/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: #ident "$Id$" /*====== This file is part of PerconaFT. Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. PerconaFT is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2, as published by the Free Software Foundation. PerconaFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PerconaFT. If not, see . ---------------------------------------- PerconaFT is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License, version 3, as published by the Free Software Foundation. PerconaFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with PerconaFT. If not, see . ======= */ #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." /** * Test that various queries behave correctly * * Zardosht says: * * write a test that inserts a bunch of elements into the tree, * and then verify that the following types of queries work: * - db->get * - next * - prev * - set_range * - set_range_reverse * - first * - last * - current * * do it on a table with: * - just a leaf node * - has internal nodes (make node size 4K and bn size 1K) * - big cachetable such that everything fits * - small cachetable such that not a lot fits * * make sure APIs are the callback APIs (getf_XXX) * make sure your callbacks all return TOKUDB_CURSOR_CONTINUE, * so we ensure that returning TOKUDB_CURSOR_CONTINUE does not * mess anything up. */ #include "test.h" enum cursor_type { FIRST, LAST, NEXT, PREV, CURRENT, SET, SET_RANGE, SET_RANGE_REVERSE }; /** * Calculate or verify that a value for a given key is correct * Returns 0 if the value is correct, nonzero otherwise. */ static void get_value_by_key(DBT * key, DBT * value) { // keys/values are always stored in the DBT in net order int * CAST_FROM_VOIDP(k, key->data); int v = toku_ntohl(*k) * 2 + 1; memcpy(value->data, &v, sizeof(int)); } static void verify_value_by_key(DBT * key, DBT * value) { assert(key->size == sizeof(int)); assert(value->size == sizeof(int)); int expected; DBT expected_dbt; expected_dbt.data = &expected; expected_dbt.size = sizeof(int); get_value_by_key(key, &expected_dbt); int * CAST_FROM_VOIDP(v, value->data); assert(*v == expected); } /** * Callback for cursors, can be either traversing * forward, backward, or not at all. */ struct cursor_cb_info { int last_key_seen; enum cursor_type type; }; static int cursor_cb(DBT const * key, DBT const * value, void * extra) { struct cursor_cb_info * CAST_FROM_VOIDP(info, extra); int * CAST_FROM_VOIDP(kbuf, key->data); int k = ntohl(*kbuf); switch (info->type) { // point queries, just verify the pair // is correct. case SET: case SET_RANGE: case SET_RANGE_REVERSE: case FIRST: case LAST: case CURRENT: verify_value_by_key((DBT *) key, (DBT *) value); break; case NEXT: // verify the last key we saw was the previous verify_value_by_key((DBT *) key, (DBT *) value); if (k < 0) { assert(k == info->last_key_seen - 1); } break; case PREV: // verify the last key we saw was the next verify_value_by_key((DBT *) key, (DBT *) value); if (k < info->last_key_seen) { assert(k == info->last_key_seen - 1); } break; default: assert(0); } info->last_key_seen = k; return TOKUDB_CURSOR_CONTINUE; } /** * Fill a FT with the the given number of rows. */ static void fill_db(DB_ENV * env, DB * db, int num_rows) { int r; DB_TXN * txn; DBT key, value; printf("filling db\n"); int i, j; const int ins_per_txn = 1000; assert(num_rows % ins_per_txn == 0); for (i = 0; i < num_rows; i+= ins_per_txn) { r = env->txn_begin(env, NULL, &txn, 0); { int chk_r = r; CKERR(chk_r); } for (j = 0; j < ins_per_txn && (i + j) < num_rows; j++) { int v, k = toku_htonl(i + j); dbt_init(&key, &k, sizeof(int)); dbt_init(&value, &v, sizeof(int)); get_value_by_key(&key, &value); r = db->put(db, txn, &key, &value, 0); { int chk_r = r; CKERR(chk_r); } } r = txn->commit(txn, 0); { int chk_r = r; CKERR(chk_r); } } } static void init_env(DB_ENV ** env, size_t ct_size) { int r; const int envflags = DB_INIT_MPOOL | DB_CREATE | DB_THREAD | DB_INIT_LOCK | DB_INIT_LOG | DB_INIT_TXN | DB_PRIVATE; printf("initializing environment\n"); toku_os_recursive_delete(TOKU_TEST_FILENAME); r = toku_os_mkdir(TOKU_TEST_FILENAME, 0755); { int chk_r = r; CKERR(chk_r); } r = db_env_create(env, 0); { int chk_r = r; CKERR(chk_r); } assert(ct_size < 1024 * 1024 * 1024L); r = (*env)->set_cachesize(*env, 0, ct_size, 1); { int chk_r = r; CKERR(chk_r); } r = (*env)->open(*env, TOKU_TEST_FILENAME, envflags, 0755); { int chk_r = r; CKERR(chk_r); } } static void init_db(DB_ENV * env, DB ** db) { int r; const int node_size = 4096; const int bn_size = 1024; printf("initializing db\n"); DB_TXN * txn; r = db_create(db, env, 0); { int chk_r = r; CKERR(chk_r); } r = (*db)->set_readpagesize(*db, bn_size); { int chk_r = r; CKERR(chk_r); } r = (*db)->set_pagesize(*db, node_size); { int chk_r = r; CKERR(chk_r); } r = env->txn_begin(env, NULL, &txn, 0); { int chk_r = r; CKERR(chk_r); } r = (*db)->open(*db, txn, "db", NULL, DB_BTREE, DB_CREATE, 0644); { int chk_r = r; CKERR(chk_r); } r = txn->commit(txn, 0); { int chk_r = r; CKERR(chk_r); } } static void cleanup_env_and_db(DB_ENV * env, DB * db) { int r; printf("cleaning up environment and db\n"); r = db->close(db, 0); { int chk_r = r; CKERR(chk_r); } r = env->close(env, 0); { int chk_r = r; CKERR(chk_r); } } static void do_test(size_t ct_size, int num_keys) { int i, r; DB * db; DB_ENV * env; printf("doing tests for ct_size %lu, num_keys %d\n", ct_size, num_keys); // initialize everything and insert data init_env(&env, ct_size); assert(env != NULL); init_db(env, &db); assert(db != NULL); fill_db(env, db, num_keys); const int last_key = num_keys - 1; // test c_getf_first printf("testing c getf first\n"); { DBC * dbc; DB_TXN * txn; struct cursor_cb_info info; r = env->txn_begin(env, NULL, &txn, 0); { int chk_r = r; CKERR(chk_r); } r = db->cursor(db, txn, &dbc, 0); { int chk_r = r; CKERR(chk_r); } info.last_key_seen = -1; info.type = FIRST; r = dbc->c_getf_first(dbc, 0, cursor_cb, &info); { int chk_r = r; CKERR(chk_r); } assert(info.last_key_seen == 0); r = dbc->c_close(dbc); { int chk_r = r; CKERR(chk_r); } r = txn->commit(txn, 0); { int chk_r = r; CKERR(chk_r); } } // test c_getf_last printf("testing c getf last\n"); { DBC * dbc; DB_TXN * txn; struct cursor_cb_info info; r = env->txn_begin(env, NULL, &txn, 0); { int chk_r = r; CKERR(chk_r); } r = db->cursor(db, txn, &dbc, 0); { int chk_r = r; CKERR(chk_r); } info.last_key_seen = -1; info.type = LAST; r = dbc->c_getf_last(dbc, 0, cursor_cb, &info); { int chk_r = r; CKERR(chk_r); } assert(info.last_key_seen == last_key); r = dbc->c_close(dbc); { int chk_r = r; CKERR(chk_r); } r = txn->commit(txn, 0); { int chk_r = r; CKERR(chk_r); } } // test c_getf_next printf("testing c getf next\n"); { DBC * dbc; DB_TXN * txn; struct cursor_cb_info info; r = env->txn_begin(env, NULL, &txn, 0); { int chk_r = r; CKERR(chk_r); } r = db->cursor(db, txn, &dbc, 0); { int chk_r = r; CKERR(chk_r); } info.last_key_seen = -1; //info.type = FIRST; //r = dbc->c_getf_first(dbc, 0, cursor_cb, &info); { int chk_r = //r; CKERR(chk_r); } //assert(info.last_key_seen == 0); info.type = NEXT; while ((r = dbc->c_getf_next(dbc, 0, cursor_cb, &info)) == 0); assert(r == DB_NOTFOUND); if (info.last_key_seen != last_key) { printf("last keen seen %d, wanted %d\n", info.last_key_seen, last_key); } assert(info.last_key_seen == last_key); r = dbc->c_close(dbc); { int chk_r = r; CKERR(chk_r); } r = txn->commit(txn, 0); { int chk_r = r; CKERR(chk_r); } } // test c_getf_prev printf("testing c getf prev\n"); { DBC * dbc; DB_TXN * txn; struct cursor_cb_info info; r = env->txn_begin(env, NULL, &txn, 0); { int chk_r = r; CKERR(chk_r); } r = db->cursor(db, txn, &dbc, 0); { int chk_r = r; CKERR(chk_r); } info.last_key_seen = -1; //info.type = LAST; //r = dbc->c_getf_last(dbc, 0, cursor_cb, &info); { int chk_r = r; //CKERR(chk_r); } //assert(info.last_key_seen == last_key); info.type = PREV; while ((r = dbc->c_getf_prev(dbc, 0, cursor_cb, &info)) == 0); assert(r == DB_NOTFOUND); assert(info.last_key_seen == 0); r = dbc->c_close(dbc); { int chk_r = r; CKERR(chk_r); } r = txn->commit(txn, 0); { int chk_r = r; CKERR(chk_r); } } printf("testing db->get, c getf set, current\n"); { DBC * dbc; DB_TXN * txn; struct cursor_cb_info info; r = env->txn_begin(env, NULL, &txn, 0); { int chk_r = r; CKERR(chk_r); } r = db->cursor(db, txn, &dbc, 0); { int chk_r = r; CKERR(chk_r); } for (i = 0; i < 1000; i++) { DBT key; int k = random() % num_keys; int nk = toku_htonl(k); dbt_init(&key, &nk, sizeof(int)); // test c_getf_set info.last_key_seen = -1; info.type = SET; r = dbc->c_getf_set(dbc, 0, &key, cursor_cb, &info); { int chk_r = r; CKERR(chk_r); } assert(info.last_key_seen == k); // test c_getf_current info.last_key_seen = -1; info.type = CURRENT; r = dbc->c_getf_current(dbc, 0, cursor_cb, &info); { int chk_r = r; CKERR(chk_r); } assert(info.last_key_seen == k); // test db->get (point query) DBT value; memset(&value, 0, sizeof(DBT)); r = db->get(db, txn, &key, &value, 0); { int chk_r = r; CKERR(chk_r); } verify_value_by_key(&key, &value); } r = dbc->c_close(dbc); { int chk_r = r; CKERR(chk_r); } r = txn->commit(txn, 0); { int chk_r = r; CKERR(chk_r); } } // delete some elements over a variable stride, // this will let us test range/reverse const int stride = num_keys / 10; printf("deleting some elements in stride %d\n", stride); { DBC * dbc; DB_TXN * txn; DBT key; r = env->txn_begin(env, NULL, &txn, 0); { int chk_r = r; CKERR(chk_r); } r = db->cursor(db, txn, &dbc, 0); { int chk_r = r; CKERR(chk_r); } for (i = 0; i < num_keys; i += stride) { int k = toku_htonl(i); dbt_init(&key, &k, sizeof(int)); r = db->del(db, txn, &key, 0); } r = dbc->c_close(dbc); { int chk_r = r; CKERR(chk_r); } r = txn->commit(txn, 0); { int chk_r = r; CKERR(chk_r); } } // test getf set range and range reverse printf("testing getf set range and range reverse\n"); { DBC * dbc; DB_TXN * txn; DBT key; struct cursor_cb_info info; r = env->txn_begin(env, NULL, &txn, 0); { int chk_r = r; CKERR(chk_r); } r = db->cursor(db, txn, &dbc, 0); { int chk_r = r; CKERR(chk_r); } for (i = 0; i < num_keys; i += stride) { int k = toku_htonl(i); dbt_init(&key, &k, sizeof(int)); // we should have only actually seen the next // key after i if i was not the last key, // otherwise there's nothing after that key info.last_key_seen = -1; info.type = SET_RANGE; r = dbc->c_getf_set_range(dbc, 0, &key, cursor_cb, &info); if (i == last_key) { assert(r == DB_NOTFOUND); } else { assert(info.last_key_seen == i + 1); } // we should have only actually seen the prev // key if i was not the first key, otherwise // there's nothing before that key. info.last_key_seen = -1; info.type = SET_RANGE_REVERSE; r = dbc->c_getf_set_range_reverse(dbc, 0, &key, cursor_cb, &info); if (i == 0) { assert(r == DB_NOTFOUND); } else { assert(info.last_key_seen == i - 1); { int chk_r = r; CKERR(chk_r); } } } r = dbc->c_close(dbc); { int chk_r = r; CKERR(chk_r); } r = txn->commit(txn, 0); { int chk_r = r; CKERR(chk_r); } } cleanup_env_and_db(env, db); } int test_main(int argc, char * const argv[]) { default_parse_args(argc, argv); // just a leaf, fits in cachetable do_test(1L*1024*1024, 1000); // with internal nodes, fits in cachetable do_test(4L*1024*1024, 100000); // with internal nodes, does not fit in cachetable do_test(1L*1024*1024, 1000000); return 0; }