/* * Copyright © 2019 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_builder.h" #include "aco_ir.h" #include "util/u_math.h" #include #include namespace aco { namespace { enum WQMState : uint8_t { Unspecified = 0, Exact = 1 << 0, WQM = 1 << 1, /* with control flow applied */ }; enum mask_type : uint8_t { mask_type_global = 1 << 0, mask_type_exact = 1 << 1, mask_type_wqm = 1 << 2, mask_type_loop = 1 << 3, /* active lanes of a loop */ }; struct wqm_ctx { Program* program; /* state for WQM propagation */ std::set worklist; std::vector branch_wqm; /* true if the branch condition in this block should be in wqm */ wqm_ctx(Program* program_) : program(program_), branch_wqm(program->blocks.size()) { for (unsigned i = 0; i < program->blocks.size(); i++) worklist.insert(i); } }; struct loop_info { Block* loop_header; uint16_t num_exec_masks; bool has_divergent_break; bool has_divergent_continue; bool has_discard; /* has a discard or demote */ loop_info(Block* b, uint16_t num, bool breaks, bool cont, bool discard) : loop_header(b), num_exec_masks(num), has_divergent_break(breaks), has_divergent_continue(cont), has_discard(discard) {} }; struct block_info { std::vector> exec; /* Vector of exec masks. Either a temporary or const -1. */ std::vector instr_needs; uint8_t block_needs; }; struct exec_ctx { Program* program; std::vector info; std::vector loop; bool handle_wqm = false; exec_ctx(Program* program_) : program(program_), info(program->blocks.size()) {} }; bool needs_exact(aco_ptr& instr) { if (instr->isMUBUF()) { return instr->mubuf().disable_wqm; } else if (instr->isMTBUF()) { return instr->mtbuf().disable_wqm; } else if (instr->isMIMG()) { return instr->mimg().disable_wqm; } else if (instr->isFlatLike()) { return instr->flatlike().disable_wqm; } else { /* Require Exact for p_jump_to_epilog because if p_exit_early_if is * emitted inside the same block, the main FS will always jump to the PS * epilog without considering the exec mask. */ return instr->isEXP() || instr->opcode == aco_opcode::p_jump_to_epilog || instr->opcode == aco_opcode::p_dual_src_export_gfx11; } } void mark_block_wqm(wqm_ctx& ctx, unsigned block_idx) { if (ctx.branch_wqm[block_idx]) return; for (Block& block : ctx.program->blocks) { if (block.index >= block_idx && block.kind & block_kind_top_level) break; ctx.branch_wqm[block.index] = true; ctx.worklist.insert(block.index); } } void get_block_needs(wqm_ctx& ctx, exec_ctx& exec_ctx, Block* block) { block_info& info = exec_ctx.info[block->index]; std::vector instr_needs(block->instructions.size()); bool propagate_wqm = ctx.branch_wqm[block->index]; for (int i = block->instructions.size() - 1; i >= 0; --i) { aco_ptr& instr = block->instructions[i]; if (instr->opcode == aco_opcode::p_wqm) propagate_wqm = true; bool pred_by_exec = needs_exec_mask(instr.get()) || instr->opcode == aco_opcode::p_logical_end || instr->isBranch(); if (needs_exact(instr)) instr_needs[i] = Exact; else if (propagate_wqm && pred_by_exec) instr_needs[i] = WQM; else instr_needs[i] = Unspecified; info.block_needs |= instr_needs[i]; } info.instr_needs = instr_needs; /* for "if () " or "while () ", * should be computed in WQM */ if (info.block_needs & WQM) { mark_block_wqm(ctx, block->index); } } void calculate_wqm_needs(exec_ctx& exec_ctx) { wqm_ctx ctx(exec_ctx.program); while (!ctx.worklist.empty()) { unsigned block_index = *std::prev(ctx.worklist.end()); ctx.worklist.erase(std::prev(ctx.worklist.end())); Block& block = exec_ctx.program->blocks[block_index]; get_block_needs(ctx, exec_ctx, &block); } exec_ctx.handle_wqm = true; } Operand get_exec_op(Operand t) { if (t.isUndefined()) return Operand(exec, t.regClass()); else return t; } void transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx) { if (ctx.info[idx].exec.back().second & mask_type_wqm) return; if (ctx.info[idx].exec.back().second & mask_type_global) { Operand exec_mask = ctx.info[idx].exec.back().first; if (exec_mask.isUndefined()) { exec_mask = bld.copy(bld.def(bld.lm), Operand(exec, bld.lm)); ctx.info[idx].exec.back().first = exec_mask; } exec_mask = bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc), get_exec_op(exec_mask)); ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm); return; } /* otherwise, the WQM mask should be one below the current mask */ ctx.info[idx].exec.pop_back(); assert(ctx.info[idx].exec.back().second & mask_type_wqm); assert(ctx.info[idx].exec.back().first.size() == bld.lm.size()); assert(ctx.info[idx].exec.back().first.isTemp()); ctx.info[idx].exec.back().first = bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first); } void transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx) { if (ctx.info[idx].exec.back().second & mask_type_exact) return; /* We can't remove the loop exec mask, because that can cause exec.size() to * be less than num_exec_masks. The loop exec mask also needs to be kept * around for various uses. */ if ((ctx.info[idx].exec.back().second & mask_type_global) && !(ctx.info[idx].exec.back().second & mask_type_loop)) { ctx.info[idx].exec.pop_back(); assert(ctx.info[idx].exec.back().second & mask_type_exact); assert(ctx.info[idx].exec.back().first.size() == bld.lm.size()); assert(ctx.info[idx].exec.back().first.isTemp()); ctx.info[idx].exec.back().first = bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first); return; } /* otherwise, we create an exact mask and push to the stack */ Operand wqm = ctx.info[idx].exec.back().first; if (wqm.isUndefined()) { wqm = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc), Definition(exec, bld.lm), ctx.info[idx].exec[0].first, Operand(exec, bld.lm)); } else { bld.sop2(Builder::s_and, Definition(exec, bld.lm), bld.def(s1, scc), ctx.info[idx].exec[0].first, wqm); } ctx.info[idx].exec.back().first = Operand(wqm); ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type_exact); } unsigned add_coupling_code(exec_ctx& ctx, Block* block, std::vector>& instructions) { unsigned idx = block->index; Builder bld(ctx.program, &instructions); std::vector& preds = block->linear_preds; /* start block */ if (preds.empty()) { aco_ptr& startpgm = block->instructions[0]; assert(startpgm->opcode == aco_opcode::p_startpgm); bld.insert(std::move(startpgm)); unsigned count = 1; if (block->instructions[1]->opcode == aco_opcode::p_init_scratch) { bld.insert(std::move(block->instructions[1])); count++; } Operand start_exec(bld.lm); /* exec seems to need to be manually initialized with combined shaders */ if (ctx.program->stage.num_sw_stages() > 1 || ctx.program->stage.hw == HWStage::NGG) { start_exec = Operand::c32_or_c64(-1u, bld.lm == s2); bld.copy(Definition(exec, bld.lm), start_exec); } /* EXEC is automatically initialized by the HW for compute shaders. * We know for sure exec is initially -1 when the shader always has full subgroups. */ if (ctx.program->stage == compute_cs && ctx.program->info.cs.uses_full_subgroups) start_exec = Operand::c32_or_c64(-1u, bld.lm == s2); if (ctx.handle_wqm) { ctx.info[idx].exec.emplace_back(start_exec, mask_type_global | mask_type_exact); /* if this block needs WQM, initialize already */ if (ctx.info[idx].block_needs & WQM) transition_to_WQM(ctx, bld, idx); } else { uint8_t mask = mask_type_global; if (ctx.program->needs_wqm) { bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc), Operand(exec, bld.lm)); mask |= mask_type_wqm; } else { mask |= mask_type_exact; } ctx.info[idx].exec.emplace_back(start_exec, mask); } return count; } /* loop entry block */ if (block->kind & block_kind_loop_header) { assert(preds[0] == idx - 1); ctx.info[idx].exec = ctx.info[idx - 1].exec; loop_info& info = ctx.loop.back(); while (ctx.info[idx].exec.size() > info.num_exec_masks) ctx.info[idx].exec.pop_back(); /* create ssa names for outer exec masks */ if (info.has_discard) { aco_ptr phi; for (int i = 0; i < info.num_exec_masks - 1; i++) { phi.reset(create_instruction(aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)); phi->definitions[0] = bld.def(bld.lm); phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[i].first); ctx.info[idx].exec[i].first = bld.insert(std::move(phi)); } } /* create ssa name for restore mask */ if (info.has_divergent_break) { /* this phi might be trivial but ensures a parallelcopy on the loop header */ aco_ptr phi{create_instruction( aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; phi->definitions[0] = bld.def(bld.lm); phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first); ctx.info[idx].exec.back().first = bld.insert(std::move(phi)); } /* create ssa name for loop active mask */ aco_ptr phi{create_instruction( aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; if (info.has_divergent_continue) phi->definitions[0] = bld.def(bld.lm); else phi->definitions[0] = Definition(exec, bld.lm); phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec.back().first); Temp loop_active = bld.insert(std::move(phi)); if (info.has_divergent_break) { uint8_t mask_type = (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop; ctx.info[idx].exec.emplace_back(loop_active, mask_type); } else { ctx.info[idx].exec.back().first = Operand(loop_active); ctx.info[idx].exec.back().second |= mask_type_loop; } /* create a parallelcopy to move the active mask to exec */ unsigned i = 0; if (info.has_divergent_continue) { while (block->instructions[i]->opcode != aco_opcode::p_logical_start) { bld.insert(std::move(block->instructions[i])); i++; } uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact); assert(ctx.info[idx].exec.back().first.size() == bld.lm.size()); ctx.info[idx].exec.emplace_back( bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first), mask_type); } return i; } /* loop exit block */ if (block->kind & block_kind_loop_exit) { Block* header = ctx.loop.back().loop_header; loop_info& info = ctx.loop.back(); for (ASSERTED unsigned pred : preds) assert(ctx.info[pred].exec.size() >= info.num_exec_masks); /* fill the loop header phis */ std::vector& header_preds = header->linear_preds; int instr_idx = 0; if (info.has_discard) { while (instr_idx < info.num_exec_masks - 1) { aco_ptr& phi = header->instructions[instr_idx]; assert(phi->opcode == aco_opcode::p_linear_phi); for (unsigned i = 1; i < phi->operands.size(); i++) phi->operands[i] = get_exec_op(ctx.info[header_preds[i]].exec[instr_idx].first); instr_idx++; } } { aco_ptr& phi = header->instructions[instr_idx++]; assert(phi->opcode == aco_opcode::p_linear_phi); for (unsigned i = 1; i < phi->operands.size(); i++) phi->operands[i] = get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first); } if (info.has_divergent_break) { aco_ptr& phi = header->instructions[instr_idx]; assert(phi->opcode == aco_opcode::p_linear_phi); for (unsigned i = 1; i < phi->operands.size(); i++) phi->operands[i] = get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks].first); } assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2); /* create the loop exit phis if not trivial */ for (unsigned exec_idx = 0; exec_idx < info.num_exec_masks; exec_idx++) { Operand same = ctx.info[preds[0]].exec[exec_idx].first; uint8_t type = ctx.info[header_preds[0]].exec[exec_idx].second; bool trivial = true; for (unsigned i = 1; i < preds.size() && trivial; i++) { if (ctx.info[preds[i]].exec[exec_idx].first != same) trivial = false; } if (trivial) { ctx.info[idx].exec.emplace_back(same, type); } else { /* create phi for loop footer */ aco_ptr phi{create_instruction( aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)}; phi->definitions[0] = bld.def(bld.lm); if (exec_idx == info.num_exec_masks - 1u) { phi->definitions[0] = Definition(exec, bld.lm); } for (unsigned i = 0; i < phi->operands.size(); i++) phi->operands[i] = get_exec_op(ctx.info[preds[i]].exec[exec_idx].first); ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type); } } assert(ctx.info[idx].exec.size() == info.num_exec_masks); ctx.loop.pop_back(); } else if (preds.size() == 1) { ctx.info[idx].exec = ctx.info[preds[0]].exec; } else { assert(preds.size() == 2); /* if one of the predecessors ends in exact mask, we pop it from stack */ unsigned num_exec_masks = std::min(ctx.info[preds[0]].exec.size(), ctx.info[preds[1]].exec.size()); if (block->kind & block_kind_merge) num_exec_masks--; if (block->kind & block_kind_top_level) num_exec_masks = std::min(num_exec_masks, 2u); /* create phis for diverged exec masks */ for (unsigned i = 0; i < num_exec_masks; i++) { /* skip trivial phis */ if (ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) { Operand t = ctx.info[preds[0]].exec[i].first; /* discard/demote can change the state of the current exec mask */ assert(!t.isTemp() || ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second); uint8_t mask = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second; ctx.info[idx].exec.emplace_back(t, mask); continue; } Temp phi = bld.pseudo(aco_opcode::p_linear_phi, bld.def(bld.lm), get_exec_op(ctx.info[preds[0]].exec[i].first), get_exec_op(ctx.info[preds[1]].exec[i].first)); uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second; ctx.info[idx].exec.emplace_back(phi, mask_type); } } unsigned i = 0; while (block->instructions[i]->opcode == aco_opcode::p_phi || block->instructions[i]->opcode == aco_opcode::p_linear_phi) { bld.insert(std::move(block->instructions[i])); i++; } /* try to satisfy the block's needs */ if (ctx.handle_wqm) { if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) { if (ctx.info[idx].block_needs == 0 || ctx.info[idx].block_needs == Exact) { ctx.info[idx].exec.back().second |= mask_type_global; transition_to_Exact(ctx, bld, idx); ctx.handle_wqm = false; } } } /* restore exec mask after divergent control flow */ if (block->kind & (block_kind_loop_exit | block_kind_merge) && !ctx.info[idx].exec.back().first.isUndefined()) { Operand restore = ctx.info[idx].exec.back().first; assert(restore.size() == bld.lm.size()); bld.copy(Definition(exec, bld.lm), restore); if (!restore.isConstant()) ctx.info[idx].exec.back().first = Operand(bld.lm); } return i; } /* Avoid live-range splits in Exact mode: * Because the data register of atomic VMEM instructions * is shared between src and dst, it might be necessary * to create live-range splits during RA. * Make the live-range splits explicit in WQM mode. */ void handle_atomic_data(exec_ctx& ctx, Builder& bld, unsigned block_idx, aco_ptr& instr) { /* check if this is an atomic VMEM instruction */ int idx = -1; if (!instr->isVMEM() || instr->definitions.empty()) return; else if (instr->isMIMG()) idx = instr->operands[2].isTemp() ? 2 : -1; else if (instr->operands.size() == 4) idx = 3; if (idx != -1) { /* insert explicit copy of atomic data in WQM-mode */ transition_to_WQM(ctx, bld, block_idx); Temp data = instr->operands[idx].getTemp(); data = bld.copy(bld.def(data.regClass()), data); instr->operands[idx].setTemp(data); } } void process_instructions(exec_ctx& ctx, Block* block, std::vector>& instructions, unsigned idx) { WQMState state; if (ctx.info[block->index].exec.back().second & mask_type_wqm) { state = WQM; } else { assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact); state = Exact; } /* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */ bool process = (ctx.handle_wqm && (ctx.info[block->index].block_needs & state) != (ctx.info[block->index].block_needs & (WQM | Exact))) || block->kind & block_kind_uses_discard || block->kind & block_kind_needs_lowering; if (!process) { std::vector>::iterator it = std::next(block->instructions.begin(), idx); instructions.insert(instructions.end(), std::move_iterator>::iterator>(it), std::move_iterator>::iterator>( block->instructions.end())); return; } Builder bld(ctx.program, &instructions); for (; idx < block->instructions.size(); idx++) { aco_ptr instr = std::move(block->instructions[idx]); WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified; if (needs == WQM && state != WQM) { transition_to_WQM(ctx, bld, block->index); state = WQM; } else if (needs == Exact) { if (ctx.info[block->index].block_needs & WQM) handle_atomic_data(ctx, bld, block->index, instr); transition_to_Exact(ctx, bld, block->index); state = Exact; } if (instr->opcode == aco_opcode::p_discard_if) { Operand current_exec = Operand(exec, bld.lm); if (ctx.info[block->index].exec.size() >= 2) { if (needs == WQM) { /* Preserve the WQM mask */ ctx.info[block->index].exec[1].second &= ~mask_type_global; } else if (block->kind & block_kind_top_level) { /* Transition to Exact without extra instruction. Since needs != WQM, we won't need * WQM again. */ ctx.info[block->index].exec.resize(1); assert(ctx.info[block->index].exec[0].second == (mask_type_exact | mask_type_global)); current_exec = get_exec_op(ctx.info[block->index].exec.back().first); ctx.info[block->index].exec[0].first = Operand(bld.lm); } } Temp cond, exit_cond; if (instr->operands[0].isConstant()) { assert(instr->operands[0].constantValue() == -1u); /* save condition and set exec to zero */ exit_cond = bld.tmp(s1); cond = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)), Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm)); } else { cond = instr->operands[0].getTemp(); /* discard from current exec */ exit_cond = bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), current_exec, cond) .def(1) .getTemp(); } /* discard from inner to outer exec mask on stack */ int num = ctx.info[block->index].exec.size() - 2; for (int i = num; i >= 0; i--) { Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), ctx.info[block->index].exec[i].first, cond); ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp()); exit_cond = andn2->definitions[1].getTemp(); } instr->opcode = aco_opcode::p_exit_early_if; instr->operands[0] = bld.scc(exit_cond); assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0); } else if (instr->opcode == aco_opcode::p_is_helper) { Definition dst = instr->definitions[0]; assert(dst.size() == bld.lm.size()); if (state == Exact) { instr.reset(create_instruction(bld.w64or32(Builder::s_mov), Format::SOP1, 1, 1)); instr->operands[0] = Operand::zero(); instr->definitions[0] = dst; } else { std::pair& exact_mask = ctx.info[block->index].exec[0]; assert(exact_mask.second & mask_type_exact); instr.reset(create_instruction(bld.w64or32(Builder::s_andn2), Format::SOP2, 2, 2)); instr->operands[0] = Operand(exec, bld.lm); /* current exec */ instr->operands[1] = Operand(exact_mask.first); instr->definitions[0] = dst; instr->definitions[1] = bld.def(s1, scc); } } else if (instr->opcode == aco_opcode::p_demote_to_helper) { /* turn demote into discard_if with only exact masks */ assert((ctx.info[block->index].exec[0].second & mask_type_exact) && (ctx.info[block->index].exec[0].second & mask_type_global)); int num; Temp cond, exit_cond; if (instr->operands[0].isConstant()) { assert(instr->operands[0].constantValue() == -1u); /* transition to exact and set exec to zero */ exit_cond = bld.tmp(s1); cond = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)), Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm)); num = ctx.info[block->index].exec.size() - 2; if (!(ctx.info[block->index].exec.back().second & mask_type_exact)) { ctx.info[block->index].exec.back().first = Operand(cond); ctx.info[block->index].exec.emplace_back(Operand(bld.lm), mask_type_exact); } } else { /* demote_if: transition to exact */ if (block->kind & block_kind_top_level && ctx.info[block->index].exec.size() == 2 && ctx.info[block->index].exec.back().second & mask_type_global) { /* We don't need to actually copy anything into exact, since the s_andn2 * instructions later will do that. */ ctx.info[block->index].exec.pop_back(); } else { transition_to_Exact(ctx, bld, block->index); } assert(instr->operands[0].isTemp()); cond = instr->operands[0].getTemp(); num = ctx.info[block->index].exec.size() - 1; } for (int i = num; i >= 0; i--) { if (ctx.info[block->index].exec[i].second & mask_type_exact) { Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc), get_exec_op(ctx.info[block->index].exec[i].first), cond); if (i == (int)ctx.info[block->index].exec.size() - 1) andn2->definitions[0] = Definition(exec, bld.lm); ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp()); exit_cond = andn2->definitions[1].getTemp(); } else { assert(i != 0); } } instr->opcode = aco_opcode::p_exit_early_if; instr->operands[0] = bld.scc(exit_cond); state = Exact; } else if (instr->opcode == aco_opcode::p_elect) { bool all_lanes_enabled = ctx.info[block->index].exec.back().first.constantEquals(-1u); Definition dst = instr->definitions[0]; if (all_lanes_enabled) { bld.copy(Definition(dst), Operand::c32_or_c64(1u, dst.size() == 2)); } else { Temp first_lane_idx = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm)); bld.sop2(Builder::s_lshl, Definition(dst), bld.def(s1, scc), Operand::c32_or_c64(1u, dst.size() == 2), Operand(first_lane_idx)); } instr.reset(); continue; } bld.insert(std::move(instr)); } } void add_branch_code(exec_ctx& ctx, Block* block) { unsigned idx = block->index; Builder bld(ctx.program, block); if (block->linear_succs.empty()) return; /* try to disable wqm handling */ if (ctx.handle_wqm && block->kind & block_kind_top_level) { if (ctx.info[idx].exec.size() == 3) { assert(ctx.info[idx].exec[1].second == mask_type_wqm); ctx.info[idx].exec.pop_back(); } assert(ctx.info[idx].exec.size() <= 2); if (!(ctx.info[idx].instr_needs.back() & WQM)) { /* transition to Exact if the branch doesn't need WQM */ aco_ptr branch = std::move(block->instructions.back()); block->instructions.pop_back(); ctx.info[idx].exec.back().second |= mask_type_global; transition_to_Exact(ctx, bld, idx); bld.insert(std::move(branch)); ctx.handle_wqm = false; } } if (block->kind & block_kind_loop_preheader) { /* collect information about the succeeding loop */ bool has_divergent_break = false; bool has_divergent_continue = false; bool has_discard = false; unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth; for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) { Block& loop_block = ctx.program->blocks[i]; if (loop_block.kind & block_kind_uses_discard) has_discard = true; if (loop_block.loop_nest_depth != loop_nest_depth) continue; if (loop_block.kind & block_kind_uniform) continue; else if (loop_block.kind & block_kind_break) has_divergent_break = true; else if (loop_block.kind & block_kind_continue) has_divergent_continue = true; } unsigned num_exec_masks = ctx.info[idx].exec.size(); if (block->kind & block_kind_top_level) num_exec_masks = std::min(num_exec_masks, 2u); ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]], num_exec_masks, has_divergent_break, has_divergent_continue, has_discard); } /* For normal breaks, this is the exec mask. For discard+break, it's the * old exec mask before it was zero'd. */ Operand break_cond = Operand(exec, bld.lm); if (block->kind & block_kind_continue_or_break) { assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[1]].linear_succs[0]].kind & block_kind_loop_header); assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind & block_kind_loop_exit); assert(block->instructions.back()->opcode == aco_opcode::p_branch); block->instructions.pop_back(); bool need_parallelcopy = false; while (!(ctx.info[idx].exec.back().second & mask_type_loop)) { ctx.info[idx].exec.pop_back(); need_parallelcopy = true; } if (need_parallelcopy) ctx.info[idx].exec.back().first = bld.copy(Definition(exec, bld.lm), ctx.info[idx].exec.back().first); bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), Operand(exec, bld.lm), block->linear_succs[1], block->linear_succs[0]); return; } if (block->kind & block_kind_uniform) { Pseudo_branch_instruction& branch = block->instructions.back()->branch(); if (branch.opcode == aco_opcode::p_branch) { branch.target[0] = block->linear_succs[0]; } else { branch.target[0] = block->linear_succs[1]; branch.target[1] = block->linear_succs[0]; } return; } if (block->kind & block_kind_branch) { // orig = s_and_saveexec_b64 assert(block->linear_succs.size() == 2); assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z); Temp cond = block->instructions.back()->operands[0].getTemp(); const bool sel_ctrl = block->instructions.back()->branch().selection_control_remove; block->instructions.pop_back(); uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact); if (ctx.info[idx].exec.back().first.constantEquals(-1u)) { bld.copy(Definition(exec, bld.lm), cond); } else { Temp old_exec = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc), Definition(exec, bld.lm), cond, Operand(exec, bld.lm)); ctx.info[idx].exec.back().first = Operand(old_exec); } /* add next current exec to the stack */ ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type); Builder::Result r = bld.branch(aco_opcode::p_cbranch_z, bld.def(s2), Operand(exec, bld.lm), block->linear_succs[1], block->linear_succs[0]); r->branch().selection_control_remove = sel_ctrl; return; } if (block->kind & block_kind_invert) { // exec = s_andn2_b64 (original_exec, exec) assert(block->instructions.back()->opcode == aco_opcode::p_branch); const bool sel_ctrl = block->instructions.back()->branch().selection_control_remove; block->instructions.pop_back(); assert(ctx.info[idx].exec.size() >= 2); Operand orig_exec = ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].first; bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), orig_exec, Operand(exec, bld.lm)); Builder::Result r = bld.branch(aco_opcode::p_cbranch_z, bld.def(s2), Operand(exec, bld.lm), block->linear_succs[1], block->linear_succs[0]); r->branch().selection_control_remove = sel_ctrl; return; } if (block->kind & block_kind_break) { // loop_mask = s_andn2_b64 (loop_mask, exec) assert(block->instructions.back()->opcode == aco_opcode::p_branch); block->instructions.pop_back(); Temp cond = Temp(); for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { cond = bld.tmp(s1); Operand exec_mask = ctx.info[idx].exec[exec_idx].first; exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)), exec_mask, break_cond); ctx.info[idx].exec[exec_idx].first = exec_mask; if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) break; } /* check if the successor is the merge block, otherwise set exec to 0 */ // TODO: this could be done better by directly branching to the merge block unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; Block& succ = ctx.program->blocks[succ_idx]; if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes())); } bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), bld.scc(cond), block->linear_succs[1], block->linear_succs[0]); return; } if (block->kind & block_kind_continue) { assert(block->instructions.back()->opcode == aco_opcode::p_branch); block->instructions.pop_back(); Temp cond = Temp(); for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) { if (ctx.info[idx].exec[exec_idx].second & mask_type_loop) break; cond = bld.tmp(s1); Operand exec_mask = ctx.info[idx].exec[exec_idx].first; exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)), exec_mask, Operand(exec, bld.lm)); ctx.info[idx].exec[exec_idx].first = exec_mask; } assert(cond != Temp()); /* check if the successor is the merge block, otherwise set exec to 0 */ // TODO: this could be done better by directly branching to the merge block unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0]; Block& succ = ctx.program->blocks[succ_idx]; if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) { bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes())); } bld.branch(aco_opcode::p_cbranch_nz, bld.def(s2), bld.scc(cond), block->linear_succs[1], block->linear_succs[0]); return; } } void process_block(exec_ctx& ctx, Block* block) { std::vector> instructions; instructions.reserve(block->instructions.size()); unsigned idx = add_coupling_code(ctx, block, instructions); assert(!block->linear_succs.empty() || ctx.info[block->index].exec.size() <= 2); process_instructions(ctx, block, instructions, idx); block->instructions = std::move(instructions); add_branch_code(ctx, block); } } /* end namespace */ void insert_exec_mask(Program* program) { exec_ctx ctx(program); if (program->needs_wqm && program->needs_exact) calculate_wqm_needs(ctx); for (Block& block : program->blocks) process_block(ctx, &block); } } // namespace aco