/* * Copyright © 2022 Imagination Technologies Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include "hwdef/rogue_hw_defs.h" #include "hwdef/rogue_hw_utils.h" #include "pvr_bo.h" #include "pvr_clear.h" #include "pvr_common.h" #include "pvr_csb.h" #include "pvr_csb_enum_helpers.h" #include "pvr_device_info.h" #include "pvr_formats.h" #include "pvr_hardcode.h" #include "pvr_hw_pass.h" #include "pvr_job_common.h" #include "pvr_job_render.h" #include "pvr_limits.h" #include "pvr_pds.h" #include "pvr_private.h" #include "pvr_tex_state.h" #include "pvr_types.h" #include "pvr_uscgen.h" #include "pvr_winsys.h" #include "util/bitscan.h" #include "util/bitset.h" #include "util/compiler.h" #include "util/list.h" #include "util/macros.h" #include "util/u_dynarray.h" #include "util/u_math.h" #include "util/u_pack_color.h" #include "vk_alloc.h" #include "vk_command_buffer.h" #include "vk_command_pool.h" #include "vk_common_entrypoints.h" #include "vk_format.h" #include "vk_graphics_state.h" #include "vk_log.h" #include "vk_object.h" #include "vk_util.h" /* Structure used to pass data into pvr_compute_generate_control_stream() * function. */ struct pvr_compute_kernel_info { pvr_dev_addr_t indirect_buffer_addr; bool global_offsets_present; uint32_t usc_common_size; uint32_t usc_unified_size; uint32_t pds_temp_size; uint32_t pds_data_size; enum PVRX(CDMCTRL_USC_TARGET) usc_target; bool is_fence; uint32_t pds_data_offset; uint32_t pds_code_offset; enum PVRX(CDMCTRL_SD_TYPE) sd_type; bool usc_common_shared; uint32_t local_size[PVR_WORKGROUP_DIMENSIONS]; uint32_t global_size[PVR_WORKGROUP_DIMENSIONS]; uint32_t max_instances; }; static void pvr_cmd_buffer_free_sub_cmd(struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd *sub_cmd) { if (sub_cmd->owned) { switch (sub_cmd->type) { case PVR_SUB_CMD_TYPE_GRAPHICS: util_dynarray_fini(&sub_cmd->gfx.sec_query_indices); pvr_csb_finish(&sub_cmd->gfx.control_stream); pvr_bo_free(cmd_buffer->device, sub_cmd->gfx.terminate_ctrl_stream); pvr_bo_suballoc_free(sub_cmd->gfx.depth_bias_bo); pvr_bo_suballoc_free(sub_cmd->gfx.scissor_bo); break; case PVR_SUB_CMD_TYPE_COMPUTE: case PVR_SUB_CMD_TYPE_OCCLUSION_QUERY: pvr_csb_finish(&sub_cmd->compute.control_stream); break; case PVR_SUB_CMD_TYPE_TRANSFER: list_for_each_entry_safe (struct pvr_transfer_cmd, transfer_cmd, &sub_cmd->transfer.transfer_cmds, link) { list_del(&transfer_cmd->link); vk_free(&cmd_buffer->vk.pool->alloc, transfer_cmd); } break; case PVR_SUB_CMD_TYPE_EVENT: if (sub_cmd->event.type == PVR_EVENT_TYPE_WAIT) vk_free(&cmd_buffer->vk.pool->alloc, sub_cmd->event.wait.events); break; default: unreachable("Unsupported sub-command type"); } } list_del(&sub_cmd->link); vk_free(&cmd_buffer->vk.pool->alloc, sub_cmd); } static void pvr_cmd_buffer_free_sub_cmds(struct pvr_cmd_buffer *cmd_buffer) { list_for_each_entry_safe (struct pvr_sub_cmd, sub_cmd, &cmd_buffer->sub_cmds, link) { pvr_cmd_buffer_free_sub_cmd(cmd_buffer, sub_cmd); } } static void pvr_cmd_buffer_free_resources(struct pvr_cmd_buffer *cmd_buffer) { vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.render_pass_info.attachments); vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer->state.render_pass_info.clear_values); util_dynarray_fini(&cmd_buffer->state.query_indices); pvr_cmd_buffer_free_sub_cmds(cmd_buffer); list_for_each_entry_safe (struct pvr_suballoc_bo, suballoc_bo, &cmd_buffer->bo_list, link) { list_del(&suballoc_bo->link); pvr_bo_suballoc_free(suballoc_bo); } util_dynarray_fini(&cmd_buffer->deferred_clears); util_dynarray_fini(&cmd_buffer->deferred_csb_commands); util_dynarray_fini(&cmd_buffer->scissor_array); util_dynarray_fini(&cmd_buffer->depth_bias_array); } static void pvr_cmd_buffer_reset(struct vk_command_buffer *vk_cmd_buffer, VkCommandBufferResetFlags flags) { struct pvr_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct pvr_cmd_buffer, vk); /* FIXME: For now we always free all resources as if * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT was set. */ pvr_cmd_buffer_free_resources(cmd_buffer); vk_command_buffer_reset(&cmd_buffer->vk); memset(&cmd_buffer->state, 0, sizeof(cmd_buffer->state)); memset(&cmd_buffer->scissor_words, 0, sizeof(cmd_buffer->scissor_words)); cmd_buffer->usage_flags = 0; cmd_buffer->state.status = VK_SUCCESS; } static void pvr_cmd_buffer_destroy(struct vk_command_buffer *vk_cmd_buffer) { struct pvr_cmd_buffer *cmd_buffer = container_of(vk_cmd_buffer, struct pvr_cmd_buffer, vk); pvr_cmd_buffer_free_resources(cmd_buffer); vk_command_buffer_finish(&cmd_buffer->vk); vk_free(&cmd_buffer->vk.pool->alloc, cmd_buffer); } static const struct vk_command_buffer_ops cmd_buffer_ops = { .reset = pvr_cmd_buffer_reset, .destroy = pvr_cmd_buffer_destroy, }; static VkResult pvr_cmd_buffer_create(struct pvr_device *device, struct vk_command_pool *pool, VkCommandBufferLevel level, VkCommandBuffer *pCommandBuffer) { struct pvr_cmd_buffer *cmd_buffer; VkResult result; cmd_buffer = vk_zalloc(&pool->alloc, sizeof(*cmd_buffer), 8U, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!cmd_buffer) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); result = vk_command_buffer_init(pool, &cmd_buffer->vk, &cmd_buffer_ops, level); if (result != VK_SUCCESS) { vk_free(&pool->alloc, cmd_buffer); return result; } cmd_buffer->device = device; util_dynarray_init(&cmd_buffer->depth_bias_array, NULL); util_dynarray_init(&cmd_buffer->scissor_array, NULL); util_dynarray_init(&cmd_buffer->deferred_csb_commands, NULL); util_dynarray_init(&cmd_buffer->deferred_clears, NULL); cmd_buffer->state.status = VK_SUCCESS; list_inithead(&cmd_buffer->sub_cmds); list_inithead(&cmd_buffer->bo_list); *pCommandBuffer = pvr_cmd_buffer_to_handle(cmd_buffer); return VK_SUCCESS; } VkResult pvr_AllocateCommandBuffers(VkDevice _device, const VkCommandBufferAllocateInfo *pAllocateInfo, VkCommandBuffer *pCommandBuffers) { VK_FROM_HANDLE(vk_command_pool, pool, pAllocateInfo->commandPool); PVR_FROM_HANDLE(pvr_device, device, _device); VkResult result = VK_SUCCESS; uint32_t i; for (i = 0; i < pAllocateInfo->commandBufferCount; i++) { result = pvr_cmd_buffer_create(device, pool, pAllocateInfo->level, &pCommandBuffers[i]); if (result != VK_SUCCESS) break; } if (result != VK_SUCCESS) { while (i--) { VK_FROM_HANDLE(vk_command_buffer, cmd_buffer, pCommandBuffers[i]); pvr_cmd_buffer_destroy(cmd_buffer); } for (i = 0; i < pAllocateInfo->commandBufferCount; i++) pCommandBuffers[i] = VK_NULL_HANDLE; } return result; } static void pvr_cmd_buffer_update_barriers(struct pvr_cmd_buffer *cmd_buffer, enum pvr_sub_cmd_type type) { struct pvr_cmd_buffer_state *state = &cmd_buffer->state; uint32_t barriers; switch (type) { case PVR_SUB_CMD_TYPE_GRAPHICS: barriers = PVR_PIPELINE_STAGE_GEOM_BIT | PVR_PIPELINE_STAGE_FRAG_BIT; break; case PVR_SUB_CMD_TYPE_COMPUTE: barriers = PVR_PIPELINE_STAGE_COMPUTE_BIT; break; case PVR_SUB_CMD_TYPE_OCCLUSION_QUERY: case PVR_SUB_CMD_TYPE_TRANSFER: /* Compute jobs are used for occlusion queries but to copy the results we * have to sync with transfer jobs because vkCmdCopyQueryPoolResults() is * deemed as a transfer operation by the spec. */ barriers = PVR_PIPELINE_STAGE_TRANSFER_BIT; break; case PVR_SUB_CMD_TYPE_EVENT: barriers = 0; break; default: unreachable("Unsupported sub-command type"); } for (uint32_t i = 0; i < ARRAY_SIZE(state->barriers_needed); i++) state->barriers_needed[i] |= barriers; } static VkResult pvr_cmd_buffer_upload_tables(struct pvr_device *device, struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd_gfx *const sub_cmd) { const uint32_t cache_line_size = rogue_get_slc_cache_line_size(&device->pdevice->dev_info); VkResult result; assert(!sub_cmd->depth_bias_bo && !sub_cmd->scissor_bo); if (cmd_buffer->depth_bias_array.size > 0) { result = pvr_gpu_upload(device, device->heaps.general_heap, util_dynarray_begin(&cmd_buffer->depth_bias_array), cmd_buffer->depth_bias_array.size, cache_line_size, &sub_cmd->depth_bias_bo); if (result != VK_SUCCESS) return result; } if (cmd_buffer->scissor_array.size > 0) { result = pvr_gpu_upload(device, device->heaps.general_heap, util_dynarray_begin(&cmd_buffer->scissor_array), cmd_buffer->scissor_array.size, cache_line_size, &sub_cmd->scissor_bo); if (result != VK_SUCCESS) goto err_free_depth_bias_bo; } util_dynarray_clear(&cmd_buffer->depth_bias_array); util_dynarray_clear(&cmd_buffer->scissor_array); return VK_SUCCESS; err_free_depth_bias_bo: pvr_bo_suballoc_free(sub_cmd->depth_bias_bo); sub_cmd->depth_bias_bo = NULL; return result; } static VkResult pvr_cmd_buffer_emit_ppp_state(const struct pvr_cmd_buffer *const cmd_buffer, struct pvr_csb *const csb) { const struct pvr_framebuffer *const framebuffer = cmd_buffer->state.render_pass_info.framebuffer; assert(csb->stream_type == PVR_CMD_STREAM_TYPE_GRAPHICS || csb->stream_type == PVR_CMD_STREAM_TYPE_GRAPHICS_DEFERRED); pvr_csb_emit (csb, VDMCTRL_PPP_STATE0, state0) { state0.addrmsb = framebuffer->ppp_state_bo->dev_addr; state0.word_count = framebuffer->ppp_state_size; } pvr_csb_emit (csb, VDMCTRL_PPP_STATE1, state1) { state1.addrlsb = framebuffer->ppp_state_bo->dev_addr; } return csb->status; } VkResult pvr_cmd_buffer_upload_general(struct pvr_cmd_buffer *const cmd_buffer, const void *const data, const size_t size, struct pvr_suballoc_bo **const pvr_bo_out) { struct pvr_device *const device = cmd_buffer->device; const uint32_t cache_line_size = rogue_get_slc_cache_line_size(&device->pdevice->dev_info); struct pvr_suballoc_bo *suballoc_bo; VkResult result; result = pvr_gpu_upload(device, device->heaps.general_heap, data, size, cache_line_size, &suballoc_bo); if (result != VK_SUCCESS) { cmd_buffer->state.status = result; return result; } list_add(&suballoc_bo->link, &cmd_buffer->bo_list); *pvr_bo_out = suballoc_bo; return VK_SUCCESS; } static VkResult pvr_cmd_buffer_upload_usc(struct pvr_cmd_buffer *const cmd_buffer, const void *const code, const size_t code_size, uint64_t code_alignment, struct pvr_suballoc_bo **const pvr_bo_out) { struct pvr_device *const device = cmd_buffer->device; const uint32_t cache_line_size = rogue_get_slc_cache_line_size(&device->pdevice->dev_info); struct pvr_suballoc_bo *suballoc_bo; VkResult result; code_alignment = MAX2(code_alignment, cache_line_size); result = pvr_gpu_upload_usc(device, code, code_size, code_alignment, &suballoc_bo); if (result != VK_SUCCESS) { cmd_buffer->state.status = result; return result; } list_add(&suballoc_bo->link, &cmd_buffer->bo_list); *pvr_bo_out = suballoc_bo; return VK_SUCCESS; } VkResult pvr_cmd_buffer_upload_pds(struct pvr_cmd_buffer *const cmd_buffer, const uint32_t *data, uint32_t data_size_dwords, uint32_t data_alignment, const uint32_t *code, uint32_t code_size_dwords, uint32_t code_alignment, uint64_t min_alignment, struct pvr_pds_upload *const pds_upload_out) { struct pvr_device *const device = cmd_buffer->device; VkResult result; result = pvr_gpu_upload_pds(device, data, data_size_dwords, data_alignment, code, code_size_dwords, code_alignment, min_alignment, pds_upload_out); if (result != VK_SUCCESS) { cmd_buffer->state.status = result; return result; } list_add(&pds_upload_out->pvr_bo->link, &cmd_buffer->bo_list); return VK_SUCCESS; } static inline VkResult pvr_cmd_buffer_upload_pds_data(struct pvr_cmd_buffer *const cmd_buffer, const uint32_t *data, uint32_t data_size_dwords, uint32_t data_alignment, struct pvr_pds_upload *const pds_upload_out) { return pvr_cmd_buffer_upload_pds(cmd_buffer, data, data_size_dwords, data_alignment, NULL, 0, 0, data_alignment, pds_upload_out); } /* pbe_cs_words must be an array of length emit_count with * ROGUE_NUM_PBESTATE_STATE_WORDS entries */ static VkResult pvr_sub_cmd_gfx_per_job_fragment_programs_create_and_upload( struct pvr_cmd_buffer *const cmd_buffer, const uint32_t emit_count, const uint32_t *pbe_cs_words, struct pvr_pds_upload *const pds_upload_out) { struct pvr_pds_event_program pixel_event_program = { /* No data to DMA, just a DOUTU needed. */ .num_emit_word_pairs = 0, }; const uint32_t staging_buffer_size = PVR_DW_TO_BYTES(cmd_buffer->device->pixel_event_data_size_in_dwords); const VkAllocationCallbacks *const allocator = &cmd_buffer->vk.pool->alloc; struct pvr_device *const device = cmd_buffer->device; struct pvr_suballoc_bo *usc_eot_program = NULL; struct util_dynarray eot_program_bin; uint32_t *staging_buffer; uint32_t usc_temp_count; VkResult result; assert(emit_count > 0); pvr_uscgen_per_job_eot(emit_count, pbe_cs_words, &usc_temp_count, &eot_program_bin); result = pvr_cmd_buffer_upload_usc(cmd_buffer, eot_program_bin.data, eot_program_bin.size, 4, &usc_eot_program); util_dynarray_fini(&eot_program_bin); if (result != VK_SUCCESS) return result; pvr_pds_setup_doutu(&pixel_event_program.task_control, usc_eot_program->dev_addr.addr, usc_temp_count, PVRX(PDSINST_DOUTU_SAMPLE_RATE_INSTANCE), false); /* TODO: We could skip allocating this and generate directly into the device * buffer thus removing one allocation and memcpy() per job. Would this * speed up things in a noticeable way? */ staging_buffer = vk_alloc(allocator, staging_buffer_size, 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (!staging_buffer) { result = vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); goto err_free_usc_pixel_program; } /* Generate the data segment. The code segment was uploaded earlier when * setting up the PDS static heap data. */ pvr_pds_generate_pixel_event_data_segment(&pixel_event_program, staging_buffer, &device->pdevice->dev_info); result = pvr_cmd_buffer_upload_pds_data( cmd_buffer, staging_buffer, cmd_buffer->device->pixel_event_data_size_in_dwords, 4, pds_upload_out); if (result != VK_SUCCESS) goto err_free_pixel_event_staging_buffer; vk_free(allocator, staging_buffer); return VK_SUCCESS; err_free_pixel_event_staging_buffer: vk_free(allocator, staging_buffer); err_free_usc_pixel_program: list_del(&usc_eot_program->link); pvr_bo_suballoc_free(usc_eot_program); return result; } static VkResult pvr_sub_cmd_gfx_build_terminate_ctrl_stream( struct pvr_device *const device, const struct pvr_cmd_buffer *const cmd_buffer, struct pvr_sub_cmd_gfx *const gfx_sub_cmd) { struct list_head bo_list; struct pvr_csb csb; VkResult result; pvr_csb_init(device, PVR_CMD_STREAM_TYPE_GRAPHICS, &csb); result = pvr_cmd_buffer_emit_ppp_state(cmd_buffer, &csb); if (result != VK_SUCCESS) goto err_csb_finish; result = pvr_csb_emit_terminate(&csb); if (result != VK_SUCCESS) goto err_csb_finish; result = pvr_csb_bake(&csb, &bo_list); if (result != VK_SUCCESS) goto err_csb_finish; /* This is a trivial control stream, there's no reason it should ever require * more memory than a single bo can provide. */ assert(list_is_singular(&bo_list)); gfx_sub_cmd->terminate_ctrl_stream = list_first_entry(&bo_list, struct pvr_bo, link); return VK_SUCCESS; err_csb_finish: pvr_csb_finish(&csb); return result; } static VkResult pvr_setup_texture_state_words( struct pvr_device *device, struct pvr_combined_image_sampler_descriptor *descriptor, const struct pvr_image_view *image_view) { const struct pvr_image *image = vk_to_pvr_image(image_view->vk.image); struct pvr_texture_state_info info = { .format = image_view->vk.format, .mem_layout = image->memlayout, .type = image_view->vk.view_type, .is_cube = image_view->vk.view_type == VK_IMAGE_VIEW_TYPE_CUBE || image_view->vk.view_type == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY, .tex_state_type = PVR_TEXTURE_STATE_SAMPLE, .extent = image_view->vk.extent, .mip_levels = 1, .sample_count = image_view->vk.image->samples, .stride = image->physical_extent.width, .addr = image->dev_addr, }; const uint8_t *const swizzle = pvr_get_format_swizzle(info.format); VkResult result; memcpy(&info.swizzle, swizzle, sizeof(info.swizzle)); /* TODO: Can we use image_view->texture_state instead of generating here? */ result = pvr_pack_tex_state(device, &info, descriptor->image); if (result != VK_SUCCESS) return result; descriptor->sampler = (union pvr_sampler_descriptor){ 0 }; pvr_csb_pack (&descriptor->sampler.data.sampler_word, TEXSTATE_SAMPLER, sampler) { sampler.non_normalized_coords = true; sampler.addrmode_v = PVRX(TEXSTATE_ADDRMODE_CLAMP_TO_EDGE); sampler.addrmode_u = PVRX(TEXSTATE_ADDRMODE_CLAMP_TO_EDGE); sampler.minfilter = PVRX(TEXSTATE_FILTER_POINT); sampler.magfilter = PVRX(TEXSTATE_FILTER_POINT); sampler.dadjust = PVRX(TEXSTATE_DADJUST_ZERO_UINT); } return VK_SUCCESS; } static VkResult pvr_load_op_constants_create_and_upload(struct pvr_cmd_buffer *cmd_buffer, const struct pvr_load_op *load_op, pvr_dev_addr_t *const addr_out) { const struct pvr_render_pass_info *render_pass_info = &cmd_buffer->state.render_pass_info; const struct pvr_render_pass *pass = render_pass_info->pass; const struct pvr_renderpass_hwsetup_render *hw_render = load_op->hw_render; const struct pvr_renderpass_colorinit *color_init = &hw_render->color_init[0]; const VkClearValue *clear_value = &render_pass_info->clear_values[color_init->index]; struct pvr_suballoc_bo *clear_bo; uint32_t attachment_count; bool has_depth_clear; bool has_depth_load; VkResult result; /* These are only setup and never used for now. These will need to be * uploaded into a buffer based on some compiler info. */ /* TODO: Remove the above comment once the compiler is hooked up and we're * setting up + uploading the buffer. */ struct pvr_combined_image_sampler_descriptor texture_states[PVR_LOAD_OP_CLEARS_LOADS_MAX_RTS]; uint32_t texture_count = 0; uint32_t hw_clear_value[PVR_LOAD_OP_CLEARS_LOADS_MAX_RTS * PVR_CLEAR_COLOR_ARRAY_SIZE]; uint32_t next_clear_consts = 0; if (load_op->is_hw_object) attachment_count = load_op->hw_render->color_init_count; else attachment_count = load_op->subpass->color_count; for (uint32_t i = 0; i < attachment_count; i++) { struct pvr_image_view *image_view; uint32_t attachment_idx; if (load_op->is_hw_object) attachment_idx = load_op->hw_render->color_init[i].index; else attachment_idx = load_op->subpass->color_attachments[i]; image_view = render_pass_info->attachments[attachment_idx]; assert((load_op->clears_loads_state.rt_load_mask & load_op->clears_loads_state.rt_clear_mask) == 0); if (load_op->clears_loads_state.rt_load_mask & BITFIELD_BIT(i)) { result = pvr_setup_texture_state_words(cmd_buffer->device, &texture_states[texture_count], image_view); if (result != VK_SUCCESS) return result; texture_count++; } else if (load_op->clears_loads_state.rt_clear_mask & BITFIELD_BIT(i)) { const uint32_t accum_fmt_size = pvr_get_pbe_accum_format_size_in_bytes(image_view->vk.format); assert(next_clear_consts + vk_format_get_blocksize(image_view->vk.format) <= ARRAY_SIZE(hw_clear_value)); /* FIXME: do this at the point we store the clear values? */ pvr_get_hw_clear_color(image_view->vk.format, clear_value->color, &hw_clear_value[next_clear_consts]); next_clear_consts += DIV_ROUND_UP(accum_fmt_size, sizeof(uint32_t)); } } has_depth_load = false; for (uint32_t i = 0; i < ARRAY_SIZE(load_op->clears_loads_state.dest_vk_format); i++) { if (load_op->clears_loads_state.dest_vk_format[i] == VK_FORMAT_D32_SFLOAT) { has_depth_load = true; break; } } has_depth_clear = load_op->clears_loads_state.depth_clear_to_reg != -1; assert(!(has_depth_clear && has_depth_load)); if (has_depth_load) { const struct pvr_render_pass_attachment *attachment; const struct pvr_image_view *image_view; assert(load_op->subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED); assert(!load_op->is_hw_object); attachment = &pass->attachments[load_op->subpass->depth_stencil_attachment]; image_view = render_pass_info->attachments[attachment->index]; result = pvr_setup_texture_state_words(cmd_buffer->device, &texture_states[texture_count], image_view); if (result != VK_SUCCESS) return result; texture_count++; } else if (has_depth_clear) { const struct pvr_render_pass_attachment *attachment; VkClearValue clear_value; assert(load_op->subpass->depth_stencil_attachment != VK_ATTACHMENT_UNUSED); attachment = &pass->attachments[load_op->subpass->depth_stencil_attachment]; clear_value = render_pass_info->clear_values[attachment->index]; assert(next_clear_consts < ARRAY_SIZE(hw_clear_value)); hw_clear_value[next_clear_consts++] = fui(clear_value.depthStencil.depth); } result = pvr_cmd_buffer_upload_general(cmd_buffer, &hw_clear_value[0], sizeof(hw_clear_value), &clear_bo); if (result != VK_SUCCESS) return result; *addr_out = clear_bo->dev_addr; return VK_SUCCESS; } static VkResult pvr_load_op_pds_data_create_and_upload( struct pvr_cmd_buffer *cmd_buffer, const struct pvr_load_op *load_op, pvr_dev_addr_t constants_addr, struct pvr_pds_upload *const pds_upload_out) { struct pvr_device *device = cmd_buffer->device; const struct pvr_device_info *dev_info = &device->pdevice->dev_info; struct pvr_pds_pixel_shader_sa_program program = { 0 }; uint32_t staging_buffer_size; uint32_t *staging_buffer; VkResult result; program.num_texture_dma_kicks = 1; pvr_csb_pack (&program.texture_dma_address[0], PDSINST_DOUT_FIELDS_DOUTD_SRC0, value) { value.sbase = constants_addr; } pvr_csb_pack (&program.texture_dma_control[0], PDSINST_DOUT_FIELDS_DOUTD_SRC1, value) { value.dest = PVRX(PDSINST_DOUTD_DEST_COMMON_STORE); value.a0 = load_op->shareds_dest_offset; value.bsize = load_op->shareds_count; } pvr_pds_set_sizes_pixel_shader_sa_texture_data(&program, dev_info); staging_buffer_size = PVR_DW_TO_BYTES(program.data_size); staging_buffer = vk_alloc(&cmd_buffer->vk.pool->alloc, staging_buffer_size, 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (!staging_buffer) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); pvr_pds_generate_pixel_shader_sa_texture_state_data(&program, staging_buffer, dev_info); result = pvr_cmd_buffer_upload_pds_data(cmd_buffer, staging_buffer, program.data_size, 1, pds_upload_out); if (result != VK_SUCCESS) { vk_free(&cmd_buffer->vk.pool->alloc, staging_buffer); return result; } vk_free(&cmd_buffer->vk.pool->alloc, staging_buffer); return VK_SUCCESS; } /* FIXME: Should this function be specific to the HW background object, in * which case its name should be changed, or should it have the load op * structure passed in? */ static VkResult pvr_load_op_data_create_and_upload(struct pvr_cmd_buffer *cmd_buffer, const struct pvr_load_op *load_op, struct pvr_pds_upload *const pds_upload_out) { pvr_dev_addr_t constants_addr; VkResult result; result = pvr_load_op_constants_create_and_upload(cmd_buffer, load_op, &constants_addr); if (result != VK_SUCCESS) return result; return pvr_load_op_pds_data_create_and_upload(cmd_buffer, load_op, constants_addr, pds_upload_out); } static void pvr_pds_bgnd_pack_state( const struct pvr_load_op *load_op, const struct pvr_pds_upload *load_op_program, uint64_t pds_reg_values[static const ROGUE_NUM_CR_PDS_BGRND_WORDS]) { pvr_csb_pack (&pds_reg_values[0], CR_PDS_BGRND0_BASE, value) { value.shader_addr = PVR_DEV_ADDR(load_op->pds_frag_prog.data_offset); value.texunicode_addr = PVR_DEV_ADDR(load_op->pds_tex_state_prog.code_offset); } pvr_csb_pack (&pds_reg_values[1], CR_PDS_BGRND1_BASE, value) { value.texturedata_addr = PVR_DEV_ADDR(load_op_program->data_offset); } pvr_csb_pack (&pds_reg_values[2], CR_PDS_BGRND3_SIZEINFO, value) { value.usc_sharedsize = DIV_ROUND_UP(load_op->const_shareds_count, PVRX(CR_PDS_BGRND3_SIZEINFO_USC_SHAREDSIZE_UNIT_SIZE)); value.pds_texturestatesize = DIV_ROUND_UP( load_op_program->data_size, PVRX(CR_PDS_BGRND3_SIZEINFO_PDS_TEXTURESTATESIZE_UNIT_SIZE)); value.pds_tempsize = DIV_ROUND_UP(load_op->temps_count, PVRX(CR_PDS_BGRND3_SIZEINFO_PDS_TEMPSIZE_UNIT_SIZE)); } } /** * \brief Calculates the stride in pixels based on the pitch in bytes and pixel * format. * * \param[in] pitch Width pitch in bytes. * \param[in] vk_format Vulkan image format. * \return Stride in pixels. */ static inline uint32_t pvr_stride_from_pitch(uint32_t pitch, VkFormat vk_format) { const unsigned int cpp = vk_format_get_blocksize(vk_format); assert(pitch % cpp == 0); return pitch / cpp; } static void pvr_setup_pbe_state( const struct pvr_device_info *dev_info, const struct pvr_framebuffer *framebuffer, uint32_t mrt_index, const struct usc_mrt_resource *mrt_resource, const struct pvr_image_view *const iview, const VkRect2D *render_area, const bool down_scale, const uint32_t samples, uint32_t pbe_cs_words[static const ROGUE_NUM_PBESTATE_STATE_WORDS], uint64_t pbe_reg_words[static const ROGUE_NUM_PBESTATE_REG_WORDS]) { const struct pvr_image *image = vk_to_pvr_image(iview->vk.image); uint32_t level_pitch = image->mip_levels[iview->vk.base_mip_level].pitch; struct pvr_pbe_surf_params surface_params; struct pvr_pbe_render_params render_params; bool with_packed_usc_channel; const uint8_t *swizzle; uint32_t position; /* down_scale should be true when performing a resolve, in which case there * should be more than one sample. */ assert((down_scale && samples > 1U) || (!down_scale && samples == 1U)); /* Setup surface parameters. */ if (PVR_HAS_FEATURE(dev_info, usc_f16sop_u8)) { with_packed_usc_channel = vk_format_is_unorm(iview->vk.format) || vk_format_is_snorm(iview->vk.format); } else { with_packed_usc_channel = false; } swizzle = pvr_get_format_swizzle(iview->vk.format); memcpy(surface_params.swizzle, swizzle, sizeof(surface_params.swizzle)); pvr_pbe_get_src_format_and_gamma(iview->vk.format, PVR_PBE_GAMMA_NONE, with_packed_usc_channel, &surface_params.source_format, &surface_params.gamma); surface_params.is_normalized = vk_format_is_normalized(iview->vk.format); surface_params.pbe_packmode = pvr_get_pbe_packmode(iview->vk.format); surface_params.nr_components = vk_format_get_nr_components(iview->vk.format); /* FIXME: Should we have an inline function to return the address of a mip * level? */ surface_params.addr = PVR_DEV_ADDR_OFFSET(image->vma->dev_addr, image->mip_levels[iview->vk.base_mip_level].offset); surface_params.mem_layout = image->memlayout; surface_params.stride = pvr_stride_from_pitch(level_pitch, iview->vk.format); surface_params.depth = iview->vk.extent.depth; surface_params.width = iview->vk.extent.width; surface_params.height = iview->vk.extent.height; surface_params.z_only_render = false; surface_params.down_scale = down_scale; /* Setup render parameters. */ if (mrt_resource->type == USC_MRT_RESOURCE_TYPE_MEMORY) { position = mrt_resource->mem.offset_dw; } else { assert(mrt_resource->type == USC_MRT_RESOURCE_TYPE_OUTPUT_REG); assert(mrt_resource->reg.offset == 0); position = mrt_resource->reg.output_reg; } assert(position <= 3 || PVR_HAS_FEATURE(dev_info, eight_output_registers)); switch (position) { case 0: case 4: render_params.source_start = PVR_PBE_STARTPOS_BIT0; break; case 1: case 5: render_params.source_start = PVR_PBE_STARTPOS_BIT32; break; case 2: case 6: render_params.source_start = PVR_PBE_STARTPOS_BIT64; break; case 3: case 7: render_params.source_start = PVR_PBE_STARTPOS_BIT96; break; default: assert(!"Invalid output register"); break; } render_params.min_x_clip = MAX2(0, render_area->offset.x); render_params.min_y_clip = MAX2(0, render_area->offset.y); render_params.max_x_clip = MIN2(framebuffer->width, render_area->offset.x + render_area->extent.width) - 1; render_params.max_y_clip = MIN2(framebuffer->height, render_area->offset.y + render_area->extent.height) - 1; render_params.slice = 0; render_params.mrt_index = mrt_index; pvr_pbe_pack_state(dev_info, &surface_params, &render_params, pbe_cs_words, pbe_reg_words); } static struct pvr_render_target * pvr_get_render_target(const struct pvr_render_pass *pass, const struct pvr_framebuffer *framebuffer, uint32_t idx) { const struct pvr_renderpass_hwsetup_render *hw_render = &pass->hw_setup->renders[idx]; uint32_t rt_idx = 0; switch (hw_render->sample_count) { case 1: case 2: case 4: case 8: rt_idx = util_logbase2(hw_render->sample_count); break; default: unreachable("Unsupported sample count"); break; } return &framebuffer->render_targets[rt_idx]; } static uint32_t pvr_pass_get_pixel_output_width(const struct pvr_render_pass *pass, uint32_t idx, const struct pvr_device_info *dev_info) { const struct pvr_renderpass_hwsetup_render *hw_render = &pass->hw_setup->renders[idx]; /* Default value based on the maximum value found in all existing cores. The * maximum is used as this is being treated as a lower bound, making it a * "safer" choice than the minimum value found in all existing cores. */ const uint32_t min_output_regs = PVR_GET_FEATURE_VALUE(dev_info, usc_min_output_registers_per_pix, 2U); const uint32_t width = MAX2(hw_render->output_regs_count, min_output_regs); return util_next_power_of_two(width); } /** * \brief If depth and/or stencil attachment dimensions are not tile-aligned, * then we may need to insert some additional transfer subcommands. * * It's worth noting that we check whether the dimensions are smaller than a * tile here, rather than checking whether they're tile-aligned - this relies * on the assumption that we can safely use any attachment with dimensions * larger than a tile. If the attachment is twiddled, it will be over-allocated * to the nearest power-of-two (which will be tile-aligned). If the attachment * is not twiddled, we don't need to worry about tile-alignment at all. */ static void pvr_sub_cmd_gfx_align_zls_subtiles(const struct pvr_device_info *dev_info, const struct pvr_render_job *job, const struct pvr_image *image) { uint32_t zls_tile_size_x; uint32_t zls_tile_size_y; rogue_get_zls_tile_size_xy(dev_info, &zls_tile_size_x, &zls_tile_size_y); if (image->physical_extent.width >= zls_tile_size_x && image->physical_extent.height >= zls_tile_size_y) { return; } if (PVR_HAS_FEATURE(dev_info, zls_subtile) && image->vk.samples == VK_SAMPLE_COUNT_1_BIT && (job->has_stencil_attachment || !job->has_depth_attachment)) { return; } pvr_finishme("Unaligned ZLS subtile"); mesa_logd("Image: %ux%u ZLS tile: %ux%u\n", image->physical_extent.width, image->physical_extent.height, zls_tile_size_x, zls_tile_size_y); } struct pvr_emit_state { uint32_t pbe_cs_words[PVR_MAX_COLOR_ATTACHMENTS] [ROGUE_NUM_PBESTATE_STATE_WORDS]; uint64_t pbe_reg_words[PVR_MAX_COLOR_ATTACHMENTS] [ROGUE_NUM_PBESTATE_REG_WORDS]; uint32_t emit_count; }; static void pvr_setup_emit_state(const struct pvr_device_info *dev_info, const struct pvr_renderpass_hwsetup_render *hw_render, struct pvr_render_pass_info *render_pass_info, struct pvr_emit_state *emit_state) { assert(hw_render->eot_surface_count < PVR_MAX_COLOR_ATTACHMENTS); if (hw_render->eot_surface_count == 0) { emit_state->emit_count = 1; pvr_csb_pack (&emit_state->pbe_cs_words[0][1], PBESTATE_STATE_WORD1, state) { state.emptytile = true; } return; } emit_state->emit_count = hw_render->eot_surface_count; for (uint32_t i = 0; i < hw_render->eot_surface_count; i++) { const struct pvr_framebuffer *framebuffer = render_pass_info->framebuffer; const struct pvr_renderpass_hwsetup_eot_surface *surface = &hw_render->eot_surfaces[i]; const struct pvr_image_view *iview = render_pass_info->attachments[surface->attachment_idx]; const struct usc_mrt_resource *mrt_resource = &hw_render->eot_setup.mrt_resources[surface->mrt_idx]; uint32_t samples = 1; if (surface->need_resolve) { const struct pvr_image_view *resolve_src = render_pass_info->attachments[surface->src_attachment_idx]; /* Attachments that are the destination of resolve operations must * be loaded before their next use. */ render_pass_info->enable_bg_tag = true; render_pass_info->process_empty_tiles = true; if (surface->resolve_type != PVR_RESOLVE_TYPE_PBE) continue; samples = (uint32_t)resolve_src->vk.image->samples; } pvr_setup_pbe_state(dev_info, framebuffer, surface->mrt_idx, mrt_resource, iview, &render_pass_info->render_area, surface->need_resolve, samples, emit_state->pbe_cs_words[i], emit_state->pbe_reg_words[i]); } } static VkResult pvr_sub_cmd_gfx_job_init(const struct pvr_device_info *dev_info, struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd_gfx *sub_cmd) { static const VkClearDepthStencilValue default_ds_clear_value = { .depth = 1.0f, .stencil = 0xFFFFFFFF, }; const struct vk_dynamic_graphics_state *dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; struct pvr_render_pass_info *render_pass_info = &cmd_buffer->state.render_pass_info; const struct pvr_renderpass_hwsetup_render *hw_render = &render_pass_info->pass->hw_setup->renders[sub_cmd->hw_render_idx]; struct pvr_render_job *job = &sub_cmd->job; struct pvr_pds_upload pds_pixel_event_program; struct pvr_framebuffer *framebuffer = render_pass_info->framebuffer; struct pvr_spm_bgobj_state *spm_bgobj_state = &framebuffer->spm_bgobj_state_per_render[sub_cmd->hw_render_idx]; struct pvr_emit_state emit_state = { 0 }; struct pvr_render_target *render_target; VkResult result; pvr_setup_emit_state(dev_info, hw_render, render_pass_info, &emit_state); memcpy(job->pbe_reg_words, emit_state.pbe_reg_words, sizeof(emit_state.pbe_reg_words)); result = pvr_sub_cmd_gfx_per_job_fragment_programs_create_and_upload( cmd_buffer, emit_state.emit_count, emit_state.pbe_cs_words[0], &pds_pixel_event_program); if (result != VK_SUCCESS) return result; job->pds_pixel_event_data_offset = pds_pixel_event_program.data_offset; if (sub_cmd->barrier_load) { job->enable_bg_tag = true; job->process_empty_tiles = true; STATIC_ASSERT(ARRAY_SIZE(job->pds_bgnd_reg_values) == ARRAY_SIZE(spm_bgobj_state->pds_reg_values)); typed_memcpy(job->pds_bgnd_reg_values, spm_bgobj_state->pds_reg_values, ARRAY_SIZE(spm_bgobj_state->pds_reg_values)); } else if (render_pass_info->enable_bg_tag) { const struct pvr_load_op *load_op = hw_render->load_op; struct pvr_pds_upload load_op_program; /* FIXME: Should we free the PDS pixel event data or let it be freed * when the pool gets emptied? */ result = pvr_load_op_data_create_and_upload(cmd_buffer, load_op, &load_op_program); if (result != VK_SUCCESS) return result; job->enable_bg_tag = render_pass_info->enable_bg_tag; job->process_empty_tiles = render_pass_info->process_empty_tiles; pvr_pds_bgnd_pack_state(load_op, &load_op_program, job->pds_bgnd_reg_values); } STATIC_ASSERT(ARRAY_SIZE(job->pds_pr_bgnd_reg_values) == ARRAY_SIZE(spm_bgobj_state->pds_reg_values)); typed_memcpy(job->pds_pr_bgnd_reg_values, spm_bgobj_state->pds_reg_values, ARRAY_SIZE(spm_bgobj_state->pds_reg_values)); render_target = pvr_get_render_target(render_pass_info->pass, framebuffer, sub_cmd->hw_render_idx); job->rt_dataset = render_target->rt_dataset; job->ctrl_stream_addr = pvr_csb_get_start_address(&sub_cmd->control_stream); /* FIXME: Need to set up the border color table at device creation * time. Set to invalid for the time being. */ job->border_colour_table_addr = PVR_DEV_ADDR_INVALID; if (sub_cmd->depth_bias_bo) job->depth_bias_table_addr = sub_cmd->depth_bias_bo->dev_addr; else job->depth_bias_table_addr = PVR_DEV_ADDR_INVALID; if (sub_cmd->scissor_bo) job->scissor_table_addr = sub_cmd->scissor_bo->dev_addr; else job->scissor_table_addr = PVR_DEV_ADDR_INVALID; job->pixel_output_width = pvr_pass_get_pixel_output_width(render_pass_info->pass, sub_cmd->hw_render_idx, dev_info); /* Setup depth/stencil job information. */ if (hw_render->ds_attach_idx != VK_ATTACHMENT_UNUSED) { struct pvr_image_view *iview = render_pass_info->attachments[hw_render->ds_attach_idx]; const struct pvr_image *image = vk_to_pvr_image(iview->vk.image); job->has_depth_attachment = vk_format_has_depth(image->vk.format); job->has_stencil_attachment = vk_format_has_stencil(image->vk.format); if (job->has_depth_attachment || job->has_stencil_attachment) { uint32_t level_pitch = image->mip_levels[iview->vk.base_mip_level].pitch; job->ds.addr = image->dev_addr; job->ds.stride = pvr_stride_from_pitch(level_pitch, iview->vk.format); job->ds.height = iview->vk.extent.height; job->ds.physical_width = u_minify(image->physical_extent.width, iview->vk.base_mip_level); job->ds.physical_height = u_minify(image->physical_extent.height, iview->vk.base_mip_level); job->ds.layer_size = image->layer_size; job->ds_clear_value = default_ds_clear_value; if (hw_render->ds_attach_idx < render_pass_info->clear_value_count) { const VkClearDepthStencilValue *const clear_values = &render_pass_info->clear_values[hw_render->ds_attach_idx] .depthStencil; if (job->has_depth_attachment) job->ds_clear_value.depth = clear_values->depth; if (job->has_stencil_attachment) job->ds_clear_value.stencil = clear_values->stencil; } job->ds.vk_format = iview->vk.format; job->ds.memlayout = image->memlayout; } pvr_sub_cmd_gfx_align_zls_subtiles(dev_info, job, image); } else { job->has_depth_attachment = false; job->has_stencil_attachment = false; job->ds_clear_value = default_ds_clear_value; } if (hw_render->ds_attach_idx != VK_ATTACHMENT_UNUSED) { struct pvr_image_view *iview = render_pass_info->attachments[hw_render->ds_attach_idx]; const struct pvr_image *image = vk_to_pvr_image(iview->vk.image); /* If the HW render pass has a valid depth/stencil surface, determine the * sample count from the attachment's image. */ job->samples = image->vk.samples; } else if (hw_render->output_regs_count) { /* If the HW render pass has output registers, we have color attachments * to write to, so determine the sample count from the count specified for * every color attachment in this render. */ job->samples = hw_render->sample_count; } else if (cmd_buffer->state.gfx_pipeline) { /* If the HW render pass has no color or depth/stencil attachments, we * determine the sample count from the count given during pipeline * creation. */ job->samples = dynamic_state->ms.rasterization_samples; } else if (render_pass_info->pass->attachment_count > 0) { /* If we get here, we have a render pass with subpasses containing no * attachments. The next best thing is largest of the sample counts * specified by the render pass attachment descriptions. */ job->samples = render_pass_info->pass->max_sample_count; } else { /* No appropriate framebuffer attachment is available. */ mesa_logw("Defaulting render job sample count to 1."); job->samples = VK_SAMPLE_COUNT_1_BIT; } if (sub_cmd->max_tiles_in_flight == PVR_GET_FEATURE_VALUE(dev_info, isp_max_tiles_in_flight, 1U)) { /* Use the default limit based on the partition store. */ job->max_tiles_in_flight = 0U; } else { job->max_tiles_in_flight = sub_cmd->max_tiles_in_flight; } job->frag_uses_atomic_ops = sub_cmd->frag_uses_atomic_ops; job->disable_compute_overlap = false; job->max_shared_registers = cmd_buffer->state.max_shared_regs; job->run_frag = true; job->geometry_terminate = true; /* TODO: In some cases a PR can be removed by storing to the color attachment * and have the background object load directly from it instead of using the * scratch buffer. In those cases we can also set this to "false" and avoid * extra fw overhead. */ /* The scratch buffer is always needed and allocated to avoid data loss in * case SPM is hit so set the flag unconditionally. */ job->requires_spm_scratch_buffer = true; /* FIXME: We should be using the SPM PBE reg words and the SPM EOT PDS data * section instead of the regular, but for now we don't have an actual * SPM EOT USC shader so that would cause problems. */ return VK_SUCCESS; } static void pvr_sub_cmd_compute_job_init(const struct pvr_physical_device *pdevice, struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd_compute *sub_cmd) { sub_cmd->num_shared_regs = MAX2(cmd_buffer->device->idfwdf_state.usc_shareds, cmd_buffer->state.max_shared_regs); cmd_buffer->state.max_shared_regs = 0U; } #define PIXEL_ALLOCATION_SIZE_MAX_IN_BLOCKS \ (1024 / PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE)) static uint32_t pvr_compute_flat_slot_size(const struct pvr_physical_device *pdevice, uint32_t coeff_regs_count, bool use_barrier, uint32_t total_workitems) { const struct pvr_device_runtime_info *dev_runtime_info = &pdevice->dev_runtime_info; const struct pvr_device_info *dev_info = &pdevice->dev_info; uint32_t max_workgroups_per_task = ROGUE_CDM_MAX_PACKED_WORKGROUPS_PER_TASK; uint32_t max_avail_coeff_regs = dev_runtime_info->cdm_max_local_mem_size_regs; uint32_t localstore_chunks_count = DIV_ROUND_UP(coeff_regs_count << 2, PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE)); /* Ensure that we cannot have more workgroups in a slot than the available * number of coefficients allow us to have. */ if (coeff_regs_count > 0U) { /* If the geometry or fragment jobs can overlap with the compute job, or * if there is a vertex shader already running then we need to consider * this in calculating max allowed work-groups. */ if (PVR_HAS_QUIRK(dev_info, 52354) && (PVR_HAS_FEATURE(dev_info, compute_overlap) || PVR_HAS_FEATURE(dev_info, gs_rta_support))) { /* Solve for n (number of work-groups per task). All values are in * size of common store alloc blocks: * * n + (2n + 7) * (local_memory_size_max - 1) = * (coefficient_memory_pool_size) - (7 * pixel_allocation_size_max) * ==> * n + 2n * (local_memory_size_max - 1) = * (coefficient_memory_pool_size) - (7 * pixel_allocation_size_max) * - (7 * (local_memory_size_max - 1)) * ==> * n * (1 + 2 * (local_memory_size_max - 1)) = * (coefficient_memory_pool_size) - (7 * pixel_allocation_size_max) * - (7 * (local_memory_size_max - 1)) * ==> * n = ((coefficient_memory_pool_size) - * (7 * pixel_allocation_size_max) - * (7 * (local_memory_size_max - 1)) / (1 + * 2 * (local_memory_size_max - 1))) */ uint32_t max_common_store_blocks = DIV_ROUND_UP(max_avail_coeff_regs * 4U, PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE)); /* (coefficient_memory_pool_size) - (7 * pixel_allocation_size_max) */ max_common_store_blocks -= ROGUE_MAX_OVERLAPPED_PIXEL_TASK_INSTANCES * PIXEL_ALLOCATION_SIZE_MAX_IN_BLOCKS; /* - (7 * (local_memory_size_max - 1)) */ max_common_store_blocks -= (ROGUE_MAX_OVERLAPPED_PIXEL_TASK_INSTANCES * (localstore_chunks_count - 1U)); /* Divide by (1 + 2 * (local_memory_size_max - 1)) */ max_workgroups_per_task = max_common_store_blocks / (1U + 2U * (localstore_chunks_count - 1U)); max_workgroups_per_task = MIN2(max_workgroups_per_task, ROGUE_CDM_MAX_PACKED_WORKGROUPS_PER_TASK); } else { max_workgroups_per_task = MIN2((max_avail_coeff_regs / coeff_regs_count), max_workgroups_per_task); } } /* max_workgroups_per_task should at least be one. */ assert(max_workgroups_per_task >= 1U); if (total_workitems >= ROGUE_MAX_INSTANCES_PER_TASK) { /* In this case, the work group size will have been padded up to the * next ROGUE_MAX_INSTANCES_PER_TASK so we just set max instances to be * ROGUE_MAX_INSTANCES_PER_TASK. */ return ROGUE_MAX_INSTANCES_PER_TASK; } /* In this case, the number of instances in the slot must be clamped to * accommodate whole work-groups only. */ if (PVR_HAS_QUIRK(dev_info, 49032) || use_barrier) { max_workgroups_per_task = MIN2(max_workgroups_per_task, ROGUE_MAX_INSTANCES_PER_TASK / total_workitems); return total_workitems * max_workgroups_per_task; } return MIN2(total_workitems * max_workgroups_per_task, ROGUE_MAX_INSTANCES_PER_TASK); } static void pvr_compute_generate_control_stream(struct pvr_csb *csb, struct pvr_sub_cmd_compute *sub_cmd, const struct pvr_compute_kernel_info *info) { /* Compute kernel 0. */ pvr_csb_emit (csb, CDMCTRL_KERNEL0, kernel0) { kernel0.indirect_present = !!info->indirect_buffer_addr.addr; kernel0.global_offsets_present = info->global_offsets_present; kernel0.usc_common_size = info->usc_common_size; kernel0.usc_unified_size = info->usc_unified_size; kernel0.pds_temp_size = info->pds_temp_size; kernel0.pds_data_size = info->pds_data_size; kernel0.usc_target = info->usc_target; kernel0.fence = info->is_fence; } /* Compute kernel 1. */ pvr_csb_emit (csb, CDMCTRL_KERNEL1, kernel1) { kernel1.data_addr = PVR_DEV_ADDR(info->pds_data_offset); kernel1.sd_type = info->sd_type; kernel1.usc_common_shared = info->usc_common_shared; } /* Compute kernel 2. */ pvr_csb_emit (csb, CDMCTRL_KERNEL2, kernel2) { kernel2.code_addr = PVR_DEV_ADDR(info->pds_code_offset); } if (info->indirect_buffer_addr.addr) { /* Compute kernel 6. */ pvr_csb_emit (csb, CDMCTRL_KERNEL6, kernel6) { kernel6.indirect_addrmsb = info->indirect_buffer_addr; } /* Compute kernel 7. */ pvr_csb_emit (csb, CDMCTRL_KERNEL7, kernel7) { kernel7.indirect_addrlsb = info->indirect_buffer_addr; } } else { /* Compute kernel 3. */ pvr_csb_emit (csb, CDMCTRL_KERNEL3, kernel3) { assert(info->global_size[0U] > 0U); kernel3.workgroup_x = info->global_size[0U] - 1U; } /* Compute kernel 4. */ pvr_csb_emit (csb, CDMCTRL_KERNEL4, kernel4) { assert(info->global_size[1U] > 0U); kernel4.workgroup_y = info->global_size[1U] - 1U; } /* Compute kernel 5. */ pvr_csb_emit (csb, CDMCTRL_KERNEL5, kernel5) { assert(info->global_size[2U] > 0U); kernel5.workgroup_z = info->global_size[2U] - 1U; } } /* Compute kernel 8. */ pvr_csb_emit (csb, CDMCTRL_KERNEL8, kernel8) { if (info->max_instances == ROGUE_MAX_INSTANCES_PER_TASK) kernel8.max_instances = 0U; else kernel8.max_instances = info->max_instances; assert(info->local_size[0U] > 0U); kernel8.workgroup_size_x = info->local_size[0U] - 1U; assert(info->local_size[1U] > 0U); kernel8.workgroup_size_y = info->local_size[1U] - 1U; assert(info->local_size[2U] > 0U); kernel8.workgroup_size_z = info->local_size[2U] - 1U; } /* Track the highest amount of shared registers usage in this dispatch. * This is used by the FW for context switching, so must be large enough * to contain all the shared registers that might be in use for this compute * job. Coefficients don't need to be included as the context switch will not * happen within the execution of a single workgroup, thus nothing needs to * be preserved. */ if (info->usc_common_shared) { sub_cmd->num_shared_regs = MAX2(sub_cmd->num_shared_regs, info->usc_common_size); } } /* TODO: This can be pre-packed and uploaded directly. Would that provide any * speed up? */ static void pvr_compute_generate_idfwdf(struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd_compute *const sub_cmd) { struct pvr_cmd_buffer_state *state = &cmd_buffer->state; bool *const is_sw_barier_required = &state->current_sub_cmd->compute.pds_sw_barrier_requires_clearing; const struct pvr_physical_device *pdevice = cmd_buffer->device->pdevice; struct pvr_csb *csb = &sub_cmd->control_stream; const struct pvr_pds_upload *program; if (PVR_NEED_SW_COMPUTE_PDS_BARRIER(&pdevice->dev_info) && *is_sw_barier_required) { *is_sw_barier_required = false; program = &cmd_buffer->device->idfwdf_state.sw_compute_barrier_pds; } else { program = &cmd_buffer->device->idfwdf_state.pds; } struct pvr_compute_kernel_info info = { .indirect_buffer_addr = PVR_DEV_ADDR_INVALID, .global_offsets_present = false, .usc_common_size = DIV_ROUND_UP(cmd_buffer->device->idfwdf_state.usc_shareds << 2, PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE)), .usc_unified_size = 0U, .pds_temp_size = 0U, .pds_data_size = DIV_ROUND_UP(PVR_DW_TO_BYTES(program->data_size), PVRX(CDMCTRL_KERNEL0_PDS_DATA_SIZE_UNIT_SIZE)), .usc_target = PVRX(CDMCTRL_USC_TARGET_ALL), .is_fence = false, .pds_data_offset = program->data_offset, .sd_type = PVRX(CDMCTRL_SD_TYPE_USC), .usc_common_shared = true, .pds_code_offset = program->code_offset, .global_size = { 1U, 1U, 1U }, .local_size = { 1U, 1U, 1U }, }; /* We don't need to pad work-group size for this case. */ info.max_instances = pvr_compute_flat_slot_size(pdevice, cmd_buffer->device->idfwdf_state.usc_shareds, false, 1U); pvr_compute_generate_control_stream(csb, sub_cmd, &info); } void pvr_compute_generate_fence(struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd_compute *const sub_cmd, bool deallocate_shareds) { const struct pvr_pds_upload *program = &cmd_buffer->device->pds_compute_fence_program; const struct pvr_physical_device *pdevice = cmd_buffer->device->pdevice; struct pvr_csb *csb = &sub_cmd->control_stream; struct pvr_compute_kernel_info info = { .indirect_buffer_addr = PVR_DEV_ADDR_INVALID, .global_offsets_present = false, .usc_common_size = 0U, .usc_unified_size = 0U, .pds_temp_size = 0U, .pds_data_size = DIV_ROUND_UP(PVR_DW_TO_BYTES(program->data_size), PVRX(CDMCTRL_KERNEL0_PDS_DATA_SIZE_UNIT_SIZE)), .usc_target = PVRX(CDMCTRL_USC_TARGET_ANY), .is_fence = true, .pds_data_offset = program->data_offset, .sd_type = PVRX(CDMCTRL_SD_TYPE_PDS), .usc_common_shared = deallocate_shareds, .pds_code_offset = program->code_offset, .global_size = { 1U, 1U, 1U }, .local_size = { 1U, 1U, 1U }, }; /* We don't need to pad work-group size for this case. */ /* Here we calculate the slot size. This can depend on the use of barriers, * local memory, BRN's or other factors. */ info.max_instances = pvr_compute_flat_slot_size(pdevice, 0U, false, 1U); pvr_compute_generate_control_stream(csb, sub_cmd, &info); } static VkResult pvr_cmd_buffer_process_deferred_clears(struct pvr_cmd_buffer *cmd_buffer) { util_dynarray_foreach (&cmd_buffer->deferred_clears, struct pvr_transfer_cmd, transfer_cmd) { VkResult result; result = pvr_cmd_buffer_add_transfer_cmd(cmd_buffer, transfer_cmd); if (result != VK_SUCCESS) return result; cmd_buffer->state.current_sub_cmd->transfer.serialize_with_frag = true; } return VK_SUCCESS; } VkResult pvr_cmd_buffer_end_sub_cmd(struct pvr_cmd_buffer *cmd_buffer) { struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct pvr_sub_cmd *sub_cmd = state->current_sub_cmd; struct pvr_device *device = cmd_buffer->device; const struct pvr_query_pool *query_pool = NULL; struct pvr_suballoc_bo *query_bo = NULL; size_t query_indices_size = 0; VkResult result; /* FIXME: Is this NULL check required because this function is called from * pvr_resolve_unemitted_resolve_attachments()? See comment about this * function being called twice in a row in pvr_CmdEndRenderPass(). */ if (!sub_cmd) return VK_SUCCESS; if (!sub_cmd->owned) { state->current_sub_cmd = NULL; return VK_SUCCESS; } switch (sub_cmd->type) { case PVR_SUB_CMD_TYPE_GRAPHICS: { struct pvr_sub_cmd_gfx *const gfx_sub_cmd = &sub_cmd->gfx; query_indices_size = util_dynarray_num_elements(&state->query_indices, char); if (query_indices_size > 0) { const bool secondary_cont = cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY && cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT; assert(gfx_sub_cmd->query_pool); if (secondary_cont) { util_dynarray_append_dynarray(&state->query_indices, &gfx_sub_cmd->sec_query_indices); } else { const void *data = util_dynarray_begin(&state->query_indices); result = pvr_cmd_buffer_upload_general(cmd_buffer, data, query_indices_size, &query_bo); if (result != VK_SUCCESS) { state->status = result; return result; } query_pool = gfx_sub_cmd->query_pool; } gfx_sub_cmd->has_occlusion_query = true; util_dynarray_clear(&state->query_indices); } if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) { result = pvr_csb_emit_return(&gfx_sub_cmd->control_stream); if (result != VK_SUCCESS) { state->status = result; return result; } break; } /* TODO: Check if the sub_cmd can be skipped based on * sub_cmd->gfx.empty_cmd flag. */ /* TODO: Set the state in the functions called with the command buffer * instead of here. */ result = pvr_cmd_buffer_upload_tables(device, cmd_buffer, gfx_sub_cmd); if (result != VK_SUCCESS) { state->status = result; return result; } if (pvr_sub_cmd_gfx_requires_split_submit(gfx_sub_cmd)) { result = pvr_sub_cmd_gfx_build_terminate_ctrl_stream(device, cmd_buffer, gfx_sub_cmd); if (result != VK_SUCCESS) { state->status = result; return result; } } result = pvr_cmd_buffer_emit_ppp_state(cmd_buffer, &gfx_sub_cmd->control_stream); if (result != VK_SUCCESS) { state->status = result; return result; } result = pvr_csb_emit_terminate(&gfx_sub_cmd->control_stream); if (result != VK_SUCCESS) { state->status = result; return result; } result = pvr_sub_cmd_gfx_job_init(&device->pdevice->dev_info, cmd_buffer, gfx_sub_cmd); if (result != VK_SUCCESS) { state->status = result; return result; } break; } case PVR_SUB_CMD_TYPE_OCCLUSION_QUERY: case PVR_SUB_CMD_TYPE_COMPUTE: { struct pvr_sub_cmd_compute *const compute_sub_cmd = &sub_cmd->compute; pvr_compute_generate_fence(cmd_buffer, compute_sub_cmd, true); result = pvr_csb_emit_terminate(&compute_sub_cmd->control_stream); if (result != VK_SUCCESS) { state->status = result; return result; } pvr_sub_cmd_compute_job_init(device->pdevice, cmd_buffer, compute_sub_cmd); break; } case PVR_SUB_CMD_TYPE_TRANSFER: break; case PVR_SUB_CMD_TYPE_EVENT: break; default: unreachable("Unsupported sub-command type"); } state->current_sub_cmd = NULL; /* pvr_cmd_buffer_process_deferred_clears() must be called with a NULL * current_sub_cmd. * * We can start a sub_cmd of a different type from the current sub_cmd only * after having ended the current sub_cmd. However, we can't end the current * sub_cmd if this depends on starting sub_cmd(s) of a different type. Hence, * don't try to start transfer sub_cmd(s) with * pvr_cmd_buffer_process_deferred_clears() until the current hasn't ended. * Failing to do so we will cause a circular dependency between * pvr_cmd_buffer_{end,start}_cmd and blow the stack. */ if (sub_cmd->type == PVR_SUB_CMD_TYPE_GRAPHICS) { result = pvr_cmd_buffer_process_deferred_clears(cmd_buffer); if (result != VK_SUCCESS) { state->status = result; return result; } } if (query_pool) { struct pvr_sub_cmd_event *sub_cmd; struct pvr_query_info query_info; assert(query_bo); assert(query_indices_size); query_info.type = PVR_QUERY_TYPE_AVAILABILITY_WRITE; /* sizeof(uint32_t) is for the size of single query. */ query_info.availability_write.num_query_indices = query_indices_size / sizeof(uint32_t); query_info.availability_write.index_bo = query_bo; query_info.availability_write.num_queries = query_pool->query_count; query_info.availability_write.availability_bo = query_pool->availability_buffer; /* Insert a barrier after the graphics sub command and before the * query sub command so that the availability write program waits for the * fragment shader to complete. */ result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_EVENT); if (result != VK_SUCCESS) return result; sub_cmd = &cmd_buffer->state.current_sub_cmd->event; *sub_cmd = (struct pvr_sub_cmd_event) { .type = PVR_EVENT_TYPE_BARRIER, .barrier = { .wait_for_stage_mask = PVR_PIPELINE_STAGE_FRAG_BIT, .wait_at_stage_mask = PVR_PIPELINE_STAGE_OCCLUSION_QUERY_BIT, }, }; return pvr_add_query_program(cmd_buffer, &query_info); } return VK_SUCCESS; } void pvr_reset_graphics_dirty_state(struct pvr_cmd_buffer *const cmd_buffer, bool start_geom) { struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; if (start_geom) { /* * Initial geometry phase state. * It's the driver's responsibility to ensure that the state of the * hardware is correctly initialized at the start of every geometry * phase. This is required to prevent stale state from a previous * geometry phase erroneously affecting the next geometry phase. * * If a geometry phase does not contain any geometry, this restriction * can be ignored. If the first draw call in a geometry phase will only * update the depth or stencil buffers i.e. ISP_TAGWRITEDISABLE is set * in the ISP State Control Word, the PDS State Pointers * (TA_PRES_PDSSTATEPTR*) in the first PPP State Update do not need to * be supplied, since they will never reach the PDS in the fragment * phase. */ cmd_buffer->state.emit_header = (struct PVRX(TA_STATE_HEADER)){ .pres_stream_out_size = true, .pres_ppp_ctrl = true, .pres_varying_word2 = true, .pres_varying_word1 = true, .pres_varying_word0 = true, .pres_outselects = true, .pres_wclamp = true, .pres_viewport = true, .pres_region_clip = true, .pres_pds_state_ptr0 = true, .pres_ispctl_fb = true, .pres_ispctl = true, }; } else { struct PVRX(TA_STATE_HEADER) *const emit_header = &cmd_buffer->state.emit_header; emit_header->pres_ppp_ctrl = true; emit_header->pres_varying_word1 = true; emit_header->pres_varying_word0 = true; emit_header->pres_outselects = true; emit_header->pres_viewport = true; emit_header->pres_region_clip = true; emit_header->pres_pds_state_ptr0 = true; emit_header->pres_ispctl_fb = true; emit_header->pres_ispctl = true; } memset(&cmd_buffer->state.ppp_state, 0U, sizeof(cmd_buffer->state.ppp_state)); cmd_buffer->state.dirty.vertex_bindings = true; cmd_buffer->state.dirty.gfx_pipeline_binding = true; BITSET_SET(dynamic_state->dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS); BITSET_SET(dynamic_state->dirty, MESA_VK_DYNAMIC_VP_VIEWPORT_COUNT); } static inline bool pvr_cmd_uses_deferred_cs_cmds(const struct pvr_cmd_buffer *const cmd_buffer) { const VkCommandBufferUsageFlags deferred_control_stream_flags = VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT | VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT; return cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY && (cmd_buffer->usage_flags & deferred_control_stream_flags) == deferred_control_stream_flags; } VkResult pvr_cmd_buffer_start_sub_cmd(struct pvr_cmd_buffer *cmd_buffer, enum pvr_sub_cmd_type type) { struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct pvr_device *device = cmd_buffer->device; struct pvr_sub_cmd *sub_cmd; VkResult result; /* Check the current status of the buffer. */ if (state->status != VK_SUCCESS) return state->status; pvr_cmd_buffer_update_barriers(cmd_buffer, type); /* TODO: Add proper support for joining consecutive event sub_cmd? */ if (state->current_sub_cmd) { if (state->current_sub_cmd->type == type) { /* Continue adding to the current sub command. */ return VK_SUCCESS; } /* End the current sub command. */ result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer); if (result != VK_SUCCESS) return result; } sub_cmd = vk_zalloc(&cmd_buffer->vk.pool->alloc, sizeof(*sub_cmd), 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (!sub_cmd) { state->status = vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY); return state->status; } sub_cmd->type = type; sub_cmd->owned = true; switch (type) { case PVR_SUB_CMD_TYPE_GRAPHICS: sub_cmd->gfx.depth_usage = PVR_DEPTH_STENCIL_USAGE_UNDEFINED; sub_cmd->gfx.stencil_usage = PVR_DEPTH_STENCIL_USAGE_UNDEFINED; sub_cmd->gfx.modifies_depth = false; sub_cmd->gfx.modifies_stencil = false; sub_cmd->gfx.max_tiles_in_flight = PVR_GET_FEATURE_VALUE(&device->pdevice->dev_info, isp_max_tiles_in_flight, 1); sub_cmd->gfx.hw_render_idx = state->render_pass_info.current_hw_subpass; sub_cmd->gfx.framebuffer = state->render_pass_info.framebuffer; sub_cmd->gfx.empty_cmd = true; if (state->vis_test_enabled) sub_cmd->gfx.query_pool = state->query_pool; pvr_reset_graphics_dirty_state(cmd_buffer, true); if (pvr_cmd_uses_deferred_cs_cmds(cmd_buffer)) { pvr_csb_init(device, PVR_CMD_STREAM_TYPE_GRAPHICS_DEFERRED, &sub_cmd->gfx.control_stream); } else { pvr_csb_init(device, PVR_CMD_STREAM_TYPE_GRAPHICS, &sub_cmd->gfx.control_stream); } util_dynarray_init(&sub_cmd->gfx.sec_query_indices, NULL); break; case PVR_SUB_CMD_TYPE_OCCLUSION_QUERY: case PVR_SUB_CMD_TYPE_COMPUTE: pvr_csb_init(device, PVR_CMD_STREAM_TYPE_COMPUTE, &sub_cmd->compute.control_stream); break; case PVR_SUB_CMD_TYPE_TRANSFER: list_inithead(&sub_cmd->transfer.transfer_cmds); break; case PVR_SUB_CMD_TYPE_EVENT: break; default: unreachable("Unsupported sub-command type"); } list_addtail(&sub_cmd->link, &cmd_buffer->sub_cmds); state->current_sub_cmd = sub_cmd; return VK_SUCCESS; } VkResult pvr_cmd_buffer_alloc_mem(struct pvr_cmd_buffer *cmd_buffer, struct pvr_winsys_heap *heap, uint64_t size, uint32_t flags, struct pvr_suballoc_bo **const pvr_bo_out) { const uint32_t cache_line_size = rogue_get_slc_cache_line_size(&cmd_buffer->device->pdevice->dev_info); struct pvr_suballoc_bo *suballoc_bo; struct pvr_suballocator *allocator; VkResult result; /* We assume users to always request bo(s) to be CPU mapped */ assert(flags & PVR_BO_ALLOC_FLAG_CPU_MAPPED); if (heap == cmd_buffer->device->heaps.general_heap) allocator = &cmd_buffer->device->suballoc_general; else if (heap == cmd_buffer->device->heaps.pds_heap) allocator = &cmd_buffer->device->suballoc_pds; else if (heap == cmd_buffer->device->heaps.transfer_3d_heap) allocator = &cmd_buffer->device->suballoc_transfer; else if (heap == cmd_buffer->device->heaps.usc_heap) allocator = &cmd_buffer->device->suballoc_usc; else unreachable("Unknown heap type"); result = pvr_bo_suballoc(allocator, size, cache_line_size, false, &suballoc_bo); if (result != VK_SUCCESS) { cmd_buffer->state.status = result; return result; } list_add(&suballoc_bo->link, &cmd_buffer->bo_list); *pvr_bo_out = suballoc_bo; return VK_SUCCESS; } static void pvr_cmd_bind_compute_pipeline( const struct pvr_compute_pipeline *const compute_pipeline, struct pvr_cmd_buffer *const cmd_buffer) { cmd_buffer->state.compute_pipeline = compute_pipeline; cmd_buffer->state.dirty.compute_pipeline_binding = true; } static void pvr_cmd_bind_graphics_pipeline( const struct pvr_graphics_pipeline *const gfx_pipeline, struct pvr_cmd_buffer *const cmd_buffer) { cmd_buffer->state.gfx_pipeline = gfx_pipeline; cmd_buffer->state.dirty.gfx_pipeline_binding = true; vk_cmd_set_dynamic_graphics_state(&cmd_buffer->vk, &gfx_pipeline->dynamic_state); } void pvr_CmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipeline _pipeline) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); PVR_FROM_HANDLE(pvr_pipeline, pipeline, _pipeline); switch (pipelineBindPoint) { case VK_PIPELINE_BIND_POINT_COMPUTE: pvr_cmd_bind_compute_pipeline(to_pvr_compute_pipeline(pipeline), cmd_buffer); break; case VK_PIPELINE_BIND_POINT_GRAPHICS: pvr_cmd_bind_graphics_pipeline(to_pvr_graphics_pipeline(pipeline), cmd_buffer); break; default: unreachable("Invalid bind point."); break; } } #if defined(DEBUG) static void check_viewport_quirk_70165(const struct pvr_device *device, const VkViewport *pViewport) { const struct pvr_device_info *dev_info = &device->pdevice->dev_info; float min_vertex_x, max_vertex_x, min_vertex_y, max_vertex_y; float min_screen_space_value, max_screen_space_value; float sign_to_unsigned_offset, fixed_point_max; float guardband_width, guardband_height; if (PVR_HAS_FEATURE(dev_info, simple_internal_parameter_format)) { /* Max representable value in 13.4 fixed point format. * Round-down to avoid precision issues. * Calculated as (2 ** 13) - 2*(2 ** -4) */ fixed_point_max = 8192.0f - 2.0f / 16.0f; if (PVR_HAS_FEATURE(dev_info, screen_size8K)) { if (pViewport->width <= 4096 && pViewport->height <= 4096) { guardband_width = pViewport->width / 4.0f; guardband_height = pViewport->height / 4.0f; /* 2k of the range is negative */ sign_to_unsigned_offset = 2048.0f; } else { guardband_width = 0.0f; guardband_height = 0.0f; /* For > 4k renders, the entire range is positive */ sign_to_unsigned_offset = 0.0f; } } else { guardband_width = pViewport->width / 4.0f; guardband_height = pViewport->height / 4.0f; /* 2k of the range is negative */ sign_to_unsigned_offset = 2048.0f; } } else { /* Max representable value in 16.8 fixed point format * Calculated as (2 ** 16) - (2 ** -8) */ fixed_point_max = 65535.99609375f; guardband_width = pViewport->width / 4.0f; guardband_height = pViewport->height / 4.0f; /* 4k/20k of the range is negative */ sign_to_unsigned_offset = (float)PVR_MAX_NEG_OFFSCREEN_OFFSET; } min_screen_space_value = -sign_to_unsigned_offset; max_screen_space_value = fixed_point_max - sign_to_unsigned_offset; min_vertex_x = pViewport->x - guardband_width; max_vertex_x = pViewport->x + pViewport->width + guardband_width; min_vertex_y = pViewport->y - guardband_height; max_vertex_y = pViewport->y + pViewport->height + guardband_height; if (min_vertex_x < min_screen_space_value || max_vertex_x > max_screen_space_value || min_vertex_y < min_screen_space_value || max_vertex_y > max_screen_space_value) { mesa_logw("Viewport is affected by BRN70165, geometry outside " "the viewport could be corrupted"); } } #endif void pvr_CmdSetViewport(VkCommandBuffer commandBuffer, uint32_t firstViewport, uint32_t viewportCount, const VkViewport *pViewports) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); const uint32_t total_count = firstViewport + viewportCount; assert(firstViewport < PVR_MAX_VIEWPORTS && viewportCount > 0); assert(total_count >= 1 && total_count <= PVR_MAX_VIEWPORTS); PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); #if defined(DEBUG) if (PVR_HAS_QUIRK(&cmd_buffer->device->pdevice->dev_info, 70165)) { for (uint32_t viewport = 0; viewport < viewportCount; viewport++) { check_viewport_quirk_70165(cmd_buffer->device, &pViewports[viewport]); } } #endif vk_common_CmdSetViewport(commandBuffer, firstViewport, viewportCount, pViewports); } void pvr_CmdSetDepthBounds(VkCommandBuffer commandBuffer, float minDepthBounds, float maxDepthBounds) { mesa_logd("No support for depth bounds testing."); } void pvr_CmdBindDescriptorSets(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint, VkPipelineLayout _layout, uint32_t firstSet, uint32_t descriptorSetCount, const VkDescriptorSet *pDescriptorSets, uint32_t dynamicOffsetCount, const uint32_t *pDynamicOffsets) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_descriptor_state *descriptor_state; assert(firstSet + descriptorSetCount <= PVR_MAX_DESCRIPTOR_SETS); PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); switch (pipelineBindPoint) { case VK_PIPELINE_BIND_POINT_GRAPHICS: case VK_PIPELINE_BIND_POINT_COMPUTE: break; default: unreachable("Unsupported bind point."); break; } if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) { descriptor_state = &cmd_buffer->state.gfx_desc_state; cmd_buffer->state.dirty.gfx_desc_dirty = true; } else { descriptor_state = &cmd_buffer->state.compute_desc_state; cmd_buffer->state.dirty.compute_desc_dirty = true; } for (uint32_t i = 0; i < descriptorSetCount; i++) { PVR_FROM_HANDLE(pvr_descriptor_set, set, pDescriptorSets[i]); uint32_t index = firstSet + i; if (descriptor_state->descriptor_sets[index] != set) { descriptor_state->descriptor_sets[index] = set; descriptor_state->valid_mask |= (1u << index); } } if (dynamicOffsetCount > 0) { PVR_FROM_HANDLE(pvr_pipeline_layout, pipeline_layout, _layout); uint32_t starting_idx = 0; for (uint32_t set = 0; set < firstSet; set++) starting_idx += pipeline_layout->set_layout[set]->dynamic_buffer_count; assert(starting_idx + dynamicOffsetCount <= ARRAY_SIZE(descriptor_state->dynamic_offsets)); /* From the Vulkan 1.3.238 spec. : * * "If any of the sets being bound include dynamic uniform or storage * buffers, then pDynamicOffsets includes one element for each array * element in each dynamic descriptor type binding in each set." * */ for (uint32_t i = starting_idx; i < dynamicOffsetCount; i++) descriptor_state->dynamic_offsets[i] = pDynamicOffsets[i]; } } void pvr_CmdBindVertexBuffers(VkCommandBuffer commandBuffer, uint32_t firstBinding, uint32_t bindingCount, const VkBuffer *pBuffers, const VkDeviceSize *pOffsets) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_vertex_binding *const vb = cmd_buffer->state.vertex_bindings; /* We have to defer setting up vertex buffer since we need the buffer * stride from the pipeline. */ assert(firstBinding < PVR_MAX_VERTEX_INPUT_BINDINGS && bindingCount <= PVR_MAX_VERTEX_INPUT_BINDINGS); PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); for (uint32_t i = 0; i < bindingCount; i++) { vb[firstBinding + i].buffer = pvr_buffer_from_handle(pBuffers[i]); vb[firstBinding + i].offset = pOffsets[i]; } cmd_buffer->state.dirty.vertex_bindings = true; } void pvr_CmdBindIndexBuffer(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset, VkIndexType indexType) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); PVR_FROM_HANDLE(pvr_buffer, index_buffer, buffer); struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; assert(offset < index_buffer->vk.size); assert(indexType == VK_INDEX_TYPE_UINT32 || indexType == VK_INDEX_TYPE_UINT16); PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); state->index_buffer_binding.buffer = index_buffer; state->index_buffer_binding.offset = offset; state->index_buffer_binding.type = indexType; state->dirty.index_buffer_binding = true; } void pvr_CmdPushConstants(VkCommandBuffer commandBuffer, VkPipelineLayout layout, VkShaderStageFlags stageFlags, uint32_t offset, uint32_t size, const void *pValues) { #if defined(DEBUG) const uint64_t ending = (uint64_t)offset + (uint64_t)size; #endif PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); pvr_assert(ending <= PVR_MAX_PUSH_CONSTANTS_SIZE); memcpy(&state->push_constants.data[offset], pValues, size); state->push_constants.dirty_stages |= stageFlags; state->push_constants.uploaded = false; } static VkResult pvr_cmd_buffer_setup_attachments(struct pvr_cmd_buffer *cmd_buffer, const struct pvr_render_pass *pass, const struct pvr_framebuffer *framebuffer) { struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct pvr_render_pass_info *info = &state->render_pass_info; assert(pass->attachment_count == framebuffer->attachment_count); /* Free any previously allocated attachments. */ vk_free(&cmd_buffer->vk.pool->alloc, state->render_pass_info.attachments); if (pass->attachment_count == 0) { info->attachments = NULL; return VK_SUCCESS; } info->attachments = vk_zalloc(&cmd_buffer->vk.pool->alloc, pass->attachment_count * sizeof(*info->attachments), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!info->attachments) { /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */ state->status = vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY); return state->status; } for (uint32_t i = 0; i < pass->attachment_count; i++) info->attachments[i] = framebuffer->attachments[i]; return VK_SUCCESS; } static VkResult pvr_init_render_targets(struct pvr_device *device, struct pvr_render_pass *pass, struct pvr_framebuffer *framebuffer) { for (uint32_t i = 0; i < pass->hw_setup->render_count; i++) { struct pvr_render_target *render_target = pvr_get_render_target(pass, framebuffer, i); pthread_mutex_lock(&render_target->mutex); if (!render_target->valid) { const struct pvr_renderpass_hwsetup_render *hw_render = &pass->hw_setup->renders[i]; VkResult result; result = pvr_render_target_dataset_create(device, framebuffer->width, framebuffer->height, hw_render->sample_count, framebuffer->layers, &render_target->rt_dataset); if (result != VK_SUCCESS) { pthread_mutex_unlock(&render_target->mutex); return result; } render_target->valid = true; } pthread_mutex_unlock(&render_target->mutex); } return VK_SUCCESS; } const struct pvr_renderpass_hwsetup_subpass * pvr_get_hw_subpass(const struct pvr_render_pass *pass, const uint32_t subpass) { const struct pvr_renderpass_hw_map *map = &pass->hw_setup->subpass_map[subpass]; return &pass->hw_setup->renders[map->render].subpasses[map->subpass]; } static void pvr_perform_start_of_render_attachment_clear( struct pvr_cmd_buffer *cmd_buffer, const struct pvr_framebuffer *framebuffer, uint32_t index, bool is_depth_stencil, uint32_t *index_list_clear_mask) { ASSERTED static const VkImageAspectFlags dsc_aspect_flags = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_COLOR_BIT; struct pvr_render_pass_info *info = &cmd_buffer->state.render_pass_info; const struct pvr_render_pass *pass = info->pass; const struct pvr_renderpass_hwsetup *hw_setup = pass->hw_setup; const struct pvr_renderpass_hwsetup_render *hw_render = &hw_setup->renders[hw_setup->subpass_map[info->subpass_idx].render]; VkImageAspectFlags image_aspect; struct pvr_image_view *iview; uint32_t view_idx; uint32_t height; uint32_t width; if (is_depth_stencil) { bool stencil_clear; bool depth_clear; bool is_stencil; bool is_depth; assert(hw_render->ds_attach_idx != VK_ATTACHMENT_UNUSED); assert(index == 0); view_idx = hw_render->ds_attach_idx; is_depth = vk_format_has_depth(pass->attachments[view_idx].vk_format); is_stencil = vk_format_has_stencil(pass->attachments[view_idx].vk_format); depth_clear = hw_render->depth_init == VK_ATTACHMENT_LOAD_OP_CLEAR; stencil_clear = hw_render->stencil_init == VK_ATTACHMENT_LOAD_OP_CLEAR; /* Attempt to clear the ds attachment. Do not erroneously discard an * attachment that has no depth clear but has a stencil attachment. */ /* if not (a ∧ c) ∨ (b ∧ d) */ if (!((is_depth && depth_clear) || (is_stencil && stencil_clear))) return; } else if (hw_render->color_init[index].op != VK_ATTACHMENT_LOAD_OP_CLEAR) { return; } else { view_idx = hw_render->color_init[index].index; } iview = info->attachments[view_idx]; width = iview->vk.extent.width; height = iview->vk.extent.height; /* FIXME: It would be nice if this function and pvr_sub_cmd_gfx_job_init() * were doing the same check (even if it's just an assert) to determine if a * clear is needed. */ /* If this is single-layer fullscreen, we already do the clears in * pvr_sub_cmd_gfx_job_init(). */ if (info->render_area.offset.x == 0 && info->render_area.offset.y == 0 && info->render_area.extent.width == width && info->render_area.extent.height == height && framebuffer->layers == 1) { return; } image_aspect = vk_format_aspects(pass->attachments[view_idx].vk_format); assert((image_aspect & ~dsc_aspect_flags) == 0); if (image_aspect & VK_IMAGE_ASPECT_DEPTH_BIT && hw_render->depth_init != VK_ATTACHMENT_LOAD_OP_CLEAR) { image_aspect &= ~VK_IMAGE_ASPECT_DEPTH_BIT; } if (image_aspect & VK_IMAGE_ASPECT_STENCIL_BIT && hw_render->stencil_init != VK_ATTACHMENT_LOAD_OP_CLEAR) { image_aspect &= ~VK_IMAGE_ASPECT_STENCIL_BIT; } if (image_aspect != VK_IMAGE_ASPECT_NONE) { VkClearAttachment clear_attachment = { .aspectMask = image_aspect, .colorAttachment = index, .clearValue = info->clear_values[view_idx], }; VkClearRect rect = { .rect = info->render_area, .baseArrayLayer = 0, .layerCount = info->framebuffer->layers, }; assert(view_idx < info->clear_value_count); pvr_clear_attachments_render_init(cmd_buffer, &clear_attachment, &rect); *index_list_clear_mask |= (1 << index); } } static void pvr_perform_start_of_render_clears(struct pvr_cmd_buffer *cmd_buffer) { struct pvr_render_pass_info *info = &cmd_buffer->state.render_pass_info; const struct pvr_framebuffer *framebuffer = info->framebuffer; const struct pvr_render_pass *pass = info->pass; const struct pvr_renderpass_hwsetup *hw_setup = pass->hw_setup; const struct pvr_renderpass_hwsetup_render *hw_render = &hw_setup->renders[hw_setup->subpass_map[info->subpass_idx].render]; /* Mask of attachment clears using index lists instead of background object * to clear. */ uint32_t index_list_clear_mask = 0; for (uint32_t i = 0; i < hw_render->color_init_count; i++) { pvr_perform_start_of_render_attachment_clear(cmd_buffer, framebuffer, i, false, &index_list_clear_mask); } info->enable_bg_tag = !!hw_render->color_init_count; /* If we're not using index list for all clears/loads then we need to run * the background object on empty tiles. */ if (hw_render->color_init_count && index_list_clear_mask != ((1u << hw_render->color_init_count) - 1u)) { info->process_empty_tiles = true; } else { info->process_empty_tiles = false; } if (hw_render->ds_attach_idx != VK_ATTACHMENT_UNUSED) { uint32_t ds_index_list = 0; pvr_perform_start_of_render_attachment_clear(cmd_buffer, framebuffer, 0, true, &ds_index_list); } if (index_list_clear_mask) pvr_finishme("Add support for generating loadops shaders!"); } static void pvr_stash_depth_format(struct pvr_cmd_buffer_state *state, struct pvr_sub_cmd_gfx *const sub_cmd) { const struct pvr_render_pass *pass = state->render_pass_info.pass; const struct pvr_renderpass_hwsetup_render *hw_render = &pass->hw_setup->renders[sub_cmd->hw_render_idx]; if (hw_render->ds_attach_idx != VK_ATTACHMENT_UNUSED) { struct pvr_image_view **iviews = state->render_pass_info.attachments; state->depth_format = iviews[hw_render->ds_attach_idx]->vk.format; } } static bool pvr_loadops_contain_clear(struct pvr_renderpass_hwsetup *hw_setup) { for (uint32_t i = 0; i < hw_setup->render_count; i++) { struct pvr_renderpass_hwsetup_render *hw_render = &hw_setup->renders[i]; uint32_t render_targets_count = hw_render->init_setup.num_render_targets; for (uint32_t j = 0; j < (hw_render->color_init_count * render_targets_count); j += render_targets_count) { for (uint32_t k = 0; k < hw_render->init_setup.num_render_targets; k++) { if (hw_render->color_init[j + k].op == VK_ATTACHMENT_LOAD_OP_CLEAR) { return true; } } } if (hw_render->depth_init == VK_ATTACHMENT_LOAD_OP_CLEAR || hw_render->stencil_init == VK_ATTACHMENT_LOAD_OP_CLEAR) { return true; } } return false; } static VkResult pvr_cmd_buffer_set_clear_values(struct pvr_cmd_buffer *cmd_buffer, const VkRenderPassBeginInfo *pRenderPassBegin) { struct pvr_cmd_buffer_state *state = &cmd_buffer->state; /* Free any previously allocated clear values. */ vk_free(&cmd_buffer->vk.pool->alloc, state->render_pass_info.clear_values); if (pRenderPassBegin->clearValueCount) { const size_t size = pRenderPassBegin->clearValueCount * sizeof(*state->render_pass_info.clear_values); state->render_pass_info.clear_values = vk_zalloc(&cmd_buffer->vk.pool->alloc, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND); if (!state->render_pass_info.clear_values) { state->status = vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY); return state->status; } memcpy(state->render_pass_info.clear_values, pRenderPassBegin->pClearValues, size); } else { state->render_pass_info.clear_values = NULL; } state->render_pass_info.clear_value_count = pRenderPassBegin->clearValueCount; return VK_SUCCESS; } /** * \brief Indicates whether to use the large or normal clear state words. * * If the current render area can fit within a quarter of the max framebuffer * that the device is capable of, we can use the normal clear state words, * otherwise the large clear state words are needed. * * The requirement of a quarter of the max framebuffer comes from the index * count used in the normal clear state words and the vertices uploaded at * device creation. * * \param[in] cmd_buffer The command buffer for the clear. * \return true if large clear state words are required. */ static bool pvr_is_large_clear_required(const struct pvr_cmd_buffer *const cmd_buffer) { const struct pvr_device_info *const dev_info = &cmd_buffer->device->pdevice->dev_info; const VkRect2D render_area = cmd_buffer->state.render_pass_info.render_area; const uint32_t vf_max_x = rogue_get_param_vf_max_x(dev_info); const uint32_t vf_max_y = rogue_get_param_vf_max_x(dev_info); return (render_area.extent.width > (vf_max_x / 2) - 1) || (render_area.extent.height > (vf_max_y / 2) - 1); } static void pvr_emit_clear_words(struct pvr_cmd_buffer *const cmd_buffer, struct pvr_sub_cmd_gfx *const sub_cmd) { struct pvr_device *device = cmd_buffer->device; struct pvr_csb *csb = &sub_cmd->control_stream; uint32_t vdm_state_size_in_dw; const uint32_t *vdm_state; uint32_t *stream; vdm_state_size_in_dw = pvr_clear_vdm_state_get_size_in_dw(&device->pdevice->dev_info, 1); stream = pvr_csb_alloc_dwords(csb, vdm_state_size_in_dw); if (!stream) { cmd_buffer->state.status = VK_ERROR_OUT_OF_HOST_MEMORY; return; } if (pvr_is_large_clear_required(cmd_buffer)) vdm_state = device->static_clear_state.large_clear_vdm_words; else vdm_state = device->static_clear_state.vdm_words; memcpy(stream, vdm_state, PVR_DW_TO_BYTES(vdm_state_size_in_dw)); } static VkResult pvr_cs_write_load_op(struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd_gfx *sub_cmd, struct pvr_load_op *load_op, uint32_t isp_userpass) { const struct pvr_device *device = cmd_buffer->device; struct pvr_static_clear_ppp_template template = device->static_clear_state.ppp_templates[VK_IMAGE_ASPECT_COLOR_BIT]; uint32_t pds_state[PVR_STATIC_CLEAR_PDS_STATE_COUNT]; struct pvr_pds_upload shareds_update_program; struct pvr_suballoc_bo *pvr_bo; VkResult result; result = pvr_load_op_data_create_and_upload(cmd_buffer, load_op, &shareds_update_program); if (result != VK_SUCCESS) return result; template.config.ispctl.upass = isp_userpass; /* It might look odd that we aren't specifying the code segment's * address anywhere. This is because the hardware always assumes that the * data size is 2 128bit words and the code segments starts after that. */ pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_SHADERBASE], TA_STATE_PDS_SHADERBASE, shaderbase) { shaderbase.addr = PVR_DEV_ADDR(load_op->pds_frag_prog.data_offset); } pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_TEXUNICODEBASE], TA_STATE_PDS_TEXUNICODEBASE, texunicodebase) { texunicodebase.addr = PVR_DEV_ADDR(load_op->pds_tex_state_prog.code_offset); } pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_SIZEINFO1], TA_STATE_PDS_SIZEINFO1, sizeinfo1) { /* Dummy coefficient loading program. */ sizeinfo1.pds_varyingsize = 0; sizeinfo1.pds_texturestatesize = DIV_ROUND_UP( shareds_update_program.data_size, PVRX(TA_STATE_PDS_SIZEINFO1_PDS_TEXTURESTATESIZE_UNIT_SIZE)); sizeinfo1.pds_tempsize = DIV_ROUND_UP(load_op->temps_count, PVRX(TA_STATE_PDS_SIZEINFO1_PDS_TEMPSIZE_UNIT_SIZE)); } pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_SIZEINFO2], TA_STATE_PDS_SIZEINFO2, sizeinfo2) { sizeinfo2.usc_sharedsize = DIV_ROUND_UP(load_op->const_shareds_count, PVRX(TA_STATE_PDS_SIZEINFO2_USC_SHAREDSIZE_UNIT_SIZE)); } /* Dummy coefficient loading program. */ pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_VARYINGBASE] = 0; pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_TEXTUREDATABASE], TA_STATE_PDS_TEXTUREDATABASE, texturedatabase) { texturedatabase.addr = PVR_DEV_ADDR(shareds_update_program.data_offset); } template.config.pds_state = &pds_state; pvr_emit_ppp_from_template(&sub_cmd->control_stream, &template, &pvr_bo); list_add(&pvr_bo->link, &cmd_buffer->bo_list); pvr_emit_clear_words(cmd_buffer, sub_cmd); pvr_reset_graphics_dirty_state(cmd_buffer, false); return VK_SUCCESS; } void pvr_CmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBeginInfo, const VkSubpassBeginInfo *pSubpassBeginInfo) { PVR_FROM_HANDLE(pvr_framebuffer, framebuffer, pRenderPassBeginInfo->framebuffer); PVR_FROM_HANDLE(pvr_render_pass, pass, pRenderPassBeginInfo->renderPass); PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); const struct pvr_renderpass_hwsetup_subpass *hw_subpass; struct pvr_cmd_buffer_state *state = &cmd_buffer->state; VkResult result; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); assert(!state->render_pass_info.pass); assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); /* FIXME: Create a separate function for everything using pass->subpasses, * look at cmd_buffer_begin_subpass() for example. */ state->render_pass_info.pass = pass; state->render_pass_info.framebuffer = framebuffer; state->render_pass_info.subpass_idx = 0; state->render_pass_info.render_area = pRenderPassBeginInfo->renderArea; state->render_pass_info.current_hw_subpass = 0; state->render_pass_info.pipeline_bind_point = pass->subpasses[0].pipeline_bind_point; state->render_pass_info.isp_userpass = pass->subpasses[0].isp_userpass; state->dirty.isp_userpass = true; result = pvr_cmd_buffer_setup_attachments(cmd_buffer, pass, framebuffer); if (result != VK_SUCCESS) return; state->status = pvr_init_render_targets(cmd_buffer->device, pass, framebuffer); if (state->status != VK_SUCCESS) return; result = pvr_cmd_buffer_set_clear_values(cmd_buffer, pRenderPassBeginInfo); if (result != VK_SUCCESS) return; assert(pass->subpasses[0].pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS); result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS); if (result != VK_SUCCESS) return; /* Run subpass 0 "soft" background object after the actual background * object. */ hw_subpass = pvr_get_hw_subpass(pass, 0); if (hw_subpass->load_op) { result = pvr_cs_write_load_op(cmd_buffer, &cmd_buffer->state.current_sub_cmd->gfx, hw_subpass->load_op, 0); if (result != VK_SUCCESS) return; } pvr_perform_start_of_render_clears(cmd_buffer); pvr_stash_depth_format(&cmd_buffer->state, &cmd_buffer->state.current_sub_cmd->gfx); } VkResult pvr_BeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_cmd_buffer_state *state; VkResult result; vk_command_buffer_begin(&cmd_buffer->vk, pBeginInfo); cmd_buffer->usage_flags = pBeginInfo->flags; state = &cmd_buffer->state; /* VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT must be ignored for * primary level command buffers. * * From the Vulkan 1.0 spec: * * VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT specifies that a * secondary command buffer is considered to be entirely inside a render * pass. If this is a primary command buffer, then this bit is ignored. */ if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) { cmd_buffer->usage_flags &= ~VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT; } if (cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) { if (cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) { const VkCommandBufferInheritanceInfo *inheritance_info = pBeginInfo->pInheritanceInfo; struct pvr_render_pass *pass; pass = pvr_render_pass_from_handle(inheritance_info->renderPass); state->render_pass_info.pass = pass; state->render_pass_info.framebuffer = pvr_framebuffer_from_handle(inheritance_info->framebuffer); state->render_pass_info.subpass_idx = inheritance_info->subpass; state->render_pass_info.isp_userpass = pass->subpasses[inheritance_info->subpass].isp_userpass; result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS); if (result != VK_SUCCESS) return result; state->vis_test_enabled = inheritance_info->occlusionQueryEnable; } state->dirty.isp_userpass = true; } util_dynarray_init(&state->query_indices, NULL); memset(state->barriers_needed, 0xFF, sizeof(*state->barriers_needed) * ARRAY_SIZE(state->barriers_needed)); return VK_SUCCESS; } VkResult pvr_cmd_buffer_add_transfer_cmd(struct pvr_cmd_buffer *cmd_buffer, struct pvr_transfer_cmd *transfer_cmd) { struct pvr_sub_cmd_transfer *sub_cmd; VkResult result; result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_TRANSFER); if (result != VK_SUCCESS) return result; sub_cmd = &cmd_buffer->state.current_sub_cmd->transfer; list_addtail(&transfer_cmd->link, &sub_cmd->transfer_cmds); return VK_SUCCESS; } static VkResult pvr_setup_vertex_buffers(struct pvr_cmd_buffer *cmd_buffer, const struct pvr_graphics_pipeline *const gfx_pipeline) { const struct pvr_vertex_shader_state *const vertex_state = &gfx_pipeline->shader_state.vertex; struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; const struct pvr_pds_info *const pds_info = state->pds_shader.info; struct pvr_suballoc_bo *pvr_bo; const uint8_t *entries; uint32_t *dword_buffer; uint64_t *qword_buffer; VkResult result; result = pvr_cmd_buffer_alloc_mem(cmd_buffer, cmd_buffer->device->heaps.pds_heap, PVR_DW_TO_BYTES(pds_info->data_size_in_dwords), PVR_BO_ALLOC_FLAG_CPU_MAPPED, &pvr_bo); if (result != VK_SUCCESS) return result; dword_buffer = (uint32_t *)pvr_bo_suballoc_get_map_addr(pvr_bo); qword_buffer = (uint64_t *)pvr_bo_suballoc_get_map_addr(pvr_bo); entries = (uint8_t *)pds_info->entries; for (uint32_t i = 0; i < pds_info->entry_count; i++) { const struct pvr_const_map_entry *const entry_header = (struct pvr_const_map_entry *)entries; switch (entry_header->type) { case PVR_PDS_CONST_MAP_ENTRY_TYPE_LITERAL32: { const struct pvr_const_map_entry_literal32 *const literal = (struct pvr_const_map_entry_literal32 *)entries; PVR_WRITE(dword_buffer, literal->literal_value, literal->const_offset, pds_info->data_size_in_dwords); entries += sizeof(*literal); break; } case PVR_PDS_CONST_MAP_ENTRY_TYPE_DOUTU_ADDRESS: { const struct pvr_const_map_entry_doutu_address *const doutu_addr = (struct pvr_const_map_entry_doutu_address *)entries; const pvr_dev_addr_t exec_addr = PVR_DEV_ADDR_OFFSET(vertex_state->bo->dev_addr, vertex_state->entry_offset); uint64_t addr = 0ULL; pvr_set_usc_execution_address64(&addr, exec_addr.addr); PVR_WRITE(qword_buffer, addr | doutu_addr->doutu_control, doutu_addr->const_offset, pds_info->data_size_in_dwords); entries += sizeof(*doutu_addr); break; } case PVR_PDS_CONST_MAP_ENTRY_TYPE_BASE_INSTANCE: { const struct pvr_const_map_entry_base_instance *const base_instance = (struct pvr_const_map_entry_base_instance *)entries; PVR_WRITE(dword_buffer, state->draw_state.base_instance, base_instance->const_offset, pds_info->data_size_in_dwords); entries += sizeof(*base_instance); break; } case PVR_PDS_CONST_MAP_ENTRY_TYPE_BASE_VERTEX: { const struct pvr_const_map_entry_base_instance *const base_instance = (struct pvr_const_map_entry_base_instance *)entries; PVR_WRITE(dword_buffer, state->draw_state.base_vertex, base_instance->const_offset, pds_info->data_size_in_dwords); entries += sizeof(*base_instance); break; } case PVR_PDS_CONST_MAP_ENTRY_TYPE_VERTEX_ATTRIBUTE_ADDRESS: { const struct pvr_const_map_entry_vertex_attribute_address *const attribute = (struct pvr_const_map_entry_vertex_attribute_address *)entries; const struct pvr_vertex_binding *const binding = &state->vertex_bindings[attribute->binding_index]; /* In relation to the Vulkan spec. 22.4. Vertex Input Address * Calculation: * Adding binding->offset corresponds to calculating the * `bufferBindingAddress`. Adding attribute->offset corresponds to * adding the `attribDesc.offset`. The `effectiveVertexOffset` is * taken care by the PDS program itself with a DDMAD which will * multiply the vertex/instance idx with the binding's stride and * add that to the address provided here. */ const pvr_dev_addr_t addr = PVR_DEV_ADDR_OFFSET(binding->buffer->dev_addr, binding->offset + attribute->offset); PVR_WRITE(qword_buffer, addr.addr, attribute->const_offset, pds_info->data_size_in_dwords); entries += sizeof(*attribute); break; } case PVR_PDS_CONST_MAP_ENTRY_TYPE_ROBUST_VERTEX_ATTRIBUTE_ADDRESS: { const struct pvr_const_map_entry_robust_vertex_attribute_address *const attribute = (struct pvr_const_map_entry_robust_vertex_attribute_address *) entries; const struct pvr_vertex_binding *const binding = &state->vertex_bindings[attribute->binding_index]; pvr_dev_addr_t addr; if (binding->buffer->vk.size < (attribute->offset + attribute->component_size_in_bytes)) { /* Replace with load from robustness buffer when no attribute is in range */ addr = PVR_DEV_ADDR_OFFSET( cmd_buffer->device->robustness_buffer->vma->dev_addr, attribute->robustness_buffer_offset); } else { addr = PVR_DEV_ADDR_OFFSET(binding->buffer->dev_addr, binding->offset + attribute->offset); } PVR_WRITE(qword_buffer, addr.addr, attribute->const_offset, pds_info->data_size_in_dwords); entries += sizeof(*attribute); break; } case PVR_PDS_CONST_MAP_ENTRY_TYPE_VERTEX_ATTRIBUTE_MAX_INDEX: { const struct pvr_const_map_entry_vertex_attribute_max_index *attribute = (struct pvr_const_map_entry_vertex_attribute_max_index *)entries; const struct pvr_vertex_binding *const binding = &state->vertex_bindings[attribute->binding_index]; const uint64_t bound_size = binding->buffer->vk.size - binding->offset; const uint32_t attribute_end = attribute->offset + attribute->component_size_in_bytes; uint32_t max_index; if (PVR_HAS_FEATURE(&cmd_buffer->device->pdevice->dev_info, pds_ddmadt)) { /* TODO: PVR_PDS_CONST_MAP_ENTRY_TYPE_VERTEX_ATTRIBUTE_MAX_INDEX * has the same define value as * PVR_PDS_CONST_MAP_ENTRY_TYPE_VERTEX_ATTR_DDMADT_OOB_BUFFER_SIZE * so maybe we want to remove one of the defines or change the * values. */ pvr_finishme("Unimplemented robust buffer access with DDMADT"); assert(false); } /* If the stride is 0 then all attributes use the same single element * from the binding so the index can only be up to 0. */ if (bound_size < attribute_end || attribute->stride == 0) { max_index = 0; } else { max_index = (uint32_t)(bound_size / attribute->stride) - 1; /* There's one last attribute that can fit in. */ if (bound_size % attribute->stride >= attribute_end) max_index++; } PVR_WRITE(dword_buffer, max_index, attribute->const_offset, pds_info->data_size_in_dwords); break; } default: unreachable("Unsupported data section map"); break; } } state->pds_vertex_attrib_offset = pvr_bo->dev_addr.addr - cmd_buffer->device->heaps.pds_heap->base_addr.addr; return VK_SUCCESS; } static VkResult pvr_setup_descriptor_mappings_old( struct pvr_cmd_buffer *const cmd_buffer, enum pvr_stage_allocation stage, const struct pvr_stage_allocation_descriptor_state *descriptor_state, const pvr_dev_addr_t *const num_worgroups_buff_addr, uint32_t *const descriptor_data_offset_out) { const struct pvr_pds_info *const pds_info = &descriptor_state->pds_info; const struct pvr_descriptor_state *desc_state; struct pvr_suballoc_bo *pvr_bo; const uint8_t *entries; uint32_t *dword_buffer; uint64_t *qword_buffer; VkResult result; if (!pds_info->data_size_in_dwords) return VK_SUCCESS; result = pvr_cmd_buffer_alloc_mem(cmd_buffer, cmd_buffer->device->heaps.pds_heap, PVR_DW_TO_BYTES(pds_info->data_size_in_dwords), PVR_BO_ALLOC_FLAG_CPU_MAPPED, &pvr_bo); if (result != VK_SUCCESS) return result; dword_buffer = (uint32_t *)pvr_bo_suballoc_get_map_addr(pvr_bo); qword_buffer = (uint64_t *)pvr_bo_suballoc_get_map_addr(pvr_bo); entries = (uint8_t *)pds_info->entries; switch (stage) { case PVR_STAGE_ALLOCATION_VERTEX_GEOMETRY: case PVR_STAGE_ALLOCATION_FRAGMENT: desc_state = &cmd_buffer->state.gfx_desc_state; break; case PVR_STAGE_ALLOCATION_COMPUTE: desc_state = &cmd_buffer->state.compute_desc_state; break; default: unreachable("Unsupported stage."); break; } for (uint32_t i = 0; i < pds_info->entry_count; i++) { const struct pvr_const_map_entry *const entry_header = (struct pvr_const_map_entry *)entries; switch (entry_header->type) { case PVR_PDS_CONST_MAP_ENTRY_TYPE_LITERAL32: { const struct pvr_const_map_entry_literal32 *const literal = (struct pvr_const_map_entry_literal32 *)entries; PVR_WRITE(dword_buffer, literal->literal_value, literal->const_offset, pds_info->data_size_in_dwords); entries += sizeof(*literal); break; } case PVR_PDS_CONST_MAP_ENTRY_TYPE_CONSTANT_BUFFER: { const struct pvr_const_map_entry_constant_buffer *const_buffer_entry = (struct pvr_const_map_entry_constant_buffer *)entries; const uint32_t desc_set = const_buffer_entry->desc_set; const uint32_t binding = const_buffer_entry->binding; const struct pvr_descriptor_set *descriptor_set; const struct pvr_descriptor *descriptor; pvr_dev_addr_t buffer_addr; assert(desc_set < PVR_MAX_DESCRIPTOR_SETS); descriptor_set = desc_state->descriptor_sets[desc_set]; /* TODO: Handle dynamic buffers. */ descriptor = &descriptor_set->descriptors[binding]; assert(descriptor->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER); assert(descriptor->buffer_desc_range == PVR_DW_TO_BYTES(const_buffer_entry->size_in_dwords)); assert(descriptor->buffer_whole_range == PVR_DW_TO_BYTES(const_buffer_entry->size_in_dwords)); buffer_addr = PVR_DEV_ADDR_OFFSET(descriptor->buffer_dev_addr, const_buffer_entry->offset * sizeof(uint32_t)); PVR_WRITE(qword_buffer, buffer_addr.addr, const_buffer_entry->const_offset, pds_info->data_size_in_dwords); entries += sizeof(*const_buffer_entry); break; } case PVR_PDS_CONST_MAP_ENTRY_TYPE_DESCRIPTOR_SET: { const struct pvr_const_map_entry_descriptor_set *desc_set_entry = (struct pvr_const_map_entry_descriptor_set *)entries; const uint32_t desc_set_num = desc_set_entry->descriptor_set; const struct pvr_descriptor_set *descriptor_set; pvr_dev_addr_t desc_set_addr; uint64_t desc_portion_offset; assert(desc_set_num < PVR_MAX_DESCRIPTOR_SETS); /* TODO: Remove this when the compiler provides us with usage info? */ /* We skip DMAing unbound descriptor sets. */ if (!(desc_state->valid_mask & BITFIELD_BIT(desc_set_num))) { const struct pvr_const_map_entry_literal32 *literal; uint32_t zero_literal_value; /* The code segment contains a DOUT instructions so in the data * section we have to write a DOUTD_SRC0 and DOUTD_SRC1. * We'll write 0 for DOUTD_SRC0 since we don't have a buffer to DMA. * We're expecting a LITERAL32 entry containing the value for * DOUTD_SRC1 next so let's make sure we get it and write it * with BSIZE to 0 disabling the DMA operation. * We don't want the LITERAL32 to be processed as normal otherwise * we'd be DMAing from an address of 0. */ entries += sizeof(*desc_set_entry); literal = (struct pvr_const_map_entry_literal32 *)entries; assert(literal->type == PVR_PDS_CONST_MAP_ENTRY_TYPE_LITERAL32); zero_literal_value = literal->literal_value & PVR_ROGUE_PDSINST_DOUT_FIELDS_DOUTD_SRC1_BSIZE_CLRMSK; PVR_WRITE(qword_buffer, UINT64_C(0), desc_set_entry->const_offset, pds_info->data_size_in_dwords); PVR_WRITE(dword_buffer, zero_literal_value, desc_set_entry->const_offset, pds_info->data_size_in_dwords); entries += sizeof(*literal); i++; continue; } descriptor_set = desc_state->descriptor_sets[desc_set_num]; desc_set_addr = descriptor_set->pvr_bo->dev_addr; if (desc_set_entry->primary) { desc_portion_offset = descriptor_set->layout->memory_layout_in_dwords_per_stage[stage] .primary_offset; } else { desc_portion_offset = descriptor_set->layout->memory_layout_in_dwords_per_stage[stage] .secondary_offset; } desc_portion_offset = PVR_DW_TO_BYTES(desc_portion_offset); desc_set_addr = PVR_DEV_ADDR_OFFSET(desc_set_addr, desc_portion_offset); desc_set_addr = PVR_DEV_ADDR_OFFSET( desc_set_addr, PVR_DW_TO_BYTES((uint64_t)desc_set_entry->offset_in_dwords)); PVR_WRITE(qword_buffer, desc_set_addr.addr, desc_set_entry->const_offset, pds_info->data_size_in_dwords); entries += sizeof(*desc_set_entry); break; } case PVR_PDS_CONST_MAP_ENTRY_TYPE_SPECIAL_BUFFER: { const struct pvr_const_map_entry_special_buffer *special_buff_entry = (struct pvr_const_map_entry_special_buffer *)entries; switch (special_buff_entry->buffer_type) { case PVR_BUFFER_TYPE_COMPILE_TIME: { uint64_t addr = descriptor_state->static_consts->dev_addr.addr; PVR_WRITE(qword_buffer, addr, special_buff_entry->const_offset, pds_info->data_size_in_dwords); break; } case PVR_BUFFER_TYPE_BLEND_CONSTS: /* TODO: See if instead of reusing the blend constant buffer type * entry, we can setup a new buffer type specifically for * num_workgroups or other built-in variables. The mappings are * setup at pipeline creation when creating the descriptor program. */ if (stage == PVR_STAGE_ALLOCATION_COMPUTE) { assert(num_worgroups_buff_addr->addr); /* TODO: Check if we need to offset this (e.g. for just y and z), * or cope with any reordering? */ PVR_WRITE(qword_buffer, num_worgroups_buff_addr->addr, special_buff_entry->const_offset, pds_info->data_size_in_dwords); } else { pvr_finishme("Add blend constants support."); } break; default: unreachable("Unsupported special buffer type."); } entries += sizeof(*special_buff_entry); break; } default: unreachable("Unsupported map entry type."); } } *descriptor_data_offset_out = pvr_bo->dev_addr.addr - cmd_buffer->device->heaps.pds_heap->base_addr.addr; return VK_SUCCESS; } /* Note that the descriptor set doesn't have any space for dynamic buffer * descriptors so this works on the assumption that you have a buffer with space * for them at the end. */ static uint16_t pvr_get_dynamic_descriptor_primary_offset( const struct pvr_device *device, const struct pvr_descriptor_set_layout *layout, const struct pvr_descriptor_set_layout_binding *binding, const uint32_t stage, const uint32_t desc_idx) { struct pvr_descriptor_size_info size_info; uint32_t offset; assert(binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC); assert(desc_idx < binding->descriptor_count); pvr_descriptor_size_info_init(device, binding->type, &size_info); offset = layout->total_size_in_dwords; offset += binding->per_stage_offset_in_dwords[stage].primary; offset += (desc_idx * size_info.primary); /* Offset must be less than * 16bits. */ assert(offset < UINT16_MAX); return (uint16_t)offset; } /* Note that the descriptor set doesn't have any space for dynamic buffer * descriptors so this works on the assumption that you have a buffer with space * for them at the end. */ static uint16_t pvr_get_dynamic_descriptor_secondary_offset( const struct pvr_device *device, const struct pvr_descriptor_set_layout *layout, const struct pvr_descriptor_set_layout_binding *binding, const uint32_t stage, const uint32_t desc_idx) { struct pvr_descriptor_size_info size_info; uint32_t offset; assert(binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC || binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC); assert(desc_idx < binding->descriptor_count); pvr_descriptor_size_info_init(device, binding->type, &size_info); offset = layout->total_size_in_dwords; offset += layout->memory_layout_in_dwords_per_stage[stage].primary_dynamic_size; offset += binding->per_stage_offset_in_dwords[stage].secondary; offset += (desc_idx * size_info.secondary); /* Offset must be less than * 16bits. */ assert(offset < UINT16_MAX); return (uint16_t)offset; } /** * \brief Upload a copy of the descriptor set with dynamic buffer offsets * applied. */ /* TODO: We should probably make the compiler aware of the dynamic descriptors. * We could use push constants like Anv seems to do. This would avoid having to * duplicate all sets containing dynamic descriptors each time the offsets are * updated. */ static VkResult pvr_cmd_buffer_upload_patched_desc_set( struct pvr_cmd_buffer *cmd_buffer, const struct pvr_descriptor_set *desc_set, const uint32_t *dynamic_offsets, struct pvr_suballoc_bo **const bo_out) { const struct pvr_descriptor_set_layout *layout = desc_set->layout; const uint64_t normal_desc_set_size = PVR_DW_TO_BYTES(layout->total_size_in_dwords); const uint64_t dynamic_descs_size = PVR_DW_TO_BYTES(layout->total_dynamic_size_in_dwords); struct pvr_descriptor_size_info dynamic_uniform_buffer_size_info; struct pvr_descriptor_size_info dynamic_storage_buffer_size_info; struct pvr_device *device = cmd_buffer->device; struct pvr_suballoc_bo *patched_desc_set_bo; uint32_t *src_mem_ptr, *dst_mem_ptr; VkResult result; assert(desc_set->layout->dynamic_buffer_count > 0); pvr_descriptor_size_info_init(device, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, &dynamic_uniform_buffer_size_info); pvr_descriptor_size_info_init(device, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, &dynamic_storage_buffer_size_info); /* TODO: In the descriptor set we don't account for dynamic buffer * descriptors and take care of them in the pipeline layout. The pipeline * layout allocates them at the beginning but let's put them at the end just * because it makes things a bit easier. Ideally we should be using the * pipeline layout and use the offsets from the pipeline layout to patch * descriptors. */ result = pvr_cmd_buffer_alloc_mem(cmd_buffer, cmd_buffer->device->heaps.general_heap, normal_desc_set_size + dynamic_descs_size, PVR_BO_ALLOC_FLAG_CPU_MAPPED, &patched_desc_set_bo); if (result != VK_SUCCESS) return result; src_mem_ptr = (uint32_t *)pvr_bo_suballoc_get_map_addr(desc_set->pvr_bo); dst_mem_ptr = (uint32_t *)pvr_bo_suballoc_get_map_addr(patched_desc_set_bo); memcpy(dst_mem_ptr, src_mem_ptr, normal_desc_set_size); for (uint32_t i = 0; i < desc_set->layout->binding_count; i++) { const struct pvr_descriptor_set_layout_binding *binding = &desc_set->layout->bindings[i]; const struct pvr_descriptor *descriptors = &desc_set->descriptors[binding->descriptor_index]; const struct pvr_descriptor_size_info *size_info; if (binding->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) size_info = &dynamic_uniform_buffer_size_info; else if (binding->type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC) size_info = &dynamic_storage_buffer_size_info; else continue; for (uint32_t stage = 0; stage < PVR_STAGE_ALLOCATION_COUNT; stage++) { uint32_t primary_offset; uint32_t secondary_offset; if (!(binding->shader_stage_mask & BITFIELD_BIT(stage))) continue; /* Get the offsets for the first dynamic descriptor in the current * binding. */ primary_offset = pvr_get_dynamic_descriptor_primary_offset(device, desc_set->layout, binding, stage, 0); secondary_offset = pvr_get_dynamic_descriptor_secondary_offset(device, desc_set->layout, binding, stage, 0); /* clang-format off */ for (uint32_t desc_idx = 0; desc_idx < binding->descriptor_count; desc_idx++) { /* clang-format on */ const pvr_dev_addr_t addr = PVR_DEV_ADDR_OFFSET(descriptors[desc_idx].buffer_dev_addr, dynamic_offsets[desc_idx]); const VkDeviceSize range = MIN2(descriptors[desc_idx].buffer_desc_range, descriptors[desc_idx].buffer_whole_range - dynamic_offsets[desc_idx]); #if defined(DEBUG) uint32_t desc_primary_offset; uint32_t desc_secondary_offset; desc_primary_offset = pvr_get_dynamic_descriptor_primary_offset(device, desc_set->layout, binding, stage, desc_idx); desc_secondary_offset = pvr_get_dynamic_descriptor_secondary_offset(device, desc_set->layout, binding, stage, desc_idx); /* Check the assumption that the descriptors within a binding, for * a particular stage, are allocated consecutively. */ assert(desc_primary_offset == primary_offset + size_info->primary * desc_idx); assert(desc_secondary_offset == secondary_offset + size_info->secondary * desc_idx); #endif assert(descriptors[desc_idx].type == binding->type); memcpy(dst_mem_ptr + primary_offset + size_info->primary * desc_idx, &addr.addr, PVR_DW_TO_BYTES(size_info->primary)); memcpy(dst_mem_ptr + secondary_offset + size_info->secondary * desc_idx, &range, PVR_DW_TO_BYTES(size_info->secondary)); } } } *bo_out = patched_desc_set_bo; return VK_SUCCESS; } #define PVR_SELECT(_geom, _frag, _compute) \ (stage == PVR_STAGE_ALLOCATION_VERTEX_GEOMETRY) \ ? (_geom) \ : (stage == PVR_STAGE_ALLOCATION_FRAGMENT) ? (_frag) : (_compute) static VkResult pvr_cmd_buffer_upload_desc_set_table(struct pvr_cmd_buffer *const cmd_buffer, enum pvr_stage_allocation stage, pvr_dev_addr_t *addr_out) { uint64_t bound_desc_sets[PVR_MAX_DESCRIPTOR_SETS]; const struct pvr_descriptor_state *desc_state; struct pvr_suballoc_bo *suballoc_bo; uint32_t dynamic_offset_idx = 0; VkResult result; switch (stage) { case PVR_STAGE_ALLOCATION_VERTEX_GEOMETRY: case PVR_STAGE_ALLOCATION_FRAGMENT: case PVR_STAGE_ALLOCATION_COMPUTE: break; default: unreachable("Unsupported stage."); break; } desc_state = PVR_SELECT(&cmd_buffer->state.gfx_desc_state, &cmd_buffer->state.gfx_desc_state, &cmd_buffer->state.compute_desc_state); for (uint32_t set = 0; set < ARRAY_SIZE(bound_desc_sets); set++) bound_desc_sets[set] = ~0; assert(util_last_bit(desc_state->valid_mask) <= ARRAY_SIZE(bound_desc_sets)); for (uint32_t set = 0; set < util_last_bit(desc_state->valid_mask); set++) { const struct pvr_descriptor_set *desc_set; if (!(desc_state->valid_mask & BITFIELD_BIT(set))) { const struct pvr_pipeline_layout *pipeline_layout = PVR_SELECT(cmd_buffer->state.gfx_pipeline->base.layout, cmd_buffer->state.gfx_pipeline->base.layout, cmd_buffer->state.compute_pipeline->base.layout); const struct pvr_descriptor_set_layout *set_layout; assert(set <= pipeline_layout->set_count); set_layout = pipeline_layout->set_layout[set]; dynamic_offset_idx += set_layout->dynamic_buffer_count; continue; } desc_set = desc_state->descriptor_sets[set]; if (desc_set->layout->dynamic_buffer_count > 0) { struct pvr_suballoc_bo *new_desc_set_bo; assert(dynamic_offset_idx + desc_set->layout->dynamic_buffer_count <= ARRAY_SIZE(desc_state->dynamic_offsets)); result = pvr_cmd_buffer_upload_patched_desc_set( cmd_buffer, desc_set, &desc_state->dynamic_offsets[dynamic_offset_idx], &new_desc_set_bo); if (result != VK_SUCCESS) return result; dynamic_offset_idx += desc_set->layout->dynamic_buffer_count; bound_desc_sets[set] = new_desc_set_bo->dev_addr.addr; } else { bound_desc_sets[set] = desc_set->pvr_bo->dev_addr.addr; } } result = pvr_cmd_buffer_upload_general(cmd_buffer, bound_desc_sets, sizeof(bound_desc_sets), &suballoc_bo); if (result != VK_SUCCESS) return result; *addr_out = suballoc_bo->dev_addr; return VK_SUCCESS; } static VkResult pvr_process_addr_literal(struct pvr_cmd_buffer *cmd_buffer, enum pvr_pds_addr_literal_type addr_literal_type, enum pvr_stage_allocation stage, pvr_dev_addr_t *addr_out) { VkResult result; switch (addr_literal_type) { case PVR_PDS_ADDR_LITERAL_DESC_SET_ADDRS_TABLE: { /* TODO: Maybe we want to free pvr_bo? And only when the data * section is written successfully we link all bos to the command * buffer. */ result = pvr_cmd_buffer_upload_desc_set_table(cmd_buffer, stage, addr_out); if (result != VK_SUCCESS) return result; break; } case PVR_PDS_ADDR_LITERAL_PUSH_CONSTS: { const struct pvr_pipeline_layout *layout = PVR_SELECT(cmd_buffer->state.gfx_pipeline->base.layout, cmd_buffer->state.gfx_pipeline->base.layout, cmd_buffer->state.compute_pipeline->base.layout); const uint32_t push_constants_offset = PVR_SELECT(layout->vert_push_constants_offset, layout->frag_push_constants_offset, layout->compute_push_constants_offset); *addr_out = PVR_DEV_ADDR_OFFSET(cmd_buffer->state.push_constants.dev_addr, push_constants_offset); break; } case PVR_PDS_ADDR_LITERAL_BLEND_CONSTANTS: { float *blend_consts = cmd_buffer->vk.dynamic_graphics_state.cb.blend_constants; size_t size = sizeof(cmd_buffer->vk.dynamic_graphics_state.cb.blend_constants); struct pvr_suballoc_bo *blend_consts_bo; result = pvr_cmd_buffer_upload_general(cmd_buffer, blend_consts, size, &blend_consts_bo); if (result != VK_SUCCESS) return result; *addr_out = blend_consts_bo->dev_addr; break; } default: unreachable("Invalid add literal type."); } return VK_SUCCESS; } #undef PVR_SELECT static VkResult pvr_setup_descriptor_mappings_new( struct pvr_cmd_buffer *const cmd_buffer, enum pvr_stage_allocation stage, const struct pvr_stage_allocation_descriptor_state *descriptor_state, uint32_t *const descriptor_data_offset_out) { const struct pvr_pds_info *const pds_info = &descriptor_state->pds_info; struct pvr_suballoc_bo *pvr_bo; const uint8_t *entries; uint32_t *dword_buffer; uint64_t *qword_buffer; VkResult result; if (!pds_info->data_size_in_dwords) return VK_SUCCESS; result = pvr_cmd_buffer_alloc_mem(cmd_buffer, cmd_buffer->device->heaps.pds_heap, PVR_DW_TO_BYTES(pds_info->data_size_in_dwords), PVR_BO_ALLOC_FLAG_CPU_MAPPED, &pvr_bo); if (result != VK_SUCCESS) return result; dword_buffer = (uint32_t *)pvr_bo_suballoc_get_map_addr(pvr_bo); qword_buffer = (uint64_t *)pvr_bo_suballoc_get_map_addr(pvr_bo); entries = (uint8_t *)pds_info->entries; switch (stage) { case PVR_STAGE_ALLOCATION_VERTEX_GEOMETRY: case PVR_STAGE_ALLOCATION_FRAGMENT: case PVR_STAGE_ALLOCATION_COMPUTE: break; default: unreachable("Unsupported stage."); break; } for (uint32_t i = 0; i < pds_info->entry_count; i++) { const struct pvr_const_map_entry *const entry_header = (struct pvr_const_map_entry *)entries; switch (entry_header->type) { case PVR_PDS_CONST_MAP_ENTRY_TYPE_LITERAL32: { const struct pvr_const_map_entry_literal32 *const literal = (struct pvr_const_map_entry_literal32 *)entries; PVR_WRITE(dword_buffer, literal->literal_value, literal->const_offset, pds_info->data_size_in_dwords); entries += sizeof(*literal); break; } case PVR_PDS_CONST_MAP_ENTRY_TYPE_ADDR_LITERAL_BUFFER: { const struct pvr_pds_const_map_entry_addr_literal_buffer *const addr_literal_buffer_entry = (struct pvr_pds_const_map_entry_addr_literal_buffer *)entries; struct pvr_device *device = cmd_buffer->device; struct pvr_suballoc_bo *addr_literal_buffer_bo; uint32_t addr_literal_count = 0; uint64_t *addr_literal_buffer; result = pvr_cmd_buffer_alloc_mem(cmd_buffer, device->heaps.general_heap, addr_literal_buffer_entry->size, PVR_BO_ALLOC_FLAG_CPU_MAPPED, &addr_literal_buffer_bo); if (result != VK_SUCCESS) return result; addr_literal_buffer = (uint64_t *)pvr_bo_suballoc_get_map_addr(addr_literal_buffer_bo); entries += sizeof(*addr_literal_buffer_entry); PVR_WRITE(qword_buffer, addr_literal_buffer_bo->dev_addr.addr, addr_literal_buffer_entry->const_offset, pds_info->data_size_in_dwords); for (uint32_t j = i + 1; j < pds_info->entry_count; j++) { const struct pvr_const_map_entry *const entry_header = (struct pvr_const_map_entry *)entries; const struct pvr_pds_const_map_entry_addr_literal *addr_literal; pvr_dev_addr_t dev_addr; if (entry_header->type != PVR_PDS_CONST_MAP_ENTRY_TYPE_ADDR_LITERAL) break; addr_literal = (struct pvr_pds_const_map_entry_addr_literal *)entries; result = pvr_process_addr_literal(cmd_buffer, addr_literal->addr_type, stage, &dev_addr); if (result != VK_SUCCESS) return result; addr_literal_buffer[addr_literal_count++] = dev_addr.addr; entries += sizeof(*addr_literal); } assert(addr_literal_count * sizeof(uint64_t) == addr_literal_buffer_entry->size); i += addr_literal_count; break; } default: unreachable("Unsupported map entry type."); } } *descriptor_data_offset_out = pvr_bo->dev_addr.addr - cmd_buffer->device->heaps.pds_heap->base_addr.addr; return VK_SUCCESS; } static VkResult pvr_setup_descriptor_mappings( struct pvr_cmd_buffer *const cmd_buffer, enum pvr_stage_allocation stage, const struct pvr_stage_allocation_descriptor_state *descriptor_state, const pvr_dev_addr_t *const num_worgroups_buff_addr, uint32_t *const descriptor_data_offset_out) { const bool old_path = pvr_has_hard_coded_shaders(&cmd_buffer->device->pdevice->dev_info); if (old_path) { return pvr_setup_descriptor_mappings_old(cmd_buffer, stage, descriptor_state, num_worgroups_buff_addr, descriptor_data_offset_out); } return pvr_setup_descriptor_mappings_new(cmd_buffer, stage, descriptor_state, descriptor_data_offset_out); } static void pvr_compute_update_shared(struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd_compute *const sub_cmd) { const struct pvr_device *device = cmd_buffer->device; const struct pvr_physical_device *pdevice = device->pdevice; struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct pvr_csb *csb = &sub_cmd->control_stream; const struct pvr_compute_pipeline *pipeline = state->compute_pipeline; const uint32_t const_shared_regs = pipeline->shader_state.const_shared_reg_count; struct pvr_compute_kernel_info info; /* No shared regs, no need to use an allocation kernel. */ if (!const_shared_regs) return; /* Accumulate the MAX number of shared registers across the kernels in this * dispatch. This is used by the FW for context switching, so must be large * enough to contain all the shared registers that might be in use for this * compute job. Coefficients don't need to be included as the context switch * will not happen within the execution of a single workgroup, thus nothing * needs to be preserved. */ state->max_shared_regs = MAX2(state->max_shared_regs, const_shared_regs); info = (struct pvr_compute_kernel_info){ .indirect_buffer_addr = PVR_DEV_ADDR_INVALID, .sd_type = PVRX(CDMCTRL_SD_TYPE_NONE), .usc_target = PVRX(CDMCTRL_USC_TARGET_ALL), .usc_common_shared = true, .usc_common_size = DIV_ROUND_UP(const_shared_regs, PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE)), .local_size = { 1, 1, 1 }, .global_size = { 1, 1, 1 }, }; /* Sometimes we don't have a secondary program if there were no constants to * write, but we still need to run a PDS program to accomplish the * allocation of the local/common store shared registers. Use the * pre-uploaded empty PDS program in this instance. */ if (pipeline->descriptor_state.pds_info.code_size_in_dwords) { uint32_t pds_data_size_in_dwords = pipeline->descriptor_state.pds_info.data_size_in_dwords; info.pds_data_offset = state->pds_compute_descriptor_data_offset; info.pds_data_size = DIV_ROUND_UP(PVR_DW_TO_BYTES(pds_data_size_in_dwords), PVRX(CDMCTRL_KERNEL0_PDS_DATA_SIZE_UNIT_SIZE)); /* Check that we have upload the code section. */ assert(pipeline->descriptor_state.pds_code.code_size); info.pds_code_offset = pipeline->descriptor_state.pds_code.code_offset; } else { const struct pvr_pds_upload *program = &device->pds_compute_empty_program; info.pds_data_offset = program->data_offset; info.pds_data_size = DIV_ROUND_UP(PVR_DW_TO_BYTES(program->data_size), PVRX(CDMCTRL_KERNEL0_PDS_DATA_SIZE_UNIT_SIZE)); info.pds_code_offset = program->code_offset; } /* We don't need to pad the workgroup size. */ info.max_instances = pvr_compute_flat_slot_size(pdevice, const_shared_regs, false, 1U); pvr_compute_generate_control_stream(csb, sub_cmd, &info); } void pvr_compute_update_shared_private( struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd_compute *const sub_cmd, struct pvr_private_compute_pipeline *pipeline) { const struct pvr_physical_device *pdevice = cmd_buffer->device->pdevice; struct pvr_cmd_buffer_state *state = &cmd_buffer->state; const uint32_t const_shared_regs = pipeline->const_shared_regs_count; struct pvr_csb *csb = &sub_cmd->control_stream; struct pvr_compute_kernel_info info; /* No shared regs, no need to use an allocation kernel. */ if (!const_shared_regs) return; /* See comment in pvr_compute_update_shared() for details on this. */ state->max_shared_regs = MAX2(state->max_shared_regs, const_shared_regs); info = (struct pvr_compute_kernel_info){ .indirect_buffer_addr = PVR_DEV_ADDR_INVALID, .usc_common_size = DIV_ROUND_UP(const_shared_regs, PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE)), .pds_data_size = DIV_ROUND_UP(PVR_DW_TO_BYTES(pipeline->pds_shared_update_data_size_dw), PVRX(CDMCTRL_KERNEL0_PDS_DATA_SIZE_UNIT_SIZE)), .usc_target = PVRX(CDMCTRL_USC_TARGET_ALL), .pds_data_offset = pipeline->pds_shared_update_data_offset, .pds_code_offset = pipeline->pds_shared_update_code_offset, .sd_type = PVRX(CDMCTRL_SD_TYPE_NONE), .usc_common_shared = true, .local_size = { 1, 1, 1 }, .global_size = { 1, 1, 1 }, }; /* We don't need to pad the workgroup size. */ info.max_instances = pvr_compute_flat_slot_size(pdevice, const_shared_regs, false, 1U); pvr_compute_generate_control_stream(csb, sub_cmd, &info); } static uint32_t pvr_compute_flat_pad_workgroup_size(const struct pvr_physical_device *pdevice, uint32_t workgroup_size, uint32_t coeff_regs_count) { const struct pvr_device_runtime_info *dev_runtime_info = &pdevice->dev_runtime_info; const struct pvr_device_info *dev_info = &pdevice->dev_info; uint32_t max_avail_coeff_regs = dev_runtime_info->cdm_max_local_mem_size_regs; uint32_t coeff_regs_count_aligned = ALIGN_POT(coeff_regs_count, PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE) >> 2U); /* If the work group size is > ROGUE_MAX_INSTANCES_PER_TASK. We now *always* * pad the work group size to the next multiple of * ROGUE_MAX_INSTANCES_PER_TASK. * * If we use more than 1/8th of the max coefficient registers then we round * work group size up to the next multiple of ROGUE_MAX_INSTANCES_PER_TASK */ /* TODO: See if this can be optimized. */ if (workgroup_size > ROGUE_MAX_INSTANCES_PER_TASK || coeff_regs_count_aligned > (max_avail_coeff_regs / 8)) { assert(workgroup_size < rogue_get_compute_max_work_group_size(dev_info)); return ALIGN_POT(workgroup_size, ROGUE_MAX_INSTANCES_PER_TASK); } return workgroup_size; } void pvr_compute_update_kernel_private( struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd_compute *const sub_cmd, struct pvr_private_compute_pipeline *pipeline, const uint32_t global_workgroup_size[static const PVR_WORKGROUP_DIMENSIONS]) { const struct pvr_physical_device *pdevice = cmd_buffer->device->pdevice; const struct pvr_device_runtime_info *dev_runtime_info = &pdevice->dev_runtime_info; struct pvr_csb *csb = &sub_cmd->control_stream; struct pvr_compute_kernel_info info = { .indirect_buffer_addr = PVR_DEV_ADDR_INVALID, .usc_target = PVRX(CDMCTRL_USC_TARGET_ANY), .pds_temp_size = DIV_ROUND_UP(pipeline->pds_temps_used << 2U, PVRX(CDMCTRL_KERNEL0_PDS_TEMP_SIZE_UNIT_SIZE)), .pds_data_size = DIV_ROUND_UP(PVR_DW_TO_BYTES(pipeline->pds_data_size_dw), PVRX(CDMCTRL_KERNEL0_PDS_DATA_SIZE_UNIT_SIZE)), .pds_data_offset = pipeline->pds_data_offset, .pds_code_offset = pipeline->pds_code_offset, .sd_type = PVRX(CDMCTRL_SD_TYPE_NONE), .usc_unified_size = DIV_ROUND_UP(pipeline->coeff_regs_count << 2U, PVRX(CDMCTRL_KERNEL0_USC_UNIFIED_SIZE_UNIT_SIZE)), /* clang-format off */ .global_size = { global_workgroup_size[0], global_workgroup_size[1], global_workgroup_size[2] }, /* clang-format on */ }; uint32_t work_size = pipeline->workgroup_size.width * pipeline->workgroup_size.height * pipeline->workgroup_size.depth; uint32_t coeff_regs; if (work_size > ROGUE_MAX_INSTANCES_PER_TASK) { /* Enforce a single workgroup per cluster through allocation starvation. */ coeff_regs = dev_runtime_info->cdm_max_local_mem_size_regs; } else { coeff_regs = pipeline->coeff_regs_count; } info.usc_common_size = DIV_ROUND_UP(coeff_regs << 2U, PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE)); /* Use a whole slot per workgroup. */ work_size = MAX2(work_size, ROGUE_MAX_INSTANCES_PER_TASK); coeff_regs += pipeline->const_shared_regs_count; if (pipeline->const_shared_regs_count > 0) info.sd_type = PVRX(CDMCTRL_SD_TYPE_USC); work_size = pvr_compute_flat_pad_workgroup_size(pdevice, work_size, coeff_regs); info.local_size[0] = work_size; info.local_size[1] = 1U; info.local_size[2] = 1U; info.max_instances = pvr_compute_flat_slot_size(pdevice, coeff_regs, false, work_size); pvr_compute_generate_control_stream(csb, sub_cmd, &info); } /* TODO: Wire up the base_workgroup variant program when implementing * VK_KHR_device_group. The values will also need patching into the program. */ static void pvr_compute_update_kernel( struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd_compute *const sub_cmd, pvr_dev_addr_t indirect_addr, const uint32_t global_workgroup_size[static const PVR_WORKGROUP_DIMENSIONS]) { const struct pvr_physical_device *pdevice = cmd_buffer->device->pdevice; const struct pvr_device_runtime_info *dev_runtime_info = &pdevice->dev_runtime_info; struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct pvr_csb *csb = &sub_cmd->control_stream; const struct pvr_compute_pipeline *pipeline = state->compute_pipeline; const struct pvr_compute_shader_state *shader_state = &pipeline->shader_state; const struct pvr_pds_info *program_info = &pipeline->primary_program_info; struct pvr_compute_kernel_info info = { .indirect_buffer_addr = indirect_addr, .usc_target = PVRX(CDMCTRL_USC_TARGET_ANY), .pds_temp_size = DIV_ROUND_UP(program_info->temps_required << 2U, PVRX(CDMCTRL_KERNEL0_PDS_TEMP_SIZE_UNIT_SIZE)), .pds_data_size = DIV_ROUND_UP(PVR_DW_TO_BYTES(program_info->data_size_in_dwords), PVRX(CDMCTRL_KERNEL0_PDS_DATA_SIZE_UNIT_SIZE)), .pds_data_offset = pipeline->primary_program.data_offset, .pds_code_offset = pipeline->primary_program.code_offset, .sd_type = PVRX(CDMCTRL_SD_TYPE_NONE), .usc_unified_size = DIV_ROUND_UP(shader_state->input_register_count << 2U, PVRX(CDMCTRL_KERNEL0_USC_UNIFIED_SIZE_UNIT_SIZE)), /* clang-format off */ .global_size = { global_workgroup_size[0], global_workgroup_size[1], global_workgroup_size[2] }, /* clang-format on */ }; uint32_t work_size = shader_state->work_size; uint32_t coeff_regs; if (work_size > ROGUE_MAX_INSTANCES_PER_TASK) { /* Enforce a single workgroup per cluster through allocation starvation. */ coeff_regs = dev_runtime_info->cdm_max_local_mem_size_regs; } else { coeff_regs = shader_state->coefficient_register_count; } info.usc_common_size = DIV_ROUND_UP(coeff_regs << 2U, PVRX(CDMCTRL_KERNEL0_USC_COMMON_SIZE_UNIT_SIZE)); /* Use a whole slot per workgroup. */ work_size = MAX2(work_size, ROGUE_MAX_INSTANCES_PER_TASK); coeff_regs += shader_state->const_shared_reg_count; if (shader_state->const_shared_reg_count > 0) info.sd_type = PVRX(CDMCTRL_SD_TYPE_USC); work_size = pvr_compute_flat_pad_workgroup_size(pdevice, work_size, coeff_regs); info.local_size[0] = work_size; info.local_size[1] = 1U; info.local_size[2] = 1U; info.max_instances = pvr_compute_flat_slot_size(pdevice, coeff_regs, false, work_size); pvr_compute_generate_control_stream(csb, sub_cmd, &info); } static VkResult pvr_cmd_upload_push_consts(struct pvr_cmd_buffer *cmd_buffer) { struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct pvr_suballoc_bo *suballoc_bo; VkResult result; /* TODO: Here are some possible optimizations/things to consider: * * - Currently we upload maxPushConstantsSize. The application might only * be using a portion of that so we might end up with unused memory. * Should we be smarter about this. If we intend to upload the push * consts into shareds, we definitely want to do avoid reserving unused * regs. * * - For now we have to upload to a new buffer each time since the shaders * access the push constants from memory. If we were to reuse the same * buffer we might update the contents out of sync with job submission * and the shaders will see the updated contents while the command * buffer was still being recorded and not yet submitted. * If we were to upload the push constants directly to shared regs we * could reuse the same buffer (avoiding extra allocation overhead) * since the contents will be DMAed only on job submission when the * control stream is processed and the PDS program is executed. This * approach would also allow us to avoid regenerating the PDS data * section in some cases since the buffer address will be constants. */ if (cmd_buffer->state.push_constants.uploaded) return VK_SUCCESS; result = pvr_cmd_buffer_upload_general(cmd_buffer, state->push_constants.data, sizeof(state->push_constants.data), &suballoc_bo); if (result != VK_SUCCESS) return result; cmd_buffer->state.push_constants.dev_addr = suballoc_bo->dev_addr; cmd_buffer->state.push_constants.uploaded = true; return VK_SUCCESS; } static void pvr_cmd_dispatch( struct pvr_cmd_buffer *const cmd_buffer, const pvr_dev_addr_t indirect_addr, const uint32_t workgroup_size[static const PVR_WORKGROUP_DIMENSIONS]) { struct pvr_cmd_buffer_state *state = &cmd_buffer->state; const struct pvr_compute_pipeline *compute_pipeline = state->compute_pipeline; struct pvr_sub_cmd_compute *sub_cmd; VkResult result; pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_COMPUTE); sub_cmd = &state->current_sub_cmd->compute; sub_cmd->uses_atomic_ops |= compute_pipeline->shader_state.uses_atomic_ops; sub_cmd->uses_barrier |= compute_pipeline->shader_state.uses_barrier; if (state->push_constants.dirty_stages & VK_SHADER_STAGE_COMPUTE_BIT) { result = pvr_cmd_upload_push_consts(cmd_buffer); if (result != VK_SUCCESS) return; /* Regenerate the PDS program to use the new push consts buffer. */ state->dirty.compute_desc_dirty = true; state->push_constants.dirty_stages &= ~VK_SHADER_STAGE_COMPUTE_BIT; } if (compute_pipeline->shader_state.uses_num_workgroups) { pvr_dev_addr_t descriptor_data_offset_out; if (indirect_addr.addr) { descriptor_data_offset_out = indirect_addr; } else { struct pvr_suballoc_bo *num_workgroups_bo; result = pvr_cmd_buffer_upload_general(cmd_buffer, workgroup_size, sizeof(*workgroup_size) * PVR_WORKGROUP_DIMENSIONS, &num_workgroups_bo); if (result != VK_SUCCESS) return; descriptor_data_offset_out = num_workgroups_bo->dev_addr; } result = pvr_setup_descriptor_mappings( cmd_buffer, PVR_STAGE_ALLOCATION_COMPUTE, &compute_pipeline->descriptor_state, &descriptor_data_offset_out, &state->pds_compute_descriptor_data_offset); if (result != VK_SUCCESS) return; } else if ((compute_pipeline->base.layout ->per_stage_descriptor_masks[PVR_STAGE_ALLOCATION_COMPUTE] && state->dirty.compute_desc_dirty) || state->dirty.compute_pipeline_binding) { result = pvr_setup_descriptor_mappings( cmd_buffer, PVR_STAGE_ALLOCATION_COMPUTE, &compute_pipeline->descriptor_state, NULL, &state->pds_compute_descriptor_data_offset); if (result != VK_SUCCESS) return; } pvr_compute_update_shared(cmd_buffer, sub_cmd); pvr_compute_update_kernel(cmd_buffer, sub_cmd, indirect_addr, workgroup_size); } void pvr_CmdDispatch(VkCommandBuffer commandBuffer, uint32_t groupCountX, uint32_t groupCountY, uint32_t groupCountZ) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); if (!groupCountX || !groupCountY || !groupCountZ) return; pvr_cmd_dispatch(cmd_buffer, PVR_DEV_ADDR_INVALID, (uint32_t[]){ groupCountX, groupCountY, groupCountZ }); } void pvr_CmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); PVR_FROM_HANDLE(pvr_buffer, buffer, _buffer); PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); pvr_cmd_dispatch(cmd_buffer, PVR_DEV_ADDR_OFFSET(buffer->dev_addr, offset), (uint32_t[]){ 1, 1, 1 }); } static void pvr_update_draw_state(struct pvr_cmd_buffer_state *const state, const struct pvr_cmd_buffer_draw_state *const draw_state) { /* We don't have a state to tell us that base_instance is being used so it * gets used as a boolean - 0 means we'll use a pds program that skips the * base instance addition. If the base_instance gets used (and the last * draw's base_instance was 0) then we switch to the BASE_INSTANCE attrib * program. * * If base_instance changes then we only need to update the data section. * * The only draw call state that doesn't really matter is the start vertex * as that is handled properly in the VDM state in all cases. */ if ((state->draw_state.draw_indexed != draw_state->draw_indexed) || (state->draw_state.draw_indirect != draw_state->draw_indirect) || (state->draw_state.base_instance == 0 && draw_state->base_instance != 0)) { state->dirty.draw_variant = true; } else if (state->draw_state.base_instance != draw_state->base_instance) { state->dirty.draw_base_instance = true; } state->draw_state = *draw_state; } static uint32_t pvr_calc_shared_regs_count( const struct pvr_graphics_pipeline *const gfx_pipeline) { const struct pvr_pipeline_stage_state *const vertex_state = &gfx_pipeline->shader_state.vertex.stage_state; uint32_t shared_regs = vertex_state->const_shared_reg_count + vertex_state->const_shared_reg_offset; if (gfx_pipeline->shader_state.fragment.bo) { const struct pvr_pipeline_stage_state *const fragment_state = &gfx_pipeline->shader_state.fragment.stage_state; uint32_t fragment_regs = fragment_state->const_shared_reg_count + fragment_state->const_shared_reg_offset; shared_regs = MAX2(shared_regs, fragment_regs); } return shared_regs; } static void pvr_emit_dirty_pds_state(const struct pvr_cmd_buffer *const cmd_buffer, struct pvr_sub_cmd_gfx *const sub_cmd, const uint32_t pds_vertex_descriptor_data_offset) { const struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; const struct pvr_stage_allocation_descriptor_state *const vertex_descriptor_state = &state->gfx_pipeline->shader_state.vertex.descriptor_state; const struct pvr_pipeline_stage_state *const vertex_stage_state = &state->gfx_pipeline->shader_state.vertex.stage_state; struct pvr_csb *const csb = &sub_cmd->control_stream; if (!vertex_descriptor_state->pds_info.code_size_in_dwords) return; pvr_csb_emit (csb, VDMCTRL_PDS_STATE0, state0) { state0.usc_target = PVRX(VDMCTRL_USC_TARGET_ALL); state0.usc_common_size = DIV_ROUND_UP(vertex_stage_state->const_shared_reg_count << 2, PVRX(VDMCTRL_PDS_STATE0_USC_COMMON_SIZE_UNIT_SIZE)); state0.pds_data_size = DIV_ROUND_UP( PVR_DW_TO_BYTES(vertex_descriptor_state->pds_info.data_size_in_dwords), PVRX(VDMCTRL_PDS_STATE0_PDS_DATA_SIZE_UNIT_SIZE)); } pvr_csb_emit (csb, VDMCTRL_PDS_STATE1, state1) { state1.pds_data_addr = PVR_DEV_ADDR(pds_vertex_descriptor_data_offset); state1.sd_type = PVRX(VDMCTRL_SD_TYPE_NONE); } pvr_csb_emit (csb, VDMCTRL_PDS_STATE2, state2) { state2.pds_code_addr = PVR_DEV_ADDR(vertex_descriptor_state->pds_code.code_offset); } } static void pvr_setup_output_select(struct pvr_cmd_buffer *const cmd_buffer) { const struct pvr_graphics_pipeline *const gfx_pipeline = cmd_buffer->state.gfx_pipeline; const struct pvr_vertex_shader_state *const vertex_state = &gfx_pipeline->shader_state.vertex; struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; struct PVRX(TA_STATE_HEADER) *const header = &cmd_buffer->state.emit_header; struct pvr_ppp_state *const ppp_state = &cmd_buffer->state.ppp_state; uint32_t output_selects; /* TODO: Handle vertex and fragment shader state flags. */ pvr_csb_pack (&output_selects, TA_OUTPUT_SEL, state) { state.rhw_pres = true; state.vtxsize = DIV_ROUND_UP(vertex_state->vertex_output_size, 4U); state.psprite_size_pres = (dynamic_state->ia.primitive_topology == VK_PRIMITIVE_TOPOLOGY_POINT_LIST); } if (ppp_state->output_selects != output_selects) { ppp_state->output_selects = output_selects; header->pres_outselects = true; } if (ppp_state->varying_word[0] != vertex_state->varying[0]) { ppp_state->varying_word[0] = vertex_state->varying[0]; header->pres_varying_word0 = true; } if (ppp_state->varying_word[1] != vertex_state->varying[1]) { ppp_state->varying_word[1] = vertex_state->varying[1]; header->pres_varying_word1 = true; } } static void pvr_setup_isp_faces_and_control(struct pvr_cmd_buffer *const cmd_buffer, struct PVRX(TA_STATE_ISPA) *const ispa_out) { struct PVRX(TA_STATE_HEADER) *const header = &cmd_buffer->state.emit_header; const struct pvr_fragment_shader_state *const fragment_shader_state = &cmd_buffer->state.gfx_pipeline->shader_state.fragment; const struct pvr_render_pass_info *const pass_info = &cmd_buffer->state.render_pass_info; struct vk_dynamic_graphics_state *dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; struct pvr_ppp_state *const ppp_state = &cmd_buffer->state.ppp_state; const bool rasterizer_discard = dynamic_state->rs.rasterizer_discard_enable; const uint32_t subpass_idx = pass_info->subpass_idx; const uint32_t depth_stencil_attachment_idx = pass_info->pass->subpasses[subpass_idx].depth_stencil_attachment; const struct pvr_image_view *const attachment = depth_stencil_attachment_idx != VK_ATTACHMENT_UNUSED ? pass_info->attachments[depth_stencil_attachment_idx] : NULL; const enum PVRX(TA_OBJTYPE) obj_type = pvr_ta_objtype(dynamic_state->ia.primitive_topology); const VkImageAspectFlags ds_aspects = (!rasterizer_discard && attachment) ? vk_format_aspects(attachment->vk.format) & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) : VK_IMAGE_ASPECT_NONE; /* This is deliberately a full copy rather than a pointer because * vk_optimize_depth_stencil_state() can only be run once against any given * instance of vk_depth_stencil_state. */ struct vk_depth_stencil_state ds_state = dynamic_state->ds; uint32_t ispb_stencil_off; bool is_two_sided = false; uint32_t isp_control; uint32_t line_width; uint32_t common_a; uint32_t front_a; uint32_t front_b; uint32_t back_a; uint32_t back_b; vk_optimize_depth_stencil_state(&ds_state, ds_aspects, true); /* Convert to 4.4 fixed point format. */ line_width = util_unsigned_fixed(dynamic_state->rs.line.width, 4); /* Subtract 1 to shift values from range [0=0,256=16] to [0=1/16,255=16]. * If 0 it stays at 0, otherwise we subtract 1. */ line_width = (!!line_width) * (line_width - 1); line_width = MIN2(line_width, PVRX(TA_STATE_ISPA_POINTLINEWIDTH_SIZE_MAX)); /* TODO: Part of the logic in this function is duplicated in another part * of the code. E.g. the dcmpmode, and sop1/2/3. Could we do this earlier? */ pvr_csb_pack (&common_a, TA_STATE_ISPA, ispa) { ispa.pointlinewidth = line_width; ispa.dcmpmode = pvr_ta_cmpmode(ds_state.depth.compare_op); ispa.dwritedisable = !ds_state.depth.write_enable; ispa.passtype = fragment_shader_state->pass_type; ispa.objtype = obj_type; /* Return unpacked ispa structure. dcmpmode, dwritedisable, passtype and * objtype are needed by pvr_setup_triangle_merging_flag. */ if (ispa_out) *ispa_out = ispa; } /* TODO: Does this actually represent the ispb control word on stencil off? * If not, rename the variable. */ pvr_csb_pack (&ispb_stencil_off, TA_STATE_ISPB, ispb) { ispb.sop3 = PVRX(TA_ISPB_STENCILOP_KEEP); ispb.sop2 = PVRX(TA_ISPB_STENCILOP_KEEP); ispb.sop1 = PVRX(TA_ISPB_STENCILOP_KEEP); ispb.scmpmode = PVRX(TA_CMPMODE_ALWAYS); } /* FIXME: This logic should be redone and improved. Can we also get rid of * the front and back variants? */ front_a = common_a; back_a = common_a; if (ds_state.stencil.test_enable) { uint32_t front_a_sref; uint32_t back_a_sref; pvr_csb_pack (&front_a_sref, TA_STATE_ISPA, ispa) { ispa.sref = ds_state.stencil.front.reference; } front_a |= front_a_sref; pvr_csb_pack (&back_a_sref, TA_STATE_ISPA, ispa) { ispa.sref = ds_state.stencil.back.reference; } back_a |= back_a_sref; pvr_csb_pack (&front_b, TA_STATE_ISPB, ispb) { const struct vk_stencil_test_face_state *const front = &ds_state.stencil.front; if (ds_state.stencil.write_enable) ispb.swmask = front->write_mask; ispb.scmpmask = front->compare_mask; ispb.sop3 = pvr_ta_stencilop(front->op.pass); ispb.sop2 = pvr_ta_stencilop(front->op.depth_fail); ispb.sop1 = pvr_ta_stencilop(front->op.fail); ispb.scmpmode = pvr_ta_cmpmode(front->op.compare); } pvr_csb_pack (&back_b, TA_STATE_ISPB, ispb) { const struct vk_stencil_test_face_state *const back = &ds_state.stencil.back; if (ds_state.stencil.write_enable) ispb.swmask = back->write_mask; ispb.scmpmask = back->compare_mask; ispb.sop3 = pvr_ta_stencilop(back->op.pass); ispb.sop2 = pvr_ta_stencilop(back->op.depth_fail); ispb.sop1 = pvr_ta_stencilop(back->op.fail); ispb.scmpmode = pvr_ta_cmpmode(back->op.compare); } } else { front_b = ispb_stencil_off; back_b = ispb_stencil_off; } if (front_a != back_a || front_b != back_b) { if (dynamic_state->rs.cull_mode & VK_CULL_MODE_BACK_BIT) { /* Single face, using front state. */ } else if (dynamic_state->rs.cull_mode & VK_CULL_MODE_FRONT_BIT) { /* Single face, using back state. */ front_a = back_a; front_b = back_b; } else { /* Both faces. */ header->pres_ispctl_ba = is_two_sided = true; if (dynamic_state->rs.front_face == VK_FRONT_FACE_COUNTER_CLOCKWISE) { uint32_t tmp = front_a; front_a = back_a; back_a = tmp; tmp = front_b; front_b = back_b; back_b = tmp; } /* HW defaults to stencil off. */ if (back_b != ispb_stencil_off) { header->pres_ispctl_fb = true; header->pres_ispctl_bb = true; } } } if (ds_state.stencil.test_enable && front_b != ispb_stencil_off) header->pres_ispctl_fb = true; pvr_csb_pack (&isp_control, TA_STATE_ISPCTL, ispctl) { ispctl.upass = pass_info->isp_userpass; /* TODO: is bo ever NULL? Figure out what to do. */ ispctl.tagwritedisable = rasterizer_discard || !fragment_shader_state->bo; ispctl.two_sided = is_two_sided; ispctl.bpres = header->pres_ispctl_fb || header->pres_ispctl_bb; ispctl.dbenable = !rasterizer_discard && dynamic_state->rs.depth_bias.enable && obj_type == PVRX(TA_OBJTYPE_TRIANGLE); if (!rasterizer_discard && cmd_buffer->state.vis_test_enabled) { ispctl.vistest = true; ispctl.visreg = cmd_buffer->state.vis_reg; } ispctl.scenable = !rasterizer_discard; ppp_state->isp.control_struct = ispctl; } header->pres_ispctl = true; ppp_state->isp.control = isp_control; ppp_state->isp.front_a = front_a; ppp_state->isp.front_b = front_b; ppp_state->isp.back_a = back_a; ppp_state->isp.back_b = back_b; } static float pvr_calculate_final_depth_bias_contant_factor(struct pvr_device_info *dev_info, VkFormat format, float depth_bias) { /* Information for future modifiers of these depth bias calculations. * ================================================================== * Specified depth bias equations scale the specified constant factor by a * value 'r' that is guaranteed to cause a resolvable difference in depth * across the entire range of depth values. * For floating point depth formats 'r' is calculated by taking the maximum * exponent across the triangle. * For UNORM formats 'r' is constant. * Here 'n' is the number of mantissa bits stored in the floating point * representation (23 for F32). * * UNORM Format -> z += dbcf * r + slope * FLOAT Format -> z += dbcf * 2^(e-n) + slope * * HW Variations. * ============== * The HW either always performs the F32 depth bias equation (exponent based * r), or in the case of HW that correctly supports the integer depth bias * equation for UNORM depth formats, we can select between both equations * using the ROGUE_CR_ISP_CTL.dbias_is_int flag - this is required to * correctly perform Vulkan UNORM depth bias (constant r). * * if ern42307: * if DBIAS_IS_INT_EN: * z += dbcf + slope * else: * z += dbcf * 2^(e-n) + slope * else: * z += dbcf * 2^(e-n) + slope * */ float nudge_factor; if (PVR_HAS_ERN(dev_info, 42307)) { switch (format) { case VK_FORMAT_D16_UNORM: return depth_bias / (1 << 15); case VK_FORMAT_D24_UNORM_S8_UINT: case VK_FORMAT_X8_D24_UNORM_PACK32: return depth_bias / (1 << 23); default: return depth_bias; } } /* The reasoning behind clamping/nudging the value here is because UNORM * depth formats can have higher precision over our underlying D32F * representation for some depth ranges. * * When the HW scales the depth bias value by 2^(e-n) [The 'r' term'] a depth * bias of 1 can result in a value smaller than one F32 ULP, which will get * quantized to 0 - resulting in no bias. * * Biasing small values away from zero will ensure that small depth biases of * 1 still yield a result and overcome Z-fighting. */ switch (format) { case VK_FORMAT_D16_UNORM: depth_bias *= 512.0f; nudge_factor = 1.0f; break; case VK_FORMAT_D24_UNORM_S8_UINT: case VK_FORMAT_X8_D24_UNORM_PACK32: depth_bias *= 2.0f; nudge_factor = 2.0f; break; default: nudge_factor = 0.0f; break; } if (nudge_factor != 0.0f) { if (depth_bias < 0.0f && depth_bias > -nudge_factor) depth_bias -= nudge_factor; else if (depth_bias > 0.0f && depth_bias < nudge_factor) depth_bias += nudge_factor; } return depth_bias; } static void pvr_get_viewport_scissor_overlap(const VkViewport *const viewport, const VkRect2D *const scissor, VkRect2D *const rect_out) { /* TODO: See if we can remove this struct. */ struct pvr_rect { int32_t x0, y0; int32_t x1, y1; }; /* TODO: Worry about overflow? */ const struct pvr_rect scissor_rect = { .x0 = scissor->offset.x, .y0 = scissor->offset.y, .x1 = scissor->offset.x + scissor->extent.width, .y1 = scissor->offset.y + scissor->extent.height }; struct pvr_rect viewport_rect = { 0 }; assert(viewport->width >= 0.0f); assert(scissor_rect.x0 >= 0); assert(scissor_rect.y0 >= 0); if (scissor->extent.width == 0 || scissor->extent.height == 0) { *rect_out = (VkRect2D){ 0 }; return; } viewport_rect.x0 = (int32_t)viewport->x; viewport_rect.x1 = (int32_t)viewport->x + (int32_t)viewport->width; /* TODO: Is there a mathematical way of doing all this and then clamp at * the end? */ /* We flip the y0 and y1 when height is negative. */ viewport_rect.y0 = (int32_t)viewport->y + MIN2(0, (int32_t)viewport->height); viewport_rect.y1 = (int32_t)viewport->y + MAX2(0, (int32_t)viewport->height); if (scissor_rect.x1 <= viewport_rect.x0 || scissor_rect.y1 <= viewport_rect.y0 || scissor_rect.x0 >= viewport_rect.x1 || scissor_rect.y0 >= viewport_rect.y1) { *rect_out = (VkRect2D){ 0 }; return; } /* Determine the overlapping rectangle. */ viewport_rect.x0 = MAX2(viewport_rect.x0, scissor_rect.x0); viewport_rect.y0 = MAX2(viewport_rect.y0, scissor_rect.y0); viewport_rect.x1 = MIN2(viewport_rect.x1, scissor_rect.x1); viewport_rect.y1 = MIN2(viewport_rect.y1, scissor_rect.y1); /* TODO: Is this conversion safe? Is this logic right? */ rect_out->offset.x = (uint32_t)viewport_rect.x0; rect_out->offset.y = (uint32_t)viewport_rect.y0; rect_out->extent.height = (uint32_t)(viewport_rect.y1 - viewport_rect.y0); rect_out->extent.width = (uint32_t)(viewport_rect.x1 - viewport_rect.x0); } static inline uint32_t pvr_get_geom_region_clip_align_size(struct pvr_device_info *const dev_info) { /* TODO: This should come from rogue_ppp.xml. */ return 16U + 16U * (!PVR_HAS_FEATURE(dev_info, tile_size_16x16)); } static void pvr_setup_isp_depth_bias_scissor_state(struct pvr_cmd_buffer *const cmd_buffer) { struct PVRX(TA_STATE_HEADER) *const header = &cmd_buffer->state.emit_header; struct pvr_ppp_state *const ppp_state = &cmd_buffer->state.ppp_state; struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; const struct PVRX(TA_STATE_ISPCTL) *const ispctl = &ppp_state->isp.control_struct; struct pvr_device_info *const dev_info = &cmd_buffer->device->pdevice->dev_info; if (ispctl->dbenable && (BITSET_TEST(dynamic_state->dirty, MESA_VK_DYNAMIC_RS_DEPTH_BIAS_FACTORS) || cmd_buffer->depth_bias_array.size == 0)) { struct pvr_depth_bias_state depth_bias = { .constant_factor = pvr_calculate_final_depth_bias_contant_factor( dev_info, cmd_buffer->state.depth_format, dynamic_state->rs.depth_bias.constant), .slope_factor = dynamic_state->rs.depth_bias.slope, .clamp = dynamic_state->rs.depth_bias.clamp, }; ppp_state->depthbias_scissor_indices.depthbias_index = util_dynarray_num_elements(&cmd_buffer->depth_bias_array, __typeof__(depth_bias)); util_dynarray_append(&cmd_buffer->depth_bias_array, __typeof__(depth_bias), depth_bias); header->pres_ispctl_dbsc = true; } if (ispctl->scenable) { const uint32_t region_clip_align_size = pvr_get_geom_region_clip_align_size(dev_info); const VkViewport *const viewport = &dynamic_state->vp.viewports[0]; const VkRect2D *const scissor = &dynamic_state->vp.scissors[0]; struct pvr_scissor_words scissor_words; VkRect2D overlap_rect; uint32_t height; uint32_t width; uint32_t x; uint32_t y; /* For region clip. */ uint32_t bottom; uint32_t right; uint32_t left; uint32_t top; /* We don't support multiple viewport calculations. */ assert(dynamic_state->vp.viewport_count == 1); /* We don't support multiple scissor calculations. */ assert(dynamic_state->vp.scissor_count == 1); pvr_get_viewport_scissor_overlap(viewport, scissor, &overlap_rect); x = overlap_rect.offset.x; y = overlap_rect.offset.y; width = overlap_rect.extent.width; height = overlap_rect.extent.height; pvr_csb_pack (&scissor_words.w0, IPF_SCISSOR_WORD_0, word0) { word0.scw0_xmax = x + width; word0.scw0_xmin = x; } pvr_csb_pack (&scissor_words.w1, IPF_SCISSOR_WORD_1, word1) { word1.scw1_ymax = y + height; word1.scw1_ymin = y; } if (cmd_buffer->scissor_array.size && cmd_buffer->scissor_words.w0 == scissor_words.w0 && cmd_buffer->scissor_words.w1 == scissor_words.w1) { return; } cmd_buffer->scissor_words = scissor_words; /* Calculate region clip. */ left = x / region_clip_align_size; top = y / region_clip_align_size; /* We prevent right=-1 with the multiplication. */ /* TODO: Is there a better way of doing this? */ if ((x + width) != 0U) right = DIV_ROUND_UP(x + width, region_clip_align_size) - 1; else right = 0; if ((y + height) != 0U) bottom = DIV_ROUND_UP(y + height, region_clip_align_size) - 1; else bottom = 0U; /* Setup region clip to clip everything outside what was calculated. */ /* FIXME: Should we mask to prevent writing over other words? */ pvr_csb_pack (&ppp_state->region_clipping.word0, TA_REGION_CLIP0, word0) { word0.right = right; word0.left = left; word0.mode = PVRX(TA_REGION_CLIP_MODE_OUTSIDE); } pvr_csb_pack (&ppp_state->region_clipping.word1, TA_REGION_CLIP1, word1) { word1.bottom = bottom; word1.top = top; } ppp_state->depthbias_scissor_indices.scissor_index = util_dynarray_num_elements(&cmd_buffer->scissor_array, struct pvr_scissor_words); util_dynarray_append(&cmd_buffer->scissor_array, struct pvr_scissor_words, cmd_buffer->scissor_words); header->pres_ispctl_dbsc = true; header->pres_region_clip = true; } } static void pvr_setup_triangle_merging_flag(struct pvr_cmd_buffer *const cmd_buffer, struct PVRX(TA_STATE_ISPA) * ispa) { struct PVRX(TA_STATE_HEADER) *const header = &cmd_buffer->state.emit_header; struct pvr_ppp_state *const ppp_state = &cmd_buffer->state.ppp_state; uint32_t merge_word; uint32_t mask; pvr_csb_pack (&merge_word, TA_STATE_PDS_SIZEINFO2, size_info) { /* Disable for lines or punch-through or for DWD and depth compare * always. */ if (ispa->objtype == PVRX(TA_OBJTYPE_LINE) || ispa->passtype == PVRX(TA_PASSTYPE_PUNCH_THROUGH) || (ispa->dwritedisable && ispa->dcmpmode == PVRX(TA_CMPMODE_ALWAYS))) { size_info.pds_tri_merge_disable = true; } } pvr_csb_pack (&mask, TA_STATE_PDS_SIZEINFO2, size_info) { size_info.pds_tri_merge_disable = true; } merge_word |= ppp_state->pds.size_info2 & ~mask; if (merge_word != ppp_state->pds.size_info2) { ppp_state->pds.size_info2 = merge_word; header->pres_pds_state_ptr0 = true; } } static void pvr_setup_fragment_state_pointers(struct pvr_cmd_buffer *const cmd_buffer, struct pvr_sub_cmd_gfx *const sub_cmd) { struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; const struct pvr_fragment_shader_state *const fragment = &state->gfx_pipeline->shader_state.fragment; const struct pvr_stage_allocation_descriptor_state *descriptor_shader_state = &fragment->descriptor_state; const struct pvr_pipeline_stage_state *fragment_state = &fragment->stage_state; const struct pvr_pds_upload *pds_coeff_program = &fragment->pds_coeff_program; const struct pvr_physical_device *pdevice = cmd_buffer->device->pdevice; struct PVRX(TA_STATE_HEADER) *const header = &state->emit_header; struct pvr_ppp_state *const ppp_state = &state->ppp_state; const uint32_t pds_uniform_size = DIV_ROUND_UP(descriptor_shader_state->pds_info.data_size_in_dwords, PVRX(TA_STATE_PDS_SIZEINFO1_PDS_UNIFORMSIZE_UNIT_SIZE)); const uint32_t pds_varying_state_size = DIV_ROUND_UP(pds_coeff_program->data_size, PVRX(TA_STATE_PDS_SIZEINFO1_PDS_VARYINGSIZE_UNIT_SIZE)); const uint32_t usc_varying_size = DIV_ROUND_UP(fragment_state->coefficient_size, PVRX(TA_STATE_PDS_SIZEINFO1_USC_VARYINGSIZE_UNIT_SIZE)); const uint32_t pds_temp_size = DIV_ROUND_UP(fragment_state->temps_count, PVRX(TA_STATE_PDS_SIZEINFO1_PDS_TEMPSIZE_UNIT_SIZE)); const uint32_t usc_shared_size = DIV_ROUND_UP(fragment_state->const_shared_reg_count, PVRX(TA_STATE_PDS_SIZEINFO2_USC_SHAREDSIZE_UNIT_SIZE)); const uint32_t max_tiles_in_flight = pvr_calc_fscommon_size_and_tiles_in_flight( pdevice, usc_shared_size * PVRX(TA_STATE_PDS_SIZEINFO2_USC_SHAREDSIZE_UNIT_SIZE), 1); uint32_t size_info_mask; uint32_t size_info2; if (max_tiles_in_flight < sub_cmd->max_tiles_in_flight) sub_cmd->max_tiles_in_flight = max_tiles_in_flight; pvr_csb_pack (&ppp_state->pds.pixel_shader_base, TA_STATE_PDS_SHADERBASE, shader_base) { const struct pvr_pds_upload *const pds_upload = &fragment->pds_fragment_program; shader_base.addr = PVR_DEV_ADDR(pds_upload->data_offset); } if (descriptor_shader_state->pds_code.pvr_bo) { pvr_csb_pack (&ppp_state->pds.texture_uniform_code_base, TA_STATE_PDS_TEXUNICODEBASE, tex_base) { tex_base.addr = PVR_DEV_ADDR(descriptor_shader_state->pds_code.code_offset); } } else { ppp_state->pds.texture_uniform_code_base = 0U; } pvr_csb_pack (&ppp_state->pds.size_info1, TA_STATE_PDS_SIZEINFO1, info1) { info1.pds_uniformsize = pds_uniform_size; info1.pds_texturestatesize = 0U; info1.pds_varyingsize = pds_varying_state_size; info1.usc_varyingsize = usc_varying_size; info1.pds_tempsize = pds_temp_size; } pvr_csb_pack (&size_info_mask, TA_STATE_PDS_SIZEINFO2, mask) { mask.pds_tri_merge_disable = true; } ppp_state->pds.size_info2 &= size_info_mask; pvr_csb_pack (&size_info2, TA_STATE_PDS_SIZEINFO2, info2) { info2.usc_sharedsize = usc_shared_size; } ppp_state->pds.size_info2 |= size_info2; if (pds_coeff_program->pvr_bo) { header->pres_pds_state_ptr1 = true; pvr_csb_pack (&ppp_state->pds.varying_base, TA_STATE_PDS_VARYINGBASE, base) { base.addr = PVR_DEV_ADDR(pds_coeff_program->data_offset); } } else { ppp_state->pds.varying_base = 0U; } pvr_csb_pack (&ppp_state->pds.uniform_state_data_base, TA_STATE_PDS_UNIFORMDATABASE, base) { base.addr = PVR_DEV_ADDR(state->pds_fragment_descriptor_data_offset); } header->pres_pds_state_ptr0 = true; header->pres_pds_state_ptr3 = true; } static void pvr_setup_viewport(struct pvr_cmd_buffer *const cmd_buffer) { struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; struct PVRX(TA_STATE_HEADER) *const header = &state->emit_header; struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; struct pvr_ppp_state *const ppp_state = &state->ppp_state; if (ppp_state->viewport_count != dynamic_state->vp.viewport_count) { ppp_state->viewport_count = dynamic_state->vp.viewport_count; header->pres_viewport = true; } if (dynamic_state->rs.rasterizer_discard_enable) { /* We don't want to emit any viewport data as it'll just get thrown * away. It's after the previous condition because we still want to * stash the viewport_count as it's our trigger for when * rasterizer discard gets disabled. */ header->pres_viewport = false; return; } for (uint32_t i = 0; i < ppp_state->viewport_count; i++) { VkViewport *viewport = &dynamic_state->vp.viewports[i]; uint32_t x_scale = fui(viewport->width * 0.5f); uint32_t y_scale = fui(viewport->height * 0.5f); uint32_t z_scale = fui(viewport->maxDepth - viewport->minDepth); uint32_t x_center = fui(viewport->x + viewport->width * 0.5f); uint32_t y_center = fui(viewport->y + viewport->height * 0.5f); uint32_t z_center = fui(viewport->minDepth); if (ppp_state->viewports[i].a0 != x_center || ppp_state->viewports[i].m0 != x_scale || ppp_state->viewports[i].a1 != y_center || ppp_state->viewports[i].m1 != y_scale || ppp_state->viewports[i].a2 != z_center || ppp_state->viewports[i].m2 != z_scale) { ppp_state->viewports[i].a0 = x_center; ppp_state->viewports[i].m0 = x_scale; ppp_state->viewports[i].a1 = y_center; ppp_state->viewports[i].m1 = y_scale; ppp_state->viewports[i].a2 = z_center; ppp_state->viewports[i].m2 = z_scale; header->pres_viewport = true; } } } static void pvr_setup_ppp_control(struct pvr_cmd_buffer *const cmd_buffer) { struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; const VkPrimitiveTopology topology = dynamic_state->ia.primitive_topology; struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; struct PVRX(TA_STATE_HEADER) *const header = &state->emit_header; struct pvr_ppp_state *const ppp_state = &state->ppp_state; uint32_t ppp_control; pvr_csb_pack (&ppp_control, TA_STATE_PPP_CTRL, control) { control.drawclippededges = true; control.wclampen = true; if (topology == VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN) control.flatshade_vtx = PVRX(TA_FLATSHADE_VTX_VERTEX_1); else control.flatshade_vtx = PVRX(TA_FLATSHADE_VTX_VERTEX_0); if (dynamic_state->rs.depth_clamp_enable) control.clip_mode = PVRX(TA_CLIP_MODE_NO_FRONT_OR_REAR); else control.clip_mode = PVRX(TA_CLIP_MODE_FRONT_REAR); /* +--- FrontIsCCW? * | +--- Cull Front? * v v * 0|0 CULLMODE_CULL_CCW, * 0|1 CULLMODE_CULL_CW, * 1|0 CULLMODE_CULL_CW, * 1|1 CULLMODE_CULL_CCW, */ switch (dynamic_state->rs.cull_mode) { case VK_CULL_MODE_BACK_BIT: case VK_CULL_MODE_FRONT_BIT: if ((dynamic_state->rs.front_face == VK_FRONT_FACE_COUNTER_CLOCKWISE) ^ (dynamic_state->rs.cull_mode == VK_CULL_MODE_FRONT_BIT)) { control.cullmode = PVRX(TA_CULLMODE_CULL_CW); } else { control.cullmode = PVRX(TA_CULLMODE_CULL_CCW); } break; case VK_CULL_MODE_FRONT_AND_BACK: case VK_CULL_MODE_NONE: control.cullmode = PVRX(TA_CULLMODE_NO_CULLING); break; default: unreachable("Unsupported cull mode!"); } } if (ppp_control != ppp_state->ppp_control) { ppp_state->ppp_control = ppp_control; header->pres_ppp_ctrl = true; } } /* Largest valid PPP State update in words = 31 * 1 - Header * 3 - Stream Out Config words 0, 1 and 2 * 1 - PPP Control word * 3 - Varying Config words 0, 1 and 2 * 1 - Output Select * 1 - WClamp * 6 - Viewport Transform words * 2 - Region Clip words * 3 - PDS State for fragment phase (PDSSTATEPTR 1-3) * 4 - PDS State for fragment phase (PDSSTATEPTR0) * 6 - ISP Control Words */ #define PVR_MAX_PPP_STATE_DWORDS 31 static VkResult pvr_emit_ppp_state(struct pvr_cmd_buffer *const cmd_buffer, struct pvr_sub_cmd_gfx *const sub_cmd) { const bool deferred_secondary = pvr_cmd_uses_deferred_cs_cmds(cmd_buffer); struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; struct PVRX(TA_STATE_HEADER) *const header = &state->emit_header; struct pvr_csb *const control_stream = &sub_cmd->control_stream; struct pvr_ppp_state *const ppp_state = &state->ppp_state; uint32_t ppp_state_words[PVR_MAX_PPP_STATE_DWORDS]; const bool emit_dbsc = header->pres_ispctl_dbsc; uint32_t *buffer_ptr = ppp_state_words; uint32_t dbsc_patching_offset = 0; uint32_t ppp_state_words_count; struct pvr_suballoc_bo *pvr_bo; VkResult result; #if !defined(NDEBUG) struct PVRX(TA_STATE_HEADER) emit_mask = *header; uint32_t packed_emit_mask; static_assert(pvr_cmd_length(TA_STATE_HEADER) == 1, "EMIT_MASK_IS_CLEAR assumes 1 dword sized header."); # define EMIT_MASK_GET(field) (emit_mask.field) # define EMIT_MASK_SET(field, value) (emit_mask.field = (value)) # define EMIT_MASK_IS_CLEAR \ (pvr_cmd_pack(TA_STATE_HEADER)(&packed_emit_mask, &emit_mask), \ packed_emit_mask == 0) #else # define EMIT_MASK_GET(field) # define EMIT_MASK_SET(field, value) #endif header->view_port_count = (ppp_state->viewport_count == 0) ? 0U : (ppp_state->viewport_count - 1); header->pres_ispctl_fa = header->pres_ispctl; /* If deferred_secondary is true then we do a separate state update * which gets patched in vkCmdExecuteCommands(). */ header->pres_ispctl_dbsc &= !deferred_secondary; pvr_csb_write_struct(buffer_ptr, TA_STATE_HEADER, header); static_assert(pvr_cmd_length(TA_STATE_HEADER) == 1, "Following header check assumes 1 dword sized header."); /* If the header is empty we exit early and prevent a bo alloc of 0 size. */ if (ppp_state_words[0] == 0) return VK_SUCCESS; if (header->pres_ispctl) { pvr_csb_write_value(buffer_ptr, TA_STATE_ISPCTL, ppp_state->isp.control); assert(header->pres_ispctl_fa); /* This is not a mistake. FA, BA have the ISPA format, and FB, BB have the * ISPB format. */ pvr_csb_write_value(buffer_ptr, TA_STATE_ISPA, ppp_state->isp.front_a); EMIT_MASK_SET(pres_ispctl_fa, false); if (header->pres_ispctl_fb) { pvr_csb_write_value(buffer_ptr, TA_STATE_ISPB, ppp_state->isp.front_b); EMIT_MASK_SET(pres_ispctl_fb, false); } if (header->pres_ispctl_ba) { pvr_csb_write_value(buffer_ptr, TA_STATE_ISPA, ppp_state->isp.back_a); EMIT_MASK_SET(pres_ispctl_ba, false); } if (header->pres_ispctl_bb) { pvr_csb_write_value(buffer_ptr, TA_STATE_ISPB, ppp_state->isp.back_b); EMIT_MASK_SET(pres_ispctl_bb, false); } EMIT_MASK_SET(pres_ispctl, false); } if (header->pres_ispctl_dbsc) { assert(!deferred_secondary); dbsc_patching_offset = buffer_ptr - ppp_state_words; pvr_csb_pack (buffer_ptr, TA_STATE_ISPDBSC, ispdbsc) { ispdbsc.dbindex = ppp_state->depthbias_scissor_indices.depthbias_index; ispdbsc.scindex = ppp_state->depthbias_scissor_indices.scissor_index; } buffer_ptr += pvr_cmd_length(TA_STATE_ISPDBSC); EMIT_MASK_SET(pres_ispctl_dbsc, false); } if (header->pres_pds_state_ptr0) { pvr_csb_write_value(buffer_ptr, TA_STATE_PDS_SHADERBASE, ppp_state->pds.pixel_shader_base); pvr_csb_write_value(buffer_ptr, TA_STATE_PDS_TEXUNICODEBASE, ppp_state->pds.texture_uniform_code_base); pvr_csb_write_value(buffer_ptr, TA_STATE_PDS_SIZEINFO1, ppp_state->pds.size_info1); pvr_csb_write_value(buffer_ptr, TA_STATE_PDS_SIZEINFO2, ppp_state->pds.size_info2); EMIT_MASK_SET(pres_pds_state_ptr0, false); } if (header->pres_pds_state_ptr1) { pvr_csb_write_value(buffer_ptr, TA_STATE_PDS_VARYINGBASE, ppp_state->pds.varying_base); EMIT_MASK_SET(pres_pds_state_ptr1, false); } /* We don't use pds_state_ptr2 (texture state programs) control word, but * this doesn't mean we need to set it to 0. This is because the hardware * runs the texture state program only when * ROGUE_TA_STATE_PDS_SIZEINFO1.pds_texturestatesize is non-zero. */ assert(pvr_csb_unpack(&ppp_state->pds.size_info1, TA_STATE_PDS_SIZEINFO1) .pds_texturestatesize == 0); if (header->pres_pds_state_ptr3) { pvr_csb_write_value(buffer_ptr, TA_STATE_PDS_UNIFORMDATABASE, ppp_state->pds.uniform_state_data_base); EMIT_MASK_SET(pres_pds_state_ptr3, false); } if (header->pres_region_clip) { pvr_csb_write_value(buffer_ptr, TA_REGION_CLIP0, ppp_state->region_clipping.word0); pvr_csb_write_value(buffer_ptr, TA_REGION_CLIP1, ppp_state->region_clipping.word1); EMIT_MASK_SET(pres_region_clip, false); } if (header->pres_viewport) { const uint32_t viewports = MAX2(1, ppp_state->viewport_count); EMIT_MASK_SET(view_port_count, viewports); for (uint32_t i = 0; i < viewports; i++) { /* These don't have any definitions in the csbgen xml files and none * will be added. */ *buffer_ptr++ = ppp_state->viewports[i].a0; *buffer_ptr++ = ppp_state->viewports[i].m0; *buffer_ptr++ = ppp_state->viewports[i].a1; *buffer_ptr++ = ppp_state->viewports[i].m1; *buffer_ptr++ = ppp_state->viewports[i].a2; *buffer_ptr++ = ppp_state->viewports[i].m2; EMIT_MASK_SET(view_port_count, EMIT_MASK_GET(view_port_count) - 1); } EMIT_MASK_SET(pres_viewport, false); } if (header->pres_wclamp) { pvr_csb_pack (buffer_ptr, TA_WCLAMP, wclamp) { wclamp.val = fui(0.00001f); } buffer_ptr += pvr_cmd_length(TA_WCLAMP); EMIT_MASK_SET(pres_wclamp, false); } if (header->pres_outselects) { pvr_csb_write_value(buffer_ptr, TA_OUTPUT_SEL, ppp_state->output_selects); EMIT_MASK_SET(pres_outselects, false); } if (header->pres_varying_word0) { pvr_csb_write_value(buffer_ptr, TA_STATE_VARYING0, ppp_state->varying_word[0]); EMIT_MASK_SET(pres_varying_word0, false); } if (header->pres_varying_word1) { pvr_csb_write_value(buffer_ptr, TA_STATE_VARYING1, ppp_state->varying_word[1]); EMIT_MASK_SET(pres_varying_word1, false); } /* We only emit this on the first draw of a render job to prevent us from * inheriting a non-zero value set elsewhere. */ if (header->pres_varying_word2) { pvr_csb_write_value(buffer_ptr, TA_STATE_VARYING2, 0); EMIT_MASK_SET(pres_varying_word2, false); } if (header->pres_ppp_ctrl) { pvr_csb_write_value(buffer_ptr, TA_STATE_PPP_CTRL, ppp_state->ppp_control); EMIT_MASK_SET(pres_ppp_ctrl, false); } /* We only emit this on the first draw of a render job to prevent us from * inheriting a non-zero value set elsewhere. */ if (header->pres_stream_out_size) { pvr_csb_write_value(buffer_ptr, TA_STATE_STREAM_OUT0, 0); EMIT_MASK_SET(pres_stream_out_size, false); } assert(EMIT_MASK_IS_CLEAR); #undef EMIT_MASK_GET #undef EMIT_MASK_SET #if !defined(NDEBUG) # undef EMIT_MASK_IS_CLEAR #endif ppp_state_words_count = buffer_ptr - ppp_state_words; assert(ppp_state_words_count <= PVR_MAX_PPP_STATE_DWORDS); result = pvr_cmd_buffer_alloc_mem(cmd_buffer, cmd_buffer->device->heaps.general_heap, PVR_DW_TO_BYTES(ppp_state_words_count), PVR_BO_ALLOC_FLAG_CPU_MAPPED, &pvr_bo); if (result != VK_SUCCESS) return result; memcpy(pvr_bo_suballoc_get_map_addr(pvr_bo), ppp_state_words, PVR_DW_TO_BYTES(ppp_state_words_count)); /* Write the VDM state update into the VDM control stream. */ pvr_csb_emit (control_stream, VDMCTRL_PPP_STATE0, state0) { state0.word_count = ppp_state_words_count; state0.addrmsb = pvr_bo->dev_addr; } pvr_csb_emit (control_stream, VDMCTRL_PPP_STATE1, state1) { state1.addrlsb = pvr_bo->dev_addr; } if (emit_dbsc && cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) { struct pvr_deferred_cs_command cmd; if (deferred_secondary) { const uint32_t num_dwords = pvr_cmd_length(VDMCTRL_PPP_STATE0) + pvr_cmd_length(VDMCTRL_PPP_STATE1); uint32_t *vdm_state = pvr_csb_alloc_dwords(control_stream, num_dwords); if (!vdm_state) { cmd_buffer->state.status = pvr_csb_get_status(control_stream); return cmd_buffer->state.status; } cmd = (struct pvr_deferred_cs_command){ .type = PVR_DEFERRED_CS_COMMAND_TYPE_DBSC, .dbsc = { .state = ppp_state->depthbias_scissor_indices, .vdm_state = vdm_state, }, }; } else { cmd = (struct pvr_deferred_cs_command){ .type = PVR_DEFERRED_CS_COMMAND_TYPE_DBSC2, .dbsc2 = { .state = ppp_state->depthbias_scissor_indices, .ppp_cs_bo = pvr_bo, .patch_offset = dbsc_patching_offset, }, }; } util_dynarray_append(&cmd_buffer->deferred_csb_commands, struct pvr_deferred_cs_command, cmd); } state->emit_header = (struct PVRX(TA_STATE_HEADER)){ 0 }; return VK_SUCCESS; } static inline bool pvr_ppp_state_update_required(const struct pvr_cmd_buffer *cmd_buffer) { const BITSET_WORD *const dynamic_dirty = cmd_buffer->vk.dynamic_graphics_state.dirty; const struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; const struct PVRX(TA_STATE_HEADER) *const header = &state->emit_header; /* For push constants we only need to worry if they are updated for the * fragment stage since we're only updating the pds programs used in the * fragment stage. */ return header->pres_ppp_ctrl || header->pres_ispctl || header->pres_ispctl_fb || header->pres_ispctl_ba || header->pres_ispctl_bb || header->pres_ispctl_dbsc || header->pres_pds_state_ptr0 || header->pres_pds_state_ptr1 || header->pres_pds_state_ptr2 || header->pres_pds_state_ptr3 || header->pres_region_clip || header->pres_viewport || header->pres_wclamp || header->pres_outselects || header->pres_varying_word0 || header->pres_varying_word1 || header->pres_varying_word2 || header->pres_stream_out_program || state->dirty.fragment_descriptors || state->dirty.gfx_pipeline_binding || state->dirty.isp_userpass || state->push_constants.dirty_stages & VK_SHADER_STAGE_FRAGMENT_BIT || BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_DS_STENCIL_COMPARE_MASK) || BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) || BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_DS_STENCIL_REFERENCE) || BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_RS_DEPTH_BIAS_ENABLE) || BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_RS_DEPTH_BIAS_FACTORS) || BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_RS_LINE_WIDTH) || BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_VP_SCISSORS) || BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_VP_SCISSOR_COUNT) || BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS) || BITSET_TEST(dynamic_dirty, MESA_VK_DYNAMIC_VP_VIEWPORT_COUNT); } static VkResult pvr_emit_dirty_ppp_state(struct pvr_cmd_buffer *const cmd_buffer, struct pvr_sub_cmd_gfx *const sub_cmd) { struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; VkResult result; /* TODO: The emit_header will be dirty only if * pvr_reset_graphics_dirty_state() was called before this (so when command * buffer begins recording or when it's reset). Otherwise it will have been * zeroed out by the previous pvr_emit_ppp_state(). We can probably set a * flag in there and check it here instead of checking the header. * Check if this is true and implement the flag. */ if (!pvr_ppp_state_update_required(cmd_buffer)) return VK_SUCCESS; if (state->dirty.gfx_pipeline_binding) { struct PVRX(TA_STATE_ISPA) ispa; pvr_setup_output_select(cmd_buffer); pvr_setup_isp_faces_and_control(cmd_buffer, &ispa); pvr_setup_triangle_merging_flag(cmd_buffer, &ispa); } else if (BITSET_TEST(dynamic_state->dirty, MESA_VK_DYNAMIC_DS_STENCIL_COMPARE_MASK) || BITSET_TEST(dynamic_state->dirty, MESA_VK_DYNAMIC_DS_STENCIL_REFERENCE) || BITSET_TEST(dynamic_state->dirty, MESA_VK_DYNAMIC_DS_STENCIL_WRITE_MASK) || BITSET_TEST(dynamic_state->dirty, MESA_VK_DYNAMIC_RS_LINE_WIDTH) || state->dirty.isp_userpass || state->dirty.vis_test) { pvr_setup_isp_faces_and_control(cmd_buffer, NULL); } if (!dynamic_state->rs.rasterizer_discard_enable && state->dirty.fragment_descriptors && state->gfx_pipeline->shader_state.fragment.bo) { pvr_setup_fragment_state_pointers(cmd_buffer, sub_cmd); } pvr_setup_isp_depth_bias_scissor_state(cmd_buffer); if (BITSET_TEST(dynamic_state->dirty, MESA_VK_DYNAMIC_VP_VIEWPORTS) || BITSET_TEST(dynamic_state->dirty, MESA_VK_DYNAMIC_VP_VIEWPORT_COUNT)) pvr_setup_viewport(cmd_buffer); pvr_setup_ppp_control(cmd_buffer); /* The hardware doesn't have an explicit mode for this so we use a * negative viewport to make sure all objects are culled out early. */ if (dynamic_state->rs.cull_mode == VK_CULL_MODE_FRONT_AND_BACK) { /* Shift the viewport out of the guard-band culling everything. */ const uint32_t negative_vp_val = fui(-2.0f); state->ppp_state.viewports[0].a0 = negative_vp_val; state->ppp_state.viewports[0].m0 = 0; state->ppp_state.viewports[0].a1 = negative_vp_val; state->ppp_state.viewports[0].m1 = 0; state->ppp_state.viewports[0].a2 = negative_vp_val; state->ppp_state.viewports[0].m2 = 0; state->ppp_state.viewport_count = 1; state->emit_header.pres_viewport = true; } result = pvr_emit_ppp_state(cmd_buffer, sub_cmd); if (result != VK_SUCCESS) return result; return VK_SUCCESS; } void pvr_calculate_vertex_cam_size(const struct pvr_device_info *dev_info, const uint32_t vs_output_size, const bool raster_enable, uint32_t *const cam_size_out, uint32_t *const vs_max_instances_out) { /* First work out the size of a vertex in the UVS and multiply by 4 for * column ordering. */ const uint32_t uvs_vertex_vector_size_in_dwords = (vs_output_size + 1U + raster_enable * 4U) * 4U; const uint32_t vdm_cam_size = PVR_GET_FEATURE_VALUE(dev_info, vdm_cam_size, 32U); /* This is a proxy for 8XE. */ if (PVR_HAS_FEATURE(dev_info, simple_internal_parameter_format) && vdm_cam_size < 96U) { /* Comparisons are based on size including scratch per vertex vector. */ if (uvs_vertex_vector_size_in_dwords < (14U * 4U)) { *cam_size_out = MIN2(31U, vdm_cam_size - 1U); *vs_max_instances_out = 16U; } else if (uvs_vertex_vector_size_in_dwords < (20U * 4U)) { *cam_size_out = 15U; *vs_max_instances_out = 16U; } else if (uvs_vertex_vector_size_in_dwords < (28U * 4U)) { *cam_size_out = 11U; *vs_max_instances_out = 12U; } else if (uvs_vertex_vector_size_in_dwords < (44U * 4U)) { *cam_size_out = 7U; *vs_max_instances_out = 8U; } else if (PVR_HAS_FEATURE(dev_info, simple_internal_parameter_format_v2) || uvs_vertex_vector_size_in_dwords < (64U * 4U)) { *cam_size_out = 7U; *vs_max_instances_out = 4U; } else { *cam_size_out = 3U; *vs_max_instances_out = 2U; } } else { /* Comparisons are based on size including scratch per vertex vector. */ if (uvs_vertex_vector_size_in_dwords <= (32U * 4U)) { /* output size <= 27 + 5 scratch. */ *cam_size_out = MIN2(95U, vdm_cam_size - 1U); *vs_max_instances_out = 0U; } else if (uvs_vertex_vector_size_in_dwords <= 48U * 4U) { /* output size <= 43 + 5 scratch */ *cam_size_out = 63U; if (PVR_GET_FEATURE_VALUE(dev_info, uvs_vtx_entries, 144U) < 288U) *vs_max_instances_out = 16U; else *vs_max_instances_out = 0U; } else if (uvs_vertex_vector_size_in_dwords <= 64U * 4U) { /* output size <= 59 + 5 scratch. */ *cam_size_out = 31U; if (PVR_GET_FEATURE_VALUE(dev_info, uvs_vtx_entries, 144U) < 288U) *vs_max_instances_out = 16U; else *vs_max_instances_out = 0U; } else { *cam_size_out = 15U; *vs_max_instances_out = 16U; } } } static void pvr_emit_dirty_vdm_state(struct pvr_cmd_buffer *const cmd_buffer, struct pvr_sub_cmd_gfx *const sub_cmd) { /* FIXME: Assume all state is dirty for the moment. */ struct pvr_device_info *const dev_info = &cmd_buffer->device->pdevice->dev_info; ASSERTED const uint32_t max_user_vertex_output_components = pvr_get_max_user_vertex_output_components(dev_info); struct PVRX(VDMCTRL_VDM_STATE0) header = { pvr_cmd_header(VDMCTRL_VDM_STATE0) }; struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; const struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; const struct pvr_vertex_shader_state *const vertex_shader_state = &state->gfx_pipeline->shader_state.vertex; struct pvr_csb *const csb = &sub_cmd->control_stream; uint32_t vs_output_size; uint32_t max_instances; uint32_t cam_size; /* CAM Calculations and HW state take vertex size aligned to DWORDS. */ vs_output_size = DIV_ROUND_UP(vertex_shader_state->vertex_output_size, PVRX(VDMCTRL_VDM_STATE4_VS_OUTPUT_SIZE_UNIT_SIZE)); assert(vs_output_size <= max_user_vertex_output_components); pvr_calculate_vertex_cam_size(dev_info, vs_output_size, true, &cam_size, &max_instances); pvr_csb_emit (csb, VDMCTRL_VDM_STATE0, state0) { state0.cam_size = cam_size; if (dynamic_state->ia.primitive_restart_enable) { state0.cut_index_enable = true; state0.cut_index_present = true; } switch (dynamic_state->ia.primitive_topology) { case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: state0.flatshade_control = PVRX(VDMCTRL_FLATSHADE_CONTROL_VERTEX_1); break; default: state0.flatshade_control = PVRX(VDMCTRL_FLATSHADE_CONTROL_VERTEX_0); break; } /* If we've bound a different vertex buffer, or this draw-call requires * a different PDS attrib data-section from the last draw call (changed * base_instance) then we need to specify a new data section. This is * also the case if we've switched pipeline or attrib program as the * data-section layout will be different. */ state0.vs_data_addr_present = state->dirty.gfx_pipeline_binding || state->dirty.vertex_bindings || state->dirty.draw_base_instance || state->dirty.draw_variant; /* Need to specify new PDS Attrib program if we've bound a different * pipeline or we needed a different PDS Attrib variant for this * draw-call. */ state0.vs_other_present = state->dirty.gfx_pipeline_binding || state->dirty.draw_variant; /* UVB_SCRATCH_SELECT_ONE with no rasterization is only valid when * stream output is enabled. We use UVB_SCRATCH_SELECT_FIVE because * Vulkan doesn't support stream output and the vertex position is * always emitted to the UVB. */ state0.uvs_scratch_size_select = PVRX(VDMCTRL_UVS_SCRATCH_SIZE_SELECT_FIVE); header = state0; } if (header.cut_index_present) { pvr_csb_emit (csb, VDMCTRL_VDM_STATE1, state1) { switch (state->index_buffer_binding.type) { case VK_INDEX_TYPE_UINT32: /* FIXME: Defines for these? These seem to come from the Vulkan * spec. for VkPipelineInputAssemblyStateCreateInfo * primitiveRestartEnable. */ state1.cut_index = 0xFFFFFFFF; break; case VK_INDEX_TYPE_UINT16: state1.cut_index = 0xFFFF; break; default: unreachable("Invalid index type"); } } } if (header.vs_data_addr_present) { pvr_csb_emit (csb, VDMCTRL_VDM_STATE2, state2) { state2.vs_pds_data_base_addr = PVR_DEV_ADDR(state->pds_vertex_attrib_offset); } } if (header.vs_other_present) { const uint32_t usc_unified_store_size_in_bytes = vertex_shader_state->vertex_input_size << 2; pvr_csb_emit (csb, VDMCTRL_VDM_STATE3, state3) { state3.vs_pds_code_base_addr = PVR_DEV_ADDR(state->pds_shader.code_offset); } pvr_csb_emit (csb, VDMCTRL_VDM_STATE4, state4) { state4.vs_output_size = vs_output_size; } pvr_csb_emit (csb, VDMCTRL_VDM_STATE5, state5) { state5.vs_max_instances = max_instances; state5.vs_usc_common_size = 0U; state5.vs_usc_unified_size = DIV_ROUND_UP( usc_unified_store_size_in_bytes, PVRX(VDMCTRL_VDM_STATE5_VS_USC_UNIFIED_SIZE_UNIT_SIZE)); state5.vs_pds_temp_size = DIV_ROUND_UP(state->pds_shader.info->temps_required << 2, PVRX(VDMCTRL_VDM_STATE5_VS_PDS_TEMP_SIZE_UNIT_SIZE)); state5.vs_pds_data_size = DIV_ROUND_UP( PVR_DW_TO_BYTES(state->pds_shader.info->data_size_in_dwords), PVRX(VDMCTRL_VDM_STATE5_VS_PDS_DATA_SIZE_UNIT_SIZE)); } } } static VkResult pvr_validate_draw_state(struct pvr_cmd_buffer *cmd_buffer) { struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; const struct pvr_graphics_pipeline *const gfx_pipeline = state->gfx_pipeline; const struct pvr_pipeline_stage_state *const fragment_state = &gfx_pipeline->shader_state.fragment.stage_state; const struct pvr_pipeline_stage_state *const vertex_state = &gfx_pipeline->shader_state.vertex.stage_state; const struct pvr_pipeline_layout *const pipeline_layout = gfx_pipeline->base.layout; struct pvr_sub_cmd_gfx *sub_cmd; bool fstencil_writemask_zero; bool bstencil_writemask_zero; bool fstencil_keep; bool bstencil_keep; VkResult result; pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS); sub_cmd = &state->current_sub_cmd->gfx; sub_cmd->empty_cmd = false; /* Determine pipeline depth/stencil usage. If a pipeline uses depth or * stencil testing, those attachments are using their loaded values, and * the loadOps cannot be optimized out. */ /* Pipeline uses depth testing. */ if (sub_cmd->depth_usage == PVR_DEPTH_STENCIL_USAGE_UNDEFINED && dynamic_state->ds.depth.compare_op != VK_COMPARE_OP_ALWAYS) { sub_cmd->depth_usage = PVR_DEPTH_STENCIL_USAGE_NEEDED; } /* Pipeline uses stencil testing. */ if (sub_cmd->stencil_usage == PVR_DEPTH_STENCIL_USAGE_UNDEFINED && (dynamic_state->ds.stencil.front.op.compare != VK_COMPARE_OP_ALWAYS || dynamic_state->ds.stencil.back.op.compare != VK_COMPARE_OP_ALWAYS)) { sub_cmd->stencil_usage = PVR_DEPTH_STENCIL_USAGE_NEEDED; } if (PVR_HAS_FEATURE(&cmd_buffer->device->pdevice->dev_info, compute_overlap)) { uint32_t coefficient_size = DIV_ROUND_UP(fragment_state->coefficient_size, PVRX(TA_STATE_PDS_SIZEINFO1_USC_VARYINGSIZE_UNIT_SIZE)); if (coefficient_size > PVRX(TA_STATE_PDS_SIZEINFO1_USC_VARYINGSIZE_MAX_SIZE)) sub_cmd->disable_compute_overlap = true; } sub_cmd->frag_uses_atomic_ops |= fragment_state->uses_atomic_ops; sub_cmd->frag_has_side_effects |= fragment_state->has_side_effects; sub_cmd->frag_uses_texture_rw |= fragment_state->uses_texture_rw; sub_cmd->vertex_uses_texture_rw |= vertex_state->uses_texture_rw; sub_cmd->job.get_vis_results = state->vis_test_enabled; fstencil_keep = (dynamic_state->ds.stencil.front.op.fail == VK_STENCIL_OP_KEEP) && (dynamic_state->ds.stencil.front.op.pass == VK_STENCIL_OP_KEEP); bstencil_keep = (dynamic_state->ds.stencil.back.op.fail == VK_STENCIL_OP_KEEP) && (dynamic_state->ds.stencil.back.op.pass == VK_STENCIL_OP_KEEP); fstencil_writemask_zero = (dynamic_state->ds.stencil.front.write_mask == 0); bstencil_writemask_zero = (dynamic_state->ds.stencil.back.write_mask == 0); /* Set stencil modified flag if: * - Neither front nor back-facing stencil has a fail_op/pass_op of KEEP. * - Neither front nor back-facing stencil has a write_mask of zero. */ if (!(fstencil_keep && bstencil_keep) && !(fstencil_writemask_zero && bstencil_writemask_zero)) { sub_cmd->modifies_stencil = true; } /* Set depth modified flag if depth write is enabled. */ if (dynamic_state->ds.depth.write_enable) sub_cmd->modifies_depth = true; /* If either the data or code changes for pds vertex attribs, regenerate the * data segment. */ if (state->dirty.vertex_bindings || state->dirty.gfx_pipeline_binding || state->dirty.draw_variant || state->dirty.draw_base_instance) { enum pvr_pds_vertex_attrib_program_type prog_type; const struct pvr_pds_attrib_program *program; if (state->draw_state.draw_indirect) prog_type = PVR_PDS_VERTEX_ATTRIB_PROGRAM_DRAW_INDIRECT; else if (state->draw_state.base_instance) prog_type = PVR_PDS_VERTEX_ATTRIB_PROGRAM_BASE_INSTANCE; else prog_type = PVR_PDS_VERTEX_ATTRIB_PROGRAM_BASIC; program = &gfx_pipeline->shader_state.vertex.pds_attrib_programs[prog_type]; state->pds_shader.info = &program->info; state->pds_shader.code_offset = program->program.code_offset; state->max_shared_regs = MAX2(state->max_shared_regs, pvr_calc_shared_regs_count(gfx_pipeline)); pvr_setup_vertex_buffers(cmd_buffer, gfx_pipeline); } if (state->push_constants.dirty_stages & VK_SHADER_STAGE_ALL_GRAPHICS) { result = pvr_cmd_upload_push_consts(cmd_buffer); if (result != VK_SUCCESS) return result; } state->dirty.vertex_descriptors = state->dirty.gfx_pipeline_binding; state->dirty.fragment_descriptors = state->dirty.vertex_descriptors; /* Account for dirty descriptor set. */ state->dirty.vertex_descriptors |= state->dirty.gfx_desc_dirty && pipeline_layout ->per_stage_descriptor_masks[PVR_STAGE_ALLOCATION_VERTEX_GEOMETRY]; state->dirty.fragment_descriptors |= state->dirty.gfx_desc_dirty && pipeline_layout->per_stage_descriptor_masks[PVR_STAGE_ALLOCATION_FRAGMENT]; if (BITSET_TEST(dynamic_state->dirty, MESA_VK_DYNAMIC_CB_BLEND_CONSTANTS)) state->dirty.fragment_descriptors = true; state->dirty.vertex_descriptors |= state->push_constants.dirty_stages & (VK_SHADER_STAGE_ALL_GRAPHICS & ~VK_SHADER_STAGE_FRAGMENT_BIT); state->dirty.fragment_descriptors |= state->push_constants.dirty_stages & VK_SHADER_STAGE_FRAGMENT_BIT; if (state->dirty.fragment_descriptors) { result = pvr_setup_descriptor_mappings( cmd_buffer, PVR_STAGE_ALLOCATION_FRAGMENT, &state->gfx_pipeline->shader_state.fragment.descriptor_state, NULL, &state->pds_fragment_descriptor_data_offset); if (result != VK_SUCCESS) { mesa_loge("Could not setup fragment descriptor mappings."); return result; } } if (state->dirty.vertex_descriptors) { uint32_t pds_vertex_descriptor_data_offset; result = pvr_setup_descriptor_mappings( cmd_buffer, PVR_STAGE_ALLOCATION_VERTEX_GEOMETRY, &state->gfx_pipeline->shader_state.vertex.descriptor_state, NULL, &pds_vertex_descriptor_data_offset); if (result != VK_SUCCESS) { mesa_loge("Could not setup vertex descriptor mappings."); return result; } pvr_emit_dirty_pds_state(cmd_buffer, sub_cmd, pds_vertex_descriptor_data_offset); } pvr_emit_dirty_ppp_state(cmd_buffer, sub_cmd); pvr_emit_dirty_vdm_state(cmd_buffer, sub_cmd); vk_dynamic_graphics_state_clear_dirty(dynamic_state); state->dirty.gfx_desc_dirty = false; state->dirty.draw_base_instance = false; state->dirty.draw_variant = false; state->dirty.fragment_descriptors = false; state->dirty.gfx_pipeline_binding = false; state->dirty.isp_userpass = false; state->dirty.vertex_bindings = false; state->dirty.vis_test = false; state->push_constants.dirty_stages &= ~VK_SHADER_STAGE_ALL_GRAPHICS; return VK_SUCCESS; } static uint32_t pvr_get_hw_primitive_topology(VkPrimitiveTopology topology) { switch (topology) { case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_POINT_LIST); case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_LINE_LIST); case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_LINE_STRIP); case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_LIST); case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_STRIP); case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_FAN); case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_LINE_LIST_ADJ); case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_LINE_STRIP_ADJ); case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_LIST_ADJ); case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_STRIP_ADJ); case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: return PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_PATCH_LIST); default: unreachable("Undefined primitive topology"); } } /* TODO: Rewrite this in terms of ALIGN_POT() and pvr_cmd_length(). */ /* Aligned to 128 bit for PDS loads / stores */ #define DUMMY_VDM_CONTROL_STREAM_BLOCK_SIZE 8 static VkResult pvr_write_draw_indirect_vdm_stream(struct pvr_cmd_buffer *cmd_buffer, struct pvr_csb *const csb, pvr_dev_addr_t idx_buffer_addr, uint32_t idx_stride, struct PVRX(VDMCTRL_INDEX_LIST0) * list_hdr, struct pvr_buffer *buffer, VkDeviceSize offset, uint32_t count, uint32_t stride) { struct pvr_pds_drawindirect_program pds_prog = { 0 }; uint32_t word0; /* Draw indirect always has index offset and instance count. */ list_hdr->index_offset_present = true; list_hdr->index_instance_count_present = true; pvr_cmd_pack(VDMCTRL_INDEX_LIST0)(&word0, list_hdr); pds_prog.support_base_instance = true; pds_prog.arg_buffer = buffer->dev_addr.addr + offset; pds_prog.index_buffer = idx_buffer_addr.addr; pds_prog.index_block_header = word0; pds_prog.index_stride = idx_stride; pds_prog.num_views = 1U; /* TODO: See if we can pre-upload the code section of all the pds programs * and reuse them here. */ /* Generate and upload the PDS programs (code + data). */ for (uint32_t i = 0U; i < count; i++) { const struct pvr_device_info *dev_info = &cmd_buffer->device->pdevice->dev_info; struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct pvr_suballoc_bo *dummy_bo; struct pvr_suballoc_bo *pds_bo; uint32_t *dummy_stream; uint32_t *pds_base; uint32_t pds_size; VkResult result; pds_prog.increment_draw_id = (i != 0); if (state->draw_state.draw_indexed) { pvr_pds_generate_draw_elements_indirect(&pds_prog, 0, PDS_GENERATE_SIZES, dev_info); } else { pvr_pds_generate_draw_arrays_indirect(&pds_prog, 0, PDS_GENERATE_SIZES, dev_info); } pds_size = PVR_DW_TO_BYTES(pds_prog.program.data_size_aligned + pds_prog.program.code_size_aligned); result = pvr_cmd_buffer_alloc_mem(cmd_buffer, cmd_buffer->device->heaps.pds_heap, pds_size, PVR_BO_ALLOC_FLAG_CPU_MAPPED, &pds_bo); if (result != VK_SUCCESS) return result; pds_base = pvr_bo_suballoc_get_map_addr(pds_bo); memcpy(pds_base, pds_prog.program.code, PVR_DW_TO_BYTES(pds_prog.program.code_size_aligned)); if (state->draw_state.draw_indexed) { pvr_pds_generate_draw_elements_indirect( &pds_prog, pds_base + pds_prog.program.code_size_aligned, PDS_GENERATE_DATA_SEGMENT, dev_info); } else { pvr_pds_generate_draw_arrays_indirect( &pds_prog, pds_base + pds_prog.program.code_size_aligned, PDS_GENERATE_DATA_SEGMENT, dev_info); } /* Write the VDM state update. */ pvr_csb_emit (csb, VDMCTRL_PDS_STATE0, state0) { state0.usc_target = PVRX(VDMCTRL_USC_TARGET_ANY); state0.pds_temp_size = DIV_ROUND_UP(PVR_DW_TO_BYTES(pds_prog.program.temp_size_aligned), PVRX(VDMCTRL_PDS_STATE0_PDS_TEMP_SIZE_UNIT_SIZE)); state0.pds_data_size = DIV_ROUND_UP(PVR_DW_TO_BYTES(pds_prog.program.data_size_aligned), PVRX(VDMCTRL_PDS_STATE0_PDS_DATA_SIZE_UNIT_SIZE)); } pvr_csb_emit (csb, VDMCTRL_PDS_STATE1, state1) { const uint32_t data_offset = pds_bo->dev_addr.addr + PVR_DW_TO_BYTES(pds_prog.program.code_size_aligned) - cmd_buffer->device->heaps.pds_heap->base_addr.addr; state1.pds_data_addr = PVR_DEV_ADDR(data_offset); state1.sd_type = PVRX(VDMCTRL_SD_TYPE_PDS); state1.sd_next_type = PVRX(VDMCTRL_SD_TYPE_NONE); } pvr_csb_emit (csb, VDMCTRL_PDS_STATE2, state2) { const uint32_t code_offset = pds_bo->dev_addr.addr - cmd_buffer->device->heaps.pds_heap->base_addr.addr; state2.pds_code_addr = PVR_DEV_ADDR(code_offset); } /* Sync task to ensure the VDM doesn't start reading the dummy blocks * before they are ready. */ pvr_csb_emit (csb, VDMCTRL_INDEX_LIST0, list0) { list0.primitive_topology = PVRX(VDMCTRL_PRIMITIVE_TOPOLOGY_TRI_LIST); } result = pvr_cmd_buffer_alloc_mem(cmd_buffer, cmd_buffer->device->heaps.general_heap, DUMMY_VDM_CONTROL_STREAM_BLOCK_SIZE, PVR_BO_ALLOC_FLAG_CPU_MAPPED, &dummy_bo); if (result != VK_SUCCESS) return result; dummy_stream = pvr_bo_suballoc_get_map_addr(dummy_bo); /* For indexed draw cmds fill in the dummy's header (as it won't change * based on the indirect args) and increment by the in-use size of each * dummy block. */ if (!state->draw_state.draw_indexed) { dummy_stream[0] = word0; dummy_stream += 4; } else { dummy_stream += 5; } /* clang-format off */ pvr_csb_pack (dummy_stream, VDMCTRL_STREAM_RETURN, word); /* clang-format on */ /* Stream link to the first dummy which forces the VDM to discard any * prefetched (dummy) control stream. */ pvr_csb_emit (csb, VDMCTRL_STREAM_LINK0, link) { link.with_return = true; link.link_addrmsb = dummy_bo->dev_addr; } pvr_csb_emit (csb, VDMCTRL_STREAM_LINK1, link) { link.link_addrlsb = dummy_bo->dev_addr; } /* Point the pds program to the next argument buffer and the next VDM * dummy buffer. */ pds_prog.arg_buffer += stride; } return VK_SUCCESS; } #undef DUMMY_VDM_CONTROL_STREAM_BLOCK_SIZE static void pvr_emit_vdm_index_list(struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd_gfx *const sub_cmd, VkPrimitiveTopology topology, uint32_t index_offset, uint32_t first_index, uint32_t index_count, uint32_t instance_count, struct pvr_buffer *buffer, VkDeviceSize offset, uint32_t count, uint32_t stride) { struct pvr_cmd_buffer_state *state = &cmd_buffer->state; const bool vertex_shader_has_side_effects = state->gfx_pipeline->shader_state.vertex.stage_state.has_side_effects; struct PVRX(VDMCTRL_INDEX_LIST0) list_hdr = { pvr_cmd_header(VDMCTRL_INDEX_LIST0) }; pvr_dev_addr_t index_buffer_addr = PVR_DEV_ADDR_INVALID; struct pvr_csb *const csb = &sub_cmd->control_stream; unsigned int index_stride = 0; list_hdr.primitive_topology = pvr_get_hw_primitive_topology(topology); /* firstInstance is not handled here in the VDM state, it's implemented as * an addition in the PDS vertex fetch using * PVR_PDS_CONST_MAP_ENTRY_TYPE_BASE_INSTANCE entry type. */ list_hdr.index_count_present = true; if (instance_count > 1) list_hdr.index_instance_count_present = true; if (index_offset) list_hdr.index_offset_present = true; if (state->draw_state.draw_indexed) { switch (state->index_buffer_binding.type) { case VK_INDEX_TYPE_UINT32: list_hdr.index_size = PVRX(VDMCTRL_INDEX_SIZE_B32); index_stride = 4; break; case VK_INDEX_TYPE_UINT16: list_hdr.index_size = PVRX(VDMCTRL_INDEX_SIZE_B16); index_stride = 2; break; default: unreachable("Invalid index type"); } index_buffer_addr = PVR_DEV_ADDR_OFFSET( state->index_buffer_binding.buffer->dev_addr, state->index_buffer_binding.offset + first_index * index_stride); list_hdr.index_addr_present = true; list_hdr.index_base_addrmsb = index_buffer_addr; } list_hdr.degen_cull_enable = PVR_HAS_FEATURE(&cmd_buffer->device->pdevice->dev_info, vdm_degenerate_culling) && !vertex_shader_has_side_effects; if (state->draw_state.draw_indirect) { assert(buffer); pvr_write_draw_indirect_vdm_stream(cmd_buffer, csb, index_buffer_addr, index_stride, &list_hdr, buffer, offset, count, stride); return; } pvr_csb_emit (csb, VDMCTRL_INDEX_LIST0, list0) { list0 = list_hdr; } if (list_hdr.index_addr_present) { pvr_csb_emit (csb, VDMCTRL_INDEX_LIST1, list1) { list1.index_base_addrlsb = index_buffer_addr; } } if (list_hdr.index_count_present) { pvr_csb_emit (csb, VDMCTRL_INDEX_LIST2, list2) { list2.index_count = index_count; } } if (list_hdr.index_instance_count_present) { pvr_csb_emit (csb, VDMCTRL_INDEX_LIST3, list3) { list3.instance_count = instance_count - 1; } } if (list_hdr.index_offset_present) { pvr_csb_emit (csb, VDMCTRL_INDEX_LIST4, list4) { list4.index_offset = index_offset; } } } void pvr_CmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount, uint32_t firstVertex, uint32_t firstInstance) { const struct pvr_cmd_buffer_draw_state draw_state = { .base_vertex = firstVertex, .base_instance = firstInstance, }; PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; struct pvr_cmd_buffer_state *state = &cmd_buffer->state; VkResult result; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); pvr_update_draw_state(state, &draw_state); result = pvr_validate_draw_state(cmd_buffer); if (result != VK_SUCCESS) return; /* Write the VDM control stream for the primitive. */ pvr_emit_vdm_index_list(cmd_buffer, &state->current_sub_cmd->gfx, dynamic_state->ia.primitive_topology, firstVertex, 0U, vertexCount, instanceCount, NULL, 0U, 0U, 0U); } void pvr_CmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) { const struct pvr_cmd_buffer_draw_state draw_state = { .base_vertex = vertexOffset, .base_instance = firstInstance, .draw_indexed = true, }; PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; struct pvr_cmd_buffer_state *state = &cmd_buffer->state; VkResult result; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); pvr_update_draw_state(state, &draw_state); result = pvr_validate_draw_state(cmd_buffer); if (result != VK_SUCCESS) return; /* Write the VDM control stream for the primitive. */ pvr_emit_vdm_index_list(cmd_buffer, &state->current_sub_cmd->gfx, dynamic_state->ia.primitive_topology, vertexOffset, firstIndex, indexCount, instanceCount, NULL, 0U, 0U, 0U); } void pvr_CmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { const struct pvr_cmd_buffer_draw_state draw_state = { .draw_indirect = true, .draw_indexed = true, }; PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; PVR_FROM_HANDLE(pvr_buffer, buffer, _buffer); VkResult result; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); pvr_update_draw_state(state, &draw_state); result = pvr_validate_draw_state(cmd_buffer); if (result != VK_SUCCESS) return; /* Write the VDM control stream for the primitive. */ pvr_emit_vdm_index_list(cmd_buffer, &state->current_sub_cmd->gfx, dynamic_state->ia.primitive_topology, 0U, 0U, 0U, 0U, buffer, offset, drawCount, stride); } void pvr_CmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer _buffer, VkDeviceSize offset, uint32_t drawCount, uint32_t stride) { const struct pvr_cmd_buffer_draw_state draw_state = { .draw_indirect = true, }; PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_cmd_buffer_state *state = &cmd_buffer->state; PVR_FROM_HANDLE(pvr_buffer, buffer, _buffer); struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; VkResult result; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); pvr_update_draw_state(state, &draw_state); result = pvr_validate_draw_state(cmd_buffer); if (result != VK_SUCCESS) return; /* Write the VDM control stream for the primitive. */ pvr_emit_vdm_index_list(cmd_buffer, &state->current_sub_cmd->gfx, dynamic_state->ia.primitive_topology, 0U, 0U, 0U, 0U, buffer, offset, drawCount, stride); } static VkResult pvr_resolve_unemitted_resolve_attachments(struct pvr_cmd_buffer *cmd_buffer, struct pvr_render_pass_info *info) { struct pvr_cmd_buffer_state *state = &cmd_buffer->state; const struct pvr_renderpass_hwsetup_render *hw_render = &state->render_pass_info.pass->hw_setup->renders[info->current_hw_subpass]; for (uint32_t i = 0U; i < hw_render->eot_surface_count; i++) { const struct pvr_renderpass_hwsetup_eot_surface *surface = &hw_render->eot_surfaces[i]; const uint32_t color_attach_idx = surface->src_attachment_idx; const uint32_t resolve_attach_idx = surface->attachment_idx; VkImageSubresourceLayers src_subresource; VkImageSubresourceLayers dst_subresource; struct pvr_image_view *dst_view; struct pvr_image_view *src_view; VkFormat src_format; VkFormat dst_format; VkImageCopy2 region; VkResult result; if (!surface->need_resolve || surface->resolve_type != PVR_RESOLVE_TYPE_TRANSFER) continue; dst_view = info->attachments[resolve_attach_idx]; src_view = info->attachments[color_attach_idx]; src_subresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; src_subresource.mipLevel = src_view->vk.base_mip_level; src_subresource.baseArrayLayer = src_view->vk.base_array_layer; src_subresource.layerCount = src_view->vk.layer_count; dst_subresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; dst_subresource.mipLevel = dst_view->vk.base_mip_level; dst_subresource.baseArrayLayer = dst_view->vk.base_array_layer; dst_subresource.layerCount = dst_view->vk.layer_count; region.srcOffset = (VkOffset3D){ info->render_area.offset.x, info->render_area.offset.y, 0 }; region.dstOffset = (VkOffset3D){ info->render_area.offset.x, info->render_area.offset.y, 0 }; region.extent = (VkExtent3D){ info->render_area.extent.width, info->render_area.extent.height, 1 }; region.srcSubresource = src_subresource; region.dstSubresource = dst_subresource; /* TODO: if ERN_46863 is supported, Depth and stencil are sampled * separately from images with combined depth+stencil. Add logic here to * handle it using appropriate format from image view. */ src_format = src_view->vk.image->format; dst_format = dst_view->vk.image->format; src_view->vk.image->format = src_view->vk.format; dst_view->vk.image->format = dst_view->vk.format; result = pvr_copy_or_resolve_color_image_region( cmd_buffer, vk_to_pvr_image(src_view->vk.image), vk_to_pvr_image(dst_view->vk.image), ®ion); src_view->vk.image->format = src_format; dst_view->vk.image->format = dst_format; state->current_sub_cmd->transfer.serialize_with_frag = true; if (result != VK_SUCCESS) return result; } return pvr_cmd_buffer_end_sub_cmd(cmd_buffer); } void pvr_CmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct pvr_image_view **attachments; VkClearValue *clear_values; VkResult result; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); assert(state->render_pass_info.pass); assert(state->render_pass_info.framebuffer); result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer); if (result != VK_SUCCESS) return; result = pvr_resolve_unemitted_resolve_attachments(cmd_buffer, &state->render_pass_info); if (result != VK_SUCCESS) return; /* Save the required fields before clearing render_pass_info struct. */ attachments = state->render_pass_info.attachments; clear_values = state->render_pass_info.clear_values; memset(&state->render_pass_info, 0, sizeof(state->render_pass_info)); state->render_pass_info.attachments = attachments; state->render_pass_info.clear_values = clear_values; } static VkResult pvr_execute_deferred_cmd_buffer(struct pvr_cmd_buffer *cmd_buffer, const struct pvr_cmd_buffer *sec_cmd_buffer) { struct vk_dynamic_graphics_state *const dynamic_state = &cmd_buffer->vk.dynamic_graphics_state; const uint32_t prim_db_elems = util_dynarray_num_elements(&cmd_buffer->depth_bias_array, struct pvr_depth_bias_state); const uint32_t prim_scissor_elems = util_dynarray_num_elements(&cmd_buffer->scissor_array, struct pvr_scissor_words); util_dynarray_foreach (&sec_cmd_buffer->deferred_csb_commands, struct pvr_deferred_cs_command, cmd) { switch (cmd->type) { case PVR_DEFERRED_CS_COMMAND_TYPE_DBSC: { const uint32_t scissor_idx = prim_scissor_elems + cmd->dbsc.state.scissor_index; const uint32_t db_idx = prim_db_elems + cmd->dbsc.state.depthbias_index; const uint32_t num_dwords = pvr_cmd_length(TA_STATE_HEADER) + pvr_cmd_length(TA_STATE_ISPDBSC); struct pvr_suballoc_bo *suballoc_bo; uint32_t ppp_state[num_dwords]; VkResult result; pvr_csb_pack (&ppp_state[0], TA_STATE_HEADER, header) { header.pres_ispctl_dbsc = true; } pvr_csb_pack (&ppp_state[1], TA_STATE_ISPDBSC, ispdbsc) { ispdbsc.dbindex = db_idx; ispdbsc.scindex = scissor_idx; } result = pvr_cmd_buffer_upload_general(cmd_buffer, &ppp_state[0], sizeof(ppp_state), &suballoc_bo); if (result != VK_SUCCESS) return result; pvr_csb_pack (&cmd->dbsc.vdm_state[0], VDMCTRL_PPP_STATE0, state) { state.word_count = num_dwords; state.addrmsb = suballoc_bo->dev_addr; } pvr_csb_pack (&cmd->dbsc.vdm_state[1], VDMCTRL_PPP_STATE1, state) { state.addrlsb = suballoc_bo->dev_addr; } break; } case PVR_DEFERRED_CS_COMMAND_TYPE_DBSC2: { const uint32_t scissor_idx = prim_scissor_elems + cmd->dbsc2.state.scissor_index; const uint32_t db_idx = prim_db_elems + cmd->dbsc2.state.depthbias_index; uint32_t *const addr = pvr_bo_suballoc_get_map_addr(cmd->dbsc2.ppp_cs_bo) + cmd->dbsc2.patch_offset; assert(pvr_bo_suballoc_get_map_addr(cmd->dbsc2.ppp_cs_bo)); pvr_csb_pack (addr, TA_STATE_ISPDBSC, ispdbsc) { ispdbsc.dbindex = db_idx; ispdbsc.scindex = scissor_idx; } break; } default: unreachable("Invalid deferred control stream command type."); break; } } util_dynarray_append_dynarray(&cmd_buffer->depth_bias_array, &sec_cmd_buffer->depth_bias_array); util_dynarray_append_dynarray(&cmd_buffer->scissor_array, &sec_cmd_buffer->scissor_array); BITSET_SET(dynamic_state->dirty, MESA_VK_DYNAMIC_RS_DEPTH_BIAS_FACTORS); cmd_buffer->scissor_words = (struct pvr_scissor_words){ 0 }; return VK_SUCCESS; } /* Caller needs to make sure that it ends the current sub_cmd. This function * only creates a copy of sec_sub_cmd and links it to the cmd_buffer's * sub_cmd list. */ static VkResult pvr_execute_sub_cmd(struct pvr_cmd_buffer *cmd_buffer, struct pvr_sub_cmd *sec_sub_cmd) { struct pvr_sub_cmd *primary_sub_cmd = vk_zalloc(&cmd_buffer->vk.pool->alloc, sizeof(*primary_sub_cmd), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!primary_sub_cmd) { cmd_buffer->state.status = vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY); return cmd_buffer->state.status; } primary_sub_cmd->type = sec_sub_cmd->type; primary_sub_cmd->owned = false; list_addtail(&primary_sub_cmd->link, &cmd_buffer->sub_cmds); switch (sec_sub_cmd->type) { case PVR_SUB_CMD_TYPE_GRAPHICS: primary_sub_cmd->gfx = sec_sub_cmd->gfx; break; case PVR_SUB_CMD_TYPE_OCCLUSION_QUERY: case PVR_SUB_CMD_TYPE_COMPUTE: primary_sub_cmd->compute = sec_sub_cmd->compute; break; case PVR_SUB_CMD_TYPE_TRANSFER: primary_sub_cmd->transfer = sec_sub_cmd->transfer; break; case PVR_SUB_CMD_TYPE_EVENT: primary_sub_cmd->event = sec_sub_cmd->event; break; default: unreachable("Unsupported sub-command type"); } return VK_SUCCESS; } static VkResult pvr_execute_graphics_cmd_buffer(struct pvr_cmd_buffer *cmd_buffer, const struct pvr_cmd_buffer *sec_cmd_buffer) { const struct pvr_device_info *dev_info = &cmd_buffer->device->pdevice->dev_info; struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct pvr_sub_cmd *primary_sub_cmd = state->current_sub_cmd; struct pvr_sub_cmd *first_sec_cmd; VkResult result; /* Inherited queries are not supported. */ assert(!state->vis_test_enabled); if (list_is_empty(&sec_cmd_buffer->sub_cmds)) return VK_SUCCESS; first_sec_cmd = list_first_entry(&sec_cmd_buffer->sub_cmds, struct pvr_sub_cmd, link); /* Kick a render if we have a new base address. */ if (primary_sub_cmd->gfx.query_pool && first_sec_cmd->gfx.query_pool && primary_sub_cmd->gfx.query_pool != first_sec_cmd->gfx.query_pool) { state->current_sub_cmd->gfx.barrier_store = true; result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer); if (result != VK_SUCCESS) return result; result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS); if (result != VK_SUCCESS) return result; primary_sub_cmd = state->current_sub_cmd; /* Use existing render setup, but load color attachments from HW * Background object. */ primary_sub_cmd->gfx.barrier_load = true; primary_sub_cmd->gfx.barrier_store = false; } list_for_each_entry (struct pvr_sub_cmd, sec_sub_cmd, &sec_cmd_buffer->sub_cmds, link) { /* Only graphics secondary execution supported within a renderpass. */ assert(sec_sub_cmd->type == PVR_SUB_CMD_TYPE_GRAPHICS); if (!sec_sub_cmd->gfx.empty_cmd) primary_sub_cmd->gfx.empty_cmd = false; if (sec_sub_cmd->gfx.query_pool) { primary_sub_cmd->gfx.query_pool = sec_sub_cmd->gfx.query_pool; util_dynarray_append_dynarray(&state->query_indices, &sec_sub_cmd->gfx.sec_query_indices); } if (pvr_cmd_uses_deferred_cs_cmds(sec_cmd_buffer)) { /* TODO: In case if secondary buffer is created with * VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT, then we patch the * stream and copy it to primary stream using pvr_csb_copy below. * This will need locking if the same secondary command buffer is * executed in multiple primary buffers at the same time. */ result = pvr_execute_deferred_cmd_buffer(cmd_buffer, sec_cmd_buffer); if (result != VK_SUCCESS) return result; result = pvr_csb_copy(&primary_sub_cmd->gfx.control_stream, &sec_sub_cmd->gfx.control_stream); if (result != VK_SUCCESS) { cmd_buffer->state.status = result; return cmd_buffer->state.status; } } else { result = pvr_execute_deferred_cmd_buffer(cmd_buffer, sec_cmd_buffer); if (result != VK_SUCCESS) return result; pvr_csb_emit_link( &primary_sub_cmd->gfx.control_stream, pvr_csb_get_start_address(&sec_sub_cmd->gfx.control_stream), true); } if (PVR_HAS_FEATURE(&cmd_buffer->device->pdevice->dev_info, compute_overlap)) { primary_sub_cmd->gfx.job.disable_compute_overlap |= sec_sub_cmd->gfx.job.disable_compute_overlap; } primary_sub_cmd->gfx.max_tiles_in_flight = MIN2(primary_sub_cmd->gfx.max_tiles_in_flight, sec_sub_cmd->gfx.max_tiles_in_flight); /* Pass loaded depth/stencil usage from secondary command buffer. */ if (sec_sub_cmd->gfx.depth_usage == PVR_DEPTH_STENCIL_USAGE_NEEDED) primary_sub_cmd->gfx.depth_usage = PVR_DEPTH_STENCIL_USAGE_NEEDED; if (sec_sub_cmd->gfx.stencil_usage == PVR_DEPTH_STENCIL_USAGE_NEEDED) primary_sub_cmd->gfx.stencil_usage = PVR_DEPTH_STENCIL_USAGE_NEEDED; /* Pass depth/stencil modification state from secondary command buffer. */ if (sec_sub_cmd->gfx.modifies_depth) primary_sub_cmd->gfx.modifies_depth = true; if (sec_sub_cmd->gfx.modifies_stencil) primary_sub_cmd->gfx.modifies_stencil = true; if (sec_sub_cmd->gfx.barrier_store) { struct pvr_sub_cmd *sec_next = list_entry(sec_sub_cmd->link.next, struct pvr_sub_cmd, link); /* This shouldn't be the last sub cmd. There should be a barrier load * subsequent to the barrier store. */ assert(list_last_entry(&sec_cmd_buffer->sub_cmds, struct pvr_sub_cmd, link) != sec_sub_cmd); /* Kick render to store stencil. */ state->current_sub_cmd->gfx.barrier_store = true; state->current_sub_cmd->gfx.empty_cmd = false; result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer); if (result != VK_SUCCESS) return result; result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS); if (result != VK_SUCCESS) return result; primary_sub_cmd = state->current_sub_cmd; /* Use existing render setup, but load color attachments from HW * Background object. */ primary_sub_cmd->gfx.barrier_load = sec_next->gfx.barrier_load; primary_sub_cmd->gfx.barrier_store = sec_next->gfx.barrier_store; primary_sub_cmd->gfx.empty_cmd = false; } if (!PVR_HAS_FEATURE(dev_info, gs_rta_support)) { util_dynarray_append_dynarray(&cmd_buffer->deferred_clears, &sec_cmd_buffer->deferred_clears); } } return VK_SUCCESS; } void pvr_CmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount, const VkCommandBuffer *pCommandBuffers) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct pvr_cmd_buffer *last_cmd_buffer; VkResult result; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); assert(cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_PRIMARY); /* Reset the CPU copy of the most recent PPP state of the primary command * buffer. * * The next draw call in the primary after CmdExecuteCommands may send * redundant state, if it all goes in the same geom job. * * Can't just copy state from the secondary because the recording state of * the secondary command buffers would have been deleted at this point. */ pvr_reset_graphics_dirty_state(cmd_buffer, false); if (state->current_sub_cmd && state->current_sub_cmd->type == PVR_SUB_CMD_TYPE_GRAPHICS) { for (uint32_t i = 0; i < commandBufferCount; i++) { PVR_FROM_HANDLE(pvr_cmd_buffer, sec_cmd_buffer, pCommandBuffers[i]); assert(sec_cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY); result = pvr_execute_graphics_cmd_buffer(cmd_buffer, sec_cmd_buffer); if (result != VK_SUCCESS) return; } last_cmd_buffer = pvr_cmd_buffer_from_handle(pCommandBuffers[commandBufferCount - 1]); /* Set barriers from final command secondary command buffer. */ for (uint32_t i = 0; i != PVR_NUM_SYNC_PIPELINE_STAGES; i++) { state->barriers_needed[i] |= last_cmd_buffer->state.barriers_needed[i] & PVR_PIPELINE_STAGE_ALL_GRAPHICS_BITS; } } else { for (uint32_t i = 0; i < commandBufferCount; i++) { PVR_FROM_HANDLE(pvr_cmd_buffer, sec_cmd_buffer, pCommandBuffers[i]); assert(sec_cmd_buffer->vk.level == VK_COMMAND_BUFFER_LEVEL_SECONDARY); result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer); if (result != VK_SUCCESS) return; list_for_each_entry_safe (struct pvr_sub_cmd, sec_sub_cmd, &sec_cmd_buffer->sub_cmds, link) { result = pvr_execute_sub_cmd(cmd_buffer, sec_sub_cmd); if (result != VK_SUCCESS) return; } } last_cmd_buffer = pvr_cmd_buffer_from_handle(pCommandBuffers[commandBufferCount - 1]); memcpy(state->barriers_needed, last_cmd_buffer->state.barriers_needed, sizeof(state->barriers_needed)); } } static void pvr_insert_transparent_obj(struct pvr_cmd_buffer *const cmd_buffer, struct pvr_sub_cmd_gfx *const sub_cmd) { struct pvr_device *const device = cmd_buffer->device; /* Yes we want a copy. The user could be recording multiple command buffers * in parallel so writing the template in place could cause problems. */ struct pvr_static_clear_ppp_template clear = device->static_clear_state.ppp_templates[VK_IMAGE_ASPECT_COLOR_BIT]; uint32_t pds_state[PVR_STATIC_CLEAR_PDS_STATE_COUNT] = { 0 }; struct pvr_csb *csb = &sub_cmd->control_stream; struct pvr_suballoc_bo *ppp_bo; assert(clear.requires_pds_state); /* Patch the template. */ pvr_csb_pack (&pds_state[PVR_STATIC_CLEAR_PPP_PDS_TYPE_SHADERBASE], TA_STATE_PDS_SHADERBASE, shaderbase) { shaderbase.addr = PVR_DEV_ADDR(device->nop_program.pds.data_offset); } clear.config.pds_state = &pds_state; clear.config.ispctl.upass = cmd_buffer->state.render_pass_info.isp_userpass; /* Emit PPP state from template. */ pvr_emit_ppp_from_template(csb, &clear, &ppp_bo); list_add(&ppp_bo->link, &cmd_buffer->bo_list); /* Emit VDM state. */ pvr_emit_clear_words(cmd_buffer, sub_cmd); /* Reset graphics state. */ pvr_reset_graphics_dirty_state(cmd_buffer, false); } static inline struct pvr_render_subpass * pvr_get_current_subpass(const struct pvr_cmd_buffer_state *const state) { const uint32_t subpass_idx = state->render_pass_info.subpass_idx; return &state->render_pass_info.pass->subpasses[subpass_idx]; } void pvr_CmdNextSubpass2(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo, const VkSubpassEndInfo *pSubpassEndInfo) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_cmd_buffer_state *state = &cmd_buffer->state; struct pvr_render_pass_info *rp_info = &state->render_pass_info; const struct pvr_renderpass_hwsetup_subpass *hw_subpass; struct pvr_renderpass_hwsetup_render *next_hw_render; const struct pvr_render_pass *pass = rp_info->pass; const struct pvr_renderpass_hw_map *current_map; const struct pvr_renderpass_hw_map *next_map; struct pvr_load_op *hw_subpass_load_op; VkResult result; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); current_map = &pass->hw_setup->subpass_map[rp_info->subpass_idx]; next_map = &pass->hw_setup->subpass_map[rp_info->subpass_idx + 1]; next_hw_render = &pass->hw_setup->renders[next_map->render]; if (current_map->render != next_map->render) { result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer); if (result != VK_SUCCESS) return; result = pvr_resolve_unemitted_resolve_attachments(cmd_buffer, rp_info); if (result != VK_SUCCESS) return; rp_info->current_hw_subpass = next_map->render; result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS); if (result != VK_SUCCESS) return; rp_info->enable_bg_tag = false; rp_info->process_empty_tiles = false; /* If this subpass contains any load ops the HW Background Object must be * run to do the clears/loads. */ if (next_hw_render->color_init_count > 0) { rp_info->enable_bg_tag = true; for (uint32_t i = 0; i < next_hw_render->color_init_count; i++) { /* Empty tiles need to be cleared too. */ if (next_hw_render->color_init[i].op == VK_ATTACHMENT_LOAD_OP_CLEAR) { rp_info->process_empty_tiles = true; break; } } } /* Set isp_userpass to zero for new hw_render. This will be used to set * ROGUE_CR_ISP_CTL::upass_start. */ rp_info->isp_userpass = 0; } hw_subpass = &next_hw_render->subpasses[next_map->subpass]; hw_subpass_load_op = hw_subpass->load_op; if (hw_subpass_load_op) { result = pvr_cs_write_load_op(cmd_buffer, &state->current_sub_cmd->gfx, hw_subpass_load_op, rp_info->isp_userpass); } /* Pipelines are created for a particular subpass so unbind but leave the * vertex and descriptor bindings intact as they are orthogonal to the * subpass. */ state->gfx_pipeline = NULL; /* User-pass spawn is 4 bits so if the driver has to wrap it, it will emit a * full screen transparent object to flush all tags up until now, then the * user-pass spawn value will implicitly be reset to 0 because * pvr_render_subpass::isp_userpass values are stored ANDed with * ROGUE_CR_ISP_CTL_UPASS_START_SIZE_MAX. */ /* If hw_subpass_load_op is valid then pvr_write_load_op_control_stream * has already done a full-screen transparent object. */ if (rp_info->isp_userpass == PVRX(CR_ISP_CTL_UPASS_START_SIZE_MAX) && !hw_subpass_load_op) { pvr_insert_transparent_obj(cmd_buffer, &state->current_sub_cmd->gfx); } rp_info->subpass_idx++; rp_info->isp_userpass = pass->subpasses[rp_info->subpass_idx].isp_userpass; state->dirty.isp_userpass = true; rp_info->pipeline_bind_point = pass->subpasses[rp_info->subpass_idx].pipeline_bind_point; pvr_stash_depth_format(state, &state->current_sub_cmd->gfx); } static bool pvr_stencil_has_self_dependency(const struct pvr_cmd_buffer_state *const state) { const struct pvr_render_subpass *const current_subpass = pvr_get_current_subpass(state); const uint32_t *const input_attachments = current_subpass->input_attachments; if (current_subpass->depth_stencil_attachment == VK_ATTACHMENT_UNUSED) return false; /* We only need to check the current software subpass as we don't support * merging to/from a subpass with self-dep stencil. */ for (uint32_t i = 0; i < current_subpass->input_count; i++) { if (input_attachments[i] == current_subpass->depth_stencil_attachment) return true; } return false; } static bool pvr_is_stencil_store_load_needed( const struct pvr_cmd_buffer_state *const state, VkPipelineStageFlags2 vk_src_stage_mask, VkPipelineStageFlags2 vk_dst_stage_mask, uint32_t memory_barrier_count, const VkMemoryBarrier2 *const memory_barriers, uint32_t image_barrier_count, const VkImageMemoryBarrier2 *const image_barriers) { const uint32_t fragment_test_stages = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT; const struct pvr_render_pass *const pass = state->render_pass_info.pass; const struct pvr_renderpass_hwsetup_render *hw_render; struct pvr_image_view **const attachments = state->render_pass_info.attachments; const struct pvr_image_view *attachment; uint32_t hw_render_idx; if (!pass) return false; hw_render_idx = state->current_sub_cmd->gfx.hw_render_idx; hw_render = &pass->hw_setup->renders[hw_render_idx]; if (hw_render->ds_attach_idx == VK_ATTACHMENT_UNUSED) return false; attachment = attachments[hw_render->ds_attach_idx]; if (!(vk_src_stage_mask & fragment_test_stages) && vk_dst_stage_mask & VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT) return false; for (uint32_t i = 0; i < memory_barrier_count; i++) { const uint32_t stencil_write_bit = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; const uint32_t input_attachment_read_bit = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; if (!(memory_barriers[i].srcAccessMask & stencil_write_bit)) continue; if (!(memory_barriers[i].dstAccessMask & input_attachment_read_bit)) continue; return pvr_stencil_has_self_dependency(state); } for (uint32_t i = 0; i < image_barrier_count; i++) { PVR_FROM_HANDLE(pvr_image, image, image_barriers[i].image); const uint32_t stencil_bit = VK_IMAGE_ASPECT_STENCIL_BIT; if (!(image_barriers[i].subresourceRange.aspectMask & stencil_bit)) continue; if (attachment && image != vk_to_pvr_image(attachment->vk.image)) continue; if (!vk_format_has_stencil(image->vk.format)) continue; return pvr_stencil_has_self_dependency(state); } return false; } static VkResult pvr_cmd_buffer_insert_mid_frag_barrier_event(struct pvr_cmd_buffer *cmd_buffer, uint32_t src_stage_mask, uint32_t dst_stage_mask) { struct pvr_sub_cmd_event *sub_cmd; VkResult result; assert(cmd_buffer->state.current_sub_cmd->type == PVR_SUB_CMD_TYPE_GRAPHICS); cmd_buffer->state.current_sub_cmd->gfx.empty_cmd = false; pvr_finishme("Handle mid frag barrier stencil store."); pvr_cmd_buffer_end_sub_cmd(cmd_buffer); result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_EVENT); if (result != VK_SUCCESS) return result; sub_cmd = &cmd_buffer->state.current_sub_cmd->event; sub_cmd->type = PVR_EVENT_TYPE_BARRIER; sub_cmd->barrier.in_render_pass = true; sub_cmd->barrier.wait_for_stage_mask = src_stage_mask; sub_cmd->barrier.wait_at_stage_mask = dst_stage_mask; pvr_cmd_buffer_end_sub_cmd(cmd_buffer); pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_GRAPHICS); pvr_finishme("Handle mid frag barrier color attachment load."); return VK_SUCCESS; } static VkResult pvr_cmd_buffer_insert_barrier_event(struct pvr_cmd_buffer *cmd_buffer, uint32_t src_stage_mask, uint32_t dst_stage_mask) { struct pvr_sub_cmd_event *sub_cmd; VkResult result; result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_EVENT); if (result != VK_SUCCESS) return result; sub_cmd = &cmd_buffer->state.current_sub_cmd->event; sub_cmd->type = PVR_EVENT_TYPE_BARRIER; sub_cmd->barrier.wait_for_stage_mask = src_stage_mask; sub_cmd->barrier.wait_at_stage_mask = dst_stage_mask; return pvr_cmd_buffer_end_sub_cmd(cmd_buffer); } /* This is just enough to handle vkCmdPipelineBarrier(). * TODO: Complete? */ void pvr_CmdPipelineBarrier2(VkCommandBuffer commandBuffer, const VkDependencyInfo *pDependencyInfo) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_cmd_buffer_state *const state = &cmd_buffer->state; const struct pvr_render_pass *const render_pass = state->render_pass_info.pass; VkPipelineStageFlags vk_src_stage_mask = 0U; VkPipelineStageFlags vk_dst_stage_mask = 0U; bool is_stencil_store_load_needed; uint32_t required_stage_mask = 0U; uint32_t src_stage_mask; uint32_t dst_stage_mask; bool is_barrier_needed; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++) { vk_src_stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask; vk_dst_stage_mask |= pDependencyInfo->pMemoryBarriers[i].dstStageMask; } for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++) { vk_src_stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask; vk_dst_stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].dstStageMask; } for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++) { vk_src_stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask; vk_dst_stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].dstStageMask; } src_stage_mask = pvr_stage_mask_src(vk_src_stage_mask); dst_stage_mask = pvr_stage_mask_dst(vk_dst_stage_mask); for (uint32_t stage = 0U; stage != PVR_NUM_SYNC_PIPELINE_STAGES; stage++) { if (!(dst_stage_mask & BITFIELD_BIT(stage))) continue; required_stage_mask |= state->barriers_needed[stage]; } src_stage_mask &= required_stage_mask; for (uint32_t stage = 0U; stage != PVR_NUM_SYNC_PIPELINE_STAGES; stage++) { if (!(dst_stage_mask & BITFIELD_BIT(stage))) continue; state->barriers_needed[stage] &= ~src_stage_mask; } if (src_stage_mask == 0 || dst_stage_mask == 0) { is_barrier_needed = false; } else if (src_stage_mask == PVR_PIPELINE_STAGE_GEOM_BIT && dst_stage_mask == PVR_PIPELINE_STAGE_FRAG_BIT) { /* This is implicit so no need to barrier. */ is_barrier_needed = false; } else if (src_stage_mask == dst_stage_mask && util_bitcount(src_stage_mask) == 1) { struct pvr_sub_cmd *const current_sub_cmd = state->current_sub_cmd; switch (src_stage_mask) { case PVR_PIPELINE_STAGE_FRAG_BIT: is_barrier_needed = true; if (!render_pass) break; assert(current_sub_cmd->type == PVR_SUB_CMD_TYPE_GRAPHICS); /* Flush all fragment work up to this point. */ pvr_insert_transparent_obj(cmd_buffer, ¤t_sub_cmd->gfx); break; case PVR_PIPELINE_STAGE_COMPUTE_BIT: is_barrier_needed = false; if (!current_sub_cmd || current_sub_cmd->type != PVR_SUB_CMD_TYPE_COMPUTE) { break; } /* Multiple dispatches can be merged into a single job. When back to * back dispatches have a sequential dependency (Compute -> compute * pipeline barrier) we need to do the following. * - Dispatch a kernel which fences all previous memory writes and * flushes the MADD cache. * - Issue a compute fence which ensures all previous tasks emitted * by the compute data master are completed before starting * anything new. */ /* Issue Data Fence, Wait for Data Fence (IDFWDF) makes the PDS wait * for data. */ pvr_compute_generate_idfwdf(cmd_buffer, ¤t_sub_cmd->compute); pvr_compute_generate_fence(cmd_buffer, ¤t_sub_cmd->compute, false); break; default: is_barrier_needed = false; break; }; } else { is_barrier_needed = true; } is_stencil_store_load_needed = pvr_is_stencil_store_load_needed(state, vk_src_stage_mask, vk_dst_stage_mask, pDependencyInfo->memoryBarrierCount, pDependencyInfo->pMemoryBarriers, pDependencyInfo->imageMemoryBarrierCount, pDependencyInfo->pImageMemoryBarriers); if (is_stencil_store_load_needed) { VkResult result; result = pvr_cmd_buffer_insert_mid_frag_barrier_event(cmd_buffer, src_stage_mask, dst_stage_mask); if (result != VK_SUCCESS) mesa_loge("Failed to insert mid frag barrier event."); } else { if (is_barrier_needed) { VkResult result; result = pvr_cmd_buffer_insert_barrier_event(cmd_buffer, src_stage_mask, dst_stage_mask); if (result != VK_SUCCESS) mesa_loge("Failed to insert pipeline barrier event."); } } } void pvr_CmdResetEvent2(VkCommandBuffer commandBuffer, VkEvent _event, VkPipelineStageFlags2 stageMask) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); PVR_FROM_HANDLE(pvr_event, event, _event); struct pvr_sub_cmd_event *sub_cmd; VkResult result; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_EVENT); if (result != VK_SUCCESS) return; sub_cmd = &cmd_buffer->state.current_sub_cmd->event; sub_cmd->type = PVR_EVENT_TYPE_RESET; sub_cmd->reset.event = event; sub_cmd->reset.wait_for_stage_mask = pvr_stage_mask_src(stageMask); pvr_cmd_buffer_end_sub_cmd(cmd_buffer); } void pvr_CmdSetEvent2(VkCommandBuffer commandBuffer, VkEvent _event, const VkDependencyInfo *pDependencyInfo) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); PVR_FROM_HANDLE(pvr_event, event, _event); VkPipelineStageFlags2 stage_mask = 0; struct pvr_sub_cmd_event *sub_cmd; VkResult result; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_EVENT); if (result != VK_SUCCESS) return; for (uint32_t i = 0; i < pDependencyInfo->memoryBarrierCount; i++) stage_mask |= pDependencyInfo->pMemoryBarriers[i].srcStageMask; for (uint32_t i = 0; i < pDependencyInfo->bufferMemoryBarrierCount; i++) stage_mask |= pDependencyInfo->pBufferMemoryBarriers[i].srcStageMask; for (uint32_t i = 0; i < pDependencyInfo->imageMemoryBarrierCount; i++) stage_mask |= pDependencyInfo->pImageMemoryBarriers[i].srcStageMask; sub_cmd = &cmd_buffer->state.current_sub_cmd->event; sub_cmd->type = PVR_EVENT_TYPE_SET; sub_cmd->set.event = event; sub_cmd->set.wait_for_stage_mask = pvr_stage_mask_dst(stage_mask); pvr_cmd_buffer_end_sub_cmd(cmd_buffer); } void pvr_CmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents, const VkDependencyInfo *pDependencyInfos) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_sub_cmd_event *sub_cmd; struct pvr_event **events_array; uint32_t *stage_masks; VkResult result; PVR_CHECK_COMMAND_BUFFER_BUILDING_STATE(cmd_buffer); VK_MULTIALLOC(ma); vk_multialloc_add(&ma, &events_array, __typeof__(*events_array), eventCount); vk_multialloc_add(&ma, &stage_masks, __typeof__(*stage_masks), eventCount); if (!vk_multialloc_alloc(&ma, &cmd_buffer->vk.pool->alloc, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT)) { cmd_buffer->state.status = vk_error(cmd_buffer, VK_ERROR_OUT_OF_HOST_MEMORY); return; } result = pvr_cmd_buffer_start_sub_cmd(cmd_buffer, PVR_SUB_CMD_TYPE_EVENT); if (result != VK_SUCCESS) { vk_free(&cmd_buffer->vk.pool->alloc, events_array); return; } memcpy(events_array, pEvents, sizeof(*events_array) * eventCount); for (uint32_t i = 0; i < eventCount; i++) { const VkDependencyInfo *info = &pDependencyInfos[i]; VkPipelineStageFlags2 mask = 0; for (uint32_t j = 0; j < info->memoryBarrierCount; j++) mask |= info->pMemoryBarriers[j].dstStageMask; for (uint32_t j = 0; j < info->bufferMemoryBarrierCount; j++) mask |= info->pBufferMemoryBarriers[j].dstStageMask; for (uint32_t j = 0; j < info->imageMemoryBarrierCount; j++) mask |= info->pImageMemoryBarriers[j].dstStageMask; stage_masks[i] = pvr_stage_mask_dst(mask); } sub_cmd = &cmd_buffer->state.current_sub_cmd->event; sub_cmd->type = PVR_EVENT_TYPE_WAIT; sub_cmd->wait.count = eventCount; sub_cmd->wait.events = events_array; sub_cmd->wait.wait_at_stage_masks = stage_masks; pvr_cmd_buffer_end_sub_cmd(cmd_buffer); } void pvr_CmdWriteTimestamp2KHR(VkCommandBuffer commandBuffer, VkPipelineStageFlags2 stage, VkQueryPool queryPool, uint32_t query) { unreachable("Timestamp queries are not supported."); } VkResult pvr_EndCommandBuffer(VkCommandBuffer commandBuffer) { PVR_FROM_HANDLE(pvr_cmd_buffer, cmd_buffer, commandBuffer); struct pvr_cmd_buffer_state *state = &cmd_buffer->state; VkResult result; /* From the Vulkan 1.0 spec: * * CommandBuffer must be in the recording state. */ assert(cmd_buffer->vk.state == MESA_VK_COMMAND_BUFFER_STATE_RECORDING); if (state->status != VK_SUCCESS) return state->status; /* TODO: We should be freeing all the resources, allocated for recording, * here. */ util_dynarray_fini(&state->query_indices); result = pvr_cmd_buffer_end_sub_cmd(cmd_buffer); if (result != VK_SUCCESS) return result; return vk_command_buffer_end(&cmd_buffer->vk); }