/***************************************************************************** Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2014, 2021, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file lock/lock0lock.cc The transaction lock system Created 5/7/1996 Heikki Tuuri *******************************************************/ #define LOCK_MODULE_IMPLEMENTATION #include "univ.i" #include #include #include "lock0lock.h" #include "lock0priv.h" #include "dict0mem.h" #include "trx0purge.h" #include "trx0sys.h" #include "ut0vec.h" #include "btr0cur.h" #include "row0sel.h" #include "row0mysql.h" #include "row0vers.h" #include "pars0pars.h" #include #ifdef WITH_WSREP #include #endif /* WITH_WSREP */ /** Lock scheduling algorithm */ ulong innodb_lock_schedule_algorithm; /** The value of innodb_deadlock_detect */ my_bool innobase_deadlock_detect; /*********************************************************************//** Checks if a waiting record lock request still has to wait in a queue. @return lock that is causing the wait */ static const lock_t* lock_rec_has_to_wait_in_queue( /*==========================*/ const lock_t* wait_lock); /*!< in: waiting record lock */ /** Grant a lock to a waiting lock request and release the waiting transaction after lock_reset_lock_and_trx_wait() has been called. */ static void lock_grant_after_reset(lock_t* lock); extern "C" void thd_rpl_deadlock_check(MYSQL_THD thd, MYSQL_THD other_thd); extern "C" int thd_need_wait_reports(const MYSQL_THD thd); extern "C" int thd_need_ordering_with(const MYSQL_THD thd, const MYSQL_THD other_thd); /** Pretty-print a table lock. @param[in,out] file output stream @param[in] lock table lock */ static void lock_table_print(FILE* file, const lock_t* lock); /** Pretty-print a record lock. @param[in,out] file output stream @param[in] lock record lock @param[in,out] mtr mini-transaction for accessing the record */ static void lock_rec_print(FILE* file, const lock_t* lock, mtr_t& mtr); /** Deadlock checker. */ class DeadlockChecker { public: /** Check if a joining lock request results in a deadlock. If a deadlock is found, we will resolve the deadlock by choosing a victim transaction and rolling it back. We will attempt to resolve all deadlocks. @param[in] lock the lock request @param[in,out] trx transaction requesting the lock @return trx if it was chosen as victim @retval NULL if another victim was chosen, or there is no deadlock (any more) */ static const trx_t* check_and_resolve(const lock_t* lock, trx_t* trx); private: /** Do a shallow copy. Default destructor OK. @param trx the start transaction (start node) @param wait_lock lock that a transaction wants @param mark_start visited node counter @param report_waiters whether to call thd_rpl_deadlock_check() */ DeadlockChecker( const trx_t* trx, const lock_t* wait_lock, ib_uint64_t mark_start, bool report_waiters) : m_cost(), m_start(trx), m_too_deep(), m_wait_lock(wait_lock), m_mark_start(mark_start), m_n_elems(), m_report_waiters(report_waiters) { } /** Check if the search is too deep. */ bool is_too_deep() const { return(m_n_elems > LOCK_MAX_DEPTH_IN_DEADLOCK_CHECK || m_cost > LOCK_MAX_N_STEPS_IN_DEADLOCK_CHECK); } /** Save current state. @param lock lock to push on the stack. @param heap_no the heap number to push on the stack. @return false if stack is full. */ bool push(const lock_t* lock, ulint heap_no) { ut_ad((lock_get_type_low(lock) & LOCK_REC) || (lock_get_type_low(lock) & LOCK_TABLE)); ut_ad(((lock_get_type_low(lock) & LOCK_TABLE) != 0) == (heap_no == ULINT_UNDEFINED)); /* Ensure that the stack is bounded. */ if (m_n_elems >= UT_ARR_SIZE(s_states)) { return(false); } state_t& state = s_states[m_n_elems++]; state.m_lock = lock; state.m_wait_lock = m_wait_lock; state.m_heap_no =heap_no; return(true); } /** Restore state. @param[out] lock current lock @param[out] heap_no current heap_no */ void pop(const lock_t*& lock, ulint& heap_no) { ut_a(m_n_elems > 0); const state_t& state = s_states[--m_n_elems]; lock = state.m_lock; heap_no = state.m_heap_no; m_wait_lock = state.m_wait_lock; } /** Check whether the node has been visited. @param lock lock to check @return true if the node has been visited */ bool is_visited(const lock_t* lock) const { return(lock->trx->lock.deadlock_mark > m_mark_start); } /** Get the next lock in the queue that is owned by a transaction whose sub-tree has not already been searched. Note: "next" here means PREV for table locks. @param lock Lock in queue @param heap_no heap_no if lock is a record lock else ULINT_UNDEFINED @return next lock or NULL if at end of queue */ const lock_t* get_next_lock(const lock_t* lock, ulint heap_no) const; /** Get the first lock to search. The search starts from the current wait_lock. What we are really interested in is an edge from the current wait_lock's owning transaction to another transaction that has a lock ahead in the queue. We skip locks where the owning transaction's sub-tree has already been searched. Note: The record locks are traversed from the oldest lock to the latest. For table locks we go from latest to oldest. For record locks, we first position the iterator on first lock on the page and then reposition on the actual heap_no. This is required due to the way the record lock has is implemented. @param[out] heap_no if rec lock, else ULINT_UNDEFINED. @return first lock or NULL */ const lock_t* get_first_lock(ulint* heap_no) const; /** Notify that a deadlock has been detected and print the conflicting transaction info. @param lock lock causing deadlock */ void notify(const lock_t* lock) const; /** Select the victim transaction that should be rolledback. @return victim transaction */ const trx_t* select_victim() const; /** Rollback transaction selected as the victim. */ void trx_rollback(); /** Looks iteratively for a deadlock. Note: the joining transaction may have been granted its lock by the deadlock checks. @return 0 if no deadlock else the victim transaction.*/ const trx_t* search(); /** Print transaction data to the deadlock file and possibly to stderr. @param trx transaction @param max_query_len max query length to print */ static void print(const trx_t* trx, ulint max_query_len); /** rewind(3) the file used for storing the latest detected deadlock and print a heading message to stderr if printing of all deadlocks to stderr is enabled. */ static void start_print(); /** Print lock data to the deadlock file and possibly to stderr. @param lock record or table type lock */ static void print(const lock_t* lock); /** Print a message to the deadlock file and possibly to stderr. @param msg message to print */ static void print(const char* msg); /** Print info about transaction that was rolled back. @param trx transaction rolled back @param lock lock trx wants */ static void rollback_print(const trx_t* trx, const lock_t* lock); private: /** DFS state information, used during deadlock checking. */ struct state_t { const lock_t* m_lock; /*!< Current lock */ const lock_t* m_wait_lock; /*!< Waiting for lock */ ulint m_heap_no; /*!< heap number if rec lock */ }; /** Used in deadlock tracking. Protected by lock_sys.mutex. */ static ib_uint64_t s_lock_mark_counter; /** Calculation steps thus far. It is the count of the nodes visited. */ ulint m_cost; /** Joining transaction that is requesting a lock in an incompatible mode */ const trx_t* m_start; /** TRUE if search was too deep and was aborted */ bool m_too_deep; /** Lock that trx wants */ const lock_t* m_wait_lock; /** Value of lock_mark_count at the start of the deadlock check. */ ib_uint64_t m_mark_start; /** Number of states pushed onto the stack */ size_t m_n_elems; /** This is to avoid malloc/free calls. */ static state_t s_states[MAX_STACK_SIZE]; /** Set if thd_rpl_deadlock_check() should be called for waits. */ const bool m_report_waiters; }; /** Counter to mark visited nodes during deadlock search. */ ib_uint64_t DeadlockChecker::s_lock_mark_counter = 0; /** The stack used for deadlock searches. */ DeadlockChecker::state_t DeadlockChecker::s_states[MAX_STACK_SIZE]; #ifdef UNIV_DEBUG /*********************************************************************//** Validates the lock system. @return TRUE if ok */ static bool lock_validate(); /*============*/ /*********************************************************************//** Validates the record lock queues on a page. @return TRUE if ok */ static ibool lock_rec_validate_page( /*===================*/ const buf_block_t* block) /*!< in: buffer block */ MY_ATTRIBUTE((warn_unused_result)); #endif /* UNIV_DEBUG */ /* The lock system */ lock_sys_t lock_sys; /** We store info on the latest deadlock error to this buffer. InnoDB Monitor will then fetch it and print */ static bool lock_deadlock_found = false; /** Only created if !srv_read_only_mode */ static FILE* lock_latest_err_file; /*********************************************************************//** Reports that a transaction id is insensible, i.e., in the future. */ ATTRIBUTE_COLD void lock_report_trx_id_insanity( /*========================*/ trx_id_t trx_id, /*!< in: trx id */ const rec_t* rec, /*!< in: user record */ dict_index_t* index, /*!< in: index */ const rec_offs* offsets, /*!< in: rec_get_offsets(rec, index) */ trx_id_t max_trx_id) /*!< in: trx_sys.get_max_trx_id() */ { ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!rec_is_metadata(rec, index)); ib::error() << "Transaction id " << ib::hex(trx_id) << " associated with record" << rec_offsets_print(rec, offsets) << " in index " << index->name << " of table " << index->table->name << " is greater than the global counter " << max_trx_id << "! The table is corrupted."; } /*********************************************************************//** Checks that a transaction id is sensible, i.e., not in the future. @return true if ok */ bool lock_check_trx_id_sanity( /*=====================*/ trx_id_t trx_id, /*!< in: trx id */ const rec_t* rec, /*!< in: user record */ dict_index_t* index, /*!< in: index */ const rec_offs* offsets) /*!< in: rec_get_offsets(rec, index) */ { ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!rec_is_metadata(rec, index)); trx_id_t max_trx_id= trx_sys.get_max_trx_id(); ut_ad(max_trx_id || srv_force_recovery >= SRV_FORCE_NO_UNDO_LOG_SCAN); if (UNIV_LIKELY(max_trx_id != 0) && UNIV_UNLIKELY(trx_id >= max_trx_id)) { lock_report_trx_id_insanity(trx_id, rec, index, offsets, max_trx_id); return false; } return true; } /*********************************************************************//** Checks that a record is seen in a consistent read. @return true if sees, or false if an earlier version of the record should be retrieved */ bool lock_clust_rec_cons_read_sees( /*==========================*/ const rec_t* rec, /*!< in: user record which should be read or passed over by a read cursor */ dict_index_t* index, /*!< in: clustered index */ const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */ ReadView* view) /*!< in: consistent read view */ { ut_ad(dict_index_is_clust(index)); ut_ad(page_rec_is_user_rec(rec)); ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!rec_is_metadata(rec, index)); /* Temp-tables are not shared across connections and multiple transactions from different connections cannot simultaneously operate on same temp-table and so read of temp-table is always consistent read. */ if (index->table->is_temporary()) { return(true); } /* NOTE that we call this function while holding the search system latch. */ trx_id_t trx_id = row_get_rec_trx_id(rec, index, offsets); return(view->changes_visible(trx_id, index->table->name)); } /*********************************************************************//** Checks that a non-clustered index record is seen in a consistent read. NOTE that a non-clustered index page contains so little information on its modifications that also in the case false, the present version of rec may be the right, but we must check this from the clustered index record. @return true if certainly sees, or false if an earlier version of the clustered index record might be needed */ bool lock_sec_rec_cons_read_sees( /*========================*/ const rec_t* rec, /*!< in: user record which should be read or passed over by a read cursor */ const dict_index_t* index, /*!< in: index */ const ReadView* view) /*!< in: consistent read view */ { ut_ad(page_rec_is_user_rec(rec)); ut_ad(!index->is_primary()); ut_ad(!rec_is_metadata(rec, index)); /* NOTE that we might call this function while holding the search system latch. */ if (index->table->is_temporary()) { /* Temp-tables are not shared across connections and multiple transactions from different connections cannot simultaneously operate on same temp-table and so read of temp-table is always consistent read. */ return(true); } trx_id_t max_trx_id = page_get_max_trx_id(page_align(rec)); ut_ad(max_trx_id > 0); return(view->sees(max_trx_id)); } /** Creates the lock system at database start. @param[in] n_cells number of slots in lock hash table */ void lock_sys_t::create(ulint n_cells) { ut_ad(this == &lock_sys); m_initialised= true; waiting_threads = static_cast (ut_zalloc_nokey(srv_max_n_threads * sizeof *waiting_threads)); last_slot = waiting_threads; mutex_create(LATCH_ID_LOCK_SYS, &mutex); mutex_create(LATCH_ID_LOCK_SYS_WAIT, &wait_mutex); timeout_event = os_event_create(0); rec_hash = hash_create(n_cells); prdt_hash = hash_create(n_cells); prdt_page_hash = hash_create(n_cells); if (!srv_read_only_mode) { lock_latest_err_file = os_file_create_tmpfile(); ut_a(lock_latest_err_file); } } /** Calculates the fold value of a lock: used in migrating the hash table. @param[in] lock record lock object @return folded value */ static ulint lock_rec_lock_fold( const lock_t* lock) { return(lock_rec_fold(lock->un_member.rec_lock.space, lock->un_member.rec_lock.page_no)); } /** Resize the lock hash table. @param[in] n_cells number of slots in lock hash table */ void lock_sys_t::resize(ulint n_cells) { ut_ad(this == &lock_sys); mutex_enter(&mutex); hash_table_t* old_hash = rec_hash; rec_hash = hash_create(n_cells); HASH_MIGRATE(old_hash, rec_hash, lock_t, hash, lock_rec_lock_fold); hash_table_free(old_hash); old_hash = prdt_hash; prdt_hash = hash_create(n_cells); HASH_MIGRATE(old_hash, prdt_hash, lock_t, hash, lock_rec_lock_fold); hash_table_free(old_hash); old_hash = prdt_page_hash; prdt_page_hash = hash_create(n_cells); HASH_MIGRATE(old_hash, prdt_page_hash, lock_t, hash, lock_rec_lock_fold); hash_table_free(old_hash); /* need to update block->lock_hash_val */ for (ulint i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t* buf_pool = buf_pool_from_array(i); buf_pool_mutex_enter(buf_pool); buf_page_t* bpage; bpage = UT_LIST_GET_FIRST(buf_pool->LRU); while (bpage != NULL) { if (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE) { buf_block_t* block; block = reinterpret_cast( bpage); block->lock_hash_val = lock_rec_hash( bpage->id.space(), bpage->id.page_no()); } bpage = UT_LIST_GET_NEXT(LRU, bpage); } buf_pool_mutex_exit(buf_pool); } mutex_exit(&mutex); } /** Closes the lock system at database shutdown. */ void lock_sys_t::close() { ut_ad(this == &lock_sys); if (!m_initialised) return; if (lock_latest_err_file != NULL) { fclose(lock_latest_err_file); lock_latest_err_file = NULL; } hash_table_free(rec_hash); hash_table_free(prdt_hash); hash_table_free(prdt_page_hash); os_event_destroy(timeout_event); mutex_destroy(&mutex); mutex_destroy(&wait_mutex); for (ulint i = srv_max_n_threads; i--; ) { if (os_event_t& event = waiting_threads[i].event) { os_event_destroy(event); } } ut_free(waiting_threads); m_initialised= false; } /*********************************************************************//** Gets the size of a lock struct. @return size in bytes */ ulint lock_get_size(void) /*===============*/ { return((ulint) sizeof(lock_t)); } static inline void lock_grant_have_trx_mutex(lock_t* lock) { lock_reset_lock_and_trx_wait(lock); lock_grant_after_reset(lock); } /*********************************************************************//** Gets the gap flag of a record lock. @return LOCK_GAP or 0 */ UNIV_INLINE ulint lock_rec_get_gap( /*=============*/ const lock_t* lock) /*!< in: record lock */ { ut_ad(lock); ut_ad(lock_get_type_low(lock) == LOCK_REC); return(lock->type_mode & LOCK_GAP); } /*********************************************************************//** Gets the LOCK_REC_NOT_GAP flag of a record lock. @return LOCK_REC_NOT_GAP or 0 */ UNIV_INLINE ulint lock_rec_get_rec_not_gap( /*=====================*/ const lock_t* lock) /*!< in: record lock */ { ut_ad(lock); ut_ad(lock_get_type_low(lock) == LOCK_REC); return(lock->type_mode & LOCK_REC_NOT_GAP); } /*********************************************************************//** Gets the waiting insert flag of a record lock. @return LOCK_INSERT_INTENTION or 0 */ UNIV_INLINE ulint lock_rec_get_insert_intention( /*==========================*/ const lock_t* lock) /*!< in: record lock */ { ut_ad(lock); ut_ad(lock_get_type_low(lock) == LOCK_REC); return(lock->type_mode & LOCK_INSERT_INTENTION); } #ifdef UNIV_DEBUG #ifdef WITH_WSREP /** Check if both conflicting lock transaction and other transaction requesting record lock are brute force (BF). If they are check is this BF-BF wait correct and if not report BF wait and assert. @param[in] lock_rec other waiting record lock @param[in] trx trx requesting conflicting record lock */ static void wsrep_assert_no_bf_bf_wait(const lock_t *lock, const trx_t *trx) { ut_ad(lock_get_type_low(lock) == LOCK_REC); ut_ad(lock_mutex_own()); trx_t* lock_trx= lock->trx; /* Note that we are holding lock_sys->mutex, thus we should not acquire THD::LOCK_thd_data mutex below to avoid mutexing order violation. */ if (!trx->is_wsrep() || !lock_trx->is_wsrep()) return; if (UNIV_LIKELY(!wsrep_thd_is_BF(trx->mysql_thd, FALSE)) || UNIV_LIKELY(!wsrep_thd_is_BF(lock_trx->mysql_thd, FALSE))) return; ut_ad(trx->state == TRX_STATE_ACTIVE); trx_mutex_enter(lock_trx); const trx_state_t trx2_state= lock_trx->state; trx_mutex_exit(lock_trx); /* If transaction is already committed in memory or prepared we should wait. When transaction is committed in memory we held trx mutex, but not lock_sys->mutex. Therefore, we could end here before transaction has time to do lock_release() that is protected with lock_sys->mutex. */ switch (trx2_state) { case TRX_STATE_COMMITTED_IN_MEMORY: case TRX_STATE_PREPARED: return; case TRX_STATE_ACTIVE: break; default: ut_ad("invalid state" == 0); } /* If BF - BF order is honored, i.e. trx already holding record lock should be ordered before this new lock request we can keep trx waiting for the lock. If conflicting transaction is already aborting or rolling back for replaying we can also let new transaction waiting. */ if (wsrep_trx_order_before(lock_trx->mysql_thd, trx->mysql_thd) || wsrep_trx_is_aborting(lock_trx->mysql_thd)) return; mtr_t mtr; ib::error() << "Conflicting lock on table: " << lock->index->table->name << " index: " << lock->index->name() << " that has lock "; lock_rec_print(stderr, lock, mtr); ib::error() << "WSREP state: "; wsrep_report_bf_lock_wait(trx->mysql_thd, trx->id); wsrep_report_bf_lock_wait(lock_trx->mysql_thd, lock_trx->id); /* BF-BF wait is a bug */ ut_error; } #endif /* WITH_WSREP */ #endif /* UNIV_DEBUG */ /*********************************************************************//** Checks if a lock request for a new lock has to wait for request lock2. @return TRUE if new lock has to wait for lock2 to be removed */ UNIV_INLINE bool lock_rec_has_to_wait( /*=================*/ bool for_locking, /*!< in is called locking or releasing */ const trx_t* trx, /*!< in: trx of new lock */ ulint type_mode,/*!< in: precise mode of the new lock to set: LOCK_S or LOCK_X, possibly ORed to LOCK_GAP or LOCK_REC_NOT_GAP, LOCK_INSERT_INTENTION */ const lock_t* lock2, /*!< in: another record lock; NOTE that it is assumed that this has a lock bit set on the same record as in the new lock we are setting */ bool lock_is_on_supremum) /*!< in: TRUE if we are setting the lock on the 'supremum' record of an index page: we know then that the lock request is really for a 'gap' type lock */ { ut_ad(trx && lock2); ut_ad(lock_get_type_low(lock2) == LOCK_REC); ut_ad(lock_mutex_own()); if (trx == lock2->trx || lock_mode_compatible( static_cast(LOCK_MODE_MASK & type_mode), lock_get_mode(lock2))) { return false; } /* We have somewhat complex rules when gap type record locks cause waits */ if ((lock_is_on_supremum || (type_mode & LOCK_GAP)) && !(type_mode & LOCK_INSERT_INTENTION)) { /* Gap type locks without LOCK_INSERT_INTENTION flag do not need to wait for anything. This is because different users can have conflicting lock types on gaps. */ return false; } if (!(type_mode & LOCK_INSERT_INTENTION) && lock_rec_get_gap(lock2)) { /* Record lock (LOCK_ORDINARY or LOCK_REC_NOT_GAP does not need to wait for a gap type lock */ return false; } if ((type_mode & LOCK_GAP) && lock_rec_get_rec_not_gap(lock2)) { /* Lock on gap does not need to wait for a LOCK_REC_NOT_GAP type lock */ return false; } if (lock_rec_get_insert_intention(lock2)) { /* No lock request needs to wait for an insert intention lock to be removed. This is ok since our rules allow conflicting locks on gaps. This eliminates a spurious deadlock caused by a next-key lock waiting for an insert intention lock; when the insert intention lock was granted, the insert deadlocked on the waiting next-key lock. Also, insert intention locks do not disturb each other. */ return false; } if ((type_mode & LOCK_GAP || lock_rec_get_gap(lock2)) && !thd_need_ordering_with(trx->mysql_thd, lock2->trx->mysql_thd)) { /* If the upper server layer has already decided on the commit order between the transaction requesting the lock and the transaction owning the lock, we do not need to wait for gap locks. Such ordeering by the upper server layer happens in parallel replication, where the commit order is fixed to match the original order on the master. Such gap locks are mainly needed to get serialisability between transactions so that they will be binlogged in the correct order so that statement-based replication will give the correct results. Since the right order was already determined on the master, we do not need to enforce it again here. Skipping the locks is not essential for correctness, since in case of deadlock we will just kill the later transaction and retry it. But it can save some unnecessary rollbacks and retries. */ return false; } #ifdef WITH_WSREP /* New lock request from a transaction is using unique key scan and this transaction is a wsrep high priority transaction (brute force). If conflicting transaction is also wsrep high priority transaction we should avoid lock conflict because ordering of these transactions is already decided and conflicting transaction will be later replayed. Note that thread holding conflicting lock can't be committed or rolled back while we hold lock_sys->mutex. */ if (trx->is_wsrep_UK_scan() && wsrep_thd_is_BF(lock2->trx->mysql_thd, false)) { return false; } /* We very well can let bf to wait normally as other BF will be replayed in case of conflict. For debug builds we will do additional sanity checks to catch unsupported bf wait if any. */ ut_d(wsrep_assert_no_bf_bf_wait(lock2, trx)); #endif /* WITH_WSREP */ return true; } /*********************************************************************//** Checks if a lock request lock1 has to wait for request lock2. @return TRUE if lock1 has to wait for lock2 to be removed */ bool lock_has_to_wait( /*=============*/ const lock_t* lock1, /*!< in: waiting lock */ const lock_t* lock2) /*!< in: another lock; NOTE that it is assumed that this has a lock bit set on the same record as in lock1 if the locks are record locks */ { ut_ad(lock1 && lock2); if (lock1->trx == lock2->trx || lock_mode_compatible(lock_get_mode(lock1), lock_get_mode(lock2))) { return false; } if (lock_get_type_low(lock1) != LOCK_REC) { return true; } ut_ad(lock_get_type_low(lock2) == LOCK_REC); if (lock1->type_mode & (LOCK_PREDICATE | LOCK_PRDT_PAGE)) { return lock_prdt_has_to_wait(lock1->trx, lock1->type_mode, lock_get_prdt_from_lock(lock1), lock2); } return lock_rec_has_to_wait( false, lock1->trx, lock1->type_mode, lock2, lock_rec_get_nth_bit(lock1, PAGE_HEAP_NO_SUPREMUM)); } /*============== RECORD LOCK BASIC FUNCTIONS ============================*/ /**********************************************************************//** Looks for a set bit in a record lock bitmap. Returns ULINT_UNDEFINED, if none found. @return bit index == heap number of the record, or ULINT_UNDEFINED if none found */ ulint lock_rec_find_set_bit( /*==================*/ const lock_t* lock) /*!< in: record lock with at least one bit set */ { for (ulint i = 0; i < lock_rec_get_n_bits(lock); ++i) { if (lock_rec_get_nth_bit(lock, i)) { return(i); } } return(ULINT_UNDEFINED); } /*********************************************************************//** Determines if there are explicit record locks on a page. @return an explicit record lock on the page, or NULL if there are none */ lock_t* lock_rec_expl_exist_on_page( /*========================*/ ulint space, /*!< in: space id */ ulint page_no)/*!< in: page number */ { lock_t* lock; lock_mutex_enter(); /* Only used in ibuf pages, so rec_hash is good enough */ lock = lock_rec_get_first_on_page_addr(lock_sys.rec_hash, space, page_no); lock_mutex_exit(); return(lock); } /*********************************************************************//** Resets the record lock bitmap to zero. NOTE: does not touch the wait_lock pointer in the transaction! This function is used in lock object creation and resetting. */ static void lock_rec_bitmap_reset( /*==================*/ lock_t* lock) /*!< in: record lock */ { ulint n_bytes; ut_ad(lock_get_type_low(lock) == LOCK_REC); /* Reset to zero the bitmap which resides immediately after the lock struct */ n_bytes = lock_rec_get_n_bits(lock) / 8; ut_ad((lock_rec_get_n_bits(lock) % 8) == 0); memset(&lock[1], 0, n_bytes); } /*********************************************************************//** Copies a record lock to heap. @return copy of lock */ static lock_t* lock_rec_copy( /*==========*/ const lock_t* lock, /*!< in: record lock */ mem_heap_t* heap) /*!< in: memory heap */ { ulint size; ut_ad(lock_get_type_low(lock) == LOCK_REC); size = sizeof(lock_t) + lock_rec_get_n_bits(lock) / 8; return(static_cast(mem_heap_dup(heap, lock, size))); } /*********************************************************************//** Gets the previous record lock set on a record. @return previous lock on the same record, NULL if none exists */ const lock_t* lock_rec_get_prev( /*==============*/ const lock_t* in_lock,/*!< in: record lock */ ulint heap_no)/*!< in: heap number of the record */ { lock_t* lock; ulint space; ulint page_no; lock_t* found_lock = NULL; hash_table_t* hash; ut_ad(lock_mutex_own()); ut_ad(lock_get_type_low(in_lock) == LOCK_REC); space = in_lock->un_member.rec_lock.space; page_no = in_lock->un_member.rec_lock.page_no; hash = lock_hash_get(in_lock->type_mode); for (lock = lock_rec_get_first_on_page_addr(hash, space, page_no); /* No op */; lock = lock_rec_get_next_on_page(lock)) { ut_ad(lock); if (lock == in_lock) { return(found_lock); } if (lock_rec_get_nth_bit(lock, heap_no)) { found_lock = lock; } } } /*============= FUNCTIONS FOR ANALYZING RECORD LOCK QUEUE ================*/ /*********************************************************************//** Checks if a transaction has a GRANTED explicit lock on rec stronger or equal to precise_mode. @return lock or NULL */ UNIV_INLINE lock_t* lock_rec_has_expl( /*==============*/ ulint precise_mode,/*!< in: LOCK_S or LOCK_X possibly ORed to LOCK_GAP or LOCK_REC_NOT_GAP, for a supremum record we regard this always a gap type request */ const buf_block_t* block, /*!< in: buffer block containing the record */ ulint heap_no,/*!< in: heap number of the record */ const trx_t* trx) /*!< in: transaction */ { lock_t* lock; ut_ad(lock_mutex_own()); ut_ad((precise_mode & LOCK_MODE_MASK) == LOCK_S || (precise_mode & LOCK_MODE_MASK) == LOCK_X); ut_ad(!(precise_mode & LOCK_INSERT_INTENTION)); for (lock = lock_rec_get_first(lock_sys.rec_hash, block, heap_no); lock != NULL; lock = lock_rec_get_next(heap_no, lock)) { if (lock->trx == trx && !lock_rec_get_insert_intention(lock) && lock_mode_stronger_or_eq( lock_get_mode(lock), static_cast( precise_mode & LOCK_MODE_MASK)) && !lock_get_wait(lock) && (!lock_rec_get_rec_not_gap(lock) || (precise_mode & LOCK_REC_NOT_GAP) || heap_no == PAGE_HEAP_NO_SUPREMUM) && (!lock_rec_get_gap(lock) || (precise_mode & LOCK_GAP) || heap_no == PAGE_HEAP_NO_SUPREMUM)) { return(lock); } } return(NULL); } #ifdef UNIV_DEBUG /*********************************************************************//** Checks if some other transaction has a lock request in the queue. @return lock or NULL */ static lock_t* lock_rec_other_has_expl_req( /*========================*/ lock_mode mode, /*!< in: LOCK_S or LOCK_X */ const buf_block_t* block, /*!< in: buffer block containing the record */ bool wait, /*!< in: whether also waiting locks are taken into account */ ulint heap_no,/*!< in: heap number of the record */ const trx_t* trx) /*!< in: transaction, or NULL if requests by all transactions are taken into account */ { ut_ad(lock_mutex_own()); ut_ad(mode == LOCK_X || mode == LOCK_S); /* Only GAP lock can be on SUPREMUM, and we are not looking for GAP lock */ if (heap_no == PAGE_HEAP_NO_SUPREMUM) { return(NULL); } for (lock_t* lock = lock_rec_get_first(lock_sys.rec_hash, block, heap_no); lock != NULL; lock = lock_rec_get_next(heap_no, lock)) { if (lock->trx != trx && !lock_rec_get_gap(lock) && (wait || !lock_get_wait(lock)) && lock_mode_stronger_or_eq(lock_get_mode(lock), mode)) { return(lock); } } return(NULL); } #endif /* UNIV_DEBUG */ #ifdef WITH_WSREP static void wsrep_kill_victim(const trx_t * const trx, const lock_t *lock) { ut_ad(lock_mutex_own()); ut_ad(trx->is_wsrep()); trx_t* lock_trx = lock->trx; ut_ad(trx_mutex_own(lock_trx)); ut_ad(lock_trx != trx); if (!wsrep_thd_is_BF(trx->mysql_thd, FALSE)) return; if (lock_trx->state == TRX_STATE_COMMITTED_IN_MEMORY || lock_trx->lock.was_chosen_as_deadlock_victim) return; my_bool bf_other = wsrep_thd_is_BF(lock_trx->mysql_thd, FALSE); if (!bf_other || wsrep_trx_order_before(trx->mysql_thd, lock_trx->mysql_thd)) { if (lock_trx->lock.que_state == TRX_QUE_LOCK_WAIT) { if (UNIV_UNLIKELY(wsrep_debug)) WSREP_INFO("BF victim waiting"); /* cannot release lock, until our lock is in the queue*/ } else { wsrep_innobase_kill_one_trx(trx->mysql_thd, trx, lock_trx, true); } } } #endif /* WITH_WSREP */ /*********************************************************************//** Checks if some other transaction has a conflicting explicit lock request in the queue, so that we have to wait. @return lock or NULL */ static lock_t* lock_rec_other_has_conflicting( /*===========================*/ ulint mode, /*!< in: LOCK_S or LOCK_X, possibly ORed to LOCK_GAP or LOC_REC_NOT_GAP, LOCK_INSERT_INTENTION */ const buf_block_t* block, /*!< in: buffer block containing the record */ ulint heap_no,/*!< in: heap number of the record */ const trx_t* trx) /*!< in: our transaction */ { lock_t* lock; ut_ad(lock_mutex_own()); bool is_supremum = (heap_no == PAGE_HEAP_NO_SUPREMUM); for (lock = lock_rec_get_first(lock_sys.rec_hash, block, heap_no); lock != NULL; lock = lock_rec_get_next(heap_no, lock)) { if (lock_rec_has_to_wait(true, trx, mode, lock, is_supremum)) { #ifdef WITH_WSREP if (trx->is_wsrep()) { trx_mutex_enter(lock->trx); /* Below function will roll back either trx or lock->trx depending on priority of the transaction. */ wsrep_kill_victim(const_cast(trx), lock); trx_mutex_exit(lock->trx); } #endif /* WITH_WSREP */ return(lock); } } return(NULL); } /*********************************************************************//** Checks if some transaction has an implicit x-lock on a record in a secondary index. @return transaction id of the transaction which has the x-lock, or 0; NOTE that this function can return false positives but never false negatives. The caller must confirm all positive results by calling trx_is_active(). */ static trx_t* lock_sec_rec_some_has_impl( /*=======================*/ trx_t* caller_trx,/*!= min trx id for the trx list, or database recovery is running. */ if (max_trx_id < trx_sys.get_min_trx_id()) { trx = 0; } else if (!lock_check_trx_id_sanity(max_trx_id, rec, index, offsets)) { /* The page is corrupt: try to avoid a crash by returning 0 */ trx = 0; /* In this case it is possible that some transaction has an implicit x-lock. We have to look in the clustered index. */ } else { trx = row_vers_impl_x_locked(caller_trx, rec, index, offsets); } return(trx); } /*********************************************************************//** Return approximate number or record locks (bits set in the bitmap) for this transaction. Since delete-marked records may be removed, the record count will not be precise. The caller must be holding lock_sys.mutex. */ ulint lock_number_of_rows_locked( /*=======================*/ const trx_lock_t* trx_lock) /*!< in: transaction locks */ { ut_ad(lock_mutex_own()); return(trx_lock->n_rec_locks); } /*********************************************************************//** Return the number of table locks for a transaction. The caller must be holding lock_sys.mutex. */ ulint lock_number_of_tables_locked( /*=========================*/ const trx_lock_t* trx_lock) /*!< in: transaction locks */ { const lock_t* lock; ulint n_tables = 0; ut_ad(lock_mutex_own()); for (lock = UT_LIST_GET_FIRST(trx_lock->trx_locks); lock != NULL; lock = UT_LIST_GET_NEXT(trx_locks, lock)) { if (lock_get_type_low(lock) == LOCK_TABLE) { n_tables++; } } return(n_tables); } /*============== RECORD LOCK CREATION AND QUEUE MANAGEMENT =============*/ #ifdef WITH_WSREP ATTRIBUTE_COLD static void wsrep_print_wait_locks( /*===================*/ lock_t* c_lock) /* conflicting lock to print */ { if (c_lock->trx->lock.wait_lock != c_lock) { mtr_t mtr; ib::info() << "WSREP: c_lock != wait lock"; ib::info() << " SQL: " << wsrep_thd_query(c_lock->trx->mysql_thd); if (lock_get_type_low(c_lock) & LOCK_TABLE) { lock_table_print(stderr, c_lock); } else { lock_rec_print(stderr, c_lock, mtr); } if (lock_get_type_low(c_lock->trx->lock.wait_lock) & LOCK_TABLE) { lock_table_print(stderr, c_lock->trx->lock.wait_lock); } else { lock_rec_print(stderr, c_lock->trx->lock.wait_lock, mtr); } } } #endif /* WITH_WSREP */ #ifdef UNIV_DEBUG /** Check transaction state */ static void check_trx_state(const trx_t *trx) { ut_ad(!trx->auto_commit || trx->will_lock); const trx_state_t state= trx->state; ut_ad(state == TRX_STATE_ACTIVE || state == TRX_STATE_PREPARED_RECOVERED || state == TRX_STATE_PREPARED || state == TRX_STATE_COMMITTED_IN_MEMORY); } #endif /** Create a new record lock and inserts it to the lock queue, without checking for deadlocks or conflicts. @param[in] type_mode lock mode and wait flag; type will be replaced with LOCK_REC @param[in] space tablespace id @param[in] page_no index page number @param[in] page R-tree index page, or NULL @param[in] heap_no record heap number in the index page @param[in] index the index tree @param[in,out] trx transaction @param[in] holds_trx_mutex whether the caller holds trx->mutex @return created lock */ lock_t* lock_rec_create_low( #ifdef WITH_WSREP lock_t* c_lock, /*!< conflicting lock */ que_thr_t* thr, /*!< thread owning trx */ #endif ulint type_mode, ulint space, ulint page_no, const page_t* page, ulint heap_no, dict_index_t* index, trx_t* trx, bool holds_trx_mutex) { lock_t* lock; ulint n_bits; ulint n_bytes; ut_ad(lock_mutex_own()); ut_ad(holds_trx_mutex == trx_mutex_own(trx)); ut_ad(dict_index_is_clust(index) || !dict_index_is_online_ddl(index)); #ifdef UNIV_DEBUG /* Non-locking autocommit read-only transactions should not set any locks. See comment in trx_set_rw_mode explaining why this conditional check is required in debug code. */ if (holds_trx_mutex) { check_trx_state(trx); } #endif /* UNIV_DEBUG */ /* If rec is the supremum record, then we reset the gap and LOCK_REC_NOT_GAP bits, as all locks on the supremum are automatically of the gap type */ if (UNIV_UNLIKELY(heap_no == PAGE_HEAP_NO_SUPREMUM)) { ut_ad(!(type_mode & LOCK_REC_NOT_GAP)); type_mode = type_mode & ~(LOCK_GAP | LOCK_REC_NOT_GAP); } if (UNIV_LIKELY(!(type_mode & (LOCK_PREDICATE | LOCK_PRDT_PAGE)))) { /* Make lock bitmap bigger by a safety margin */ n_bits = page_dir_get_n_heap(page) + LOCK_PAGE_BITMAP_MARGIN; n_bytes = 1 + n_bits / 8; } else { ut_ad(heap_no == PRDT_HEAPNO); /* The lock is always on PAGE_HEAP_NO_INFIMUM (0), so we only need 1 bit (which round up to 1 byte) for lock bit setting */ n_bytes = 1; if (type_mode & LOCK_PREDICATE) { ulint tmp = UNIV_WORD_SIZE - 1; /* We will attach predicate structure after lock. Make sure the memory is aligned on 8 bytes, the mem_heap_alloc will align it with MEM_SPACE_NEEDED anyway. */ n_bytes = (n_bytes + sizeof(lock_prdt_t) + tmp) & ~tmp; ut_ad(n_bytes == sizeof(lock_prdt_t) + UNIV_WORD_SIZE); } } if (trx->lock.rec_cached >= UT_ARR_SIZE(trx->lock.rec_pool) || sizeof *lock + n_bytes > sizeof *trx->lock.rec_pool) { lock = static_cast( mem_heap_alloc(trx->lock.lock_heap, sizeof *lock + n_bytes)); } else { lock = &trx->lock.rec_pool[trx->lock.rec_cached++].lock; } lock->trx = trx; lock->type_mode = (type_mode & ~LOCK_TYPE_MASK) | LOCK_REC; lock->index = index; lock->un_member.rec_lock.space = uint32_t(space); lock->un_member.rec_lock.page_no = uint32_t(page_no); if (UNIV_LIKELY(!(type_mode & (LOCK_PREDICATE | LOCK_PRDT_PAGE)))) { lock->un_member.rec_lock.n_bits = uint32_t(n_bytes * 8); } else { /* Predicate lock always on INFIMUM (0) */ lock->un_member.rec_lock.n_bits = 8; } lock_rec_bitmap_reset(lock); lock_rec_set_nth_bit(lock, heap_no); index->table->n_rec_locks++; ut_ad(index->table->get_ref_count() > 0 || !index->table->can_be_evicted); #ifdef WITH_WSREP if (c_lock && trx->is_wsrep() && wsrep_thd_is_BF(trx->mysql_thd, FALSE)) { lock_t *hash = (lock_t *)c_lock->hash; lock_t *prev = NULL; while (hash && wsrep_thd_is_BF(hash->trx->mysql_thd, FALSE) && wsrep_trx_order_before(hash->trx->mysql_thd, trx->mysql_thd)) { prev = hash; hash = (lock_t *)hash->hash; } lock->hash = hash; if (prev) { prev->hash = lock; } else { c_lock->hash = lock; } /* * delayed conflict resolution '...kill_one_trx' was not called, * if victim was waiting for some other lock */ trx_mutex_enter(c_lock->trx); if (c_lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) { c_lock->trx->lock.was_chosen_as_deadlock_victim = TRUE; if (UNIV_UNLIKELY(wsrep_debug)) { wsrep_print_wait_locks(c_lock); } trx->lock.que_state = TRX_QUE_LOCK_WAIT; lock_set_lock_and_trx_wait(lock, trx); UT_LIST_ADD_LAST(trx->lock.trx_locks, lock); trx->lock.wait_thr = thr; thr->state = QUE_THR_LOCK_WAIT; /* have to release trx mutex for the duration of victim lock release. This will eventually call lock_grant, which wants to grant trx mutex again */ if (holds_trx_mutex) { trx_mutex_exit(trx); } lock_cancel_waiting_and_release( c_lock->trx->lock.wait_lock); if (holds_trx_mutex) { trx_mutex_enter(trx); } trx_mutex_exit(c_lock->trx); /* have to bail out here to avoid lock_set_lock... */ return(lock); } trx_mutex_exit(c_lock->trx); } else #endif /* WITH_WSREP */ if (!(type_mode & (LOCK_WAIT | LOCK_PREDICATE | LOCK_PRDT_PAGE)) && innodb_lock_schedule_algorithm == INNODB_LOCK_SCHEDULE_ALGORITHM_VATS && !thd_is_replication_slave_thread(trx->mysql_thd)) { HASH_PREPEND(lock_t, hash, lock_sys.rec_hash, lock_rec_fold(space, page_no), lock); } else { HASH_INSERT(lock_t, hash, lock_hash_get(type_mode), lock_rec_fold(space, page_no), lock); } if (!holds_trx_mutex) { trx_mutex_enter(trx); } ut_ad(trx_mutex_own(trx)); if (type_mode & LOCK_WAIT) { lock_set_lock_and_trx_wait(lock, trx); } UT_LIST_ADD_LAST(trx->lock.trx_locks, lock); if (!holds_trx_mutex) { trx_mutex_exit(trx); } MONITOR_INC(MONITOR_RECLOCK_CREATED); MONITOR_INC(MONITOR_NUM_RECLOCK); return lock; } /*********************************************************************//** Check if lock1 has higher priority than lock2. NULL has lowest priority. If neither of them is wait lock, the first one has higher priority. If only one of them is a wait lock, it has lower priority. If either is a high priority transaction, the lock has higher priority. Otherwise, the one with an older transaction has higher priority. @returns true if lock1 has higher priority, false otherwise. */ static bool has_higher_priority(lock_t *lock1, lock_t *lock2) { if (lock1 == NULL) { return false; } else if (lock2 == NULL) { return true; } // Granted locks has higher priority. if (!lock_get_wait(lock1)) { return true; } else if (!lock_get_wait(lock2)) { return false; } return lock1->trx->start_time_micro <= lock2->trx->start_time_micro; } /*********************************************************************//** Insert a lock to the hash list according to the mode (whether it is a wait lock) and the age of the transaction the it is associated with. If the lock is not a wait lock, insert it to the head of the hash list. Otherwise, insert it to the middle of the wait locks according to the age of the transaciton. */ static dberr_t lock_rec_insert_by_trx_age( lock_t *in_lock) /*!< in: lock to be insert */{ ulint space; ulint page_no; ulint rec_fold; lock_t* node; lock_t* next; hash_table_t* hash; hash_cell_t* cell; ut_ad(!in_lock->trx->is_wsrep()); space = in_lock->un_member.rec_lock.space; page_no = in_lock->un_member.rec_lock.page_no; rec_fold = lock_rec_fold(space, page_no); hash = lock_hash_get(in_lock->type_mode); cell = hash_get_nth_cell(hash, hash_calc_hash(rec_fold, hash)); node = (lock_t *) cell->node; // If in_lock is not a wait lock, we insert it to the head of the list. if (node == NULL || !lock_get_wait(in_lock) || has_higher_priority(in_lock, node)) { cell->node = in_lock; in_lock->hash = node; if (lock_get_wait(in_lock)) { lock_grant_have_trx_mutex(in_lock); return DB_SUCCESS_LOCKED_REC; } return DB_SUCCESS; } while (node != NULL && has_higher_priority((lock_t *) node->hash, in_lock)) { node = (lock_t *) node->hash; } next = (lock_t *) node->hash; node->hash = in_lock; in_lock->hash = next; if (lock_get_wait(in_lock) && !lock_rec_has_to_wait_in_queue(in_lock)) { lock_grant_have_trx_mutex(in_lock); if (cell->node != in_lock) { // Move it to the front of the queue node->hash = in_lock->hash; next = (lock_t *) cell->node; cell->node = in_lock; in_lock->hash = next; } return DB_SUCCESS_LOCKED_REC; } return DB_SUCCESS; } #ifdef UNIV_DEBUG static bool lock_queue_validate( const lock_t *in_lock) /*!< in: lock whose hash list is to be validated */ { ulint space; ulint page_no; ulint rec_fold; hash_table_t* hash; hash_cell_t* cell; lock_t* next; bool wait_lock __attribute__((unused))= false; if (in_lock == NULL) { return true; } space = in_lock->un_member.rec_lock.space; page_no = in_lock->un_member.rec_lock.page_no; rec_fold = lock_rec_fold(space, page_no); hash = lock_hash_get(in_lock->type_mode); cell = hash_get_nth_cell(hash, hash_calc_hash(rec_fold, hash)); next = (lock_t *) cell->node; while (next != NULL) { // If this is a granted lock, check that there's no wait lock before it. if (!lock_get_wait(next)) { ut_ad(!wait_lock); } else { wait_lock = true; } next = next->hash; } return true; } #endif /* UNIV_DEBUG */ static void lock_rec_insert_to_head( lock_t *in_lock, /*!< in: lock to be insert */ ulint rec_fold) /*!< in: rec_fold of the page */ { hash_table_t* hash; hash_cell_t* cell; lock_t* node; if (in_lock == NULL) { return; } hash = lock_hash_get(in_lock->type_mode); cell = hash_get_nth_cell(hash, hash_calc_hash(rec_fold, hash)); node = (lock_t *) cell->node; if (node != in_lock) { cell->node = in_lock; in_lock->hash = node; } } /** Enqueue a waiting request for a lock which cannot be granted immediately. Check for deadlocks. @param[in] type_mode the requested lock mode (LOCK_S or LOCK_X) possibly ORed with LOCK_GAP or LOCK_REC_NOT_GAP, ORed with LOCK_INSERT_INTENTION if this waiting lock request is set when performing an insert of an index record @param[in] block leaf page in the index @param[in] heap_no record heap number in the block @param[in] index index tree @param[in,out] thr query thread @param[in] prdt minimum bounding box (spatial index) @retval DB_LOCK_WAIT if the waiting lock was enqueued @retval DB_DEADLOCK if this transaction was chosen as the victim @retval DB_SUCCESS_LOCKED_REC if the other transaction was chosen as a victim (or it happened to commit) */ dberr_t lock_rec_enqueue_waiting( #ifdef WITH_WSREP lock_t* c_lock, /*!< conflicting lock */ #endif ulint type_mode, const buf_block_t* block, ulint heap_no, dict_index_t* index, que_thr_t* thr, lock_prdt_t* prdt) { ut_ad(lock_mutex_own()); ut_ad(!srv_read_only_mode); ut_ad(dict_index_is_clust(index) || !dict_index_is_online_ddl(index)); trx_t* trx = thr_get_trx(thr); ut_ad(trx_mutex_own(trx)); ut_a(!que_thr_stop(thr)); switch (trx_get_dict_operation(trx)) { case TRX_DICT_OP_NONE: break; case TRX_DICT_OP_TABLE: case TRX_DICT_OP_INDEX: ib::error() << "A record lock wait happens in a dictionary" " operation. index " << index->name << " of table " << index->table->name << ". " << BUG_REPORT_MSG; ut_ad(0); } if (trx->mysql_thd && thd_lock_wait_timeout(trx->mysql_thd) == 0) { trx->error_state = DB_LOCK_WAIT_TIMEOUT; return DB_LOCK_WAIT_TIMEOUT; } /* Enqueue the lock request that will wait to be granted, note that we already own the trx mutex. */ lock_t* lock = lock_rec_create( #ifdef WITH_WSREP c_lock, thr, #endif type_mode | LOCK_WAIT, block, heap_no, index, trx, TRUE); if (prdt && type_mode & LOCK_PREDICATE) { lock_prdt_set_prdt(lock, prdt); } if (ut_d(const trx_t* victim =) DeadlockChecker::check_and_resolve(lock, trx)) { ut_ad(victim == trx); lock_reset_lock_and_trx_wait(lock); lock_rec_reset_nth_bit(lock, heap_no); return DB_DEADLOCK; } if (!trx->lock.wait_lock) { /* If there was a deadlock but we chose another transaction as a victim, it is possible that we already have the lock now granted! */ #ifdef WITH_WSREP if (UNIV_UNLIKELY(wsrep_debug)) { ib::info() << "WSREP: BF thread got lock granted early, ID " << ib::hex(trx->id) << " query: " << wsrep_thd_query(trx->mysql_thd); } #endif return DB_SUCCESS_LOCKED_REC; } trx->lock.que_state = TRX_QUE_LOCK_WAIT; trx->lock.was_chosen_as_deadlock_victim = false; trx->lock.wait_started = time(NULL); ut_a(que_thr_stop(thr)); DBUG_LOG("ib_lock", "trx " << ib::hex(trx->id) << " waits for lock in index " << index->name << " of table " << index->table->name); MONITOR_INC(MONITOR_LOCKREC_WAIT); if (innodb_lock_schedule_algorithm == INNODB_LOCK_SCHEDULE_ALGORITHM_VATS && !prdt && !thd_is_replication_slave_thread(lock->trx->mysql_thd)) { HASH_DELETE(lock_t, hash, lock_sys.rec_hash, lock_rec_lock_fold(lock), lock); dberr_t res = lock_rec_insert_by_trx_age(lock); if (res != DB_SUCCESS) { return res; } } return DB_LOCK_WAIT; } /*********************************************************************//** Adds a record lock request in the record queue. The request is normally added as the last in the queue, but if there are no waiting lock requests on the record, and the request to be added is not a waiting request, we can reuse a suitable record lock object already existing on the same page, just setting the appropriate bit in its bitmap. This is a low-level function which does NOT check for deadlocks or lock compatibility! @return lock where the bit was set */ static void lock_rec_add_to_queue( /*==================*/ ulint type_mode,/*!< in: lock mode, wait, gap etc. flags; type is ignored and replaced by LOCK_REC */ const buf_block_t* block, /*!< in: buffer block containing the record */ ulint heap_no,/*!< in: heap number of the record */ dict_index_t* index, /*!< in: index of record */ trx_t* trx, /*!< in/out: transaction */ bool caller_owns_trx_mutex) /*!< in: TRUE if caller owns the transaction mutex */ { #ifdef UNIV_DEBUG ut_ad(lock_mutex_own()); ut_ad(caller_owns_trx_mutex == trx_mutex_own(trx)); ut_ad(dict_index_is_clust(index) || dict_index_get_online_status(index) != ONLINE_INDEX_CREATION); switch (type_mode & LOCK_MODE_MASK) { case LOCK_X: case LOCK_S: break; default: ut_error; } if (!(type_mode & (LOCK_WAIT | LOCK_GAP))) { lock_mode mode = (type_mode & LOCK_MODE_MASK) == LOCK_S ? LOCK_X : LOCK_S; const lock_t* other_lock = lock_rec_other_has_expl_req( mode, block, false, heap_no, trx); #ifdef WITH_WSREP if (UNIV_UNLIKELY(other_lock && trx->is_wsrep())) { /* Only BF transaction may be granted lock before other conflicting lock request. */ if (!wsrep_thd_is_BF(trx->mysql_thd, FALSE) && !wsrep_thd_is_BF(other_lock->trx->mysql_thd, FALSE)) { /* If it is not BF, this case is a bug. */ wsrep_report_bf_lock_wait(trx->mysql_thd, trx->id); wsrep_report_bf_lock_wait(other_lock->trx->mysql_thd, other_lock->trx->id); ut_error; } } else #endif /* WITH_WSREP */ ut_ad(!other_lock); } #endif /* UNIV_DEBUG */ type_mode |= LOCK_REC; /* If rec is the supremum record, then we can reset the gap bit, as all locks on the supremum are automatically of the gap type, and we try to avoid unnecessary memory consumption of a new record lock struct for a gap type lock */ if (heap_no == PAGE_HEAP_NO_SUPREMUM) { ut_ad(!(type_mode & LOCK_REC_NOT_GAP)); /* There should never be LOCK_REC_NOT_GAP on a supremum record, but let us play safe */ type_mode &= ~(LOCK_GAP | LOCK_REC_NOT_GAP); } lock_t* lock; lock_t* first_lock; hash_table_t* hash = lock_hash_get(type_mode); /* Look for a waiting lock request on the same record or on a gap */ for (first_lock = lock = lock_rec_get_first_on_page(hash, block); lock != NULL; lock = lock_rec_get_next_on_page(lock)) { if (lock_get_wait(lock) && lock_rec_get_nth_bit(lock, heap_no)) { break; } } if (lock == NULL && !(type_mode & LOCK_WAIT)) { /* Look for a similar record lock on the same page: if one is found and there are no waiting lock requests, we can just set the bit */ lock = lock_rec_find_similar_on_page( type_mode, heap_no, first_lock, trx); if (lock != NULL) { lock_rec_set_nth_bit(lock, heap_no); return; } } lock_rec_create( #ifdef WITH_WSREP NULL, NULL, #endif type_mode, block, heap_no, index, trx, caller_owns_trx_mutex); } /*********************************************************************//** Tries to lock the specified record in the mode requested. If not immediately possible, enqueues a waiting lock request. This is a low-level function which does NOT look at implicit locks! Checks lock compatibility within explicit locks. This function sets a normal next-key lock, or in the case of a page supremum record, a gap type lock. @return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, DB_LOCK_WAIT, or DB_DEADLOCK */ static dberr_t lock_rec_lock( /*==========*/ bool impl, /*!< in: if true, no lock is set if no wait is necessary: we assume that the caller will set an implicit lock */ ulint mode, /*!< in: lock mode: LOCK_X or LOCK_S possibly ORed to either LOCK_GAP or LOCK_REC_NOT_GAP */ const buf_block_t* block, /*!< in: buffer block containing the record */ ulint heap_no,/*!< in: heap number of record */ dict_index_t* index, /*!< in: index of record */ que_thr_t* thr) /*!< in: query thread */ { trx_t *trx= thr_get_trx(thr); dberr_t err= DB_SUCCESS; ut_ad(!srv_read_only_mode); ut_ad((LOCK_MODE_MASK & mode) == LOCK_S || (LOCK_MODE_MASK & mode) == LOCK_X); ut_ad((mode & LOCK_TYPE_MASK) == LOCK_GAP || (mode & LOCK_TYPE_MASK) == LOCK_REC_NOT_GAP || (mode & LOCK_TYPE_MASK) == 0); ut_ad(dict_index_is_clust(index) || !dict_index_is_online_ddl(index)); DBUG_EXECUTE_IF("innodb_report_deadlock", return DB_DEADLOCK;); lock_mutex_enter(); ut_ad((LOCK_MODE_MASK & mode) != LOCK_S || lock_table_has(trx, index->table, LOCK_IS)); ut_ad((LOCK_MODE_MASK & mode) != LOCK_X || lock_table_has(trx, index->table, LOCK_IX)); if (lock_t *lock= lock_rec_get_first_on_page(lock_sys.rec_hash, block)) { trx_mutex_enter(trx); if (lock_rec_get_next_on_page(lock) || lock->trx != trx || lock->type_mode != (ulint(mode) | LOCK_REC) || lock_rec_get_n_bits(lock) <= heap_no) { /* Do nothing if the trx already has a strong enough lock on rec */ if (!lock_rec_has_expl(mode, block, heap_no, trx)) { if ( #ifdef WITH_WSREP lock_t *c_lock= #endif lock_rec_other_has_conflicting(mode, block, heap_no, trx)) { /* If another transaction has a non-gap conflicting request in the queue, as this transaction does not have a lock strong enough already granted on the record, we have to wait. */ err = lock_rec_enqueue_waiting( #ifdef WITH_WSREP c_lock, #endif /* WITH_WSREP */ mode, block, heap_no, index, thr, NULL); } else if (!impl) { /* Set the requested lock on the record. */ lock_rec_add_to_queue(LOCK_REC | mode, block, heap_no, index, trx, true); err= DB_SUCCESS_LOCKED_REC; } } } else if (!impl) { /* If the nth bit of the record lock is already set then we do not set a new lock bit, otherwise we do set */ if (!lock_rec_get_nth_bit(lock, heap_no)) { lock_rec_set_nth_bit(lock, heap_no); err= DB_SUCCESS_LOCKED_REC; } } trx_mutex_exit(trx); } else { /* Simplified and faster path for the most common cases Note that we don't own the trx mutex. */ if (!impl) lock_rec_create( #ifdef WITH_WSREP NULL, NULL, #endif mode, block, heap_no, index, trx, false); err= DB_SUCCESS_LOCKED_REC; } lock_mutex_exit(); MONITOR_ATOMIC_INC(MONITOR_NUM_RECLOCK_REQ); return err; } /*********************************************************************//** Checks if a waiting record lock request still has to wait in a queue. @return lock that is causing the wait */ static const lock_t* lock_rec_has_to_wait_in_queue( /*==========================*/ const lock_t* wait_lock) /*!< in: waiting record lock */ { const lock_t* lock; ulint space; ulint page_no; ulint heap_no; ulint bit_mask; ulint bit_offset; hash_table_t* hash; ut_ad(wait_lock); ut_ad(lock_mutex_own()); ut_ad(lock_get_wait(wait_lock)); ut_ad(lock_get_type_low(wait_lock) == LOCK_REC); space = wait_lock->un_member.rec_lock.space; page_no = wait_lock->un_member.rec_lock.page_no; heap_no = lock_rec_find_set_bit(wait_lock); bit_offset = heap_no / 8; bit_mask = static_cast(1) << (heap_no % 8); hash = lock_hash_get(wait_lock->type_mode); for (lock = lock_rec_get_first_on_page_addr(hash, space, page_no); lock != wait_lock; lock = lock_rec_get_next_on_page_const(lock)) { const byte* p = (const byte*) &lock[1]; if (heap_no < lock_rec_get_n_bits(lock) && (p[bit_offset] & bit_mask) && lock_has_to_wait(wait_lock, lock)) { return(lock); } } return(NULL); } /** Grant a lock to a waiting lock request and release the waiting transaction after lock_reset_lock_and_trx_wait() has been called. */ static void lock_grant_after_reset(lock_t* lock) { ut_ad(lock_mutex_own()); ut_ad(trx_mutex_own(lock->trx)); if (lock_get_mode(lock) == LOCK_AUTO_INC) { dict_table_t* table = lock->un_member.tab_lock.table; if (table->autoinc_trx == lock->trx) { ib::error() << "Transaction already had an" << " AUTO-INC lock!"; } else { table->autoinc_trx = lock->trx; ib_vector_push(lock->trx->autoinc_locks, &lock); } } DBUG_PRINT("ib_lock", ("wait for trx " TRX_ID_FMT " ends", trx_get_id_for_print(lock->trx))); /* If we are resolving a deadlock by choosing another transaction as a victim, then our original transaction may not be in the TRX_QUE_LOCK_WAIT state, and there is no need to end the lock wait for it */ if (lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) { que_thr_t* thr; thr = que_thr_end_lock_wait(lock->trx); if (thr != NULL) { lock_wait_release_thread_if_suspended(thr); } } } /** Grant a lock to a waiting lock request and release the waiting transaction. */ static void lock_grant(lock_t* lock) { lock_reset_lock_and_trx_wait(lock); trx_mutex_enter(lock->trx); lock_grant_after_reset(lock); trx_mutex_exit(lock->trx); } /*************************************************************//** Cancels a waiting record lock request and releases the waiting transaction that requested it. NOTE: does NOT check if waiting lock requests behind this one can now be granted! */ static void lock_rec_cancel( /*============*/ lock_t* lock) /*!< in: waiting record lock request */ { que_thr_t* thr; ut_ad(lock_mutex_own()); ut_ad(lock_get_type_low(lock) == LOCK_REC); /* Reset the bit (there can be only one set bit) in the lock bitmap */ lock_rec_reset_nth_bit(lock, lock_rec_find_set_bit(lock)); /* Reset the wait flag and the back pointer to lock in trx */ lock_reset_lock_and_trx_wait(lock); /* The following function releases the trx from lock wait */ trx_mutex_enter(lock->trx); thr = que_thr_end_lock_wait(lock->trx); if (thr != NULL) { lock_wait_release_thread_if_suspended(thr); } trx_mutex_exit(lock->trx); } static void lock_grant_and_move_on_page(ulint rec_fold, ulint space, ulint page_no) { lock_t* lock; lock_t* previous = static_cast( hash_get_nth_cell(lock_sys.rec_hash, hash_calc_hash(rec_fold, lock_sys.rec_hash)) ->node); if (previous == NULL) { return; } if (previous->un_member.rec_lock.space == space && previous->un_member.rec_lock.page_no == page_no) { lock = previous; } else { while (previous->hash && (previous->hash->un_member.rec_lock.space != space || previous->hash->un_member.rec_lock.page_no != page_no)) { previous = previous->hash; } lock = previous->hash; } ut_ad(previous->hash == lock || previous == lock); /* Grant locks if there are no conflicting locks ahead. Move granted locks to the head of the list. */ while (lock) { /* If the lock is a wait lock on this page, and it does not need to wait. */ ut_ad(!lock->trx->is_wsrep()); if (lock_get_wait(lock) && lock->un_member.rec_lock.space == space && lock->un_member.rec_lock.page_no == page_no && !lock_rec_has_to_wait_in_queue(lock)) { lock_grant(lock); if (previous != NULL) { /* Move the lock to the head of the list. */ HASH_GET_NEXT(hash, previous) = HASH_GET_NEXT(hash, lock); lock_rec_insert_to_head(lock, rec_fold); } else { /* Already at the head of the list. */ previous = lock; } /* Move on to the next lock. */ lock = static_cast(HASH_GET_NEXT(hash, previous)); } else { previous = lock; lock = static_cast(HASH_GET_NEXT(hash, lock)); } } } /** Remove a record lock request, waiting or granted, from the queue and grant locks to other transactions in the queue if they now are entitled to a lock. NOTE: all record locks contained in in_lock are removed. @param[in,out] in_lock record lock */ static void lock_rec_dequeue_from_page(lock_t* in_lock) { ulint space; ulint page_no; hash_table_t* lock_hash; ut_ad(lock_mutex_own()); ut_ad(lock_get_type_low(in_lock) == LOCK_REC); /* We may or may not be holding in_lock->trx->mutex here. */ space = in_lock->un_member.rec_lock.space; page_no = in_lock->un_member.rec_lock.page_no; in_lock->index->table->n_rec_locks--; lock_hash = lock_hash_get(in_lock->type_mode); ulint rec_fold = lock_rec_fold(space, page_no); HASH_DELETE(lock_t, hash, lock_hash, rec_fold, in_lock); UT_LIST_REMOVE(in_lock->trx->lock.trx_locks, in_lock); MONITOR_INC(MONITOR_RECLOCK_REMOVED); MONITOR_DEC(MONITOR_NUM_RECLOCK); if (innodb_lock_schedule_algorithm == INNODB_LOCK_SCHEDULE_ALGORITHM_FCFS || lock_hash != lock_sys.rec_hash || thd_is_replication_slave_thread(in_lock->trx->mysql_thd)) { /* Check if waiting locks in the queue can now be granted: grant locks if there are no conflicting locks ahead. Stop at the first X lock that is waiting or has been granted. */ for (lock_t* lock = lock_rec_get_first_on_page_addr( lock_hash, space, page_no); lock != NULL; lock = lock_rec_get_next_on_page(lock)) { if (!lock_get_wait(lock)) { continue; } const lock_t* c = lock_rec_has_to_wait_in_queue(lock); if (!c) { /* Grant the lock */ ut_ad(lock->trx != in_lock->trx); lock_grant(lock); } } } else { lock_grant_and_move_on_page(rec_fold, space, page_no); } } /*************************************************************//** Removes a record lock request, waiting or granted, from the queue. */ void lock_rec_discard( /*=============*/ lock_t* in_lock) /*!< in: record lock object: all record locks which are contained in this lock object are removed */ { ulint space; ulint page_no; trx_lock_t* trx_lock; ut_ad(lock_mutex_own()); ut_ad(lock_get_type_low(in_lock) == LOCK_REC); trx_lock = &in_lock->trx->lock; space = in_lock->un_member.rec_lock.space; page_no = in_lock->un_member.rec_lock.page_no; in_lock->index->table->n_rec_locks--; HASH_DELETE(lock_t, hash, lock_hash_get(in_lock->type_mode), lock_rec_fold(space, page_no), in_lock); UT_LIST_REMOVE(trx_lock->trx_locks, in_lock); MONITOR_INC(MONITOR_RECLOCK_REMOVED); MONITOR_DEC(MONITOR_NUM_RECLOCK); } /*************************************************************//** Removes record lock objects set on an index page which is discarded. This function does not move locks, or check for waiting locks, therefore the lock bitmaps must already be reset when this function is called. */ static void lock_rec_free_all_from_discard_page_low( /*====================================*/ ulint space, ulint page_no, hash_table_t* lock_hash) { lock_t* lock; lock_t* next_lock; lock = lock_rec_get_first_on_page_addr(lock_hash, space, page_no); while (lock != NULL) { ut_ad(lock_rec_find_set_bit(lock) == ULINT_UNDEFINED); ut_ad(!lock_get_wait(lock)); next_lock = lock_rec_get_next_on_page(lock); lock_rec_discard(lock); lock = next_lock; } } /*************************************************************//** Removes record lock objects set on an index page which is discarded. This function does not move locks, or check for waiting locks, therefore the lock bitmaps must already be reset when this function is called. */ void lock_rec_free_all_from_discard_page( /*================================*/ const buf_block_t* block) /*!< in: page to be discarded */ { ulint space; ulint page_no; ut_ad(lock_mutex_own()); space = block->page.id.space(); page_no = block->page.id.page_no(); lock_rec_free_all_from_discard_page_low( space, page_no, lock_sys.rec_hash); lock_rec_free_all_from_discard_page_low( space, page_no, lock_sys.prdt_hash); lock_rec_free_all_from_discard_page_low( space, page_no, lock_sys.prdt_page_hash); } /*============= RECORD LOCK MOVING AND INHERITING ===================*/ /*************************************************************//** Resets the lock bits for a single record. Releases transactions waiting for lock requests here. */ static void lock_rec_reset_and_release_wait_low( /*================================*/ hash_table_t* hash, /*!< in: hash table */ const buf_block_t* block, /*!< in: buffer block containing the record */ ulint heap_no)/*!< in: heap number of record */ { lock_t* lock; ut_ad(lock_mutex_own()); for (lock = lock_rec_get_first(hash, block, heap_no); lock != NULL; lock = lock_rec_get_next(heap_no, lock)) { if (lock_get_wait(lock)) { lock_rec_cancel(lock); } else { lock_rec_reset_nth_bit(lock, heap_no); } } } /*************************************************************//** Resets the lock bits for a single record. Releases transactions waiting for lock requests here. */ static void lock_rec_reset_and_release_wait( /*============================*/ const buf_block_t* block, /*!< in: buffer block containing the record */ ulint heap_no)/*!< in: heap number of record */ { lock_rec_reset_and_release_wait_low( lock_sys.rec_hash, block, heap_no); lock_rec_reset_and_release_wait_low( lock_sys.prdt_hash, block, PAGE_HEAP_NO_INFIMUM); lock_rec_reset_and_release_wait_low( lock_sys.prdt_page_hash, block, PAGE_HEAP_NO_INFIMUM); } /*************************************************************//** Makes a record to inherit the locks (except LOCK_INSERT_INTENTION type) of another record as gap type locks, but does not reset the lock bits of the other record. Also waiting lock requests on rec are inherited as GRANTED gap locks. */ static void lock_rec_inherit_to_gap( /*====================*/ const buf_block_t* heir_block, /*!< in: block containing the record which inherits */ const buf_block_t* block, /*!< in: block containing the record from which inherited; does NOT reset the locks on this record */ ulint heir_heap_no, /*!< in: heap_no of the inheriting record */ ulint heap_no) /*!< in: heap_no of the donating record */ { lock_t* lock; ut_ad(lock_mutex_own()); /* If srv_locks_unsafe_for_binlog is TRUE or session is using READ COMMITTED isolation level, we do not want locks set by an UPDATE or a DELETE to be inherited as gap type locks. But we DO want S-locks/X-locks(taken for replace) set by a consistency constraint to be inherited also then. */ for (lock = lock_rec_get_first(lock_sys.rec_hash, block, heap_no); lock != NULL; lock = lock_rec_get_next(heap_no, lock)) { if (!lock_rec_get_insert_intention(lock) && !((srv_locks_unsafe_for_binlog || lock->trx->isolation_level <= TRX_ISO_READ_COMMITTED) && lock_get_mode(lock) == (lock->trx->duplicates ? LOCK_S : LOCK_X))) { lock_rec_add_to_queue( LOCK_REC | LOCK_GAP | ulint(lock_get_mode(lock)), heir_block, heir_heap_no, lock->index, lock->trx, FALSE); } } } /*************************************************************//** Makes a record to inherit the gap locks (except LOCK_INSERT_INTENTION type) of another record as gap type locks, but does not reset the lock bits of the other record. Also waiting lock requests are inherited as GRANTED gap locks. */ static void lock_rec_inherit_to_gap_if_gap_lock( /*================================*/ const buf_block_t* block, /*!< in: buffer block */ ulint heir_heap_no, /*!< in: heap_no of record which inherits */ ulint heap_no) /*!< in: heap_no of record from which inherited; does NOT reset the locks on this record */ { lock_t* lock; lock_mutex_enter(); for (lock = lock_rec_get_first(lock_sys.rec_hash, block, heap_no); lock != NULL; lock = lock_rec_get_next(heap_no, lock)) { if (!lock_rec_get_insert_intention(lock) && (heap_no == PAGE_HEAP_NO_SUPREMUM || !lock_rec_get_rec_not_gap(lock))) { lock_rec_add_to_queue( LOCK_REC | LOCK_GAP | ulint(lock_get_mode(lock)), block, heir_heap_no, lock->index, lock->trx, FALSE); } } lock_mutex_exit(); } /*************************************************************//** Moves the locks of a record to another record and resets the lock bits of the donating record. */ static void lock_rec_move_low( /*==============*/ hash_table_t* lock_hash, /*!< in: hash table to use */ const buf_block_t* receiver, /*!< in: buffer block containing the receiving record */ const buf_block_t* donator, /*!< in: buffer block containing the donating record */ ulint receiver_heap_no,/*!< in: heap_no of the record which gets the locks; there must be no lock requests on it! */ ulint donator_heap_no)/*!< in: heap_no of the record which gives the locks */ { lock_t* lock; ut_ad(lock_mutex_own()); /* If the lock is predicate lock, it resides on INFIMUM record */ ut_ad(lock_rec_get_first( lock_hash, receiver, receiver_heap_no) == NULL || lock_hash == lock_sys.prdt_hash || lock_hash == lock_sys.prdt_page_hash); for (lock = lock_rec_get_first(lock_hash, donator, donator_heap_no); lock != NULL; lock = lock_rec_get_next(donator_heap_no, lock)) { const ulint type_mode = lock->type_mode; lock_rec_reset_nth_bit(lock, donator_heap_no); if (type_mode & LOCK_WAIT) { lock_reset_lock_and_trx_wait(lock); } /* Note that we FIRST reset the bit, and then set the lock: the function works also if donator == receiver */ lock_rec_add_to_queue( type_mode, receiver, receiver_heap_no, lock->index, lock->trx, FALSE); } ut_ad(lock_rec_get_first(lock_sys.rec_hash, donator, donator_heap_no) == NULL); } /** Move all the granted locks to the front of the given lock list. All the waiting locks will be at the end of the list. @param[in,out] lock_list the given lock list. */ static void lock_move_granted_locks_to_front( UT_LIST_BASE_NODE_T(lock_t)& lock_list) { lock_t* lock; bool seen_waiting_lock = false; for (lock = UT_LIST_GET_FIRST(lock_list); lock; lock = UT_LIST_GET_NEXT(trx_locks, lock)) { if (!seen_waiting_lock) { if (lock->is_waiting()) { seen_waiting_lock = true; } continue; } ut_ad(seen_waiting_lock); if (!lock->is_waiting()) { lock_t* prev = UT_LIST_GET_PREV(trx_locks, lock); ut_a(prev); ut_list_move_to_front(lock_list, lock); lock = prev; } } } /*************************************************************//** Moves the locks of a record to another record and resets the lock bits of the donating record. */ UNIV_INLINE void lock_rec_move( /*==========*/ const buf_block_t* receiver, /*!< in: buffer block containing the receiving record */ const buf_block_t* donator, /*!< in: buffer block containing the donating record */ ulint receiver_heap_no,/*!< in: heap_no of the record which gets the locks; there must be no lock requests on it! */ ulint donator_heap_no)/*!< in: heap_no of the record which gives the locks */ { lock_rec_move_low(lock_sys.rec_hash, receiver, donator, receiver_heap_no, donator_heap_no); } /*************************************************************//** Updates the lock table when we have reorganized a page. NOTE: we copy also the locks set on the infimum of the page; the infimum may carry locks if an update of a record is occurring on the page, and its locks were temporarily stored on the infimum. */ void lock_move_reorganize_page( /*======================*/ const buf_block_t* block, /*!< in: old index page, now reorganized */ const buf_block_t* oblock) /*!< in: copy of the old, not reorganized page */ { lock_t* lock; UT_LIST_BASE_NODE_T(lock_t) old_locks; mem_heap_t* heap = NULL; ulint comp; lock_mutex_enter(); /* FIXME: This needs to deal with predicate lock too */ lock = lock_rec_get_first_on_page(lock_sys.rec_hash, block); if (lock == NULL) { lock_mutex_exit(); return; } heap = mem_heap_create(256); /* Copy first all the locks on the page to heap and reset the bitmaps in the original locks; chain the copies of the locks using the trx_locks field in them. */ UT_LIST_INIT(old_locks, &lock_t::trx_locks); do { /* Make a copy of the lock */ lock_t* old_lock = lock_rec_copy(lock, heap); UT_LIST_ADD_LAST(old_locks, old_lock); /* Reset bitmap of lock */ lock_rec_bitmap_reset(lock); if (lock_get_wait(lock)) { lock_reset_lock_and_trx_wait(lock); } lock = lock_rec_get_next_on_page(lock); } while (lock != NULL); comp = page_is_comp(block->frame); ut_ad(comp == page_is_comp(oblock->frame)); lock_move_granted_locks_to_front(old_locks); DBUG_EXECUTE_IF("do_lock_reverse_page_reorganize", ut_list_reverse(old_locks);); for (lock = UT_LIST_GET_FIRST(old_locks); lock; lock = UT_LIST_GET_NEXT(trx_locks, lock)) { /* NOTE: we copy also the locks set on the infimum and supremum of the page; the infimum may carry locks if an update of a record is occurring on the page, and its locks were temporarily stored on the infimum */ const rec_t* rec1 = page_get_infimum_rec( buf_block_get_frame(block)); const rec_t* rec2 = page_get_infimum_rec( buf_block_get_frame(oblock)); /* Set locks according to old locks */ for (;;) { ulint old_heap_no; ulint new_heap_no; ut_d(const rec_t* const orec = rec1); ut_ad(page_rec_is_metadata(rec1) == page_rec_is_metadata(rec2)); if (comp) { old_heap_no = rec_get_heap_no_new(rec2); new_heap_no = rec_get_heap_no_new(rec1); rec1 = page_rec_get_next_low(rec1, TRUE); rec2 = page_rec_get_next_low(rec2, TRUE); } else { old_heap_no = rec_get_heap_no_old(rec2); new_heap_no = rec_get_heap_no_old(rec1); ut_ad(!memcmp(rec1, rec2, rec_get_data_size_old(rec2))); rec1 = page_rec_get_next_low(rec1, FALSE); rec2 = page_rec_get_next_low(rec2, FALSE); } /* Clear the bit in old_lock. */ if (old_heap_no < lock->un_member.rec_lock.n_bits && lock_rec_reset_nth_bit(lock, old_heap_no)) { ut_ad(!page_rec_is_metadata(orec)); /* NOTE that the old lock bitmap could be too small for the new heap number! */ lock_rec_add_to_queue( lock->type_mode, block, new_heap_no, lock->index, lock->trx, FALSE); } if (new_heap_no == PAGE_HEAP_NO_SUPREMUM) { ut_ad(old_heap_no == PAGE_HEAP_NO_SUPREMUM); break; } } ut_ad(lock_rec_find_set_bit(lock) == ULINT_UNDEFINED); } lock_mutex_exit(); mem_heap_free(heap); #ifdef UNIV_DEBUG_LOCK_VALIDATE ut_ad(lock_rec_validate_page(block)); #endif } /*************************************************************//** Moves the explicit locks on user records to another page if a record list end is moved to another page. */ void lock_move_rec_list_end( /*===================*/ const buf_block_t* new_block, /*!< in: index page to move to */ const buf_block_t* block, /*!< in: index page */ const rec_t* rec) /*!< in: record on page: this is the first record moved */ { lock_t* lock; const ulint comp = page_rec_is_comp(rec); ut_ad(buf_block_get_frame(block) == page_align(rec)); ut_ad(comp == page_is_comp(buf_block_get_frame(new_block))); lock_mutex_enter(); /* Note: when we move locks from record to record, waiting locks and possible granted gap type locks behind them are enqueued in the original order, because new elements are inserted to a hash table to the end of the hash chain, and lock_rec_add_to_queue does not reuse locks if there are waiters in the queue. */ for (lock = lock_rec_get_first_on_page(lock_sys.rec_hash, block); lock; lock = lock_rec_get_next_on_page(lock)) { const rec_t* rec1 = rec; const rec_t* rec2; const ulint type_mode = lock->type_mode; if (comp) { if (page_offset(rec1) == PAGE_NEW_INFIMUM) { rec1 = page_rec_get_next_low(rec1, TRUE); } rec2 = page_rec_get_next_low( buf_block_get_frame(new_block) + PAGE_NEW_INFIMUM, TRUE); } else { if (page_offset(rec1) == PAGE_OLD_INFIMUM) { rec1 = page_rec_get_next_low(rec1, FALSE); } rec2 = page_rec_get_next_low( buf_block_get_frame(new_block) + PAGE_OLD_INFIMUM, FALSE); } /* Copy lock requests on user records to new page and reset the lock bits on the old */ for (;;) { ut_ad(page_rec_is_metadata(rec1) == page_rec_is_metadata(rec2)); ut_d(const rec_t* const orec = rec1); ulint rec1_heap_no; ulint rec2_heap_no; if (comp) { rec1_heap_no = rec_get_heap_no_new(rec1); if (rec1_heap_no == PAGE_HEAP_NO_SUPREMUM) { break; } rec2_heap_no = rec_get_heap_no_new(rec2); rec1 = page_rec_get_next_low(rec1, TRUE); rec2 = page_rec_get_next_low(rec2, TRUE); } else { rec1_heap_no = rec_get_heap_no_old(rec1); if (rec1_heap_no == PAGE_HEAP_NO_SUPREMUM) { break; } rec2_heap_no = rec_get_heap_no_old(rec2); ut_ad(rec_get_data_size_old(rec1) == rec_get_data_size_old(rec2)); ut_ad(!memcmp(rec1, rec2, rec_get_data_size_old(rec1))); rec1 = page_rec_get_next_low(rec1, FALSE); rec2 = page_rec_get_next_low(rec2, FALSE); } if (rec1_heap_no < lock->un_member.rec_lock.n_bits && lock_rec_reset_nth_bit(lock, rec1_heap_no)) { ut_ad(!page_rec_is_metadata(orec)); if (type_mode & LOCK_WAIT) { lock_reset_lock_and_trx_wait(lock); } lock_rec_add_to_queue( type_mode, new_block, rec2_heap_no, lock->index, lock->trx, FALSE); } } } lock_mutex_exit(); #ifdef UNIV_DEBUG_LOCK_VALIDATE ut_ad(lock_rec_validate_page(block)); ut_ad(lock_rec_validate_page(new_block)); #endif } /*************************************************************//** Moves the explicit locks on user records to another page if a record list start is moved to another page. */ void lock_move_rec_list_start( /*=====================*/ const buf_block_t* new_block, /*!< in: index page to move to */ const buf_block_t* block, /*!< in: index page */ const rec_t* rec, /*!< in: record on page: this is the first record NOT copied */ const rec_t* old_end) /*!< in: old previous-to-last record on new_page before the records were copied */ { lock_t* lock; const ulint comp = page_rec_is_comp(rec); ut_ad(block->frame == page_align(rec)); ut_ad(new_block->frame == page_align(old_end)); ut_ad(comp == page_rec_is_comp(old_end)); ut_ad(!page_rec_is_metadata(rec)); lock_mutex_enter(); for (lock = lock_rec_get_first_on_page(lock_sys.rec_hash, block); lock; lock = lock_rec_get_next_on_page(lock)) { const rec_t* rec1; const rec_t* rec2; const ulint type_mode = lock->type_mode; if (comp) { rec1 = page_rec_get_next_low( buf_block_get_frame(block) + PAGE_NEW_INFIMUM, TRUE); rec2 = page_rec_get_next_low(old_end, TRUE); } else { rec1 = page_rec_get_next_low( buf_block_get_frame(block) + PAGE_OLD_INFIMUM, FALSE); rec2 = page_rec_get_next_low(old_end, FALSE); } /* Copy lock requests on user records to new page and reset the lock bits on the old */ while (rec1 != rec) { ut_ad(page_rec_is_metadata(rec1) == page_rec_is_metadata(rec2)); ut_d(const rec_t* const prev = rec1); ulint rec1_heap_no; ulint rec2_heap_no; if (comp) { rec1_heap_no = rec_get_heap_no_new(rec1); rec2_heap_no = rec_get_heap_no_new(rec2); rec1 = page_rec_get_next_low(rec1, TRUE); rec2 = page_rec_get_next_low(rec2, TRUE); } else { rec1_heap_no = rec_get_heap_no_old(rec1); rec2_heap_no = rec_get_heap_no_old(rec2); ut_ad(!memcmp(rec1, rec2, rec_get_data_size_old(rec2))); rec1 = page_rec_get_next_low(rec1, FALSE); rec2 = page_rec_get_next_low(rec2, FALSE); } if (rec1_heap_no < lock->un_member.rec_lock.n_bits && lock_rec_reset_nth_bit(lock, rec1_heap_no)) { ut_ad(!page_rec_is_metadata(prev)); if (type_mode & LOCK_WAIT) { lock_reset_lock_and_trx_wait(lock); } lock_rec_add_to_queue( type_mode, new_block, rec2_heap_no, lock->index, lock->trx, FALSE); } } #ifdef UNIV_DEBUG if (page_rec_is_supremum(rec)) { ulint i; for (i = PAGE_HEAP_NO_USER_LOW; i < lock_rec_get_n_bits(lock); i++) { if (lock_rec_get_nth_bit(lock, i)) { ib::fatal() << "lock_move_rec_list_start():" << i << " not moved in " << (void*) lock; } } } #endif /* UNIV_DEBUG */ } lock_mutex_exit(); #ifdef UNIV_DEBUG_LOCK_VALIDATE ut_ad(lock_rec_validate_page(block)); #endif } /*************************************************************//** Moves the explicit locks on user records to another page if a record list start is moved to another page. */ void lock_rtr_move_rec_list( /*===================*/ const buf_block_t* new_block, /*!< in: index page to move to */ const buf_block_t* block, /*!< in: index page */ rtr_rec_move_t* rec_move, /*!< in: recording records moved */ ulint num_move) /*!< in: num of rec to move */ { lock_t* lock; ulint comp; if (!num_move) { return; } comp = page_rec_is_comp(rec_move[0].old_rec); ut_ad(block->frame == page_align(rec_move[0].old_rec)); ut_ad(new_block->frame == page_align(rec_move[0].new_rec)); ut_ad(comp == page_rec_is_comp(rec_move[0].new_rec)); lock_mutex_enter(); for (lock = lock_rec_get_first_on_page(lock_sys.rec_hash, block); lock; lock = lock_rec_get_next_on_page(lock)) { ulint moved = 0; const rec_t* rec1; const rec_t* rec2; const ulint type_mode = lock->type_mode; /* Copy lock requests on user records to new page and reset the lock bits on the old */ while (moved < num_move) { ulint rec1_heap_no; ulint rec2_heap_no; rec1 = rec_move[moved].old_rec; rec2 = rec_move[moved].new_rec; ut_ad(!page_rec_is_metadata(rec1)); ut_ad(!page_rec_is_metadata(rec2)); if (comp) { rec1_heap_no = rec_get_heap_no_new(rec1); rec2_heap_no = rec_get_heap_no_new(rec2); } else { rec1_heap_no = rec_get_heap_no_old(rec1); rec2_heap_no = rec_get_heap_no_old(rec2); ut_ad(!memcmp(rec1, rec2, rec_get_data_size_old(rec2))); } if (rec1_heap_no < lock->un_member.rec_lock.n_bits && lock_rec_reset_nth_bit(lock, rec1_heap_no)) { if (type_mode & LOCK_WAIT) { lock_reset_lock_and_trx_wait(lock); } lock_rec_add_to_queue( type_mode, new_block, rec2_heap_no, lock->index, lock->trx, FALSE); rec_move[moved].moved = true; } moved++; } } lock_mutex_exit(); #ifdef UNIV_DEBUG_LOCK_VALIDATE ut_ad(lock_rec_validate_page(block)); #endif } /*************************************************************//** Updates the lock table when a page is split to the right. */ void lock_update_split_right( /*====================*/ const buf_block_t* right_block, /*!< in: right page */ const buf_block_t* left_block) /*!< in: left page */ { ulint heap_no = lock_get_min_heap_no(right_block); lock_mutex_enter(); /* Move the locks on the supremum of the left page to the supremum of the right page */ lock_rec_move(right_block, left_block, PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM); /* Inherit the locks to the supremum of left page from the successor of the infimum on right page */ lock_rec_inherit_to_gap(left_block, right_block, PAGE_HEAP_NO_SUPREMUM, heap_no); lock_mutex_exit(); } /*************************************************************//** Updates the lock table when a page is merged to the right. */ void lock_update_merge_right( /*====================*/ const buf_block_t* right_block, /*!< in: right page to which merged */ const rec_t* orig_succ, /*!< in: original successor of infimum on the right page before merge */ const buf_block_t* left_block) /*!< in: merged index page which will be discarded */ { ut_ad(!page_rec_is_metadata(orig_succ)); lock_mutex_enter(); /* Inherit the locks from the supremum of the left page to the original successor of infimum on the right page, to which the left page was merged */ lock_rec_inherit_to_gap(right_block, left_block, page_rec_get_heap_no(orig_succ), PAGE_HEAP_NO_SUPREMUM); /* Reset the locks on the supremum of the left page, releasing waiting transactions */ lock_rec_reset_and_release_wait_low( lock_sys.rec_hash, left_block, PAGE_HEAP_NO_SUPREMUM); /* there should exist no page lock on the left page, otherwise, it will be blocked from merge */ ut_ad(!lock_rec_get_first_on_page_addr(lock_sys.prdt_page_hash, left_block->page.id.space(), left_block->page.id.page_no())); lock_rec_free_all_from_discard_page(left_block); lock_mutex_exit(); } /*************************************************************//** Updates the lock table when the root page is copied to another in btr_root_raise_and_insert. Note that we leave lock structs on the root page, even though they do not make sense on other than leaf pages: the reason is that in a pessimistic update the infimum record of the root page will act as a dummy carrier of the locks of the record to be updated. */ void lock_update_root_raise( /*===================*/ const buf_block_t* block, /*!< in: index page to which copied */ const buf_block_t* root) /*!< in: root page */ { lock_mutex_enter(); /* Move the locks on the supremum of the root to the supremum of block */ lock_rec_move(block, root, PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM); lock_mutex_exit(); } /*************************************************************//** Updates the lock table when a page is copied to another and the original page is removed from the chain of leaf pages, except if page is the root! */ void lock_update_copy_and_discard( /*=========================*/ const buf_block_t* new_block, /*!< in: index page to which copied */ const buf_block_t* block) /*!< in: index page; NOT the root! */ { lock_mutex_enter(); /* Move the locks on the supremum of the old page to the supremum of new_page */ lock_rec_move(new_block, block, PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM); lock_rec_free_all_from_discard_page(block); lock_mutex_exit(); } /*************************************************************//** Updates the lock table when a page is split to the left. */ void lock_update_split_left( /*===================*/ const buf_block_t* right_block, /*!< in: right page */ const buf_block_t* left_block) /*!< in: left page */ { ulint heap_no = lock_get_min_heap_no(right_block); lock_mutex_enter(); /* Inherit the locks to the supremum of the left page from the successor of the infimum on the right page */ lock_rec_inherit_to_gap(left_block, right_block, PAGE_HEAP_NO_SUPREMUM, heap_no); lock_mutex_exit(); } /*************************************************************//** Updates the lock table when a page is merged to the left. */ void lock_update_merge_left( /*===================*/ const buf_block_t* left_block, /*!< in: left page to which merged */ const rec_t* orig_pred, /*!< in: original predecessor of supremum on the left page before merge */ const buf_block_t* right_block) /*!< in: merged index page which will be discarded */ { const rec_t* left_next_rec; ut_ad(left_block->frame == page_align(orig_pred)); lock_mutex_enter(); left_next_rec = page_rec_get_next_const(orig_pred); if (!page_rec_is_supremum(left_next_rec)) { /* Inherit the locks on the supremum of the left page to the first record which was moved from the right page */ lock_rec_inherit_to_gap(left_block, left_block, page_rec_get_heap_no(left_next_rec), PAGE_HEAP_NO_SUPREMUM); /* Reset the locks on the supremum of the left page, releasing waiting transactions */ lock_rec_reset_and_release_wait_low( lock_sys.rec_hash, left_block, PAGE_HEAP_NO_SUPREMUM); } /* Move the locks from the supremum of right page to the supremum of the left page */ lock_rec_move(left_block, right_block, PAGE_HEAP_NO_SUPREMUM, PAGE_HEAP_NO_SUPREMUM); /* there should exist no page lock on the right page, otherwise, it will be blocked from merge */ ut_ad(!lock_rec_get_first_on_page_addr( lock_sys.prdt_page_hash, right_block->page.id.space(), right_block->page.id.page_no())); lock_rec_free_all_from_discard_page(right_block); lock_mutex_exit(); } /*************************************************************//** Resets the original locks on heir and replaces them with gap type locks inherited from rec. */ void lock_rec_reset_and_inherit_gap_locks( /*=================================*/ const buf_block_t* heir_block, /*!< in: block containing the record which inherits */ const buf_block_t* block, /*!< in: block containing the record from which inherited; does NOT reset the locks on this record */ ulint heir_heap_no, /*!< in: heap_no of the inheriting record */ ulint heap_no) /*!< in: heap_no of the donating record */ { lock_mutex_enter(); lock_rec_reset_and_release_wait(heir_block, heir_heap_no); lock_rec_inherit_to_gap(heir_block, block, heir_heap_no, heap_no); lock_mutex_exit(); } /*************************************************************//** Updates the lock table when a page is discarded. */ void lock_update_discard( /*================*/ const buf_block_t* heir_block, /*!< in: index page which will inherit the locks */ ulint heir_heap_no, /*!< in: heap_no of the record which will inherit the locks */ const buf_block_t* block) /*!< in: index page which will be discarded */ { const page_t* page = block->frame; const rec_t* rec; ulint heap_no; lock_mutex_enter(); if (lock_rec_get_first_on_page(lock_sys.rec_hash, block)) { ut_ad(!lock_rec_get_first_on_page(lock_sys.prdt_hash, block)); ut_ad(!lock_rec_get_first_on_page(lock_sys.prdt_page_hash, block)); /* Inherit all the locks on the page to the record and reset all the locks on the page */ if (page_is_comp(page)) { rec = page + PAGE_NEW_INFIMUM; do { heap_no = rec_get_heap_no_new(rec); lock_rec_inherit_to_gap(heir_block, block, heir_heap_no, heap_no); lock_rec_reset_and_release_wait( block, heap_no); rec = page + rec_get_next_offs(rec, TRUE); } while (heap_no != PAGE_HEAP_NO_SUPREMUM); } else { rec = page + PAGE_OLD_INFIMUM; do { heap_no = rec_get_heap_no_old(rec); lock_rec_inherit_to_gap(heir_block, block, heir_heap_no, heap_no); lock_rec_reset_and_release_wait( block, heap_no); rec = page + rec_get_next_offs(rec, FALSE); } while (heap_no != PAGE_HEAP_NO_SUPREMUM); } lock_rec_free_all_from_discard_page_low( block->page.id.space(), block->page.id.page_no(), lock_sys.rec_hash); } else { lock_rec_free_all_from_discard_page_low( block->page.id.space(), block->page.id.page_no(), lock_sys.prdt_hash); lock_rec_free_all_from_discard_page_low( block->page.id.space(), block->page.id.page_no(), lock_sys.prdt_page_hash); } lock_mutex_exit(); } /*************************************************************//** Updates the lock table when a new user record is inserted. */ void lock_update_insert( /*===============*/ const buf_block_t* block, /*!< in: buffer block containing rec */ const rec_t* rec) /*!< in: the inserted record */ { ulint receiver_heap_no; ulint donator_heap_no; ut_ad(block->frame == page_align(rec)); ut_ad(!page_rec_is_metadata(rec)); /* Inherit the gap-locking locks for rec, in gap mode, from the next record */ if (page_rec_is_comp(rec)) { receiver_heap_no = rec_get_heap_no_new(rec); donator_heap_no = rec_get_heap_no_new( page_rec_get_next_low(rec, TRUE)); } else { receiver_heap_no = rec_get_heap_no_old(rec); donator_heap_no = rec_get_heap_no_old( page_rec_get_next_low(rec, FALSE)); } lock_rec_inherit_to_gap_if_gap_lock( block, receiver_heap_no, donator_heap_no); } /*************************************************************//** Updates the lock table when a record is removed. */ void lock_update_delete( /*===============*/ const buf_block_t* block, /*!< in: buffer block containing rec */ const rec_t* rec) /*!< in: the record to be removed */ { const page_t* page = block->frame; ulint heap_no; ulint next_heap_no; ut_ad(page == page_align(rec)); ut_ad(!page_rec_is_metadata(rec)); if (page_is_comp(page)) { heap_no = rec_get_heap_no_new(rec); next_heap_no = rec_get_heap_no_new(page + rec_get_next_offs(rec, TRUE)); } else { heap_no = rec_get_heap_no_old(rec); next_heap_no = rec_get_heap_no_old(page + rec_get_next_offs(rec, FALSE)); } lock_mutex_enter(); /* Let the next record inherit the locks from rec, in gap mode */ lock_rec_inherit_to_gap(block, block, next_heap_no, heap_no); /* Reset the lock bits on rec and release waiting transactions */ lock_rec_reset_and_release_wait(block, heap_no); lock_mutex_exit(); } /*********************************************************************//** Stores on the page infimum record the explicit locks of another record. This function is used to store the lock state of a record when it is updated and the size of the record changes in the update. The record is moved in such an update, perhaps to another page. The infimum record acts as a dummy carrier record, taking care of lock releases while the actual record is being moved. */ void lock_rec_store_on_page_infimum( /*===========================*/ const buf_block_t* block, /*!< in: buffer block containing rec */ const rec_t* rec) /*!< in: record whose lock state is stored on the infimum record of the same page; lock bits are reset on the record */ { ulint heap_no = page_rec_get_heap_no(rec); ut_ad(block->frame == page_align(rec)); lock_mutex_enter(); lock_rec_move(block, block, PAGE_HEAP_NO_INFIMUM, heap_no); lock_mutex_exit(); } /*********************************************************************//** Restores the state of explicit lock requests on a single record, where the state was stored on the infimum of the page. */ void lock_rec_restore_from_page_infimum( /*===============================*/ const buf_block_t* block, /*!< in: buffer block containing rec */ const rec_t* rec, /*!< in: record whose lock state is restored */ const buf_block_t* donator)/*!< in: page (rec is not necessarily on this page) whose infimum stored the lock state; lock bits are reset on the infimum */ { ulint heap_no = page_rec_get_heap_no(rec); lock_mutex_enter(); lock_rec_move(block, donator, heap_no, PAGE_HEAP_NO_INFIMUM); lock_mutex_exit(); } /*========================= TABLE LOCKS ==============================*/ /** Functor for accessing the embedded node within a table lock. */ struct TableLockGetNode { ut_list_node& operator() (lock_t& elem) { return(elem.un_member.tab_lock.locks); } }; /*********************************************************************//** Creates a table lock object and adds it as the last in the lock queue of the table. Does NOT check for deadlocks or lock compatibility. @return own: new lock object */ UNIV_INLINE lock_t* lock_table_create( /*==============*/ dict_table_t* table, /*!< in/out: database table in dictionary cache */ ulint type_mode,/*!< in: lock mode possibly ORed with LOCK_WAIT */ trx_t* trx /*!< in: trx */ #ifdef WITH_WSREP , lock_t* c_lock = NULL /*!< in: conflicting lock */ #endif ) { lock_t* lock; ut_ad(table && trx); ut_ad(lock_mutex_own()); ut_ad(trx_mutex_own(trx)); ut_ad(trx->is_recovered || trx->state == TRX_STATE_ACTIVE); ut_ad(!trx->auto_commit || trx->will_lock); if ((type_mode & LOCK_MODE_MASK) == LOCK_AUTO_INC) { ++table->n_waiting_or_granted_auto_inc_locks; } /* For AUTOINC locking we reuse the lock instance only if there is no wait involved else we allocate the waiting lock from the transaction lock heap. */ if (type_mode == LOCK_AUTO_INC) { lock = table->autoinc_lock; table->autoinc_trx = trx; ib_vector_push(trx->autoinc_locks, &lock); } else if (trx->lock.table_cached < UT_ARR_SIZE(trx->lock.table_pool)) { lock = &trx->lock.table_pool[trx->lock.table_cached++]; } else { lock = static_cast( mem_heap_alloc(trx->lock.lock_heap, sizeof(*lock))); } lock->type_mode = ib_uint32_t(type_mode | LOCK_TABLE); lock->trx = trx; lock->un_member.tab_lock.table = table; ut_ad(table->get_ref_count() > 0 || !table->can_be_evicted); UT_LIST_ADD_LAST(trx->lock.trx_locks, lock); #ifdef WITH_WSREP if (c_lock && trx->is_wsrep()) { if (wsrep_thd_is_BF(trx->mysql_thd, FALSE)) { ut_list_insert(table->locks, c_lock, lock, TableLockGetNode()); if (UNIV_UNLIKELY(wsrep_debug)) { wsrep_report_bf_lock_wait(trx->mysql_thd, trx->id); wsrep_report_bf_lock_wait(c_lock->trx->mysql_thd, c_lock->trx->id); } } else { ut_list_append(table->locks, lock, TableLockGetNode()); } trx_mutex_enter(c_lock->trx); if (c_lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) { c_lock->trx->lock.was_chosen_as_deadlock_victim = TRUE; if (UNIV_UNLIKELY(wsrep_debug)) { wsrep_report_bf_lock_wait(trx->mysql_thd, trx->id); wsrep_report_bf_lock_wait(c_lock->trx->mysql_thd, c_lock->trx->id); wsrep_print_wait_locks(c_lock); } /* The lock release will call lock_grant(), which would acquire trx->mutex again. */ trx_mutex_exit(trx); lock_cancel_waiting_and_release( c_lock->trx->lock.wait_lock); trx_mutex_enter(trx); } trx_mutex_exit(c_lock->trx); } else #endif /* WITH_WSREP */ ut_list_append(table->locks, lock, TableLockGetNode()); if (type_mode & LOCK_WAIT) { lock_set_lock_and_trx_wait(lock, trx); } lock->trx->lock.table_locks.push_back(lock); MONITOR_INC(MONITOR_TABLELOCK_CREATED); MONITOR_INC(MONITOR_NUM_TABLELOCK); return(lock); } /*************************************************************//** Pops autoinc lock requests from the transaction's autoinc_locks. We handle the case where there are gaps in the array and they need to be popped off the stack. */ UNIV_INLINE void lock_table_pop_autoinc_locks( /*=========================*/ trx_t* trx) /*!< in/out: transaction that owns the AUTOINC locks */ { ut_ad(lock_mutex_own()); ut_ad(!ib_vector_is_empty(trx->autoinc_locks)); /* Skip any gaps, gaps are NULL lock entries in the trx->autoinc_locks vector. */ do { ib_vector_pop(trx->autoinc_locks); if (ib_vector_is_empty(trx->autoinc_locks)) { return; } } while (*(lock_t**) ib_vector_get_last(trx->autoinc_locks) == NULL); } /*************************************************************//** Removes an autoinc lock request from the transaction's autoinc_locks. */ UNIV_INLINE void lock_table_remove_autoinc_lock( /*===========================*/ lock_t* lock, /*!< in: table lock */ trx_t* trx) /*!< in/out: transaction that owns the lock */ { lock_t* autoinc_lock; lint i = ib_vector_size(trx->autoinc_locks) - 1; ut_ad(lock_mutex_own()); ut_ad(lock_get_mode(lock) == LOCK_AUTO_INC); ut_ad(lock_get_type_low(lock) & LOCK_TABLE); ut_ad(!ib_vector_is_empty(trx->autoinc_locks)); /* With stored functions and procedures the user may drop a table within the same "statement". This special case has to be handled by deleting only those AUTOINC locks that were held by the table being dropped. */ autoinc_lock = *static_cast( ib_vector_get(trx->autoinc_locks, i)); /* This is the default fast case. */ if (autoinc_lock == lock) { lock_table_pop_autoinc_locks(trx); } else { /* The last element should never be NULL */ ut_a(autoinc_lock != NULL); /* Handle freeing the locks from within the stack. */ while (--i >= 0) { autoinc_lock = *static_cast( ib_vector_get(trx->autoinc_locks, i)); if (autoinc_lock == lock) { void* null_var = NULL; ib_vector_set(trx->autoinc_locks, i, &null_var); return; } } /* Must find the autoinc lock. */ ut_error; } } /*************************************************************//** Removes a table lock request from the queue and the trx list of locks; this is a low-level function which does NOT check if waiting requests can now be granted. */ UNIV_INLINE void lock_table_remove_low( /*==================*/ lock_t* lock) /*!< in/out: table lock */ { trx_t* trx; dict_table_t* table; ut_ad(lock_mutex_own()); trx = lock->trx; table = lock->un_member.tab_lock.table; /* Remove the table from the transaction's AUTOINC vector, if the lock that is being released is an AUTOINC lock. */ if (lock_get_mode(lock) == LOCK_AUTO_INC) { /* The table's AUTOINC lock can get transferred to another transaction before we get here. */ if (table->autoinc_trx == trx) { table->autoinc_trx = NULL; } /* The locks must be freed in the reverse order from the one in which they were acquired. This is to avoid traversing the AUTOINC lock vector unnecessarily. We only store locks that were granted in the trx->autoinc_locks vector (see lock_table_create() and lock_grant()). Therefore it can be empty and we need to check for that. */ if (!lock_get_wait(lock) && !ib_vector_is_empty(trx->autoinc_locks)) { lock_table_remove_autoinc_lock(lock, trx); } ut_a(table->n_waiting_or_granted_auto_inc_locks > 0); table->n_waiting_or_granted_auto_inc_locks--; } UT_LIST_REMOVE(trx->lock.trx_locks, lock); ut_list_remove(table->locks, lock, TableLockGetNode()); MONITOR_INC(MONITOR_TABLELOCK_REMOVED); MONITOR_DEC(MONITOR_NUM_TABLELOCK); } /*********************************************************************//** Enqueues a waiting request for a table lock which cannot be granted immediately. Checks for deadlocks. @retval DB_LOCK_WAIT if the waiting lock was enqueued @retval DB_DEADLOCK if this transaction was chosen as the victim @retval DB_SUCCESS if the other transaction committed or aborted */ static dberr_t lock_table_enqueue_waiting( /*=======================*/ ulint mode, /*!< in: lock mode this transaction is requesting */ dict_table_t* table, /*!< in/out: table */ que_thr_t* thr /*!< in: query thread */ #ifdef WITH_WSREP , lock_t* c_lock /*!< in: conflicting lock or NULL */ #endif ) { trx_t* trx; lock_t* lock; ut_ad(lock_mutex_own()); ut_ad(!srv_read_only_mode); trx = thr_get_trx(thr); ut_ad(trx_mutex_own(trx)); ut_a(!que_thr_stop(thr)); switch (trx_get_dict_operation(trx)) { case TRX_DICT_OP_NONE: break; case TRX_DICT_OP_TABLE: case TRX_DICT_OP_INDEX: ib::error() << "A table lock wait happens in a dictionary" " operation. Table " << table->name << ". " << BUG_REPORT_MSG; ut_ad(0); } #ifdef WITH_WSREP if (trx->is_wsrep() && trx->lock.was_chosen_as_deadlock_victim) { return(DB_DEADLOCK); } #endif /* WITH_WSREP */ /* Enqueue the lock request that will wait to be granted */ lock = lock_table_create(table, ulint(mode) | LOCK_WAIT, trx #ifdef WITH_WSREP , c_lock #endif ); const trx_t* victim_trx = DeadlockChecker::check_and_resolve(lock, trx); if (victim_trx != 0) { ut_ad(victim_trx == trx); /* The order here is important, we don't want to lose the state of the lock before calling remove. */ lock_table_remove_low(lock); lock_reset_lock_and_trx_wait(lock); return(DB_DEADLOCK); } else if (trx->lock.wait_lock == NULL) { /* Deadlock resolution chose another transaction as a victim, and we accidentally got our lock granted! */ return(DB_SUCCESS); } trx->lock.que_state = TRX_QUE_LOCK_WAIT; trx->lock.wait_started = time(NULL); trx->lock.was_chosen_as_deadlock_victim = false; ut_a(que_thr_stop(thr)); MONITOR_INC(MONITOR_TABLELOCK_WAIT); return(DB_LOCK_WAIT); } /*********************************************************************//** Checks if other transactions have an incompatible mode lock request in the lock queue. @return lock or NULL */ UNIV_INLINE lock_t* lock_table_other_has_incompatible( /*==============================*/ const trx_t* trx, /*!< in: transaction, or NULL if all transactions should be included */ ulint wait, /*!< in: LOCK_WAIT if also waiting locks are taken into account, or 0 if not */ const dict_table_t* table, /*!< in: table */ lock_mode mode) /*!< in: lock mode */ { lock_t* lock; ut_ad(lock_mutex_own()); for (lock = UT_LIST_GET_LAST(table->locks); lock != NULL; lock = UT_LIST_GET_PREV(un_member.tab_lock.locks, lock)) { if (lock->trx != trx && !lock_mode_compatible(lock_get_mode(lock), mode) && (wait || !lock_get_wait(lock))) { #ifdef WITH_WSREP if (lock->trx->is_wsrep()) { if (UNIV_UNLIKELY(wsrep_debug)) { ib::info() << "WSREP: table lock abort for table:" << table->name; ib::info() << " SQL: " << wsrep_thd_query(lock->trx->mysql_thd); } trx_mutex_enter(lock->trx); wsrep_kill_victim((trx_t *)trx, (lock_t *)lock); trx_mutex_exit(lock->trx); } #endif /* WITH_WSREP */ return(lock); } } return(NULL); } /*********************************************************************//** Locks the specified database table in the mode given. If the lock cannot be granted immediately, the query thread is put to wait. @return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */ dberr_t lock_table( /*=======*/ ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is set, does nothing */ dict_table_t* table, /*!< in/out: database table in dictionary cache */ lock_mode mode, /*!< in: lock mode */ que_thr_t* thr) /*!< in: query thread */ { trx_t* trx; dberr_t err; lock_t* wait_for; ut_ad(table && thr); /* Given limited visibility of temp-table we can avoid locking overhead */ if ((flags & BTR_NO_LOCKING_FLAG) || srv_read_only_mode || table->is_temporary()) { return(DB_SUCCESS); } ut_a(flags == 0); trx = thr_get_trx(thr); /* Look for equal or stronger locks the same trx already has on the table. No need to acquire the lock mutex here because only this transacton can add/access table locks to/from trx_t::table_locks. */ if (lock_table_has(trx, table, mode)) { return(DB_SUCCESS); } /* Read only transactions can write to temp tables, we don't want to promote them to RW transactions. Their updates cannot be visible to other transactions. Therefore we can keep them out of the read views. */ if ((mode == LOCK_IX || mode == LOCK_X) && !trx->read_only && trx->rsegs.m_redo.rseg == 0) { trx_set_rw_mode(trx); } lock_mutex_enter(); DBUG_EXECUTE_IF("fatal-semaphore-timeout", { os_thread_sleep(3600000000LL); }); /* We have to check if the new lock is compatible with any locks other transactions have in the table lock queue. */ wait_for = lock_table_other_has_incompatible( trx, LOCK_WAIT, table, mode); trx_mutex_enter(trx); /* Another trx has a request on the table in an incompatible mode: this trx may have to wait */ if (wait_for != NULL) { err = lock_table_enqueue_waiting(ulint(mode) | flags, table, thr #ifdef WITH_WSREP , wait_for #endif ); } else { lock_table_create(table, ulint(mode) | flags, trx); ut_a(!flags || mode == LOCK_S || mode == LOCK_X); err = DB_SUCCESS; } lock_mutex_exit(); trx_mutex_exit(trx); return(err); } /*********************************************************************//** Creates a table IX lock object for a resurrected transaction. */ void lock_table_ix_resurrect( /*====================*/ dict_table_t* table, /*!< in/out: table */ trx_t* trx) /*!< in/out: transaction */ { ut_ad(trx->is_recovered); if (lock_table_has(trx, table, LOCK_IX)) { return; } lock_mutex_enter(); /* We have to check if the new lock is compatible with any locks other transactions have in the table lock queue. */ ut_ad(!lock_table_other_has_incompatible( trx, LOCK_WAIT, table, LOCK_IX)); trx_mutex_enter(trx); lock_table_create(table, LOCK_IX, trx); lock_mutex_exit(); trx_mutex_exit(trx); } /*********************************************************************//** Checks if a waiting table lock request still has to wait in a queue. @return TRUE if still has to wait */ static bool lock_table_has_to_wait_in_queue( /*============================*/ const lock_t* wait_lock) /*!< in: waiting table lock */ { const dict_table_t* table; const lock_t* lock; ut_ad(lock_mutex_own()); ut_ad(lock_get_wait(wait_lock)); table = wait_lock->un_member.tab_lock.table; for (lock = UT_LIST_GET_FIRST(table->locks); lock != wait_lock; lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock)) { if (lock_has_to_wait(wait_lock, lock)) { return(true); } } return(false); } /*************************************************************//** Removes a table lock request, waiting or granted, from the queue and grants locks to other transactions in the queue, if they now are entitled to a lock. */ static void lock_table_dequeue( /*===============*/ lock_t* in_lock)/*!< in/out: table lock object; transactions waiting behind will get their lock requests granted, if they are now qualified to it */ { ut_ad(lock_mutex_own()); ut_a(lock_get_type_low(in_lock) == LOCK_TABLE); lock_t* lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, in_lock); lock_table_remove_low(in_lock); /* Check if waiting locks in the queue can now be granted: grant locks if there are no conflicting locks ahead. */ for (/* No op */; lock != NULL; lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock)) { if (lock_get_wait(lock) && !lock_table_has_to_wait_in_queue(lock)) { /* Grant the lock */ ut_ad(in_lock->trx != lock->trx); lock_grant(lock); } } } /** Sets a lock on a table based on the given mode. @param[in] table table to lock @param[in,out] trx transaction @param[in] mode LOCK_X or LOCK_S @return error code or DB_SUCCESS. */ dberr_t lock_table_for_trx( dict_table_t* table, trx_t* trx, enum lock_mode mode) { mem_heap_t* heap; que_thr_t* thr; dberr_t err; sel_node_t* node; heap = mem_heap_create(512); node = sel_node_create(heap); thr = pars_complete_graph_for_exec(node, trx, heap, NULL); thr->graph->state = QUE_FORK_ACTIVE; /* We use the select query graph as the dummy graph needed in the lock module call */ thr = static_cast( que_fork_get_first_thr( static_cast(que_node_get_parent(thr)))); que_thr_move_to_run_state_for_mysql(thr, trx); run_again: thr->run_node = thr; thr->prev_node = thr->common.parent; err = lock_table(0, table, mode, thr); trx->error_state = err; if (UNIV_LIKELY(err == DB_SUCCESS)) { que_thr_stop_for_mysql_no_error(thr, trx); } else { que_thr_stop_for_mysql(thr); if (row_mysql_handle_errors(&err, trx, thr, NULL)) { goto run_again; } } que_graph_free(thr->graph); trx->op_info = ""; return(err); } /*=========================== LOCK RELEASE ==============================*/ static void lock_grant_and_move_on_rec( hash_table_t* lock_hash, lock_t* first_lock, ulint heap_no) { lock_t* lock; lock_t* previous; ulint space; ulint page_no; ulint rec_fold; space = first_lock->un_member.rec_lock.space; page_no = first_lock->un_member.rec_lock.page_no; rec_fold = lock_rec_fold(space, page_no); previous = (lock_t *) hash_get_nth_cell(lock_hash, hash_calc_hash(rec_fold, lock_hash))->node; if (previous == NULL) { return; } if (previous == first_lock) { lock = previous; } else { while (previous->hash && previous->hash != first_lock) { previous = previous->hash; } lock = previous->hash; } /* Grant locks if there are no conflicting locks ahead. Move granted locks to the head of the list. */ while (lock) { ut_ad(!lock->trx->is_wsrep()); /* If the lock is a wait lock on this page, and it does not need to wait. */ if (lock->un_member.rec_lock.space == space && lock->un_member.rec_lock.page_no == page_no && lock_rec_get_nth_bit(lock, heap_no) && lock_get_wait(lock) && !lock_rec_has_to_wait_in_queue(lock)) { lock_grant(lock); if (previous != NULL) { /* Move the lock to the head of the list. */ HASH_GET_NEXT(hash, previous) = HASH_GET_NEXT(hash, lock); lock_rec_insert_to_head(lock, rec_fold); } else { /* Already at the head of the list. */ previous = lock; } /* Move on to the next lock. */ lock = static_cast(HASH_GET_NEXT(hash, previous)); } else { previous = lock; lock = static_cast(HASH_GET_NEXT(hash, lock)); } } } /*************************************************************//** Removes a granted record lock of a transaction from the queue and grants locks to other transactions waiting in the queue if they now are entitled to a lock. */ void lock_rec_unlock( /*============*/ trx_t* trx, /*!< in/out: transaction that has set a record lock */ const buf_block_t* block, /*!< in: buffer block containing rec */ const rec_t* rec, /*!< in: record */ lock_mode lock_mode)/*!< in: LOCK_S or LOCK_X */ { lock_t* first_lock; lock_t* lock; ulint heap_no; ut_ad(trx); ut_ad(rec); ut_ad(block->frame == page_align(rec)); ut_ad(!trx->lock.wait_lock); ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE)); ut_ad(!page_rec_is_metadata(rec)); heap_no = page_rec_get_heap_no(rec); lock_mutex_enter(); trx_mutex_enter(trx); first_lock = lock_rec_get_first(lock_sys.rec_hash, block, heap_no); /* Find the last lock with the same lock_mode and transaction on the record. */ for (lock = first_lock; lock != NULL; lock = lock_rec_get_next(heap_no, lock)) { if (lock->trx == trx && lock_get_mode(lock) == lock_mode) { goto released; } } lock_mutex_exit(); trx_mutex_exit(trx); { ib::error err; err << "Unlock row could not find a " << lock_mode << " mode lock on the record. Current statement: "; size_t stmt_len; if (const char* stmt = innobase_get_stmt_unsafe( trx->mysql_thd, &stmt_len)) { err.write(stmt, stmt_len); } } return; released: ut_a(!lock_get_wait(lock)); lock_rec_reset_nth_bit(lock, heap_no); if (innodb_lock_schedule_algorithm == INNODB_LOCK_SCHEDULE_ALGORITHM_FCFS || thd_is_replication_slave_thread(lock->trx->mysql_thd)) { /* Check if we can now grant waiting lock requests */ for (lock = first_lock; lock != NULL; lock = lock_rec_get_next(heap_no, lock)) { if (!lock_get_wait(lock)) { continue; } const lock_t* c = lock_rec_has_to_wait_in_queue(lock); if (!c) { /* Grant the lock */ ut_ad(trx != lock->trx); lock_grant(lock); } } } else { lock_grant_and_move_on_rec(lock_sys.rec_hash, first_lock, heap_no); } lock_mutex_exit(); trx_mutex_exit(trx); } #ifdef UNIV_DEBUG /*********************************************************************//** Check if a transaction that has X or IX locks has set the dict_op code correctly. */ static void lock_check_dict_lock( /*==================*/ const lock_t* lock) /*!< in: lock to check */ { if (lock_get_type_low(lock) == LOCK_REC) { /* Check if the transcation locked a record in a system table in X mode. It should have set the dict_op code correctly if it did. */ if (lock->index->table->id < DICT_HDR_FIRST_ID && lock_get_mode(lock) == LOCK_X) { ut_ad(lock_get_mode(lock) != LOCK_IX); ut_ad(lock->trx->dict_operation != TRX_DICT_OP_NONE); } } else { ut_ad(lock_get_type_low(lock) & LOCK_TABLE); const dict_table_t* table; table = lock->un_member.tab_lock.table; /* Check if the transcation locked a system table in IX mode. It should have set the dict_op code correctly if it did. */ if (table->id < DICT_HDR_FIRST_ID && (lock_get_mode(lock) == LOCK_X || lock_get_mode(lock) == LOCK_IX)) { ut_ad(lock->trx->dict_operation != TRX_DICT_OP_NONE); } } } #endif /* UNIV_DEBUG */ /** Release the explicit locks of a committing transaction, and release possible other transactions waiting because of these locks. */ void lock_release(trx_t* trx) { #ifdef UNIV_DEBUG std::set to_evict; if (innodb_evict_tables_on_commit_debug && !trx->is_recovered) # if 1 /* if dict_stats_exec_sql() were not playing dirty tricks */ if (!mutex_own(&dict_sys->mutex)) # else /* this would be more proper way to do it */ if (!trx->dict_operation_lock_mode && !trx->dict_operation) # endif for (trx_mod_tables_t::const_iterator it= trx->mod_tables.begin(); it != trx->mod_tables.end(); ++it) if (!it->first->is_temporary()) to_evict.insert(it->first->id); #endif ulint count = 0; trx_id_t max_trx_id = trx_sys.get_max_trx_id(); lock_mutex_enter(); ut_ad(!trx_mutex_own(trx)); for (lock_t* lock = UT_LIST_GET_LAST(trx->lock.trx_locks); lock != NULL; lock = UT_LIST_GET_LAST(trx->lock.trx_locks)) { ut_d(lock_check_dict_lock(lock)); if (lock_get_type_low(lock) == LOCK_REC) { lock_rec_dequeue_from_page(lock); } else { dict_table_t* table; table = lock->un_member.tab_lock.table; if (lock_get_mode(lock) != LOCK_IS && trx->undo_no != 0) { /* The trx may have modified the table. We block the use of the MySQL query cache for all currently active transactions. */ table->query_cache_inv_trx_id = max_trx_id; } lock_table_dequeue(lock); } if (count == LOCK_RELEASE_INTERVAL) { /* Release the mutex for a while, so that we do not monopolize it */ lock_mutex_exit(); lock_mutex_enter(); count = 0; } ++count; } lock_mutex_exit(); #ifdef UNIV_DEBUG if (to_evict.empty()) { return; } mutex_enter(&dict_sys->mutex); lock_mutex_enter(); for (std::set::const_iterator i = to_evict.begin(); i != to_evict.end(); ++i) { if (dict_table_t *table = dict_table_open_on_id( *i, TRUE, DICT_TABLE_OP_OPEN_ONLY_IF_CACHED)) { if (!table->get_ref_count() && !UT_LIST_GET_LEN(table->locks)) { dict_table_remove_from_cache_low(table, true); } } } lock_mutex_exit(); mutex_exit(&dict_sys->mutex); #endif } /* True if a lock mode is S or X */ #define IS_LOCK_S_OR_X(lock) \ (lock_get_mode(lock) == LOCK_S \ || lock_get_mode(lock) == LOCK_X) /*********************************************************************//** Removes table locks of the transaction on a table to be dropped. */ static void lock_trx_table_locks_remove( /*========================*/ const lock_t* lock_to_remove) /*!< in: lock to remove */ { trx_t* trx = lock_to_remove->trx; ut_ad(lock_mutex_own()); /* It is safe to read this because we are holding the lock mutex */ if (!trx->lock.cancel) { trx_mutex_enter(trx); } else { ut_ad(trx_mutex_own(trx)); } for (lock_list::iterator it = trx->lock.table_locks.begin(), end = trx->lock.table_locks.end(); it != end; ++it) { const lock_t* lock = *it; ut_ad(!lock || trx == lock->trx); ut_ad(!lock || lock_get_type_low(lock) & LOCK_TABLE); ut_ad(!lock || lock->un_member.tab_lock.table); if (lock == lock_to_remove) { *it = NULL; if (!trx->lock.cancel) { trx_mutex_exit(trx); } return; } } if (!trx->lock.cancel) { trx_mutex_exit(trx); } /* Lock must exist in the vector. */ ut_error; } /*===================== VALIDATION AND DEBUGGING ====================*/ /** Print info of a table lock. @param[in,out] file output stream @param[in] lock table lock */ static void lock_table_print(FILE* file, const lock_t* lock) { ut_ad(lock_mutex_own()); ut_a(lock_get_type_low(lock) == LOCK_TABLE); fputs("TABLE LOCK table ", file); ut_print_name(file, lock->trx, lock->un_member.tab_lock.table->name.m_name); fprintf(file, " trx id " TRX_ID_FMT, trx_get_id_for_print(lock->trx)); if (lock_get_mode(lock) == LOCK_S) { fputs(" lock mode S", file); } else if (lock_get_mode(lock) == LOCK_X) { ut_ad(lock->trx->id != 0); fputs(" lock mode X", file); } else if (lock_get_mode(lock) == LOCK_IS) { fputs(" lock mode IS", file); } else if (lock_get_mode(lock) == LOCK_IX) { ut_ad(lock->trx->id != 0); fputs(" lock mode IX", file); } else if (lock_get_mode(lock) == LOCK_AUTO_INC) { fputs(" lock mode AUTO-INC", file); } else { fprintf(file, " unknown lock mode %lu", (ulong) lock_get_mode(lock)); } if (lock_get_wait(lock)) { fputs(" waiting", file); } putc('\n', file); } /** Pretty-print a record lock. @param[in,out] file output stream @param[in] lock record lock @param[in,out] mtr mini-transaction for accessing the record */ static void lock_rec_print(FILE* file, const lock_t* lock, mtr_t& mtr) { ulint space; ulint page_no; ut_ad(lock_mutex_own()); ut_a(lock_get_type_low(lock) == LOCK_REC); space = lock->un_member.rec_lock.space; page_no = lock->un_member.rec_lock.page_no; fprintf(file, "RECORD LOCKS space id %lu page no %lu n bits %lu " "index %s of table ", (ulong) space, (ulong) page_no, (ulong) lock_rec_get_n_bits(lock), lock->index->name()); ut_print_name(file, lock->trx, lock->index->table->name.m_name); fprintf(file, " trx id " TRX_ID_FMT, trx_get_id_for_print(lock->trx)); if (lock_get_mode(lock) == LOCK_S) { fputs(" lock mode S", file); } else if (lock_get_mode(lock) == LOCK_X) { fputs(" lock_mode X", file); } else { ut_error; } if (lock_rec_get_gap(lock)) { fputs(" locks gap before rec", file); } if (lock_rec_get_rec_not_gap(lock)) { fputs(" locks rec but not gap", file); } if (lock_rec_get_insert_intention(lock)) { fputs(" insert intention", file); } if (lock_get_wait(lock)) { fputs(" waiting", file); } putc('\n', file); mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets = offsets_; rec_offs_init(offsets_); mtr.start(); const buf_block_t* block = buf_page_try_get(page_id_t(space, page_no), &mtr); for (ulint i = 0; i < lock_rec_get_n_bits(lock); ++i) { if (!lock_rec_get_nth_bit(lock, i)) { continue; } fprintf(file, "Record lock, heap no %lu", (ulong) i); if (block) { ut_ad(page_is_leaf(block->frame)); const rec_t* rec; rec = page_find_rec_with_heap_no( buf_block_get_frame(block), i); ut_ad(!page_rec_is_metadata(rec)); offsets = rec_get_offsets( rec, lock->index, offsets, lock->index->n_core_fields, ULINT_UNDEFINED, &heap); putc(' ', file); rec_print_new(file, rec, offsets); } putc('\n', file); } mtr.commit(); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } #ifdef UNIV_DEBUG /* Print the number of lock structs from lock_print_info_summary() only in non-production builds for performance reasons, see http://bugs.mysql.com/36942 */ #define PRINT_NUM_OF_LOCK_STRUCTS #endif /* UNIV_DEBUG */ #ifdef PRINT_NUM_OF_LOCK_STRUCTS /*********************************************************************//** Calculates the number of record lock structs in the record lock hash table. @return number of record locks */ static ulint lock_get_n_rec_locks(void) /*======================*/ { ulint n_locks = 0; ulint i; ut_ad(lock_mutex_own()); for (i = 0; i < hash_get_n_cells(lock_sys.rec_hash); i++) { const lock_t* lock; for (lock = static_cast( HASH_GET_FIRST(lock_sys.rec_hash, i)); lock != 0; lock = static_cast( HASH_GET_NEXT(hash, lock))) { n_locks++; } } return(n_locks); } #endif /* PRINT_NUM_OF_LOCK_STRUCTS */ /*********************************************************************//** Prints info of locks for all transactions. @return FALSE if not able to obtain lock mutex and exits without printing info */ ibool lock_print_info_summary( /*====================*/ FILE* file, /*!< in: file where to print */ ibool nowait) /*!< in: whether to wait for the lock mutex */ { /* if nowait is FALSE, wait on the lock mutex, otherwise return immediately if fail to obtain the mutex. */ if (!nowait) { lock_mutex_enter(); } else if (lock_mutex_enter_nowait()) { fputs("FAIL TO OBTAIN LOCK MUTEX," " SKIP LOCK INFO PRINTING\n", file); return(FALSE); } if (lock_deadlock_found) { fputs("------------------------\n" "LATEST DETECTED DEADLOCK\n" "------------------------\n", file); if (!srv_read_only_mode) { ut_copy_file(file, lock_latest_err_file); } } fputs("------------\n" "TRANSACTIONS\n" "------------\n", file); fprintf(file, "Trx id counter " TRX_ID_FMT "\n", trx_sys.get_max_trx_id()); fprintf(file, "Purge done for trx's n:o < " TRX_ID_FMT " undo n:o < " TRX_ID_FMT " state: %s\n" "History list length %u\n", purge_sys.tail.trx_no, purge_sys.tail.undo_no, purge_sys.enabled() ? (purge_sys.running() ? "running" : purge_sys.paused() ? "stopped" : "running but idle") : "disabled", trx_sys.history_size()); #ifdef PRINT_NUM_OF_LOCK_STRUCTS fprintf(file, "Total number of lock structs in row lock hash table %lu\n", (ulong) lock_get_n_rec_locks()); #endif /* PRINT_NUM_OF_LOCK_STRUCTS */ return(TRUE); } /** Prints transaction lock wait and MVCC state. @param[in,out] file file where to print @param[in] trx transaction @param[in] now current time */ void lock_trx_print_wait_and_mvcc_state(FILE* file, const trx_t* trx, time_t now) { fprintf(file, "---"); trx_print_latched(file, trx, 600); /* Note: read_view->get_state() check is race condition. But it should "kind of work" because read_view is freed only at shutdown. Worst thing that may happen is that it'll get transferred to another thread and print wrong values. */ if (trx->read_view.get_state() == READ_VIEW_STATE_OPEN) { trx->read_view.print_limits(file); } if (trx->lock.que_state == TRX_QUE_LOCK_WAIT) { fprintf(file, "------- TRX HAS BEEN WAITING %lu SEC" " FOR THIS LOCK TO BE GRANTED:\n", (ulong) difftime(now, trx->lock.wait_started)); if (lock_get_type_low(trx->lock.wait_lock) == LOCK_REC) { mtr_t mtr; lock_rec_print(file, trx->lock.wait_lock, mtr); } else { lock_table_print(file, trx->lock.wait_lock); } fprintf(file, "------------------\n"); } } /*********************************************************************//** Prints info of locks for a transaction. */ static void lock_trx_print_locks( /*=================*/ FILE* file, /*!< in/out: File to write */ const trx_t* trx) /*!< in: current transaction */ { mtr_t mtr; uint32_t i= 0; /* Iterate over the transaction's locks. */ for (lock_t *lock = UT_LIST_GET_FIRST(trx->lock.trx_locks); lock != NULL; lock = UT_LIST_GET_NEXT(trx_locks, lock)) { if (lock_get_type_low(lock) == LOCK_REC) { lock_rec_print(file, lock, mtr); } else { ut_ad(lock_get_type_low(lock) & LOCK_TABLE); lock_table_print(file, lock); } if (++i == 10) { fprintf(file, "10 LOCKS PRINTED FOR THIS TRX:" " SUPPRESSING FURTHER PRINTS\n"); break; } } } /** Functor to display all transactions */ struct lock_print_info { lock_print_info(FILE* file, time_t now) : file(file), now(now), purge_trx(purge_sys.query ? purge_sys.query->trx : NULL) {} void operator()(const trx_t* trx) const { ut_ad(mutex_own(&trx_sys.mutex)); if (UNIV_UNLIKELY(trx == purge_trx)) return; lock_trx_print_wait_and_mvcc_state(file, trx, now); if (trx->will_lock && srv_print_innodb_lock_monitor) lock_trx_print_locks(file, trx); } FILE* const file; const time_t now; const trx_t* const purge_trx; }; /*********************************************************************//** Prints info of locks for each transaction. This function assumes that the caller holds the lock mutex and more importantly it will release the lock mutex on behalf of the caller. (This should be fixed in the future). */ void lock_print_info_all_transactions( /*=============================*/ FILE* file) /*!< in/out: file where to print */ { ut_ad(lock_mutex_own()); fprintf(file, "LIST OF TRANSACTIONS FOR EACH SESSION:\n"); const time_t now = time(NULL); mutex_enter(&trx_sys.mutex); ut_list_map(trx_sys.trx_list, lock_print_info(file, now)); mutex_exit(&trx_sys.mutex); lock_mutex_exit(); ut_ad(lock_validate()); } #ifdef UNIV_DEBUG /*********************************************************************//** Find the the lock in the trx_t::trx_lock_t::table_locks vector. @return true if found */ static bool lock_trx_table_locks_find( /*======================*/ trx_t* trx, /*!< in: trx to validate */ const lock_t* find_lock) /*!< in: lock to find */ { bool found = false; ut_ad(trx_mutex_own(trx)); for (lock_list::const_iterator it = trx->lock.table_locks.begin(), end = trx->lock.table_locks.end(); it != end; ++it) { const lock_t* lock = *it; if (lock == NULL) { continue; } else if (lock == find_lock) { /* Can't be duplicates. */ ut_a(!found); found = true; } ut_a(trx == lock->trx); ut_a(lock_get_type_low(lock) & LOCK_TABLE); ut_a(lock->un_member.tab_lock.table != NULL); } return(found); } /*********************************************************************//** Validates the lock queue on a table. @return TRUE if ok */ static ibool lock_table_queue_validate( /*======================*/ const dict_table_t* table) /*!< in: table */ { const lock_t* lock; ut_ad(lock_mutex_own()); for (lock = UT_LIST_GET_FIRST(table->locks); lock != NULL; lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock)) { /* lock->trx->state cannot change from or to NOT_STARTED while we are holding the lock_sys.mutex. It may change from ACTIVE or PREPARED to PREPARED or COMMITTED. */ trx_mutex_enter(lock->trx); check_trx_state(lock->trx); if (lock->trx->state == TRX_STATE_COMMITTED_IN_MEMORY) { } else if (!lock_get_wait(lock)) { ut_a(!lock_table_other_has_incompatible( lock->trx, 0, table, lock_get_mode(lock))); } else { ut_a(lock_table_has_to_wait_in_queue(lock)); } ut_a(lock_trx_table_locks_find(lock->trx, lock)); trx_mutex_exit(lock->trx); } return(TRUE); } /*********************************************************************//** Validates the lock queue on a single record. @return TRUE if ok */ static bool lock_rec_queue_validate( /*====================*/ bool locked_lock_trx_sys, /*!< in: if the caller holds both the lock mutex and trx_sys_t->lock. */ const buf_block_t* block, /*!< in: buffer block containing rec */ const rec_t* rec, /*!< in: record to look at */ const dict_index_t* index, /*!< in: index, or NULL if not known */ const rec_offs* offsets)/*!< in: rec_get_offsets(rec, index) */ { const lock_t* lock; ulint heap_no; ut_a(rec); ut_a(block->frame == page_align(rec)); ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!page_rec_is_comp(rec) == !rec_offs_comp(offsets)); ut_ad(page_rec_is_leaf(rec)); ut_ad(lock_mutex_own() == locked_lock_trx_sys); ut_ad(!index || dict_index_is_clust(index) || !dict_index_is_online_ddl(index)); heap_no = page_rec_get_heap_no(rec); if (!locked_lock_trx_sys) { lock_mutex_enter(); } if (!page_rec_is_user_rec(rec)) { for (lock = lock_rec_get_first(lock_sys.rec_hash, block, heap_no); lock != NULL; lock = lock_rec_get_next_const(heap_no, lock)) { ut_ad(!index || lock->index == index); trx_mutex_enter(lock->trx); ut_ad(!lock->trx->read_only || !lock->trx->is_autocommit_non_locking()); ut_ad(trx_state_eq(lock->trx, TRX_STATE_COMMITTED_IN_MEMORY) || !lock_get_wait(lock) || lock_rec_has_to_wait_in_queue(lock)); trx_mutex_exit(lock->trx); } func_exit: if (!locked_lock_trx_sys) { lock_mutex_exit(); } return true; } ut_ad(page_rec_is_leaf(rec)); ut_ad(lock_mutex_own()); const trx_id_t impl_trx_id = index && index->is_primary() ? lock_clust_rec_some_has_impl(rec, index, offsets) : 0; if (trx_t *impl_trx = impl_trx_id ? trx_sys.find(current_trx(), impl_trx_id, false) : 0) { /* impl_trx could have been committed before we acquire its mutex, but not thereafter. */ mutex_enter(&impl_trx->mutex); ut_ad(impl_trx->state != TRX_STATE_NOT_STARTED); if (impl_trx->state == TRX_STATE_COMMITTED_IN_MEMORY) { } else if (const lock_t* other_lock = lock_rec_other_has_expl_req( LOCK_S, block, true, heap_no, impl_trx)) { /* The impl_trx is holding an implicit lock on the given record 'rec'. So there cannot be another explicit granted lock. Also, there can be another explicit waiting lock only if the impl_trx has an explicit granted lock. */ #ifdef WITH_WSREP /** Galera record locking rules: * If there is no other record lock to the same record, we may grant the lock request. * If there is other record lock but this requested record lock is compatible, we may grant the lock request. * If there is other record lock and it is not compatible with requested lock, all normal transactions must wait. * BF (brute force) additional exceptions : ** If BF already holds record lock for requested record, we may grant new record lock even if there is conflicting record lock(s) waiting on a queue. ** If conflicting transaction holds requested record lock, we will cancel this record lock and select conflicting transaction for BF abort or kill victim. ** If conflicting transaction is waiting for requested record lock we will cancel this wait and select conflicting transaction for BF abort or kill victim. ** There should not be two BF transactions waiting for same record lock */ if (other_lock->trx->is_wsrep() && !lock_get_wait(other_lock)) { wsrep_report_bf_lock_wait(impl_trx->mysql_thd, impl_trx->id); wsrep_report_bf_lock_wait(other_lock->trx->mysql_thd, other_lock->trx->id); if (!lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP, block, heap_no, impl_trx)) { ib::info() << "WSREP impl BF lock conflict"; } } else #endif /* WITH_WSREP */ { ut_ad(lock_get_wait(other_lock)); ut_ad(lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP, block, heap_no, impl_trx)); } } mutex_exit(&impl_trx->mutex); } for (lock = lock_rec_get_first(lock_sys.rec_hash, block, heap_no); lock != NULL; lock = lock_rec_get_next_const(heap_no, lock)) { ut_ad(!lock->trx->read_only || !lock->trx->is_autocommit_non_locking()); ut_ad(!page_rec_is_metadata(rec)); if (index) { ut_a(lock->index == index); } if (!lock_rec_get_gap(lock) && !lock_get_wait(lock)) { lock_mode mode; if (lock_get_mode(lock) == LOCK_S) { mode = LOCK_X; } else { mode = LOCK_S; } const lock_t* other_lock = lock_rec_other_has_expl_req( mode, block, false, heap_no, lock->trx); #ifdef WITH_WSREP if (UNIV_UNLIKELY(other_lock && lock->trx->is_wsrep())) { /* Only BF transaction may be granted lock before other conflicting lock request. */ if (!wsrep_thd_is_BF(lock->trx->mysql_thd, FALSE) && !wsrep_thd_is_BF(other_lock->trx->mysql_thd, FALSE)) { /* If no BF, this case is a bug. */ wsrep_report_bf_lock_wait(lock->trx->mysql_thd, lock->trx->id); wsrep_report_bf_lock_wait(other_lock->trx->mysql_thd, other_lock->trx->id); ut_error; } } else #endif /* WITH_WSREP */ ut_ad(!other_lock); } else if (lock_get_wait(lock) && !lock_rec_get_gap(lock)) { ut_a(lock_rec_has_to_wait_in_queue(lock)); } } ut_ad(innodb_lock_schedule_algorithm == INNODB_LOCK_SCHEDULE_ALGORITHM_FCFS || lock_queue_validate(lock)); goto func_exit; } /*********************************************************************//** Validates the record lock queues on a page. @return TRUE if ok */ static ibool lock_rec_validate_page( /*===================*/ const buf_block_t* block) /*!< in: buffer block */ { const lock_t* lock; const rec_t* rec; ulint nth_lock = 0; ulint nth_bit = 0; ulint i; mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets = offsets_; rec_offs_init(offsets_); ut_ad(!lock_mutex_own()); lock_mutex_enter(); loop: lock = lock_rec_get_first_on_page_addr( lock_sys.rec_hash, block->page.id.space(), block->page.id.page_no()); if (!lock) { goto function_exit; } ut_ad(!block->page.file_page_was_freed); for (i = 0; i < nth_lock; i++) { lock = lock_rec_get_next_on_page_const(lock); if (!lock) { goto function_exit; } } ut_ad(!lock->trx->read_only || !lock->trx->is_autocommit_non_locking()); /* Only validate the record queues when this thread is not holding a space->latch. */ if (!sync_check_find(SYNC_FSP)) for (i = nth_bit; i < lock_rec_get_n_bits(lock); i++) { if (i == PAGE_HEAP_NO_SUPREMUM || lock_rec_get_nth_bit(lock, i)) { rec = page_find_rec_with_heap_no(block->frame, i); ut_a(rec); ut_ad(!lock_rec_get_nth_bit(lock, i) || page_rec_is_leaf(rec)); offsets = rec_get_offsets(rec, lock->index, offsets, lock->index->n_core_fields, ULINT_UNDEFINED, &heap); /* If this thread is holding the file space latch (fil_space_t::latch), the following check WILL break the latching order and may cause a deadlock of threads. */ lock_rec_queue_validate( TRUE, block, rec, lock->index, offsets); nth_bit = i + 1; goto loop; } } nth_bit = 0; nth_lock++; goto loop; function_exit: lock_mutex_exit(); if (heap != NULL) { mem_heap_free(heap); } return(TRUE); } /*********************************************************************//** Validate record locks up to a limit. @return lock at limit or NULL if no more locks in the hash bucket */ static MY_ATTRIBUTE((warn_unused_result)) const lock_t* lock_rec_validate( /*==============*/ ulint start, /*!< in: lock_sys.rec_hash bucket */ ib_uint64_t* limit) /*!< in/out: upper limit of (space, page_no) */ { ut_ad(lock_mutex_own()); for (const lock_t* lock = static_cast( HASH_GET_FIRST(lock_sys.rec_hash, start)); lock != NULL; lock = static_cast(HASH_GET_NEXT(hash, lock))) { ib_uint64_t current; ut_ad(!lock->trx->read_only || !lock->trx->is_autocommit_non_locking()); ut_ad(lock_get_type(lock) == LOCK_REC); current = ut_ull_create( lock->un_member.rec_lock.space, lock->un_member.rec_lock.page_no); if (current > *limit) { *limit = current + 1; return(lock); } } return(0); } /*********************************************************************//** Validate a record lock's block */ static void lock_rec_block_validate( /*====================*/ ulint space_id, ulint page_no) { /* The lock and the block that it is referring to may be freed at this point. We pass BUF_GET_POSSIBLY_FREED to skip a debug check. If the lock exists in lock_rec_validate_page() we assert !block->page.file_page_was_freed. */ buf_block_t* block; mtr_t mtr; /* Transactional locks should never refer to dropped tablespaces, because all DDL operations that would drop or discard or rebuild a tablespace do hold an exclusive table lock, which would conflict with any locks referring to the tablespace from other transactions. */ if (fil_space_t* space = fil_space_acquire(space_id)) { dberr_t err = DB_SUCCESS; mtr_start(&mtr); block = buf_page_get_gen( page_id_t(space_id, page_no), page_size_t(space->flags), RW_X_LATCH, NULL, BUF_GET_POSSIBLY_FREED, __FILE__, __LINE__, &mtr, &err); if (err != DB_SUCCESS) { ib::error() << "Lock rec block validate failed for tablespace " << space->name << " space_id " << space_id << " page_no " << page_no << " err " << err; } if (block) { buf_block_dbg_add_level(block, SYNC_NO_ORDER_CHECK); ut_ad(lock_rec_validate_page(block)); } mtr_commit(&mtr); space->release(); } } static my_bool lock_validate_table_locks(rw_trx_hash_element_t *element, void*) { ut_ad(lock_mutex_own()); mutex_enter(&element->mutex); if (element->trx) { check_trx_state(element->trx); for (const lock_t *lock= UT_LIST_GET_FIRST(element->trx->lock.trx_locks); lock != NULL; lock= UT_LIST_GET_NEXT(trx_locks, lock)) { if (lock_get_type_low(lock) & LOCK_TABLE) lock_table_queue_validate(lock->un_member.tab_lock.table); } } mutex_exit(&element->mutex); return 0; } /*********************************************************************//** Validates the lock system. @return TRUE if ok */ static bool lock_validate() /*===========*/ { typedef std::pair page_addr_t; typedef std::set< page_addr_t, std::less, ut_allocator > page_addr_set; page_addr_set pages; lock_mutex_enter(); /* Validate table locks */ trx_sys.rw_trx_hash.iterate(reinterpret_cast (lock_validate_table_locks), 0); /* Iterate over all the record locks and validate the locks. We don't want to hog the lock_sys_t::mutex and the trx_sys_t::mutex. Release both mutexes during the validation check. */ for (ulint i = 0; i < hash_get_n_cells(lock_sys.rec_hash); i++) { ib_uint64_t limit = 0; while (const lock_t* lock = lock_rec_validate(i, &limit)) { if (lock_rec_find_set_bit(lock) == ULINT_UNDEFINED) { /* The lock bitmap is empty; ignore it. */ continue; } const lock_rec_t& l = lock->un_member.rec_lock; pages.insert(std::make_pair(l.space, l.page_no)); } } lock_mutex_exit(); for (page_addr_set::const_iterator it = pages.begin(); it != pages.end(); ++it) { lock_rec_block_validate((*it).first, (*it).second); } return(true); } #endif /* UNIV_DEBUG */ /*============ RECORD LOCK CHECKS FOR ROW OPERATIONS ====================*/ /*********************************************************************//** Checks if locks of other transactions prevent an immediate insert of a record. If they do, first tests if the query thread should anyway be suspended for some reason; if not, then puts the transaction and the query thread to the lock wait state and inserts a waiting request for a gap x-lock to the lock queue. @return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */ dberr_t lock_rec_insert_check_and_lock( /*===========================*/ ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is set, does nothing */ const rec_t* rec, /*!< in: record after which to insert */ buf_block_t* block, /*!< in/out: buffer block of rec */ dict_index_t* index, /*!< in: index */ que_thr_t* thr, /*!< in: query thread */ mtr_t* mtr, /*!< in/out: mini-transaction */ bool* inherit)/*!< out: set to true if the new inserted record maybe should inherit LOCK_GAP type locks from the successor record */ { ut_ad(block->frame == page_align(rec)); ut_ad(!dict_index_is_online_ddl(index) || index->is_primary() || (flags & BTR_CREATE_FLAG)); ut_ad(mtr->is_named_space(index->table->space)); ut_ad(page_rec_is_leaf(rec)); if (flags & BTR_NO_LOCKING_FLAG) { return(DB_SUCCESS); } ut_ad(!index->table->is_temporary()); ut_ad(page_is_leaf(block->frame)); dberr_t err; lock_t* lock; bool inherit_in = *inherit; trx_t* trx = thr_get_trx(thr); const rec_t* next_rec = page_rec_get_next_const(rec); ulint heap_no = page_rec_get_heap_no(next_rec); ut_ad(!rec_is_metadata(next_rec, index)); lock_mutex_enter(); /* Because this code is invoked for a running transaction by the thread that is serving the transaction, it is not necessary to hold trx->mutex here. */ /* When inserting a record into an index, the table must be at least IX-locked. When we are building an index, we would pass BTR_NO_LOCKING_FLAG and skip the locking altogether. */ ut_ad(lock_table_has(trx, index->table, LOCK_IX)); lock = lock_rec_get_first(lock_sys.rec_hash, block, heap_no); if (lock == NULL) { /* We optimize CPU time usage in the simplest case */ lock_mutex_exit(); if (inherit_in && !dict_index_is_clust(index)) { /* Update the page max trx id field */ page_update_max_trx_id(block, buf_block_get_page_zip(block), trx->id, mtr); } *inherit = false; return(DB_SUCCESS); } /* Spatial index does not use GAP lock protection. It uses "predicate lock" to protect the "range" */ if (dict_index_is_spatial(index)) { return(DB_SUCCESS); } *inherit = true; /* If another transaction has an explicit lock request which locks the gap, waiting or granted, on the successor, the insert has to wait. An exception is the case where the lock by the another transaction is a gap type lock which it placed to wait for its turn to insert. We do not consider that kind of a lock conflicting with our insert. This eliminates an unnecessary deadlock which resulted when 2 transactions had to wait for their insert. Both had waiting gap type lock requests on the successor, which produced an unnecessary deadlock. */ const ulint type_mode = LOCK_X | LOCK_GAP | LOCK_INSERT_INTENTION; if ( #ifdef WITH_WSREP lock_t* c_lock = #endif /* WITH_WSREP */ lock_rec_other_has_conflicting(type_mode, block, heap_no, trx)) { /* Note that we may get DB_SUCCESS also here! */ trx_mutex_enter(trx); err = lock_rec_enqueue_waiting( #ifdef WITH_WSREP c_lock, #endif /* WITH_WSREP */ type_mode, block, heap_no, index, thr, NULL); trx_mutex_exit(trx); } else { err = DB_SUCCESS; } lock_mutex_exit(); switch (err) { case DB_SUCCESS_LOCKED_REC: err = DB_SUCCESS; /* fall through */ case DB_SUCCESS: if (!inherit_in || dict_index_is_clust(index)) { break; } /* Update the page max trx id field */ page_update_max_trx_id( block, buf_block_get_page_zip(block), trx->id, mtr); default: /* We only care about the two return values. */ break; } #ifdef UNIV_DEBUG { mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; const rec_offs* offsets; rec_offs_init(offsets_); offsets = rec_get_offsets(next_rec, index, offsets_, index->n_core_fields, ULINT_UNDEFINED, &heap); ut_ad(lock_rec_queue_validate( FALSE, block, next_rec, index, offsets)); if (heap != NULL) { mem_heap_free(heap); } } #endif /* UNIV_DEBUG */ return(err); } /*********************************************************************//** Creates an explicit record lock for a running transaction that currently only has an implicit lock on the record. The transaction instance must have a reference count > 0 so that it can't be committed and freed before this function has completed. */ static void lock_rec_convert_impl_to_expl_for_trx( /*==================================*/ const buf_block_t* block, /*!< in: buffer block of rec */ const rec_t* rec, /*!< in: user record on page */ dict_index_t* index, /*!< in: index of record */ trx_t* trx, /*!< in/out: active transaction */ ulint heap_no)/*!< in: rec heap number to lock */ { ut_ad(trx->is_referenced()); ut_ad(page_rec_is_leaf(rec)); ut_ad(!rec_is_metadata(rec, index)); DEBUG_SYNC_C("before_lock_rec_convert_impl_to_expl_for_trx"); lock_mutex_enter(); trx_mutex_enter(trx); ut_ad(!trx_state_eq(trx, TRX_STATE_NOT_STARTED)); if (!trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY) && !lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP, block, heap_no, trx)) { lock_rec_add_to_queue(LOCK_REC | LOCK_X | LOCK_REC_NOT_GAP, block, heap_no, index, trx, true); } lock_mutex_exit(); trx_mutex_exit(trx); trx->release_reference(); DEBUG_SYNC_C("after_lock_rec_convert_impl_to_expl_for_trx"); } #ifdef UNIV_DEBUG struct lock_rec_other_trx_holds_expl_arg { const ulint heap_no; const buf_block_t * const block; const trx_t *impl_trx; }; static my_bool lock_rec_other_trx_holds_expl_callback( rw_trx_hash_element_t *element, lock_rec_other_trx_holds_expl_arg *arg) { mutex_enter(&element->mutex); if (element->trx) { trx_mutex_enter(element->trx); ut_ad(element->trx->state != TRX_STATE_NOT_STARTED); lock_t *expl_lock= element->trx->state == TRX_STATE_COMMITTED_IN_MEMORY ? NULL : lock_rec_has_expl(LOCK_S | LOCK_REC_NOT_GAP, arg->block, arg->heap_no, element->trx); /* An explicit lock is held by trx other than the trx holding the implicit lock. */ ut_ad(!expl_lock || expl_lock->trx == arg->impl_trx); trx_mutex_exit(element->trx); } mutex_exit(&element->mutex); return 0; } /** Checks if some transaction, other than given trx_id, has an explicit lock on the given rec. FIXME: if the current transaction holds implicit lock from INSERT, a subsequent locking read should not convert it to explicit. See also MDEV-11215. @param caller_trx trx of current thread @param[in] trx trx holding implicit lock on rec @param[in] rec user record @param[in] block buffer block containing the record */ static void lock_rec_other_trx_holds_expl(trx_t *caller_trx, trx_t *trx, const rec_t *rec, const buf_block_t *block) { if (trx) { ut_ad(!page_rec_is_metadata(rec)); lock_mutex_enter(); ut_ad(trx->is_referenced()); trx_mutex_enter(trx); const trx_state_t state = trx->state; trx_mutex_exit(trx); ut_ad(state != TRX_STATE_NOT_STARTED); if (state == TRX_STATE_COMMITTED_IN_MEMORY) { /* The transaction was committed before our lock_mutex_enter(). */ lock_mutex_exit(); return; } lock_rec_other_trx_holds_expl_arg arg= { page_rec_get_heap_no(rec), block, trx }; trx_sys.rw_trx_hash.iterate(caller_trx, reinterpret_cast (lock_rec_other_trx_holds_expl_callback), &arg); lock_mutex_exit(); } } #endif /* UNIV_DEBUG */ /** If an implicit x-lock exists on a record, convert it to an explicit one. Often, this is called by a transaction that is about to enter a lock wait due to the lock conflict. Two explicit locks would be created: first the exclusive lock on behalf of the lock-holder transaction in this function, and then a wait request on behalf of caller_trx, in the calling function. This may also be called by the same transaction that is already holding an implicit exclusive lock on the record. In this case, no explicit lock should be created. @param[in,out] caller_trx current transaction @param[in] block index tree leaf page @param[in] rec record on the leaf page @param[in] index the index of the record @param[in] offsets rec_get_offsets(rec,index) @return whether caller_trx already holds an exclusive lock on rec */ static bool lock_rec_convert_impl_to_expl( trx_t* caller_trx, const buf_block_t* block, const rec_t* rec, dict_index_t* index, const rec_offs* offsets) { trx_t* trx; ut_ad(!lock_mutex_own()); ut_ad(page_rec_is_user_rec(rec)); ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!page_rec_is_comp(rec) == !rec_offs_comp(offsets)); ut_ad(page_rec_is_leaf(rec)); ut_ad(!rec_is_metadata(rec, index)); if (dict_index_is_clust(index)) { trx_id_t trx_id; trx_id = lock_clust_rec_some_has_impl(rec, index, offsets); if (trx_id == 0) { return false; } if (UNIV_UNLIKELY(trx_id == caller_trx->id)) { return true; } trx = trx_sys.find(caller_trx, trx_id); } else { ut_ad(!dict_index_is_online_ddl(index)); trx = lock_sec_rec_some_has_impl(caller_trx, rec, index, offsets); if (trx == caller_trx) { trx->release_reference(); return true; } ut_d(lock_rec_other_trx_holds_expl(caller_trx, trx, rec, block)); } if (trx != 0) { ulint heap_no = page_rec_get_heap_no(rec); ut_ad(trx->is_referenced()); /* If the transaction is still active and has no explicit x-lock set on the record, set one for it. trx cannot be committed until the ref count is zero. */ lock_rec_convert_impl_to_expl_for_trx( block, rec, index, trx, heap_no); } return false; } /*********************************************************************//** Checks if locks of other transactions prevent an immediate modify (update, delete mark, or delete unmark) of a clustered index record. If they do, first tests if the query thread should anyway be suspended for some reason; if not, then puts the transaction and the query thread to the lock wait state and inserts a waiting request for a record x-lock to the lock queue. @return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */ dberr_t lock_clust_rec_modify_check_and_lock( /*=================================*/ ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is set, does nothing */ const buf_block_t* block, /*!< in: buffer block of rec */ const rec_t* rec, /*!< in: record which should be modified */ dict_index_t* index, /*!< in: clustered index */ const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */ que_thr_t* thr) /*!< in: query thread */ { dberr_t err; ulint heap_no; ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(page_rec_is_leaf(rec)); ut_ad(dict_index_is_clust(index)); ut_ad(block->frame == page_align(rec)); if (flags & BTR_NO_LOCKING_FLAG) { return(DB_SUCCESS); } ut_ad(!rec_is_metadata(rec, index)); ut_ad(!index->table->is_temporary()); heap_no = rec_offs_comp(offsets) ? rec_get_heap_no_new(rec) : rec_get_heap_no_old(rec); /* If a transaction has no explicit x-lock set on the record, set one for it */ if (lock_rec_convert_impl_to_expl(thr_get_trx(thr), block, rec, index, offsets)) { /* We already hold an implicit exclusive lock. */ return DB_SUCCESS; } err = lock_rec_lock(TRUE, LOCK_X | LOCK_REC_NOT_GAP, block, heap_no, index, thr); ut_ad(lock_rec_queue_validate(FALSE, block, rec, index, offsets)); if (err == DB_SUCCESS_LOCKED_REC) { err = DB_SUCCESS; } return(err); } /*********************************************************************//** Checks if locks of other transactions prevent an immediate modify (delete mark or delete unmark) of a secondary index record. @return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */ dberr_t lock_sec_rec_modify_check_and_lock( /*===============================*/ ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is set, does nothing */ buf_block_t* block, /*!< in/out: buffer block of rec */ const rec_t* rec, /*!< in: record which should be modified; NOTE: as this is a secondary index, we always have to modify the clustered index record first: see the comment below */ dict_index_t* index, /*!< in: secondary index */ que_thr_t* thr, /*!< in: query thread (can be NULL if BTR_NO_LOCKING_FLAG) */ mtr_t* mtr) /*!< in/out: mini-transaction */ { dberr_t err; ulint heap_no; ut_ad(!dict_index_is_clust(index)); ut_ad(!dict_index_is_online_ddl(index) || (flags & BTR_CREATE_FLAG)); ut_ad(block->frame == page_align(rec)); ut_ad(mtr->is_named_space(index->table->space)); ut_ad(page_rec_is_leaf(rec)); ut_ad(!rec_is_metadata(rec, index)); if (flags & BTR_NO_LOCKING_FLAG) { return(DB_SUCCESS); } ut_ad(!index->table->is_temporary()); heap_no = page_rec_get_heap_no(rec); #ifdef WITH_WSREP trx_t *trx= thr_get_trx(thr); /* If transaction scanning an unique secondary key is wsrep high priority thread (brute force) this scanning may involve GAP-locking in the index. As this locking happens also when applying replication events in high priority applier threads, there is a probability for lock conflicts between two wsrep high priority threads. To avoid this GAP-locking we mark that this transaction is using unique key scan here. */ if (trx->is_wsrep() && wsrep_thd_is_BF(trx->mysql_thd, false)) trx->wsrep_UK_scan= true; #endif /* WITH_WSREP */ /* Another transaction cannot have an implicit lock on the record, because when we come here, we already have modified the clustered index record, and this would not have been possible if another active transaction had modified this secondary index record. */ err = lock_rec_lock(TRUE, LOCK_X | LOCK_REC_NOT_GAP, block, heap_no, index, thr); #ifdef WITH_WSREP trx->wsrep_UK_scan= false; #endif /* WITH_WSREP */ #ifdef UNIV_DEBUG { mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; const rec_offs* offsets; rec_offs_init(offsets_); offsets = rec_get_offsets(rec, index, offsets_, index->n_core_fields, ULINT_UNDEFINED, &heap); ut_ad(lock_rec_queue_validate( FALSE, block, rec, index, offsets)); if (heap != NULL) { mem_heap_free(heap); } } #endif /* UNIV_DEBUG */ if (err == DB_SUCCESS || err == DB_SUCCESS_LOCKED_REC) { /* Update the page max trx id field */ /* It might not be necessary to do this if err == DB_SUCCESS (no new lock created), but it should not cost too much performance. */ page_update_max_trx_id(block, buf_block_get_page_zip(block), thr_get_trx(thr)->id, mtr); err = DB_SUCCESS; } return(err); } /*********************************************************************//** Like lock_clust_rec_read_check_and_lock(), but reads a secondary index record. @return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, DB_LOCK_WAIT, or DB_DEADLOCK */ dberr_t lock_sec_rec_read_check_and_lock( /*=============================*/ ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is set, does nothing */ const buf_block_t* block, /*!< in: buffer block of rec */ const rec_t* rec, /*!< in: user record or page supremum record which should be read or passed over by a read cursor */ dict_index_t* index, /*!< in: secondary index */ const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */ lock_mode mode, /*!< in: mode of the lock which the read cursor should set on records: LOCK_S or LOCK_X; the latter is possible in SELECT FOR UPDATE */ ulint gap_mode,/*!< in: LOCK_ORDINARY, LOCK_GAP, or LOCK_REC_NOT_GAP */ que_thr_t* thr) /*!< in: query thread */ { dberr_t err; ulint heap_no; ut_ad(!dict_index_is_clust(index)); ut_ad(!dict_index_is_online_ddl(index)); ut_ad(block->frame == page_align(rec)); ut_ad(page_rec_is_user_rec(rec) || page_rec_is_supremum(rec)); ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(page_rec_is_leaf(rec)); ut_ad(mode == LOCK_X || mode == LOCK_S); if ((flags & BTR_NO_LOCKING_FLAG) || srv_read_only_mode || index->table->is_temporary()) { return(DB_SUCCESS); } ut_ad(!rec_is_metadata(rec, index)); heap_no = page_rec_get_heap_no(rec); /* Some transaction may have an implicit x-lock on the record only if the max trx id for the page >= min trx id for the trx list or a database recovery is running. */ if (!page_rec_is_supremum(rec) && page_get_max_trx_id(block->frame) >= trx_sys.get_min_trx_id() && lock_rec_convert_impl_to_expl(thr_get_trx(thr), block, rec, index, offsets) && gap_mode == LOCK_REC_NOT_GAP) { /* We already hold an implicit exclusive lock. */ return DB_SUCCESS; } #ifdef WITH_WSREP trx_t *trx= thr_get_trx(thr); /* If transaction scanning an unique secondary key is wsrep high priority thread (brute force) this scanning may involve GAP-locking in the index. As this locking happens also when applying replication events in high priority applier threads, there is a probability for lock conflicts between two wsrep high priority threads. To avoid this GAP-locking we mark that this transaction is using unique key scan here. */ if (trx->is_wsrep() && wsrep_thd_is_BF(trx->mysql_thd, false)) trx->wsrep_UK_scan= true; #endif /* WITH_WSREP */ err = lock_rec_lock(FALSE, ulint(mode) | gap_mode, block, heap_no, index, thr); #ifdef WITH_WSREP trx->wsrep_UK_scan= false; #endif /* WITH_WSREP */ ut_ad(lock_rec_queue_validate(FALSE, block, rec, index, offsets)); return(err); } /*********************************************************************//** Checks if locks of other transactions prevent an immediate read, or passing over by a read cursor, of a clustered index record. If they do, first tests if the query thread should anyway be suspended for some reason; if not, then puts the transaction and the query thread to the lock wait state and inserts a waiting request for a record lock to the lock queue. Sets the requested mode lock on the record. @return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, DB_LOCK_WAIT, or DB_DEADLOCK */ dberr_t lock_clust_rec_read_check_and_lock( /*===============================*/ ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is set, does nothing */ const buf_block_t* block, /*!< in: buffer block of rec */ const rec_t* rec, /*!< in: user record or page supremum record which should be read or passed over by a read cursor */ dict_index_t* index, /*!< in: clustered index */ const rec_offs* offsets,/*!< in: rec_get_offsets(rec, index) */ lock_mode mode, /*!< in: mode of the lock which the read cursor should set on records: LOCK_S or LOCK_X; the latter is possible in SELECT FOR UPDATE */ ulint gap_mode,/*!< in: LOCK_ORDINARY, LOCK_GAP, or LOCK_REC_NOT_GAP */ que_thr_t* thr) /*!< in: query thread */ { dberr_t err; ulint heap_no; ut_ad(dict_index_is_clust(index)); ut_ad(block->frame == page_align(rec)); ut_ad(page_rec_is_user_rec(rec) || page_rec_is_supremum(rec)); ut_ad(gap_mode == LOCK_ORDINARY || gap_mode == LOCK_GAP || gap_mode == LOCK_REC_NOT_GAP); ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(page_rec_is_leaf(rec)); ut_ad(!rec_is_metadata(rec, index)); if ((flags & BTR_NO_LOCKING_FLAG) || srv_read_only_mode || index->table->is_temporary()) { return(DB_SUCCESS); } heap_no = page_rec_get_heap_no(rec); if (heap_no != PAGE_HEAP_NO_SUPREMUM && lock_rec_convert_impl_to_expl(thr_get_trx(thr), block, rec, index, offsets) && gap_mode == LOCK_REC_NOT_GAP) { /* We already hold an implicit exclusive lock. */ return DB_SUCCESS; } err = lock_rec_lock(FALSE, ulint(mode) | gap_mode, block, heap_no, index, thr); ut_ad(lock_rec_queue_validate(FALSE, block, rec, index, offsets)); DEBUG_SYNC_C("after_lock_clust_rec_read_check_and_lock"); return(err); } /*********************************************************************//** Checks if locks of other transactions prevent an immediate read, or passing over by a read cursor, of a clustered index record. If they do, first tests if the query thread should anyway be suspended for some reason; if not, then puts the transaction and the query thread to the lock wait state and inserts a waiting request for a record lock to the lock queue. Sets the requested mode lock on the record. This is an alternative version of lock_clust_rec_read_check_and_lock() that does not require the parameter "offsets". @return DB_SUCCESS, DB_LOCK_WAIT, or DB_DEADLOCK */ dberr_t lock_clust_rec_read_check_and_lock_alt( /*===================================*/ ulint flags, /*!< in: if BTR_NO_LOCKING_FLAG bit is set, does nothing */ const buf_block_t* block, /*!< in: buffer block of rec */ const rec_t* rec, /*!< in: user record or page supremum record which should be read or passed over by a read cursor */ dict_index_t* index, /*!< in: clustered index */ lock_mode mode, /*!< in: mode of the lock which the read cursor should set on records: LOCK_S or LOCK_X; the latter is possible in SELECT FOR UPDATE */ ulint gap_mode,/*!< in: LOCK_ORDINARY, LOCK_GAP, or LOCK_REC_NOT_GAP */ que_thr_t* thr) /*!< in: query thread */ { mem_heap_t* tmp_heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets = offsets_; dberr_t err; rec_offs_init(offsets_); ut_ad(page_rec_is_leaf(rec)); offsets = rec_get_offsets(rec, index, offsets, index->n_core_fields, ULINT_UNDEFINED, &tmp_heap); err = lock_clust_rec_read_check_and_lock(flags, block, rec, index, offsets, mode, gap_mode, thr); if (tmp_heap) { mem_heap_free(tmp_heap); } if (err == DB_SUCCESS_LOCKED_REC) { err = DB_SUCCESS; } return(err); } /*******************************************************************//** Release the last lock from the transaction's autoinc locks. */ UNIV_INLINE void lock_release_autoinc_last_lock( /*===========================*/ ib_vector_t* autoinc_locks) /*!< in/out: vector of AUTOINC locks */ { ulint last; lock_t* lock; ut_ad(lock_mutex_own()); ut_a(!ib_vector_is_empty(autoinc_locks)); /* The lock to be release must be the last lock acquired. */ last = ib_vector_size(autoinc_locks) - 1; lock = *static_cast(ib_vector_get(autoinc_locks, last)); /* Should have only AUTOINC locks in the vector. */ ut_a(lock_get_mode(lock) == LOCK_AUTO_INC); ut_a(lock_get_type(lock) == LOCK_TABLE); ut_a(lock->un_member.tab_lock.table != NULL); /* This will remove the lock from the trx autoinc_locks too. */ lock_table_dequeue(lock); /* Remove from the table vector too. */ lock_trx_table_locks_remove(lock); } /*******************************************************************//** Check if a transaction holds any autoinc locks. @return TRUE if the transaction holds any AUTOINC locks. */ static ibool lock_trx_holds_autoinc_locks( /*=========================*/ const trx_t* trx) /*!< in: transaction */ { ut_a(trx->autoinc_locks != NULL); return(!ib_vector_is_empty(trx->autoinc_locks)); } /*******************************************************************//** Release all the transaction's autoinc locks. */ static void lock_release_autoinc_locks( /*=======================*/ trx_t* trx) /*!< in/out: transaction */ { ut_ad(lock_mutex_own()); /* If this is invoked for a running transaction by the thread that is serving the transaction, then it is not necessary to hold trx->mutex here. */ ut_a(trx->autoinc_locks != NULL); /* We release the locks in the reverse order. This is to avoid searching the vector for the element to delete at the lower level. See (lock_table_remove_low()) for details. */ while (!ib_vector_is_empty(trx->autoinc_locks)) { /* lock_table_remove_low() will also remove the lock from the transaction's autoinc_locks vector. */ lock_release_autoinc_last_lock(trx->autoinc_locks); } /* Should release all locks. */ ut_a(ib_vector_is_empty(trx->autoinc_locks)); } /*******************************************************************//** Gets the type of a lock. Non-inline version for using outside of the lock module. @return LOCK_TABLE or LOCK_REC */ ulint lock_get_type( /*==========*/ const lock_t* lock) /*!< in: lock */ { return(lock_get_type_low(lock)); } /*******************************************************************//** Gets the id of the transaction owning a lock. @return transaction id */ trx_id_t lock_get_trx_id( /*============*/ const lock_t* lock) /*!< in: lock */ { return(trx_get_id_for_print(lock->trx)); } /*******************************************************************//** Gets the mode of a lock in a human readable string. The string should not be free()'d or modified. @return lock mode */ const char* lock_get_mode_str( /*==============*/ const lock_t* lock) /*!< in: lock */ { ibool is_gap_lock; is_gap_lock = lock_get_type_low(lock) == LOCK_REC && lock_rec_get_gap(lock); switch (lock_get_mode(lock)) { case LOCK_S: if (is_gap_lock) { return("S,GAP"); } else { return("S"); } case LOCK_X: if (is_gap_lock) { return("X,GAP"); } else { return("X"); } case LOCK_IS: if (is_gap_lock) { return("IS,GAP"); } else { return("IS"); } case LOCK_IX: if (is_gap_lock) { return("IX,GAP"); } else { return("IX"); } case LOCK_AUTO_INC: return("AUTO_INC"); default: return("UNKNOWN"); } } /*******************************************************************//** Gets the type of a lock in a human readable string. The string should not be free()'d or modified. @return lock type */ const char* lock_get_type_str( /*==============*/ const lock_t* lock) /*!< in: lock */ { switch (lock_get_type_low(lock)) { case LOCK_REC: return("RECORD"); case LOCK_TABLE: return("TABLE"); default: return("UNKNOWN"); } } /*******************************************************************//** Gets the table on which the lock is. @return table */ UNIV_INLINE dict_table_t* lock_get_table( /*===========*/ const lock_t* lock) /*!< in: lock */ { switch (lock_get_type_low(lock)) { case LOCK_REC: ut_ad(dict_index_is_clust(lock->index) || !dict_index_is_online_ddl(lock->index)); return(lock->index->table); case LOCK_TABLE: return(lock->un_member.tab_lock.table); default: ut_error; return(NULL); } } /*******************************************************************//** Gets the id of the table on which the lock is. @return id of the table */ table_id_t lock_get_table_id( /*==============*/ const lock_t* lock) /*!< in: lock */ { dict_table_t* table; table = lock_get_table(lock); return(table->id); } /** Determine which table a lock is associated with. @param[in] lock the lock @return name of the table */ const table_name_t& lock_get_table_name( const lock_t* lock) { return(lock_get_table(lock)->name); } /*******************************************************************//** For a record lock, gets the index on which the lock is. @return index */ const dict_index_t* lock_rec_get_index( /*===============*/ const lock_t* lock) /*!< in: lock */ { ut_a(lock_get_type_low(lock) == LOCK_REC); ut_ad(dict_index_is_clust(lock->index) || !dict_index_is_online_ddl(lock->index)); return(lock->index); } /*******************************************************************//** For a record lock, gets the name of the index on which the lock is. The string should not be free()'d or modified. @return name of the index */ const char* lock_rec_get_index_name( /*====================*/ const lock_t* lock) /*!< in: lock */ { ut_a(lock_get_type_low(lock) == LOCK_REC); ut_ad(dict_index_is_clust(lock->index) || !dict_index_is_online_ddl(lock->index)); return(lock->index->name); } /*******************************************************************//** For a record lock, gets the tablespace number on which the lock is. @return tablespace number */ ulint lock_rec_get_space_id( /*==================*/ const lock_t* lock) /*!< in: lock */ { ut_a(lock_get_type_low(lock) == LOCK_REC); return(lock->un_member.rec_lock.space); } /*******************************************************************//** For a record lock, gets the page number on which the lock is. @return page number */ ulint lock_rec_get_page_no( /*=================*/ const lock_t* lock) /*!< in: lock */ { ut_a(lock_get_type_low(lock) == LOCK_REC); return(lock->un_member.rec_lock.page_no); } /*********************************************************************//** Cancels a waiting lock request and releases possible other transactions waiting behind it. */ void lock_cancel_waiting_and_release( /*============================*/ lock_t* lock) /*!< in/out: waiting lock request */ { que_thr_t* thr; ut_ad(lock_mutex_own()); ut_ad(trx_mutex_own(lock->trx)); ut_ad(lock->trx->state == TRX_STATE_ACTIVE); lock->trx->lock.cancel = true; if (lock_get_type_low(lock) == LOCK_REC) { lock_rec_dequeue_from_page(lock); } else { ut_ad(lock_get_type_low(lock) & LOCK_TABLE); if (lock->trx->autoinc_locks != NULL) { /* Release the transaction's AUTOINC locks. */ lock_release_autoinc_locks(lock->trx); } lock_table_dequeue(lock); /* Remove the lock from table lock vector too. */ lock_trx_table_locks_remove(lock); } /* Reset the wait flag and the back pointer to lock in trx. */ lock_reset_lock_and_trx_wait(lock); /* The following function releases the trx from lock wait. */ thr = que_thr_end_lock_wait(lock->trx); if (thr != NULL) { lock_wait_release_thread_if_suspended(thr); } lock->trx->lock.cancel = false; } /*********************************************************************//** Unlocks AUTO_INC type locks that were possibly reserved by a trx. This function should be called at the the end of an SQL statement, by the connection thread that owns the transaction (trx->mysql_thd). */ void lock_unlock_table_autoinc( /*======================*/ trx_t* trx) /*!< in/out: transaction */ { ut_ad(!lock_mutex_own()); ut_ad(!trx_mutex_own(trx)); ut_ad(!trx->lock.wait_lock); /* This can be invoked on NOT_STARTED, ACTIVE, PREPARED, but not COMMITTED transactions. */ ut_ad(trx_state_eq(trx, TRX_STATE_NOT_STARTED) || !trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY)); /* This function is invoked for a running transaction by the thread that is serving the transaction. Therefore it is not necessary to hold trx->mutex here. */ if (lock_trx_holds_autoinc_locks(trx)) { lock_mutex_enter(); lock_release_autoinc_locks(trx); lock_mutex_exit(); } } static inline dberr_t lock_trx_handle_wait_low(trx_t* trx) { ut_ad(lock_mutex_own()); ut_ad(trx_mutex_own(trx)); if (trx->lock.was_chosen_as_deadlock_victim) { return DB_DEADLOCK; } if (!trx->lock.wait_lock) { /* The lock was probably granted before we got here. */ return DB_SUCCESS; } lock_cancel_waiting_and_release(trx->lock.wait_lock); return DB_LOCK_WAIT; } /*********************************************************************//** Check whether the transaction has already been rolled back because it was selected as a deadlock victim, or if it has to wait then cancel the wait lock. @return DB_DEADLOCK, DB_LOCK_WAIT or DB_SUCCESS */ dberr_t lock_trx_handle_wait( /*=================*/ trx_t* trx) /*!< in/out: trx lock state */ { lock_mutex_enter(); trx_mutex_enter(trx); dberr_t err = lock_trx_handle_wait_low(trx); lock_mutex_exit(); trx_mutex_exit(trx); return err; } /*********************************************************************//** Get the number of locks on a table. @return number of locks */ ulint lock_table_get_n_locks( /*===================*/ const dict_table_t* table) /*!< in: table */ { ulint n_table_locks; lock_mutex_enter(); n_table_locks = UT_LIST_GET_LEN(table->locks); lock_mutex_exit(); return(n_table_locks); } #ifdef UNIV_DEBUG /** Do an exhaustive check for any locks (table or rec) against the table. @param[in] table check if there are any locks held on records in this table or on the table itself */ static my_bool lock_table_locks_lookup(rw_trx_hash_element_t *element, const dict_table_t *table) { ut_ad(lock_mutex_own()); mutex_enter(&element->mutex); if (element->trx) { trx_mutex_enter(element->trx); check_trx_state(element->trx); if (element->trx->state != TRX_STATE_COMMITTED_IN_MEMORY) { for (const lock_t *lock= UT_LIST_GET_FIRST(element->trx->lock.trx_locks); lock != NULL; lock= UT_LIST_GET_NEXT(trx_locks, lock)) { ut_ad(lock->trx == element->trx); if (lock_get_type_low(lock) == LOCK_REC) { ut_ad(lock->index->online_status != ONLINE_INDEX_CREATION || lock->index->is_primary()); ut_ad(lock->index->table != table); } else ut_ad(lock->un_member.tab_lock.table != table); } } trx_mutex_exit(element->trx); } mutex_exit(&element->mutex); return 0; } #endif /* UNIV_DEBUG */ /*******************************************************************//** Check if there are any locks (table or rec) against table. @return true if table has either table or record locks. */ bool lock_table_has_locks( /*=================*/ const dict_table_t* table) /*!< in: check if there are any locks held on records in this table or on the table itself */ { ibool has_locks; ut_ad(table != NULL); lock_mutex_enter(); has_locks = UT_LIST_GET_LEN(table->locks) > 0 || table->n_rec_locks > 0; #ifdef UNIV_DEBUG if (!has_locks) { trx_sys.rw_trx_hash.iterate( reinterpret_cast (lock_table_locks_lookup), const_cast(table)); } #endif /* UNIV_DEBUG */ lock_mutex_exit(); return(has_locks); } /*******************************************************************//** Initialise the table lock list. */ void lock_table_lock_list_init( /*======================*/ table_lock_list_t* lock_list) /*!< List to initialise */ { UT_LIST_INIT(*lock_list, &lock_table_t::locks); } /*******************************************************************//** Initialise the trx lock list. */ void lock_trx_lock_list_init( /*====================*/ trx_lock_list_t* lock_list) /*!< List to initialise */ { UT_LIST_INIT(*lock_list, &lock_t::trx_locks); } /*******************************************************************//** Set the lock system timeout event. */ void lock_set_timeout_event() /*====================*/ { os_event_set(lock_sys.timeout_event); } #ifdef UNIV_DEBUG /*******************************************************************//** Check if the transaction holds any locks on the sys tables or its records. @return the strongest lock found on any sys table or 0 for none */ const lock_t* lock_trx_has_sys_table_locks( /*=========================*/ const trx_t* trx) /*!< in: transaction to check */ { const lock_t* strongest_lock = 0; lock_mode strongest = LOCK_NONE; lock_mutex_enter(); const lock_list::const_iterator end = trx->lock.table_locks.end(); lock_list::const_iterator it = trx->lock.table_locks.begin(); /* Find a valid mode. Note: ib_vector_size() can be 0. */ for (/* No op */; it != end; ++it) { const lock_t* lock = *it; if (lock != NULL && dict_is_sys_table(lock->un_member.tab_lock.table->id)) { strongest = lock_get_mode(lock); ut_ad(strongest != LOCK_NONE); strongest_lock = lock; break; } } if (strongest == LOCK_NONE) { lock_mutex_exit(); return(NULL); } for (/* No op */; it != end; ++it) { const lock_t* lock = *it; if (lock == NULL) { continue; } ut_ad(trx == lock->trx); ut_ad(lock_get_type_low(lock) & LOCK_TABLE); ut_ad(lock->un_member.tab_lock.table != NULL); lock_mode mode = lock_get_mode(lock); if (dict_is_sys_table(lock->un_member.tab_lock.table->id) && lock_mode_stronger_or_eq(mode, strongest)) { strongest = mode; strongest_lock = lock; } } lock_mutex_exit(); return(strongest_lock); } /** Check if the transaction holds an explicit exclusive lock on a record. @param[in] trx transaction @param[in] table table @param[in] block leaf page @param[in] heap_no heap number identifying the record @return whether an explicit X-lock is held */ bool lock_trx_has_expl_x_lock( const trx_t* trx, /*!< in: transaction to check */ const dict_table_t* table, /*!< in: table to check */ const buf_block_t* block, /*!< in: buffer block of the record */ ulint heap_no)/*!< in: record heap number */ { ut_ad(heap_no > PAGE_HEAP_NO_SUPREMUM); lock_mutex_enter(); ut_ad(lock_table_has(trx, table, LOCK_IX)); ut_ad(lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP, block, heap_no, trx)); lock_mutex_exit(); return(true); } #endif /* UNIV_DEBUG */ /** rewind(3) the file used for storing the latest detected deadlock and print a heading message to stderr if printing of all deadlocks to stderr is enabled. */ void DeadlockChecker::start_print() { ut_ad(lock_mutex_own()); rewind(lock_latest_err_file); ut_print_timestamp(lock_latest_err_file); if (srv_print_all_deadlocks) { ib::info() << "Transactions deadlock detected, dumping" " detailed information."; } } /** Print a message to the deadlock file and possibly to stderr. @param msg message to print */ void DeadlockChecker::print(const char* msg) { fputs(msg, lock_latest_err_file); if (srv_print_all_deadlocks) { ib::info() << msg; } } /** Print transaction data to the deadlock file and possibly to stderr. @param trx transaction @param max_query_len max query length to print */ void DeadlockChecker::print(const trx_t* trx, ulint max_query_len) { ut_ad(lock_mutex_own()); ulint n_rec_locks = lock_number_of_rows_locked(&trx->lock); ulint n_trx_locks = UT_LIST_GET_LEN(trx->lock.trx_locks); ulint heap_size = mem_heap_get_size(trx->lock.lock_heap); trx_print_low(lock_latest_err_file, trx, max_query_len, n_rec_locks, n_trx_locks, heap_size); if (srv_print_all_deadlocks) { trx_print_low(stderr, trx, max_query_len, n_rec_locks, n_trx_locks, heap_size); } } /** Print lock data to the deadlock file and possibly to stderr. @param lock record or table type lock */ void DeadlockChecker::print(const lock_t* lock) { ut_ad(lock_mutex_own()); if (lock_get_type_low(lock) == LOCK_REC) { mtr_t mtr; lock_rec_print(lock_latest_err_file, lock, mtr); if (srv_print_all_deadlocks) { lock_rec_print(stderr, lock, mtr); } } else { lock_table_print(lock_latest_err_file, lock); if (srv_print_all_deadlocks) { lock_table_print(stderr, lock); } } } /** Get the next lock in the queue that is owned by a transaction whose sub-tree has not already been searched. Note: "next" here means PREV for table locks. @param lock Lock in queue @param heap_no heap_no if lock is a record lock else ULINT_UNDEFINED @return next lock or NULL if at end of queue */ const lock_t* DeadlockChecker::get_next_lock(const lock_t* lock, ulint heap_no) const { ut_ad(lock_mutex_own()); do { if (lock_get_type_low(lock) == LOCK_REC) { ut_ad(heap_no != ULINT_UNDEFINED); lock = lock_rec_get_next_const(heap_no, lock); } else { ut_ad(heap_no == ULINT_UNDEFINED); ut_ad(lock_get_type_low(lock) == LOCK_TABLE); lock = UT_LIST_GET_NEXT( un_member.tab_lock.locks, lock); } } while (lock != NULL && is_visited(lock)); ut_ad(lock == NULL || lock_get_type_low(lock) == lock_get_type_low(m_wait_lock)); return(lock); } /** Get the first lock to search. The search starts from the current wait_lock. What we are really interested in is an edge from the current wait_lock's owning transaction to another transaction that has a lock ahead in the queue. We skip locks where the owning transaction's sub-tree has already been searched. Note: The record locks are traversed from the oldest lock to the latest. For table locks we go from latest to oldest. For record locks, we first position the "iterator" on the first lock on the page and then reposition on the actual heap_no. This is required due to the way the record lock has is implemented. @param[out] heap_no if rec lock, else ULINT_UNDEFINED. @return first lock or NULL */ const lock_t* DeadlockChecker::get_first_lock(ulint* heap_no) const { ut_ad(lock_mutex_own()); const lock_t* lock = m_wait_lock; if (lock_get_type_low(lock) == LOCK_REC) { hash_table_t* lock_hash; lock_hash = lock->type_mode & LOCK_PREDICATE ? lock_sys.prdt_hash : lock_sys.rec_hash; /* We are only interested in records that match the heap_no. */ *heap_no = lock_rec_find_set_bit(lock); ut_ad(*heap_no <= 0xffff); ut_ad(*heap_no != ULINT_UNDEFINED); /* Find the locks on the page. */ lock = lock_rec_get_first_on_page_addr( lock_hash, lock->un_member.rec_lock.space, lock->un_member.rec_lock.page_no); /* Position on the first lock on the physical record.*/ if (!lock_rec_get_nth_bit(lock, *heap_no)) { lock = lock_rec_get_next_const(*heap_no, lock); } ut_a(!lock_get_wait(lock)); } else { /* Table locks don't care about the heap_no. */ *heap_no = ULINT_UNDEFINED; ut_ad(lock_get_type_low(lock) == LOCK_TABLE); dict_table_t* table = lock->un_member.tab_lock.table; lock = UT_LIST_GET_FIRST(table->locks); } /* Must find at least two locks, otherwise there cannot be a waiting lock, secondly the first lock cannot be the wait_lock. */ ut_a(lock != NULL); ut_a(lock != m_wait_lock || (innodb_lock_schedule_algorithm == INNODB_LOCK_SCHEDULE_ALGORITHM_VATS && !thd_is_replication_slave_thread(lock->trx->mysql_thd))); /* Check that the lock type doesn't change. */ ut_ad(lock_get_type_low(lock) == lock_get_type_low(m_wait_lock)); return(lock); } /** Notify that a deadlock has been detected and print the conflicting transaction info. @param lock lock causing deadlock */ void DeadlockChecker::notify(const lock_t* lock) const { ut_ad(lock_mutex_own()); start_print(); print("\n*** (1) TRANSACTION:\n"); print(m_wait_lock->trx, 3000); print("*** (1) WAITING FOR THIS LOCK TO BE GRANTED:\n"); print(m_wait_lock); print("*** (2) TRANSACTION:\n"); print(lock->trx, 3000); print("*** (2) HOLDS THE LOCK(S):\n"); print(lock); /* It is possible that the joining transaction was granted its lock when we rolled back some other waiting transaction. */ if (m_start->lock.wait_lock != 0) { print("*** (2) WAITING FOR THIS LOCK TO BE GRANTED:\n"); print(m_start->lock.wait_lock); } DBUG_PRINT("ib_lock", ("deadlock detected")); } /** Select the victim transaction that should be rolledback. @return victim transaction */ const trx_t* DeadlockChecker::select_victim() const { ut_ad(lock_mutex_own()); ut_ad(m_start->lock.wait_lock != 0); ut_ad(m_wait_lock->trx != m_start); if (trx_weight_ge(m_wait_lock->trx, m_start)) { /* The joining transaction is 'smaller', choose it as the victim and roll it back. */ #ifdef WITH_WSREP if (wsrep_thd_is_BF(m_start->mysql_thd, FALSE)) { return(m_wait_lock->trx); } #endif /* WITH_WSREP */ return(m_start); } #ifdef WITH_WSREP if (wsrep_thd_is_BF(m_wait_lock->trx->mysql_thd, FALSE)) { return(m_start); } #endif /* WITH_WSREP */ return(m_wait_lock->trx); } /** Looks iteratively for a deadlock. Note: the joining transaction may have been granted its lock by the deadlock checks. @return 0 if no deadlock else the victim transaction instance.*/ const trx_t* DeadlockChecker::search() { ut_ad(lock_mutex_own()); ut_ad(!trx_mutex_own(m_start)); ut_ad(m_start != NULL); ut_ad(m_wait_lock != NULL); ut_ad(!m_wait_lock->trx->auto_commit || m_wait_lock->trx->will_lock); ut_d(check_trx_state(m_wait_lock->trx)); ut_ad(m_mark_start <= s_lock_mark_counter); /* Look at the locks ahead of wait_lock in the lock queue. */ ulint heap_no; const lock_t* lock = get_first_lock(&heap_no); for (;;) { /* We should never visit the same sub-tree more than once. */ ut_ad(lock == NULL || !is_visited(lock)); while (m_n_elems > 0 && lock == NULL) { /* Restore previous search state. */ pop(lock, heap_no); lock = get_next_lock(lock, heap_no); } if (lock == NULL) { break; } if (lock == m_wait_lock) { /* We can mark this subtree as searched */ ut_ad(lock->trx->lock.deadlock_mark <= m_mark_start); lock->trx->lock.deadlock_mark = ++s_lock_mark_counter; /* We are not prepared for an overflow. This 64-bit counter should never wrap around. At 10^9 increments per second, it would take 10^3 years of uptime. */ ut_ad(s_lock_mark_counter > 0); /* Backtrack */ lock = NULL; continue; } if (!lock_has_to_wait(m_wait_lock, lock)) { /* No conflict, next lock */ lock = get_next_lock(lock, heap_no); continue; } if (lock->trx == m_start) { /* Found a cycle. */ notify(lock); return select_victim(); } if (is_too_deep()) { /* Search too deep to continue. */ m_too_deep = true; return m_start; } /* We do not need to report autoinc locks to the upper layer. These locks are released before commit, so they can not cause deadlocks with binlog-fixed commit order. */ if (m_report_waiters && (lock_get_type_low(lock) != LOCK_TABLE || lock_get_mode(lock) != LOCK_AUTO_INC)) { thd_rpl_deadlock_check(m_start->mysql_thd, lock->trx->mysql_thd); } if (lock->trx->lock.que_state == TRX_QUE_LOCK_WAIT) { /* Another trx ahead has requested a lock in an incompatible mode, and is itself waiting for a lock. */ ++m_cost; if (!push(lock, heap_no)) { m_too_deep = true; return m_start; } m_wait_lock = lock->trx->lock.wait_lock; lock = get_first_lock(&heap_no); if (is_visited(lock)) { lock = get_next_lock(lock, heap_no); } } else { lock = get_next_lock(lock, heap_no); } } ut_a(lock == NULL && m_n_elems == 0); /* No deadlock found. */ return(0); } /** Print info about transaction that was rolled back. @param trx transaction rolled back @param lock lock trx wants */ void DeadlockChecker::rollback_print(const trx_t* trx, const lock_t* lock) { ut_ad(lock_mutex_own()); /* If the lock search exceeds the max step or the max depth, the current trx will be the victim. Print its information. */ start_print(); print("TOO DEEP OR LONG SEARCH IN THE LOCK TABLE" " WAITS-FOR GRAPH, WE WILL ROLL BACK" " FOLLOWING TRANSACTION \n\n" "*** TRANSACTION:\n"); print(trx, 3000); print("*** WAITING FOR THIS LOCK TO BE GRANTED:\n"); print(lock); } /** Rollback transaction selected as the victim. */ void DeadlockChecker::trx_rollback() { ut_ad(lock_mutex_own()); trx_t* trx = m_wait_lock->trx; print("*** WE ROLL BACK TRANSACTION (1)\n"); trx_mutex_enter(trx); trx->lock.was_chosen_as_deadlock_victim = true; lock_cancel_waiting_and_release(trx->lock.wait_lock); trx_mutex_exit(trx); } /** Check if a joining lock request results in a deadlock. If a deadlock is found, we will resolve the deadlock by choosing a victim transaction and rolling it back. We will attempt to resolve all deadlocks. @param[in] lock the lock request @param[in,out] trx transaction requesting the lock @return trx if it was chosen as victim @retval NULL if another victim was chosen, or there is no deadlock (any more) */ const trx_t* DeadlockChecker::check_and_resolve(const lock_t* lock, trx_t* trx) { ut_ad(lock_mutex_own()); ut_ad(trx_mutex_own(trx)); ut_ad(trx->state == TRX_STATE_ACTIVE); ut_ad(!trx->auto_commit || trx->will_lock); ut_ad(!srv_read_only_mode); if (!innobase_deadlock_detect) { return(NULL); } /* Release the mutex to obey the latching order. This is safe, because DeadlockChecker::check_and_resolve() is invoked when a lock wait is enqueued for the currently running transaction. Because m_trx is a running transaction (it is not currently suspended because of a lock wait), its state can only be changed by this thread, which is currently associated with the transaction. */ trx_mutex_exit(trx); const trx_t* victim_trx; const bool report_waiters = trx->mysql_thd && thd_need_wait_reports(trx->mysql_thd); /* Try and resolve as many deadlocks as possible. */ do { DeadlockChecker checker(trx, lock, s_lock_mark_counter, report_waiters); victim_trx = checker.search(); /* Search too deep, we rollback the joining transaction only if it is possible to rollback. Otherwise we rollback the transaction that is holding the lock that the joining transaction wants. */ if (checker.is_too_deep()) { ut_ad(trx == checker.m_start); ut_ad(trx == victim_trx); rollback_print(victim_trx, lock); MONITOR_INC(MONITOR_DEADLOCK); break; } else if (victim_trx != NULL && victim_trx != trx) { ut_ad(victim_trx == checker.m_wait_lock->trx); checker.trx_rollback(); lock_deadlock_found = true; MONITOR_INC(MONITOR_DEADLOCK); } } while (victim_trx != NULL && victim_trx != trx); /* If the joining transaction was selected as the victim. */ if (victim_trx != NULL) { print("*** WE ROLL BACK TRANSACTION (2)\n"); lock_deadlock_found = true; } trx_mutex_enter(trx); return(victim_trx); } /*************************************************************//** Updates the lock table when a page is split and merged to two pages. */ UNIV_INTERN void lock_update_split_and_merge( const buf_block_t* left_block, /*!< in: left page to which merged */ const rec_t* orig_pred, /*!< in: original predecessor of supremum on the left page before merge*/ const buf_block_t* right_block) /*!< in: right page from which merged */ { const rec_t* left_next_rec; ut_ad(page_is_leaf(left_block->frame)); ut_ad(page_is_leaf(right_block->frame)); ut_ad(page_align(orig_pred) == left_block->frame); lock_mutex_enter(); left_next_rec = page_rec_get_next_const(orig_pred); ut_ad(!page_rec_is_metadata(left_next_rec)); /* Inherit the locks on the supremum of the left page to the first record which was moved from the right page */ lock_rec_inherit_to_gap( left_block, left_block, page_rec_get_heap_no(left_next_rec), PAGE_HEAP_NO_SUPREMUM); /* Reset the locks on the supremum of the left page, releasing waiting transactions */ lock_rec_reset_and_release_wait(left_block, PAGE_HEAP_NO_SUPREMUM); /* Inherit the locks to the supremum of the left page from the successor of the infimum on the right page */ lock_rec_inherit_to_gap(left_block, right_block, PAGE_HEAP_NO_SUPREMUM, lock_get_min_heap_no(right_block)); lock_mutex_exit(); }