/* mpfr_j0, mpfr_j1, mpfr_jn -- Bessel functions of 1st kind, integer order. http://www.opengroup.org/onlinepubs/009695399/functions/j0.html Copyright 2007 Free Software Foundation, Inc. Contributed by the Arenaire and Cacao projects, INRIA. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* Relations: j(-n,z) = (-1)^n j(n,z) */ static int mpfr_jn_asympt (mpfr_ptr, long, mpfr_srcptr, mp_rnd_t); int mpfr_j0 (mpfr_ptr res, mpfr_srcptr z, mp_rnd_t r) { return mpfr_jn (res, 0, z, r); } int mpfr_j1 (mpfr_ptr res, mpfr_srcptr z, mp_rnd_t r) { return mpfr_jn (res, 1, z, r); } int mpfr_jn (mpfr_ptr res, long n, mpfr_srcptr z, mp_rnd_t r) { int inex; unsigned long absn; mp_prec_t prec, err; mp_exp_t exps, expT; mpfr_t y, s, t; unsigned long k, zz; MPFR_ZIV_DECL (loop); MPFR_LOG_FUNC (("x[%#R]=%R n=%d rnd=%d", z, z, n, r), ("y[%#R]=%R", res, res)); absn = SAFE_ABS (unsigned long, n); if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (z))) { if (MPFR_IS_NAN (z)) { MPFR_SET_NAN (res); MPFR_RET_NAN; } /* j(n,z) tends to zero when z goes to +Inf or -Inf, oscillating around 0. We choose to return +0 in that case. */ else if (MPFR_IS_INF (z)) /* FIXME: according to j(-n,z) = (-1)^n j(n,z) we might want to give a sign depending on z and n */ return mpfr_set_ui (res, 0, r); else /* z=0: j(0,0)=1, j(n odd,+/-0) = +/-0 if n > 0, -/+0 if n < 0, j(n even,+/-0) = +0 */ { if (n == 0) return mpfr_set_ui (res, 1, r); else if (absn & 1) /* n odd */ return (n > 0) ? mpfr_set (res, z, r) : mpfr_neg (res, z, r); else /* n even */ return mpfr_set_ui (res, 0, r); } } /* check for tiny input for j0: j0(z) = 1 - z^2/4 + ..., more precisely |j0(z) - 1| <= z^2/4 for -1 <= z <= 1. */ if (n == 0) MPFR_FAST_COMPUTE_IF_SMALL_INPUT (res, __gmpfr_one, -2 * MPFR_GET_EXP (z), 2, 0, r, return _inexact); /* idem for j1: j1(z) = z/2 - z^3/16 + ..., more precisely |j1(z) - z/2| <= |z^3|/16 for -1 <= z <= 1, with the sign of j1(z) - z/2 being the opposite of that of z. */ if (n == 1) /* we first compute 2j1(z) = z - z^3/8 + ..., then divide by 2 using the "extra" argument of MPFR_FAST_COMPUTE_IF_SMALL_INPUT. */ MPFR_FAST_COMPUTE_IF_SMALL_INPUT (res, z, -2 * MPFR_GET_EXP (z), 3, 0, r, mpfr_div_2ui (res, res, 1, r)); /* we can use the asymptotic expansion as soon as |z| > p log(2)/2, but to get some margin we use it for |z| > p/2 */ if (mpfr_cmp_ui (z, MPFR_PREC(res) / 2 + 3) > 0 || mpfr_cmp_si (z, - ((long) MPFR_PREC(res) / 2 + 3)) < 0) { inex = mpfr_jn_asympt (res, n, z, r); if (inex != 0) return inex; } mpfr_init2 (y, 32); /* check underflow case: |j(n,z)| <= 1/sqrt(2 Pi n) (ze/2n)^n (see algorithms.tex) */ if (absn > 0) { /* the following is an upper 32-bit approximation of exp(1)/2 */ mpfr_set_str_binary (y, "1.0101101111110000101010001011001"); if (MPFR_SIGN(z) > 0) mpfr_mul (y, y, z, GMP_RNDU); else { mpfr_mul (y, y, z, GMP_RNDD); mpfr_neg (y, y, GMP_RNDU); } mpfr_div_ui (y, y, absn, GMP_RNDU); /* now y is an upper approximation of |ze/2n|: y < 2^EXP(y), thus |j(n,z)| < 1/2*y^n < 2^(n*EXP(y)-1). If n*EXP(y) < __gmpfr_emin then we have an underflow. Warning: absn is an unsigned long. */ if ((MPFR_EXP(y) < 0 && absn > (unsigned long) (-__gmpfr_emin)) || (absn <= (unsigned long) (-MPFR_EMIN_MIN) && MPFR_EXP(y) < __gmpfr_emin / (mp_exp_t) absn)) { mpfr_clear (y); return mpfr_underflow (res, (r == GMP_RNDN) ? GMP_RNDZ : r, (n % 2) ? ((n > 0) ? MPFR_SIGN(z) : -MPFR_SIGN(z)) : MPFR_SIGN_POS); } } mpfr_init (s); mpfr_init (t); prec = MPFR_PREC (res) + MPFR_INT_CEIL_LOG2 (MPFR_PREC (res)) + 3; MPFR_ZIV_INIT (loop, prec); for (;;) { mpfr_set_prec (y, prec); mpfr_set_prec (s, prec); mpfr_set_prec (t, prec); mpfr_pow_ui (t, z, absn, GMP_RNDN); /* z^|n| */ mpfr_mul (y, z, z, GMP_RNDN); /* z^2 */ zz = mpfr_get_ui (y, GMP_RNDU); MPFR_ASSERTN (zz < ULONG_MAX); mpfr_div_2ui (y, y, 2, GMP_RNDN); /* z^2/4 */ mpfr_fac_ui (s, absn, GMP_RNDN); /* |n|! */ mpfr_div (t, t, s, GMP_RNDN); if (absn > 0) mpfr_div_2ui (t, t, absn, GMP_RNDN); mpfr_set (s, t, GMP_RNDN); exps = MPFR_EXP (s); expT = exps; for (k = 1; ; k++) { mpfr_mul (t, t, y, GMP_RNDN); mpfr_neg (t, t, GMP_RNDN); if (k + absn <= ULONG_MAX / k) mpfr_div_ui (t, t, k * (k + absn), GMP_RNDN); else { mpfr_div_ui (t, t, k, GMP_RNDN); mpfr_div_ui (t, t, k + absn, GMP_RNDN); } exps = MPFR_EXP (t); if (exps > expT) expT = exps; mpfr_add (s, s, t, GMP_RNDN); exps = MPFR_EXP (s); if (exps > expT) expT = exps; if (MPFR_EXP (t) + (mp_exp_t) prec <= MPFR_EXP (s) && zz / (2 * k) < k + n) break; } /* the error is bounded by (4k^2+21/2k+7) ulp(s)*2^(expT-exps) <= (k+2)^2 ulp(s)*2^(2+expT-exps) */ err = 2 * MPFR_INT_CEIL_LOG2(k + 2) + 2 + expT - MPFR_EXP (s); if (MPFR_LIKELY (MPFR_CAN_ROUND (s, prec - err, MPFR_PREC(res), r))) break; MPFR_ZIV_NEXT (loop, prec); } MPFR_ZIV_FREE (loop); inex = ((n >= 0) || ((n & 1) == 0)) ? mpfr_set (res, s, r) : mpfr_neg (res, s, r); mpfr_clear (y); mpfr_clear (s); mpfr_clear (t); return inex; } #define MPFR_JN #include "jyn_asympt.c"