/* mpfr_log -- natural logarithm of a floating-point number Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /*#define DEBUG */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* The computation of log(a) is done using the formula : if we want p bits of the result, pi log(a) ~ ------------ - m log 2 2 AG(1,4/s) where s = x 2^m > 2^(p/2) More precisely, if F(x) = int(1/sqrt(1-(1-x^2)*sin(t)^2), t=0..PI/2), then for s>=1.26 we have log(s) < F(4/s) < log(s)*(1+4/s^2) from which we deduce pi/2/AG(1,4/s)*(1-4/s^2) < log(s) < pi/2/AG(1,4/s) so the relative error 4/s^2 is < 4/2^p i.e. 4 ulps. */ const mp_limb_t __gmpfr_limb1[1] = {MPFR_LIMB_HIGHBIT}; const mpfr_t __gmpfr_one = {{2, MPFR_SIGN_POS, 1, (mp_limb_t*)__gmpfr_limb1}}; const mpfr_t __gmpfr_two = {{2, MPFR_SIGN_POS, 2, (mp_limb_t*)__gmpfr_limb1}}; const mpfr_t __gmpfr_four ={{2, MPFR_SIGN_POS, 3, (mp_limb_t*)__gmpfr_limb1}}; int mpfr_log (mpfr_ptr r, mpfr_srcptr a, mp_rnd_t rnd_mode) { int inexact; mp_prec_t p, q; mpfr_t tmp1, tmp2; mp_limb_t *tmp1p, *tmp2p; MPFR_ZIV_DECL (loop); TMP_DECL(marker); MPFR_LOG_FUNC (("a[%#R]=%R rnd=%d", a, a, rnd_mode), ("r[%#R]=%R inexact=%d", r, r, inexact)); /* Special cases */ if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a))) { /* If a is NaN, the result is NaN */ if (MPFR_IS_NAN (a)) { MPFR_SET_NAN (r); MPFR_RET_NAN; } /* check for infinity before zero */ else if (MPFR_IS_INF (a)) { if (MPFR_IS_NEG (a)) /* log(-Inf) = NaN */ { MPFR_SET_NAN (r); MPFR_RET_NAN; } else /* log(+Inf) = +Inf */ { MPFR_SET_INF (r); MPFR_SET_POS (r); MPFR_RET (0); } } else /* a is zero */ { MPFR_ASSERTD (MPFR_IS_ZERO (a)); MPFR_SET_INF (r); MPFR_SET_NEG (r); MPFR_RET (0); /* log(0) is an exact -infinity */ } } /* If a is negative, the result is NaN */ else if (MPFR_UNLIKELY (MPFR_IS_NEG (a))) { MPFR_SET_NAN (r); MPFR_RET_NAN; } /* If a is 1, the result is 0 */ else if (MPFR_UNLIKELY (MPFR_GET_EXP (a) == 1 && mpfr_cmp_ui (a, 1) == 0)) { MPFR_SET_ZERO (r); MPFR_SET_POS (r); MPFR_RET (0); /* only "normal" case where the result is exact */ } q = MPFR_PREC (r); /* use initial precision about q+lg(q)+5 */ p = q + 5 + 2*MPFR_INT_CEIL_LOG2 (q); /* % ~(mp_prec_t)BITS_PER_MP_LIMB ; m=q; while (m) { p++; m >>= 1; } */ /* if (MPFR_LIKELY(p % BITS_PER_MP_LIMB != 0)) p += BITS_PER_MP_LIMB - (p%BITS_PER_MP_LIMB); */ TMP_MARK(marker); MPFR_ZIV_INIT (loop, p); for (;;) { mp_size_t size; long m; mp_exp_t cancel; /* Calculus of m (depends on p) */ m = (p + 1) / 2 - MPFR_GET_EXP (a) + 1; /* All the mpfr_t needed have a precision of p */ size = (p-1)/BITS_PER_MP_LIMB+1; MPFR_TMP_INIT (tmp1p, tmp1, p, size); MPFR_TMP_INIT (tmp2p, tmp2, p, size); mpfr_mul_2si (tmp2, a, m, GMP_RNDN); /* s=a*2^m, err<=1 ulp */ mpfr_div (tmp1, __gmpfr_four, tmp2, GMP_RNDN);/* 4/s, err<=2 ulps */ mpfr_agm (tmp2, __gmpfr_one, tmp1, GMP_RNDN); /* AG(1,4/s),err<=3 ulps */ mpfr_mul_2ui (tmp2, tmp2, 1, GMP_RNDN); /* 2*AG(1,4/s), err<=3 ulps */ mpfr_const_pi (tmp1, GMP_RNDN); /* compute pi, err<=1ulp */ mpfr_div (tmp2, tmp1, tmp2, GMP_RNDN); /* pi/2*AG(1,4/s), err<=5ulps */ mpfr_const_log2 (tmp1, GMP_RNDN); /* compute log(2), err<=1ulp */ mpfr_mul_si (tmp1, tmp1, m, GMP_RNDN); /* compute m*log(2),err<=2ulps */ mpfr_sub (tmp1, tmp2, tmp1, GMP_RNDN); /* log(a), err<=7ulps+cancel */ cancel = MPFR_GET_EXP (tmp2) - MPFR_GET_EXP (tmp1); MPFR_LOG_MSG (("canceled bits=%ld\n", cancel)); MPFR_LOG_VAR (tmp1); if (MPFR_UNLIKELY (cancel < 0)) cancel = 0; /* we have 7 ulps of error from the above roundings, 4 ulps from the 4/s^2 second order term, plus the canceled bits */ if (MPFR_LIKELY (MPFR_CAN_ROUND (tmp1, p-cancel-4, q, rnd_mode))) break; p += cancel; MPFR_ZIV_NEXT (loop, p); } MPFR_ZIV_FREE (loop); inexact = mpfr_set (r, tmp1, rnd_mode); /* We clean */ TMP_FREE(marker); return inexact; /* result is inexact */ }