/* mpfr_acosh -- inverse hyperbolic cosine Copyright 2001, 2002 Free Software Foundation. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "gmp.h" #include "gmp-impl.h" #include "mpfr.h" #include "mpfr-impl.h" /* The computation of acosh is done by acosh= ln(x + sqrt(x^2-1)) */ int mpfr_acosh (mpfr_ptr y, mpfr_srcptr x , mp_rnd_t rnd_mode) { int inexact = 0; int comp; if (MPFR_IS_NAN(x) || (comp = mpfr_cmp_ui (x, 1)) < 0) { MPFR_SET_NAN(y); MPFR_RET_NAN; } MPFR_CLEAR_NAN(y); if (comp == 0) { MPFR_SET_ZERO(y); /* acosh(1) = 0 */ MPFR_SET_POS(y); MPFR_RET(0); } if (MPFR_IS_INF(x)) { MPFR_SET_INF(y); MPFR_SET_POS(y); MPFR_RET(0); } MPFR_CLEAR_INF(y); /* General case */ { /* Declaration of the intermediary variables */ mpfr_t t, te, ti; /* Declaration of the size variables */ mp_prec_t Nx = MPFR_PREC(x); /* Precision of input variable */ mp_prec_t Ny = MPFR_PREC(y); /* Precision of output variable */ mp_prec_t Nt; /* Precision of the intermediary variable */ int err; /* Precision of error */ /* compute the precision of intermediary variable */ Nt = MAX(Nx, Ny); /* the optimal number of bits : see algorithms.ps */ Nt = Nt + 4 + __gmpfr_ceil_log2 (Nt); /* initialization of intermediary variables */ mpfr_init (t); mpfr_init (te); mpfr_init (ti); mpfr_save_emin_emax (); /* First computation of acosh */ do { /* reactualisation of the precision */ mpfr_set_prec (t, Nt); mpfr_set_prec (te, Nt); mpfr_set_prec (ti, Nt); /* compute acosh */ mpfr_mul (te, x, x, GMP_RNDD); /* x^2 */ mpfr_sub_ui (ti, te, 1, GMP_RNDD); /* x^2-1 */ mpfr_sqrt (t, ti, GMP_RNDN); /* sqrt(x^2-1) */ mpfr_add (t, t, x, GMP_RNDN); /* sqrt(x^2-1)+x */ mpfr_log (t, t, GMP_RNDN); /* ln(sqrt(x^2-1)+x)*/ /* estimation of the error -- see algorithms.ps */ err = Nt - (-1 + 2 * MAX(2 + MAX(2 - MPFR_EXP(t), 1 + MPFR_EXP(te) - MPFR_EXP(ti) - MPFR_EXP(t)), 0)); /* actualisation of the precision */ Nt += 10; } while ((err < 0) || !mpfr_can_round (t, err, GMP_RNDN, rnd_mode, Ny)); inexact = mpfr_set (y, t, rnd_mode); mpfr_clear (t); mpfr_clear (ti); mpfr_clear (te); } mpfr_restore_emin_emax (); return mpfr_check_range (y, inexact, rnd_mode); }