/* * Copyright © 2019 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_ir.h" #include "aco_builder.h" namespace aco { namespace { enum WQMState : uint8_t { Unspecified = 0, Exact = 1 << 0, WQM = 1 << 1, /* with control flow applied */ Preserve_WQM = 1 << 2, Exact_Branch = 1 << 3, }; enum mask_type : uint8_t { mask_type_global = 1 << 0, mask_type_exact = 1 << 1, mask_type_wqm = 1 << 2, mask_type_loop = 1 << 3, /* active lanes of a loop */ mask_type_initial = 1 << 4, /* initially active lanes */ }; struct wqm_ctx { Program* program; /* state for WQM propagation */ std::set worklist; std::vector defined_in; std::vector needs_wqm; std::vector branch_wqm; /* true if the branch condition in this block should be in wqm */ bool loop; bool wqm; wqm_ctx(Program* program) : program(program), defined_in(program->peekAllocationId(), 0xFFFF), needs_wqm(program->peekAllocationId()), branch_wqm(program->blocks.size()), loop(false), wqm(false) { for (unsigned i = 0; i < program->blocks.size(); i++) worklist.insert(i); } }; struct loop_info { Block* loop_header; uint16_t num_exec_masks; uint8_t needs; bool has_divergent_break; bool has_divergent_continue; bool has_discard; loop_info(Block* b, uint16_t num, uint8_t needs, bool breaks, bool cont, bool discard) : loop_header(b), num_exec_masks(num), needs(needs), has_divergent_break(breaks), has_divergent_continue(cont), has_discard(discard) {} }; struct block_info { std::vector> exec; std::vector instr_needs; uint8_t block_needs; uint8_t ever_again_needs; /* more... */ }; struct exec_ctx { Program *program; std::vector info; std::vector loop; bool handle_wqm = false; exec_ctx(Program *program) : program(program), info(program->blocks.size()) {} }; bool pred_by_exec_mask(aco_ptr& instr) { if (instr->format == Format::SMEM || instr->isSALU()) return false; if (instr->format == Format::PSEUDO_BARRIER) return false; if (instr->format == Format::PSEUDO) { switch (instr->opcode) { case aco_opcode::p_create_vector: return instr->definitions[0].getTemp().type() == RegType::vgpr; case aco_opcode::p_extract_vector: case aco_opcode::p_split_vector: return instr->operands[0].getTemp().type() == RegType::vgpr; case aco_opcode::p_spill: case aco_opcode::p_reload: return false; default: break; } } if (instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_writelane_b32) return false; return true; } bool needs_exact(aco_ptr& instr) { if (instr->format == Format::MUBUF) { MUBUF_instruction *mubuf = static_cast(instr.get()); return mubuf->disable_wqm; } else if (instr->format == Format::MTBUF) { MTBUF_instruction *mtbuf = static_cast(instr.get()); return mtbuf->disable_wqm; } else if (instr->format == Format::MIMG) { MIMG_instruction *mimg = static_cast(instr.get()); return mimg->disable_wqm; } else { return instr->format == Format::EXP || instr->opcode == aco_opcode::p_fs_buffer_store_smem; } } void set_needs_wqm(wqm_ctx &ctx, Temp tmp) { if (!ctx.needs_wqm[tmp.id()]) { ctx.needs_wqm[tmp.id()] = true; if (ctx.defined_in[tmp.id()] != 0xFFFF) ctx.worklist.insert(ctx.defined_in[tmp.id()]); } } void mark_block_wqm(wqm_ctx &ctx, unsigned block_idx) { if (ctx.branch_wqm[block_idx]) return; ctx.branch_wqm[block_idx] = true; Block& block = ctx.program->blocks[block_idx]; aco_ptr& branch = block.instructions.back(); if (branch->opcode != aco_opcode::p_branch) { assert(!branch->operands.empty() && branch->operands[0].isTemp()); set_needs_wqm(ctx, branch->operands[0].getTemp()); } /* TODO: this sets more branch conditions to WQM than it needs to * it should be enough to stop at the "exec mask top level" */ if (block.kind & block_kind_top_level) return; for (unsigned pred_idx : block.logical_preds) mark_block_wqm(ctx, pred_idx); } void get_block_needs(wqm_ctx &ctx, exec_ctx &exec_ctx, Block* block) { block_info& info = exec_ctx.info[block->index]; std::vector instr_needs(block->instructions.size()); if (block->kind & block_kind_top_level) { if (ctx.loop && ctx.wqm) { /* mark all break conditions as WQM */ unsigned block_idx = block->index + 1; while (!(ctx.program->blocks[block_idx].kind & block_kind_top_level)) { if (ctx.program->blocks[block_idx].kind & block_kind_break) mark_block_wqm(ctx, block_idx); block_idx++; } } else if (ctx.loop && !ctx.wqm) { /* Ensure a branch never results in an exec mask with only helper * invocations (which can cause a loop to repeat infinitively if it's * break branches are done in exact). */ unsigned block_idx = block->index; do { if ((ctx.program->blocks[block_idx].kind & block_kind_branch)) exec_ctx.info[block_idx].block_needs |= Exact_Branch; block_idx++; } while (!(ctx.program->blocks[block_idx].kind & block_kind_top_level)); } ctx.loop = false; ctx.wqm = false; } for (int i = block->instructions.size() - 1; i >= 0; --i) { aco_ptr& instr = block->instructions[i]; WQMState needs = needs_exact(instr) ? Exact : Unspecified; bool propagate_wqm = instr->opcode == aco_opcode::p_wqm; bool preserve_wqm = instr->opcode == aco_opcode::p_discard_if; bool pred_by_exec = pred_by_exec_mask(instr); for (const Definition& definition : instr->definitions) { if (!definition.isTemp()) continue; const unsigned def = definition.tempId(); ctx.defined_in[def] = block->index; if (needs == Unspecified && ctx.needs_wqm[def]) { needs = pred_by_exec ? WQM : Unspecified; propagate_wqm = true; } } if (propagate_wqm) { for (const Operand& op : instr->operands) { if (op.isTemp()) { set_needs_wqm(ctx, op.getTemp()); } } } else if (preserve_wqm && info.block_needs & WQM) { needs = Preserve_WQM; } /* ensure the condition controlling the control flow for this phi is in WQM */ if (needs == WQM && instr->opcode == aco_opcode::p_phi) { for (unsigned pred_idx : block->logical_preds) mark_block_wqm(ctx, pred_idx); } instr_needs[i] = needs; info.block_needs |= needs; } info.instr_needs = instr_needs; /* for "if () " or "while () ", * should be computed in WQM */ if (info.block_needs & WQM && !(block->kind & block_kind_top_level)) { for (unsigned pred_idx : block->logical_preds) mark_block_wqm(ctx, pred_idx); ctx.wqm = true; } if (block->kind & block_kind_loop_header) ctx.loop = true; } void calculate_wqm_needs(exec_ctx& exec_ctx) { wqm_ctx ctx(exec_ctx.program); while (!ctx.worklist.empty()) { unsigned block_index = *std::prev(ctx.worklist.end()); ctx.worklist.erase(std::prev(ctx.worklist.end())); get_block_needs(ctx, exec_ctx, &exec_ctx.program->blocks[block_index]); } uint8_t ever_again_needs = 0; for (int i = exec_ctx.program->blocks.size() - 1; i >= 0; i--) { exec_ctx.info[i].ever_again_needs = ever_again_needs; Block& block = exec_ctx.program->blocks[i]; if (block.kind & block_kind_needs_lowering) exec_ctx.info[i].block_needs |= Exact; /* if discard is used somewhere in nested CF, we need to preserve the WQM mask */ if ((block.kind & block_kind_discard || block.kind & block_kind_uses_discard_if) && ever_again_needs & WQM) exec_ctx.info[i].block_needs |= Preserve_WQM; ever_again_needs |= exec_ctx.info[i].block_needs & ~Exact_Branch; if (block.kind & block_kind_discard || block.kind & block_kind_uses_discard_if) ever_again_needs |= Exact; /* don't propagate WQM preservation further than the next top_level block */ if (block.kind & block_kind_top_level) ever_again_needs &= ~Preserve_WQM; else exec_ctx.info[i].block_needs &= ~Preserve_WQM; } exec_ctx.handle_wqm = true; } void transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx) { if (ctx.info[idx].exec.back().second & mask_type_wqm) return; if (ctx.info[idx].exec.back().second & mask_type_global) { Temp exec_mask = ctx.info[idx].exec.back().first; exec_mask = bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2, exec), bld.def(s1, scc), exec_mask); ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm); return; } /* otherwise, the WQM mask should be one below the current mask */ ctx.info[idx].exec.pop_back(); assert(ctx.info[idx].exec.back().second & mask_type_wqm); ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), ctx.info[idx].exec.back().first); } void transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx) { if (ctx.info[idx].exec.back().second & mask_type_exact) return; if (ctx.info[idx].exec.back().second & mask_type_global) { ctx.info[idx].exec.pop_back(); assert(ctx.info[idx].exec.back().second & mask_type_exact); ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), ctx.info[idx].exec.back().first); return; } /* otherwise, we create an exact mask and push to the stack */ Temp wqm = ctx.info[idx].exec.back().first; Temp exact = bld.tmp(s2); wqm = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc), bld.exec(Definition(exact)), ctx.info[idx].exec[0].first, bld.exec(wqm)); ctx.info[idx].exec.back().first = wqm; ctx.info[idx].exec.emplace_back(exact, mask_type_exact); } unsigned add_coupling_code(exec_ctx& ctx, Block* block, std::vector>& instructions) { unsigned idx = block->index; Builder bld(ctx.program, &instructions); std::vector& preds = block->linear_preds; /* start block */ if (idx == 0) { aco_ptr& startpgm = block->instructions[0]; assert(startpgm->opcode == aco_opcode::p_startpgm); Temp exec_mask = startpgm->definitions.back().getTemp(); bld.insert(std::move(startpgm)); if (ctx.handle_wqm) { ctx.info[0].exec.emplace_back(exec_mask, mask_type_global | mask_type_exact | mask_type_initial); /* if this block only needs WQM, initialize already */ if (ctx.info[0].block_needs == WQM) transition_to_WQM(ctx, bld, 0); } else { uint8_t mask = mask_type_global; if (ctx.program->needs_wqm) { exec_mask = bld.sop1(aco_opcode::s_wqm_b64, bld.def(s2, exec), bld.def(s1, scc), bld.exec(exec_mask)); mask |= mask_type_wqm; } else { mask |= mask_type_exact; } ctx.info[0].exec.emplace_back(exec_mask, mask); } return 1; } /* loop entry block */ if (block->kind & block_kind_loop_header) { assert(preds[0] == idx - 1); ctx.info[idx].exec = ctx.info[idx - 1].exec; loop_info& info = ctx.loop.back(); while (ctx.info[idx].exec.size() > info.num_exec_masks) ctx.info[idx].exec.pop_back(); /* create ssa names for outer exec masks */ if (info.has_discard) { aco_ptr phi; for (int i = 0; i < info.num_exec_masks - 1; i++) { phi.reset(create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)); phi->definitions[0] = bld.def(s2); phi->operands[0] = Operand(ctx.info[preds[0]].exec[i].first); ctx.info[idx].exec[i].first = bld.insert(std::move(phi)); } } /* create ssa name for restore mask */ if (info.has_divergent_break) { /* this phi might be trivial but ensures a parallelcopy on the loop header */ aco_ptr phi{create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; phi->definitions[0] = bld.def(s2); phi->operands[0] = Operand(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first); ctx.info[idx].exec.back().first = bld.insert(std::move(phi)); } /* create ssa name for loop active mask */ aco_ptr phi{create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; if (info.has_divergent_continue) phi->definitions[0] = bld.def(s2); else phi->definitions[0] = bld.def(s2, exec); phi->operands[0] = Operand(ctx.info[preds[0]].exec.back().first); Temp loop_active = bld.insert(std::move(phi)); if (info.has_divergent_break) { uint8_t mask_type = (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop; ctx.info[idx].exec.emplace_back(loop_active, mask_type); } else { ctx.info[idx].exec.back().first = loop_active; ctx.info[idx].exec.back().second |= mask_type_loop; } /* create a parallelcopy to move the active mask to exec */ unsigned i = 0; if (info.has_divergent_continue) { while (block->instructions[i]->opcode != aco_opcode::p_logical_start) { bld.insert(std::move(block->instructions[i])); i++; } uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact); ctx.info[idx].exec.emplace_back(bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), ctx.info[idx].exec.back().first), mask_type); } return i; } /* loop exit block */ if (block->kind & block_kind_loop_exit) { Block* header = ctx.loop.back().loop_header; loop_info& info = ctx.loop.back(); for (ASSERTED unsigned pred : preds) assert(ctx.info[pred].exec.size() >= info.num_exec_masks); /* fill the loop header phis */ std::vector& header_preds = header->linear_preds; int k = 0; if (info.has_discard) { while (k < info.num_exec_masks - 1) { aco_ptr& phi = header->instructions[k]; assert(phi->opcode == aco_opcode::p_linear_phi); for (unsigned i = 1; i < phi->operands.size(); i++) phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[k].first); k++; } } aco_ptr& phi = header->instructions[k++]; assert(phi->opcode == aco_opcode::p_linear_phi); for (unsigned i = 1; i < phi->operands.size(); i++) phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first); if (info.has_divergent_break) { aco_ptr& phi = header->instructions[k]; assert(phi->opcode == aco_opcode::p_linear_phi); for (unsigned i = 1; i < phi->operands.size(); i++) phi->operands[i] = Operand(ctx.info[header_preds[i]].exec[info.num_exec_masks].first); } assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2); /* create the loop exit phis if not trivial */ for (unsigned k = 0; k < info.num_exec_masks; k++) { Temp same = ctx.info[preds[0]].exec[k].first; uint8_t type = ctx.info[header_preds[0]].exec[k].second; bool trivial = true; for (unsigned i = 1; i < preds.size() && trivial; i++) { if (ctx.info[preds[i]].exec[k].first != same) trivial = false; } if (trivial) { ctx.info[idx].exec.emplace_back(same, type); } else { /* create phi for loop footer */ aco_ptr phi{create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; phi->definitions[0] = bld.def(s2); for (unsigned i = 0; i < phi->operands.size(); i++) phi->operands[i] = Operand(ctx.info[preds[i]].exec[k].first); ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type); } } assert(ctx.info[idx].exec.size() == info.num_exec_masks); /* create a parallelcopy to move the live mask to exec */ unsigned i = 0; while (block->instructions[i]->opcode != aco_opcode::p_logical_start) { bld.insert(std::move(block->instructions[i])); i++; } if (ctx.handle_wqm) { if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) { if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 || (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) { ctx.info[idx].exec.back().second |= mask_type_global; transition_to_Exact(ctx, bld, idx); ctx.handle_wqm = false; } } if (ctx.info[idx].block_needs == WQM) transition_to_WQM(ctx, bld, idx); else if (ctx.info[idx].block_needs == Exact) transition_to_Exact(ctx, bld, idx); } ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), ctx.info[idx].exec.back().first); ctx.loop.pop_back(); return i; } if (preds.size() == 1) { ctx.info[idx].exec = ctx.info[preds[0]].exec; } else { assert(preds.size() == 2); /* if one of the predecessors ends in exact mask, we pop it from stack */ unsigned num_exec_masks = std::min(ctx.info[preds[0]].exec.size(), ctx.info[preds[1]].exec.size()); if (block->kind & block_kind_top_level && !(block->kind & block_kind_merge)) num_exec_masks = std::min(num_exec_masks, 2u); /* create phis for diverged exec masks */ for (unsigned i = 0; i < num_exec_masks; i++) { bool in_exec = i == num_exec_masks - 1 && !(block->kind & block_kind_merge); if (!in_exec && ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) { assert(ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second); ctx.info[idx].exec.emplace_back(ctx.info[preds[0]].exec[i]); continue; } Temp phi = bld.pseudo(aco_opcode::p_linear_phi, in_exec ? bld.def(s2, exec) : bld.def(s2), ctx.info[preds[0]].exec[i].first, ctx.info[preds[1]].exec[i].first); uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second; ctx.info[idx].exec.emplace_back(phi, mask_type); } } unsigned i = 0; while (block->instructions[i]->opcode == aco_opcode::p_phi || block->instructions[i]->opcode == aco_opcode::p_linear_phi) { bld.insert(std::move(block->instructions[i])); i++; } if (block->kind & block_kind_merge) ctx.info[idx].exec.pop_back(); if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 3) { assert(ctx.info[idx].exec.back().second == mask_type_exact); assert(block->kind & block_kind_merge); ctx.info[idx].exec.pop_back(); } /* try to satisfy the block's needs */ if (ctx.handle_wqm) { if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) { if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 || (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) { ctx.info[idx].exec.back().second |= mask_type_global; transition_to_Exact(ctx, bld, idx); ctx.handle_wqm = false; } } if (ctx.info[idx].block_needs == WQM) transition_to_WQM(ctx, bld, idx); else if (ctx.info[idx].block_needs == Exact) transition_to_Exact(ctx, bld, idx); } if (block->kind & block_kind_merge) { Temp restore = ctx.info[idx].exec.back().first; ctx.info[idx].exec.back().first = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(s2, exec), restore); } return i; } void lower_fs_buffer_store_smem(Builder& bld, bool need_check, aco_ptr& instr, Temp cur_exec) { Operand offset = instr->operands[1]; if (need_check) { /* if exec is zero, then use UINT32_MAX as an offset and make this store a no-op */ Temp nonempty = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), cur_exec, Operand(0u)); if (offset.isLiteral()) offset = bld.sop1(aco_opcode::s_mov_b32, bld.def(s1), offset); offset = bld.sop2(aco_opcode::s_cselect_b32, bld.hint_m0(bld.def(s1)), offset, Operand(UINT32_MAX), bld.scc(nonempty)); } else if (offset.isConstant() && offset.constantValue() > 0xFFFFF) { offset = bld.sop1(aco_opcode::s_mov_b32, bld.hint_m0(bld.def(s1)), offset); } if (!offset.isConstant()) offset.setFixed(m0); switch (instr->operands[2].size()) { case 1: instr->opcode = aco_opcode::s_buffer_store_dword; break; case 2: instr->opcode = aco_opcode::s_buffer_store_dwordx2; break; case 4: instr->opcode = aco_opcode::s_buffer_store_dwordx4; break; default: unreachable("Invalid SMEM buffer store size"); } instr->operands[1] = offset; /* as_uniform() needs to be done here so it's done in exact mode and helper * lanes don't contribute. */ instr->operands[2] = Operand(bld.as_uniform(instr->operands[2])); } void process_instructions(exec_ctx& ctx, Block* block, std::vector>& instructions, unsigned idx) { WQMState state; if (ctx.info[block->index].exec.back().second & mask_type_wqm) state = WQM; else { assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact); state = Exact; } /* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */ bool process = (ctx.handle_wqm && (ctx.info[block->index].block_needs & state) != (ctx.info[block->index].block_needs & (WQM | Exact))) || block->kind & block_kind_uses_discard_if || block->kind & block_kind_needs_lowering; if (!process) { std::vector>::iterator it = std::next(block->instructions.begin(), idx); instructions.insert(instructions.end(), std::move_iterator>::iterator>(it), std::move_iterator>::iterator>(block->instructions.end())); return; } Builder bld(ctx.program, &instructions); for (; idx < block->instructions.size(); idx++) { aco_ptr instr = std::move(block->instructions[idx]); WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified; if (instr->opcode == aco_opcode::p_discard_if) { if (ctx.info[block->index].block_needs & Preserve_WQM) { assert(block->kind & block_kind_top_level); transition_to_WQM(ctx, bld, block->index); ctx.info[block->index].exec.back().second &= ~mask_type_global; } unsigned num = ctx.info[block->index].exec.size(); assert(num); Operand cond = instr->operands[0]; instr.reset(create_instruction(aco_opcode::p_discard_if, Format::PSEUDO, num + 1, num + 1)); for (unsigned i = 0; i < num; i++) { instr->operands[i] = Operand(ctx.info[block->index].exec[i].first); if (i == num - 1) instr->operands[i].setFixed(exec); Temp new_mask = bld.tmp(s2); instr->definitions[i] = Definition(new_mask); ctx.info[block->index].exec[i].first = new_mask; } assert((ctx.info[block->index].exec[0].second & mask_type_wqm) == 0); instr->definitions[num - 1].setFixed(exec); instr->operands[num] = cond; instr->definitions[num] = bld.def(s1, scc); } else if (needs == WQM && state != WQM) { transition_to_WQM(ctx, bld, block->index); state = WQM; } else if (needs == Exact && state != Exact) { transition_to_Exact(ctx, bld, block->index); state = Exact; } if (instr->opcode == aco_opcode::p_is_helper || instr->opcode == aco_opcode::p_load_helper) { Definition dst = instr->definitions[0]; if (state == Exact) { instr.reset(create_instruction(aco_opcode::s_mov_b64, Format::SOP1, 1, 1)); instr->operands[0] = Operand(0u); instr->definitions[0] = dst; } else { std::pair& exact_mask = ctx.info[block->index].exec[0]; if (instr->opcode == aco_opcode::p_load_helper && !(ctx.info[block->index].exec[0].second & mask_type_initial)) { /* find last initial exact mask */ for (int i = block->index; i >= 0; i--) { if (ctx.program->blocks[i].kind & block_kind_top_level && ctx.info[i].exec[0].second & mask_type_initial) { exact_mask = ctx.info[i].exec[0]; break; } } } assert(instr->opcode == aco_opcode::p_is_helper || exact_mask.second & mask_type_initial); assert(exact_mask.second & mask_type_exact); instr.reset(create_instruction(aco_opcode::s_andn2_b64, Format::SOP2, 2, 2)); instr->operands[0] = Operand(ctx.info[block->index].exec.back().first); /* current exec */ instr->operands[1] = Operand(exact_mask.first); instr->definitions[0] = dst; instr->definitions[1] = bld.def(s1, scc); } } else if (instr->opcode == aco_opcode::p_demote_to_helper) { /* turn demote into discard_if with only exact masks */ assert((ctx.info[block->index].exec[0].second & (mask_type_exact | mask_type_global)) == (mask_type_exact | mask_type_global)); ctx.info[block->index].exec[0].second &= ~mask_type_initial; int num = 0; Temp cond; if (instr->operands.empty()) { /* transition to exact and set exec to zero */ Temp old_exec = ctx.info[block->index].exec.back().first; Temp new_exec = bld.tmp(s2); cond = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc), bld.exec(Definition(new_exec)), Operand(0u), bld.exec(old_exec)); if (ctx.info[block->index].exec.back().second & mask_type_exact) { ctx.info[block->index].exec.back().first = new_exec; } else { ctx.info[block->index].exec.back().first = cond; ctx.info[block->index].exec.emplace_back(new_exec, mask_type_exact); } } else { /* demote_if: transition to exact */ transition_to_Exact(ctx, bld, block->index); assert(instr->operands[0].isTemp()); cond = instr->operands[0].getTemp(); num = 1; } for (unsigned i = 0; i < ctx.info[block->index].exec.size() - 1; i++) num += ctx.info[block->index].exec[i].second & mask_type_exact ? 1 : 0; instr.reset(create_instruction(aco_opcode::p_discard_if, Format::PSEUDO, num + 1, num + 1)); int k = 0; for (unsigned i = 0; k < num; i++) { if (ctx.info[block->index].exec[i].second & mask_type_exact) { instr->operands[k] = Operand(ctx.info[block->index].exec[i].first); Temp new_mask = bld.tmp(s2); instr->definitions[k] = Definition(new_mask); if (i == ctx.info[block->index].exec.size() - 1) instr->definitions[k].setFixed(exec); k++; ctx.info[block->index].exec[i].first = new_mask; } } assert(k == num); instr->definitions[num] = bld.def(s1, scc); instr->operands[num] = Operand(cond); state = Exact; } else if (instr->opcode == aco_opcode::p_fs_buffer_store_smem) { bool need_check = ctx.info[block->index].exec.size() != 1 && !(ctx.info[block->index].exec[ctx.info[block->index].exec.size() - 2].second & Exact); lower_fs_buffer_store_smem(bld, need_check, instr, ctx.info[block->index].exec.back().first); } bld.insert(std::move(instr)); } } void add_branch_code(exec_ctx& ctx, Block* block) { unsigned idx = block->index; Builder bld(ctx.program, block); if (idx == ctx.program->blocks.size() - 1) return; /* try to disable wqm handling */ if (ctx.handle_wqm && block->kind & block_kind_top_level) { if (ctx.info[idx].exec.size() == 3) { assert(ctx.info[idx].exec[1].second == mask_type_wqm); ctx.info[idx].exec.pop_back(); } assert(ctx.info[idx].exec.size() <= 2); if (ctx.info[idx].ever_again_needs == 0 || ctx.info[idx].ever_again_needs == Exact) { /* transition to Exact */ aco_ptr branch = std::move(block->instructions.back()); block->instructions.pop_back(); ctx.info[idx].exec.back().second |= mask_type_global; transition_to_Exact(ctx, bld, idx); bld.insert(std::move(branch)); ctx.handle_wqm = false; } else if (ctx.info[idx].block_needs & Preserve_WQM) { /* transition to WQM and remove global flag */ aco_ptr branch = std::move(block->instructions.back()); block->instructions.pop_back(); transition_to_WQM(ctx, bld, idx); ctx.info[idx].exec.back().second &= ~mask_type_global; bld.insert(std::move(branch)); } } if (block->kind & block_kind_loop_preheader) { /* collect information about the succeeding loop */ bool has_divergent_break = false; bool has_divergent_continue = false; bool has_discard = false; uint8_t needs = 0; unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth; for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) { Block& loop_block = ctx.program->blocks[i]; needs |= ctx.info[i].block_needs; if (loop_block.kind & block_kind_uses_discard_if || loop_block.kind & block_kind_discard) has_discard = true; if (loop_block.loop_nest_depth != loop_nest_depth) continue; if (loop_block.kind & block_kind_uniform) continue; else if (loop_block.kind & block_kind_break) has_divergent_break = true; else if (loop_block.kind & block_kind_continue) has_divergent_continue = true; } if (ctx.handle_wqm) { if (needs & WQM) { aco_ptr branch = std::move(block->instructions.back()); block->instructions.pop_back(); transition_to_WQM(ctx, bld, idx); bld.insert(std::move(branch)); } else { aco_ptr branch = std::move(block->instructions.back()); block->instructions.pop_back(); transition_to_Exact(ctx, bld, idx); bld.insert(std::move(branch)); } } unsigned num_exec_masks = ctx.info[idx].exec.size(); if (block->kind & block_kind_top_level) num_exec_masks = std::min(num_exec_masks, 2u); ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]], num_exec_masks, needs, has_divergent_break, has_divergent_continue, has_discard); } if (block->kind & block_kind_discard) { assert(block->instructions.back()->format == Format::PSEUDO_BRANCH); aco_ptr branch = std::move(block->instructions.back()); block->instructions.pop_back(); /* create a discard_if() instruction with the exec mask as condition */ unsigned num = 0; if (ctx.loop.size()) { /* if we're in a loop, only discard from the outer exec masks */ num = ctx.loop.back().num_exec_masks; } else { num = ctx.info[idx].exec.size() - 1; } Temp old_exec = ctx.info[idx].exec.back().first; Temp new_exec = bld.tmp(s2); Temp cond = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc), bld.exec(Definition(new_exec)), Operand(0u), bld.exec(old_exec)); ctx.info[idx].exec.back().first = new_exec; aco_ptr discard{create_instruction(aco_opcode::p_discard_if, Format::PSEUDO, num + 1, num + 1)}; for (unsigned i = 0; i < num; i++) { discard->operands[i] = Operand(ctx.info[block->index].exec[i].first); Temp new_mask = bld.tmp(s2); discard->definitions[i] = Definition(new_mask); ctx.info[block->index].exec[i].first = new_mask; } assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0); discard->operands[num] = Operand(cond); discard->definitions[num] = bld.def(s1, scc); bld.insert(std::move(discard)); if ((block->kind & (block_kind_break | block_kind_uniform)) == block_kind_break) ctx.info[idx].exec.back().first = cond; bld.insert(std::move(branch)); /* no return here as it can be followed by a divergent break */ } if (block->kind & block_kind_continue_or_break) { assert(block->instructions.back()->opcode == aco_opcode::p_branch); block->instructions.pop_back(); /* because of how linear_succs is created, this needs to be swapped */ std::swap(block->linear_succs[0], block->linear_succs[1]); assert(ctx.program->blocks[block->linear_succs[1]].kind & block_kind_loop_header); assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind & block_kind_loop_exit); if (ctx.info[idx].exec.back().second & mask_type_loop) { bld.branch(aco_opcode::p_cbranch_nz, bld.exec(ctx.info[idx].exec.back().first), block->linear_succs[1], block->linear_succs[0]); } else { Temp cond = Temp(); for (int exec_idx = ctx.info[idx].exec.size() - 1; exec_idx >= 0; exec_idx--) { if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) { cond = bld.sopc(aco_opcode::s_cmp_lg_u64, bld.def(s1, scc), ctx.info[idx].exec[exec_idx].first, Operand(0u)); break; } } assert(cond != Temp()); bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]); } return; } if (block->kind & block_kind_uniform) { Pseudo_branch_instruction* branch = static_cast(block->instructions.back().get()); if (branch->opcode == aco_opcode::p_branch) { branch->target[0] = block->linear_succs[0]; } else { branch->target[0] = block->linear_succs[1]; branch->target[1] = block->linear_succs[0]; } return; } if (block->kind & block_kind_branch) { if (ctx.handle_wqm && ctx.info[idx].exec.size() >= 2 && ctx.info[idx].exec.back().second == mask_type_exact && !(ctx.info[idx].block_needs & Exact_Branch) && ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].second & mask_type_wqm) { /* return to wqm before branching */ ctx.info[idx].exec.pop_back(); } // orig = s_and_saveexec_b64 assert(block->linear_succs.size() == 2); assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z); Temp cond = block->instructions.back()->operands[0].getTemp(); block->instructions.pop_back(); if (ctx.info[idx].block_needs & Exact_Branch) transition_to_Exact(ctx, bld, idx); Temp current_exec = ctx.info[idx].exec.back().first; uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact); Temp then_mask = bld.tmp(s2); Temp old_exec = bld.sop1(aco_opcode::s_and_saveexec_b64, bld.def(s2), bld.def(s1, scc), bld.exec(Definition(then_mask)), cond, bld.exec(current_exec)); ctx.info[idx].exec.back().first = old_exec; /* add next current exec to the stack */ ctx.info[idx].exec.emplace_back(then_mask, mask_type); bld.branch(aco_opcode::p_cbranch_z, bld.exec(then_mask), block->linear_succs[1], block->linear_succs[0]); return; } if (block->kind & block_kind_invert) { // exec = s_andn2_b64 (original_exec, exec) assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_nz); block->instructions.pop_back(); Temp then_mask = ctx.info[idx].exec.back().first; uint8_t mask_type = ctx.info[idx].exec.back().second; ctx.info[idx].exec.pop_back(); Temp orig_exec = ctx.info[idx].exec.back().first; Temp else_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2, exec), bld.def(s1, scc), orig_exec, bld.exec(then_mask)); /* add next current exec to the stack */ ctx.info[idx].exec.emplace_back(else_mask, mask_type); bld.branch(aco_opcode::p_cbranch_z, bld.exec(else_mask), block->linear_succs[1], block->linear_succs[0]); return; } if (block->kind & block_kind_break) { // loop_mask = s_andn2_b64 (loop_mask, exec) assert(block->instructions.back()->opcode == aco_opcode::p_branch); block->instructions.pop_back(); Temp current_exec = ctx.info[idx].exec.back().first; Temp cond = Temp(); for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { cond = bld.tmp(s1); Temp exec_mask = ctx.info[idx].exec[exec_idx].first; exec_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.scc(Definition(cond)), exec_mask, current_exec); ctx.info[idx].exec[exec_idx].first = exec_mask; if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) break; } /* check if the successor is the merge block, otherwise set exec to 0 */ // TODO: this could be done better by directly branching to the merge block unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; Block& succ = ctx.program->blocks[succ_idx]; if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { ctx.info[idx].exec.back().first = bld.sop1(aco_opcode::s_mov_b64, bld.def(s2, exec), Operand(0u)); } bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]); return; } if (block->kind & block_kind_continue) { assert(block->instructions.back()->opcode == aco_opcode::p_branch); block->instructions.pop_back(); Temp current_exec = ctx.info[idx].exec.back().first; Temp cond = Temp(); for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) break; cond = bld.tmp(s1); Temp exec_mask = ctx.info[idx].exec[exec_idx].first; exec_mask = bld.sop2(aco_opcode::s_andn2_b64, bld.def(s2), bld.scc(Definition(cond)), exec_mask, bld.exec(current_exec)); ctx.info[idx].exec[exec_idx].first = exec_mask; } assert(cond != Temp()); /* check if the successor is the merge block, otherwise set exec to 0 */ // TODO: this could be done better by directly branching to the merge block unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; Block& succ = ctx.program->blocks[succ_idx]; if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { ctx.info[idx].exec.back().first = bld.sop1(aco_opcode::s_mov_b64, bld.def(s2, exec), Operand(0u)); } bld.branch(aco_opcode::p_cbranch_nz, bld.scc(cond), block->linear_succs[1], block->linear_succs[0]); return; } } void process_block(exec_ctx& ctx, Block* block) { std::vector> instructions; instructions.reserve(block->instructions.size()); unsigned idx = add_coupling_code(ctx, block, instructions); assert(block->index != ctx.program->blocks.size() - 1 || ctx.info[block->index].exec.size() <= 2); process_instructions(ctx, block, instructions, idx); block->instructions = std::move(instructions); add_branch_code(ctx, block); block->live_out_exec = ctx.info[block->index].exec.back().first; } } /* end namespace */ void insert_exec_mask(Program *program) { exec_ctx ctx(program); if (program->needs_wqm && program->needs_exact) calculate_wqm_needs(ctx); for (Block& block : program->blocks) process_block(ctx, &block); } }