/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Daniel Schürmann (daniel.schuermann@campus.tu-berlin.de) * */ #include #include "aco_ir.h" #include "aco_builder.h" #include "util/u_math.h" #include "sid.h" namespace aco { struct lower_context { Program *program; std::vector> instructions; }; void emit_dpp_op(lower_context *ctx, PhysReg dst, PhysReg src0, PhysReg src1, PhysReg vtmp, PhysReg wrtmp, aco_opcode op, Format format, bool clobber_vcc, unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask, bool bound_ctrl_zero, unsigned size, Operand *identity=NULL) /* for VOP3 with sparse writes */ { RegClass rc = RegClass(RegType::vgpr, size); if (format == Format::VOP3) { Builder bld(ctx->program, &ctx->instructions); if (identity) bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), identity[0]); if (identity && size >= 2) bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+1}, v1), identity[1]); for (unsigned i = 0; i < size; i++) bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{src0+i}, v1), dpp_ctrl, row_mask, bank_mask, bound_ctrl_zero); if (clobber_vcc) bld.vop3(op, Definition(dst, rc), Definition(vcc, s2), Operand(vtmp, rc), Operand(src1, rc)); else bld.vop3(op, Definition(dst, rc), Operand(vtmp, rc), Operand(src1, rc)); } else { assert(format == Format::VOP2 || format == Format::VOP1); assert(size == 1 || (op == aco_opcode::v_mov_b32)); for (unsigned i = 0; i < size; i++) { aco_ptr dpp{create_instruction( op, (Format) ((uint32_t) format | (uint32_t) Format::DPP), format == Format::VOP2 ? 2 : 1, clobber_vcc ? 2 : 1)}; dpp->operands[0] = Operand(PhysReg{src0+i}, rc); if (format == Format::VOP2) dpp->operands[1] = Operand(PhysReg{src1+i}, rc); dpp->definitions[0] = Definition(PhysReg{dst+i}, rc); if (clobber_vcc) dpp->definitions[1] = Definition(vcc, s2); dpp->dpp_ctrl = dpp_ctrl; dpp->row_mask = row_mask; dpp->bank_mask = bank_mask; dpp->bound_ctrl = bound_ctrl_zero; ctx->instructions.emplace_back(std::move(dpp)); } } } uint32_t get_reduction_identity(ReduceOp op, unsigned idx) { switch (op) { case iadd32: case iadd64: case fadd32: case fadd64: case ior32: case ior64: case ixor32: case ixor64: case umax32: case umax64: return 0; case imul32: case imul64: return idx ? 0 : 1; case fmul32: return 0x3f800000u; /* 1.0 */ case fmul64: return idx ? 0x3ff00000u : 0u; /* 1.0 */ case imin32: return INT32_MAX; case imin64: return idx ? 0x7fffffffu : 0xffffffffu; case imax32: return INT32_MIN; case imax64: return idx ? 0x80000000u : 0; case umin32: case umin64: case iand32: case iand64: return 0xffffffffu; case fmin32: return 0x7f800000u; /* infinity */ case fmin64: return idx ? 0x7ff00000u : 0u; /* infinity */ case fmax32: return 0xff800000u; /* negative infinity */ case fmax64: return idx ? 0xfff00000u : 0u; /* negative infinity */ } unreachable("Invalid reduction operation"); } aco_opcode get_reduction_opcode(lower_context *ctx, ReduceOp op, bool *clobber_vcc, Format *format) { *clobber_vcc = false; *format = Format::VOP2; switch (op) { case iadd32: *clobber_vcc = ctx->program->chip_class < GFX9; return ctx->program->chip_class < GFX9 ? aco_opcode::v_add_co_u32 : aco_opcode::v_add_u32; case imul32: *format = Format::VOP3; return aco_opcode::v_mul_lo_u32; case fadd32: return aco_opcode::v_add_f32; case fmul32: return aco_opcode::v_mul_f32; case imax32: return aco_opcode::v_max_i32; case imin32: return aco_opcode::v_min_i32; case umin32: return aco_opcode::v_min_u32; case umax32: return aco_opcode::v_max_u32; case fmin32: return aco_opcode::v_min_f32; case fmax32: return aco_opcode::v_max_f32; case iand32: return aco_opcode::v_and_b32; case ixor32: return aco_opcode::v_xor_b32; case ior32: return aco_opcode::v_or_b32; case iadd64: case imul64: assert(false); break; case fadd64: *format = Format::VOP3; return aco_opcode::v_add_f64; case fmul64: *format = Format::VOP3; return aco_opcode::v_mul_f64; case imin64: case imax64: case umin64: case umax64: assert(false); break; case fmin64: *format = Format::VOP3; return aco_opcode::v_min_f64; case fmax64: *format = Format::VOP3; return aco_opcode::v_max_f64; case iand64: case ior64: case ixor64: assert(false); break; } unreachable("Invalid reduction operation"); return aco_opcode::v_min_u32; } void emit_vopn(lower_context *ctx, PhysReg dst, PhysReg src0, PhysReg src1, RegClass rc, aco_opcode op, Format format, bool clobber_vcc) { aco_ptr instr; switch (format) { case Format::VOP2: instr.reset(create_instruction(op, format, 2, clobber_vcc ? 2 : 1)); break; case Format::VOP3: instr.reset(create_instruction(op, format, 2, clobber_vcc ? 2 : 1)); break; default: assert(false); } instr->operands[0] = Operand(src0, rc); instr->operands[1] = Operand(src1, rc); instr->definitions[0] = Definition(dst, rc); if (clobber_vcc) instr->definitions[1] = Definition(vcc, s2); ctx->instructions.emplace_back(std::move(instr)); } void emit_reduction(lower_context *ctx, aco_opcode op, ReduceOp reduce_op, unsigned cluster_size, PhysReg tmp, PhysReg stmp, PhysReg vtmp, PhysReg sitmp, Operand src, Definition dst) { assert(cluster_size == 64 || op == aco_opcode::p_reduce); Builder bld(ctx->program, &ctx->instructions); PhysReg wrtmp{0}; /* should never be needed */ Format format; bool should_clobber_vcc; aco_opcode reduce_opcode = get_reduction_opcode(ctx, reduce_op, &should_clobber_vcc, &format); Operand identity[2]; identity[0] = Operand(get_reduction_identity(reduce_op, 0)); identity[1] = Operand(get_reduction_identity(reduce_op, 1)); Operand vcndmask_identity[2] = {identity[0], identity[1]}; /* First, copy the source to tmp and set inactive lanes to the identity */ // note: this clobbers SCC! bld.sop1(aco_opcode::s_or_saveexec_b64, Definition(stmp, s2), Definition(scc, s1), Definition(exec, s2), Operand(UINT64_MAX), Operand(exec, s2)); for (unsigned i = 0; i < src.size(); i++) { /* p_exclusive_scan needs it to be a sgpr or inline constant for the v_writelane_b32 */ if (identity[i].isLiteral() && op == aco_opcode::p_exclusive_scan) { bld.sop1(aco_opcode::s_mov_b32, Definition(PhysReg{sitmp+i}, s1), identity[i]); identity[i] = Operand(PhysReg{sitmp+i}, s1); bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]); vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1); } else if (identity[i].isLiteral()) { bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp+i}, v1), identity[i]); vcndmask_identity[i] = Operand(PhysReg{tmp+i}, v1); } } for (unsigned i = 0; i < src.size(); i++) { bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(PhysReg{tmp + i}, v1), vcndmask_identity[i], Operand(PhysReg{src.physReg() + i}, v1), Operand(stmp, s2)); } bool exec_restored = false; bool dst_written = false; switch (op) { case aco_opcode::p_reduce: if (cluster_size == 1) break; emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_quad_perm(1, 0, 3, 2), 0xf, 0xf, false, src.size()); if (cluster_size == 2) break; emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_quad_perm(2, 3, 0, 1), 0xf, 0xf, false, src.size()); if (cluster_size == 4) break; emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_row_half_mirror, 0xf, 0xf, false, src.size()); if (cluster_size == 8) break; emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_row_mirror, 0xf, 0xf, false, src.size()); if (cluster_size == 16) break; if (cluster_size == 32) { for (unsigned i = 0; i < src.size(); i++) bld.ds(aco_opcode::ds_swizzle_b32, Definition(PhysReg{vtmp+i}, v1), Operand(PhysReg{tmp+i}, s1), ds_pattern_bitmode(0x1f, 0, 0x10)); bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(stmp, s2)); exec_restored = true; emit_vopn(ctx, dst.physReg(), vtmp, tmp, src.regClass(), reduce_opcode, format, should_clobber_vcc); dst_written = true; } else { assert(cluster_size == 64); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_row_bcast15, 0xa, 0xf, false, src.size()); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_row_bcast31, 0xc, 0xf, false, src.size()); } break; case aco_opcode::p_exclusive_scan: emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, aco_opcode::v_mov_b32, Format::VOP1, false, dpp_wf_sr1, 0xf, 0xf, true, src.size()); for (unsigned i = 0; i < src.size(); i++) { if (!identity[i].isConstant() || identity[i].constantValue()) { /* bound_ctrl should take case of this overwise */ assert((identity[i].isConstant() && !identity[i].isLiteral()) || identity[i].physReg() == PhysReg{sitmp+i}); bld.vop3(aco_opcode::v_writelane_b32, Definition(PhysReg{tmp+i}, v1), identity[i], Operand(0u)); } } /* fall through */ case aco_opcode::p_inclusive_scan: assert(cluster_size == 64); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_row_sr(1), 0xf, 0xf, false, src.size(), identity); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_row_sr(2), 0xf, 0xf, false, src.size(), identity); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_row_sr(4), 0xf, 0xf, false, src.size(), identity); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_row_sr(8), 0xf, 0xf, false, src.size(), identity); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_row_bcast15, 0xa, 0xf, false, src.size(), identity); emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, wrtmp, reduce_opcode, format, should_clobber_vcc, dpp_row_bcast31, 0xc, 0xf, false, src.size(), identity); break; default: unreachable("Invalid reduction mode"); } if (!exec_restored) bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(stmp, s2)); if (op == aco_opcode::p_reduce && cluster_size == 64) { for (unsigned k = 0; k < src.size(); k++) { bld.vop3(aco_opcode::v_readlane_b32, Definition(PhysReg{dst.physReg() + k}, s1), Operand(PhysReg{tmp + k}, v1), Operand(63u)); } } else if (!(dst.physReg() == tmp) && !dst_written) { for (unsigned k = 0; k < src.size(); k++) { bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{dst.physReg() + k}, s1), Operand(PhysReg{tmp + k}, v1)); } } } struct copy_operation { Operand op; Definition def; unsigned uses; unsigned size; }; void handle_operands(std::map& copy_map, lower_context* ctx, chip_class chip_class, Pseudo_instruction *pi) { Builder bld(ctx->program, &ctx->instructions); aco_ptr mov; std::map::iterator it = copy_map.begin(); std::map::iterator target; bool writes_scc = false; /* count the number of uses for each dst reg */ while (it != copy_map.end()) { if (it->second.op.isConstant()) { ++it; continue; } if (it->second.def.physReg() == scc) writes_scc = true; assert(!pi->tmp_in_scc || !(it->second.def.physReg() == pi->scratch_sgpr)); /* if src and dst reg are the same, remove operation */ if (it->first == it->second.op.physReg()) { it = copy_map.erase(it); continue; } /* check if the operand reg may be overwritten by another copy operation */ target = copy_map.find(it->second.op.physReg()); if (target != copy_map.end()) { target->second.uses++; } ++it; } /* first, handle paths in the location transfer graph */ bool preserve_scc = pi->tmp_in_scc && !writes_scc; it = copy_map.begin(); while (it != copy_map.end()) { /* the target reg is not used as operand for any other copy */ if (it->second.uses == 0) { /* try to coalesce 32-bit sgpr copies to 64-bit copies */ if (it->second.def.getTemp().type() == RegType::sgpr && it->second.size == 1 && !it->second.op.isConstant() && it->first % 2 == it->second.op.physReg() % 2) { PhysReg other_def_reg = PhysReg{it->first % 2 ? it->first - 1 : it->first + 1}; PhysReg other_op_reg = PhysReg{it->first % 2 ? it->second.op.physReg() - 1 : it->second.op.physReg() + 1}; std::map::iterator other = copy_map.find(other_def_reg); if (other != copy_map.end() && !other->second.uses && other->second.size == 1 && other->second.op.physReg() == other_op_reg && !other->second.op.isConstant()) { std::map::iterator to_erase = it->first % 2 ? it : other; it = it->first % 2 ? other : it; copy_map.erase(to_erase); it->second.size = 2; } } if (it->second.def.physReg() == scc) { bld.sopc(aco_opcode::s_cmp_lg_i32, it->second.def, it->second.op, Operand(0u)); preserve_scc = true; } else if (it->second.size == 2 && it->second.def.getTemp().type() == RegType::sgpr) { bld.sop1(aco_opcode::s_mov_b64, it->second.def, Operand(it->second.op.physReg(), s2)); } else { bld.copy(it->second.def, it->second.op); } /* reduce the number of uses of the operand reg by one */ if (!it->second.op.isConstant()) { for (unsigned i = 0; i < it->second.size; i++) { target = copy_map.find(PhysReg{it->second.op.physReg() + i}); if (target != copy_map.end()) target->second.uses--; } } copy_map.erase(it); it = copy_map.begin(); continue; } else { /* the target reg is used as operand, check the next entry */ ++it; } } if (copy_map.empty()) return; /* all target regs are needed as operand somewhere which means, all entries are part of a cycle */ bool constants = false; for (it = copy_map.begin(); it != copy_map.end(); ++it) { assert(it->second.op.isFixed()); if (it->first == it->second.op.physReg()) continue; /* do constants later */ if (it->second.op.isConstant()) { constants = true; continue; } if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr) assert(!(it->second.def.physReg() == pi->scratch_sgpr)); /* to resolve the cycle, we have to swap the src reg with the dst reg */ copy_operation swap = it->second; assert(swap.op.regClass() == swap.def.regClass()); Operand def_as_op = Operand(swap.def.physReg(), swap.def.regClass()); Definition op_as_def = Definition(swap.op.physReg(), swap.op.regClass()); if (chip_class >= GFX9 && swap.def.getTemp().type() == RegType::vgpr) { bld.vop1(aco_opcode::v_swap_b32, swap.def, op_as_def, swap.op, def_as_op); } else if (swap.op.physReg() == scc || swap.def.physReg() == scc) { /* we need to swap scc and another sgpr */ assert(!preserve_scc); PhysReg other = swap.op.physReg() == scc ? swap.def.physReg() : swap.op.physReg(); bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1)); bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1), Operand(0u)); bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1)); } else if (swap.def.getTemp().type() == RegType::sgpr) { if (preserve_scc) { bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), swap.op); bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op); bld.sop1(aco_opcode::s_mov_b32, swap.def, Operand(pi->scratch_sgpr, s1)); } else { bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op); bld.sop2(aco_opcode::s_xor_b32, swap.def, Definition(scc, s1), swap.op, def_as_op); bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), swap.op, def_as_op); } } else { bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op); bld.vop2(aco_opcode::v_xor_b32, swap.def, swap.op, def_as_op); bld.vop2(aco_opcode::v_xor_b32, op_as_def, swap.op, def_as_op); } /* change the operand reg of the target's use */ assert(swap.uses == 1); target = it; for (++target; target != copy_map.end(); ++target) { if (target->second.op.physReg() == it->first) { target->second.op.setFixed(swap.op.physReg()); break; } } } /* copy constants into a registers which were operands */ if (constants) { for (it = copy_map.begin(); it != copy_map.end(); ++it) { if (!it->second.op.isConstant()) continue; if (it->second.def.physReg() == scc) { bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(0u), Operand(it->second.op.constantValue() ? 1u : 0u)); } else { bld.copy(it->second.def, it->second.op); } } } } void lower_to_hw_instr(Program* program) { Block *discard_block = NULL; for (size_t i = 0; i < program->blocks.size(); i++) { Block *block = &program->blocks[i]; lower_context ctx; ctx.program = program; Builder bld(program, &ctx.instructions); for (size_t j = 0; j < block->instructions.size(); j++) { aco_ptr& instr = block->instructions[j]; aco_ptr mov; if (instr->format == Format::PSEUDO) { Pseudo_instruction *pi = (Pseudo_instruction*)instr.get(); switch (instr->opcode) { case aco_opcode::p_extract_vector: { unsigned reg = instr->operands[0].physReg() + instr->operands[1].constantValue() * instr->definitions[0].size(); RegClass rc = RegClass(instr->operands[0].getTemp().type(), 1); RegClass rc_def = RegClass(instr->definitions[0].getTemp().type(), 1); if (reg == instr->definitions[0].physReg()) break; std::map copy_operations; for (unsigned i = 0; i < instr->definitions[0].size(); i++) { Definition def = Definition(PhysReg{instr->definitions[0].physReg() + i}, rc_def); copy_operations[def.physReg()] = {Operand(PhysReg{reg + i}, rc), def, 0, 1}; } handle_operands(copy_operations, &ctx, program->chip_class, pi); break; } case aco_opcode::p_create_vector: { std::map copy_operations; RegClass rc_def = RegClass(instr->definitions[0].getTemp().type(), 1); unsigned reg_idx = 0; for (const Operand& op : instr->operands) { if (op.isConstant()) { const PhysReg reg = PhysReg{instr->definitions[0].physReg() + reg_idx}; const Definition def = Definition(reg, rc_def); copy_operations[reg] = {op, def, 0, 1}; reg_idx++; continue; } RegClass rc_op = RegClass(op.getTemp().type(), 1); for (unsigned j = 0; j < op.size(); j++) { const Operand copy_op = Operand(PhysReg{op.physReg() + j}, rc_op); const Definition def = Definition(PhysReg{instr->definitions[0].physReg() + reg_idx}, rc_def); copy_operations[def.physReg()] = {copy_op, def, 0, 1}; reg_idx++; } } handle_operands(copy_operations, &ctx, program->chip_class, pi); break; } case aco_opcode::p_split_vector: { std::map copy_operations; RegClass rc_op = instr->operands[0].isConstant() ? s1 : RegClass(instr->operands[0].regClass().type(), 1); for (unsigned i = 0; i < instr->definitions.size(); i++) { unsigned k = instr->definitions[i].size(); RegClass rc_def = RegClass(instr->definitions[i].getTemp().type(), 1); for (unsigned j = 0; j < k; j++) { Operand op = Operand(PhysReg{instr->operands[0].physReg() + (i*k+j)}, rc_op); Definition def = Definition(PhysReg{instr->definitions[i].physReg() + j}, rc_def); copy_operations[def.physReg()] = {op, def, 0, 1}; } } handle_operands(copy_operations, &ctx, program->chip_class, pi); break; } case aco_opcode::p_parallelcopy: case aco_opcode::p_wqm: { std::map copy_operations; for (unsigned i = 0; i < instr->operands.size(); i++) { Operand operand = instr->operands[i]; if (operand.isConstant() || operand.size() == 1) { assert(instr->definitions[i].size() == 1); copy_operations[instr->definitions[i].physReg()] = {operand, instr->definitions[i], 0, 1}; } else { RegClass def_rc = RegClass(instr->definitions[i].regClass().type(), 1); RegClass op_rc = RegClass(operand.getTemp().type(), 1); for (unsigned j = 0; j < operand.size(); j++) { Operand op = Operand(PhysReg{instr->operands[i].physReg() + j}, op_rc); Definition def = Definition(PhysReg{instr->definitions[i].physReg() + j}, def_rc); copy_operations[def.physReg()] = {op, def, 0, 1}; } } } handle_operands(copy_operations, &ctx, program->chip_class, pi); break; } case aco_opcode::p_discard_if: { bool early_exit = false; if (block->instructions[j + 1]->opcode != aco_opcode::p_logical_end || block->instructions[j + 2]->opcode != aco_opcode::s_endpgm) { early_exit = true; } if (early_exit && !discard_block) { discard_block = program->create_and_insert_block(); block = &program->blocks[i]; bld.reset(discard_block); bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1), 0, V_008DFC_SQ_EXP_NULL, false, true, true); if (program->wb_smem_l1_on_end) bld.smem(aco_opcode::s_dcache_wb); bld.sopp(aco_opcode::s_endpgm); bld.reset(&ctx.instructions); } // TODO: optimize uniform conditions Definition branch_cond = instr->definitions.back(); Operand discard_cond = instr->operands.back(); aco_ptr sop2; /* backwards, to finally branch on the global exec mask */ for (int i = instr->operands.size() - 2; i >= 0; i--) { bld.sop2(aco_opcode::s_andn2_b64, instr->definitions[i], /* new mask */ branch_cond, /* scc */ instr->operands[i], /* old mask */ discard_cond); } if (early_exit) { bld.sopp(aco_opcode::s_cbranch_scc0, bld.scc(branch_cond.getTemp()), discard_block->index); discard_block->linear_preds.push_back(block->index); block->linear_succs.push_back(discard_block->index); } break; } case aco_opcode::p_spill: { assert(instr->operands[0].regClass() == v1.as_linear()); for (unsigned i = 0; i < instr->operands[2].size(); i++) { bld.vop3(aco_opcode::v_writelane_b32, bld.def(v1, instr->operands[0].physReg()), Operand(PhysReg{instr->operands[2].physReg() + i}, s1), Operand(instr->operands[1].constantValue() + i)); } break; } case aco_opcode::p_reload: { assert(instr->operands[0].regClass() == v1.as_linear()); for (unsigned i = 0; i < instr->definitions[0].size(); i++) { bld.vop3(aco_opcode::v_readlane_b32, bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}), instr->operands[0], Operand(instr->operands[1].constantValue() + i)); } break; } case aco_opcode::p_as_uniform: { if (instr->operands[0].isConstant() || instr->operands[0].regClass().type() == RegType::sgpr) { std::map copy_operations; Operand operand = instr->operands[0]; if (operand.isConstant() || operand.size() == 1) { assert(instr->definitions[0].size() == 1); copy_operations[instr->definitions[0].physReg()] = {operand, instr->definitions[0], 0, 1}; } else { for (unsigned i = 0; i < operand.size(); i++) { Operand op = Operand(PhysReg{operand.physReg() + i}, s1); Definition def = Definition(PhysReg{instr->definitions[0].physReg() + i}, s1); copy_operations[def.physReg()] = {op, def, 0, 1}; } } handle_operands(copy_operations, &ctx, program->chip_class, pi); } else { assert(instr->operands[0].regClass().type() == RegType::vgpr); assert(instr->definitions[0].regClass().type() == RegType::sgpr); assert(instr->operands[0].size() == instr->definitions[0].size()); for (unsigned i = 0; i < instr->definitions[0].size(); i++) { bld.vop1(aco_opcode::v_readfirstlane_b32, bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}), Operand(PhysReg{instr->operands[0].physReg() + i}, v1)); } } break; } default: break; } } else if (instr->format == Format::PSEUDO_BRANCH) { Pseudo_branch_instruction* branch = static_cast(instr.get()); /* check if all blocks from current to target are empty */ bool can_remove = block->index < branch->target[0]; for (unsigned i = block->index + 1; can_remove && i < branch->target[0]; i++) { if (program->blocks[i].instructions.size()) can_remove = false; } if (can_remove) continue; switch (instr->opcode) { case aco_opcode::p_branch: assert(block->linear_succs[0] == branch->target[0]); bld.sopp(aco_opcode::s_branch, branch->target[0]); break; case aco_opcode::p_cbranch_nz: assert(block->linear_succs[1] == branch->target[0]); if (branch->operands[0].physReg() == exec) bld.sopp(aco_opcode::s_cbranch_execnz, branch->target[0]); else if (branch->operands[0].physReg() == vcc) bld.sopp(aco_opcode::s_cbranch_vccnz, branch->target[0]); else { assert(branch->operands[0].physReg() == scc); bld.sopp(aco_opcode::s_cbranch_scc1, branch->target[0]); } break; case aco_opcode::p_cbranch_z: assert(block->linear_succs[1] == branch->target[0]); if (branch->operands[0].physReg() == exec) bld.sopp(aco_opcode::s_cbranch_execz, branch->target[0]); else if (branch->operands[0].physReg() == vcc) bld.sopp(aco_opcode::s_cbranch_vccz, branch->target[0]); else { assert(branch->operands[0].physReg() == scc); bld.sopp(aco_opcode::s_cbranch_scc0, branch->target[0]); } break; default: unreachable("Unknown Pseudo branch instruction!"); } } else if (instr->format == Format::PSEUDO_REDUCTION) { Pseudo_reduction_instruction* reduce = static_cast(instr.get()); emit_reduction(&ctx, reduce->opcode, reduce->reduce_op, reduce->cluster_size, reduce->operands[1].physReg(), // tmp reduce->definitions[1].physReg(), // stmp reduce->operands[2].physReg(), // vtmp reduce->definitions[2].physReg(), // sitmp reduce->operands[0], reduce->definitions[0]); } else { ctx.instructions.emplace_back(std::move(instr)); } } block->instructions.swap(ctx.instructions); } } }