/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * @file * * The texture and sampler descriptors are laid out in a single global space * across all shader stages, for both simplicity of implementation and because * that seems to be how things have to be structured for border color * handling. * * Each shader stage will declare its texture/sampler count based on the last * descriptor set it uses. At draw emit time (though it really should be * CmdBind time), we upload the descriptor sets used by each shader stage to * their stage. */ #include "tu_private.h" #include #include #include #include #include #include "util/mesa-sha1.h" #include "vk_util.h" static int binding_compare(const void *av, const void *bv) { const VkDescriptorSetLayoutBinding *a = (const VkDescriptorSetLayoutBinding *) av; const VkDescriptorSetLayoutBinding *b = (const VkDescriptorSetLayoutBinding *) bv; return (a->binding < b->binding) ? -1 : (a->binding > b->binding) ? 1 : 0; } static VkDescriptorSetLayoutBinding * create_sorted_bindings(const VkDescriptorSetLayoutBinding *bindings, unsigned count) { VkDescriptorSetLayoutBinding *sorted_bindings = malloc(count * sizeof(VkDescriptorSetLayoutBinding)); if (!sorted_bindings) return NULL; memcpy(sorted_bindings, bindings, count * sizeof(VkDescriptorSetLayoutBinding)); qsort(sorted_bindings, count, sizeof(VkDescriptorSetLayoutBinding), binding_compare); return sorted_bindings; } static uint32_t descriptor_size(enum VkDescriptorType type) { switch (type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: return 0; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: /* 64bit pointer */ return 8; case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: return A6XX_TEX_CONST_DWORDS * 4; case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: /* We may need the IBO or the TEX representation, or both. */ return A6XX_TEX_CONST_DWORDS * 4 * 2; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: /* texture const + tu_sampler struct (includes border color) */ return A6XX_TEX_CONST_DWORDS * 4 + sizeof(struct tu_sampler); case VK_DESCRIPTOR_TYPE_SAMPLER: return sizeof(struct tu_sampler); default: unreachable("unknown descriptor type\n"); return 0; } } VkResult tu_CreateDescriptorSetLayout( VkDevice _device, const VkDescriptorSetLayoutCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorSetLayout *pSetLayout) { TU_FROM_HANDLE(tu_device, device, _device); struct tu_descriptor_set_layout *set_layout; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO); const VkDescriptorSetLayoutBindingFlagsCreateInfoEXT *variable_flags = vk_find_struct_const( pCreateInfo->pNext, DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT); uint32_t max_binding = 0; uint32_t immutable_sampler_count = 0; for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) { max_binding = MAX2(max_binding, pCreateInfo->pBindings[j].binding); if ((pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER || pCreateInfo->pBindings[j].descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) && pCreateInfo->pBindings[j].pImmutableSamplers) { immutable_sampler_count += pCreateInfo->pBindings[j].descriptorCount; } } uint32_t samplers_offset = sizeof(struct tu_descriptor_set_layout) + (max_binding + 1) * sizeof(set_layout->binding[0]); uint32_t size = samplers_offset + immutable_sampler_count * sizeof(struct tu_sampler); set_layout = vk_alloc2(&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!set_layout) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); set_layout->flags = pCreateInfo->flags; /* We just allocate all the samplers at the end of the struct */ struct tu_sampler *samplers = (void*) &set_layout->binding[max_binding + 1]; VkDescriptorSetLayoutBinding *bindings = create_sorted_bindings( pCreateInfo->pBindings, pCreateInfo->bindingCount); if (!bindings) { vk_free2(&device->alloc, pAllocator, set_layout); return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } set_layout->binding_count = max_binding + 1; set_layout->shader_stages = 0; set_layout->dynamic_shader_stages = 0; set_layout->has_immutable_samplers = false; set_layout->size = 0; memset(set_layout->binding, 0, size - sizeof(struct tu_descriptor_set_layout)); uint32_t buffer_count = 0; uint32_t dynamic_offset_count = 0; for (uint32_t j = 0; j < pCreateInfo->bindingCount; j++) { const VkDescriptorSetLayoutBinding *binding = bindings + j; uint32_t b = binding->binding; uint32_t alignment = 4; unsigned binding_buffer_count = 1; switch (binding->descriptorType) { case VK_DESCRIPTOR_TYPE_SAMPLER: binding_buffer_count = 0; break; case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: assert(!(pCreateInfo->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR)); set_layout->binding[b].dynamic_offset_count = 1; break; default: break; } set_layout->size = align(set_layout->size, alignment); set_layout->binding[b].type = binding->descriptorType; set_layout->binding[b].array_size = binding->descriptorCount; set_layout->binding[b].offset = set_layout->size; set_layout->binding[b].buffer_offset = buffer_count; set_layout->binding[b].dynamic_offset_offset = dynamic_offset_count; set_layout->binding[b].size = descriptor_size(binding->descriptorType); if (variable_flags && binding->binding < variable_flags->bindingCount && (variable_flags->pBindingFlags[binding->binding] & VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT)) { assert(!binding->pImmutableSamplers); /* Terribly ill defined how many samplers are valid */ assert(binding->binding == max_binding); set_layout->has_variable_descriptors = true; } if ((binding->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER || binding->descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER) && binding->pImmutableSamplers) { set_layout->binding[b].immutable_samplers_offset = samplers_offset; set_layout->has_immutable_samplers = true; for (uint32_t i = 0; i < binding->descriptorCount; i++) samplers[i] = *tu_sampler_from_handle(binding->pImmutableSamplers[i]); samplers += binding->descriptorCount; samplers_offset += sizeof(struct tu_sampler) * binding->descriptorCount; } set_layout->size += binding->descriptorCount * set_layout->binding[b].size; buffer_count += binding->descriptorCount * binding_buffer_count; dynamic_offset_count += binding->descriptorCount * set_layout->binding[b].dynamic_offset_count; set_layout->shader_stages |= binding->stageFlags; } free(bindings); set_layout->buffer_count = buffer_count; set_layout->dynamic_offset_count = dynamic_offset_count; *pSetLayout = tu_descriptor_set_layout_to_handle(set_layout); return VK_SUCCESS; } void tu_DestroyDescriptorSetLayout(VkDevice _device, VkDescriptorSetLayout _set_layout, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout, _set_layout); if (!set_layout) return; vk_free2(&device->alloc, pAllocator, set_layout); } void tu_GetDescriptorSetLayoutSupport( VkDevice device, const VkDescriptorSetLayoutCreateInfo *pCreateInfo, VkDescriptorSetLayoutSupport *pSupport) { VkDescriptorSetLayoutBinding *bindings = create_sorted_bindings( pCreateInfo->pBindings, pCreateInfo->bindingCount); if (!bindings) { pSupport->supported = false; return; } const VkDescriptorSetLayoutBindingFlagsCreateInfoEXT *variable_flags = vk_find_struct_const( pCreateInfo->pNext, DESCRIPTOR_SET_LAYOUT_BINDING_FLAGS_CREATE_INFO_EXT); VkDescriptorSetVariableDescriptorCountLayoutSupportEXT *variable_count = vk_find_struct( (void *) pCreateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_LAYOUT_SUPPORT_EXT); if (variable_count) { variable_count->maxVariableDescriptorCount = 0; } bool supported = true; uint64_t size = 0; for (uint32_t i = 0; i < pCreateInfo->bindingCount; i++) { const VkDescriptorSetLayoutBinding *binding = bindings + i; uint64_t descriptor_sz = descriptor_size(binding->descriptorType); uint64_t descriptor_alignment = 8; if (size && !align_u64(size, descriptor_alignment)) { supported = false; } size = align_u64(size, descriptor_alignment); uint64_t max_count = UINT64_MAX; if (descriptor_sz) max_count = (UINT64_MAX - size) / descriptor_sz; if (max_count < binding->descriptorCount) { supported = false; } if (variable_flags && binding->binding < variable_flags->bindingCount && variable_count && (variable_flags->pBindingFlags[binding->binding] & VK_DESCRIPTOR_BINDING_VARIABLE_DESCRIPTOR_COUNT_BIT_EXT)) { variable_count->maxVariableDescriptorCount = MIN2(UINT32_MAX, max_count); } size += binding->descriptorCount * descriptor_sz; } free(bindings); pSupport->supported = supported; } /* * Pipeline layouts. These have nothing to do with the pipeline. They are * just multiple descriptor set layouts pasted together. */ VkResult tu_CreatePipelineLayout(VkDevice _device, const VkPipelineLayoutCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout) { TU_FROM_HANDLE(tu_device, device, _device); struct tu_pipeline_layout *layout; struct mesa_sha1 ctx; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO); layout = vk_alloc2(&device->alloc, pAllocator, sizeof(*layout), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (layout == NULL) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); layout->num_sets = pCreateInfo->setLayoutCount; unsigned dynamic_offset_count = 0; _mesa_sha1_init(&ctx); for (uint32_t set = 0; set < pCreateInfo->setLayoutCount; set++) { TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout, pCreateInfo->pSetLayouts[set]); layout->set[set].layout = set_layout; layout->set[set].dynamic_offset_start = dynamic_offset_count; for (uint32_t b = 0; b < set_layout->binding_count; b++) { dynamic_offset_count += set_layout->binding[b].array_size * set_layout->binding[b].dynamic_offset_count; if (set_layout->binding[b].immutable_samplers_offset) _mesa_sha1_update( &ctx, tu_immutable_samplers(set_layout, set_layout->binding + b), set_layout->binding[b].array_size * 4 * sizeof(uint32_t)); } _mesa_sha1_update( &ctx, set_layout->binding, sizeof(set_layout->binding[0]) * set_layout->binding_count); } layout->dynamic_offset_count = dynamic_offset_count; layout->push_constant_size = 0; for (unsigned i = 0; i < pCreateInfo->pushConstantRangeCount; ++i) { const VkPushConstantRange *range = pCreateInfo->pPushConstantRanges + i; layout->push_constant_size = MAX2(layout->push_constant_size, range->offset + range->size); } layout->push_constant_size = align(layout->push_constant_size, 16); _mesa_sha1_update(&ctx, &layout->push_constant_size, sizeof(layout->push_constant_size)); _mesa_sha1_final(&ctx, layout->sha1); *pPipelineLayout = tu_pipeline_layout_to_handle(layout); return VK_SUCCESS; } void tu_DestroyPipelineLayout(VkDevice _device, VkPipelineLayout _pipelineLayout, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_pipeline_layout, pipeline_layout, _pipelineLayout); if (!pipeline_layout) return; vk_free2(&device->alloc, pAllocator, pipeline_layout); } #define EMPTY 1 static VkResult tu_descriptor_set_create(struct tu_device *device, struct tu_descriptor_pool *pool, const struct tu_descriptor_set_layout *layout, const uint32_t *variable_count, struct tu_descriptor_set **out_set) { struct tu_descriptor_set *set; uint32_t buffer_count = layout->buffer_count; if (variable_count) { unsigned stride = 1; if (layout->binding[layout->binding_count - 1].type == VK_DESCRIPTOR_TYPE_SAMPLER || layout->binding[layout->binding_count - 1].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) stride = 0; buffer_count = layout->binding[layout->binding_count - 1].buffer_offset + *variable_count * stride; } unsigned range_offset = sizeof(struct tu_descriptor_set) + sizeof(struct tu_bo *) * buffer_count; unsigned mem_size = range_offset + sizeof(struct tu_descriptor_range) * layout->dynamic_offset_count; if (pool->host_memory_base) { if (pool->host_memory_end - pool->host_memory_ptr < mem_size) return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY); set = (struct tu_descriptor_set*)pool->host_memory_ptr; pool->host_memory_ptr += mem_size; } else { set = vk_alloc2(&device->alloc, NULL, mem_size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!set) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); } memset(set, 0, mem_size); if (layout->dynamic_offset_count) { set->dynamic_descriptors = (struct tu_descriptor_range*)((uint8_t*)set + range_offset); } set->layout = layout; uint32_t layout_size = layout->size; if (variable_count) { assert(layout->has_variable_descriptors); uint32_t stride = layout->binding[layout->binding_count - 1].size; if (layout->binding[layout->binding_count - 1].type == VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT) stride = 1; layout_size = layout->binding[layout->binding_count - 1].offset + *variable_count * stride; } if (layout_size) { set->size = layout_size; if (!pool->host_memory_base && pool->entry_count == pool->max_entry_count) { vk_free2(&device->alloc, NULL, set); return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY); } /* try to allocate linearly first, so that we don't spend * time looking for gaps if the app only allocates & * resets via the pool. */ if (pool->current_offset + layout_size <= pool->size) { set->mapped_ptr = (uint32_t*)(pool->bo.map + pool->current_offset); set->va = pool->bo.iova + pool->current_offset; if (!pool->host_memory_base) { pool->entries[pool->entry_count].offset = pool->current_offset; pool->entries[pool->entry_count].size = layout_size; pool->entries[pool->entry_count].set = set; pool->entry_count++; } pool->current_offset += layout_size; } else if (!pool->host_memory_base) { uint64_t offset = 0; int index; for (index = 0; index < pool->entry_count; ++index) { if (pool->entries[index].offset - offset >= layout_size) break; offset = pool->entries[index].offset + pool->entries[index].size; } if (pool->size - offset < layout_size) { vk_free2(&device->alloc, NULL, set); return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY); } set->mapped_ptr = (uint32_t*)(pool->bo.map + offset); set->va = pool->bo.iova + offset; memmove(&pool->entries[index + 1], &pool->entries[index], sizeof(pool->entries[0]) * (pool->entry_count - index)); pool->entries[index].offset = offset; pool->entries[index].size = layout_size; pool->entries[index].set = set; pool->entry_count++; } else return vk_error(device->instance, VK_ERROR_OUT_OF_POOL_MEMORY); } *out_set = set; return VK_SUCCESS; } static void tu_descriptor_set_destroy(struct tu_device *device, struct tu_descriptor_pool *pool, struct tu_descriptor_set *set, bool free_bo) { assert(!pool->host_memory_base); if (free_bo && set->size && !pool->host_memory_base) { uint32_t offset = (uint8_t*)set->mapped_ptr - (uint8_t*)pool->bo.map; for (int i = 0; i < pool->entry_count; ++i) { if (pool->entries[i].offset == offset) { memmove(&pool->entries[i], &pool->entries[i+1], sizeof(pool->entries[i]) * (pool->entry_count - i - 1)); --pool->entry_count; break; } } } vk_free2(&device->alloc, NULL, set); } VkResult tu_CreateDescriptorPool(VkDevice _device, const VkDescriptorPoolCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorPool *pDescriptorPool) { TU_FROM_HANDLE(tu_device, device, _device); struct tu_descriptor_pool *pool; uint64_t size = sizeof(struct tu_descriptor_pool); uint64_t bo_size = 0, bo_count = 0, range_count = 0; for (unsigned i = 0; i < pCreateInfo->poolSizeCount; ++i) { if (pCreateInfo->pPoolSizes[i].type != VK_DESCRIPTOR_TYPE_SAMPLER) bo_count += pCreateInfo->pPoolSizes[i].descriptorCount; switch(pCreateInfo->pPoolSizes[i].type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: range_count += pCreateInfo->pPoolSizes[i].descriptorCount; default: break; } bo_size += descriptor_size(pCreateInfo->pPoolSizes[i].type) * pCreateInfo->pPoolSizes[i].descriptorCount; } if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) { uint64_t host_size = pCreateInfo->maxSets * sizeof(struct tu_descriptor_set); host_size += sizeof(struct tu_bo*) * bo_count; host_size += sizeof(struct tu_descriptor_range) * range_count; size += host_size; } else { size += sizeof(struct tu_descriptor_pool_entry) * pCreateInfo->maxSets; } pool = vk_alloc2(&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!pool) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); memset(pool, 0, sizeof(*pool)); if (!(pCreateInfo->flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT)) { pool->host_memory_base = (uint8_t*)pool + sizeof(struct tu_descriptor_pool); pool->host_memory_ptr = pool->host_memory_base; pool->host_memory_end = (uint8_t*)pool + size; } if (bo_size) { VkResult ret; ret = tu_bo_init_new(device, &pool->bo, bo_size); assert(ret == VK_SUCCESS); ret = tu_bo_map(device, &pool->bo); assert(ret == VK_SUCCESS); } pool->size = bo_size; pool->max_entry_count = pCreateInfo->maxSets; *pDescriptorPool = tu_descriptor_pool_to_handle(pool); return VK_SUCCESS; } void tu_DestroyDescriptorPool(VkDevice _device, VkDescriptorPool _pool, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_pool, pool, _pool); if (!pool) return; if (!pool->host_memory_base) { for(int i = 0; i < pool->entry_count; ++i) { tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false); } } if (pool->size) tu_bo_finish(device, &pool->bo); vk_free2(&device->alloc, pAllocator, pool); } VkResult tu_ResetDescriptorPool(VkDevice _device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool); if (!pool->host_memory_base) { for(int i = 0; i < pool->entry_count; ++i) { tu_descriptor_set_destroy(device, pool, pool->entries[i].set, false); } pool->entry_count = 0; } pool->current_offset = 0; pool->host_memory_ptr = pool->host_memory_base; return VK_SUCCESS; } VkResult tu_AllocateDescriptorSets(VkDevice _device, const VkDescriptorSetAllocateInfo *pAllocateInfo, VkDescriptorSet *pDescriptorSets) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_pool, pool, pAllocateInfo->descriptorPool); VkResult result = VK_SUCCESS; uint32_t i; struct tu_descriptor_set *set = NULL; const VkDescriptorSetVariableDescriptorCountAllocateInfoEXT *variable_counts = vk_find_struct_const(pAllocateInfo->pNext, DESCRIPTOR_SET_VARIABLE_DESCRIPTOR_COUNT_ALLOCATE_INFO_EXT); const uint32_t zero = 0; /* allocate a set of buffers for each shader to contain descriptors */ for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) { TU_FROM_HANDLE(tu_descriptor_set_layout, layout, pAllocateInfo->pSetLayouts[i]); const uint32_t *variable_count = NULL; if (variable_counts) { if (i < variable_counts->descriptorSetCount) variable_count = variable_counts->pDescriptorCounts + i; else variable_count = &zero; } assert(!(layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR)); result = tu_descriptor_set_create(device, pool, layout, variable_count, &set); if (result != VK_SUCCESS) break; pDescriptorSets[i] = tu_descriptor_set_to_handle(set); } if (result != VK_SUCCESS) { tu_FreeDescriptorSets(_device, pAllocateInfo->descriptorPool, i, pDescriptorSets); for (i = 0; i < pAllocateInfo->descriptorSetCount; i++) { pDescriptorSets[i] = VK_NULL_HANDLE; } } return result; } VkResult tu_FreeDescriptorSets(VkDevice _device, VkDescriptorPool descriptorPool, uint32_t count, const VkDescriptorSet *pDescriptorSets) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_pool, pool, descriptorPool); for (uint32_t i = 0; i < count; i++) { TU_FROM_HANDLE(tu_descriptor_set, set, pDescriptorSets[i]); if (set && !pool->host_memory_base) tu_descriptor_set_destroy(device, pool, set, true); } return VK_SUCCESS; } static void write_texel_buffer_descriptor(struct tu_device *device, struct tu_cmd_buffer *cmd_buffer, unsigned *dst, struct tu_bo **buffer_list, const VkBufferView _buffer_view) { tu_finishme("texel buffer descriptor"); } static void write_buffer_descriptor(struct tu_device *device, struct tu_cmd_buffer *cmd_buffer, unsigned *dst, struct tu_bo **buffer_list, const VkDescriptorBufferInfo *buffer_info) { TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer); uint64_t va = tu_buffer_iova(buffer) + buffer_info->offset; dst[0] = va; dst[1] = va >> 32; if (cmd_buffer) tu_bo_list_add(&cmd_buffer->bo_list, buffer->bo, MSM_SUBMIT_BO_READ); else *buffer_list = buffer->bo; } static void write_dynamic_buffer_descriptor(struct tu_device *device, struct tu_descriptor_range *range, struct tu_bo **buffer_list, const VkDescriptorBufferInfo *buffer_info) { TU_FROM_HANDLE(tu_buffer, buffer, buffer_info->buffer); uint64_t va = tu_buffer_iova(buffer) + buffer_info->offset; unsigned size = buffer_info->range; if (buffer_info->range == VK_WHOLE_SIZE) size = buffer->size - buffer_info->offset; range->va = va; range->size = size; *buffer_list = buffer->bo; } static void write_image_descriptor(struct tu_device *device, struct tu_cmd_buffer *cmd_buffer, unsigned *dst, struct tu_bo **buffer_list, VkDescriptorType descriptor_type, const VkDescriptorImageInfo *image_info) { TU_FROM_HANDLE(tu_image_view, iview, image_info->imageView); memcpy(dst, iview->descriptor, sizeof(iview->descriptor)); if (descriptor_type == VK_DESCRIPTOR_TYPE_STORAGE_IMAGE) { memcpy(&dst[A6XX_TEX_CONST_DWORDS], iview->storage_descriptor, sizeof(iview->storage_descriptor)); } if (cmd_buffer) tu_bo_list_add(&cmd_buffer->bo_list, iview->image->bo, MSM_SUBMIT_BO_READ); else *buffer_list = iview->image->bo; } static void write_combined_image_sampler_descriptor(struct tu_device *device, struct tu_cmd_buffer *cmd_buffer, unsigned sampler_offset, unsigned *dst, struct tu_bo **buffer_list, VkDescriptorType descriptor_type, const VkDescriptorImageInfo *image_info, bool has_sampler) { TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler); write_image_descriptor(device, cmd_buffer, dst, buffer_list, descriptor_type, image_info); /* copy over sampler state */ if (has_sampler) { memcpy(dst + sampler_offset / sizeof(*dst), sampler, sizeof(*sampler)); } } static void write_sampler_descriptor(struct tu_device *device, unsigned *dst, const VkDescriptorImageInfo *image_info) { TU_FROM_HANDLE(tu_sampler, sampler, image_info->sampler); memcpy(dst, sampler, sizeof(*sampler)); } void tu_update_descriptor_sets(struct tu_device *device, struct tu_cmd_buffer *cmd_buffer, VkDescriptorSet dstSetOverride, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies) { uint32_t i, j; for (i = 0; i < descriptorWriteCount; i++) { const VkWriteDescriptorSet *writeset = &pDescriptorWrites[i]; TU_FROM_HANDLE(tu_descriptor_set, set, dstSetOverride ? dstSetOverride : writeset->dstSet); const struct tu_descriptor_set_binding_layout *binding_layout = set->layout->binding + writeset->dstBinding; uint32_t *ptr = set->mapped_ptr; struct tu_bo **buffer_list = set->descriptors; ptr += binding_layout->offset / 4; ptr += binding_layout->size * writeset->dstArrayElement / 4; buffer_list += binding_layout->buffer_offset; buffer_list += writeset->dstArrayElement; for (j = 0; j < writeset->descriptorCount; ++j) { switch(writeset->descriptorType) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { unsigned idx = writeset->dstArrayElement + j; idx += binding_layout->dynamic_offset_offset; assert(!(set->layout->flags & VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR)); write_dynamic_buffer_descriptor(device, set->dynamic_descriptors + idx, buffer_list, writeset->pBufferInfo + j); break; } case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER: write_buffer_descriptor(device, cmd_buffer, ptr, buffer_list, writeset->pBufferInfo + j); break; case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER: case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: write_texel_buffer_descriptor(device, cmd_buffer, ptr, buffer_list, writeset->pTexelBufferView[j]); break; case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: write_image_descriptor(device, cmd_buffer, ptr, buffer_list, writeset->descriptorType, writeset->pImageInfo + j); break; case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER: write_combined_image_sampler_descriptor(device, cmd_buffer, A6XX_TEX_CONST_DWORDS * 4, ptr, buffer_list, writeset->descriptorType, writeset->pImageInfo + j, !binding_layout->immutable_samplers_offset); break; case VK_DESCRIPTOR_TYPE_SAMPLER: write_sampler_descriptor(device, ptr, writeset->pImageInfo + j); break; default: unreachable("unimplemented descriptor type"); break; } ptr += binding_layout->size / 4; ++buffer_list; } } for (i = 0; i < descriptorCopyCount; i++) { const VkCopyDescriptorSet *copyset = &pDescriptorCopies[i]; TU_FROM_HANDLE(tu_descriptor_set, src_set, copyset->srcSet); TU_FROM_HANDLE(tu_descriptor_set, dst_set, copyset->dstSet); const struct tu_descriptor_set_binding_layout *src_binding_layout = src_set->layout->binding + copyset->srcBinding; const struct tu_descriptor_set_binding_layout *dst_binding_layout = dst_set->layout->binding + copyset->dstBinding; uint32_t *src_ptr = src_set->mapped_ptr; uint32_t *dst_ptr = dst_set->mapped_ptr; struct tu_bo **src_buffer_list = src_set->descriptors; struct tu_bo **dst_buffer_list = dst_set->descriptors; src_ptr += src_binding_layout->offset / 4; dst_ptr += dst_binding_layout->offset / 4; src_ptr += src_binding_layout->size * copyset->srcArrayElement / 4; dst_ptr += dst_binding_layout->size * copyset->dstArrayElement / 4; src_buffer_list += src_binding_layout->buffer_offset; src_buffer_list += copyset->srcArrayElement; dst_buffer_list += dst_binding_layout->buffer_offset; dst_buffer_list += copyset->dstArrayElement; for (j = 0; j < copyset->descriptorCount; ++j) { switch (src_binding_layout->type) { case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC: case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: { unsigned src_idx = copyset->srcArrayElement + j; unsigned dst_idx = copyset->dstArrayElement + j; struct tu_descriptor_range *src_range, *dst_range; src_idx += src_binding_layout->dynamic_offset_offset; dst_idx += dst_binding_layout->dynamic_offset_offset; src_range = src_set->dynamic_descriptors + src_idx; dst_range = dst_set->dynamic_descriptors + dst_idx; *dst_range = *src_range; break; } default: memcpy(dst_ptr, src_ptr, src_binding_layout->size); } src_ptr += src_binding_layout->size / 4; dst_ptr += dst_binding_layout->size / 4; if (src_binding_layout->type != VK_DESCRIPTOR_TYPE_SAMPLER) { /* Sampler descriptors don't have a buffer list. */ dst_buffer_list[j] = src_buffer_list[j]; } } } } void tu_UpdateDescriptorSets(VkDevice _device, uint32_t descriptorWriteCount, const VkWriteDescriptorSet *pDescriptorWrites, uint32_t descriptorCopyCount, const VkCopyDescriptorSet *pDescriptorCopies) { TU_FROM_HANDLE(tu_device, device, _device); tu_update_descriptor_sets(device, NULL, VK_NULL_HANDLE, descriptorWriteCount, pDescriptorWrites, descriptorCopyCount, pDescriptorCopies); } VkResult tu_CreateDescriptorUpdateTemplate( VkDevice _device, const VkDescriptorUpdateTemplateCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDescriptorUpdateTemplate *pDescriptorUpdateTemplate) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_set_layout, set_layout, pCreateInfo->descriptorSetLayout); const uint32_t entry_count = pCreateInfo->descriptorUpdateEntryCount; const size_t size = sizeof(struct tu_descriptor_update_template) + sizeof(struct tu_descriptor_update_template_entry) * entry_count; struct tu_descriptor_update_template *templ; templ = vk_alloc2(&device->alloc, pAllocator, size, 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (!templ) return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); *pDescriptorUpdateTemplate = tu_descriptor_update_template_to_handle(templ); tu_use_args(set_layout); tu_stub(); return VK_SUCCESS; } void tu_DestroyDescriptorUpdateTemplate( VkDevice _device, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_update_template, templ, descriptorUpdateTemplate); if (!templ) return; vk_free2(&device->alloc, pAllocator, templ); } void tu_update_descriptor_set_with_template( struct tu_device *device, struct tu_cmd_buffer *cmd_buffer, struct tu_descriptor_set *set, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void *pData) { TU_FROM_HANDLE(tu_descriptor_update_template, templ, descriptorUpdateTemplate); tu_use_args(templ); } void tu_UpdateDescriptorSetWithTemplate( VkDevice _device, VkDescriptorSet descriptorSet, VkDescriptorUpdateTemplate descriptorUpdateTemplate, const void *pData) { TU_FROM_HANDLE(tu_device, device, _device); TU_FROM_HANDLE(tu_descriptor_set, set, descriptorSet); tu_update_descriptor_set_with_template(device, NULL, set, descriptorUpdateTemplate, pData); } VkResult tu_CreateSamplerYcbcrConversion( VkDevice device, const VkSamplerYcbcrConversionCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkSamplerYcbcrConversion *pYcbcrConversion) { *pYcbcrConversion = VK_NULL_HANDLE; return VK_SUCCESS; } void tu_DestroySamplerYcbcrConversion(VkDevice device, VkSamplerYcbcrConversion ycbcrConversion, const VkAllocationCallbacks *pAllocator) { /* Do nothing. */ }