/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: #ident "$Id$" /*====== This file is part of PerconaFT. Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. PerconaFT is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2, as published by the Free Software Foundation. PerconaFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PerconaFT. If not, see . ---------------------------------------- PerconaFT is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License, version 3, as published by the Free Software Foundation. PerconaFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with PerconaFT. If not, see . ======= */ #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." #pragma once #include #include #include #include #include #include #include #include #include "ft/serialize/block_allocator.h" #include "ft/serialize/block_table.h" #include "ft/cachetable/cachetable.h" #include "ft/cachetable/cachetable-internal.h" #include "ft/cursor.h" #include "ft/ft.h" #include "ft/ft-ops.h" #include "ft/serialize/ft-serialize.h" #include "ft/serialize/ft_node-serialize.h" #include "ft/logger/log-internal.h" #include "ft/logger/logger.h" #include "ft/node.h" #include "util/bytestring.h" #define CKERR(r) ({ int __r = r; if (__r!=0) fprintf(stderr, "%s:%d error %d %s\n", __FILE__, __LINE__, __r, strerror(r)); assert(__r==0); }) #define CKERR2(r,r2) do { if (r!=r2) fprintf(stderr, "%s:%d error %d %s, expected %d\n", __FILE__, __LINE__, r, strerror(r), r2); assert(r==r2); } while (0) #define CKERR2s(r,r2,r3) do { if (r!=r2 && r!=r3) fprintf(stderr, "%s:%d error %d %s, expected %d or %d\n", __FILE__, __LINE__, r, strerror(r), r2,r3); assert(r==r2||r==r3); } while (0) #define DEBUG_LINE() do { \ fprintf(stderr, "%s() %s:%d\n", __FUNCTION__, __FILE__, __LINE__); \ fflush(stderr); \ } while (0) const uint32_t len_ignore = 0xFFFFFFFF; static const prepared_txn_callback_t NULL_prepared_txn_callback __attribute__((__unused__)) = NULL; static const keep_cachetable_callback_t NULL_keep_cachetable_callback __attribute__((__unused__)) = NULL; static const TOKULOGGER NULL_logger __attribute__((__unused__)) = NULL; // dummymsn needed to simulate msn because test messages are injected at a lower level than toku_ft_root_put_msg() #define MIN_DUMMYMSN ((MSN) {(uint64_t)1<<62}) static MSN dummymsn; static int dummymsn_initialized = 0; static void initialize_dummymsn(void) { if (dummymsn_initialized == 0) { dummymsn_initialized = 1; dummymsn = MIN_DUMMYMSN; } } static UU() MSN next_dummymsn(void) { assert(dummymsn_initialized); ++(dummymsn.msn); return dummymsn; } static UU() MSN last_dummymsn(void) { assert(dummymsn_initialized); return dummymsn; } struct check_pair { uint32_t keylen; // A keylen equal to 0xFFFFFFFF means don't check the keylen or the key. const void *key; // A NULL key means don't check the key. uint32_t vallen; // Similarly for vallen and null val. const void *val; int call_count; }; static int lookup_checkf (uint32_t keylen, const void *key, uint32_t vallen, const void *val, void *pair_v, bool lock_only) { if (!lock_only) { struct check_pair *pair = (struct check_pair *) pair_v; if (key!=NULL) { if (pair->keylen!=len_ignore) { assert(pair->keylen == keylen); if (pair->key) assert(memcmp(pair->key, key, keylen)==0); } if (pair->vallen!=len_ignore) { assert(pair->vallen == vallen); if (pair->val) assert(memcmp(pair->val, val, vallen)==0); } pair->call_count++; // this call_count is really how many calls were made with r==0 } } return 0; } static inline void ft_lookup_and_check_nodup (FT_HANDLE t, const char *keystring, const char *valstring) { DBT k; toku_fill_dbt(&k, keystring, strlen(keystring) + 1); struct check_pair pair = {(uint32_t) (1+strlen(keystring)), keystring, (uint32_t) (1+strlen(valstring)), valstring, 0}; int r = toku_ft_lookup(t, &k, lookup_checkf, &pair); assert(r==0); assert(pair.call_count==1); } static inline void ft_lookup_and_fail_nodup (FT_HANDLE t, char *keystring) { DBT k; toku_fill_dbt(&k, keystring, strlen(keystring) + 1); struct check_pair pair = {(uint32_t) (1+strlen(keystring)), keystring, 0, 0, 0}; int r = toku_ft_lookup(t, &k, lookup_checkf, &pair); assert(r!=0); assert(pair.call_count==0); } static UU() void fake_ydb_lock(void) { } static UU() void fake_ydb_unlock(void) { } static UU() void def_flush (CACHEFILE f __attribute__((__unused__)), int UU(fd), CACHEKEY k __attribute__((__unused__)), void *v __attribute__((__unused__)), void **dd __attribute__((__unused__)), void *e __attribute__((__unused__)), PAIR_ATTR s __attribute__((__unused__)), PAIR_ATTR* new_size __attribute__((__unused__)), bool w __attribute__((__unused__)), bool keep __attribute__((__unused__)), bool c __attribute__((__unused__)), bool UU(is_clone) ) { } static UU() void def_pe_est_callback( void* UU(ftnode_pv), void* UU(dd), long* bytes_freed_estimate, enum partial_eviction_cost *cost, void* UU(write_extraargs) ) { *bytes_freed_estimate = 0; *cost = PE_CHEAP; } static UU() int def_pe_callback( void *ftnode_pv __attribute__((__unused__)), PAIR_ATTR bytes_to_free __attribute__((__unused__)), void* extraargs __attribute__((__unused__)), void (*finalize)(PAIR_ATTR bytes_freed, void *extra), void *finalize_extra ) { finalize(bytes_to_free, finalize_extra); return 0; } static UU() void def_pe_finalize_impl(PAIR_ATTR UU(bytes_freed), void *UU(extra)) { } static UU() bool def_pf_req_callback(void* UU(ftnode_pv), void* UU(read_extraargs)) { return false; } static UU() int def_pf_callback(void* UU(ftnode_pv), void* UU(dd), void* UU(read_extraargs), int UU(fd), PAIR_ATTR* UU(sizep)) { assert(false); return 0; } static UU() int def_fetch (CACHEFILE f __attribute__((__unused__)), PAIR UU(p), int UU(fd), CACHEKEY k __attribute__((__unused__)), uint32_t fullhash __attribute__((__unused__)), void **value __attribute__((__unused__)), void **dd __attribute__((__unused__)), PAIR_ATTR *sizep __attribute__((__unused__)), int *dirtyp, void *extraargs __attribute__((__unused__)) ) { *dirtyp = 0; *value = NULL; *sizep = make_pair_attr(8); return 0; } static UU() void put_callback_nop( CACHEKEY UU(key), void *UU(v), PAIR UU(p)) { } static UU() int fetch_die( CACHEFILE UU(thiscf), PAIR UU(p), int UU(fd), CACHEKEY UU(key), uint32_t UU(fullhash), void **UU(value), void **UU(dd), PAIR_ATTR *UU(sizep), int *UU(dirtyp), void *UU(extraargs) ) { assert(0); // should not be called return 0; } static UU() int def_cleaner_callback( void* UU(ftnode_pv), BLOCKNUM UU(blocknum), uint32_t UU(fullhash), void* UU(extraargs) ) { assert(false); return 0; } static UU() CACHETABLE_WRITE_CALLBACK def_write_callback(void* write_extraargs) { CACHETABLE_WRITE_CALLBACK wc; wc.flush_callback = def_flush; wc.pe_est_callback = def_pe_est_callback; wc.pe_callback = def_pe_callback; wc.cleaner_callback = def_cleaner_callback; wc.write_extraargs = write_extraargs; wc.clone_callback = nullptr; wc.checkpoint_complete_callback = nullptr; return wc; } class evictor_test_helpers { public: static void set_hysteresis_limits(evictor* ev, long low_size_watermark, long high_size_watermark) { ev->m_low_size_watermark = low_size_watermark; ev->m_low_size_hysteresis = low_size_watermark; ev->m_high_size_hysteresis = high_size_watermark; ev->m_high_size_watermark = high_size_watermark; } static void disable_ev_thread(evictor* ev) { toku_mutex_lock(&ev->m_ev_thread_lock); ev->m_period_in_seconds = 0; // signal eviction thread so that it wakes up // and then sleeps indefinitely ev->signal_eviction_thread_locked(); toku_mutex_unlock(&ev->m_ev_thread_lock); // sleep for one second to ensure eviction thread picks up new period usleep(1*1024*1024); } static uint64_t get_num_eviction_runs(evictor* ev) { return ev->m_num_eviction_thread_runs; } }; UU() static void copy_dbt(DBT *dest, const DBT *src) { assert(dest->flags & DB_DBT_REALLOC); dest->data = toku_realloc(dest->data, src->size); dest->size = src->size; memcpy(dest->data, src->data, src->size); } int verbose=0; static inline void default_parse_args (int argc, const char *argv[]) { const char *progname=argv[0]; argc--; argv++; while (argc>0) { if (strcmp(argv[0],"-v")==0) { ++verbose; } else if (strcmp(argv[0],"-q")==0) { verbose=0; } else { fprintf(stderr, "Usage:\n %s [-v] [-q]\n", progname); exit(1); } argc--; argv++; } } int test_main(int argc, const char *argv[]); int main(int argc, const char *argv[]) { initialize_dummymsn(); int rinit = toku_ft_layer_init(); CKERR(rinit); int r = test_main(argc, argv); toku_ft_layer_destroy(); return r; }