/* * mdadm - Intel(R) Matrix Storage Manager Support * * Copyright (C) 2002-2008 Intel Corporation * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. */ #define HAVE_STDINT_H 1 #include "mdadm.h" #include "mdmon.h" #include "sha1.h" #include "platform-intel.h" #include #include #include #include /* MPB == Metadata Parameter Block */ #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. " #define MPB_SIG_LEN (strlen(MPB_SIGNATURE)) #define MPB_VERSION_RAID0 "1.0.00" #define MPB_VERSION_RAID1 "1.1.00" #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00" #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01" #define MPB_VERSION_RAID5 "1.2.02" #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04" #define MPB_VERSION_CNG "1.2.06" #define MPB_VERSION_ATTRIBS "1.3.00" #define MAX_SIGNATURE_LENGTH 32 #define MAX_RAID_SERIAL_LEN 16 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000) #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000) #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000) #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001) #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002) #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004) #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008) #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010) #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020) #define MPB_SECTOR_CNT 418 #define IMSM_RESERVED_SECTORS 4096 #define SECT_PER_MB_SHIFT 11 /* Disk configuration info. */ #define IMSM_MAX_DEVICES 255 struct imsm_disk { __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */ __u32 total_blocks; /* 0xE8 - 0xEB total blocks */ __u32 scsi_id; /* 0xEC - 0xEF scsi ID */ #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */ #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */ #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */ __u32 status; /* 0xF0 - 0xF3 */ __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */ #define IMSM_DISK_FILLERS 4 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */ }; /* RAID map configuration infos. */ struct imsm_map { __u32 pba_of_lba0; /* start address of partition */ __u32 blocks_per_member;/* blocks per member */ __u32 num_data_stripes; /* number of data stripes */ __u16 blocks_per_strip; __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */ #define IMSM_T_STATE_NORMAL 0 #define IMSM_T_STATE_UNINITIALIZED 1 #define IMSM_T_STATE_DEGRADED 2 #define IMSM_T_STATE_FAILED 3 __u8 raid_level; #define IMSM_T_RAID0 0 #define IMSM_T_RAID1 1 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */ __u8 num_members; /* number of member disks */ __u8 num_domains; /* number of parity domains */ __u8 failed_disk_num; /* valid only when state is degraded */ __u8 ddf; __u32 filler[7]; /* expansion area */ #define IMSM_ORD_REBUILD (1 << 24) __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members], * top byte contains some flags */ } __attribute__ ((packed)); struct imsm_vol { __u32 curr_migr_unit; __u32 checkpoint_id; /* id to access curr_migr_unit */ __u8 migr_state; /* Normal or Migrating */ #define MIGR_INIT 0 #define MIGR_REBUILD 1 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */ #define MIGR_GEN_MIGR 3 #define MIGR_STATE_CHANGE 4 #define MIGR_REPAIR 5 __u8 migr_type; /* Initializing, Rebuilding, ... */ __u8 dirty; __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */ __u16 verify_errors; /* number of mismatches */ __u16 bad_blocks; /* number of bad blocks during verify */ __u32 filler[4]; struct imsm_map map[1]; /* here comes another one if migr_state */ } __attribute__ ((packed)); struct imsm_dev { __u8 volume[MAX_RAID_SERIAL_LEN]; __u32 size_low; __u32 size_high; #define DEV_BOOTABLE __cpu_to_le32(0x01) #define DEV_BOOT_DEVICE __cpu_to_le32(0x02) #define DEV_READ_COALESCING __cpu_to_le32(0x04) #define DEV_WRITE_COALESCING __cpu_to_le32(0x08) #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10) #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20) #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40) #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80) #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100) #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200) #define DEV_CLONE_N_GO __cpu_to_le32(0x400) #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800) #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000) __u32 status; /* Persistent RaidDev status */ __u32 reserved_blocks; /* Reserved blocks at beginning of volume */ __u8 migr_priority; __u8 num_sub_vols; __u8 tid; __u8 cng_master_disk; __u16 cache_policy; __u8 cng_state; __u8 cng_sub_state; #define IMSM_DEV_FILLERS 10 __u32 filler[IMSM_DEV_FILLERS]; struct imsm_vol vol; } __attribute__ ((packed)); struct imsm_super { __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */ __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */ __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */ __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */ __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */ __u32 error_log_size; /* 0x30 - 0x33 in bytes */ __u32 attributes; /* 0x34 - 0x37 */ __u8 num_disks; /* 0x38 Number of configured disks */ __u8 num_raid_devs; /* 0x39 Number of configured volumes */ __u8 error_log_pos; /* 0x3A */ __u8 fill[1]; /* 0x3B */ __u32 cache_size; /* 0x3c - 0x40 in mb */ __u32 orig_family_num; /* 0x40 - 0x43 original family num */ __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */ __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */ #define IMSM_FILLERS 35 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */ struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */ /* here comes imsm_dev[num_raid_devs] */ /* here comes BBM logs */ } __attribute__ ((packed)); #define BBM_LOG_MAX_ENTRIES 254 struct bbm_log_entry { __u64 defective_block_start; #define UNREADABLE 0xFFFFFFFF __u32 spare_block_offset; __u16 remapped_marked_count; __u16 disk_ordinal; } __attribute__ ((__packed__)); struct bbm_log { __u32 signature; /* 0xABADB10C */ __u32 entry_count; __u32 reserved_spare_block_count; /* 0 */ __u32 reserved; /* 0xFFFF */ __u64 first_spare_lba; struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES]; } __attribute__ ((__packed__)); #ifndef MDASSEMBLE static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" }; #endif static __u8 migr_type(struct imsm_dev *dev) { if (dev->vol.migr_type == MIGR_VERIFY && dev->status & DEV_VERIFY_AND_FIX) return MIGR_REPAIR; else return dev->vol.migr_type; } static void set_migr_type(struct imsm_dev *dev, __u8 migr_type) { /* for compatibility with older oroms convert MIGR_REPAIR, into * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status */ if (migr_type == MIGR_REPAIR) { dev->vol.migr_type = MIGR_VERIFY; dev->status |= DEV_VERIFY_AND_FIX; } else { dev->vol.migr_type = migr_type; dev->status &= ~DEV_VERIFY_AND_FIX; } } static unsigned int sector_count(__u32 bytes) { return ((bytes + (512-1)) & (~(512-1))) / 512; } static unsigned int mpb_sectors(struct imsm_super *mpb) { return sector_count(__le32_to_cpu(mpb->mpb_size)); } struct intel_dev { struct imsm_dev *dev; struct intel_dev *next; unsigned index; }; /* internal representation of IMSM metadata */ struct intel_super { union { void *buf; /* O_DIRECT buffer for reading/writing metadata */ struct imsm_super *anchor; /* immovable parameters */ }; size_t len; /* size of the 'buf' allocation */ void *next_buf; /* for realloc'ing buf from the manager */ size_t next_len; int updates_pending; /* count of pending updates for mdmon */ int current_vol; /* index of raid device undergoing creation */ __u32 create_offset; /* common start for 'current_vol' */ __u32 random; /* random data for seeding new family numbers */ struct intel_dev *devlist; struct dl { struct dl *next; int index; __u8 serial[MAX_RAID_SERIAL_LEN]; int major, minor; char *devname; struct imsm_disk disk; int fd; int extent_cnt; struct extent *e; /* for determining freespace @ create */ int raiddisk; /* slot to fill in autolayout */ } *disks; struct dl *add; /* list of disks to add while mdmon active */ struct dl *missing; /* disks removed while we weren't looking */ struct bbm_log *bbm_log; const char *hba; /* device path of the raid controller for this metadata */ const struct imsm_orom *orom; /* platform firmware support */ struct intel_super *next; /* (temp) list for disambiguating family_num */ }; struct intel_disk { struct imsm_disk disk; #define IMSM_UNKNOWN_OWNER (-1) int owner; struct intel_disk *next; }; struct extent { unsigned long long start, size; }; /* definition of messages passed to imsm_process_update */ enum imsm_update_type { update_activate_spare, update_create_array, update_kill_array, update_rename_array, update_add_disk, }; struct imsm_update_activate_spare { enum imsm_update_type type; struct dl *dl; int slot; int array; struct imsm_update_activate_spare *next; }; struct disk_info { __u8 serial[MAX_RAID_SERIAL_LEN]; }; struct imsm_update_create_array { enum imsm_update_type type; int dev_idx; struct imsm_dev dev; }; struct imsm_update_kill_array { enum imsm_update_type type; int dev_idx; }; struct imsm_update_rename_array { enum imsm_update_type type; __u8 name[MAX_RAID_SERIAL_LEN]; int dev_idx; }; struct imsm_update_add_disk { enum imsm_update_type type; }; static struct supertype *match_metadata_desc_imsm(char *arg) { struct supertype *st; if (strcmp(arg, "imsm") != 0 && strcmp(arg, "default") != 0 ) return NULL; st = malloc(sizeof(*st)); if (!st) return NULL; memset(st, 0, sizeof(*st)); st->container_dev = NoMdDev; st->ss = &super_imsm; st->max_devs = IMSM_MAX_DEVICES; st->minor_version = 0; st->sb = NULL; return st; } #ifndef MDASSEMBLE static __u8 *get_imsm_version(struct imsm_super *mpb) { return &mpb->sig[MPB_SIG_LEN]; } #endif /* retrieve a disk directly from the anchor when the anchor is known to be * up-to-date, currently only at load time */ static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index) { if (index >= mpb->num_disks) return NULL; return &mpb->disk[index]; } /* retrieve a disk from the parsed metadata */ static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index) { struct dl *d; for (d = super->disks; d; d = d->next) if (d->index == index) return &d->disk; return NULL; } /* generate a checksum directly from the anchor when the anchor is known to be * up-to-date, currently only at load or write_super after coalescing */ static __u32 __gen_imsm_checksum(struct imsm_super *mpb) { __u32 end = mpb->mpb_size / sizeof(end); __u32 *p = (__u32 *) mpb; __u32 sum = 0; while (end--) { sum += __le32_to_cpu(*p); p++; } return sum - __le32_to_cpu(mpb->check_sum); } static size_t sizeof_imsm_map(struct imsm_map *map) { return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1); } struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map) { struct imsm_map *map = &dev->vol.map[0]; if (second_map && !dev->vol.migr_state) return NULL; else if (second_map) { void *ptr = map; return ptr + sizeof_imsm_map(map); } else return map; } /* return the size of the device. * migr_state increases the returned size if map[0] were to be duplicated */ static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state) { size_t size = sizeof(*dev) - sizeof(struct imsm_map) + sizeof_imsm_map(get_imsm_map(dev, 0)); /* migrating means an additional map */ if (dev->vol.migr_state) size += sizeof_imsm_map(get_imsm_map(dev, 1)); else if (migr_state) size += sizeof_imsm_map(get_imsm_map(dev, 0)); return size; } #ifndef MDASSEMBLE /* retrieve disk serial number list from a metadata update */ static struct disk_info *get_disk_info(struct imsm_update_create_array *update) { void *u = update; struct disk_info *inf; inf = u + sizeof(*update) - sizeof(struct imsm_dev) + sizeof_imsm_dev(&update->dev, 0); return inf; } #endif static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index) { int offset; int i; void *_mpb = mpb; if (index >= mpb->num_raid_devs) return NULL; /* devices start after all disks */ offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb; for (i = 0; i <= index; i++) if (i == index) return _mpb + offset; else offset += sizeof_imsm_dev(_mpb + offset, 0); return NULL; } static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index) { struct intel_dev *dv; if (index >= super->anchor->num_raid_devs) return NULL; for (dv = super->devlist; dv; dv = dv->next) if (dv->index == index) return dv->dev; return NULL; } static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot) { struct imsm_map *map; if (dev->vol.migr_state) map = get_imsm_map(dev, 1); else map = get_imsm_map(dev, 0); /* top byte identifies disk under rebuild */ return __le32_to_cpu(map->disk_ord_tbl[slot]); } #define ord_to_idx(ord) (((ord) << 8) >> 8) static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot) { __u32 ord = get_imsm_ord_tbl_ent(dev, slot); return ord_to_idx(ord); } static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord) { map->disk_ord_tbl[slot] = __cpu_to_le32(ord); } static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx) { int slot; __u32 ord; for (slot = 0; slot < map->num_members; slot++) { ord = __le32_to_cpu(map->disk_ord_tbl[slot]); if (ord_to_idx(ord) == idx) return slot; } return -1; } static int get_imsm_raid_level(struct imsm_map *map) { if (map->raid_level == 1) { if (map->num_members == 2) return 1; else return 10; } return map->raid_level; } static int cmp_extent(const void *av, const void *bv) { const struct extent *a = av; const struct extent *b = bv; if (a->start < b->start) return -1; if (a->start > b->start) return 1; return 0; } static int count_memberships(struct dl *dl, struct intel_super *super) { int memberships = 0; int i; for (i = 0; i < super->anchor->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(super, i); struct imsm_map *map = get_imsm_map(dev, 0); if (get_imsm_disk_slot(map, dl->index) >= 0) memberships++; } return memberships; } static struct extent *get_extents(struct intel_super *super, struct dl *dl) { /* find a list of used extents on the given physical device */ struct extent *rv, *e; int i; int memberships = count_memberships(dl, super); __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS; rv = malloc(sizeof(struct extent) * (memberships + 1)); if (!rv) return NULL; e = rv; for (i = 0; i < super->anchor->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(super, i); struct imsm_map *map = get_imsm_map(dev, 0); if (get_imsm_disk_slot(map, dl->index) >= 0) { e->start = __le32_to_cpu(map->pba_of_lba0); e->size = __le32_to_cpu(map->blocks_per_member); e++; } } qsort(rv, memberships, sizeof(*rv), cmp_extent); /* determine the start of the metadata * when no raid devices are defined use the default * ...otherwise allow the metadata to truncate the value * as is the case with older versions of imsm */ if (memberships) { struct extent *last = &rv[memberships - 1]; __u32 remainder; remainder = __le32_to_cpu(dl->disk.total_blocks) - (last->start + last->size); /* round down to 1k block to satisfy precision of the kernel * 'size' interface */ remainder &= ~1UL; /* make sure remainder is still sane */ if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9) remainder = ROUND_UP(super->len, 512) >> 9; if (reservation > remainder) reservation = remainder; } e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation; e->size = 0; return rv; } /* try to determine how much space is reserved for metadata from * the last get_extents() entry, otherwise fallback to the * default */ static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl) { struct extent *e; int i; __u32 rv; /* for spares just return a minimal reservation which will grow * once the spare is picked up by an array */ if (dl->index == -1) return MPB_SECTOR_CNT; e = get_extents(super, dl); if (!e) return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS; /* scroll to last entry */ for (i = 0; e[i].size; i++) continue; rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start; free(e); return rv; } static int is_spare(struct imsm_disk *disk) { return (disk->status & SPARE_DISK) == SPARE_DISK; } static int is_configured(struct imsm_disk *disk) { return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK; } static int is_failed(struct imsm_disk *disk) { return (disk->status & FAILED_DISK) == FAILED_DISK; } #ifndef MDASSEMBLE static __u64 blocks_per_migr_unit(struct imsm_dev *dev); static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx) { __u64 sz; int slot, i; struct imsm_map *map = get_imsm_map(dev, 0); __u32 ord; printf("\n"); printf("[%.16s]:\n", dev->volume); printf(" UUID : %s\n", uuid); printf(" RAID Level : %d\n", get_imsm_raid_level(map)); printf(" Members : %d\n", map->num_members); printf(" Slots : ["); for (i = 0; i < map->num_members; i++) { ord = get_imsm_ord_tbl_ent(dev, i); printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U"); } printf("]\n"); slot = get_imsm_disk_slot(map, disk_idx); if (slot >= 0) { ord = get_imsm_ord_tbl_ent(dev, slot); printf(" This Slot : %d%s\n", slot, ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : ""); } else printf(" This Slot : ?\n"); sz = __le32_to_cpu(dev->size_high); sz <<= 32; sz += __le32_to_cpu(dev->size_low); printf(" Array Size : %llu%s\n", (unsigned long long)sz, human_size(sz * 512)); sz = __le32_to_cpu(map->blocks_per_member); printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz, human_size(sz * 512)); printf(" Sector Offset : %u\n", __le32_to_cpu(map->pba_of_lba0)); printf(" Num Stripes : %u\n", __le32_to_cpu(map->num_data_stripes)); printf(" Chunk Size : %u KiB\n", __le16_to_cpu(map->blocks_per_strip) / 2); printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks)); printf(" Migrate State : "); if (dev->vol.migr_state) { if (migr_type(dev) == MIGR_INIT) printf("initialize\n"); else if (migr_type(dev) == MIGR_REBUILD) printf("rebuild\n"); else if (migr_type(dev) == MIGR_VERIFY) printf("check\n"); else if (migr_type(dev) == MIGR_GEN_MIGR) printf("general migration\n"); else if (migr_type(dev) == MIGR_STATE_CHANGE) printf("state change\n"); else if (migr_type(dev) == MIGR_REPAIR) printf("repair\n"); else printf("\n", migr_type(dev)); } else printf("idle\n"); printf(" Map State : %s", map_state_str[map->map_state]); if (dev->vol.migr_state) { struct imsm_map *map = get_imsm_map(dev, 1); printf(" <-- %s", map_state_str[map->map_state]); printf("\n Checkpoint : %u (%llu)", __le32_to_cpu(dev->vol.curr_migr_unit), (unsigned long long)blocks_per_migr_unit(dev)); } printf("\n"); printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean"); } static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved) { struct imsm_disk *disk = __get_imsm_disk(mpb, index); char str[MAX_RAID_SERIAL_LEN + 1]; __u64 sz; if (index < 0 || !disk) return; printf("\n"); snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial); printf(" Disk%02d Serial : %s\n", index, str); printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "", is_configured(disk) ? " active" : "", is_failed(disk) ? " failed" : ""); printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id)); sz = __le32_to_cpu(disk->total_blocks) - reserved; printf(" Usable Size : %llu%s\n", (unsigned long long)sz, human_size(sz * 512)); } static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map); static void examine_super_imsm(struct supertype *st, char *homehost) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; char str[MAX_SIGNATURE_LENGTH]; int i; struct mdinfo info; char nbuf[64]; __u32 sum; __u32 reserved = imsm_reserved_sectors(super, super->disks); snprintf(str, MPB_SIG_LEN, "%s", mpb->sig); printf(" Magic : %s\n", str); snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb)); printf(" Version : %s\n", get_imsm_version(mpb)); printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num)); printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num)); printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num)); getinfo_super_imsm(st, &info, NULL); fname_from_uuid(st, &info, nbuf, ':'); printf(" UUID : %s\n", nbuf + 5); sum = __le32_to_cpu(mpb->check_sum); printf(" Checksum : %08x %s\n", sum, __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect"); printf(" MPB Sectors : %d\n", mpb_sectors(mpb)); printf(" Disks : %d\n", mpb->num_disks); printf(" RAID Devices : %d\n", mpb->num_raid_devs); print_imsm_disk(mpb, super->disks->index, reserved); if (super->bbm_log) { struct bbm_log *log = super->bbm_log; printf("\n"); printf("Bad Block Management Log:\n"); printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size)); printf(" Signature : %x\n", __le32_to_cpu(log->signature)); printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count)); printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count)); printf(" First Spare : %llx\n", (unsigned long long) __le64_to_cpu(log->first_spare_lba)); } for (i = 0; i < mpb->num_raid_devs; i++) { struct mdinfo info; struct imsm_dev *dev = __get_imsm_dev(mpb, i); super->current_vol = i; getinfo_super_imsm(st, &info, NULL); fname_from_uuid(st, &info, nbuf, ':'); print_imsm_dev(dev, nbuf + 5, super->disks->index); } for (i = 0; i < mpb->num_disks; i++) { if (i == super->disks->index) continue; print_imsm_disk(mpb, i, reserved); } } static void brief_examine_super_imsm(struct supertype *st, int verbose) { /* We just write a generic IMSM ARRAY entry */ struct mdinfo info; char nbuf[64]; struct intel_super *super = st->sb; if (!super->anchor->num_raid_devs) { printf("ARRAY metadata=imsm\n"); return; } getinfo_super_imsm(st, &info, NULL); fname_from_uuid(st, &info, nbuf, ':'); printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5); } static void brief_examine_subarrays_imsm(struct supertype *st, int verbose) { /* We just write a generic IMSM ARRAY entry */ struct mdinfo info; char nbuf[64]; char nbuf1[64]; struct intel_super *super = st->sb; int i; if (!super->anchor->num_raid_devs) return; getinfo_super_imsm(st, &info, NULL); fname_from_uuid(st, &info, nbuf, ':'); for (i = 0; i < super->anchor->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(super, i); super->current_vol = i; getinfo_super_imsm(st, &info, NULL); fname_from_uuid(st, &info, nbuf1, ':'); printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n", dev->volume, nbuf + 5, i, nbuf1 + 5); } } static void export_examine_super_imsm(struct supertype *st) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; struct mdinfo info; char nbuf[64]; getinfo_super_imsm(st, &info, NULL); fname_from_uuid(st, &info, nbuf, ':'); printf("MD_METADATA=imsm\n"); printf("MD_LEVEL=container\n"); printf("MD_UUID=%s\n", nbuf+5); printf("MD_DEVICES=%u\n", mpb->num_disks); } static void detail_super_imsm(struct supertype *st, char *homehost) { struct mdinfo info; char nbuf[64]; getinfo_super_imsm(st, &info, NULL); fname_from_uuid(st, &info, nbuf, ':'); printf("\n UUID : %s\n", nbuf + 5); } static void brief_detail_super_imsm(struct supertype *st) { struct mdinfo info; char nbuf[64]; getinfo_super_imsm(st, &info, NULL); fname_from_uuid(st, &info, nbuf, ':'); printf(" UUID=%s", nbuf + 5); } static int imsm_read_serial(int fd, char *devname, __u8 *serial); static void fd2devname(int fd, char *name); static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose) { /* dump an unsorted list of devices attached to ahci, as well as * non-connected ports */ int hba_len = strlen(hba_path) + 1; struct dirent *ent; DIR *dir; char *path = NULL; int err = 0; unsigned long port_mask = (1 << port_count) - 1; if (port_count > (int)sizeof(port_mask) * 8) { if (verbose) fprintf(stderr, Name ": port_count %d out of range\n", port_count); return 2; } /* scroll through /sys/dev/block looking for devices attached to * this hba */ dir = opendir("/sys/dev/block"); for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) { int fd; char model[64]; char vendor[64]; char buf[1024]; int major, minor; char *device; char *c; int port; int type; if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2) continue; path = devt_to_devpath(makedev(major, minor)); if (!path) continue; if (!path_attached_to_hba(path, hba_path)) { free(path); path = NULL; continue; } /* retrieve the scsi device type */ if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) { if (verbose) fprintf(stderr, Name ": failed to allocate 'device'\n"); err = 2; break; } sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor); if (load_sys(device, buf) != 0) { if (verbose) fprintf(stderr, Name ": failed to read device type for %s\n", path); err = 2; free(device); break; } type = strtoul(buf, NULL, 10); /* if it's not a disk print the vendor and model */ if (!(type == 0 || type == 7 || type == 14)) { vendor[0] = '\0'; model[0] = '\0'; sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor); if (load_sys(device, buf) == 0) { strncpy(vendor, buf, sizeof(vendor)); vendor[sizeof(vendor) - 1] = '\0'; c = (char *) &vendor[sizeof(vendor) - 1]; while (isspace(*c) || *c == '\0') *c-- = '\0'; } sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor); if (load_sys(device, buf) == 0) { strncpy(model, buf, sizeof(model)); model[sizeof(model) - 1] = '\0'; c = (char *) &model[sizeof(model) - 1]; while (isspace(*c) || *c == '\0') *c-- = '\0'; } if (vendor[0] && model[0]) sprintf(buf, "%.64s %.64s", vendor, model); else switch (type) { /* numbers from hald/linux/device.c */ case 1: sprintf(buf, "tape"); break; case 2: sprintf(buf, "printer"); break; case 3: sprintf(buf, "processor"); break; case 4: case 5: sprintf(buf, "cdrom"); break; case 6: sprintf(buf, "scanner"); break; case 8: sprintf(buf, "media_changer"); break; case 9: sprintf(buf, "comm"); break; case 12: sprintf(buf, "raid"); break; default: sprintf(buf, "unknown"); } } else buf[0] = '\0'; free(device); /* chop device path to 'host%d' and calculate the port number */ c = strchr(&path[hba_len], '/'); if (!c) { if (verbose) fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len); err = 2; break; } *c = '\0'; if (sscanf(&path[hba_len], "host%d", &port) == 1) port -= host_base; else { if (verbose) { *c = '/'; /* repair the full string */ fprintf(stderr, Name ": failed to determine port number for %s\n", path); } err = 2; break; } /* mark this port as used */ port_mask &= ~(1 << port); /* print out the device information */ if (buf[0]) { printf(" Port%d : - non-disk device (%s) -\n", port, buf); continue; } fd = dev_open(ent->d_name, O_RDONLY); if (fd < 0) printf(" Port%d : - disk info unavailable -\n", port); else { fd2devname(fd, buf); printf(" Port%d : %s", port, buf); if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0) printf(" (%s)\n", buf); else printf("()\n"); } close(fd); free(path); path = NULL; } if (path) free(path); if (dir) closedir(dir); if (err == 0) { int i; for (i = 0; i < port_count; i++) if (port_mask & (1 << i)) printf(" Port%d : - no device attached -\n", i); } return err; } static int detail_platform_imsm(int verbose, int enumerate_only) { /* There are two components to imsm platform support, the ahci SATA * controller and the option-rom. To find the SATA controller we * simply look in /sys/bus/pci/drivers/ahci to see if an ahci * controller with the Intel vendor id is present. This approach * allows mdadm to leverage the kernel's ahci detection logic, with the * caveat that if ahci.ko is not loaded mdadm will not be able to * detect platform raid capabilities. The option-rom resides in a * platform "Adapter ROM". We scan for its signature to retrieve the * platform capabilities. If raid support is disabled in the BIOS the * option-rom capability structure will not be available. */ const struct imsm_orom *orom; struct sys_dev *list, *hba; DIR *dir; struct dirent *ent; const char *hba_path; int host_base = 0; int port_count = 0; if (enumerate_only) { if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom()) return 0; return 2; } list = find_driver_devices("pci", "ahci"); for (hba = list; hba; hba = hba->next) if (devpath_to_vendor(hba->path) == 0x8086) break; if (!hba) { if (verbose) fprintf(stderr, Name ": unable to find active ahci controller\n"); free_sys_dev(&list); return 2; } else if (verbose) fprintf(stderr, Name ": found Intel SATA AHCI Controller\n"); hba_path = hba->path; hba->path = NULL; free_sys_dev(&list); orom = find_imsm_orom(); if (!orom) { if (verbose) fprintf(stderr, Name ": imsm option-rom not found\n"); return 2; } printf(" Platform : Intel(R) Matrix Storage Manager\n"); printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver, orom->hotfix_ver, orom->build); printf(" RAID Levels :%s%s%s%s%s\n", imsm_orom_has_raid0(orom) ? " raid0" : "", imsm_orom_has_raid1(orom) ? " raid1" : "", imsm_orom_has_raid1e(orom) ? " raid1e" : "", imsm_orom_has_raid10(orom) ? " raid10" : "", imsm_orom_has_raid5(orom) ? " raid5" : ""); printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", imsm_orom_has_chunk(orom, 2) ? " 2k" : "", imsm_orom_has_chunk(orom, 4) ? " 4k" : "", imsm_orom_has_chunk(orom, 8) ? " 8k" : "", imsm_orom_has_chunk(orom, 16) ? " 16k" : "", imsm_orom_has_chunk(orom, 32) ? " 32k" : "", imsm_orom_has_chunk(orom, 64) ? " 64k" : "", imsm_orom_has_chunk(orom, 128) ? " 128k" : "", imsm_orom_has_chunk(orom, 256) ? " 256k" : "", imsm_orom_has_chunk(orom, 512) ? " 512k" : "", imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "", imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "", imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "", imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "", imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "", imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "", imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : ""); printf(" Max Disks : %d\n", orom->tds); printf(" Max Volumes : %d\n", orom->vpa); printf(" I/O Controller : %s\n", hba_path); /* find the smallest scsi host number to determine a port number base */ dir = opendir(hba_path); for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) { int host; if (sscanf(ent->d_name, "host%d", &host) != 1) continue; if (port_count == 0) host_base = host; else if (host < host_base) host_base = host; if (host + 1 > port_count + host_base) port_count = host + 1 - host_base; } if (dir) closedir(dir); if (!port_count || imsm_enumerate_ports(hba_path, port_count, host_base, verbose) != 0) { if (verbose) fprintf(stderr, Name ": failed to enumerate ports\n"); return 2; } return 0; } #endif static int match_home_imsm(struct supertype *st, char *homehost) { /* the imsm metadata format does not specify any host * identification information. We return -1 since we can never * confirm nor deny whether a given array is "meant" for this * host. We rely on compare_super and the 'family_num' fields to * exclude member disks that do not belong, and we rely on * mdadm.conf to specify the arrays that should be assembled. * Auto-assembly may still pick up "foreign" arrays. */ return -1; } static void uuid_from_super_imsm(struct supertype *st, int uuid[4]) { /* The uuid returned here is used for: * uuid to put into bitmap file (Create, Grow) * uuid for backup header when saving critical section (Grow) * comparing uuids when re-adding a device into an array * In these cases the uuid required is that of the data-array, * not the device-set. * uuid to recognise same set when adding a missing device back * to an array. This is a uuid for the device-set. * * For each of these we can make do with a truncated * or hashed uuid rather than the original, as long as * everyone agrees. * In each case the uuid required is that of the data-array, * not the device-set. */ /* imsm does not track uuid's so we synthesis one using sha1 on * - The signature (Which is constant for all imsm array, but no matter) * - the orig_family_num of the container * - the index number of the volume * - the 'serial' number of the volume. * Hopefully these are all constant. */ struct intel_super *super = st->sb; char buf[20]; struct sha1_ctx ctx; struct imsm_dev *dev = NULL; __u32 family_num; /* some mdadm versions failed to set ->orig_family_num, in which * case fall back to ->family_num. orig_family_num will be * fixed up with the first metadata update. */ family_num = super->anchor->orig_family_num; if (family_num == 0) family_num = super->anchor->family_num; sha1_init_ctx(&ctx); sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx); sha1_process_bytes(&family_num, sizeof(__u32), &ctx); if (super->current_vol >= 0) dev = get_imsm_dev(super, super->current_vol); if (dev) { __u32 vol = super->current_vol; sha1_process_bytes(&vol, sizeof(vol), &ctx); sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx); } sha1_finish_ctx(&ctx, buf); memcpy(uuid, buf, 4*4); } #if 0 static void get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p) { __u8 *v = get_imsm_version(mpb); __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH; char major[] = { 0, 0, 0 }; char minor[] = { 0 ,0, 0 }; char patch[] = { 0, 0, 0 }; char *ver_parse[] = { major, minor, patch }; int i, j; i = j = 0; while (*v != '\0' && v < end) { if (*v != '.' && j < 2) ver_parse[i][j++] = *v; else { i++; j = 0; } v++; } *m = strtol(minor, NULL, 0); *p = strtol(patch, NULL, 0); } #endif static __u32 migr_strip_blocks_resync(struct imsm_dev *dev) { /* migr_strip_size when repairing or initializing parity */ struct imsm_map *map = get_imsm_map(dev, 0); __u32 chunk = __le32_to_cpu(map->blocks_per_strip); switch (get_imsm_raid_level(map)) { case 5: case 10: return chunk; default: return 128*1024 >> 9; } } static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev) { /* migr_strip_size when rebuilding a degraded disk, no idea why * this is different than migr_strip_size_resync(), but it's good * to be compatible */ struct imsm_map *map = get_imsm_map(dev, 1); __u32 chunk = __le32_to_cpu(map->blocks_per_strip); switch (get_imsm_raid_level(map)) { case 1: case 10: if (map->num_members % map->num_domains == 0) return 128*1024 >> 9; else return chunk; case 5: return max((__u32) 64*1024 >> 9, chunk); default: return 128*1024 >> 9; } } static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev) { struct imsm_map *lo = get_imsm_map(dev, 0); struct imsm_map *hi = get_imsm_map(dev, 1); __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip); __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip); return max((__u32) 1, hi_chunk / lo_chunk); } static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev) { struct imsm_map *lo = get_imsm_map(dev, 0); int level = get_imsm_raid_level(lo); if (level == 1 || level == 10) { struct imsm_map *hi = get_imsm_map(dev, 1); return hi->num_domains; } else return num_stripes_per_unit_resync(dev); } static __u8 imsm_num_data_members(struct imsm_dev *dev) { /* named 'imsm_' because raid0, raid1 and raid10 * counter-intuitively have the same number of data disks */ struct imsm_map *map = get_imsm_map(dev, 0); switch (get_imsm_raid_level(map)) { case 0: case 1: case 10: return map->num_members; case 5: return map->num_members - 1; default: dprintf("%s: unsupported raid level\n", __func__); return 0; } } static __u32 parity_segment_depth(struct imsm_dev *dev) { struct imsm_map *map = get_imsm_map(dev, 0); __u32 chunk = __le32_to_cpu(map->blocks_per_strip); switch(get_imsm_raid_level(map)) { case 1: case 10: return chunk * map->num_domains; case 5: return chunk * map->num_members; default: return chunk; } } static __u32 map_migr_block(struct imsm_dev *dev, __u32 block) { struct imsm_map *map = get_imsm_map(dev, 1); __u32 chunk = __le32_to_cpu(map->blocks_per_strip); __u32 strip = block / chunk; switch (get_imsm_raid_level(map)) { case 1: case 10: { __u32 vol_strip = (strip * map->num_domains) + 1; __u32 vol_stripe = vol_strip / map->num_members; return vol_stripe * chunk + block % chunk; } case 5: { __u32 stripe = strip / (map->num_members - 1); return stripe * chunk + block % chunk; } default: return 0; } } static __u64 blocks_per_migr_unit(struct imsm_dev *dev) { /* calculate the conversion factor between per member 'blocks' * (md/{resync,rebuild}_start) and imsm migration units, return * 0 for the 'not migrating' and 'unsupported migration' cases */ if (!dev->vol.migr_state) return 0; switch (migr_type(dev)) { case MIGR_VERIFY: case MIGR_REPAIR: case MIGR_INIT: { struct imsm_map *map = get_imsm_map(dev, 0); __u32 stripes_per_unit; __u32 blocks_per_unit; __u32 parity_depth; __u32 migr_chunk; __u32 block_map; __u32 block_rel; __u32 segment; __u32 stripe; __u8 disks; /* yes, this is really the translation of migr_units to * per-member blocks in the 'resync' case */ stripes_per_unit = num_stripes_per_unit_resync(dev); migr_chunk = migr_strip_blocks_resync(dev); disks = imsm_num_data_members(dev); blocks_per_unit = stripes_per_unit * migr_chunk * disks; stripe = __le32_to_cpu(map->blocks_per_strip) * disks; segment = blocks_per_unit / stripe; block_rel = blocks_per_unit - segment * stripe; parity_depth = parity_segment_depth(dev); block_map = map_migr_block(dev, block_rel); return block_map + parity_depth * segment; } case MIGR_REBUILD: { __u32 stripes_per_unit; __u32 migr_chunk; stripes_per_unit = num_stripes_per_unit_rebuild(dev); migr_chunk = migr_strip_blocks_rebuild(dev); return migr_chunk * stripes_per_unit; } case MIGR_GEN_MIGR: case MIGR_STATE_CHANGE: default: return 0; } } static int imsm_level_to_layout(int level) { switch (level) { case 0: case 1: return 0; case 5: case 6: return ALGORITHM_LEFT_ASYMMETRIC; case 10: return 0x102; } return UnSet; } static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap) { struct intel_super *super = st->sb; struct imsm_dev *dev = get_imsm_dev(super, super->current_vol); struct imsm_map *map = get_imsm_map(dev, 0); struct dl *dl; char *devname; int map_disks = info->array.raid_disks; for (dl = super->disks; dl; dl = dl->next) if (dl->raiddisk == info->disk.raid_disk) break; info->container_member = super->current_vol; info->array.raid_disks = map->num_members; info->array.level = get_imsm_raid_level(map); info->array.layout = imsm_level_to_layout(info->array.level); info->array.md_minor = -1; info->array.ctime = 0; info->array.utime = 0; info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9; info->array.state = !dev->vol.dirty; info->custom_array_size = __le32_to_cpu(dev->size_high); info->custom_array_size <<= 32; info->custom_array_size |= __le32_to_cpu(dev->size_low); info->disk.major = 0; info->disk.minor = 0; if (dl) { info->disk.major = dl->major; info->disk.minor = dl->minor; } info->data_offset = __le32_to_cpu(map->pba_of_lba0); info->component_size = __le32_to_cpu(map->blocks_per_member); memset(info->uuid, 0, sizeof(info->uuid)); info->recovery_start = MaxSector; info->reshape_active = 0; if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty) { info->resync_start = 0; } else if (dev->vol.migr_state) { switch (migr_type(dev)) { case MIGR_REPAIR: case MIGR_INIT: { __u64 blocks_per_unit = blocks_per_migr_unit(dev); __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit); info->resync_start = blocks_per_unit * units; break; } case MIGR_VERIFY: /* we could emulate the checkpointing of * 'sync_action=check' migrations, but for now * we just immediately complete them */ case MIGR_REBUILD: /* this is handled by container_content_imsm() */ case MIGR_GEN_MIGR: case MIGR_STATE_CHANGE: /* FIXME handle other migrations */ default: /* we are not dirty, so... */ info->resync_start = MaxSector; } } else info->resync_start = MaxSector; strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN); info->name[MAX_RAID_SERIAL_LEN] = 0; info->array.major_version = -1; info->array.minor_version = -2; devname = devnum2devname(st->container_dev); *info->text_version = '\0'; if (devname) sprintf(info->text_version, "/%s/%d", devname, info->container_member); free(devname); info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */ uuid_from_super_imsm(st, info->uuid); if (dmap) { int i, j; for (i=0; iarray.raid_disks) { struct imsm_disk *dsk; j = get_imsm_disk_idx(dev, i); dsk = get_imsm_disk(super, j); if (dsk && (dsk->status & CONFIGURED_DISK)) dmap[i] = 1; } } } } /* check the config file to see if we can return a real uuid for this spare */ static void fixup_container_spare_uuid(struct mdinfo *inf) { struct mddev_ident_s *array_list; if (inf->array.level != LEVEL_CONTAINER || memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0) return; array_list = conf_get_ident(NULL); for (; array_list; array_list = array_list->next) { if (array_list->uuid_set) { struct supertype *_sst; /* spare supertype */ struct supertype *_cst; /* container supertype */ _cst = array_list->st; if (_cst) _sst = _cst->ss->match_metadata_desc(inf->text_version); else _sst = NULL; if (_sst) { memcpy(inf->uuid, array_list->uuid, sizeof(int[4])); free(_sst); break; } } } } static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed); static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev); static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index) { struct dl *d; for (d = super->missing; d; d = d->next) if (d->index == index) return &d->disk; return NULL; } static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map) { struct intel_super *super = st->sb; struct imsm_disk *disk; int map_disks = info->array.raid_disks; if (super->current_vol >= 0) { getinfo_super_imsm_volume(st, info, map); return; } /* Set raid_disks to zero so that Assemble will always pull in valid * spares */ info->array.raid_disks = 0; info->array.level = LEVEL_CONTAINER; info->array.layout = 0; info->array.md_minor = -1; info->array.ctime = 0; /* N/A for imsm */ info->array.utime = 0; info->array.chunk_size = 0; info->disk.major = 0; info->disk.minor = 0; info->disk.raid_disk = -1; info->reshape_active = 0; info->array.major_version = -1; info->array.minor_version = -2; strcpy(info->text_version, "imsm"); info->safe_mode_delay = 0; info->disk.number = -1; info->disk.state = 0; info->name[0] = 0; info->recovery_start = MaxSector; /* do we have the all the insync disks that we expect? */ if (st->loaded_container) { struct imsm_super *mpb = super->anchor; int max_enough = -1, i; for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(super, i); int failed, enough, j, missing = 0; struct imsm_map *map; __u8 state; failed = imsm_count_failed(super, dev); state = imsm_check_degraded(super, dev, failed); map = get_imsm_map(dev, dev->vol.migr_state); /* any newly missing disks? * (catches single-degraded vs double-degraded) */ for (j = 0; j < map->num_members; j++) { __u32 ord = get_imsm_ord_tbl_ent(dev, i); __u32 idx = ord_to_idx(ord); if (!(ord & IMSM_ORD_REBUILD) && get_imsm_missing(super, idx)) { missing = 1; break; } } if (state == IMSM_T_STATE_FAILED) enough = -1; else if (state == IMSM_T_STATE_DEGRADED && (state != map->map_state || missing)) enough = 0; else /* we're normal, or already degraded */ enough = 1; /* in the missing/failed disk case check to see * if at least one array is runnable */ max_enough = max(max_enough, enough); } dprintf("%s: enough: %d\n", __func__, max_enough); info->container_enough = max_enough; } else info->container_enough = -1; if (super->disks) { __u32 reserved = imsm_reserved_sectors(super, super->disks); disk = &super->disks->disk; info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved; info->component_size = reserved; info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0; /* we don't change info->disk.raid_disk here because * this state will be finalized in mdmon after we have * found the 'most fresh' version of the metadata */ info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0; info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC); } /* only call uuid_from_super_imsm when this disk is part of a populated container, * ->compare_super may have updated the 'num_raid_devs' field for spares */ if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs) uuid_from_super_imsm(st, info->uuid); else { memcpy(info->uuid, uuid_match_any, sizeof(int[4])); fixup_container_spare_uuid(info); } /* I don't know how to compute 'map' on imsm, so use safe default */ if (map) { int i; for (i = 0; i < map_disks; i++) map[i] = 1; } } static int update_super_imsm(struct supertype *st, struct mdinfo *info, char *update, char *devname, int verbose, int uuid_set, char *homehost) { /* For 'assemble' and 'force' we need to return non-zero if any * change was made. For others, the return value is ignored. * Update options are: * force-one : This device looks a bit old but needs to be included, * update age info appropriately. * assemble: clear any 'faulty' flag to allow this device to * be assembled. * force-array: Array is degraded but being forced, mark it clean * if that will be needed to assemble it. * * newdev: not used ???? * grow: Array has gained a new device - this is currently for * linear only * resync: mark as dirty so a resync will happen. * name: update the name - preserving the homehost * uuid: Change the uuid of the array to match watch is given * * Following are not relevant for this imsm: * sparc2.2 : update from old dodgey metadata * super-minor: change the preferred_minor number * summaries: update redundant counters. * homehost: update the recorded homehost * _reshape_progress: record new reshape_progress position. */ int rv = 1; struct intel_super *super = st->sb; struct imsm_super *mpb; /* we can only update container info */ if (!super || super->current_vol >= 0 || !super->anchor) return 1; mpb = super->anchor; if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private) rv = -1; else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) { mpb->orig_family_num = *((__u32 *) info->update_private); rv = 0; } else if (strcmp(update, "uuid") == 0) { __u32 *new_family = malloc(sizeof(*new_family)); /* update orig_family_number with the incoming random * data, report the new effective uuid, and store the * new orig_family_num for future updates. */ if (new_family) { memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32)); uuid_from_super_imsm(st, info->uuid); *new_family = mpb->orig_family_num; info->update_private = new_family; rv = 0; } } else if (strcmp(update, "assemble") == 0) rv = 0; else rv = -1; /* successful update? recompute checksum */ if (rv == 0) mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb)); return rv; } static size_t disks_to_mpb_size(int disks) { size_t size; size = sizeof(struct imsm_super); size += (disks - 1) * sizeof(struct imsm_disk); size += 2 * sizeof(struct imsm_dev); /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */ size += (4 - 2) * sizeof(struct imsm_map); /* 4 possible disk_ord_tbl's */ size += 4 * (disks - 1) * sizeof(__u32); return size; } static __u64 avail_size_imsm(struct supertype *st, __u64 devsize) { if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS)) return 0; return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS); } static void free_devlist(struct intel_super *super) { struct intel_dev *dv; while (super->devlist) { dv = super->devlist->next; free(super->devlist->dev); free(super->devlist); super->devlist = dv; } } static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src) { memcpy(dest, src, sizeof_imsm_dev(src, 0)); } static int compare_super_imsm(struct supertype *st, struct supertype *tst) { /* * return: * 0 same, or first was empty, and second was copied * 1 second had wrong number * 2 wrong uuid * 3 wrong other info */ struct intel_super *first = st->sb; struct intel_super *sec = tst->sb; if (!first) { st->sb = tst->sb; tst->sb = NULL; return 0; } /* if an anchor does not have num_raid_devs set then it is a free * floating spare */ if (first->anchor->num_raid_devs > 0 && sec->anchor->num_raid_devs > 0) { /* Determine if these disks might ever have been * related. Further disambiguation can only take place * in load_super_imsm_all */ __u32 first_family = first->anchor->orig_family_num; __u32 sec_family = sec->anchor->orig_family_num; if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0) return 3; if (first_family == 0) first_family = first->anchor->family_num; if (sec_family == 0) sec_family = sec->anchor->family_num; if (first_family != sec_family) return 3; } /* if 'first' is a spare promote it to a populated mpb with sec's * family number */ if (first->anchor->num_raid_devs == 0 && sec->anchor->num_raid_devs > 0) { int i; struct intel_dev *dv; struct imsm_dev *dev; /* we need to copy raid device info from sec if an allocation * fails here we don't associate the spare */ for (i = 0; i < sec->anchor->num_raid_devs; i++) { dv = malloc(sizeof(*dv)); if (!dv) break; dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1)); if (!dev) { free(dv); break; } dv->dev = dev; dv->index = i; dv->next = first->devlist; first->devlist = dv; } if (i < sec->anchor->num_raid_devs) { /* allocation failure */ free_devlist(first); fprintf(stderr, "imsm: failed to associate spare\n"); return 3; } first->anchor->num_raid_devs = sec->anchor->num_raid_devs; first->anchor->orig_family_num = sec->anchor->orig_family_num; first->anchor->family_num = sec->anchor->family_num; memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH); for (i = 0; i < sec->anchor->num_raid_devs; i++) imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i)); } return 0; } static void fd2devname(int fd, char *name) { struct stat st; char path[256]; char dname[PATH_MAX]; char *nm; int rv; name[0] = '\0'; if (fstat(fd, &st) != 0) return; sprintf(path, "/sys/dev/block/%d:%d", major(st.st_rdev), minor(st.st_rdev)); rv = readlink(path, dname, sizeof(dname)); if (rv <= 0) return; dname[rv] = '\0'; nm = strrchr(dname, '/'); nm++; snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm); } extern int scsi_get_serial(int fd, void *buf, size_t buf_len); static int imsm_read_serial(int fd, char *devname, __u8 serial[MAX_RAID_SERIAL_LEN]) { unsigned char scsi_serial[255]; int rv; int rsp_len; int len; char *dest; char *src; char *rsp_buf; int i; memset(scsi_serial, 0, sizeof(scsi_serial)); rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial)); if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) { memset(serial, 0, MAX_RAID_SERIAL_LEN); fd2devname(fd, (char *) serial); return 0; } if (rv != 0) { if (devname) fprintf(stderr, Name ": Failed to retrieve serial for %s\n", devname); return rv; } rsp_len = scsi_serial[3]; if (!rsp_len) { if (devname) fprintf(stderr, Name ": Failed to retrieve serial for %s\n", devname); return 2; } rsp_buf = (char *) &scsi_serial[4]; /* trim all whitespace and non-printable characters and convert * ':' to ';' */ for (i = 0, dest = rsp_buf; i < rsp_len; i++) { src = &rsp_buf[i]; if (*src > 0x20) { /* ':' is reserved for use in placeholder serial * numbers for missing disks */ if (*src == ':') *dest++ = ';'; else *dest++ = *src; } } len = dest - rsp_buf; dest = rsp_buf; /* truncate leading characters */ if (len > MAX_RAID_SERIAL_LEN) { dest += len - MAX_RAID_SERIAL_LEN; len = MAX_RAID_SERIAL_LEN; } memset(serial, 0, MAX_RAID_SERIAL_LEN); memcpy(serial, dest, len); return 0; } static int serialcmp(__u8 *s1, __u8 *s2) { return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN); } static void serialcpy(__u8 *dest, __u8 *src) { strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN); } #ifndef MDASSEMBLE static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super) { struct dl *dl; for (dl = super->disks; dl; dl = dl->next) if (serialcmp(dl->serial, serial) == 0) break; return dl; } #endif static struct imsm_disk * __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx) { int i; for (i = 0; i < mpb->num_disks; i++) { struct imsm_disk *disk = __get_imsm_disk(mpb, i); if (serialcmp(disk->serial, serial) == 0) { if (idx) *idx = i; return disk; } } return NULL; } static int load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd) { struct imsm_disk *disk; struct dl *dl; struct stat stb; int rv; char name[40]; __u8 serial[MAX_RAID_SERIAL_LEN]; rv = imsm_read_serial(fd, devname, serial); if (rv != 0) return 2; dl = calloc(1, sizeof(*dl)); if (!dl) { if (devname) fprintf(stderr, Name ": failed to allocate disk buffer for %s\n", devname); return 2; } fstat(fd, &stb); dl->major = major(stb.st_rdev); dl->minor = minor(stb.st_rdev); dl->next = super->disks; dl->fd = keep_fd ? fd : -1; assert(super->disks == NULL); super->disks = dl; serialcpy(dl->serial, serial); dl->index = -2; dl->e = NULL; fd2devname(fd, name); if (devname) dl->devname = strdup(devname); else dl->devname = strdup(name); /* look up this disk's index in the current anchor */ disk = __serial_to_disk(dl->serial, super->anchor, &dl->index); if (disk) { dl->disk = *disk; /* only set index on disks that are a member of a * populated contianer, i.e. one with raid_devs */ if (is_failed(&dl->disk)) dl->index = -2; else if (is_spare(&dl->disk)) dl->index = -1; } return 0; } #ifndef MDASSEMBLE /* When migrating map0 contains the 'destination' state while map1 * contains the current state. When not migrating map0 contains the * current state. This routine assumes that map[0].map_state is set to * the current array state before being called. * * Migration is indicated by one of the following states * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed) * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal * map1state=unitialized) * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal * map1state=normal) * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal * map1state=degraded) */ static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type) { struct imsm_map *dest; struct imsm_map *src = get_imsm_map(dev, 0); dev->vol.migr_state = 1; set_migr_type(dev, migr_type); dev->vol.curr_migr_unit = 0; dest = get_imsm_map(dev, 1); /* duplicate and then set the target end state in map[0] */ memcpy(dest, src, sizeof_imsm_map(src)); if (migr_type == MIGR_REBUILD) { __u32 ord; int i; for (i = 0; i < src->num_members; i++) { ord = __le32_to_cpu(src->disk_ord_tbl[i]); set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord)); } } src->map_state = to_state; } static void end_migration(struct imsm_dev *dev, __u8 map_state) { struct imsm_map *map = get_imsm_map(dev, 0); struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state); int i; /* merge any IMSM_ORD_REBUILD bits that were not successfully * completed in the last migration. * * FIXME add support for online capacity expansion and * raid-level-migration */ for (i = 0; i < prev->num_members; i++) map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i]; dev->vol.migr_state = 0; dev->vol.curr_migr_unit = 0; map->map_state = map_state; } #endif static int parse_raid_devices(struct intel_super *super) { int i; struct imsm_dev *dev_new; size_t len, len_migr; size_t space_needed = 0; struct imsm_super *mpb = super->anchor; for (i = 0; i < super->anchor->num_raid_devs; i++) { struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i); struct intel_dev *dv; len = sizeof_imsm_dev(dev_iter, 0); len_migr = sizeof_imsm_dev(dev_iter, 1); if (len_migr > len) space_needed += len_migr - len; dv = malloc(sizeof(*dv)); if (!dv) return 1; dev_new = malloc(len_migr); if (!dev_new) { free(dv); return 1; } imsm_copy_dev(dev_new, dev_iter); dv->dev = dev_new; dv->index = i; dv->next = super->devlist; super->devlist = dv; } /* ensure that super->buf is large enough when all raid devices * are migrating */ if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) { void *buf; len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512); if (posix_memalign(&buf, 512, len) != 0) return 1; memcpy(buf, super->buf, super->len); memset(buf + super->len, 0, len - super->len); free(super->buf); super->buf = buf; super->len = len; } return 0; } /* retrieve a pointer to the bbm log which starts after all raid devices */ struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb) { void *ptr = NULL; if (__le32_to_cpu(mpb->bbm_log_size)) { ptr = mpb; ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size); } return ptr; } static void __free_imsm(struct intel_super *super, int free_disks); /* load_imsm_mpb - read matrix metadata * allocates super->mpb to be freed by free_super */ static int load_imsm_mpb(int fd, struct intel_super *super, char *devname) { unsigned long long dsize; unsigned long long sectors; struct stat; struct imsm_super *anchor; __u32 check_sum; get_dev_size(fd, NULL, &dsize); if (dsize < 1024) { if (devname) fprintf(stderr, Name ": %s: device to small for imsm\n", devname); return 1; } if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) { if (devname) fprintf(stderr, Name ": Cannot seek to anchor block on %s: %s\n", devname, strerror(errno)); return 1; } if (posix_memalign((void**)&anchor, 512, 512) != 0) { if (devname) fprintf(stderr, Name ": Failed to allocate imsm anchor buffer" " on %s\n", devname); return 1; } if (read(fd, anchor, 512) != 512) { if (devname) fprintf(stderr, Name ": Cannot read anchor block on %s: %s\n", devname, strerror(errno)); free(anchor); return 1; } if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) { if (devname) fprintf(stderr, Name ": no IMSM anchor on %s\n", devname); free(anchor); return 2; } __free_imsm(super, 0); super->len = ROUND_UP(anchor->mpb_size, 512); if (posix_memalign(&super->buf, 512, super->len) != 0) { if (devname) fprintf(stderr, Name ": unable to allocate %zu byte mpb buffer\n", super->len); free(anchor); return 2; } memcpy(super->buf, anchor, 512); sectors = mpb_sectors(anchor) - 1; free(anchor); if (!sectors) { check_sum = __gen_imsm_checksum(super->anchor); if (check_sum != __le32_to_cpu(super->anchor->check_sum)) { if (devname) fprintf(stderr, Name ": IMSM checksum %x != %x on %s\n", check_sum, __le32_to_cpu(super->anchor->check_sum), devname); return 2; } return 0; } /* read the extended mpb */ if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) { if (devname) fprintf(stderr, Name ": Cannot seek to extended mpb on %s: %s\n", devname, strerror(errno)); return 1; } if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) { if (devname) fprintf(stderr, Name ": Cannot read extended mpb on %s: %s\n", devname, strerror(errno)); return 2; } check_sum = __gen_imsm_checksum(super->anchor); if (check_sum != __le32_to_cpu(super->anchor->check_sum)) { if (devname) fprintf(stderr, Name ": IMSM checksum %x != %x on %s\n", check_sum, __le32_to_cpu(super->anchor->check_sum), devname); return 3; } /* FIXME the BBM log is disk specific so we cannot use this global * buffer for all disks. Ok for now since we only look at the global * bbm_log_size parameter to gate assembly */ super->bbm_log = __get_imsm_bbm_log(super->anchor); return 0; } static int load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd) { int err; err = load_imsm_mpb(fd, super, devname); if (err) return err; err = load_imsm_disk(fd, super, devname, keep_fd); if (err) return err; err = parse_raid_devices(super); return err; } static void __free_imsm_disk(struct dl *d) { if (d->fd >= 0) close(d->fd); if (d->devname) free(d->devname); if (d->e) free(d->e); free(d); } static void free_imsm_disks(struct intel_super *super) { struct dl *d; while (super->disks) { d = super->disks; super->disks = d->next; __free_imsm_disk(d); } while (super->missing) { d = super->missing; super->missing = d->next; __free_imsm_disk(d); } } /* free all the pieces hanging off of a super pointer */ static void __free_imsm(struct intel_super *super, int free_disks) { if (super->buf) { free(super->buf); super->buf = NULL; } if (free_disks) free_imsm_disks(super); free_devlist(super); if (super->hba) { free((void *) super->hba); super->hba = NULL; } } static void free_imsm(struct intel_super *super) { __free_imsm(super, 1); free(super); } static void free_super_imsm(struct supertype *st) { struct intel_super *super = st->sb; if (!super) return; free_imsm(super); st->sb = NULL; } static struct intel_super *alloc_super(void) { struct intel_super *super = malloc(sizeof(*super)); if (super) { memset(super, 0, sizeof(*super)); super->current_vol = -1; super->create_offset = ~((__u32 ) 0); if (!check_env("IMSM_NO_PLATFORM")) super->orom = find_imsm_orom(); if (super->orom && !check_env("IMSM_TEST_OROM")) { struct sys_dev *list, *ent; /* find the first intel ahci controller */ list = find_driver_devices("pci", "ahci"); for (ent = list; ent; ent = ent->next) if (devpath_to_vendor(ent->path) == 0x8086) break; if (ent) { super->hba = ent->path; ent->path = NULL; } free_sys_dev(&list); } } return super; } #ifndef MDASSEMBLE /* find_missing - helper routine for load_super_imsm_all that identifies * disks that have disappeared from the system. This routine relies on * the mpb being uptodate, which it is at load time. */ static int find_missing(struct intel_super *super) { int i; struct imsm_super *mpb = super->anchor; struct dl *dl; struct imsm_disk *disk; for (i = 0; i < mpb->num_disks; i++) { disk = __get_imsm_disk(mpb, i); dl = serial_to_dl(disk->serial, super); if (dl) continue; dl = malloc(sizeof(*dl)); if (!dl) return 1; dl->major = 0; dl->minor = 0; dl->fd = -1; dl->devname = strdup("missing"); dl->index = i; serialcpy(dl->serial, disk->serial); dl->disk = *disk; dl->e = NULL; dl->next = super->missing; super->missing = dl; } return 0; } static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list) { struct intel_disk *idisk = disk_list; while (idisk) { if (serialcmp(idisk->disk.serial, serial) == 0) break; idisk = idisk->next; } return idisk; } static int __prep_thunderdome(struct intel_super **table, int tbl_size, struct intel_super *super, struct intel_disk **disk_list) { struct imsm_disk *d = &super->disks->disk; struct imsm_super *mpb = super->anchor; int i, j; for (i = 0; i < tbl_size; i++) { struct imsm_super *tbl_mpb = table[i]->anchor; struct imsm_disk *tbl_d = &table[i]->disks->disk; if (tbl_mpb->family_num == mpb->family_num) { if (tbl_mpb->check_sum == mpb->check_sum) { dprintf("%s: mpb from %d:%d matches %d:%d\n", __func__, super->disks->major, super->disks->minor, table[i]->disks->major, table[i]->disks->minor); break; } if (((is_configured(d) && !is_configured(tbl_d)) || is_configured(d) == is_configured(tbl_d)) && tbl_mpb->generation_num < mpb->generation_num) { /* current version of the mpb is a * better candidate than the one in * super_table, but copy over "cross * generational" status */ struct intel_disk *idisk; dprintf("%s: mpb from %d:%d replaces %d:%d\n", __func__, super->disks->major, super->disks->minor, table[i]->disks->major, table[i]->disks->minor); idisk = disk_list_get(tbl_d->serial, *disk_list); if (idisk && is_failed(&idisk->disk)) tbl_d->status |= FAILED_DISK; break; } else { struct intel_disk *idisk; struct imsm_disk *disk; /* tbl_mpb is more up to date, but copy * over cross generational status before * returning */ disk = __serial_to_disk(d->serial, mpb, NULL); if (disk && is_failed(disk)) d->status |= FAILED_DISK; idisk = disk_list_get(d->serial, *disk_list); if (idisk) { idisk->owner = i; if (disk && is_configured(disk)) idisk->disk.status |= CONFIGURED_DISK; } dprintf("%s: mpb from %d:%d prefer %d:%d\n", __func__, super->disks->major, super->disks->minor, table[i]->disks->major, table[i]->disks->minor); return tbl_size; } } } if (i >= tbl_size) table[tbl_size++] = super; else table[i] = super; /* update/extend the merged list of imsm_disk records */ for (j = 0; j < mpb->num_disks; j++) { struct imsm_disk *disk = __get_imsm_disk(mpb, j); struct intel_disk *idisk; idisk = disk_list_get(disk->serial, *disk_list); if (idisk) { idisk->disk.status |= disk->status; if (is_configured(&idisk->disk) || is_failed(&idisk->disk)) idisk->disk.status &= ~(SPARE_DISK); } else { idisk = calloc(1, sizeof(*idisk)); if (!idisk) return -1; idisk->owner = IMSM_UNKNOWN_OWNER; idisk->disk = *disk; idisk->next = *disk_list; *disk_list = idisk; } if (serialcmp(idisk->disk.serial, d->serial) == 0) idisk->owner = i; } return tbl_size; } static struct intel_super * validate_members(struct intel_super *super, struct intel_disk *disk_list, const int owner) { struct imsm_super *mpb = super->anchor; int ok_count = 0; int i; for (i = 0; i < mpb->num_disks; i++) { struct imsm_disk *disk = __get_imsm_disk(mpb, i); struct intel_disk *idisk; idisk = disk_list_get(disk->serial, disk_list); if (idisk) { if (idisk->owner == owner || idisk->owner == IMSM_UNKNOWN_OWNER) ok_count++; else dprintf("%s: '%.16s' owner %d != %d\n", __func__, disk->serial, idisk->owner, owner); } else { dprintf("%s: unknown disk %x [%d]: %.16s\n", __func__, __le32_to_cpu(mpb->family_num), i, disk->serial); break; } } if (ok_count == mpb->num_disks) return super; return NULL; } static void show_conflicts(__u32 family_num, struct intel_super *super_list) { struct intel_super *s; for (s = super_list; s; s = s->next) { if (family_num != s->anchor->family_num) continue; fprintf(stderr, "Conflict, offlining family %#x on '%s'\n", __le32_to_cpu(family_num), s->disks->devname); } } static struct intel_super * imsm_thunderdome(struct intel_super **super_list, int len) { struct intel_super *super_table[len]; struct intel_disk *disk_list = NULL; struct intel_super *champion, *spare; struct intel_super *s, **del; int tbl_size = 0; int conflict; int i; memset(super_table, 0, sizeof(super_table)); for (s = *super_list; s; s = s->next) tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list); for (i = 0; i < tbl_size; i++) { struct imsm_disk *d; struct intel_disk *idisk; struct imsm_super *mpb = super_table[i]->anchor; s = super_table[i]; d = &s->disks->disk; /* 'd' must appear in merged disk list for its * configuration to be valid */ idisk = disk_list_get(d->serial, disk_list); if (idisk && idisk->owner == i) s = validate_members(s, disk_list, i); else s = NULL; if (!s) dprintf("%s: marking family: %#x from %d:%d offline\n", __func__, mpb->family_num, super_table[i]->disks->major, super_table[i]->disks->minor); super_table[i] = s; } /* This is where the mdadm implementation differs from the Windows * driver which has no strict concept of a container. We can only * assemble one family from a container, so when returning a prodigal * array member to this system the code will not be able to disambiguate * the container contents that should be assembled ("foreign" versus * "local"). It requires user intervention to set the orig_family_num * to a new value to establish a new container. The Windows driver in * this situation fixes up the volume name in place and manages the * foreign array as an independent entity. */ s = NULL; spare = NULL; conflict = 0; for (i = 0; i < tbl_size; i++) { struct intel_super *tbl_ent = super_table[i]; int is_spare = 0; if (!tbl_ent) continue; if (tbl_ent->anchor->num_raid_devs == 0) { spare = tbl_ent; is_spare = 1; } if (s && !is_spare) { show_conflicts(tbl_ent->anchor->family_num, *super_list); conflict++; } else if (!s && !is_spare) s = tbl_ent; } if (!s) s = spare; if (!s) { champion = NULL; goto out; } champion = s; if (conflict) fprintf(stderr, "Chose family %#x on '%s', " "assemble conflicts to new container with '--update=uuid'\n", __le32_to_cpu(s->anchor->family_num), s->disks->devname); /* collect all dl's onto 'champion', and update them to * champion's version of the status */ for (s = *super_list; s; s = s->next) { struct imsm_super *mpb = champion->anchor; struct dl *dl = s->disks; if (s == champion) continue; for (i = 0; i < mpb->num_disks; i++) { struct imsm_disk *disk; disk = __serial_to_disk(dl->serial, mpb, &dl->index); if (disk) { dl->disk = *disk; /* only set index on disks that are a member of * a populated contianer, i.e. one with * raid_devs */ if (is_failed(&dl->disk)) dl->index = -2; else if (is_spare(&dl->disk)) dl->index = -1; break; } } if (i >= mpb->num_disks) { struct intel_disk *idisk; idisk = disk_list_get(dl->serial, disk_list); if (idisk && is_spare(&idisk->disk) && !is_failed(&idisk->disk) && !is_configured(&idisk->disk)) dl->index = -1; else { dl->index = -2; continue; } } dl->next = champion->disks; champion->disks = dl; s->disks = NULL; } /* delete 'champion' from super_list */ for (del = super_list; *del; ) { if (*del == champion) { *del = (*del)->next; break; } else del = &(*del)->next; } champion->next = NULL; out: while (disk_list) { struct intel_disk *idisk = disk_list; disk_list = disk_list->next; free(idisk); } return champion; } static int load_super_imsm_all(struct supertype *st, int fd, void **sbp, char *devname, int keep_fd) { struct mdinfo *sra; struct intel_super *super_list = NULL; struct intel_super *super = NULL; int devnum = fd2devnum(fd); struct mdinfo *sd; int retry; int err = 0; int i; /* check if 'fd' an opened container */ sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE); if (!sra) return 1; if (sra->array.major_version != -1 || sra->array.minor_version != -2 || strcmp(sra->text_version, "imsm") != 0) { err = 1; goto error; } /* load all mpbs */ for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) { struct intel_super *s = alloc_super(); char nm[32]; int dfd; err = 1; if (!s) goto error; s->next = super_list; super_list = s; err = 2; sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor); dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY); if (dfd < 0) goto error; err = load_and_parse_mpb(dfd, s, NULL, keep_fd); /* retry the load if we might have raced against mdmon */ if (err == 3 && mdmon_running(devnum)) for (retry = 0; retry < 3; retry++) { usleep(3000); err = load_and_parse_mpb(dfd, s, NULL, keep_fd); if (err != 3) break; } if (!keep_fd) close(dfd); if (err) goto error; } /* all mpbs enter, maybe one leaves */ super = imsm_thunderdome(&super_list, i); if (!super) { err = 1; goto error; } if (find_missing(super) != 0) { free_imsm(super); err = 2; goto error; } err = 0; error: while (super_list) { struct intel_super *s = super_list; super_list = super_list->next; free_imsm(s); } sysfs_free(sra); if (err) return err; *sbp = super; st->container_dev = devnum; if (err == 0 && st->ss == NULL) { st->ss = &super_imsm; st->minor_version = 0; st->max_devs = IMSM_MAX_DEVICES; } st->loaded_container = 1; return 0; } #endif static int load_super_imsm(struct supertype *st, int fd, char *devname) { struct intel_super *super; int rv; #ifndef MDASSEMBLE if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0) return 0; #endif if (test_partition(fd)) /* IMSM not allowed on partitions */ return 1; free_super_imsm(st); super = alloc_super(); if (!super) { fprintf(stderr, Name ": malloc of %zu failed.\n", sizeof(*super)); return 1; } rv = load_and_parse_mpb(fd, super, devname, 0); if (rv) { if (devname) fprintf(stderr, Name ": Failed to load all information " "sections on %s\n", devname); free_imsm(super); return rv; } st->sb = super; if (st->ss == NULL) { st->ss = &super_imsm; st->minor_version = 0; st->max_devs = IMSM_MAX_DEVICES; } st->loaded_container = 0; return 0; } static __u16 info_to_blocks_per_strip(mdu_array_info_t *info) { if (info->level == 1) return 128; return info->chunk_size >> 9; } static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains) { __u32 num_stripes; num_stripes = (info->size * 2) / info_to_blocks_per_strip(info); num_stripes /= num_domains; return num_stripes; } static __u32 info_to_blocks_per_member(mdu_array_info_t *info) { if (info->level == 1) return info->size * 2; else return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1); } static void imsm_update_version_info(struct intel_super *super) { /* update the version and attributes */ struct imsm_super *mpb = super->anchor; char *version; struct imsm_dev *dev; struct imsm_map *map; int i; for (i = 0; i < mpb->num_raid_devs; i++) { dev = get_imsm_dev(super, i); map = get_imsm_map(dev, 0); if (__le32_to_cpu(dev->size_high) > 0) mpb->attributes |= MPB_ATTRIB_2TB; /* FIXME detect when an array spans a port multiplier */ #if 0 mpb->attributes |= MPB_ATTRIB_PM; #endif if (mpb->num_raid_devs > 1 || mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) { version = MPB_VERSION_ATTRIBS; switch (get_imsm_raid_level(map)) { case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break; case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break; case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break; case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break; } } else { if (map->num_members >= 5) version = MPB_VERSION_5OR6_DISK_ARRAY; else if (dev->status == DEV_CLONE_N_GO) version = MPB_VERSION_CNG; else if (get_imsm_raid_level(map) == 5) version = MPB_VERSION_RAID5; else if (map->num_members >= 3) version = MPB_VERSION_3OR4_DISK_ARRAY; else if (get_imsm_raid_level(map) == 1) version = MPB_VERSION_RAID1; else version = MPB_VERSION_RAID0; } strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version); } } static int check_name(struct intel_super *super, char *name, int quiet) { struct imsm_super *mpb = super->anchor; char *reason = NULL; int i; if (strlen(name) > MAX_RAID_SERIAL_LEN) reason = "must be 16 characters or less"; for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = get_imsm_dev(super, i); if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) { reason = "already exists"; break; } } if (reason && !quiet) fprintf(stderr, Name ": imsm volume name %s\n", reason); return !reason; } static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info, unsigned long long size, char *name, char *homehost, int *uuid) { /* We are creating a volume inside a pre-existing container. * so st->sb is already set. */ struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; struct intel_dev *dv; struct imsm_dev *dev; struct imsm_vol *vol; struct imsm_map *map; int idx = mpb->num_raid_devs; int i; unsigned long long array_blocks; size_t size_old, size_new; __u32 num_data_stripes; if (super->orom && mpb->num_raid_devs >= super->orom->vpa) { fprintf(stderr, Name": This imsm-container already has the " "maximum of %d volumes\n", super->orom->vpa); return 0; } /* ensure the mpb is large enough for the new data */ size_old = __le32_to_cpu(mpb->mpb_size); size_new = disks_to_mpb_size(info->nr_disks); if (size_new > size_old) { void *mpb_new; size_t size_round = ROUND_UP(size_new, 512); if (posix_memalign(&mpb_new, 512, size_round) != 0) { fprintf(stderr, Name": could not allocate new mpb\n"); return 0; } memcpy(mpb_new, mpb, size_old); free(mpb); mpb = mpb_new; super->anchor = mpb_new; mpb->mpb_size = __cpu_to_le32(size_new); memset(mpb_new + size_old, 0, size_round - size_old); } super->current_vol = idx; /* when creating the first raid device in this container set num_disks * to zero, i.e. delete this spare and add raid member devices in * add_to_super_imsm_volume() */ if (super->current_vol == 0) mpb->num_disks = 0; if (!check_name(super, name, 0)) return 0; sprintf(st->subarray, "%d", idx); dv = malloc(sizeof(*dv)); if (!dv) { fprintf(stderr, Name ": failed to allocate device list entry\n"); return 0; } dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1)); if (!dev) { free(dv); fprintf(stderr, Name": could not allocate raid device\n"); return 0; } strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN); if (info->level == 1) array_blocks = info_to_blocks_per_member(info); else array_blocks = calc_array_size(info->level, info->raid_disks, info->layout, info->chunk_size, info->size*2); /* round array size down to closest MB */ array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT; dev->size_low = __cpu_to_le32((__u32) array_blocks); dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32)); dev->status = __cpu_to_le32(0); dev->reserved_blocks = __cpu_to_le32(0); vol = &dev->vol; vol->migr_state = 0; set_migr_type(dev, MIGR_INIT); vol->dirty = 0; vol->curr_migr_unit = 0; map = get_imsm_map(dev, 0); map->pba_of_lba0 = __cpu_to_le32(super->create_offset); map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info)); map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info)); map->failed_disk_num = ~0; map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL; map->ddf = 1; if (info->level == 1 && info->raid_disks > 2) { free(dev); free(dv); fprintf(stderr, Name": imsm does not support more than 2 disks" "in a raid1 volume\n"); return 0; } map->raid_level = info->level; if (info->level == 10) { map->raid_level = 1; map->num_domains = info->raid_disks / 2; } else if (info->level == 1) map->num_domains = info->raid_disks; else map->num_domains = 1; num_data_stripes = info_to_num_data_stripes(info, map->num_domains); map->num_data_stripes = __cpu_to_le32(num_data_stripes); map->num_members = info->raid_disks; for (i = 0; i < map->num_members; i++) { /* initialized in add_to_super */ set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD); } mpb->num_raid_devs++; dv->dev = dev; dv->index = super->current_vol; dv->next = super->devlist; super->devlist = dv; imsm_update_version_info(super); return 1; } static int init_super_imsm(struct supertype *st, mdu_array_info_t *info, unsigned long long size, char *name, char *homehost, int *uuid) { /* This is primarily called by Create when creating a new array. * We will then get add_to_super called for each component, and then * write_init_super called to write it out to each device. * For IMSM, Create can create on fresh devices or on a pre-existing * array. * To create on a pre-existing array a different method will be called. * This one is just for fresh drives. */ struct intel_super *super; struct imsm_super *mpb; size_t mpb_size; char *version; if (st->sb) return init_super_imsm_volume(st, info, size, name, homehost, uuid); if (info) mpb_size = disks_to_mpb_size(info->nr_disks); else mpb_size = 512; super = alloc_super(); if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) { free(super); super = NULL; } if (!super) { fprintf(stderr, Name ": %s could not allocate superblock\n", __func__); return 0; } memset(super->buf, 0, mpb_size); mpb = super->buf; mpb->mpb_size = __cpu_to_le32(mpb_size); st->sb = super; if (info == NULL) { /* zeroing superblock */ return 0; } mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY; version = (char *) mpb->sig; strcpy(version, MPB_SIGNATURE); version += strlen(MPB_SIGNATURE); strcpy(version, MPB_VERSION_RAID0); return 1; } #ifndef MDASSEMBLE static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk, int fd, char *devname) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; struct dl *dl; struct imsm_dev *dev; struct imsm_map *map; int slot; dev = get_imsm_dev(super, super->current_vol); map = get_imsm_map(dev, 0); if (! (dk->state & (1<disks; dl; dl = dl->next) if (dl->raiddisk == dk->raid_disk) break; } else { for (dl = super->disks; dl ; dl = dl->next) if (dl->major == dk->major && dl->minor == dk->minor) break; } if (!dl) { fprintf(stderr, Name ": %s is not a member of the same container\n", devname); return 1; } /* add a pristine spare to the metadata */ if (dl->index < 0) { dl->index = super->anchor->num_disks; super->anchor->num_disks++; } /* Check the device has not already been added */ slot = get_imsm_disk_slot(map, dl->index); if (slot >= 0 && (get_imsm_ord_tbl_ent(dev, slot) & IMSM_ORD_REBUILD) == 0) { fprintf(stderr, Name ": %s has been included in this array twice\n", devname); return 1; } set_imsm_ord_tbl_ent(map, dk->number, dl->index); dl->disk.status = CONFIGURED_DISK; /* if we are creating the first raid device update the family number */ if (super->current_vol == 0) { __u32 sum; struct imsm_dev *_dev = __get_imsm_dev(mpb, 0); struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index); if (!_dev || !_disk) { fprintf(stderr, Name ": BUG mpb setup error\n"); return 1; } *_dev = *dev; *_disk = dl->disk; sum = random32(); sum += __gen_imsm_checksum(mpb); mpb->family_num = __cpu_to_le32(sum); mpb->orig_family_num = mpb->family_num; } return 0; } static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk, int fd, char *devname) { struct intel_super *super = st->sb; struct dl *dd; unsigned long long size; __u32 id; int rv; struct stat stb; /* if we are on an RAID enabled platform check that the disk is * attached to the raid controller */ if (super->hba && !disk_attached_to_hba(fd, super->hba)) { fprintf(stderr, Name ": %s is not attached to the raid controller: %s\n", devname ? : "disk", super->hba); return 1; } if (super->current_vol >= 0) return add_to_super_imsm_volume(st, dk, fd, devname); fstat(fd, &stb); dd = malloc(sizeof(*dd)); if (!dd) { fprintf(stderr, Name ": malloc failed %s:%d.\n", __func__, __LINE__); return 1; } memset(dd, 0, sizeof(*dd)); dd->major = major(stb.st_rdev); dd->minor = minor(stb.st_rdev); dd->index = -1; dd->devname = devname ? strdup(devname) : NULL; dd->fd = fd; dd->e = NULL; rv = imsm_read_serial(fd, devname, dd->serial); if (rv) { fprintf(stderr, Name ": failed to retrieve scsi serial, aborting\n"); free(dd); abort(); } get_dev_size(fd, NULL, &size); size /= 512; serialcpy(dd->disk.serial, dd->serial); dd->disk.total_blocks = __cpu_to_le32(size); dd->disk.status = SPARE_DISK; if (sysfs_disk_to_scsi_id(fd, &id) == 0) dd->disk.scsi_id = __cpu_to_le32(id); else dd->disk.scsi_id = __cpu_to_le32(0); if (st->update_tail) { dd->next = super->add; super->add = dd; } else { dd->next = super->disks; super->disks = dd; } return 0; } static int store_imsm_mpb(int fd, struct imsm_super *mpb); static union { char buf[512]; struct imsm_super anchor; } spare_record __attribute__ ((aligned(512))); /* spare records have their own family number and do not have any defined raid * devices */ static int write_super_imsm_spares(struct intel_super *super, int doclose) { struct imsm_super *mpb = super->anchor; struct imsm_super *spare = &spare_record.anchor; __u32 sum; struct dl *d; spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)), spare->generation_num = __cpu_to_le32(1UL), spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY; spare->num_disks = 1, spare->num_raid_devs = 0, spare->cache_size = mpb->cache_size, spare->pwr_cycle_count = __cpu_to_le32(1), snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH, MPB_SIGNATURE MPB_VERSION_RAID0); for (d = super->disks; d; d = d->next) { if (d->index != -1) continue; spare->disk[0] = d->disk; sum = __gen_imsm_checksum(spare); spare->family_num = __cpu_to_le32(sum); spare->orig_family_num = 0; sum = __gen_imsm_checksum(spare); spare->check_sum = __cpu_to_le32(sum); if (store_imsm_mpb(d->fd, spare)) { fprintf(stderr, "%s: failed for device %d:%d %s\n", __func__, d->major, d->minor, strerror(errno)); return 1; } if (doclose) { close(d->fd); d->fd = -1; } } return 0; } static int write_super_imsm(struct intel_super *super, int doclose) { struct imsm_super *mpb = super->anchor; struct dl *d; __u32 generation; __u32 sum; int spares = 0; int i; __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk); /* 'generation' is incremented everytime the metadata is written */ generation = __le32_to_cpu(mpb->generation_num); generation++; mpb->generation_num = __cpu_to_le32(generation); /* fix up cases where previous mdadm releases failed to set * orig_family_num */ if (mpb->orig_family_num == 0) mpb->orig_family_num = mpb->family_num; mpb_size += sizeof(struct imsm_disk) * mpb->num_disks; for (d = super->disks; d; d = d->next) { if (d->index == -1) spares++; else mpb->disk[d->index] = d->disk; } for (d = super->missing; d; d = d->next) mpb->disk[d->index] = d->disk; for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev = __get_imsm_dev(mpb, i); imsm_copy_dev(dev, get_imsm_dev(super, i)); mpb_size += sizeof_imsm_dev(dev, 0); } mpb_size += __le32_to_cpu(mpb->bbm_log_size); mpb->mpb_size = __cpu_to_le32(mpb_size); /* recalculate checksum */ sum = __gen_imsm_checksum(mpb); mpb->check_sum = __cpu_to_le32(sum); /* write the mpb for disks that compose raid devices */ for (d = super->disks; d ; d = d->next) { if (d->index < 0) continue; if (store_imsm_mpb(d->fd, mpb)) fprintf(stderr, "%s: failed for device %d:%d %s\n", __func__, d->major, d->minor, strerror(errno)); if (doclose) { close(d->fd); d->fd = -1; } } if (spares) return write_super_imsm_spares(super, doclose); return 0; } static int create_array(struct supertype *st, int dev_idx) { size_t len; struct imsm_update_create_array *u; struct intel_super *super = st->sb; struct imsm_dev *dev = get_imsm_dev(super, dev_idx); struct imsm_map *map = get_imsm_map(dev, 0); struct disk_info *inf; struct imsm_disk *disk; int i; len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) + sizeof(*inf) * map->num_members; u = malloc(len); if (!u) { fprintf(stderr, "%s: failed to allocate update buffer\n", __func__); return 1; } u->type = update_create_array; u->dev_idx = dev_idx; imsm_copy_dev(&u->dev, dev); inf = get_disk_info(u); for (i = 0; i < map->num_members; i++) { int idx = get_imsm_disk_idx(dev, i); disk = get_imsm_disk(super, idx); serialcpy(inf[i].serial, disk->serial); } append_metadata_update(st, u, len); return 0; } static int _add_disk(struct supertype *st) { struct intel_super *super = st->sb; size_t len; struct imsm_update_add_disk *u; if (!super->add) return 0; len = sizeof(*u); u = malloc(len); if (!u) { fprintf(stderr, "%s: failed to allocate update buffer\n", __func__); return 1; } u->type = update_add_disk; append_metadata_update(st, u, len); return 0; } static int write_init_super_imsm(struct supertype *st) { struct intel_super *super = st->sb; int current_vol = super->current_vol; /* we are done with current_vol reset it to point st at the container */ super->current_vol = -1; if (st->update_tail) { /* queue the recently created array / added disk * as a metadata update */ struct dl *d; int rv; /* determine if we are creating a volume or adding a disk */ if (current_vol < 0) { /* in the add disk case we are running in mdmon * context, so don't close fd's */ return _add_disk(st); } else rv = create_array(st, current_vol); for (d = super->disks; d ; d = d->next) { close(d->fd); d->fd = -1; } return rv; } else { struct dl *d; for (d = super->disks; d; d = d->next) Kill(d->devname, NULL, 0, 1, 1); return write_super_imsm(st->sb, 1); } } #endif static int store_super_imsm(struct supertype *st, int fd) { struct intel_super *super = st->sb; struct imsm_super *mpb = super ? super->anchor : NULL; if (!mpb) return 1; #ifndef MDASSEMBLE return store_imsm_mpb(fd, mpb); #else return 1; #endif } static int imsm_bbm_log_size(struct imsm_super *mpb) { return __le32_to_cpu(mpb->bbm_log_size); } #ifndef MDASSEMBLE static int validate_geometry_imsm_container(struct supertype *st, int level, int layout, int raiddisks, int chunk, unsigned long long size, char *dev, unsigned long long *freesize, int verbose) { int fd; unsigned long long ldsize; const struct imsm_orom *orom; if (level != LEVEL_CONTAINER) return 0; if (!dev) return 1; if (check_env("IMSM_NO_PLATFORM")) orom = NULL; else orom = find_imsm_orom(); if (orom && raiddisks > orom->tds) { if (verbose) fprintf(stderr, Name ": %d exceeds maximum number of" " platform supported disks: %d\n", raiddisks, orom->tds); return 0; } fd = open(dev, O_RDONLY|O_EXCL, 0); if (fd < 0) { if (verbose) fprintf(stderr, Name ": imsm: Cannot open %s: %s\n", dev, strerror(errno)); return 0; } if (!get_dev_size(fd, dev, &ldsize)) { close(fd); return 0; } close(fd); *freesize = avail_size_imsm(st, ldsize >> 9); return 1; } static unsigned long long find_size(struct extent *e, int *idx, int num_extents) { const unsigned long long base_start = e[*idx].start; unsigned long long end = base_start + e[*idx].size; int i; if (base_start == end) return 0; *idx = *idx + 1; for (i = *idx; i < num_extents; i++) { /* extend overlapping extents */ if (e[i].start >= base_start && e[i].start <= end) { if (e[i].size == 0) return 0; if (e[i].start + e[i].size > end) end = e[i].start + e[i].size; } else if (e[i].start > end) { *idx = i; break; } } return end - base_start; } static unsigned long long merge_extents(struct intel_super *super, int sum_extents) { /* build a composite disk with all known extents and generate a new * 'maxsize' given the "all disks in an array must share a common start * offset" constraint */ struct extent *e = calloc(sum_extents, sizeof(*e)); struct dl *dl; int i, j; int start_extent; unsigned long long pos; unsigned long long start = 0; unsigned long long maxsize; unsigned long reserve; if (!e) return 0; /* coalesce and sort all extents. also, check to see if we need to * reserve space between member arrays */ j = 0; for (dl = super->disks; dl; dl = dl->next) { if (!dl->e) continue; for (i = 0; i < dl->extent_cnt; i++) e[j++] = dl->e[i]; } qsort(e, sum_extents, sizeof(*e), cmp_extent); /* merge extents */ i = 0; j = 0; while (i < sum_extents) { e[j].start = e[i].start; e[j].size = find_size(e, &i, sum_extents); j++; if (e[j-1].size == 0) break; } pos = 0; maxsize = 0; start_extent = 0; i = 0; do { unsigned long long esize; esize = e[i].start - pos; if (esize >= maxsize) { maxsize = esize; start = pos; start_extent = i; } pos = e[i].start + e[i].size; i++; } while (e[i-1].size); free(e); if (maxsize == 0) return 0; /* FIXME assumes volume at offset 0 is the first volume in a * container */ if (start_extent > 0) reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */ else reserve = 0; if (maxsize < reserve) return 0; super->create_offset = ~((__u32) 0); if (start + reserve > super->create_offset) return 0; /* start overflows create_offset */ super->create_offset = start + reserve; return maxsize - reserve; } static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks) { if (level < 0 || level == 6 || level == 4) return 0; /* if we have an orom prevent invalid raid levels */ if (orom) switch (level) { case 0: return imsm_orom_has_raid0(orom); case 1: if (raiddisks > 2) return imsm_orom_has_raid1e(orom); return imsm_orom_has_raid1(orom) && raiddisks == 2; case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4; case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2; } else return 1; /* not on an Intel RAID platform so anything goes */ return 0; } #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg)) static int validate_geometry_imsm_orom(struct intel_super *super, int level, int layout, int raiddisks, int chunk, int verbose) { if (!is_raid_level_supported(super->orom, level, raiddisks)) { pr_vrb(": platform does not support raid%d with %d disk%s\n", level, raiddisks, raiddisks > 1 ? "s" : ""); return 0; } if (super->orom && level != 1 && !imsm_orom_has_chunk(super->orom, chunk)) { pr_vrb(": platform does not support a chunk size of: %d\n", chunk); return 0; } if (layout != imsm_level_to_layout(level)) { if (level == 5) pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n"); else if (level == 10) pr_vrb(": imsm raid 10 only supports the n2 layout\n"); else pr_vrb(": imsm unknown layout %#x for this raid level %d\n", layout, level); return 0; } return 1; } /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd * FIX ME add ahci details */ static int validate_geometry_imsm_volume(struct supertype *st, int level, int layout, int raiddisks, int chunk, unsigned long long size, char *dev, unsigned long long *freesize, int verbose) { struct stat stb; struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; struct dl *dl; unsigned long long pos = 0; unsigned long long maxsize; struct extent *e; int i; /* We must have the container info already read in. */ if (!super) return 0; if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) return 0; if (!dev) { /* General test: make sure there is space for * 'raiddisks' device extents of size 'size' at a given * offset */ unsigned long long minsize = size; unsigned long long start_offset = MaxSector; int dcnt = 0; if (minsize == 0) minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS; for (dl = super->disks; dl ; dl = dl->next) { int found = 0; pos = 0; i = 0; e = get_extents(super, dl); if (!e) continue; do { unsigned long long esize; esize = e[i].start - pos; if (esize >= minsize) found = 1; if (found && start_offset == MaxSector) { start_offset = pos; break; } else if (found && pos != start_offset) { found = 0; break; } pos = e[i].start + e[i].size; i++; } while (e[i-1].size); if (found) dcnt++; free(e); } if (dcnt < raiddisks) { if (verbose) fprintf(stderr, Name ": imsm: Not enough " "devices with space for this array " "(%d < %d)\n", dcnt, raiddisks); return 0; } return 1; } /* This device must be a member of the set */ if (stat(dev, &stb) < 0) return 0; if ((S_IFMT & stb.st_mode) != S_IFBLK) return 0; for (dl = super->disks ; dl ; dl = dl->next) { if (dl->major == (int)major(stb.st_rdev) && dl->minor == (int)minor(stb.st_rdev)) break; } if (!dl) { if (verbose) fprintf(stderr, Name ": %s is not in the " "same imsm set\n", dev); return 0; } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) { /* If a volume is present then the current creation attempt * cannot incorporate new spares because the orom may not * understand this configuration (all member disks must be * members of each array in the container). */ fprintf(stderr, Name ": %s is a spare and a volume" " is already defined for this container\n", dev); fprintf(stderr, Name ": The option-rom requires all member" " disks to be a member of all volumes\n"); return 0; } /* retrieve the largest free space block */ e = get_extents(super, dl); maxsize = 0; i = 0; if (e) { do { unsigned long long esize; esize = e[i].start - pos; if (esize >= maxsize) maxsize = esize; pos = e[i].start + e[i].size; i++; } while (e[i-1].size); dl->e = e; dl->extent_cnt = i; } else { if (verbose) fprintf(stderr, Name ": unable to determine free space for: %s\n", dev); return 0; } if (maxsize < size) { if (verbose) fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n", dev, maxsize, size); return 0; } /* count total number of extents for merge */ i = 0; for (dl = super->disks; dl; dl = dl->next) if (dl->e) i += dl->extent_cnt; maxsize = merge_extents(super, i); if (maxsize < size || maxsize == 0) { if (verbose) fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n", maxsize, size); return 0; } *freesize = maxsize; return 1; } static int reserve_space(struct supertype *st, int raiddisks, unsigned long long size, int chunk, unsigned long long *freesize) { struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; struct dl *dl; int i; int extent_cnt; struct extent *e; unsigned long long maxsize; unsigned long long minsize; int cnt; int used; /* find the largest common start free region of the possible disks */ used = 0; extent_cnt = 0; cnt = 0; for (dl = super->disks; dl; dl = dl->next) { dl->raiddisk = -1; if (dl->index >= 0) used++; /* don't activate new spares if we are orom constrained * and there is already a volume active in the container */ if (super->orom && dl->index < 0 && mpb->num_raid_devs) continue; e = get_extents(super, dl); if (!e) continue; for (i = 1; e[i-1].size; i++) ; dl->e = e; dl->extent_cnt = i; extent_cnt += i; cnt++; } maxsize = merge_extents(super, extent_cnt); minsize = size; if (size == 0) minsize = chunk; if (cnt < raiddisks || (super->orom && used && used != raiddisks) || maxsize < minsize || maxsize == 0) { fprintf(stderr, Name ": not enough devices with space to create array.\n"); return 0; /* No enough free spaces large enough */ } if (size == 0) { size = maxsize; if (chunk) { size /= chunk; size *= chunk; } } cnt = 0; for (dl = super->disks; dl; dl = dl->next) if (dl->e) dl->raiddisk = cnt++; *freesize = size; return 1; } static int validate_geometry_imsm(struct supertype *st, int level, int layout, int raiddisks, int chunk, unsigned long long size, char *dev, unsigned long long *freesize, int verbose) { int fd, cfd; struct mdinfo *sra; int is_member = 0; /* if given unused devices create a container * if given given devices in a container create a member volume */ if (level == LEVEL_CONTAINER) { /* Must be a fresh device to add to a container */ return validate_geometry_imsm_container(st, level, layout, raiddisks, chunk, size, dev, freesize, verbose); } if (!dev) { if (st->sb && freesize) { /* we are being asked to automatically layout a * new volume based on the current contents of * the container. If the the parameters can be * satisfied reserve_space will record the disks, * start offset, and size of the volume to be * created. add_to_super and getinfo_super * detect when autolayout is in progress. */ if (!validate_geometry_imsm_orom(st->sb, level, layout, raiddisks, chunk, verbose)) return 0; return reserve_space(st, raiddisks, size, chunk, freesize); } return 1; } if (st->sb) { /* creating in a given container */ return validate_geometry_imsm_volume(st, level, layout, raiddisks, chunk, size, dev, freesize, verbose); } /* This device needs to be a device in an 'imsm' container */ fd = open(dev, O_RDONLY|O_EXCL, 0); if (fd >= 0) { if (verbose) fprintf(stderr, Name ": Cannot create this array on device %s\n", dev); close(fd); return 0; } if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) { if (verbose) fprintf(stderr, Name ": Cannot open %s: %s\n", dev, strerror(errno)); return 0; } /* Well, it is in use by someone, maybe an 'imsm' container. */ cfd = open_container(fd); close(fd); if (cfd < 0) { if (verbose) fprintf(stderr, Name ": Cannot use %s: It is busy\n", dev); return 0; } sra = sysfs_read(cfd, 0, GET_VERSION); if (sra && sra->array.major_version == -1 && strcmp(sra->text_version, "imsm") == 0) is_member = 1; sysfs_free(sra); if (is_member) { /* This is a member of a imsm container. Load the container * and try to create a volume */ struct intel_super *super; if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) { st->sb = super; st->container_dev = fd2devnum(cfd); close(cfd); return validate_geometry_imsm_volume(st, level, layout, raiddisks, chunk, size, dev, freesize, verbose); } } if (verbose) fprintf(stderr, Name ": failed container membership check\n"); close(cfd); return 0; } static int default_chunk_imsm(struct supertype *st) { struct intel_super *super = st->sb; if (!super->orom) return 0; return imsm_orom_default_chunk(super->orom); } static void handle_missing(struct intel_super *super, struct imsm_dev *dev); static int kill_subarray_imsm(struct supertype *st) { /* remove the subarray currently referenced by ->current_vol */ __u8 i; struct intel_dev **dp; struct intel_super *super = st->sb; __u8 current_vol = super->current_vol; struct imsm_super *mpb = super->anchor; if (super->current_vol < 0) return 2; super->current_vol = -1; /* invalidate subarray cursor */ /* block deletions that would change the uuid of active subarrays * * FIXME when immutable ids are available, but note that we'll * also need to fixup the invalidated/active subarray indexes in * mdstat */ for (i = 0; i < mpb->num_raid_devs; i++) { char subarray[4]; if (i < current_vol) continue; sprintf(subarray, "%u", i); if (is_subarray_active(subarray, st->devname)) { fprintf(stderr, Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n", current_vol, i); return 2; } } if (st->update_tail) { struct imsm_update_kill_array *u = malloc(sizeof(*u)); if (!u) return 2; u->type = update_kill_array; u->dev_idx = current_vol; append_metadata_update(st, u, sizeof(*u)); return 0; } for (dp = &super->devlist; *dp;) if ((*dp)->index == current_vol) { *dp = (*dp)->next; } else { handle_missing(super, (*dp)->dev); if ((*dp)->index > current_vol) (*dp)->index--; dp = &(*dp)->next; } /* no more raid devices, all active components are now spares, * but of course failed are still failed */ if (--mpb->num_raid_devs == 0) { struct dl *d; for (d = super->disks; d; d = d->next) if (d->index > -2) { d->index = -1; d->disk.status = SPARE_DISK; } } super->updates_pending++; return 0; } static int update_subarray_imsm(struct supertype *st, char *subarray, char *update, mddev_ident_t ident) { /* update the subarray currently referenced by ->current_vol */ struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; if (strcmp(update, "name") == 0) { char *name = ident->name; char *ep; int vol; if (is_subarray_active(subarray, st->devname)) { fprintf(stderr, Name ": Unable to update name of active subarray\n"); return 2; } if (!check_name(super, name, 0)) return 2; vol = strtoul(subarray, &ep, 10); if (*ep != '\0' || vol >= super->anchor->num_raid_devs) return 2; if (st->update_tail) { struct imsm_update_rename_array *u = malloc(sizeof(*u)); if (!u) return 2; u->type = update_rename_array; u->dev_idx = vol; snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name); append_metadata_update(st, u, sizeof(*u)); } else { struct imsm_dev *dev; int i; dev = get_imsm_dev(super, vol); snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name); for (i = 0; i < mpb->num_raid_devs; i++) { dev = get_imsm_dev(super, i); handle_missing(super, dev); } super->updates_pending++; } } else return 2; return 0; } #endif /* MDASSEMBLE */ static int is_rebuilding(struct imsm_dev *dev) { struct imsm_map *migr_map; if (!dev->vol.migr_state) return 0; if (migr_type(dev) != MIGR_REBUILD) return 0; migr_map = get_imsm_map(dev, 1); if (migr_map->map_state == IMSM_T_STATE_DEGRADED) return 1; else return 0; } static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array) { struct mdinfo *rebuild = NULL; struct mdinfo *d; __u32 units; if (!is_rebuilding(dev)) return; /* Find the rebuild target, but punt on the dual rebuild case */ for (d = array->devs; d; d = d->next) if (d->recovery_start == 0) { if (rebuild) return; rebuild = d; } if (!rebuild) { /* (?) none of the disks are marked with * IMSM_ORD_REBUILD, so assume they are missing and the * disk_ord_tbl was not correctly updated */ dprintf("%s: failed to locate out-of-sync disk\n", __func__); return; } units = __le32_to_cpu(dev->vol.curr_migr_unit); rebuild->recovery_start = units * blocks_per_migr_unit(dev); } static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray) { /* Given a container loaded by load_super_imsm_all, * extract information about all the arrays into * an mdinfo tree. * If 'subarray' is given, just extract info about that array. * * For each imsm_dev create an mdinfo, fill it in, * then look for matching devices in super->disks * and create appropriate device mdinfo. */ struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; struct mdinfo *rest = NULL; unsigned int i; /* do not assemble arrays that might have bad blocks */ if (imsm_bbm_log_size(super->anchor)) { fprintf(stderr, Name ": BBM log found in metadata. " "Cannot activate array(s).\n"); return NULL; } for (i = 0; i < mpb->num_raid_devs; i++) { struct imsm_dev *dev; struct imsm_map *map; struct mdinfo *this; int slot; char *ep; if (subarray && (i != strtoul(subarray, &ep, 10) || *ep != '\0')) continue; dev = get_imsm_dev(super, i); map = get_imsm_map(dev, 0); /* do not publish arrays that are in the middle of an * unsupported migration */ if (dev->vol.migr_state && (migr_type(dev) == MIGR_GEN_MIGR || migr_type(dev) == MIGR_STATE_CHANGE)) { fprintf(stderr, Name ": cannot assemble volume '%.16s':" " unsupported migration in progress\n", dev->volume); continue; } this = malloc(sizeof(*this)); if (!this) { fprintf(stderr, Name ": failed to allocate %zu bytes\n", sizeof(*this)); break; } memset(this, 0, sizeof(*this)); this->next = rest; super->current_vol = i; getinfo_super_imsm_volume(st, this, NULL); for (slot = 0 ; slot < map->num_members; slot++) { unsigned long long recovery_start; struct mdinfo *info_d; struct dl *d; int idx; int skip; __u32 ord; skip = 0; idx = get_imsm_disk_idx(dev, slot); ord = get_imsm_ord_tbl_ent(dev, slot); for (d = super->disks; d ; d = d->next) if (d->index == idx) break; recovery_start = MaxSector; if (d == NULL) skip = 1; if (d && is_failed(&d->disk)) skip = 1; if (ord & IMSM_ORD_REBUILD) recovery_start = 0; /* * if we skip some disks the array will be assmebled degraded; * reset resync start to avoid a dirty-degraded * situation when performing the intial sync * * FIXME handle dirty degraded */ if ((skip || recovery_start == 0) && !dev->vol.dirty) this->resync_start = MaxSector; if (skip) continue; info_d = calloc(1, sizeof(*info_d)); if (!info_d) { fprintf(stderr, Name ": failed to allocate disk" " for volume %.16s\n", dev->volume); info_d = this->devs; while (info_d) { struct mdinfo *d = info_d->next; free(info_d); info_d = d; } free(this); this = rest; break; } info_d->next = this->devs; this->devs = info_d; info_d->disk.number = d->index; info_d->disk.major = d->major; info_d->disk.minor = d->minor; info_d->disk.raid_disk = slot; info_d->recovery_start = recovery_start; if (info_d->recovery_start == MaxSector) this->array.working_disks++; info_d->events = __le32_to_cpu(mpb->generation_num); info_d->data_offset = __le32_to_cpu(map->pba_of_lba0); info_d->component_size = __le32_to_cpu(map->blocks_per_member); } /* now that the disk list is up-to-date fixup recovery_start */ update_recovery_start(dev, this); rest = this; } return rest; } static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed) { struct imsm_map *map = get_imsm_map(dev, 0); if (!failed) return map->map_state == IMSM_T_STATE_UNINITIALIZED ? IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL; switch (get_imsm_raid_level(map)) { case 0: return IMSM_T_STATE_FAILED; break; case 1: if (failed < map->num_members) return IMSM_T_STATE_DEGRADED; else return IMSM_T_STATE_FAILED; break; case 10: { /** * check to see if any mirrors have failed, otherwise we * are degraded. Even numbered slots are mirrored on * slot+1 */ int i; /* gcc -Os complains that this is unused */ int insync = insync; for (i = 0; i < map->num_members; i++) { __u32 ord = get_imsm_ord_tbl_ent(dev, i); int idx = ord_to_idx(ord); struct imsm_disk *disk; /* reset the potential in-sync count on even-numbered * slots. num_copies is always 2 for imsm raid10 */ if ((i & 1) == 0) insync = 2; disk = get_imsm_disk(super, idx); if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD) insync--; /* no in-sync disks left in this mirror the * array has failed */ if (insync == 0) return IMSM_T_STATE_FAILED; } return IMSM_T_STATE_DEGRADED; } case 5: if (failed < 2) return IMSM_T_STATE_DEGRADED; else return IMSM_T_STATE_FAILED; break; default: break; } return map->map_state; } static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev) { int i; int failed = 0; struct imsm_disk *disk; struct imsm_map *map = get_imsm_map(dev, 0); struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state); __u32 ord; int idx; /* at the beginning of migration we set IMSM_ORD_REBUILD on * disks that are being rebuilt. New failures are recorded to * map[0]. So we look through all the disks we started with and * see if any failures are still present, or if any new ones * have arrived * * FIXME add support for online capacity expansion and * raid-level-migration */ for (i = 0; i < prev->num_members; i++) { ord = __le32_to_cpu(prev->disk_ord_tbl[i]); ord |= __le32_to_cpu(map->disk_ord_tbl[i]); idx = ord_to_idx(ord); disk = get_imsm_disk(super, idx); if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD) failed++; } return failed; } #ifndef MDASSEMBLE static int imsm_open_new(struct supertype *c, struct active_array *a, char *inst) { struct intel_super *super = c->sb; struct imsm_super *mpb = super->anchor; if (atoi(inst) >= mpb->num_raid_devs) { fprintf(stderr, "%s: subarry index %d, out of range\n", __func__, atoi(inst)); return -ENODEV; } dprintf("imsm: open_new %s\n", inst); a->info.container_member = atoi(inst); return 0; } static int is_resyncing(struct imsm_dev *dev) { struct imsm_map *migr_map; if (!dev->vol.migr_state) return 0; if (migr_type(dev) == MIGR_INIT || migr_type(dev) == MIGR_REPAIR) return 1; migr_map = get_imsm_map(dev, 1); if (migr_map->map_state == IMSM_T_STATE_NORMAL) return 1; else return 0; } /* return true if we recorded new information */ static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx) { __u32 ord; int slot; struct imsm_map *map; /* new failures are always set in map[0] */ map = get_imsm_map(dev, 0); slot = get_imsm_disk_slot(map, idx); if (slot < 0) return 0; ord = __le32_to_cpu(map->disk_ord_tbl[slot]); if (is_failed(disk) && (ord & IMSM_ORD_REBUILD)) return 0; disk->status |= FAILED_DISK; disk->status &= ~CONFIGURED_DISK; set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD); if (map->failed_disk_num == 0xff) map->failed_disk_num = slot; return 1; } static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx) { mark_failure(dev, disk, idx); if (disk->scsi_id == __cpu_to_le32(~(__u32)0)) return; disk->scsi_id = __cpu_to_le32(~(__u32)0); memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1); } static void handle_missing(struct intel_super *super, struct imsm_dev *dev) { __u8 map_state; struct dl *dl; int failed; if (!super->missing) return; failed = imsm_count_failed(super, dev); map_state = imsm_check_degraded(super, dev, failed); dprintf("imsm: mark missing\n"); end_migration(dev, map_state); for (dl = super->missing; dl; dl = dl->next) mark_missing(dev, &dl->disk, dl->index); super->updates_pending++; } /* Handle dirty -> clean transititions and resync. Degraded and rebuild * states are handled in imsm_set_disk() with one exception, when a * resync is stopped due to a new failure this routine will set the * 'degraded' state for the array. */ static int imsm_set_array_state(struct active_array *a, int consistent) { int inst = a->info.container_member; struct intel_super *super = a->container->sb; struct imsm_dev *dev = get_imsm_dev(super, inst); struct imsm_map *map = get_imsm_map(dev, 0); int failed = imsm_count_failed(super, dev); __u8 map_state = imsm_check_degraded(super, dev, failed); __u32 blocks_per_unit; /* before we activate this array handle any missing disks */ if (consistent == 2) handle_missing(super, dev); if (consistent == 2 && (!is_resync_complete(&a->info) || map_state != IMSM_T_STATE_NORMAL || dev->vol.migr_state)) consistent = 0; if (is_resync_complete(&a->info)) { /* complete intialization / resync, * recovery and interrupted recovery is completed in * ->set_disk */ if (is_resyncing(dev)) { dprintf("imsm: mark resync done\n"); end_migration(dev, map_state); super->updates_pending++; a->last_checkpoint = 0; } } else if (!is_resyncing(dev) && !failed) { /* mark the start of the init process if nothing is failed */ dprintf("imsm: mark resync start\n"); if (map->map_state == IMSM_T_STATE_UNINITIALIZED) migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT); else migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR); super->updates_pending++; } /* check if we can update curr_migr_unit from resync_start, recovery_start */ blocks_per_unit = blocks_per_migr_unit(dev); if (blocks_per_unit) { __u32 units32; __u64 units; units = a->last_checkpoint / blocks_per_unit; units32 = units; /* check that we did not overflow 32-bits, and that * curr_migr_unit needs updating */ if (units32 == units && __le32_to_cpu(dev->vol.curr_migr_unit) != units32) { dprintf("imsm: mark checkpoint (%u)\n", units32); dev->vol.curr_migr_unit = __cpu_to_le32(units32); super->updates_pending++; } } /* mark dirty / clean */ if (dev->vol.dirty != !consistent) { dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty"); if (consistent) dev->vol.dirty = 0; else dev->vol.dirty = 1; super->updates_pending++; } return consistent; } static void imsm_set_disk(struct active_array *a, int n, int state) { int inst = a->info.container_member; struct intel_super *super = a->container->sb; struct imsm_dev *dev = get_imsm_dev(super, inst); struct imsm_map *map = get_imsm_map(dev, 0); struct imsm_disk *disk; int failed; __u32 ord; __u8 map_state; if (n > map->num_members) fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n", n, map->num_members - 1); if (n < 0) return; dprintf("imsm: set_disk %d:%x\n", n, state); ord = get_imsm_ord_tbl_ent(dev, n); disk = get_imsm_disk(super, ord_to_idx(ord)); /* check for new failures */ if (state & DS_FAULTY) { if (mark_failure(dev, disk, ord_to_idx(ord))) super->updates_pending++; } /* check if in_sync */ if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) { struct imsm_map *migr_map = get_imsm_map(dev, 1); set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord)); super->updates_pending++; } failed = imsm_count_failed(super, dev); map_state = imsm_check_degraded(super, dev, failed); /* check if recovery complete, newly degraded, or failed */ if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) { end_migration(dev, map_state); map = get_imsm_map(dev, 0); map->failed_disk_num = ~0; super->updates_pending++; a->last_checkpoint = 0; } else if (map_state == IMSM_T_STATE_DEGRADED && map->map_state != map_state && !dev->vol.migr_state) { dprintf("imsm: mark degraded\n"); map->map_state = map_state; super->updates_pending++; a->last_checkpoint = 0; } else if (map_state == IMSM_T_STATE_FAILED && map->map_state != map_state) { dprintf("imsm: mark failed\n"); end_migration(dev, map_state); super->updates_pending++; a->last_checkpoint = 0; } } static int store_imsm_mpb(int fd, struct imsm_super *mpb) { void *buf = mpb; __u32 mpb_size = __le32_to_cpu(mpb->mpb_size); unsigned long long dsize; unsigned long long sectors; get_dev_size(fd, NULL, &dsize); if (mpb_size > 512) { /* -1 to account for anchor */ sectors = mpb_sectors(mpb) - 1; /* write the extended mpb to the sectors preceeding the anchor */ if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) return 1; if ((unsigned long long)write(fd, buf + 512, 512 * sectors) != 512 * sectors) return 1; } /* first block is stored on second to last sector of the disk */ if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) return 1; if (write(fd, buf, 512) != 512) return 1; return 0; } static void imsm_sync_metadata(struct supertype *container) { struct intel_super *super = container->sb; if (!super->updates_pending) return; write_super_imsm(super, 0); super->updates_pending = 0; } static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a) { struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member); int i = get_imsm_disk_idx(dev, idx); struct dl *dl; for (dl = super->disks; dl; dl = dl->next) if (dl->index == i) break; if (dl && is_failed(&dl->disk)) dl = NULL; if (dl) dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor); return dl; } static struct dl *imsm_add_spare(struct intel_super *super, int slot, struct active_array *a, int activate_new) { struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member); int idx = get_imsm_disk_idx(dev, slot); struct imsm_super *mpb = super->anchor; struct imsm_map *map; unsigned long long pos; struct mdinfo *d; struct extent *ex; int i, j; int found; __u32 array_start = 0; __u32 array_end = 0; struct dl *dl; for (dl = super->disks; dl; dl = dl->next) { /* If in this array, skip */ for (d = a->info.devs ; d ; d = d->next) if (d->state_fd >= 0 && d->disk.major == dl->major && d->disk.minor == dl->minor) { dprintf("%x:%x already in array\n", dl->major, dl->minor); break; } if (d) continue; /* skip in use or failed drives */ if (is_failed(&dl->disk) || idx == dl->index || dl->index == -2) { dprintf("%x:%x status (failed: %d index: %d)\n", dl->major, dl->minor, is_failed(&dl->disk), idx); continue; } /* skip pure spares when we are looking for partially * assimilated drives */ if (dl->index == -1 && !activate_new) continue; /* Does this unused device have the requisite free space? * It needs to be able to cover all member volumes */ ex = get_extents(super, dl); if (!ex) { dprintf("cannot get extents\n"); continue; } for (i = 0; i < mpb->num_raid_devs; i++) { dev = get_imsm_dev(super, i); map = get_imsm_map(dev, 0); /* check if this disk is already a member of * this array */ if (get_imsm_disk_slot(map, dl->index) >= 0) continue; found = 0; j = 0; pos = 0; array_start = __le32_to_cpu(map->pba_of_lba0); array_end = array_start + __le32_to_cpu(map->blocks_per_member) - 1; do { /* check that we can start at pba_of_lba0 with * blocks_per_member of space */ if (array_start >= pos && array_end < ex[j].start) { found = 1; break; } pos = ex[j].start + ex[j].size; j++; } while (ex[j-1].size); if (!found) break; } free(ex); if (i < mpb->num_raid_devs) { dprintf("%x:%x does not have %u to %u available\n", dl->major, dl->minor, array_start, array_end); /* No room */ continue; } return dl; } return dl; } static struct mdinfo *imsm_activate_spare(struct active_array *a, struct metadata_update **updates) { /** * Find a device with unused free space and use it to replace a * failed/vacant region in an array. We replace failed regions one a * array at a time. The result is that a new spare disk will be added * to the first failed array and after the monitor has finished * propagating failures the remainder will be consumed. * * FIXME add a capability for mdmon to request spares from another * container. */ struct intel_super *super = a->container->sb; int inst = a->info.container_member; struct imsm_dev *dev = get_imsm_dev(super, inst); struct imsm_map *map = get_imsm_map(dev, 0); int failed = a->info.array.raid_disks; struct mdinfo *rv = NULL; struct mdinfo *d; struct mdinfo *di; struct metadata_update *mu; struct dl *dl; struct imsm_update_activate_spare *u; int num_spares = 0; int i; for (d = a->info.devs ; d ; d = d->next) { if ((d->curr_state & DS_FAULTY) && d->state_fd >= 0) /* wait for Removal to happen */ return NULL; if (d->state_fd >= 0) failed--; } dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n", inst, failed, a->info.array.raid_disks, a->info.array.level); if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED) return NULL; /* For each slot, if it is not working, find a spare */ for (i = 0; i < a->info.array.raid_disks; i++) { for (d = a->info.devs ; d ; d = d->next) if (d->disk.raid_disk == i) break; dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0); if (d && (d->state_fd >= 0)) continue; /* * OK, this device needs recovery. Try to re-add the * previous occupant of this slot, if this fails see if * we can continue the assimilation of a spare that was * partially assimilated, finally try to activate a new * spare. */ dl = imsm_readd(super, i, a); if (!dl) dl = imsm_add_spare(super, i, a, 0); if (!dl) dl = imsm_add_spare(super, i, a, 1); if (!dl) continue; /* found a usable disk with enough space */ di = malloc(sizeof(*di)); if (!di) continue; memset(di, 0, sizeof(*di)); /* dl->index will be -1 in the case we are activating a * pristine spare. imsm_process_update() will create a * new index in this case. Once a disk is found to be * failed in all member arrays it is kicked from the * metadata */ di->disk.number = dl->index; /* (ab)use di->devs to store a pointer to the device * we chose */ di->devs = (struct mdinfo *) dl; di->disk.raid_disk = i; di->disk.major = dl->major; di->disk.minor = dl->minor; di->disk.state = 0; di->recovery_start = 0; di->data_offset = __le32_to_cpu(map->pba_of_lba0); di->component_size = a->info.component_size; di->container_member = inst; super->random = random32(); di->next = rv; rv = di; num_spares++; dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor, i, di->data_offset); break; } if (!rv) /* No spares found */ return rv; /* Now 'rv' has a list of devices to return. * Create a metadata_update record to update the * disk_ord_tbl for the array */ mu = malloc(sizeof(*mu)); if (mu) { mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares); if (mu->buf == NULL) { free(mu); mu = NULL; } } if (!mu) { while (rv) { struct mdinfo *n = rv->next; free(rv); rv = n; } return NULL; } mu->space = NULL; mu->len = sizeof(struct imsm_update_activate_spare) * num_spares; mu->next = *updates; u = (struct imsm_update_activate_spare *) mu->buf; for (di = rv ; di ; di = di->next) { u->type = update_activate_spare; u->dl = (struct dl *) di->devs; di->devs = NULL; u->slot = di->disk.raid_disk; u->array = inst; u->next = u + 1; u++; } (u-1)->next = NULL; *updates = mu; return rv; } static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u) { struct imsm_dev *dev = get_imsm_dev(super, idx); struct imsm_map *map = get_imsm_map(dev, 0); struct imsm_map *new_map = get_imsm_map(&u->dev, 0); struct disk_info *inf = get_disk_info(u); struct imsm_disk *disk; int i; int j; for (i = 0; i < map->num_members; i++) { disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i)); for (j = 0; j < new_map->num_members; j++) if (serialcmp(disk->serial, inf[j].serial) == 0) return 1; } return 0; } static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index); static void imsm_process_update(struct supertype *st, struct metadata_update *update) { /** * crack open the metadata_update envelope to find the update record * update can be one of: * update_activate_spare - a spare device has replaced a failed * device in an array, update the disk_ord_tbl. If this disk is * present in all member arrays then also clear the SPARE_DISK * flag */ struct intel_super *super = st->sb; struct imsm_super *mpb; enum imsm_update_type type = *(enum imsm_update_type *) update->buf; /* update requires a larger buf but the allocation failed */ if (super->next_len && !super->next_buf) { super->next_len = 0; return; } if (super->next_buf) { memcpy(super->next_buf, super->buf, super->len); free(super->buf); super->len = super->next_len; super->buf = super->next_buf; super->next_len = 0; super->next_buf = NULL; } mpb = super->anchor; switch (type) { case update_activate_spare: { struct imsm_update_activate_spare *u = (void *) update->buf; struct imsm_dev *dev = get_imsm_dev(super, u->array); struct imsm_map *map = get_imsm_map(dev, 0); struct imsm_map *migr_map; struct active_array *a; struct imsm_disk *disk; __u8 to_state; struct dl *dl; unsigned int found; int failed; int victim = get_imsm_disk_idx(dev, u->slot); int i; for (dl = super->disks; dl; dl = dl->next) if (dl == u->dl) break; if (!dl) { fprintf(stderr, "error: imsm_activate_spare passed " "an unknown disk (index: %d)\n", u->dl->index); return; } super->updates_pending++; /* count failures (excluding rebuilds and the victim) * to determine map[0] state */ failed = 0; for (i = 0; i < map->num_members; i++) { if (i == u->slot) continue; disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i)); if (!disk || is_failed(disk)) failed++; } /* adding a pristine spare, assign a new index */ if (dl->index < 0) { dl->index = super->anchor->num_disks; super->anchor->num_disks++; } disk = &dl->disk; disk->status |= CONFIGURED_DISK; disk->status &= ~SPARE_DISK; /* mark rebuild */ to_state = imsm_check_degraded(super, dev, failed); map->map_state = IMSM_T_STATE_DEGRADED; migrate(dev, to_state, MIGR_REBUILD); migr_map = get_imsm_map(dev, 1); set_imsm_ord_tbl_ent(map, u->slot, dl->index); set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD); /* update the family_num to mark a new container * generation, being careful to record the existing * family_num in orig_family_num to clean up after * earlier mdadm versions that neglected to set it. */ if (mpb->orig_family_num == 0) mpb->orig_family_num = mpb->family_num; mpb->family_num += super->random; /* count arrays using the victim in the metadata */ found = 0; for (a = st->arrays; a ; a = a->next) { dev = get_imsm_dev(super, a->info.container_member); map = get_imsm_map(dev, 0); if (get_imsm_disk_slot(map, victim) >= 0) found++; } /* delete the victim if it is no longer being * utilized anywhere */ if (!found) { struct dl **dlp; /* We know that 'manager' isn't touching anything, * so it is safe to delete */ for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next) if ((*dlp)->index == victim) break; /* victim may be on the missing list */ if (!*dlp) for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next) if ((*dlp)->index == victim) break; imsm_delete(super, dlp, victim); } break; } case update_create_array: { /* someone wants to create a new array, we need to be aware of * a few races/collisions: * 1/ 'Create' called by two separate instances of mdadm * 2/ 'Create' versus 'activate_spare': mdadm has chosen * devices that have since been assimilated via * activate_spare. * In the event this update can not be carried out mdadm will * (FIX ME) notice that its update did not take hold. */ struct imsm_update_create_array *u = (void *) update->buf; struct intel_dev *dv; struct imsm_dev *dev; struct imsm_map *map, *new_map; unsigned long long start, end; unsigned long long new_start, new_end; int i; struct disk_info *inf; struct dl *dl; /* handle racing creates: first come first serve */ if (u->dev_idx < mpb->num_raid_devs) { dprintf("%s: subarray %d already defined\n", __func__, u->dev_idx); goto create_error; } /* check update is next in sequence */ if (u->dev_idx != mpb->num_raid_devs) { dprintf("%s: can not create array %d expected index %d\n", __func__, u->dev_idx, mpb->num_raid_devs); goto create_error; } new_map = get_imsm_map(&u->dev, 0); new_start = __le32_to_cpu(new_map->pba_of_lba0); new_end = new_start + __le32_to_cpu(new_map->blocks_per_member); inf = get_disk_info(u); /* handle activate_spare versus create race: * check to make sure that overlapping arrays do not include * overalpping disks */ for (i = 0; i < mpb->num_raid_devs; i++) { dev = get_imsm_dev(super, i); map = get_imsm_map(dev, 0); start = __le32_to_cpu(map->pba_of_lba0); end = start + __le32_to_cpu(map->blocks_per_member); if ((new_start >= start && new_start <= end) || (start >= new_start && start <= new_end)) /* overlap */; else continue; if (disks_overlap(super, i, u)) { dprintf("%s: arrays overlap\n", __func__); goto create_error; } } /* check that prepare update was successful */ if (!update->space) { dprintf("%s: prepare update failed\n", __func__); goto create_error; } /* check that all disks are still active before committing * changes. FIXME: could we instead handle this by creating a * degraded array? That's probably not what the user expects, * so better to drop this update on the floor. */ for (i = 0; i < new_map->num_members; i++) { dl = serial_to_dl(inf[i].serial, super); if (!dl) { dprintf("%s: disk disappeared\n", __func__); goto create_error; } } super->updates_pending++; /* convert spares to members and fixup ord_tbl */ for (i = 0; i < new_map->num_members; i++) { dl = serial_to_dl(inf[i].serial, super); if (dl->index == -1) { dl->index = mpb->num_disks; mpb->num_disks++; dl->disk.status |= CONFIGURED_DISK; dl->disk.status &= ~SPARE_DISK; } set_imsm_ord_tbl_ent(new_map, i, dl->index); } dv = update->space; dev = dv->dev; update->space = NULL; imsm_copy_dev(dev, &u->dev); dv->index = u->dev_idx; dv->next = super->devlist; super->devlist = dv; mpb->num_raid_devs++; imsm_update_version_info(super); break; create_error: /* mdmon knows how to release update->space, but not * ((struct intel_dev *) update->space)->dev */ if (update->space) { dv = update->space; free(dv->dev); } break; } case update_kill_array: { struct imsm_update_kill_array *u = (void *) update->buf; int victim = u->dev_idx; struct active_array *a; struct intel_dev **dp; struct imsm_dev *dev; /* sanity check that we are not affecting the uuid of * active arrays, or deleting an active array * * FIXME when immutable ids are available, but note that * we'll also need to fixup the invalidated/active * subarray indexes in mdstat */ for (a = st->arrays; a; a = a->next) if (a->info.container_member >= victim) break; /* by definition if mdmon is running at least one array * is active in the container, so checking * mpb->num_raid_devs is just extra paranoia */ dev = get_imsm_dev(super, victim); if (a || !dev || mpb->num_raid_devs == 1) { dprintf("failed to delete subarray-%d\n", victim); break; } for (dp = &super->devlist; *dp;) if ((*dp)->index == (unsigned)super->current_vol) { *dp = (*dp)->next; } else { if ((*dp)->index > (unsigned)victim) (*dp)->index--; dp = &(*dp)->next; } mpb->num_raid_devs--; super->updates_pending++; break; } case update_rename_array: { struct imsm_update_rename_array *u = (void *) update->buf; char name[MAX_RAID_SERIAL_LEN+1]; int target = u->dev_idx; struct active_array *a; struct imsm_dev *dev; /* sanity check that we are not affecting the uuid of * an active array */ snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name); name[MAX_RAID_SERIAL_LEN] = '\0'; for (a = st->arrays; a; a = a->next) if (a->info.container_member == target) break; dev = get_imsm_dev(super, u->dev_idx); if (a || !dev || !check_name(super, name, 1)) { dprintf("failed to rename subarray-%d\n", target); break; } snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name); super->updates_pending++; break; } case update_add_disk: /* we may be able to repair some arrays if disks are * being added */ if (super->add) { struct active_array *a; super->updates_pending++; for (a = st->arrays; a; a = a->next) a->check_degraded = 1; } /* add some spares to the metadata */ while (super->add) { struct dl *al; al = super->add; super->add = al->next; al->next = super->disks; super->disks = al; dprintf("%s: added %x:%x\n", __func__, al->major, al->minor); } break; } } static void imsm_prepare_update(struct supertype *st, struct metadata_update *update) { /** * Allocate space to hold new disk entries, raid-device entries or a new * mpb if necessary. The manager synchronously waits for updates to * complete in the monitor, so new mpb buffers allocated here can be * integrated by the monitor thread without worrying about live pointers * in the manager thread. */ enum imsm_update_type type = *(enum imsm_update_type *) update->buf; struct intel_super *super = st->sb; struct imsm_super *mpb = super->anchor; size_t buf_len; size_t len = 0; switch (type) { case update_create_array: { struct imsm_update_create_array *u = (void *) update->buf; struct intel_dev *dv; struct imsm_dev *dev = &u->dev; struct imsm_map *map = get_imsm_map(dev, 0); struct dl *dl; struct disk_info *inf; int i; int activate = 0; inf = get_disk_info(u); len = sizeof_imsm_dev(dev, 1); /* allocate a new super->devlist entry */ dv = malloc(sizeof(*dv)); if (dv) { dv->dev = malloc(len); if (dv->dev) update->space = dv; else { free(dv); update->space = NULL; } } /* count how many spares will be converted to members */ for (i = 0; i < map->num_members; i++) { dl = serial_to_dl(inf[i].serial, super); if (!dl) { /* hmm maybe it failed?, nothing we can do about * it here */ continue; } if (count_memberships(dl, super) == 0) activate++; } len += activate * sizeof(struct imsm_disk); break; default: break; } } /* check if we need a larger metadata buffer */ if (super->next_buf) buf_len = super->next_len; else buf_len = super->len; if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) { /* ok we need a larger buf than what is currently allocated * if this allocation fails process_update will notice that * ->next_len is set and ->next_buf is NULL */ buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512); if (super->next_buf) free(super->next_buf); super->next_len = buf_len; if (posix_memalign(&super->next_buf, 512, buf_len) == 0) memset(super->next_buf, 0, buf_len); else super->next_buf = NULL; } } /* must be called while manager is quiesced */ static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index) { struct imsm_super *mpb = super->anchor; struct dl *iter; struct imsm_dev *dev; struct imsm_map *map; int i, j, num_members; __u32 ord; dprintf("%s: deleting device[%d] from imsm_super\n", __func__, index); /* shift all indexes down one */ for (iter = super->disks; iter; iter = iter->next) if (iter->index > (int)index) iter->index--; for (iter = super->missing; iter; iter = iter->next) if (iter->index > (int)index) iter->index--; for (i = 0; i < mpb->num_raid_devs; i++) { dev = get_imsm_dev(super, i); map = get_imsm_map(dev, 0); num_members = map->num_members; for (j = 0; j < num_members; j++) { /* update ord entries being careful not to propagate * ord-flags to the first map */ ord = get_imsm_ord_tbl_ent(dev, j); if (ord_to_idx(ord) <= index) continue; map = get_imsm_map(dev, 0); set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1)); map = get_imsm_map(dev, 1); if (map) set_imsm_ord_tbl_ent(map, j, ord - 1); } } mpb->num_disks--; super->updates_pending++; if (*dlp) { struct dl *dl = *dlp; *dlp = (*dlp)->next; __free_imsm_disk(dl); } } #endif /* MDASSEMBLE */ struct superswitch super_imsm = { #ifndef MDASSEMBLE .examine_super = examine_super_imsm, .brief_examine_super = brief_examine_super_imsm, .brief_examine_subarrays = brief_examine_subarrays_imsm, .export_examine_super = export_examine_super_imsm, .detail_super = detail_super_imsm, .brief_detail_super = brief_detail_super_imsm, .write_init_super = write_init_super_imsm, .validate_geometry = validate_geometry_imsm, .default_chunk = default_chunk_imsm, .add_to_super = add_to_super_imsm, .detail_platform = detail_platform_imsm, .kill_subarray = kill_subarray_imsm, .update_subarray = update_subarray_imsm, #endif .match_home = match_home_imsm, .uuid_from_super= uuid_from_super_imsm, .getinfo_super = getinfo_super_imsm, .update_super = update_super_imsm, .avail_size = avail_size_imsm, .compare_super = compare_super_imsm, .load_super = load_super_imsm, .init_super = init_super_imsm, .store_super = store_super_imsm, .free_super = free_super_imsm, .match_metadata_desc = match_metadata_desc_imsm, .container_content = container_content_imsm, .default_layout = imsm_level_to_layout, .external = 1, .name = "imsm", #ifndef MDASSEMBLE /* for mdmon */ .open_new = imsm_open_new, .set_array_state= imsm_set_array_state, .set_disk = imsm_set_disk, .sync_metadata = imsm_sync_metadata, .activate_spare = imsm_activate_spare, .process_update = imsm_process_update, .prepare_update = imsm_prepare_update, #endif /* MDASSEMBLE */ };