#include #include "aco_ir.h" #include "common/sid.h" namespace aco { struct asm_context { Program *program; enum chip_class chip_class; std::map branches; std::vector constaddrs; const int16_t* opcode; // TODO: keep track of branch instructions referring blocks // and, when emitting the block, correct the offset in instr asm_context(Program* program) : program(program), chip_class(program->chip_class) { if (chip_class <= GFX9) opcode = &instr_info.opcode_gfx9[0]; } }; void emit_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { uint32_t instr_offset = out.size() * 4u; /* lower remaining pseudo-instructions */ if (instr->opcode == aco_opcode::p_constaddr) { unsigned dest = instr->definitions[0].physReg(); unsigned offset = instr->operands[0].constantValue(); /* s_getpc_b64 dest[0:1] */ uint32_t encoding = (0b101111101 << 23); uint32_t opcode = ctx.opcode[(int)aco_opcode::s_getpc_b64]; if (opcode >= 55 && ctx.chip_class <= GFX9) { assert(ctx.chip_class == GFX9 && opcode < 60); opcode = opcode - 4; } encoding |= dest << 16; encoding |= opcode << 8; out.push_back(encoding); /* s_add_u32 dest[0], dest[0], ... */ encoding = (0b10 << 30); encoding |= ctx.opcode[(int)aco_opcode::s_add_u32] << 23; encoding |= dest << 16; encoding |= dest; encoding |= 255 << 8; out.push_back(encoding); ctx.constaddrs.push_back(out.size()); out.push_back(-(instr_offset + 4) + offset); /* s_addc_u32 dest[1], dest[1], 0 */ encoding = (0b10 << 30); encoding |= ctx.opcode[(int)aco_opcode::s_addc_u32] << 23; encoding |= (dest + 1) << 16; encoding |= dest + 1; encoding |= 128 << 8; out.push_back(encoding); return; } uint32_t opcode = ctx.opcode[(int)instr->opcode]; if (opcode == (uint32_t)-1) { fprintf(stderr, "Unsupported opcode: "); aco_print_instr(instr, stderr); abort(); } switch (instr->format) { case Format::SOP2: { uint32_t encoding = (0b10 << 30); encoding |= opcode << 23; encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0; encoding |= instr->operands.size() >= 2 ? instr->operands[1].physReg() << 8 : 0; encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0; out.push_back(encoding); break; } case Format::SOPK: { uint32_t encoding = (0b1011 << 28); encoding |= opcode << 23; encoding |= !instr->definitions.empty() && !(instr->definitions[0].physReg() == scc) ? instr->definitions[0].physReg() << 16 : !instr->operands.empty() && !(instr->operands[0].physReg() == scc) ? instr->operands[0].physReg() << 16 : 0; encoding |= static_cast(instr)->imm; out.push_back(encoding); break; } case Format::SOP1: { uint32_t encoding = (0b101111101 << 23); if (opcode >= 55 && ctx.chip_class <= GFX9) { assert(ctx.chip_class == GFX9 && opcode < 60); opcode = opcode - 4; } encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0; encoding |= opcode << 8; encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0; out.push_back(encoding); break; } case Format::SOPC: { uint32_t encoding = (0b101111110 << 23); encoding |= opcode << 16; encoding |= instr->operands.size() == 2 ? instr->operands[1].physReg() << 8 : 0; encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0; out.push_back(encoding); break; } case Format::SOPP: { SOPP_instruction* sopp = static_cast(instr); uint32_t encoding = (0b101111111 << 23); encoding |= opcode << 16; encoding |= (uint16_t) sopp->imm; if (sopp->block != -1) ctx.branches.insert({out.size(), sopp}); out.push_back(encoding); break; } case Format::SMEM: { SMEM_instruction* smem = static_cast(instr); uint32_t encoding = (0b110000 << 26); encoding |= opcode << 18; if (instr->operands.size() >= 2) encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0; bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4); assert(!soe || ctx.chip_class >= GFX9); encoding |= soe ? 1 << 14 : 0; encoding |= smem->glc ? 1 << 16 : 0; if (!instr->definitions.empty() || instr->operands.size() >= 3) encoding |= (!instr->definitions.empty() ? instr->definitions[0].physReg() : instr->operands[2].physReg().reg) << 6; if (instr->operands.size() >= 1) encoding |= instr->operands[0].physReg() >> 1; out.push_back(encoding); encoding = 0; if (instr->operands.size() >= 2) encoding |= instr->operands[1].isConstant() ? instr->operands[1].constantValue() : instr->operands[1].physReg().reg; encoding |= soe ? instr->operands.back().physReg() << 25 : 0; out.push_back(encoding); return; } case Format::VOP2: { uint32_t encoding = 0; encoding |= opcode << 25; encoding |= (0xFF & instr->definitions[0].physReg().reg) << 17; encoding |= (0xFF & instr->operands[1].physReg().reg) << 9; encoding |= instr->operands[0].physReg().reg; out.push_back(encoding); break; } case Format::VOP1: { uint32_t encoding = (0b0111111 << 25); encoding |= (0xFF & instr->definitions[0].physReg().reg) << 17; encoding |= opcode << 9; encoding |= instr->operands[0].physReg().reg; out.push_back(encoding); break; } case Format::VOPC: { uint32_t encoding = (0b0111110 << 25); encoding |= opcode << 17; encoding |= (0xFF & instr->operands[1].physReg().reg) << 9; encoding |= instr->operands[0].physReg().reg; out.push_back(encoding); break; } case Format::VINTRP: { Interp_instruction* interp = static_cast(instr); uint32_t encoding = (0b110101 << 26); encoding |= (0xFF & instr->definitions[0].physReg().reg) << 18; encoding |= opcode << 16; encoding |= interp->attribute << 10; encoding |= interp->component << 8; if (instr->opcode == aco_opcode::v_interp_mov_f32) encoding |= (0x3 & instr->operands[0].constantValue()); else encoding |= (0xFF & instr->operands[0].physReg().reg); out.push_back(encoding); break; } case Format::DS: { DS_instruction* ds = static_cast(instr); uint32_t encoding = (0b110110 << 26); encoding |= opcode << 17; encoding |= (ds->gds ? 1 : 0) << 16; encoding |= ((0xFF & ds->offset1) << 8); encoding |= (0xFFFF & ds->offset0); out.push_back(encoding); encoding = 0; unsigned reg = !instr->definitions.empty() ? instr->definitions[0].physReg() : 0; encoding |= (0xFF & reg) << 24; reg = instr->operands.size() >= 3 && !(instr->operands[2].physReg() == m0) ? instr->operands[2].physReg() : 0; encoding |= (0xFF & reg) << 16; reg = instr->operands.size() >= 2 && !(instr->operands[1].physReg() == m0) ? instr->operands[1].physReg() : 0; encoding |= (0xFF & reg) << 8; encoding |= (0xFF & instr->operands[0].physReg().reg); out.push_back(encoding); break; } case Format::MUBUF: { MUBUF_instruction* mubuf = static_cast(instr); uint32_t encoding = (0b111000 << 26); encoding |= opcode << 18; encoding |= (mubuf->slc ? 1 : 0) << 17; encoding |= (mubuf->lds ? 1 : 0) << 16; encoding |= (mubuf->glc ? 1 : 0) << 14; encoding |= (mubuf->idxen ? 1 : 0) << 13; encoding |= (mubuf->offen ? 1 : 0) << 12; encoding |= 0x0FFF & mubuf->offset; out.push_back(encoding); encoding = 0; encoding |= instr->operands[2].physReg() << 24; encoding |= (mubuf->tfe ? 1 : 0) << 23; encoding |= (instr->operands[1].physReg() >> 2) << 16; unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg().reg; encoding |= (0xFF & reg) << 8; encoding |= (0xFF & instr->operands[0].physReg().reg); out.push_back(encoding); break; } case Format::MTBUF: { MTBUF_instruction* mtbuf = static_cast(instr); uint32_t encoding = (0b111010 << 26); encoding |= opcode << 15; encoding |= (mtbuf->glc ? 1 : 0) << 14; encoding |= (mtbuf->idxen ? 1 : 0) << 13; encoding |= (mtbuf->offen ? 1 : 0) << 12; encoding |= 0x0FFF & mtbuf->offset; encoding |= (0xF & mtbuf->dfmt) << 19; encoding |= (0x7 & mtbuf->nfmt) << 23; out.push_back(encoding); encoding = 0; encoding |= instr->operands[2].physReg().reg << 24; encoding |= (mtbuf->tfe ? 1 : 0) << 23; encoding |= (mtbuf->slc ? 1 : 0) << 22; encoding |= (instr->operands[1].physReg().reg >> 2) << 16; unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg().reg : instr->definitions[0].physReg().reg; encoding |= (0xFF & reg) << 8; encoding |= (0xFF & instr->operands[0].physReg().reg); out.push_back(encoding); break; } case Format::MIMG: { MIMG_instruction* mimg = static_cast(instr); uint32_t encoding = (0b111100 << 26); encoding |= mimg->slc ? 1 << 25 : 0; encoding |= opcode << 18; encoding |= mimg->lwe ? 1 << 17 : 0; encoding |= mimg->tfe ? 1 << 16 : 0; encoding |= mimg->r128 ? 1 << 15 : 0; encoding |= mimg->da ? 1 << 14 : 0; encoding |= mimg->glc ? 1 << 13 : 0; encoding |= mimg->unrm ? 1 << 12 : 0; encoding |= (0xF & mimg->dmask) << 8; out.push_back(encoding); encoding = (0xFF & instr->operands[0].physReg().reg); /* VADDR */ if (!instr->definitions.empty()) { encoding |= (0xFF & instr->definitions[0].physReg().reg) << 8; /* VDATA */ } else if (instr->operands.size() == 4) { encoding |= (0xFF & instr->operands[3].physReg().reg) << 8; /* VDATA */ } encoding |= (0x1F & (instr->operands[1].physReg() >> 2)) << 16; /* T# (resource) */ if (instr->operands.size() > 2) encoding |= (0x1F & (instr->operands[2].physReg() >> 2)) << 21; /* sampler */ // TODO VEGA: D16 out.push_back(encoding); break; } case Format::FLAT: case Format::SCRATCH: case Format::GLOBAL: { FLAT_instruction *flat = static_cast(instr); uint32_t encoding = (0b110111 << 26); encoding |= opcode << 18; encoding |= flat->offset & 0x1fff; if (instr->format == Format::SCRATCH) encoding |= 1 << 14; else if (instr->format == Format::GLOBAL) encoding |= 2 << 14; encoding |= flat->lds ? 1 << 13 : 0; encoding |= flat->glc ? 1 << 13 : 0; encoding |= flat->slc ? 1 << 13 : 0; out.push_back(encoding); encoding = (0xFF & instr->operands[0].physReg().reg); if (!instr->definitions.empty()) encoding |= (0xFF & instr->definitions[0].physReg().reg) << 24; else encoding |= (0xFF & instr->operands[2].physReg().reg) << 8; if (!instr->operands[1].isUndefined()) { assert(instr->operands[1].physReg() != 0x7f); assert(instr->format != Format::FLAT); encoding |= instr->operands[1].physReg() << 16; } else if (instr->format != Format::FLAT) { encoding |= 0x7F << 16; } encoding |= flat->nv ? 1 << 23 : 0; out.push_back(encoding); break; } case Format::EXP: { Export_instruction* exp = static_cast(instr); uint32_t encoding = (0b110001 << 26); encoding |= exp->valid_mask ? 0b1 << 12 : 0; encoding |= exp->done ? 0b1 << 11 : 0; encoding |= exp->compressed ? 0b1 << 10 : 0; encoding |= exp->dest << 4; encoding |= exp->enabled_mask; out.push_back(encoding); encoding = 0xFF & exp->operands[0].physReg().reg; encoding |= (0xFF & exp->operands[1].physReg().reg) << 8; encoding |= (0xFF & exp->operands[2].physReg().reg) << 16; encoding |= (0xFF & exp->operands[3].physReg().reg) << 24; out.push_back(encoding); break; } case Format::PSEUDO: case Format::PSEUDO_BARRIER: unreachable("Pseudo instructions should be lowered before assembly."); default: if ((uint16_t) instr->format & (uint16_t) Format::VOP3A) { VOP3A_instruction* vop3 = static_cast(instr); if ((uint16_t) instr->format & (uint16_t) Format::VOP2) opcode = opcode + 0x100; else if ((uint16_t) instr->format & (uint16_t) Format::VOP1) opcode = opcode + 0x140; else if ((uint16_t) instr->format & (uint16_t) Format::VOPC) opcode = opcode + 0x0; else if ((uint16_t) instr->format & (uint16_t) Format::VINTRP) opcode = opcode + 0x270; // TODO: op_sel uint32_t encoding = (0b110100 << 26); encoding |= opcode << 16; encoding |= (vop3->clamp ? 1 : 0) << 15; for (unsigned i = 0; i < 3; i++) encoding |= vop3->abs[i] << (8+i); if (instr->definitions.size() == 2) encoding |= instr->definitions[1].physReg() << 8; encoding |= (0xFF & instr->definitions[0].physReg().reg); out.push_back(encoding); encoding = 0; if (instr->opcode == aco_opcode::v_interp_mov_f32) { encoding = 0x3 & instr->operands[0].constantValue(); } else { for (unsigned i = 0; i < instr->operands.size(); i++) encoding |= instr->operands[i].physReg() << (i * 9); } encoding |= vop3->omod << 27; for (unsigned i = 0; i < 3; i++) encoding |= vop3->neg[i] << (29+i); out.push_back(encoding); return; } else if (instr->isDPP()){ /* first emit the instruction without the DPP operand */ Operand dpp_op = instr->operands[0]; instr->operands[0] = Operand(PhysReg{250}, v1); instr->format = (Format) ((uint32_t) instr->format & ~(1 << 14)); emit_instruction(ctx, out, instr); DPP_instruction* dpp = static_cast(instr); uint32_t encoding = (0xF & dpp->row_mask) << 28; encoding |= (0xF & dpp->bank_mask) << 24; encoding |= dpp->abs[1] << 23; encoding |= dpp->neg[1] << 22; encoding |= dpp->abs[0] << 21; encoding |= dpp->neg[0] << 20; encoding |= dpp->bound_ctrl << 19; encoding |= dpp->dpp_ctrl << 8; encoding |= (0xFF) & dpp_op.physReg().reg; out.push_back(encoding); return; } else { unreachable("unimplemented instruction format"); } } /* append literal dword */ for (const Operand& op : instr->operands) { if (op.isLiteral()) { out.push_back(op.constantValue()); break; } } } void emit_block(asm_context& ctx, std::vector& out, Block& block) { for (aco_ptr& instr : block.instructions) { #if 0 int start_idx = out.size(); std::cerr << "Encoding:\t" << std::endl; aco_print_instr(&*instr, stderr); std::cerr << std::endl; #endif emit_instruction(ctx, out, instr.get()); #if 0 for (int i = start_idx; i < out.size(); i++) std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl; #endif } } void fix_exports(asm_context& ctx, std::vector& out, Program* program) { for (int idx = program->blocks.size() - 1; idx >= 0; idx--) { Block& block = program->blocks[idx]; std::vector>::reverse_iterator it = block.instructions.rbegin(); bool endBlock = false; bool exported = false; while ( it != block.instructions.rend()) { if ((*it)->format == Format::EXP && endBlock) { Export_instruction* exp = static_cast((*it).get()); if (program->stage & hw_vs) { if (exp->dest >= V_008DFC_SQ_EXP_POS && exp->dest <= (V_008DFC_SQ_EXP_POS + 3)) { exp->done = true; exported = true; break; } } else { exp->done = true; exp->valid_mask = true; exported = true; break; } } else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec) break; else if ((*it)->opcode == aco_opcode::s_endpgm) { if (endBlock) break; endBlock = true; } ++it; } if (!endBlock || exported) continue; /* we didn't find an Export instruction and have to insert a null export */ aco_ptr exp{create_instruction(aco_opcode::exp, Format::EXP, 4, 0)}; for (unsigned i = 0; i < 4; i++) exp->operands[i] = Operand(v1); exp->enabled_mask = 0; exp->compressed = false; exp->done = true; exp->valid_mask = program->stage & hw_fs; if (program->stage & hw_fs) exp->dest = 9; /* NULL */ else exp->dest = V_008DFC_SQ_EXP_POS; /* insert the null export 1 instruction before endpgm */ block.instructions.insert(block.instructions.end() - 1, std::move(exp)); } } void fix_branches(asm_context& ctx, std::vector& out) { for (std::pair branch : ctx.branches) { int offset = (int)ctx.program->blocks[branch.second->block].offset - branch.first - 1; out[branch.first] |= (uint16_t) offset; } } void fix_constaddrs(asm_context& ctx, std::vector& out) { for (unsigned addr : ctx.constaddrs) out[addr] += out.size() * 4u; } unsigned emit_program(Program* program, std::vector& code) { asm_context ctx(program); if (program->stage & (hw_vs | hw_fs)) fix_exports(ctx, code, program); for (Block& block : program->blocks) { block.offset = code.size(); emit_block(ctx, code, block); } fix_branches(ctx, code); fix_constaddrs(ctx, code); unsigned constant_data_offset = code.size() * sizeof(uint32_t); while (program->constant_data.size() % 4u) program->constant_data.push_back(0); /* Copy constant data */ code.insert(code.end(), (uint32_t*)program->constant_data.data(), (uint32_t*)(program->constant_data.data() + program->constant_data.size())); return constant_data_offset; } }