* log(a)/log(10) */ /* estimation of the error */ err = Nt - 4; if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) break; /* log10(10^n) is exact: FIXME: Can we have 10^n exactly representable as a mpfr_t but n can't fit an unsigned long? */ if (MPFR_IS_POS (t) && mpfr_integer_p (t) && mpfr_fits_ulong_p (t, GMP_RNDN) && !mpfr_ui_pow_ui (tt, 10, mpfr_get_ui (t, GMP_RNDN), GMP_RNDN) && mpfr_cmp (a, tt) == 0) break; /* actualisation of the precision */ MPFR_ZIV_NEXT (loop, Nt); mpfr_set_prec (t, Nt); mpfr_set_prec (tt, Nt); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (r, t, rnd_mode); mpfr_clear (t); mpfr_clear (tt); } MPFR_SAVE_EXPO_FREE (expo); return mpfr_check_range (r, inexact, rnd_mode); }