/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_instruction_selection.h" #include "common/ac_nir.h" #include "common/sid.h" #include "nir_control_flow.h" #include namespace aco { namespace { bool is_loop_header_block(nir_block* block) { return block->cf_node.parent->type == nir_cf_node_loop && block == nir_loop_first_block(nir_cf_node_as_loop(block->cf_node.parent)); } /* similar to nir_block_is_unreachable(), but does not require dominance information */ bool is_block_reachable(nir_function_impl* impl, nir_block* known_reachable, nir_block* block) { if (block == nir_start_block(impl) || block == known_reachable) return true; /* skip loop back-edges */ if (is_loop_header_block(block)) { nir_loop* loop = nir_cf_node_as_loop(block->cf_node.parent); nir_block* preheader = nir_block_cf_tree_prev(nir_loop_first_block(loop)); return is_block_reachable(impl, known_reachable, preheader); } set_foreach (block->predecessors, entry) { if (is_block_reachable(impl, known_reachable, (nir_block*)entry->key)) return true; } return false; } /* Check whether the given SSA def is only used by cross-lane instructions. */ bool only_used_by_cross_lane_instrs(nir_ssa_def* ssa, bool follow_phis = true) { nir_foreach_use (src, ssa) { switch (src->parent_instr->type) { case nir_instr_type_alu: { nir_alu_instr* alu = nir_instr_as_alu(src->parent_instr); if (alu->op != nir_op_unpack_64_2x32_split_x && alu->op != nir_op_unpack_64_2x32_split_y) return false; if (!only_used_by_cross_lane_instrs(&alu->dest.dest.ssa, follow_phis)) return false; continue; } case nir_instr_type_intrinsic: { nir_intrinsic_instr* intrin = nir_instr_as_intrinsic(src->parent_instr); if (intrin->intrinsic != nir_intrinsic_read_invocation && intrin->intrinsic != nir_intrinsic_read_first_invocation && intrin->intrinsic != nir_intrinsic_lane_permute_16_amd) return false; continue; } case nir_instr_type_phi: { /* Don't follow more than 1 phis, this avoids infinite loops. */ if (!follow_phis) return false; nir_phi_instr* phi = nir_instr_as_phi(src->parent_instr); if (!only_used_by_cross_lane_instrs(&phi->dest.ssa, false)) return false; continue; } default: return false; } } return true; } /* If one side of a divergent IF ends in a branch and the other doesn't, we * might have to emit the contents of the side without the branch at the merge * block instead. This is so that we can use any SGPR live-out of the side * without the branch without creating a linear phi in the invert or merge block. */ bool sanitize_if(nir_function_impl* impl, nir_if* nif) { // TODO: skip this if the condition is uniform and there are no divergent breaks/continues? nir_block* then_block = nir_if_last_then_block(nif); nir_block* else_block = nir_if_last_else_block(nif); bool then_jump = nir_block_ends_in_jump(then_block) || !is_block_reachable(impl, nir_if_first_then_block(nif), then_block); bool else_jump = nir_block_ends_in_jump(else_block) || !is_block_reachable(impl, nir_if_first_else_block(nif), else_block); if (then_jump == else_jump) return false; /* If the continue from block is empty then return as there is nothing to * move. */ if (nir_cf_list_is_empty_block(else_jump ? &nif->then_list : &nif->else_list)) return false; /* Even though this if statement has a jump on one side, we may still have * phis afterwards. Single-source phis can be produced by loop unrolling * or dead control-flow passes and are perfectly legal. Run a quick phi * removal on the block after the if to clean up any such phis. */ nir_opt_remove_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node))); /* Finally, move the continue from branch after the if-statement. */ nir_block* last_continue_from_blk = else_jump ? then_block : else_block; nir_block* first_continue_from_blk = else_jump ? nir_if_first_then_block(nif) : nir_if_first_else_block(nif); nir_cf_list tmp; nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk), nir_after_block(last_continue_from_blk)); nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node)); return true; } bool sanitize_cf_list(nir_function_impl* impl, struct exec_list* cf_list) { bool progress = false; foreach_list_typed (nir_cf_node, cf_node, node, cf_list) { switch (cf_node->type) { case nir_cf_node_block: break; case nir_cf_node_if: { nir_if* nif = nir_cf_node_as_if(cf_node); progress |= sanitize_cf_list(impl, &nif->then_list); progress |= sanitize_cf_list(impl, &nif->else_list); progress |= sanitize_if(impl, nif); break; } case nir_cf_node_loop: { nir_loop* loop = nir_cf_node_as_loop(cf_node); assert(!nir_loop_has_continue_construct(loop)); progress |= sanitize_cf_list(impl, &loop->body); break; } case nir_cf_node_function: unreachable("Invalid cf type"); } } return progress; } void apply_nuw_to_ssa(isel_context* ctx, nir_ssa_def* ssa) { nir_ssa_scalar scalar; scalar.def = ssa; scalar.comp = 0; if (!nir_ssa_scalar_is_alu(scalar) || nir_ssa_scalar_alu_op(scalar) != nir_op_iadd) return; nir_alu_instr* add = nir_instr_as_alu(ssa->parent_instr); if (add->no_unsigned_wrap) return; nir_ssa_scalar src0 = nir_ssa_scalar_chase_alu_src(scalar, 0); nir_ssa_scalar src1 = nir_ssa_scalar_chase_alu_src(scalar, 1); if (nir_ssa_scalar_is_const(src0)) { nir_ssa_scalar tmp = src0; src0 = src1; src1 = tmp; } uint32_t src1_ub = nir_unsigned_upper_bound(ctx->shader, ctx->range_ht, src1, &ctx->ub_config); add->no_unsigned_wrap = !nir_addition_might_overflow(ctx->shader, ctx->range_ht, src0, src1_ub, &ctx->ub_config); } void apply_nuw_to_offsets(isel_context* ctx, nir_function_impl* impl) { nir_foreach_block (block, impl) { nir_foreach_instr (instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr* intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_load_constant: case nir_intrinsic_load_uniform: case nir_intrinsic_load_push_constant: if (!nir_src_is_divergent(intrin->src[0])) apply_nuw_to_ssa(ctx, intrin->src[0].ssa); break; case nir_intrinsic_load_ubo: case nir_intrinsic_load_ssbo: if (!nir_src_is_divergent(intrin->src[1])) apply_nuw_to_ssa(ctx, intrin->src[1].ssa); break; case nir_intrinsic_store_ssbo: if (!nir_src_is_divergent(intrin->src[2])) apply_nuw_to_ssa(ctx, intrin->src[2].ssa); break; case nir_intrinsic_load_scratch: apply_nuw_to_ssa(ctx, intrin->src[0].ssa); break; case nir_intrinsic_store_scratch: case nir_intrinsic_load_smem_amd: apply_nuw_to_ssa(ctx, intrin->src[1].ssa); break; default: break; } } } } RegClass get_reg_class(isel_context* ctx, RegType type, unsigned components, unsigned bitsize) { if (bitsize == 1) return RegClass(RegType::sgpr, ctx->program->lane_mask.size() * components); else return RegClass::get(type, components * bitsize / 8u); } void setup_tcs_info(isel_context* ctx, nir_shader* nir, nir_shader* vs) { ctx->tcs_in_out_eq = ctx->program->info.vs.tcs_in_out_eq; ctx->tcs_temp_only_inputs = ctx->program->info.vs.tcs_temp_only_input_mask; } void setup_lds_size(isel_context* ctx, nir_shader* nir) { /* TCS and GFX9 GS are special cases, already in units of the allocation granule. */ if (ctx->stage.has(SWStage::TCS)) ctx->program->config->lds_size = ctx->program->info.tcs.num_lds_blocks; else if (ctx->stage == vertex_geometry_gs || ctx->stage == tess_eval_geometry_gs) ctx->program->config->lds_size = ctx->program->info.gfx9_gs_ring_lds_size; else ctx->program->config->lds_size = DIV_ROUND_UP(nir->info.shared_size, ctx->program->dev.lds_encoding_granule); /* Make sure we fit the available LDS space. */ assert((ctx->program->config->lds_size * ctx->program->dev.lds_encoding_granule) <= ctx->program->dev.lds_limit); } void setup_nir(isel_context* ctx, nir_shader* nir) { nir_convert_to_lcssa(nir, true, false); nir_lower_phis_to_scalar(nir, true); nir_function_impl* func = nir_shader_get_entrypoint(nir); nir_index_ssa_defs(func); } } /* end namespace */ void init_context(isel_context* ctx, nir_shader* shader) { nir_function_impl* impl = nir_shader_get_entrypoint(shader); ctx->shader = shader; /* Init NIR range analysis. */ ctx->range_ht = _mesa_pointer_hash_table_create(NULL); ctx->ub_config.min_subgroup_size = 64; ctx->ub_config.max_subgroup_size = 64; if (ctx->shader->info.stage == MESA_SHADER_COMPUTE && ctx->program->info.cs.subgroup_size) { ctx->ub_config.min_subgroup_size = ctx->program->info.cs.subgroup_size; ctx->ub_config.max_subgroup_size = ctx->program->info.cs.subgroup_size; } ctx->ub_config.max_workgroup_invocations = 2048; ctx->ub_config.max_workgroup_count[0] = 65535; ctx->ub_config.max_workgroup_count[1] = 65535; ctx->ub_config.max_workgroup_count[2] = 65535; ctx->ub_config.max_workgroup_size[0] = 2048; ctx->ub_config.max_workgroup_size[1] = 2048; ctx->ub_config.max_workgroup_size[2] = 2048; nir_divergence_analysis(shader); nir_opt_uniform_atomics(shader); apply_nuw_to_offsets(ctx, impl); /* sanitize control flow */ sanitize_cf_list(impl, &impl->body); nir_metadata_preserve(impl, nir_metadata_none); /* we'll need these for isel */ nir_metadata_require(impl, nir_metadata_block_index); if (ctx->options->dump_preoptir) { fprintf(stderr, "NIR shader before instruction selection:\n"); nir_print_shader(shader, stderr); } ctx->first_temp_id = ctx->program->peekAllocationId(); ctx->program->allocateRange(impl->ssa_alloc); RegClass* regclasses = ctx->program->temp_rc.data() + ctx->first_temp_id; std::unique_ptr nir_to_aco{new unsigned[impl->num_blocks]()}; /* TODO: make this recursive to improve compile times */ bool done = false; while (!done) { done = true; nir_foreach_block (block, impl) { nir_foreach_instr (instr, block) { switch (instr->type) { case nir_instr_type_alu: { nir_alu_instr* alu_instr = nir_instr_as_alu(instr); RegType type = nir_dest_is_divergent(alu_instr->dest.dest) ? RegType::vgpr : RegType::sgpr; switch (alu_instr->op) { case nir_op_fmul: case nir_op_fmulz: case nir_op_fadd: case nir_op_fsub: case nir_op_ffma: case nir_op_ffmaz: case nir_op_fmax: case nir_op_fmin: case nir_op_fneg: case nir_op_fabs: case nir_op_fsat: case nir_op_fsign: case nir_op_frcp: case nir_op_frsq: case nir_op_fsqrt: case nir_op_fexp2: case nir_op_flog2: case nir_op_ffract: case nir_op_ffloor: case nir_op_fceil: case nir_op_ftrunc: case nir_op_fround_even: case nir_op_fsin_amd: case nir_op_fcos_amd: case nir_op_f2f16: case nir_op_f2f16_rtz: case nir_op_f2f16_rtne: case nir_op_f2f32: case nir_op_f2f64: case nir_op_u2f16: case nir_op_u2f32: case nir_op_u2f64: case nir_op_i2f16: case nir_op_i2f32: case nir_op_i2f64: case nir_op_pack_half_2x16_rtz_split: case nir_op_pack_half_2x16_split: case nir_op_pack_unorm_2x16: case nir_op_pack_snorm_2x16: case nir_op_pack_uint_2x16: case nir_op_pack_sint_2x16: case nir_op_unpack_half_2x16_split_x: case nir_op_unpack_half_2x16_split_y: case nir_op_fddx: case nir_op_fddy: case nir_op_fddx_fine: case nir_op_fddy_fine: case nir_op_fddx_coarse: case nir_op_fddy_coarse: case nir_op_fquantize2f16: case nir_op_ldexp: case nir_op_frexp_sig: case nir_op_frexp_exp: case nir_op_cube_face_index_amd: case nir_op_cube_face_coord_amd: case nir_op_sad_u8x4: case nir_op_udot_4x8_uadd: case nir_op_sdot_4x8_iadd: case nir_op_sudot_4x8_iadd: case nir_op_udot_4x8_uadd_sat: case nir_op_sdot_4x8_iadd_sat: case nir_op_sudot_4x8_iadd_sat: case nir_op_udot_2x16_uadd: case nir_op_sdot_2x16_iadd: case nir_op_udot_2x16_uadd_sat: case nir_op_sdot_2x16_iadd_sat: type = RegType::vgpr; break; case nir_op_f2i16: case nir_op_f2u16: case nir_op_f2i32: case nir_op_f2u32: case nir_op_f2i64: case nir_op_f2u64: case nir_op_b2i8: case nir_op_b2i16: case nir_op_b2i32: case nir_op_b2i64: case nir_op_b2b32: case nir_op_b2f16: case nir_op_b2f32: case nir_op_mov: break; case nir_op_iabs: case nir_op_iadd: case nir_op_iadd_sat: case nir_op_uadd_sat: case nir_op_isub: case nir_op_isub_sat: case nir_op_usub_sat: case nir_op_imul: case nir_op_imin: case nir_op_imax: case nir_op_umin: case nir_op_umax: case nir_op_ishl: case nir_op_ishr: case nir_op_ushr: /* packed 16bit instructions have to be VGPR */ type = alu_instr->dest.dest.ssa.num_components == 2 ? RegType::vgpr : type; FALLTHROUGH; default: for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) { if (regclasses[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr) type = RegType::vgpr; } break; } RegClass rc = get_reg_class(ctx, type, alu_instr->dest.dest.ssa.num_components, alu_instr->dest.dest.ssa.bit_size); regclasses[alu_instr->dest.dest.ssa.index] = rc; break; } case nir_instr_type_load_const: { unsigned num_components = nir_instr_as_load_const(instr)->def.num_components; unsigned bit_size = nir_instr_as_load_const(instr)->def.bit_size; RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size); regclasses[nir_instr_as_load_const(instr)->def.index] = rc; break; } case nir_instr_type_intrinsic: { nir_intrinsic_instr* intrinsic = nir_instr_as_intrinsic(instr); if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest) break; RegType type = RegType::sgpr; switch (intrinsic->intrinsic) { case nir_intrinsic_load_push_constant: case nir_intrinsic_load_workgroup_id: case nir_intrinsic_load_num_workgroups: case nir_intrinsic_load_ray_launch_size: case nir_intrinsic_load_ray_launch_size_addr_amd: case nir_intrinsic_load_sbt_base_amd: case nir_intrinsic_load_subgroup_id: case nir_intrinsic_load_num_subgroups: case nir_intrinsic_load_first_vertex: case nir_intrinsic_load_base_instance: case nir_intrinsic_vote_all: case nir_intrinsic_vote_any: case nir_intrinsic_read_first_invocation: case nir_intrinsic_read_invocation: case nir_intrinsic_first_invocation: case nir_intrinsic_ballot: case nir_intrinsic_bindless_image_samples: case nir_intrinsic_load_force_vrs_rates_amd: case nir_intrinsic_load_scalar_arg_amd: case nir_intrinsic_load_smem_amd: type = RegType::sgpr; break; case nir_intrinsic_load_sample_id: case nir_intrinsic_load_input: case nir_intrinsic_load_output: case nir_intrinsic_load_input_vertex: case nir_intrinsic_load_per_vertex_input: case nir_intrinsic_load_per_vertex_output: case nir_intrinsic_load_vertex_id_zero_base: case nir_intrinsic_load_barycentric_sample: case nir_intrinsic_load_barycentric_pixel: case nir_intrinsic_load_barycentric_model: case nir_intrinsic_load_barycentric_centroid: case nir_intrinsic_load_barycentric_at_sample: case nir_intrinsic_load_barycentric_at_offset: case nir_intrinsic_load_interpolated_input: case nir_intrinsic_load_frag_coord: case nir_intrinsic_load_frag_shading_rate: case nir_intrinsic_load_sample_pos: case nir_intrinsic_load_local_invocation_id: case nir_intrinsic_load_local_invocation_index: case nir_intrinsic_load_subgroup_invocation: case nir_intrinsic_load_ray_launch_id: case nir_intrinsic_load_tess_coord: case nir_intrinsic_write_invocation_amd: case nir_intrinsic_mbcnt_amd: case nir_intrinsic_lane_permute_16_amd: case nir_intrinsic_load_instance_id: case nir_intrinsic_ssbo_atomic: case nir_intrinsic_ssbo_atomic_swap: case nir_intrinsic_global_atomic_amd: case nir_intrinsic_global_atomic_swap_amd: case nir_intrinsic_bindless_image_atomic: case nir_intrinsic_bindless_image_atomic_swap: case nir_intrinsic_bindless_image_size: case nir_intrinsic_shared_atomic: case nir_intrinsic_shared_atomic_swap: case nir_intrinsic_load_scratch: case nir_intrinsic_load_invocation_id: case nir_intrinsic_load_primitive_id: case nir_intrinsic_load_typed_buffer_amd: case nir_intrinsic_load_buffer_amd: case nir_intrinsic_load_initial_edgeflags_amd: case nir_intrinsic_gds_atomic_add_amd: case nir_intrinsic_bvh64_intersect_ray_amd: case nir_intrinsic_load_vector_arg_amd: case nir_intrinsic_load_rt_dynamic_callable_stack_base_amd: case nir_intrinsic_ordered_xfb_counter_add_amd: type = RegType::vgpr; break; case nir_intrinsic_load_shared: case nir_intrinsic_load_shared2_amd: /* When the result of these loads is only used by cross-lane instructions, * it is beneficial to use a VGPR destination. This is because this allows * to put the s_waitcnt further down, which decreases latency. */ if (only_used_by_cross_lane_instrs(&intrinsic->dest.ssa)) { type = RegType::vgpr; break; } FALLTHROUGH; case nir_intrinsic_shuffle: case nir_intrinsic_quad_broadcast: case nir_intrinsic_quad_swap_horizontal: case nir_intrinsic_quad_swap_vertical: case nir_intrinsic_quad_swap_diagonal: case nir_intrinsic_quad_swizzle_amd: case nir_intrinsic_masked_swizzle_amd: case nir_intrinsic_inclusive_scan: case nir_intrinsic_exclusive_scan: case nir_intrinsic_reduce: case nir_intrinsic_load_ubo: case nir_intrinsic_load_ssbo: case nir_intrinsic_load_global_amd: type = nir_dest_is_divergent(intrinsic->dest) ? RegType::vgpr : RegType::sgpr; break; case nir_intrinsic_load_view_index: type = ctx->stage == fragment_fs ? RegType::vgpr : RegType::sgpr; break; default: for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) { if (regclasses[intrinsic->src[i].ssa->index].type() == RegType::vgpr) type = RegType::vgpr; } break; } RegClass rc = get_reg_class(ctx, type, intrinsic->dest.ssa.num_components, intrinsic->dest.ssa.bit_size); regclasses[intrinsic->dest.ssa.index] = rc; break; } case nir_instr_type_tex: { nir_tex_instr* tex = nir_instr_as_tex(instr); RegType type = nir_dest_is_divergent(tex->dest) ? RegType::vgpr : RegType::sgpr; if (tex->op == nir_texop_texture_samples) { assert(!tex->dest.ssa.divergent); } RegClass rc = get_reg_class(ctx, type, tex->dest.ssa.num_components, tex->dest.ssa.bit_size); regclasses[tex->dest.ssa.index] = rc; break; } case nir_instr_type_parallel_copy: { nir_foreach_parallel_copy_entry (entry, nir_instr_as_parallel_copy(instr)) { regclasses[entry->dest.ssa.index] = regclasses[entry->src.ssa->index]; } break; } case nir_instr_type_ssa_undef: { unsigned num_components = nir_instr_as_ssa_undef(instr)->def.num_components; unsigned bit_size = nir_instr_as_ssa_undef(instr)->def.bit_size; RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size); regclasses[nir_instr_as_ssa_undef(instr)->def.index] = rc; break; } case nir_instr_type_phi: { nir_phi_instr* phi = nir_instr_as_phi(instr); RegType type = RegType::sgpr; unsigned num_components = phi->dest.ssa.num_components; assert((phi->dest.ssa.bit_size != 1 || num_components == 1) && "Multiple components not supported on boolean phis."); if (nir_dest_is_divergent(phi->dest)) { type = RegType::vgpr; } else { nir_foreach_phi_src (src, phi) { if (regclasses[src->src.ssa->index].type() == RegType::vgpr) type = RegType::vgpr; } } RegClass rc = get_reg_class(ctx, type, num_components, phi->dest.ssa.bit_size); if (rc != regclasses[phi->dest.ssa.index]) done = false; regclasses[phi->dest.ssa.index] = rc; break; } default: break; } } } } ctx->program->config->spi_ps_input_ena = ctx->program->info.ps.spi_ps_input; ctx->program->config->spi_ps_input_addr = ctx->program->info.ps.spi_ps_input; ctx->cf_info.nir_to_aco = std::move(nir_to_aco); /* align and copy constant data */ while (ctx->program->constant_data.size() % 4u) ctx->program->constant_data.push_back(0); ctx->constant_data_offset = ctx->program->constant_data.size(); ctx->program->constant_data.insert(ctx->program->constant_data.end(), (uint8_t*)shader->constant_data, (uint8_t*)shader->constant_data + shader->constant_data_size); } void cleanup_context(isel_context* ctx) { _mesa_hash_table_destroy(ctx->range_ht, NULL); } isel_context setup_isel_context(Program* program, unsigned shader_count, struct nir_shader* const* shaders, ac_shader_config* config, const struct aco_compiler_options* options, const struct aco_shader_info* info, const struct ac_shader_args* args, bool is_ps_epilog) { SWStage sw_stage = SWStage::None; for (unsigned i = 0; i < shader_count; i++) { switch (shaders[i]->info.stage) { case MESA_SHADER_VERTEX: sw_stage = sw_stage | SWStage::VS; break; case MESA_SHADER_TESS_CTRL: sw_stage = sw_stage | SWStage::TCS; break; case MESA_SHADER_TESS_EVAL: sw_stage = sw_stage | SWStage::TES; break; case MESA_SHADER_GEOMETRY: sw_stage = sw_stage | SWStage::GS; break; case MESA_SHADER_FRAGMENT: sw_stage = sw_stage | SWStage::FS; break; case MESA_SHADER_COMPUTE: sw_stage = sw_stage | SWStage::CS; break; case MESA_SHADER_TASK: sw_stage = sw_stage | SWStage::TS; break; case MESA_SHADER_MESH: sw_stage = sw_stage | SWStage::MS; break; case MESA_SHADER_RAYGEN: case MESA_SHADER_CLOSEST_HIT: case MESA_SHADER_MISS: case MESA_SHADER_CALLABLE: case MESA_SHADER_INTERSECTION: case MESA_SHADER_ANY_HIT: sw_stage = SWStage::RT; break; default: unreachable("Shader stage not implemented"); } } if (is_ps_epilog) { assert(shader_count == 0 && !shaders); sw_stage = SWStage::FS; } bool gfx9_plus = options->gfx_level >= GFX9; bool ngg = info->is_ngg && options->gfx_level >= GFX10; HWStage hw_stage{}; if (sw_stage == SWStage::VS && info->vs.as_es && !ngg) hw_stage = HWStage::ES; else if (sw_stage == SWStage::VS && !info->vs.as_ls && !ngg) hw_stage = HWStage::VS; else if (sw_stage == SWStage::VS && ngg) hw_stage = HWStage::NGG; /* GFX10/NGG: VS without GS uses the HW GS stage */ else if (sw_stage == SWStage::GS) hw_stage = HWStage::GS; else if (sw_stage == SWStage::FS) hw_stage = HWStage::FS; else if (sw_stage == SWStage::CS) hw_stage = HWStage::CS; else if (sw_stage == SWStage::TS) hw_stage = HWStage::CS; /* Task shaders are implemented with compute shaders. */ else if (sw_stage == SWStage::MS) hw_stage = HWStage::NGG; /* Mesh shaders only work on NGG and on GFX10.3+. */ else if (sw_stage == SWStage::VS_GS && gfx9_plus && !ngg) hw_stage = HWStage::GS; /* GFX6-9: VS+GS merged into a GS (and GFX10/legacy) */ else if (sw_stage == SWStage::VS_GS && ngg) hw_stage = HWStage::NGG; /* GFX10+: VS+GS merged into an NGG GS */ else if (sw_stage == SWStage::VS && info->vs.as_ls) hw_stage = HWStage::LS; /* GFX6-8: VS is a Local Shader, when tessellation is used */ else if (sw_stage == SWStage::TCS) hw_stage = HWStage::HS; /* GFX6-8: TCS is a Hull Shader */ else if (sw_stage == SWStage::VS_TCS) hw_stage = HWStage::HS; /* GFX9-10: VS+TCS merged into a Hull Shader */ else if (sw_stage == SWStage::TES && !info->tes.as_es && !ngg) hw_stage = HWStage::VS; /* GFX6-9: TES without GS uses the HW VS stage (and GFX10/legacy) */ else if (sw_stage == SWStage::TES && !info->tes.as_es && ngg) hw_stage = HWStage::NGG; /* GFX10/NGG: TES without GS */ else if (sw_stage == SWStage::TES && info->tes.as_es && !ngg) hw_stage = HWStage::ES; /* GFX6-8: TES is an Export Shader */ else if (sw_stage == SWStage::TES_GS && gfx9_plus && !ngg) hw_stage = HWStage::GS; /* GFX9: TES+GS merged into a GS (and GFX10/legacy) */ else if (sw_stage == SWStage::TES_GS && ngg) hw_stage = HWStage::NGG; /* GFX10+: TES+GS merged into an NGG GS */ else if (sw_stage == SWStage::RT) hw_stage = HWStage::CS; /* Raytracing shaders run as CS */ else unreachable("Shader stage not implemented"); init_program(program, Stage{hw_stage, sw_stage}, info, options->gfx_level, options->family, options->wgp_mode, config); isel_context ctx = {}; ctx.program = program; ctx.args = args; ctx.options = options; ctx.stage = program->stage; program->workgroup_size = program->info.workgroup_size; assert(program->workgroup_size); /* Mesh shading only works on GFX10.3+. */ ASSERTED bool mesh_shading = ctx.stage.has(SWStage::TS) || ctx.stage.has(SWStage::MS); assert(!mesh_shading || ctx.program->gfx_level >= GFX10_3); if (ctx.stage == tess_control_hs) setup_tcs_info(&ctx, shaders[0], NULL); else if (ctx.stage == vertex_tess_control_hs) setup_tcs_info(&ctx, shaders[1], shaders[0]); calc_min_waves(program); unsigned scratch_size = 0; for (unsigned i = 0; i < shader_count; i++) { nir_shader* nir = shaders[i]; setup_nir(&ctx, nir); setup_lds_size(&ctx, nir); } for (unsigned i = 0; i < shader_count; i++) scratch_size = std::max(scratch_size, shaders[i]->scratch_size); ctx.program->config->scratch_bytes_per_wave = scratch_size * ctx.program->wave_size; unsigned nir_num_blocks = 0; for (unsigned i = 0; i < shader_count; i++) nir_num_blocks += nir_shader_get_entrypoint(shaders[i])->num_blocks; ctx.program->blocks.reserve(nir_num_blocks * 2); ctx.block = ctx.program->create_and_insert_block(); ctx.block->kind = block_kind_top_level; return ctx; } } // namespace aco