/***************************************************************************** Copyright (c) 1995, 2018, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2008, Google Inc. Copyright (c) 2013, 2023, MariaDB Corporation. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file buf/buf0buf.cc The database buffer buf_pool Created 11/5/1995 Heikki Tuuri *******************************************************/ #include "assume_aligned.h" #include "mtr0types.h" #include "mach0data.h" #include "buf0buf.h" #include "buf0checksum.h" #include #ifdef UNIV_INNOCHECKSUM #include "my_sys.h" #else #include "my_cpu.h" #include "mem0mem.h" #include "btr0btr.h" #include "fil0fil.h" #include "fil0crypt.h" #include "buf0buddy.h" #include "buf0dblwr.h" #include "lock0lock.h" #include "btr0sea.h" #include "trx0undo.h" #include "trx0purge.h" #include "log0log.h" #include "dict0stats_bg.h" #include "srv0srv.h" #include "srv0start.h" #include "dict0dict.h" #include "log0recv.h" #include "srv0mon.h" #include "log0crypt.h" #include "fil0pagecompress.h" #endif /* !UNIV_INNOCHECKSUM */ #include "page0zip.h" #include "buf0dump.h" #include #include #include "log.h" using st_::span; #ifdef HAVE_LIBNUMA #include #include struct set_numa_interleave_t { set_numa_interleave_t() { if (srv_numa_interleave) { struct bitmask *numa_mems_allowed = numa_get_mems_allowed(); ib::info() << "Setting NUMA memory policy to" " MPOL_INTERLEAVE"; if (set_mempolicy(MPOL_INTERLEAVE, numa_mems_allowed->maskp, numa_mems_allowed->size) != 0) { ib::warn() << "Failed to set NUMA memory" " policy to MPOL_INTERLEAVE: " << strerror(errno); } numa_bitmask_free(numa_mems_allowed); } } ~set_numa_interleave_t() { if (srv_numa_interleave) { ib::info() << "Setting NUMA memory policy to" " MPOL_DEFAULT"; if (set_mempolicy(MPOL_DEFAULT, NULL, 0) != 0) { ib::warn() << "Failed to set NUMA memory" " policy to MPOL_DEFAULT: " << strerror(errno); } } } }; #define NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE set_numa_interleave_t scoped_numa #else #define NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE #endif /* HAVE_LIBNUMA */ /* IMPLEMENTATION OF THE BUFFER POOL ================================= Buffer frames and blocks ------------------------ Following the terminology of Gray and Reuter, we call the memory blocks where file pages are loaded buffer frames. For each buffer frame there is a control block, or shortly, a block, in the buffer control array. The control info which does not need to be stored in the file along with the file page, resides in the control block. Buffer pool struct ------------------ The buffer buf_pool contains a single mutex which protects all the control data structures of the buf_pool. The content of a buffer frame is protected by a separate read-write lock in its control block, though. These locks can be locked and unlocked without owning the buf_pool.mutex. The OS events in the buf_pool struct can be waited for without owning the buf_pool.mutex. The buf_pool.mutex is a hot-spot in main memory, causing a lot of memory bus traffic on multiprocessor systems when processors alternately access the mutex. On our Pentium, the mutex is accessed maybe every 10 microseconds. We gave up the solution to have mutexes for each control block, for instance, because it seemed to be complicated. A solution to reduce mutex contention of the buf_pool.mutex is to create a separate mutex for the page hash table. On Pentium, accessing the hash table takes 2 microseconds, about half of the total buf_pool.mutex hold time. Control blocks -------------- The control block contains, for instance, the bufferfix count which is incremented when a thread wants a file page to be fixed in a buffer frame. The bufferfix operation does not lock the contents of the frame, however. For this purpose, the control block contains a read-write lock. The buffer frames have to be aligned so that the start memory address of a frame is divisible by the universal page size, which is a power of two. The control blocks containing file pages are put to a hash table according to the file address of the page. We could speed up the access to an individual page by using "pointer swizzling": we could replace the page references on non-leaf index pages by direct pointers to the page, if it exists in the buf_pool. We could make a separate hash table where we could chain all the page references in non-leaf pages residing in the buf_pool, using the page reference as the hash key, and at the time of reading of a page update the pointers accordingly. Drawbacks of this solution are added complexity and, possibly, extra space required on non-leaf pages for memory pointers. A simpler solution is just to speed up the hash table mechanism in the database, using tables whose size is a power of 2. Lists of blocks --------------- There are several lists of control blocks. The free list (buf_pool.free) contains blocks which are currently not used. The common LRU list contains all the blocks holding a file page except those for which the bufferfix count is non-zero. The pages are in the LRU list roughly in the order of the last access to the page, so that the oldest pages are at the end of the list. We also keep a pointer to near the end of the LRU list, which we can use when we want to artificially age a page in the buf_pool. This is used if we know that some page is not needed again for some time: we insert the block right after the pointer, causing it to be replaced sooner than would normally be the case. Currently this aging mechanism is used for read-ahead mechanism of pages, and it can also be used when there is a scan of a full table which cannot fit in the memory. Putting the pages near the end of the LRU list, we make sure that most of the buf_pool stays in the main memory, undisturbed. The unzip_LRU list contains a subset of the common LRU list. The blocks on the unzip_LRU list hold a compressed file page and the corresponding uncompressed page frame. A block is in unzip_LRU if and only if the predicate block->page.belongs_to_unzip_LRU() holds. The blocks in unzip_LRU will be in same order as they are in the common LRU list. That is, each manipulation of the common LRU list will result in the same manipulation of the unzip_LRU list. The chain of modified blocks (buf_pool.flush_list) contains the blocks holding persistent file pages that have been modified in the memory but not written to disk yet. The block with the oldest modification which has not yet been written to disk is at the end of the chain. The access to this list is protected by buf_pool.flush_list_mutex. The control blocks for uncompressed pages are accessible via buf_block_t objects that are reachable via buf_pool.chunks[]. The control blocks (buf_page_t) of those ROW_FORMAT=COMPRESSED pages that are not in buf_pool.flush_list and for which no uncompressed page has been allocated in buf_pool are only accessible via buf_pool.LRU. The chains of free memory blocks (buf_pool.zip_free[]) are used by the buddy allocator (buf0buddy.cc) to keep track of currently unused memory blocks of size 1024..innodb_page_size / 2. These blocks are inside the memory blocks of size innodb_page_size and type BUF_BLOCK_MEMORY that the buddy allocator requests from the buffer pool. The buddy allocator is solely used for allocating ROW_FORMAT=COMPRESSED page frames. Loading a file page ------------------- First, a victim block for replacement has to be found in the buf_pool. It is taken from the free list or searched for from the end of the LRU-list. An exclusive lock is reserved for the frame, the io_fix is set in the block fixing the block in buf_pool, and the io-operation for loading the page is queued. The io-handler thread releases the X-lock on the frame and releases the io_fix when the io operation completes. A thread may request the above operation using the function buf_page_get(). It may then continue to request a lock on the frame. The lock is granted when the io-handler releases the x-lock. Read-ahead ---------- The read-ahead mechanism is intended to be intelligent and isolated from the semantically higher levels of the database index management. From the higher level we only need the information if a file page has a natural successor or predecessor page. On the leaf level of a B-tree index, these are the next and previous pages in the natural order of the pages. Let us first explain the read-ahead mechanism when the leafs of a B-tree are scanned in an ascending or descending order. When a read page is the first time referenced in the buf_pool, the buffer manager checks if it is at the border of a so-called linear read-ahead area. The tablespace is divided into these areas of size 64 blocks, for example. So if the page is at the border of such an area, the read-ahead mechanism checks if all the other blocks in the area have been accessed in an ascending or descending order. If this is the case, the system looks at the natural successor or predecessor of the page, checks if that is at the border of another area, and in this case issues read-requests for all the pages in that area. Maybe we could relax the condition that all the pages in the area have to be accessed: if data is deleted from a table, there may appear holes of unused pages in the area. A different read-ahead mechanism is used when there appears to be a random access pattern to a file. If a new page is referenced in the buf_pool, and several pages of its random access area (for instance, 32 consecutive pages in a tablespace) have recently been referenced, we may predict that the whole area may be needed in the near future, and issue the read requests for the whole area. */ #ifndef UNIV_INNOCHECKSUM # ifdef SUX_LOCK_GENERIC void page_hash_latch::read_lock_wait() { /* First, try busy spinning for a while. */ for (auto spin= srv_n_spin_wait_rounds; spin--; ) { LF_BACKOFF(); if (read_trylock()) return; } /* Fall back to yielding to other threads. */ do std::this_thread::yield(); while (!read_trylock()); } void page_hash_latch::write_lock_wait() { write_lock_wait_start(); /* First, try busy spinning for a while. */ for (auto spin= srv_n_spin_wait_rounds; spin--; ) { if (write_lock_poll()) return; LF_BACKOFF(); } /* Fall back to yielding to other threads. */ do std::this_thread::yield(); while (!write_lock_poll()); } # endif /** Number of attempts made to read in a page in the buffer pool */ constexpr ulint BUF_PAGE_READ_MAX_RETRIES= 100; /** The maximum portion of the buffer pool that can be used for the read-ahead buffer. (Divide buf_pool size by this amount) */ constexpr uint32_t BUF_READ_AHEAD_PORTION= 32; /** A 64KiB buffer of NUL bytes, for use in assertions and checks, and dummy default values of instantly dropped columns. Initially, BLOB field references are set to NUL bytes, in dtuple_convert_big_rec(). */ const byte *field_ref_zero; /** The InnoDB buffer pool */ buf_pool_t buf_pool; buf_pool_t::chunk_t::map *buf_pool_t::chunk_t::map_reg; buf_pool_t::chunk_t::map *buf_pool_t::chunk_t::map_ref; #ifdef UNIV_DEBUG /** This is used to insert validation operations in execution in the debug version */ static Atomic_counter buf_dbg_counter; #endif /* UNIV_DEBUG */ /** Macro to determine whether the read of write counter is used depending on the io_type */ #define MONITOR_RW_COUNTER(read, counter) \ (read ? (counter##_READ) : (counter##_WRITTEN)) /** Decrypt a page for temporary tablespace. @param[in,out] tmp_frame Temporary buffer @param[in] src_frame Page to decrypt @return true if temporary tablespace decrypted, false if not */ static bool buf_tmp_page_decrypt(byte* tmp_frame, byte* src_frame) { if (buf_is_zeroes(span(src_frame, srv_page_size))) { return true; } /* read space & lsn */ uint header_len = FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION; /* Copy FIL page header, it is not encrypted */ memcpy(tmp_frame, src_frame, header_len); /* Calculate the offset where decryption starts */ const byte* src = src_frame + header_len; byte* dst = tmp_frame + header_len; uint srclen = uint(srv_page_size) - (header_len + FIL_PAGE_FCRC32_CHECKSUM); ulint offset = mach_read_from_4(src_frame + FIL_PAGE_OFFSET); if (!log_tmp_block_decrypt(src, srclen, dst, (offset * srv_page_size))) { return false; } static_assert(FIL_PAGE_FCRC32_CHECKSUM == 4, "alignment"); memcpy_aligned<4>(tmp_frame + srv_page_size - FIL_PAGE_FCRC32_CHECKSUM, src_frame + srv_page_size - FIL_PAGE_FCRC32_CHECKSUM, FIL_PAGE_FCRC32_CHECKSUM); memcpy_aligned(src_frame, tmp_frame, srv_page_size); srv_stats.pages_decrypted.inc(); srv_stats.n_temp_blocks_decrypted.inc(); return true; /* page was decrypted */ } /** Decrypt a page. @param[in,out] bpage Page control block @param[in] node data file @return whether the operation was successful */ static bool buf_page_decrypt_after_read(buf_page_t *bpage, const fil_node_t &node) { ut_ad(node.space->referenced()); ut_ad(node.space->id == bpage->id().space()); const auto flags = node.space->flags; byte* dst_frame = bpage->zip.data ? bpage->zip.data : bpage->frame; bool page_compressed = node.space->is_compressed() && buf_page_is_compressed(dst_frame, flags); const page_id_t id(bpage->id()); if (id.page_no() == 0) { /* File header pages are not encrypted/compressed */ return (true); } buf_tmp_buffer_t* slot; if (id.space() == SRV_TMP_SPACE_ID && innodb_encrypt_temporary_tables) { slot = buf_pool.io_buf_reserve(); ut_a(slot); slot->allocate(); bool ok = buf_tmp_page_decrypt(slot->crypt_buf, dst_frame); slot->release(); return ok; } /* Page is encrypted if encryption information is found from tablespace and page contains used key_version. This is true also for pages first compressed and then encrypted. */ uint key_version = buf_page_get_key_version(dst_frame, flags); if (page_compressed && !key_version) { /* the page we read is unencrypted */ /* Find free slot from temporary memory array */ decompress: if (fil_space_t::full_crc32(flags) && buf_page_is_corrupted(true, dst_frame, flags)) { return false; } slot = buf_pool.io_buf_reserve(); ut_a(slot); slot->allocate(); decompress_with_slot: ulint write_size = fil_page_decompress( slot->crypt_buf, dst_frame, flags); slot->release(); ut_ad(node.space->referenced()); return write_size != 0; } if (key_version && node.space->crypt_data) { /* Verify encryption checksum before we even try to decrypt. */ if (!buf_page_verify_crypt_checksum(dst_frame, flags)) { decrypt_failed: ib::error() << "Encrypted page " << id << " in file " << node.name << " looks corrupted; key_version=" << key_version; return false; } slot = buf_pool.io_buf_reserve(); ut_a(slot); slot->allocate(); /* decrypt using crypt_buf to dst_frame */ if (!fil_space_decrypt(node.space, slot->crypt_buf, dst_frame)) { slot->release(); goto decrypt_failed; } if ((fil_space_t::full_crc32(flags) && page_compressed) || fil_page_get_type(dst_frame) == FIL_PAGE_PAGE_COMPRESSED_ENCRYPTED) { goto decompress_with_slot; } slot->release(); } else if (fil_page_get_type(dst_frame) == FIL_PAGE_PAGE_COMPRESSED_ENCRYPTED) { goto decompress; } ut_ad(node.space->referenced()); return true; } #endif /* !UNIV_INNOCHECKSUM */ /** Checks if the page is in crc32 checksum format. @param[in] read_buf database page @param[in] checksum_field1 new checksum field @param[in] checksum_field2 old checksum field @return true if the page is in crc32 checksum format. */ static bool buf_page_is_checksum_valid_crc32( const byte* read_buf, ulint checksum_field1, ulint checksum_field2) { const uint32_t crc32 = buf_calc_page_crc32(read_buf); #ifdef UNIV_INNOCHECKSUM extern FILE* log_file; extern uint32_t cur_page_num; if (log_file) { fprintf(log_file, "page::" UINT32PF ";" " crc32 calculated = " UINT32PF ";" " recorded checksum field1 = " ULINTPF " recorded" " checksum field2 =" ULINTPF "\n", cur_page_num, crc32, checksum_field1, checksum_field2); } #endif /* UNIV_INNOCHECKSUM */ if (checksum_field1 != checksum_field2) { return false; } return checksum_field1 == crc32; } /** Checks whether the lsn present in the page is lesser than the peek current lsn. @param[in] check_lsn lsn to check @param[in] read_buf page. */ static void buf_page_check_lsn(bool check_lsn, const byte* read_buf) { #ifndef UNIV_INNOCHECKSUM if (check_lsn && recv_lsn_checks_on) { const lsn_t current_lsn = log_sys.get_lsn(); const lsn_t page_lsn = mach_read_from_8(read_buf + FIL_PAGE_LSN); /* Since we are going to reset the page LSN during the import phase it makes no sense to spam the log with error messages. */ if (current_lsn < page_lsn) { const uint32_t space_id = mach_read_from_4( read_buf + FIL_PAGE_SPACE_ID); const uint32_t page_no = mach_read_from_4( read_buf + FIL_PAGE_OFFSET); ib::error() << "Page " << page_id_t(space_id, page_no) << " log sequence number " << page_lsn << " is in the future! Current system" << " log sequence number " << current_lsn << "."; ib::error() << "Your database may be corrupt or" " you may have copied the InnoDB" " tablespace but not the InnoDB" " log files. " << FORCE_RECOVERY_MSG; } } #endif /* !UNIV_INNOCHECKSUM */ } /** Check if a buffer is all zeroes. @param[in] buf data to check @return whether the buffer is all zeroes */ bool buf_is_zeroes(span buf) { ut_ad(buf.size() <= UNIV_PAGE_SIZE_MAX); return memcmp(buf.data(), field_ref_zero, buf.size()) == 0; } /** Check if a page is corrupt. @param check_lsn whether FIL_PAGE_LSN should be checked @param read_buf database page @param fsp_flags contents of FIL_SPACE_FLAGS @return whether the page is corrupted */ bool buf_page_is_corrupted(bool check_lsn, const byte *read_buf, uint32_t fsp_flags) { if (fil_space_t::full_crc32(fsp_flags)) { bool compressed = false, corrupted = false; const uint size = buf_page_full_crc32_size( read_buf, &compressed, &corrupted); if (corrupted) { return true; } const byte* end = read_buf + (size - FIL_PAGE_FCRC32_CHECKSUM); uint crc32 = mach_read_from_4(end); if (!crc32 && size == srv_page_size && buf_is_zeroes(span(read_buf, size))) { return false; } DBUG_EXECUTE_IF( "page_intermittent_checksum_mismatch", { static int page_counter; if (page_counter++ == 6) { crc32++; } }); if (crc32 != my_crc32c(0, read_buf, size - FIL_PAGE_FCRC32_CHECKSUM)) { return true; } static_assert(FIL_PAGE_FCRC32_KEY_VERSION == 0, "alignment"); static_assert(FIL_PAGE_LSN % 4 == 0, "alignment"); static_assert(FIL_PAGE_FCRC32_END_LSN % 4 == 0, "alignment"); if (!compressed && !mach_read_from_4(FIL_PAGE_FCRC32_KEY_VERSION + read_buf) && memcmp_aligned<4>(read_buf + (FIL_PAGE_LSN + 4), end - (FIL_PAGE_FCRC32_END_LSN - FIL_PAGE_FCRC32_CHECKSUM), 4)) { return true; } buf_page_check_lsn(check_lsn, read_buf); return false; } const ulint zip_size = fil_space_t::zip_size(fsp_flags); const uint16_t page_type = fil_page_get_type(read_buf); /* We can trust page type if page compression is set on tablespace flags because page compression flag means file must have been created with 10.1 (later than 5.5 code base). In 10.1 page compressed tables do not contain post compression checksum and FIL_PAGE_END_LSN_OLD_CHKSUM field stored. Note that space can be null if we are in fil_check_first_page() and first page is not compressed or encrypted. Page checksum is verified after decompression (i.e. normally pages are already decompressed at this stage). */ if ((page_type == FIL_PAGE_PAGE_COMPRESSED || page_type == FIL_PAGE_PAGE_COMPRESSED_ENCRYPTED) #ifndef UNIV_INNOCHECKSUM && FSP_FLAGS_HAS_PAGE_COMPRESSION(fsp_flags) #endif ) { return(false); } static_assert(FIL_PAGE_LSN % 4 == 0, "alignment"); static_assert(FIL_PAGE_END_LSN_OLD_CHKSUM % 4 == 0, "alignment"); if (!zip_size && memcmp_aligned<4>(read_buf + FIL_PAGE_LSN + 4, read_buf + srv_page_size - FIL_PAGE_END_LSN_OLD_CHKSUM + 4, 4)) { /* Stored log sequence numbers at the start and the end of page do not match */ return(true); } buf_page_check_lsn(check_lsn, read_buf); /* Check whether the checksum fields have correct values */ if (zip_size) { return !page_zip_verify_checksum(read_buf, zip_size); } const uint32_t checksum_field1 = mach_read_from_4( read_buf + FIL_PAGE_SPACE_OR_CHKSUM); const uint32_t checksum_field2 = mach_read_from_4( read_buf + srv_page_size - FIL_PAGE_END_LSN_OLD_CHKSUM); static_assert(FIL_PAGE_LSN % 8 == 0, "alignment"); /* A page filled with NUL bytes is considered not corrupted. Before MariaDB Server 10.1.25 (MDEV-12113) or 10.2.2 (or MySQL 5.7), the FIL_PAGE_FILE_FLUSH_LSN field may have been written nonzero for the first page of each file of the system tablespace. We want to ignore it for the system tablespace, but because we do not know the expected tablespace here, we ignore the field for all data files, except for innodb_checksum_algorithm=full_crc32 which we handled above. */ if (!checksum_field1 && !checksum_field2) { /* Checksum fields can have valid value as zero. If the page is not empty then do the checksum calculation for the page. */ bool all_zeroes = true; for (size_t i = 0; i < srv_page_size; i++) { #ifndef UNIV_INNOCHECKSUM if (i == FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION) { i += 8; } #endif if (read_buf[i]) { all_zeroes = false; break; } } if (all_zeroes) { return false; } } #ifndef UNIV_INNOCHECKSUM switch (srv_checksum_algorithm) { case SRV_CHECKSUM_ALGORITHM_STRICT_FULL_CRC32: case SRV_CHECKSUM_ALGORITHM_STRICT_CRC32: #endif /* !UNIV_INNOCHECKSUM */ return !buf_page_is_checksum_valid_crc32( read_buf, checksum_field1, checksum_field2); #ifndef UNIV_INNOCHECKSUM default: if (checksum_field1 == BUF_NO_CHECKSUM_MAGIC && checksum_field2 == BUF_NO_CHECKSUM_MAGIC) { return false; } const uint32_t crc32 = buf_calc_page_crc32(read_buf); /* Very old versions of InnoDB only stored 8 byte lsn to the start and the end of the page. */ /* Since innodb_checksum_algorithm is not strict_* allow any of the algos to match for the old field */ if (checksum_field2 != mach_read_from_4(read_buf + FIL_PAGE_LSN) && checksum_field2 != BUF_NO_CHECKSUM_MAGIC) { DBUG_EXECUTE_IF( "page_intermittent_checksum_mismatch", { static int page_counter; if (page_counter++ == 6) return true; }); if ((checksum_field1 != crc32 || checksum_field2 != crc32) && checksum_field2 != buf_calc_page_old_checksum(read_buf)) { return true; } } switch (checksum_field1) { case 0: case BUF_NO_CHECKSUM_MAGIC: return false; } return (checksum_field1 != crc32 || checksum_field2 != crc32) && checksum_field1 != buf_calc_page_new_checksum(read_buf); } #endif /* !UNIV_INNOCHECKSUM */ } #ifndef UNIV_INNOCHECKSUM #if defined(DBUG_OFF) && defined(HAVE_MADVISE) && defined(MADV_DODUMP) /** Enable buffers to be dumped to core files A convience function, not called anyhwere directly however it is left available for gdb or any debugger to call in the event that you want all of the memory to be dumped to a core file. Returns number of errors found in madvise calls. */ MY_ATTRIBUTE((used)) int buf_madvise_do_dump() { int ret= 0; /* mirrors allocation in log_t::create() */ if (log_sys.buf) { ret += madvise(log_sys.buf, log_sys.buf_size, MADV_DODUMP); ret += madvise(log_sys.flush_buf, log_sys.buf_size, MADV_DODUMP); } mysql_mutex_lock(&buf_pool.mutex); auto chunk = buf_pool.chunks; for (ulint n = buf_pool.n_chunks; n--; chunk++) { ret+= madvise(chunk->mem, chunk->mem_size(), MADV_DODUMP); } mysql_mutex_unlock(&buf_pool.mutex); return ret; } #endif #ifndef UNIV_DEBUG static inline byte hex_to_ascii(byte hex_digit) { const int offset= hex_digit <= 9 ? '0' : 'a' - 10; return byte(hex_digit + offset); } #endif /** Dump a page to stderr. @param[in] read_buf database page @param[in] zip_size compressed page size, or 0 */ ATTRIBUTE_COLD void buf_page_print(const byte *read_buf, ulint zip_size) { #ifndef UNIV_DEBUG const size_t size = zip_size ? zip_size : srv_page_size; const byte * const end= read_buf + size; sql_print_information("InnoDB: Page dump (%zu bytes):", size); do { byte row[64]; for (byte *r= row; r != &row[64]; r+= 2, read_buf++) { r[0]= hex_to_ascii(byte(*read_buf >> 4)); r[1]= hex_to_ascii(*read_buf & 15); } sql_print_information("InnoDB: %.*s", 64, row); } while (read_buf != end); sql_print_information("InnoDB: End of page dump"); #endif } /** Initialize a buffer page descriptor. @param[in,out] block buffer page descriptor @param[in] frame buffer page frame */ static void buf_block_init(buf_block_t* block, byte* frame) { /* This function should only be executed at database startup or by buf_pool.resize(). Either way, adaptive hash index must not exist. */ assert_block_ahi_empty_on_init(block); block->page.frame = frame; MEM_MAKE_DEFINED(&block->modify_clock, sizeof block->modify_clock); ut_ad(!block->modify_clock); MEM_MAKE_DEFINED(&block->page.lock, sizeof block->page.lock); block->page.init(buf_page_t::NOT_USED, page_id_t(~0ULL)); #ifdef BTR_CUR_HASH_ADAPT MEM_MAKE_DEFINED(&block->index, sizeof block->index); ut_ad(!block->index); #endif /* BTR_CUR_HASH_ADAPT */ ut_d(block->in_unzip_LRU_list = false); ut_d(block->in_withdraw_list = false); page_zip_des_init(&block->page.zip); MEM_MAKE_DEFINED(&block->page.hash, sizeof block->page.hash); ut_ad(!block->page.hash); } /** Allocate a chunk of buffer frames. @param bytes requested size @return whether the allocation succeeded */ inline bool buf_pool_t::chunk_t::create(size_t bytes) { DBUG_EXECUTE_IF("ib_buf_chunk_init_fails", return false;); /* Round down to a multiple of page size, although it already should be. */ bytes= ut_2pow_round(bytes, srv_page_size); mem= buf_pool.allocator.allocate_large_dontdump(bytes, &mem_pfx); if (UNIV_UNLIKELY(!mem)) return false; MEM_UNDEFINED(mem, mem_size()); #ifdef HAVE_LIBNUMA if (srv_numa_interleave) { struct bitmask *numa_mems_allowed= numa_get_mems_allowed(); if (mbind(mem, mem_size(), MPOL_INTERLEAVE, numa_mems_allowed->maskp, numa_mems_allowed->size, MPOL_MF_MOVE)) { ib::warn() << "Failed to set NUMA memory policy of" " buffer pool page frames to MPOL_INTERLEAVE" " (error: " << strerror(errno) << ")."; } numa_bitmask_free(numa_mems_allowed); } #endif /* HAVE_LIBNUMA */ /* Allocate the block descriptors from the start of the memory block. */ blocks= reinterpret_cast(mem); /* Align a pointer to the first frame. Note that when opt_large_page_size is smaller than srv_page_size, (with max srv_page_size at 64k don't think any hardware makes this true), we may allocate one fewer block than requested. When it is bigger, we may allocate more blocks than requested. */ static_assert(sizeof(byte*) == sizeof(ulint), "pointer size"); byte *frame= reinterpret_cast((reinterpret_cast(mem) + srv_page_size - 1) & ~ulint{srv_page_size - 1}); size= (mem_pfx.m_size >> srv_page_size_shift) - (frame != mem); /* Subtract the space needed for block descriptors. */ { ulint s= size; while (frame < reinterpret_cast(blocks + s)) { frame+= srv_page_size; s--; } size= s; } /* Init block structs and assign frames for them. Then we assign the frames to the first blocks (we already mapped the memory above). */ buf_block_t *block= blocks; for (auto i= size; i--; ) { buf_block_init(block, frame); MEM_UNDEFINED(block->page.frame, srv_page_size); /* Add the block to the free list */ UT_LIST_ADD_LAST(buf_pool.free, &block->page); ut_d(block->page.in_free_list = TRUE); block++; frame+= srv_page_size; } reg(); return true; } #ifdef UNIV_DEBUG /** Check that all file pages in the buffer chunk are in a replaceable state. @return address of a non-free block @retval nullptr if all freed */ inline const buf_block_t *buf_pool_t::chunk_t::not_freed() const { buf_block_t *block= blocks; for (auto i= size; i--; block++) { if (block->page.in_file()) { /* The uncompressed buffer pool should never contain ROW_FORMAT=COMPRESSED block descriptors. */ ut_ad(block->page.frame); const lsn_t lsn= block->page.oldest_modification(); if (srv_read_only_mode) { /* The page cleaner is disabled in read-only mode. No pages can be dirtied, so all of them must be clean. */ ut_ad(lsn == 0 || lsn == recv_sys.lsn || srv_force_recovery == SRV_FORCE_NO_LOG_REDO); break; } if (fsp_is_system_temporary(block->page.id().space())) { ut_ad(lsn == 0 || lsn == 2); break; } if (lsn > 1 || !block->page.can_relocate()) return block; break; } } return nullptr; } #endif /* UNIV_DEBUG */ /** Create the hash table. @param n the lower bound of n_cells */ void buf_pool_t::page_hash_table::create(ulint n) { n_cells= ut_find_prime(n); const size_t size= MY_ALIGN(pad(n_cells) * sizeof *array, CPU_LEVEL1_DCACHE_LINESIZE); void *v= aligned_malloc(size, CPU_LEVEL1_DCACHE_LINESIZE); memset_aligned(v, 0, size); array= static_cast(v); } /** Create the buffer pool. @return whether the creation failed */ bool buf_pool_t::create() { ut_ad(this == &buf_pool); ut_ad(srv_buf_pool_size % srv_buf_pool_chunk_unit == 0); ut_ad(!is_initialised()); ut_ad(srv_buf_pool_size > 0); ut_ad(!resizing); ut_ad(!chunks_old); /* mariabackup loads tablespaces, and it requires field_ref_zero to be allocated before innodb initialization */ ut_ad(srv_operation >= SRV_OPERATION_RESTORE || !field_ref_zero); NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE; if (!field_ref_zero) { if (auto b= aligned_malloc(UNIV_PAGE_SIZE_MAX, 4096)) field_ref_zero= static_cast (memset_aligned<4096>(b, 0, UNIV_PAGE_SIZE_MAX)); else return true; } chunk_t::map_reg= UT_NEW_NOKEY(chunk_t::map()); new(&allocator) ut_allocator(mem_key_buf_buf_pool); n_chunks= srv_buf_pool_size / srv_buf_pool_chunk_unit; const size_t chunk_size= srv_buf_pool_chunk_unit; chunks= static_cast(ut_zalloc_nokey(n_chunks * sizeof *chunks)); UT_LIST_INIT(free, &buf_page_t::list); curr_size= 0; auto chunk= chunks; do { if (!chunk->create(chunk_size)) { while (--chunk >= chunks) { buf_block_t* block= chunk->blocks; for (auto i= chunk->size; i--; block++) block->page.lock.free(); allocator.deallocate_large_dodump(chunk->mem, &chunk->mem_pfx); } ut_free(chunks); chunks= nullptr; UT_DELETE(chunk_t::map_reg); chunk_t::map_reg= nullptr; aligned_free(const_cast(field_ref_zero)); field_ref_zero= nullptr; ut_ad(!is_initialised()); return true; } curr_size+= chunk->size; } while (++chunk < chunks + n_chunks); ut_ad(is_initialised()); #if defined(__aarch64__) mysql_mutex_init(buf_pool_mutex_key, &mutex, MY_MUTEX_INIT_FAST); #else mysql_mutex_init(buf_pool_mutex_key, &mutex, nullptr); #endif UT_LIST_INIT(LRU, &buf_page_t::LRU); UT_LIST_INIT(withdraw, &buf_page_t::list); withdraw_target= 0; UT_LIST_INIT(flush_list, &buf_page_t::list); UT_LIST_INIT(unzip_LRU, &buf_block_t::unzip_LRU); for (size_t i= 0; i < UT_ARR_SIZE(zip_free); ++i) UT_LIST_INIT(zip_free[i], &buf_buddy_free_t::list); ulint s= curr_size; s/= BUF_READ_AHEAD_PORTION; read_ahead_area= s >= READ_AHEAD_PAGES ? READ_AHEAD_PAGES : my_round_up_to_next_power(static_cast(s)); curr_pool_size= srv_buf_pool_size; n_chunks_new= n_chunks; page_hash.create(2 * curr_size); zip_hash.create(2 * curr_size); last_printout_time= time(NULL); mysql_mutex_init(flush_list_mutex_key, &flush_list_mutex, MY_MUTEX_INIT_FAST); pthread_cond_init(&done_flush_LRU, nullptr); pthread_cond_init(&done_flush_list, nullptr); pthread_cond_init(&do_flush_list, nullptr); pthread_cond_init(&done_free, nullptr); try_LRU_scan= true; ut_d(flush_hp.m_mutex= &flush_list_mutex;); ut_d(lru_hp.m_mutex= &mutex); ut_d(lru_scan_itr.m_mutex= &mutex); io_buf.create((srv_n_read_io_threads + srv_n_write_io_threads) * OS_AIO_N_PENDING_IOS_PER_THREAD); /* FIXME: remove some of these variables */ srv_buf_pool_curr_size= curr_pool_size; srv_buf_pool_old_size= srv_buf_pool_size; srv_buf_pool_base_size= srv_buf_pool_size; last_activity_count= srv_get_activity_count(); chunk_t::map_ref= chunk_t::map_reg; buf_LRU_old_ratio_update(100 * 3 / 8, false); btr_search_sys_create(); ut_ad(is_initialised()); return false; } /** Clean up after successful create() */ void buf_pool_t::close() { ut_ad(this == &buf_pool); if (!is_initialised()) return; mysql_mutex_destroy(&mutex); mysql_mutex_destroy(&flush_list_mutex); for (buf_page_t *bpage= UT_LIST_GET_LAST(LRU), *prev_bpage= nullptr; bpage; bpage= prev_bpage) { prev_bpage= UT_LIST_GET_PREV(LRU, bpage); ut_ad(bpage->in_file()); ut_ad(bpage->in_LRU_list); /* The buffer pool must be clean during normal shutdown. Only on aborted startup (with recovery) or with innodb_fast_shutdown=2 we may discard changes. */ ut_d(const lsn_t oldest= bpage->oldest_modification();) ut_ad(fsp_is_system_temporary(bpage->id().space()) ? (oldest == 0 || oldest == 2) : oldest <= 1 || srv_is_being_started || srv_fast_shutdown == 2); if (UNIV_UNLIKELY(!bpage->frame)) { bpage->lock.free(); ut_free(bpage); } } for (auto chunk= chunks + n_chunks; --chunk >= chunks; ) { buf_block_t *block= chunk->blocks; for (auto i= chunk->size; i--; block++) block->page.lock.free(); allocator.deallocate_large_dodump(chunk->mem, &chunk->mem_pfx); } pthread_cond_destroy(&done_flush_LRU); pthread_cond_destroy(&done_flush_list); pthread_cond_destroy(&do_flush_list); pthread_cond_destroy(&done_free); ut_free(chunks); chunks= nullptr; page_hash.free(); zip_hash.free(); io_buf.close(); UT_DELETE(chunk_t::map_reg); chunk_t::map_reg= chunk_t::map_ref= nullptr; aligned_free(const_cast(field_ref_zero)); field_ref_zero= nullptr; } /** Try to reallocate a control block. @param block control block to reallocate @return whether the reallocation succeeded */ inline bool buf_pool_t::realloc(buf_block_t *block) { buf_block_t* new_block; mysql_mutex_assert_owner(&mutex); ut_ad(block->page.in_file()); ut_ad(block->page.frame); new_block = buf_LRU_get_free_only(); if (new_block == NULL) { mysql_mutex_lock(&buf_pool.flush_list_mutex); page_cleaner_wakeup(); mysql_mutex_unlock(&buf_pool.flush_list_mutex); return(false); /* free list was not enough */ } const page_id_t id{block->page.id()}; hash_chain& chain = page_hash.cell_get(id.fold()); page_hash_latch& hash_lock = page_hash.lock_get(chain); /* It does not make sense to use transactional_lock_guard here, because copying innodb_page_size (4096 to 65536) bytes as well as other changes would likely make the memory transaction too large. */ hash_lock.lock(); if (block->page.can_relocate()) { memcpy_aligned( new_block->page.frame, block->page.frame, srv_page_size); mysql_mutex_lock(&buf_pool.flush_list_mutex); const auto frame = new_block->page.frame; new_block->page.lock.free(); new (&new_block->page) buf_page_t(block->page); new_block->page.frame = frame; /* relocate LRU list */ if (buf_page_t* prev_b = buf_pool.LRU_remove(&block->page)) { UT_LIST_INSERT_AFTER(LRU, prev_b, &new_block->page); } else { UT_LIST_ADD_FIRST(LRU, &new_block->page); } if (LRU_old == &block->page) { LRU_old = &new_block->page; } ut_ad(new_block->page.in_LRU_list); /* relocate unzip_LRU list */ if (block->page.zip.data != NULL) { ut_ad(block->in_unzip_LRU_list); ut_d(new_block->in_unzip_LRU_list = true); buf_block_t* prev_block = UT_LIST_GET_PREV(unzip_LRU, block); UT_LIST_REMOVE(unzip_LRU, block); ut_d(block->in_unzip_LRU_list = false); block->page.zip.data = NULL; page_zip_set_size(&block->page.zip, 0); if (prev_block != NULL) { UT_LIST_INSERT_AFTER(unzip_LRU, prev_block, new_block); } else { UT_LIST_ADD_FIRST(unzip_LRU, new_block); } } else { ut_ad(!block->in_unzip_LRU_list); ut_d(new_block->in_unzip_LRU_list = false); } /* relocate page_hash */ hash_chain& chain = page_hash.cell_get(id.fold()); ut_ad(&block->page == page_hash.get(id, chain)); buf_pool.page_hash.replace(chain, &block->page, &new_block->page); buf_block_modify_clock_inc(block); static_assert(FIL_PAGE_OFFSET % 4 == 0, "alignment"); memset_aligned<4>(block->page.frame + FIL_PAGE_OFFSET, 0xff, 4); static_assert(FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID % 4 == 2, "not perfect alignment"); memset_aligned<2>(block->page.frame + FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID, 0xff, 4); MEM_UNDEFINED(block->page.frame, srv_page_size); block->page.set_state(buf_page_t::REMOVE_HASH); if (!fsp_is_system_temporary(id.space())) { buf_flush_relocate_on_flush_list(&block->page, &new_block->page); } mysql_mutex_unlock(&buf_pool.flush_list_mutex); block->page.set_corrupt_id(); /* set other flags of buf_block_t */ #ifdef BTR_CUR_HASH_ADAPT /* This code should only be executed by resize(), while the adaptive hash index is disabled. */ assert_block_ahi_empty(block); assert_block_ahi_empty_on_init(new_block); ut_ad(!block->index); new_block->index = NULL; new_block->n_hash_helps = 0; new_block->n_fields = 1; new_block->left_side = TRUE; #endif /* BTR_CUR_HASH_ADAPT */ ut_d(block->page.set_state(buf_page_t::MEMORY)); /* free block */ new_block = block; } hash_lock.unlock(); buf_LRU_block_free_non_file_page(new_block); return(true); /* free_list was enough */ } /** Sets the global variable that feeds MySQL's innodb_buffer_pool_resize_status to the specified string. The format and the following parameters are the same as the ones used for printf(3). @param[in] fmt format @param[in] ... extra parameters according to fmt */ static void buf_resize_status( const char* fmt, ...) { va_list ap; va_start(ap, fmt); vsnprintf( export_vars.innodb_buffer_pool_resize_status, sizeof(export_vars.innodb_buffer_pool_resize_status), fmt, ap); va_end(ap); ib::info() << export_vars.innodb_buffer_pool_resize_status; } /** Withdraw blocks from the buffer pool until meeting withdraw_target. @return whether retry is needed */ inline bool buf_pool_t::withdraw_blocks() { buf_block_t* block; ulint loop_count = 0; ib::info() << "Start to withdraw the last " << withdraw_target << " blocks."; while (UT_LIST_GET_LEN(withdraw) < withdraw_target) { /* try to withdraw from free_list */ ulint count1 = 0; mysql_mutex_lock(&mutex); buf_buddy_condense_free(); block = reinterpret_cast( UT_LIST_GET_FIRST(free)); while (block != NULL && UT_LIST_GET_LEN(withdraw) < withdraw_target) { ut_ad(block->page.in_free_list); ut_ad(!block->page.oldest_modification()); ut_ad(!block->page.in_LRU_list); ut_a(!block->page.in_file()); buf_block_t* next_block; next_block = reinterpret_cast( UT_LIST_GET_NEXT( list, &block->page)); if (will_be_withdrawn(block->page)) { /* This should be withdrawn */ UT_LIST_REMOVE(free, &block->page); UT_LIST_ADD_LAST(withdraw, &block->page); ut_d(block->in_withdraw_list = true); count1++; } block = next_block; } mysql_mutex_unlock(&mutex); /* reserve free_list length */ if (UT_LIST_GET_LEN(withdraw) < withdraw_target) { buf_flush_LRU( std::max(withdraw_target - UT_LIST_GET_LEN(withdraw), srv_LRU_scan_depth)); buf_flush_wait_batch_end_acquiring_mutex(true); } /* relocate blocks/buddies in withdrawn area */ ulint count2 = 0; mysql_mutex_lock(&mutex); buf_pool_mutex_exit_forbid(); for (buf_page_t* bpage = UT_LIST_GET_FIRST(LRU), *next_bpage; bpage; bpage = next_bpage) { ut_ad(bpage->in_file()); next_bpage = UT_LIST_GET_NEXT(LRU, bpage); if (UNIV_LIKELY_NULL(bpage->zip.data) && will_be_withdrawn(bpage->zip.data) && bpage->can_relocate()) { if (!buf_buddy_realloc( bpage->zip.data, page_zip_get_size(&bpage->zip))) { /* failed to allocate block */ break; } count2++; if (bpage->frame) { goto realloc_frame; } } if (bpage->frame && will_be_withdrawn(*bpage) && bpage->can_relocate()) { realloc_frame: if (!realloc(reinterpret_cast( bpage))) { /* failed to allocate block */ break; } count2++; } } buf_pool_mutex_exit_allow(); mysql_mutex_unlock(&mutex); buf_resize_status( "Withdrawing blocks. (" ULINTPF "/" ULINTPF ").", UT_LIST_GET_LEN(withdraw), withdraw_target); ib::info() << "Withdrew " << count1 << " blocks from free list." << " Tried to relocate " << count2 << " blocks (" << UT_LIST_GET_LEN(withdraw) << "/" << withdraw_target << ")."; if (++loop_count >= 10) { /* give up for now. retried after user threads paused. */ ib::info() << "will retry to withdraw later"; /* need retry later */ return(true); } } /* confirm withdrawn enough */ for (const chunk_t* chunk = chunks + n_chunks_new, * const echunk = chunks + n_chunks; chunk != echunk; chunk++) { block = chunk->blocks; for (ulint j = chunk->size; j--; block++) { ut_a(block->page.state() == buf_page_t::NOT_USED); ut_ad(block->in_withdraw_list); } } ib::info() << "Withdrawn target: " << UT_LIST_GET_LEN(withdraw) << " blocks."; return(false); } inline void buf_pool_t::page_hash_table::write_lock_all() { for (auto n= pad(n_cells) & ~ELEMENTS_PER_LATCH;; n-= ELEMENTS_PER_LATCH + 1) { reinterpret_cast(array[n]).lock(); if (!n) break; } } inline void buf_pool_t::page_hash_table::write_unlock_all() { for (auto n= pad(n_cells) & ~ELEMENTS_PER_LATCH;; n-= ELEMENTS_PER_LATCH + 1) { reinterpret_cast(array[n]).unlock(); if (!n) break; } } namespace { struct find_interesting_trx { void operator()(const trx_t &trx) { if (trx.state == TRX_STATE_NOT_STARTED) return; if (trx.mysql_thd == nullptr) return; if (withdraw_started <= trx.start_time_micro) return; if (!found) { ib::warn() << "The following trx might hold " "the blocks in buffer pool to " "be withdrawn. Buffer pool " "resizing can complete only " "after all the transactions " "below release the blocks."; found= true; } lock_trx_print_wait_and_mvcc_state(stderr, &trx, current_time); } bool &found; /** microsecond_interval_timer() */ const ulonglong withdraw_started; const my_hrtime_t current_time; }; } // namespace /** Resize from srv_buf_pool_old_size to srv_buf_pool_size. */ inline void buf_pool_t::resize() { ut_ad(this == &buf_pool); bool warning = false; NUMA_MEMPOLICY_INTERLEAVE_IN_SCOPE; ut_ad(!resize_in_progress()); ut_ad(srv_buf_pool_chunk_unit > 0); ulint new_instance_size = srv_buf_pool_size >> srv_page_size_shift; std::ostringstream str_old_size, str_new_size, str_chunk_size; str_old_size << ib::bytes_iec{srv_buf_pool_old_size}; str_new_size << ib::bytes_iec{srv_buf_pool_size}; str_chunk_size << ib::bytes_iec{srv_buf_pool_chunk_unit}; buf_resize_status("Resizing buffer pool from %s to %s (unit = %s).", str_old_size.str().c_str(), str_new_size.str().c_str(), str_chunk_size.str().c_str()); #ifdef BTR_CUR_HASH_ADAPT /* disable AHI if needed */ buf_resize_status("Disabling adaptive hash index."); btr_search_s_lock_all(); const bool btr_search_disabled = btr_search_enabled; btr_search_s_unlock_all(); btr_search_disable(); if (btr_search_disabled) { ib::info() << "disabled adaptive hash index."; } #endif /* BTR_CUR_HASH_ADAPT */ mysql_mutex_lock(&mutex); ut_ad(n_chunks_new == n_chunks); ut_ad(UT_LIST_GET_LEN(withdraw) == 0); n_chunks_new = (new_instance_size << srv_page_size_shift) / srv_buf_pool_chunk_unit; curr_size = n_chunks_new * chunks->size; mysql_mutex_unlock(&mutex); if (is_shrinking()) { /* set withdraw target */ size_t w = 0; for (const chunk_t* chunk = chunks + n_chunks_new, * const echunk = chunks + n_chunks; chunk != echunk; chunk++) w += chunk->size; ut_ad(withdraw_target == 0); withdraw_target = w; } buf_resize_status("Withdrawing blocks to be shrunken."); ulonglong withdraw_started = microsecond_interval_timer(); ulonglong message_interval = 60ULL * 1000 * 1000; ulint retry_interval = 1; withdraw_retry: /* wait for the number of blocks fit to the new size (if needed)*/ bool should_retry_withdraw = is_shrinking() && withdraw_blocks(); if (srv_shutdown_state != SRV_SHUTDOWN_NONE) { /* abort to resize for shutdown. */ return; } /* abort buffer pool load */ buf_load_abort(); const ulonglong current_time = microsecond_interval_timer(); if (should_retry_withdraw && current_time - withdraw_started >= message_interval) { if (message_interval > 900000000) { message_interval = 1800000000; } else { message_interval *= 2; } bool found= false; find_interesting_trx f {found, withdraw_started, my_hrtime_coarse()}; withdraw_started = current_time; /* This is going to exceed the maximum size of a memory transaction. */ LockMutexGuard g{SRW_LOCK_CALL}; trx_sys.trx_list.for_each(f); } if (should_retry_withdraw) { ib::info() << "Will retry to withdraw " << retry_interval << " seconds later."; std::this_thread::sleep_for( std::chrono::seconds(retry_interval)); if (retry_interval > 5) { retry_interval = 10; } else { retry_interval *= 2; } goto withdraw_retry; } buf_resize_status("Latching entire buffer pool."); #ifndef DBUG_OFF { bool should_wait = true; while (should_wait) { should_wait = false; DBUG_EXECUTE_IF( "ib_buf_pool_resize_wait_before_resize", should_wait = true; std::this_thread::sleep_for( std::chrono::milliseconds(10));); } } #endif /* !DBUG_OFF */ if (srv_shutdown_state != SRV_SHUTDOWN_NONE) { return; } /* Indicate critical path */ resizing.store(true, std::memory_order_relaxed); mysql_mutex_lock(&mutex); page_hash.write_lock_all(); chunk_t::map_reg = UT_NEW_NOKEY(chunk_t::map()); /* add/delete chunks */ buf_resize_status("Resizing buffer pool from " ULINTPF " chunks to " ULINTPF " chunks.", n_chunks, n_chunks_new); if (is_shrinking()) { /* delete chunks */ chunk_t* chunk = chunks + n_chunks_new; const chunk_t* const echunk = chunks + n_chunks; ulint sum_freed = 0; while (chunk < echunk) { /* buf_LRU_block_free_non_file_page() invokes MEM_NOACCESS() on any buf_pool.free blocks. We must cancel the effect of that. In MemorySanitizer, MEM_NOACCESS() is no-op, so we must not do anything special for it here. */ #ifdef HAVE_valgrind # if !__has_feature(memory_sanitizer) MEM_MAKE_DEFINED(chunk->mem, chunk->mem_size()); # endif #else MEM_MAKE_ADDRESSABLE(chunk->mem, chunk->size); #endif buf_block_t* block = chunk->blocks; for (ulint j = chunk->size; j--; block++) { block->page.lock.free(); } allocator.deallocate_large_dodump( chunk->mem, &chunk->mem_pfx); sum_freed += chunk->size; ++chunk; } /* discard withdraw list */ UT_LIST_INIT(withdraw, &buf_page_t::list); withdraw_target = 0; ib::info() << n_chunks - n_chunks_new << " Chunks (" << sum_freed << " blocks) were freed."; n_chunks = n_chunks_new; } { /* reallocate chunks */ const size_t new_chunks_size = n_chunks_new * sizeof(chunk_t); chunk_t* new_chunks = static_cast( ut_zalloc_nokey_nofatal(new_chunks_size)); DBUG_EXECUTE_IF("buf_pool_resize_chunk_null", ut_free(new_chunks); new_chunks= nullptr; ); if (!new_chunks) { ib::error() << "failed to allocate" " the chunk array."; n_chunks_new = n_chunks; warning = true; chunks_old = NULL; goto calc_buf_pool_size; } ulint n_chunks_copy = ut_min(n_chunks_new, n_chunks); memcpy(new_chunks, chunks, n_chunks_copy * sizeof *new_chunks); for (ulint j = 0; j < n_chunks_copy; j++) { new_chunks[j].reg(); } chunks_old = chunks; chunks = new_chunks; } if (n_chunks_new > n_chunks) { /* add chunks */ ulint sum_added = 0; ulint n = n_chunks; const size_t unit = srv_buf_pool_chunk_unit; for (chunk_t* chunk = chunks + n_chunks, * const echunk = chunks + n_chunks_new; chunk != echunk; chunk++) { if (!chunk->create(unit)) { ib::error() << "failed to allocate" " memory for buffer pool chunk"; warning = true; n_chunks_new = n_chunks; break; } sum_added += chunk->size; ++n; } ib::info() << n_chunks_new - n_chunks << " chunks (" << sum_added << " blocks) were added."; n_chunks = n; } calc_buf_pool_size: /* recalc curr_size */ ulint new_size = 0; { chunk_t* chunk = chunks; const chunk_t* const echunk = chunk + n_chunks; do { new_size += chunk->size; } while (++chunk != echunk); } curr_size = new_size; n_chunks_new = n_chunks; if (chunks_old) { ut_free(chunks_old); chunks_old = NULL; } chunk_t::map* chunk_map_old = chunk_t::map_ref; chunk_t::map_ref = chunk_t::map_reg; /* set size */ ut_ad(UT_LIST_GET_LEN(withdraw) == 0); ulint s= curr_size; s/= BUF_READ_AHEAD_PORTION; read_ahead_area= s >= READ_AHEAD_PAGES ? READ_AHEAD_PAGES : my_round_up_to_next_power(static_cast(s)); curr_pool_size= n_chunks * srv_buf_pool_chunk_unit; srv_buf_pool_curr_size= curr_pool_size;/* FIXME: remove*/ extern ulonglong innobase_buffer_pool_size; innobase_buffer_pool_size= buf_pool_size_align(srv_buf_pool_curr_size); const bool new_size_too_diff = srv_buf_pool_base_size > srv_buf_pool_size * 2 || srv_buf_pool_base_size * 2 < srv_buf_pool_size; mysql_mutex_unlock(&mutex); page_hash.write_unlock_all(); UT_DELETE(chunk_map_old); resizing.store(false, std::memory_order_relaxed); /* Normalize other components, if the new size is too different */ if (!warning && new_size_too_diff) { srv_buf_pool_base_size = srv_buf_pool_size; buf_resize_status("Resizing other hash tables."); srv_lock_table_size = 5 * (srv_buf_pool_size >> srv_page_size_shift); lock_sys.resize(srv_lock_table_size); dict_sys.resize(); ib::info() << "Resized hash tables: lock_sys," #ifdef BTR_CUR_HASH_ADAPT " adaptive hash index," #endif /* BTR_CUR_HASH_ADAPT */ " and dictionary."; } if (srv_buf_pool_old_size != srv_buf_pool_size) { buf_resize_status("Completed resizing buffer pool from %zu to %zu bytes." ,srv_buf_pool_old_size, srv_buf_pool_size); srv_buf_pool_old_size = srv_buf_pool_size; } #ifdef BTR_CUR_HASH_ADAPT /* enable AHI if needed */ if (btr_search_disabled) { btr_search_enable(true); ib::info() << "Re-enabled adaptive hash index."; } #endif /* BTR_CUR_HASH_ADAPT */ if (warning) buf_resize_status("Resizing buffer pool failed"); ut_d(validate()); return; } /** Thread pool task invoked by innodb_buffer_pool_size changes. */ static void buf_resize_callback(void *) { DBUG_ENTER("buf_resize_callback"); ut_ad(srv_shutdown_state < SRV_SHUTDOWN_CLEANUP); mysql_mutex_lock(&buf_pool.mutex); const auto size= srv_buf_pool_size; const bool work= srv_buf_pool_old_size != size; mysql_mutex_unlock(&buf_pool.mutex); if (work) buf_pool.resize(); else { std::ostringstream sout; sout << "Size did not change: old size = new size = " << size; buf_resize_status(sout.str().c_str()); } DBUG_VOID_RETURN; } /* Ensure that task does not run in parallel, by setting max_concurrency to 1 for the thread group */ static tpool::task_group single_threaded_group(1); static tpool::waitable_task buf_resize_task(buf_resize_callback, nullptr, &single_threaded_group); void buf_resize_start() { srv_thread_pool->submit_task(&buf_resize_task); } void buf_resize_shutdown() { buf_resize_task.wait(); } /** Relocate a ROW_FORMAT=COMPRESSED block in the LRU list and buf_pool.page_hash. The caller must relocate bpage->list. @param bpage ROW_FORMAT=COMPRESSED only block @param dpage destination control block */ static void buf_relocate(buf_page_t *bpage, buf_page_t *dpage) { const page_id_t id{bpage->id()}; buf_pool_t::hash_chain &chain= buf_pool.page_hash.cell_get(id.fold()); ut_ad(!bpage->frame); mysql_mutex_assert_owner(&buf_pool.mutex); ut_ad(buf_pool.page_hash.lock_get(chain).is_write_locked()); ut_ad(bpage == buf_pool.page_hash.get(id, chain)); ut_d(const auto state= bpage->state()); ut_ad(state >= buf_page_t::FREED); ut_ad(state <= buf_page_t::READ_FIX); ut_ad(bpage->lock.is_write_locked()); const auto frame= dpage->frame; dpage->lock.free(); new (dpage) buf_page_t(*bpage); dpage->frame= frame; /* Important that we adjust the hazard pointer before removing bpage from LRU list. */ if (buf_page_t *b= buf_pool.LRU_remove(bpage)) UT_LIST_INSERT_AFTER(buf_pool.LRU, b, dpage); else UT_LIST_ADD_FIRST(buf_pool.LRU, dpage); if (UNIV_UNLIKELY(buf_pool.LRU_old == bpage)) { buf_pool.LRU_old= dpage; #ifdef UNIV_LRU_DEBUG /* buf_pool.LRU_old must be the first item in the LRU list whose "old" flag is set. */ ut_a(buf_pool.LRU_old->old); ut_a(!UT_LIST_GET_PREV(LRU, buf_pool.LRU_old) || !UT_LIST_GET_PREV(LRU, buf_pool.LRU_old)->old); ut_a(!UT_LIST_GET_NEXT(LRU, buf_pool.LRU_old) || UT_LIST_GET_NEXT(LRU, buf_pool.LRU_old)->old); } else { /* Check that the "old" flag is consistent in the block and its neighbours. */ dpage->set_old(dpage->is_old()); #endif /* UNIV_LRU_DEBUG */ } ut_d(CheckInLRUList::validate()); buf_pool.page_hash.replace(chain, bpage, dpage); } /** Mark the page status as FREED for the given tablespace and page number. @param[in,out] space tablespace @param[in] page page number @param[in,out] mtr mini-transaction */ TRANSACTIONAL_TARGET void buf_page_free(fil_space_t *space, uint32_t page, mtr_t *mtr) { ut_ad(mtr); ut_ad(mtr->is_active()); if (srv_immediate_scrub_data_uncompressed #if defined HAVE_FALLOC_PUNCH_HOLE_AND_KEEP_SIZE || defined _WIN32 || space->is_compressed() #endif ) mtr->add_freed_offset(space, page); ++buf_pool.stat.n_page_gets; const page_id_t page_id(space->id, page); buf_pool_t::hash_chain &chain= buf_pool.page_hash.cell_get(page_id.fold()); uint32_t fix; buf_block_t *block; { transactional_shared_lock_guard g {buf_pool.page_hash.lock_get(chain)}; block= reinterpret_cast (buf_pool.page_hash.get(page_id, chain)); if (!block || !block->page.frame) /* FIXME: convert ROW_FORMAT=COMPRESSED, without buf_zip_decompress() */ return; /* To avoid a deadlock with buf_LRU_free_page() of some other page and buf_page_write_complete() of this page, we must not wait for a page latch while holding a page_hash latch. */ fix= block->page.fix(); } if (UNIV_UNLIKELY(fix < buf_page_t::UNFIXED)) { block->page.unfix(); return; } block->page.lock.x_lock(); #ifdef BTR_CUR_HASH_ADAPT if (block->index) btr_search_drop_page_hash_index(block, false); #endif /* BTR_CUR_HASH_ADAPT */ block->page.set_freed(block->page.state()); mtr->memo_push(block, MTR_MEMO_PAGE_X_MODIFY); } /** Get read access to a compressed page (usually of type FIL_PAGE_TYPE_ZBLOB or FIL_PAGE_TYPE_ZBLOB2). The page must be released with unfix(). NOTE: the page is not protected by any latch. Mutual exclusion has to be implemented at a higher level. In other words, all possible accesses to a given page through this function must be protected by the same set of mutexes or latches. @param page_id page identifier @param zip_size ROW_FORMAT=COMPRESSED page size in bytes @return pointer to the block, s-latched */ TRANSACTIONAL_TARGET buf_page_t* buf_page_get_zip(const page_id_t page_id, ulint zip_size) { ut_ad(zip_size); ut_ad(ut_is_2pow(zip_size)); ++buf_pool.stat.n_page_gets; buf_pool_t::hash_chain &chain= buf_pool.page_hash.cell_get(page_id.fold()); page_hash_latch &hash_lock= buf_pool.page_hash.lock_get(chain); buf_page_t *bpage; lookup: for (bool discard_attempted= false;;) { #ifndef NO_ELISION if (xbegin()) { if (hash_lock.is_locked()) xabort(); bpage= buf_pool.page_hash.get(page_id, chain); if (!bpage) { xend(); goto must_read_page; } if (!bpage->zip.data) { /* There is no ROW_FORMAT=COMPRESSED page. */ xend(); return nullptr; } if (discard_attempted || !bpage->frame) { if (!bpage->lock.s_lock_try()) xabort(); xend(); break; } xend(); } else #endif { hash_lock.lock_shared(); bpage= buf_pool.page_hash.get(page_id, chain); if (!bpage) { hash_lock.unlock_shared(); goto must_read_page; } ut_ad(bpage->in_file()); ut_ad(page_id == bpage->id()); if (!bpage->zip.data) { /* There is no ROW_FORMAT=COMPRESSED page. */ hash_lock.unlock_shared(); return nullptr; } if (discard_attempted || !bpage->frame) { /* Even when we are holding a hash_lock, it should be acceptable to wait for a page S-latch here, because buf_page_t::read_complete() will not wait for buf_pool.mutex, and because S-latch would not conflict with a U-latch that would be protecting buf_page_t::write_complete(). */ bpage->lock.s_lock(); hash_lock.unlock_shared(); break; } hash_lock.unlock_shared(); } discard_attempted= true; mysql_mutex_lock(&buf_pool.mutex); if (buf_page_t *bpage= buf_pool.page_hash.get(page_id, chain)) buf_LRU_free_page(bpage, false); mysql_mutex_unlock(&buf_pool.mutex); } { ut_d(const auto s=) bpage->fix(); ut_ad(s >= buf_page_t::UNFIXED); ut_ad(s < buf_page_t::READ_FIX || s >= buf_page_t::WRITE_FIX); } bpage->set_accessed(); buf_page_make_young_if_needed(bpage); #ifdef UNIV_DEBUG if (!(++buf_dbg_counter % 5771)) buf_pool.validate(); #endif /* UNIV_DEBUG */ return bpage; must_read_page: if (dberr_t err= buf_read_page(page_id, zip_size, chain)) { ib::error() << "Reading compressed page " << page_id << " failed with error: " << err; return nullptr; } goto lookup; } /********************************************************************//** Initialize some fields of a control block. */ UNIV_INLINE void buf_block_init_low( /*===============*/ buf_block_t* block) /*!< in: block to init */ { #ifdef BTR_CUR_HASH_ADAPT /* No adaptive hash index entries may point to a previously unused (and now freshly allocated) block. */ assert_block_ahi_empty_on_init(block); block->index = NULL; block->n_hash_helps = 0; block->n_fields = 1; block->n_bytes = 0; block->left_side = TRUE; #endif /* BTR_CUR_HASH_ADAPT */ } /********************************************************************//** Decompress a block. @return TRUE if successful */ ibool buf_zip_decompress( /*===============*/ buf_block_t* block, /*!< in/out: block */ ibool check) /*!< in: TRUE=verify the page checksum */ { const byte* frame = block->page.zip.data; ulint size = page_zip_get_size(&block->page.zip); /* The tablespace will not be found if this function is called during IMPORT. */ fil_space_t* space= fil_space_t::get(block->page.id().space()); const unsigned key_version = mach_read_from_4( frame + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION); fil_space_crypt_t* crypt_data = space ? space->crypt_data : NULL; const bool encrypted = crypt_data && crypt_data->type != CRYPT_SCHEME_UNENCRYPTED && (!crypt_data->is_default_encryption() || srv_encrypt_tables); ut_ad(block->zip_size()); ut_a(block->page.id().space() != 0); if (UNIV_UNLIKELY(check && !page_zip_verify_checksum(frame, size))) { ib::error() << "Compressed page checksum mismatch for " << (space ? space->chain.start->name : "") << block->page.id() << ": stored: " << mach_read_from_4(frame + FIL_PAGE_SPACE_OR_CHKSUM) << ", crc32: " << page_zip_calc_checksum(frame, size, false) << " adler32: " << page_zip_calc_checksum(frame, size, true); goto err_exit; } switch (fil_page_get_type(frame)) { case FIL_PAGE_INDEX: case FIL_PAGE_RTREE: if (page_zip_decompress(&block->page.zip, block->page.frame, TRUE)) { func_exit: if (space) { space->release(); } return(TRUE); } ib::error() << "Unable to decompress " << (space ? space->chain.start->name : "") << block->page.id(); goto err_exit; case FIL_PAGE_TYPE_ALLOCATED: case FIL_PAGE_INODE: case FIL_PAGE_IBUF_BITMAP: case FIL_PAGE_TYPE_FSP_HDR: case FIL_PAGE_TYPE_XDES: case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: /* Copy to uncompressed storage. */ memcpy(block->page.frame, frame, block->zip_size()); goto func_exit; } ib::error() << "Unknown compressed page type " << fil_page_get_type(frame) << " in " << (space ? space->chain.start->name : "") << block->page.id(); err_exit: if (encrypted) { ib::info() << "Row compressed page could be encrypted" " with key_version " << key_version; } if (space) { space->release(); } return(FALSE); } /** Low level function used to get access to a database page. @param[in] page_id page id @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in] rw_latch RW_S_LATCH, RW_X_LATCH, RW_NO_LATCH @param[in] guess guessed block or NULL @param[in] mode BUF_GET, BUF_GET_IF_IN_POOL, or BUF_PEEK_IF_IN_POOL @param[in] mtr mini-transaction @param[out] err DB_SUCCESS or error code @return pointer to the block or NULL */ TRANSACTIONAL_TARGET buf_block_t* buf_page_get_low( const page_id_t page_id, ulint zip_size, ulint rw_latch, buf_block_t* guess, ulint mode, mtr_t* mtr, dberr_t* err) { ulint retries = 0; ut_ad(!mtr || mtr->is_active()); ut_ad(mtr || mode == BUF_PEEK_IF_IN_POOL); ut_ad((rw_latch == RW_S_LATCH) || (rw_latch == RW_X_LATCH) || (rw_latch == RW_SX_LATCH) || (rw_latch == RW_NO_LATCH)); if (err) { *err = DB_SUCCESS; } #ifdef UNIV_DEBUG switch (mode) { case BUF_PEEK_IF_IN_POOL: case BUF_GET_IF_IN_POOL: /* The caller may pass a dummy page size, because it does not really matter. */ break; default: MY_ASSERT_UNREACHABLE(); case BUF_GET_POSSIBLY_FREED: break; case BUF_GET: ut_ad(!mtr->is_freeing_tree()); fil_space_t* s = fil_space_get(page_id.space()); ut_ad(s); ut_ad(s->zip_size() == zip_size); } #endif /* UNIV_DEBUG */ ++buf_pool.stat.n_page_gets; auto& chain= buf_pool.page_hash.cell_get(page_id.fold()); page_hash_latch& hash_lock = buf_pool.page_hash.lock_get(chain); loop: buf_block_t* block = guess; uint32_t state; if (block) { transactional_shared_lock_guard g{hash_lock}; if (buf_pool.is_uncompressed(block) && page_id == block->page.id()) { ut_ad(!block->page.in_zip_hash); state = block->page.state(); /* Ignore guesses that point to read-fixed blocks. We can only avoid a race condition by looking up the block via buf_pool.page_hash. */ if ((state >= buf_page_t::FREED && state < buf_page_t::READ_FIX) || state >= buf_page_t::WRITE_FIX) { state = block->page.fix(); goto got_block; } } } guess = nullptr; /* A memory transaction would frequently be aborted here. */ hash_lock.lock_shared(); block = reinterpret_cast( buf_pool.page_hash.get(page_id, chain)); if (UNIV_LIKELY(block != nullptr)) { state = block->page.fix(); hash_lock.unlock_shared(); goto got_block; } hash_lock.unlock_shared(); /* Page not in buf_pool: needs to be read from file */ switch (mode) { case BUF_GET_IF_IN_POOL: case BUF_PEEK_IF_IN_POOL: return nullptr; } /* The call path is buf_read_page() -> buf_read_page_low() (fil_space_t::io()) -> buf_page_t::read_complete() -> buf_decrypt_after_read(). Here fil_space_t* is used and we decrypt -> buf_page_check_corrupt() where page checksums are compared. Decryption, decompression as well as error handling takes place at a lower level. Here we only need to know whether the page really is corrupted, or if an encrypted page with a valid checksum cannot be decypted. */ if (dberr_t local_err = buf_read_page(page_id, zip_size, chain)) { if (local_err != DB_CORRUPTION && mode != BUF_GET_POSSIBLY_FREED && retries++ < BUF_PAGE_READ_MAX_RETRIES) { DBUG_EXECUTE_IF("intermittent_read_failure", retries = BUF_PAGE_READ_MAX_RETRIES;); } else { if (err) { *err = local_err; } return nullptr; } } else { buf_read_ahead_random(page_id, zip_size); } ut_d(if (!(++buf_dbg_counter % 5771)) buf_pool.validate()); goto loop; got_block: ut_ad(!block->page.in_zip_hash); state++; ut_ad(state > buf_page_t::FREED); if (state > buf_page_t::READ_FIX && state < buf_page_t::WRITE_FIX) { if (mode == BUF_PEEK_IF_IN_POOL) { ignore_block: ut_ad(mode == BUF_GET_POSSIBLY_FREED || mode == BUF_PEEK_IF_IN_POOL); block->unfix(); if (err) { *err = DB_CORRUPTION; } return nullptr; } if (UNIV_UNLIKELY(!block->page.frame)) { goto wait_for_unzip; } /* A read-fix is released after block->page.lock in buf_page_t::read_complete() or buf_pool_t::corrupted_evict(), or after buf_zip_decompress() in this function. */ block->page.lock.s_lock(); state = block->page.state(); ut_ad(state < buf_page_t::READ_FIX || state >= buf_page_t::WRITE_FIX); const page_id_t id{block->page.id()}; block->page.lock.s_unlock(); if (UNIV_UNLIKELY(id != page_id)) { ut_ad(id == page_id_t{~0ULL}); block->page.unfix(); if (++retries < BUF_PAGE_READ_MAX_RETRIES) { goto loop; } if (err) { *err = DB_PAGE_CORRUPTED; } return nullptr; } } else if (mode != BUF_PEEK_IF_IN_POOL) { } else if (!mtr) { ut_ad(!block->page.oldest_modification()); mysql_mutex_lock(&buf_pool.mutex); block->unfix(); if (!buf_LRU_free_page(&block->page, true)) { ut_ad(0); } mysql_mutex_unlock(&buf_pool.mutex); return nullptr; } else if (UNIV_UNLIKELY(!block->page.frame)) { /* The BUF_PEEK_IF_IN_POOL mode is mainly used for dropping an adaptive hash index. There cannot be an adaptive hash index for a compressed-only page. */ goto ignore_block; } ut_ad(mode == BUF_GET_IF_IN_POOL || mode == BUF_PEEK_IF_IN_POOL || block->zip_size() == zip_size); if (UNIV_UNLIKELY(!block->page.frame)) { if (!block->page.lock.x_lock_try()) { wait_for_unzip: /* The page is being read or written, or another thread is executing buf_zip_decompress() in buf_page_get_low() on it. */ block->page.unfix(); std::this_thread::sleep_for( std::chrono::microseconds(100)); goto loop; } buf_block_t *new_block = buf_LRU_get_free_block(have_no_mutex); buf_block_init_low(new_block); wait_for_unfix: mysql_mutex_lock(&buf_pool.mutex); page_hash_latch& hash_lock=buf_pool.page_hash.lock_get(chain); /* It does not make sense to use transactional_lock_guard here, because buf_relocate() would likely make a memory transaction too large. */ hash_lock.lock(); /* block->page.lock implies !block->page.can_relocate() */ ut_ad(&block->page == buf_pool.page_hash.get(page_id, chain)); /* Wait for any other threads to release their buffer-fix on the compressed-only block descriptor. FIXME: Never fix() before acquiring the lock. Only in buf_page_get_gen(), buf_page_get_low(), buf_page_free() we are violating that principle. */ state = block->page.state(); switch (state) { case buf_page_t::UNFIXED + 1: case buf_page_t::REINIT + 1: break; default: ut_ad(state < buf_page_t::READ_FIX); if (state < buf_page_t::UNFIXED + 1) { ut_ad(state > buf_page_t::FREED); block->page.lock.x_unlock(); hash_lock.unlock(); buf_LRU_block_free_non_file_page(new_block); mysql_mutex_unlock(&buf_pool.mutex); goto ignore_block; } mysql_mutex_unlock(&buf_pool.mutex); hash_lock.unlock(); std::this_thread::sleep_for( std::chrono::microseconds(100)); goto wait_for_unfix; } /* Ensure that another buf_page_get_low() will wait for new_block->page.lock.x_unlock(). */ block->page.set_state(buf_page_t::READ_FIX); /* Move the compressed page from block->page to new_block, and uncompress it. */ mysql_mutex_lock(&buf_pool.flush_list_mutex); buf_relocate(&block->page, &new_block->page); /* X-latch the block for the duration of the decompression. */ new_block->page.lock.x_lock(); ut_d(block->page.lock.x_unlock()); buf_flush_relocate_on_flush_list(&block->page, &new_block->page); mysql_mutex_unlock(&buf_pool.flush_list_mutex); /* Insert at the front of unzip_LRU list */ buf_unzip_LRU_add_block(new_block, FALSE); mysql_mutex_unlock(&buf_pool.mutex); hash_lock.unlock(); #if defined SUX_LOCK_GENERIC || defined UNIV_DEBUG block->page.lock.free(); #endif ut_free(reinterpret_cast(block)); block = new_block; buf_pool.n_pend_unzip++; /* Decompress the page while not holding buf_pool.mutex. */ auto ok = buf_zip_decompress(block, false); block->page.read_unfix(state); state = block->page.state(); block->page.lock.x_unlock(); --buf_pool.n_pend_unzip; if (!ok) { /* FIXME: Evict the corrupted ROW_FORMAT=COMPRESSED page! */ if (err) { *err = DB_PAGE_CORRUPTED; } return nullptr; } } if (UNIV_UNLIKELY(state < buf_page_t::UNFIXED)) { goto ignore_block; } ut_ad((~buf_page_t::LRU_MASK) & state); ut_ad(state > buf_page_t::WRITE_FIX || state < buf_page_t::READ_FIX); #ifdef UNIV_DEBUG if (!(++buf_dbg_counter % 5771)) buf_pool.validate(); #endif /* UNIV_DEBUG */ ut_ad(block->page.frame); switch (rw_latch) { case RW_NO_LATCH: mtr->memo_push(block, MTR_MEMO_BUF_FIX); return block; case RW_S_LATCH: block->page.lock.s_lock(); ut_ad(!block->page.is_read_fixed()); if (UNIV_UNLIKELY(block->page.id() != page_id)) { block->page.lock.s_unlock(); block->page.lock.x_lock(); page_id_mismatch: if (block->page.id().is_corrupted()) { buf_pool.corrupted_evict(&block->page, block->page.state()); } if (err) { *err = DB_CORRUPTION; } return nullptr; } break; case RW_SX_LATCH: block->page.lock.u_lock(); ut_ad(!block->page.is_io_fixed()); if (UNIV_UNLIKELY(block->page.id() != page_id)) { block->page.lock.u_x_upgrade(); goto page_id_mismatch; } break; default: ut_ad(rw_latch == RW_X_LATCH); if (block->page.lock.x_lock_upgraded()) { ut_ad(block->page.id() == page_id); block->unfix(); mtr->page_lock_upgrade(*block); return block; } if (UNIV_UNLIKELY(block->page.id() != page_id)) { goto page_id_mismatch; } } mtr->memo_push(block, mtr_memo_type_t(rw_latch)); #ifdef BTR_CUR_HASH_ADAPT btr_search_drop_page_hash_index(block, true); #endif /* BTR_CUR_HASH_ADAPT */ ut_ad(page_id_t(page_get_space_id(block->page.frame), page_get_page_no(block->page.frame)) == page_id); if (mode == BUF_GET_POSSIBLY_FREED || mode == BUF_PEEK_IF_IN_POOL) { return block; } const bool not_first_access{block->page.set_accessed()}; buf_page_make_young_if_needed(&block->page); if (!not_first_access) { buf_read_ahead_linear(page_id, block->zip_size()); } return block; } /** Get access to a database page. Buffered redo log may be applied. @param[in] page_id page id @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in] rw_latch RW_S_LATCH, RW_X_LATCH, RW_NO_LATCH @param[in] guess guessed block or NULL @param[in] mode BUF_GET, BUF_GET_IF_IN_POOL, or BUF_PEEK_IF_IN_POOL @param[in,out] mtr mini-transaction, or NULL @param[out] err DB_SUCCESS or error code @return pointer to the block or NULL */ buf_block_t* buf_page_get_gen( const page_id_t page_id, ulint zip_size, ulint rw_latch, buf_block_t* guess, ulint mode, mtr_t* mtr, dberr_t* err) { if (buf_block_t *block= recv_sys.recover(page_id)) { if (UNIV_UNLIKELY(block == reinterpret_cast(-1))) { corrupted: if (err) *err= DB_CORRUPTION; return nullptr; } /* Recovery is a special case; we fix() before acquiring lock. */ auto s= block->page.fix(); ut_ad(s >= buf_page_t::FREED); /* The block may be write-fixed at this point because we are not holding a lock, but it must not be read-fixed. */ ut_ad(s < buf_page_t::READ_FIX || s >= buf_page_t::WRITE_FIX); if (s < buf_page_t::UNFIXED) { ut_ad(mode == BUF_GET_POSSIBLY_FREED || mode == BUF_PEEK_IF_IN_POOL); block->page.unfix(); goto corrupted; } if (err) *err= DB_SUCCESS; mtr->page_lock(block, rw_latch); return block; } return buf_page_get_low(page_id, zip_size, rw_latch, guess, mode, mtr, err); } /********************************************************************//** This is the general function used to get optimistic access to a database page. @return TRUE if success */ TRANSACTIONAL_TARGET bool buf_page_optimistic_get(ulint rw_latch, buf_block_t *block, uint64_t modify_clock, mtr_t *mtr) { ut_ad(block); ut_ad(mtr); ut_ad(mtr->is_active()); ut_ad(rw_latch == RW_S_LATCH || rw_latch == RW_X_LATCH); if (have_transactional_memory); else if (UNIV_UNLIKELY(!block->page.frame)) return false; else { const auto state= block->page.state(); if (UNIV_UNLIKELY(state < buf_page_t::UNFIXED || state >= buf_page_t::READ_FIX)) return false; } bool success; const page_id_t id{block->page.id()}; buf_pool_t::hash_chain &chain= buf_pool.page_hash.cell_get(id.fold()); bool have_u_not_x= false; { transactional_shared_lock_guard g {buf_pool.page_hash.lock_get(chain)}; if (UNIV_UNLIKELY(id != block->page.id() || !block->page.frame)) return false; const auto state= block->page.state(); if (UNIV_UNLIKELY(state < buf_page_t::UNFIXED || state >= buf_page_t::READ_FIX)) return false; if (rw_latch == RW_S_LATCH) success= block->page.lock.s_lock_try(); else { have_u_not_x= block->page.lock.have_u_not_x(); success= have_u_not_x || block->page.lock.x_lock_try(); } } if (!success) return false; if (have_u_not_x) { block->page.lock.u_x_upgrade(); mtr->page_lock_upgrade(*block); ut_ad(id == block->page.id()); ut_ad(modify_clock == block->modify_clock); } else { ut_ad(rw_latch == RW_S_LATCH || !block->page.is_io_fixed()); ut_ad(id == block->page.id()); if (modify_clock != block->modify_clock || block->page.is_freed()) { if (rw_latch == RW_S_LATCH) block->page.lock.s_unlock(); else block->page.lock.x_unlock(); return false; } block->page.fix(); ut_ad(!block->page.is_read_fixed()); block->page.set_accessed(); buf_page_make_young_if_needed(&block->page); mtr->memo_push(block, mtr_memo_type_t(rw_latch)); } ut_d(if (!(++buf_dbg_counter % 5771)) buf_pool.validate()); ut_d(const auto state = block->page.state()); ut_ad(state > buf_page_t::UNFIXED); ut_ad(state < buf_page_t::READ_FIX || state > buf_page_t::WRITE_FIX); ut_ad(~buf_page_t::LRU_MASK & state); ut_ad(block->page.frame); ++buf_pool.stat.n_page_gets; return true; } /** Try to S-latch a page. Suitable for using when holding the lock_sys latches (as it avoids deadlock). @param[in] page_id page identifier @param[in,out] mtr mini-transaction @return the block @retval nullptr if an S-latch cannot be granted immediately */ TRANSACTIONAL_TARGET buf_block_t *buf_page_try_get(const page_id_t page_id, mtr_t *mtr) { ut_ad(mtr); ut_ad(mtr->is_active()); buf_pool_t::hash_chain &chain= buf_pool.page_hash.cell_get(page_id.fold()); buf_block_t *block; { transactional_shared_lock_guard g {buf_pool.page_hash.lock_get(chain)}; block= reinterpret_cast (buf_pool.page_hash.get(page_id, chain)); if (!block || !block->page.frame || !block->page.lock.s_lock_try()) return nullptr; } block->page.fix(); ut_ad(!block->page.is_read_fixed()); mtr->memo_push(block, MTR_MEMO_PAGE_S_FIX); #ifdef UNIV_DEBUG if (!(++buf_dbg_counter % 5771)) buf_pool.validate(); #endif /* UNIV_DEBUG */ ut_ad(block->page.buf_fix_count()); ut_ad(block->page.id() == page_id); ++buf_pool.stat.n_page_gets; return block; } /** Initialize the block. @param page_id page identifier @param zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param fix initial buf_fix_count() */ void buf_block_t::initialise(const page_id_t page_id, ulint zip_size, uint32_t fix) { ut_ad(!page.in_file()); buf_block_init_low(this); page.init(fix, page_id); page.set_os_used(); page_zip_set_size(&page.zip, zip_size); } TRANSACTIONAL_TARGET static buf_block_t *buf_page_create_low(page_id_t page_id, ulint zip_size, mtr_t *mtr, buf_block_t *free_block) { ut_ad(mtr->is_active()); ut_ad(page_id.space() != 0 || !zip_size); free_block->initialise(page_id, zip_size, buf_page_t::MEMORY); buf_pool_t::hash_chain &chain= buf_pool.page_hash.cell_get(page_id.fold()); retry: mysql_mutex_lock(&buf_pool.mutex); buf_page_t *bpage= buf_pool.page_hash.get(page_id, chain); if (bpage) { #ifdef BTR_CUR_HASH_ADAPT const dict_index_t *drop_hash_entry= nullptr; #endif if (!mtr->have_x_latch(reinterpret_cast(*bpage))) { const bool got= bpage->lock.x_lock_try(); if (!got) { mysql_mutex_unlock(&buf_pool.mutex); bpage->lock.x_lock(); const page_id_t id{bpage->id()}; if (UNIV_UNLIKELY(id != page_id)) { ut_ad(id.is_corrupted()); bpage->lock.x_unlock(); goto retry; } mysql_mutex_lock(&buf_pool.mutex); } auto state= bpage->fix(); ut_ad(state >= buf_page_t::FREED); ut_ad(state < buf_page_t::READ_FIX); if (state < buf_page_t::UNFIXED) bpage->set_reinit(buf_page_t::FREED); else bpage->set_reinit(state & buf_page_t::LRU_MASK); if (UNIV_LIKELY(bpage->frame != nullptr)) { mysql_mutex_unlock(&buf_pool.mutex); buf_block_t *block= reinterpret_cast(bpage); mtr->memo_push(block, MTR_MEMO_PAGE_X_FIX); #ifdef BTR_CUR_HASH_ADAPT drop_hash_entry= block->index; #endif } else { auto state= bpage->state(); ut_ad(state >= buf_page_t::FREED); ut_ad(state < buf_page_t::READ_FIX); page_hash_latch &hash_lock= buf_pool.page_hash.lock_get(chain); /* It does not make sense to use transactional_lock_guard here, because buf_relocate() would likely make the memory transaction too large. */ hash_lock.lock(); if (state < buf_page_t::UNFIXED) bpage->set_reinit(buf_page_t::FREED); else bpage->set_reinit(state & buf_page_t::LRU_MASK); mysql_mutex_lock(&buf_pool.flush_list_mutex); buf_relocate(bpage, &free_block->page); free_block->page.lock.x_lock(); buf_flush_relocate_on_flush_list(bpage, &free_block->page); mysql_mutex_unlock(&buf_pool.flush_list_mutex); buf_unzip_LRU_add_block(free_block, FALSE); mysql_mutex_unlock(&buf_pool.mutex); hash_lock.unlock(); #if defined SUX_LOCK_GENERIC || defined UNIV_DEBUG bpage->lock.x_unlock(); bpage->lock.free(); #endif ut_free(bpage); mtr->memo_push(free_block, MTR_MEMO_PAGE_X_FIX); bpage= &free_block->page; } } else { mysql_mutex_unlock(&buf_pool.mutex); ut_ad(bpage->frame); #ifdef BTR_CUR_HASH_ADAPT ut_ad(!reinterpret_cast(bpage)->index); #endif const auto state= bpage->state(); ut_ad(state >= buf_page_t::FREED); bpage->set_reinit(state < buf_page_t::UNFIXED ? buf_page_t::FREED : state & buf_page_t::LRU_MASK); } #ifdef BTR_CUR_HASH_ADAPT if (drop_hash_entry) btr_search_drop_page_hash_index(reinterpret_cast(bpage), false); #endif /* BTR_CUR_HASH_ADAPT */ return reinterpret_cast(bpage); } /* If we get here, the page was not in buf_pool: init it there */ DBUG_PRINT("ib_buf", ("create page %u:%u", page_id.space(), page_id.page_no())); bpage= &free_block->page; ut_ad(bpage->state() == buf_page_t::MEMORY); bpage->lock.x_lock(); /* The block must be put to the LRU list */ buf_LRU_add_block(bpage, false); { transactional_lock_guard g {buf_pool.page_hash.lock_get(chain)}; bpage->set_state(buf_page_t::REINIT + 1); buf_pool.page_hash.append(chain, bpage); } if (UNIV_UNLIKELY(zip_size)) { bpage->zip.data= buf_buddy_alloc(zip_size); /* To maintain the invariant block->in_unzip_LRU_list == block->page.belongs_to_unzip_LRU() we have to add this block to unzip_LRU after block->page.zip.data is set. */ ut_ad(bpage->belongs_to_unzip_LRU()); buf_unzip_LRU_add_block(reinterpret_cast(bpage), FALSE); } mysql_mutex_unlock(&buf_pool.mutex); mtr->memo_push(reinterpret_cast(bpage), MTR_MEMO_PAGE_X_FIX); bpage->set_accessed(); buf_pool.stat.n_pages_created++; static_assert(FIL_PAGE_PREV + 4 == FIL_PAGE_NEXT, "adjacent"); memset_aligned<8>(bpage->frame + FIL_PAGE_PREV, 0xff, 8); mach_write_to_2(bpage->frame + FIL_PAGE_TYPE, FIL_PAGE_TYPE_ALLOCATED); /* FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION is only used on the following pages: (1) The first page of the InnoDB system tablespace (page 0:0) (2) FIL_RTREE_SPLIT_SEQ_NUM on R-tree pages (3) key_version on encrypted pages (not page 0:0) */ memset(bpage->frame + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION, 0, 8); memset_aligned<8>(bpage->frame + FIL_PAGE_LSN, 0, 8); #ifdef UNIV_DEBUG if (!(++buf_dbg_counter % 5771)) buf_pool.validate(); #endif /* UNIV_DEBUG */ return reinterpret_cast(bpage); } /** Initialize a page in the buffer pool. The page is usually not read from a file even if it cannot be found in the buffer buf_pool. This is one of the functions which perform to a block a state transition NOT_USED => FILE_PAGE (the other is buf_page_get_gen). @param[in,out] space space object @param[in] offset offset of the tablespace or deferred space id if space object is null @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in,out] mtr mini-transaction @param[in,out] free_block pre-allocated buffer block @return pointer to the block, page bufferfixed */ buf_block_t* buf_page_create(fil_space_t *space, uint32_t offset, ulint zip_size, mtr_t *mtr, buf_block_t *free_block) { space->free_page(offset, false); return buf_page_create_low({space->id, offset}, zip_size, mtr, free_block); } /** Initialize a page in buffer pool while initializing the deferred tablespace @param space_id space identfier @param zip_size ROW_FORMAT=COMPRESSED page size or 0 @param mtr mini-transaction @param free_block pre-allocated buffer block @return pointer to the block, page bufferfixed */ buf_block_t* buf_page_create_deferred(uint32_t space_id, ulint zip_size, mtr_t *mtr, buf_block_t *free_block) { return buf_page_create_low({space_id, 0}, zip_size, mtr, free_block); } /** Monitor the buffer page read/write activity, and increment corresponding counter value in MONITOR_MODULE_BUF_PAGE. @param bpage buffer page whose read or write was completed @param read true=read, false=write */ ATTRIBUTE_COLD void buf_page_monitor(const buf_page_t &bpage, bool read) { monitor_id_t counter; const byte* frame = bpage.zip.data ? bpage.zip.data : bpage.frame; switch (fil_page_get_type(frame)) { case FIL_PAGE_TYPE_INSTANT: case FIL_PAGE_INDEX: case FIL_PAGE_RTREE: if (page_is_leaf(frame)) { counter = MONITOR_RW_COUNTER( read, MONITOR_INDEX_LEAF_PAGE); } else { counter = MONITOR_RW_COUNTER( read, MONITOR_INDEX_NON_LEAF_PAGE); } break; case FIL_PAGE_UNDO_LOG: counter = MONITOR_RW_COUNTER(read, MONITOR_UNDO_LOG_PAGE); break; case FIL_PAGE_INODE: counter = MONITOR_RW_COUNTER(read, MONITOR_INODE_PAGE); break; case FIL_PAGE_TYPE_SYS: counter = MONITOR_RW_COUNTER(read, MONITOR_SYSTEM_PAGE); break; case FIL_PAGE_TYPE_TRX_SYS: counter = MONITOR_RW_COUNTER(read, MONITOR_TRX_SYSTEM_PAGE); break; case FIL_PAGE_TYPE_FSP_HDR: counter = MONITOR_RW_COUNTER(read, MONITOR_FSP_HDR_PAGE); break; case FIL_PAGE_TYPE_XDES: counter = MONITOR_RW_COUNTER(read, MONITOR_XDES_PAGE); break; case FIL_PAGE_TYPE_BLOB: counter = MONITOR_RW_COUNTER(read, MONITOR_BLOB_PAGE); break; case FIL_PAGE_TYPE_ZBLOB: counter = MONITOR_RW_COUNTER(read, MONITOR_ZBLOB_PAGE); break; case FIL_PAGE_TYPE_ZBLOB2: counter = MONITOR_RW_COUNTER(read, MONITOR_ZBLOB2_PAGE); break; default: counter = MONITOR_RW_COUNTER(read, MONITOR_OTHER_PAGE); } MONITOR_INC_NOCHECK(counter); } /** Check if the encrypted page is corrupted for the full crc32 format. @param[in] space_id page belongs to space id @param[in] d page @param[in] is_compressed compressed page @return true if page is corrupted or false if it isn't */ static bool buf_page_full_crc32_is_corrupted(ulint space_id, const byte* d, bool is_compressed) { if (space_id != mach_read_from_4(d + FIL_PAGE_SPACE_ID)) return true; static_assert(FIL_PAGE_LSN % 4 == 0, "alignment"); static_assert(FIL_PAGE_FCRC32_END_LSN % 4 == 0, "alignment"); return !is_compressed && memcmp_aligned<4>(FIL_PAGE_LSN + 4 + d, d + srv_page_size - FIL_PAGE_FCRC32_END_LSN, 4); } /** Check if page is maybe compressed, encrypted or both when we encounter corrupted page. Note that we can't be 100% sure if page is corrupted or decrypt/decompress just failed. @param[in,out] bpage page @param[in] node data file @return whether the operation succeeded @retval DB_SUCCESS if page has been read and is not corrupted @retval DB_PAGE_CORRUPTED if page based on checksum check is corrupted @retval DB_DECRYPTION_FAILED if page post encryption checksum matches but after decryption normal page checksum does not match. */ static dberr_t buf_page_check_corrupt(buf_page_t *bpage, const fil_node_t &node) { ut_ad(node.space->referenced()); byte* dst_frame = bpage->zip.data ? bpage->zip.data : bpage->frame; dberr_t err = DB_SUCCESS; uint key_version = buf_page_get_key_version(dst_frame, node.space->flags); /* In buf_decrypt_after_read we have either decrypted the page if page post encryption checksum matches and used key_id is found from the encryption plugin. If checksum did not match page was not decrypted and it could be either encrypted and corrupted or corrupted or good page. If we decrypted, there page could still be corrupted if used key does not match. */ const bool seems_encrypted = !node.space->full_crc32() && key_version && node.space->crypt_data && node.space->crypt_data->type != CRYPT_SCHEME_UNENCRYPTED; ut_ad(node.space->purpose != FIL_TYPE_TEMPORARY || node.space->full_crc32()); /* If traditional checksums match, we assume that page is not anymore encrypted. */ if (node.space->full_crc32() && !buf_is_zeroes(span(dst_frame, node.space->physical_size())) && (key_version || node.space->is_compressed() || node.space->purpose == FIL_TYPE_TEMPORARY)) { if (buf_page_full_crc32_is_corrupted( bpage->id().space(), dst_frame, node.space->is_compressed())) { err = DB_PAGE_CORRUPTED; } } else if (buf_page_is_corrupted(true, dst_frame, node.space->flags)) { err = DB_PAGE_CORRUPTED; } if (seems_encrypted && err == DB_PAGE_CORRUPTED && bpage->id().page_no() != 0) { err = DB_DECRYPTION_FAILED; ib::error() << "The page " << bpage->id() << " in file '" << node.name << "' cannot be decrypted; key_version=" << key_version; } return (err); } /** Complete a read of a page. @param node data file @return whether the operation succeeded @retval DB_PAGE_CORRUPTED if the checksum fails @retval DB_DECRYPTION_FAILED if the page cannot be decrypted @retval DB_FAIL if the page contains the wrong ID */ dberr_t buf_page_t::read_complete(const fil_node_t &node) { const page_id_t expected_id{id()}; ut_ad(is_read_fixed()); ut_ad(!buf_dblwr.is_inside(id())); ut_ad(id().space() == node.space->id); ut_ad(zip_size() == node.space->zip_size()); ut_ad(!!zip.ssize == !!zip.data); ut_d(auto n=) buf_pool.n_pend_reads--; ut_ad(n > 0); buf_pool.stat.n_pages_read++; const byte *read_frame= zip.data ? zip.data : frame; ut_ad(read_frame); dberr_t err; if (!buf_page_decrypt_after_read(this, node)) { err= DB_DECRYPTION_FAILED; goto database_corrupted; } if (belongs_to_unzip_LRU()) { buf_pool.n_pend_unzip++; auto ok= buf_zip_decompress(reinterpret_cast(this), false); buf_pool.n_pend_unzip--; if (!ok) { ib::info() << "Page " << expected_id << " zip_decompress failure."; err= DB_PAGE_CORRUPTED; goto database_corrupted; } } { const page_id_t read_id(mach_read_from_4(read_frame + FIL_PAGE_SPACE_ID), mach_read_from_4(read_frame + FIL_PAGE_OFFSET)); if (read_id == expected_id); else if (read_id == page_id_t(0, 0)) { /* This is likely an uninitialized (all-zero) page. */ err= DB_FAIL; goto release_page; } else if (!node.space->full_crc32() && page_id_t(0, read_id.page_no()) == expected_id) /* FIL_PAGE_SPACE_ID was written as garbage in the system tablespace before MySQL 4.1.1, which introduced innodb_file_per_table. */; else if (node.space->full_crc32() && *reinterpret_cast (&read_frame[FIL_PAGE_FCRC32_KEY_VERSION]) && node.space->crypt_data && node.space->crypt_data->type != CRYPT_SCHEME_UNENCRYPTED) { ib::error() << "Cannot decrypt " << expected_id; err= DB_DECRYPTION_FAILED; goto release_page; } else { ib::error() << "Space id and page no stored in the page, read in are " << read_id << ", should be " << expected_id; err= DB_PAGE_CORRUPTED; goto release_page; } } err= buf_page_check_corrupt(this, node); if (UNIV_UNLIKELY(err != DB_SUCCESS)) { database_corrupted: if (belongs_to_unzip_LRU()) memset_aligned(frame, 0, srv_page_size); if (err == DB_PAGE_CORRUPTED) { ib::error() << "Database page corruption on disk" " or a failed read of file '" << node.name << "' page " << expected_id << ". You may have to recover from a backup."; buf_page_print(read_frame, zip_size()); node.space->set_corrupted(); ib::info() << " You can use CHECK TABLE to scan" " your table for corruption. " << FORCE_RECOVERY_MSG; } if (err == DB_PAGE_CORRUPTED || err == DB_DECRYPTION_FAILED || !srv_force_recovery) { release_page: buf_pool.corrupted_evict(this, buf_page_t::READ_FIX); return err; } } const bool recovery= frame && recv_recovery_is_on(); if (recovery && !recv_recover_page(node.space, this)) return DB_PAGE_CORRUPTED; if (UNIV_UNLIKELY(MONITOR_IS_ON(MONITOR_MODULE_BUF_PAGE))) buf_page_monitor(*this, true); DBUG_PRINT("ib_buf", ("read page %u:%u", id().space(), id().page_no())); if (!recovery) { ut_d(auto f=) zip.fix.fetch_sub(READ_FIX - UNFIXED); ut_ad(f >= READ_FIX); ut_ad(f < WRITE_FIX); } lock.x_unlock(true); return DB_SUCCESS; } #ifdef UNIV_DEBUG /** Check that all blocks are in a replaceable state. @return address of a non-free block @retval nullptr if all freed */ void buf_pool_t::assert_all_freed() { mysql_mutex_lock(&mutex); const chunk_t *chunk= chunks; for (auto i= n_chunks; i--; chunk++) if (const buf_block_t* block= chunk->not_freed()) ib::fatal() << "Page " << block->page.id() << " still fixed or dirty"; mysql_mutex_unlock(&mutex); } #endif /* UNIV_DEBUG */ /** Refresh the statistics used to print per-second averages. */ void buf_refresh_io_stats() { buf_pool.last_printout_time = time(NULL); buf_pool.old_stat = buf_pool.stat; } /** Invalidate all pages in the buffer pool. All pages must be in a replaceable state (not modified or latched). */ void buf_pool_invalidate() { mysql_mutex_lock(&buf_pool.mutex); buf_flush_wait_batch_end(true); buf_flush_wait_batch_end(false); /* It is possible that a write batch that has been posted earlier is still not complete. For buffer pool invalidation to proceed we must ensure there is NO write activity happening. */ ut_d(mysql_mutex_unlock(&buf_pool.mutex)); ut_d(buf_pool.assert_all_freed()); ut_d(mysql_mutex_lock(&buf_pool.mutex)); while (UT_LIST_GET_LEN(buf_pool.LRU)) { buf_LRU_scan_and_free_block(); } ut_ad(UT_LIST_GET_LEN(buf_pool.unzip_LRU) == 0); buf_pool.freed_page_clock = 0; buf_pool.LRU_old = NULL; buf_pool.LRU_old_len = 0; buf_pool.stat.init(); buf_refresh_io_stats(); mysql_mutex_unlock(&buf_pool.mutex); } #ifdef UNIV_DEBUG /** Validate the buffer pool. */ void buf_pool_t::validate() { ulint n_lru = 0; ulint n_flushing = 0; ulint n_free = 0; ulint n_zip = 0; mysql_mutex_lock(&mutex); chunk_t* chunk = chunks; /* Check the uncompressed blocks. */ for (auto i = n_chunks; i--; chunk++) { buf_block_t* block = chunk->blocks; for (auto j = chunk->size; j--; block++) { ut_ad(block->page.frame); switch (const auto f = block->page.state()) { case buf_page_t::NOT_USED: n_free++; break; case buf_page_t::MEMORY: case buf_page_t::REMOVE_HASH: /* do nothing */ break; default: if (f >= buf_page_t::READ_FIX && f < buf_page_t::WRITE_FIX) { /* A read-fixed block is not necessarily in the page_hash yet. */ break; } ut_ad(f >= buf_page_t::FREED); const page_id_t id{block->page.id()}; ut_ad(page_hash.get( id, page_hash.cell_get(id.fold())) == &block->page); n_lru++; } } } /* Check dirty blocks. */ mysql_mutex_lock(&flush_list_mutex); for (buf_page_t* b = UT_LIST_GET_FIRST(flush_list); b; b = UT_LIST_GET_NEXT(list, b)) { ut_ad(b->in_file()); ut_ad(b->oldest_modification()); ut_ad(!fsp_is_system_temporary(b->id().space())); n_flushing++; if (UNIV_UNLIKELY(!b->frame)) { n_lru++; n_zip++; } const page_id_t id{b->id()}; ut_ad(page_hash.get(id, page_hash.cell_get(id.fold())) == b); } ut_ad(UT_LIST_GET_LEN(flush_list) == n_flushing); mysql_mutex_unlock(&flush_list_mutex); if (n_chunks_new == n_chunks && n_lru + n_free > curr_size + n_zip) { ib::fatal() << "n_LRU " << n_lru << ", n_free " << n_free << ", pool " << curr_size << " zip " << n_zip << ". Aborting..."; } ut_ad(UT_LIST_GET_LEN(LRU) >= n_lru); if (n_chunks_new == n_chunks && UT_LIST_GET_LEN(free) != n_free) { ib::fatal() << "Free list len " << UT_LIST_GET_LEN(free) << ", free blocks " << n_free << ". Aborting..."; } mysql_mutex_unlock(&mutex); ut_d(buf_LRU_validate()); ut_d(buf_flush_validate()); } #endif /* UNIV_DEBUG */ #if defined UNIV_DEBUG_PRINT || defined UNIV_DEBUG /** Write information of the buf_pool to the error log. */ void buf_pool_t::print() { index_id_t* index_ids; ulint* counts; ulint size; ulint i; ulint j; index_id_t id; ulint n_found; chunk_t* chunk; dict_index_t* index; size = curr_size; index_ids = static_cast( ut_malloc_nokey(size * sizeof *index_ids)); counts = static_cast(ut_malloc_nokey(sizeof(ulint) * size)); mysql_mutex_lock(&mutex); mysql_mutex_lock(&flush_list_mutex); ib::info() << "[buffer pool: size=" << curr_size << ", database pages=" << UT_LIST_GET_LEN(LRU) << ", free pages=" << UT_LIST_GET_LEN(free) << ", modified database pages=" << UT_LIST_GET_LEN(flush_list) << ", n pending decompressions=" << n_pend_unzip << ", n pending reads=" << n_pend_reads << ", n pending flush LRU=" << n_flush_LRU_ << " list=" << n_flush_list_ << ", pages made young=" << stat.n_pages_made_young << ", not young=" << stat.n_pages_not_made_young << ", pages read=" << stat.n_pages_read << ", created=" << stat.n_pages_created << ", written=" << stat.n_pages_written << "]"; mysql_mutex_unlock(&flush_list_mutex); /* Count the number of blocks belonging to each index in the buffer */ n_found = 0; chunk = chunks; for (i = n_chunks; i--; chunk++) { buf_block_t* block = chunk->blocks; ulint n_blocks = chunk->size; for (; n_blocks--; block++) { const buf_frame_t* frame = block->page.frame; if (fil_page_index_page_check(frame)) { id = btr_page_get_index_id(frame); /* Look for the id in the index_ids array */ j = 0; while (j < n_found) { if (index_ids[j] == id) { counts[j]++; break; } j++; } if (j == n_found) { n_found++; index_ids[j] = id; counts[j] = 1; } } } } mysql_mutex_unlock(&mutex); for (i = 0; i < n_found; i++) { index = dict_index_get_if_in_cache(index_ids[i]); if (!index) { ib::info() << "Block count for index " << index_ids[i] << " in buffer is about " << counts[i]; } else { ib::info() << "Block count for index " << index_ids[i] << " in buffer is about " << counts[i] << ", index " << index->name << " of table " << index->table->name; } } ut_free(index_ids); ut_free(counts); validate(); } #endif /* UNIV_DEBUG_PRINT || UNIV_DEBUG */ #ifdef UNIV_DEBUG /** @return the number of latched pages in the buffer pool */ ulint buf_get_latched_pages_number() { ulint fixed_pages_number= 0; mysql_mutex_lock(&buf_pool.mutex); for (buf_page_t *b= UT_LIST_GET_FIRST(buf_pool.LRU); b; b= UT_LIST_GET_NEXT(LRU, b)) if (b->state() > buf_page_t::UNFIXED) fixed_pages_number++; mysql_mutex_unlock(&buf_pool.mutex); return fixed_pages_number; } #endif /* UNIV_DEBUG */ /** Collect buffer pool metadata. @param[out] pool_info buffer pool metadata */ void buf_stats_get_pool_info(buf_pool_info_t *pool_info) { time_t current_time; double time_elapsed; mysql_mutex_lock(&buf_pool.mutex); pool_info->pool_size = buf_pool.curr_size; pool_info->lru_len = UT_LIST_GET_LEN(buf_pool.LRU); pool_info->old_lru_len = buf_pool.LRU_old_len; pool_info->free_list_len = UT_LIST_GET_LEN(buf_pool.free); mysql_mutex_lock(&buf_pool.flush_list_mutex); pool_info->flush_list_len = UT_LIST_GET_LEN(buf_pool.flush_list); pool_info->n_pend_unzip = UT_LIST_GET_LEN(buf_pool.unzip_LRU); mysql_mutex_unlock(&buf_pool.flush_list_mutex); pool_info->n_pend_reads = buf_pool.n_pend_reads; pool_info->n_pending_flush_lru = buf_pool.n_flush_LRU_; pool_info->n_pending_flush_list = buf_pool.n_flush_list_; current_time = time(NULL); time_elapsed = 0.001 + difftime(current_time, buf_pool.last_printout_time); pool_info->n_pages_made_young = buf_pool.stat.n_pages_made_young; pool_info->n_pages_not_made_young = buf_pool.stat.n_pages_not_made_young; pool_info->n_pages_read = buf_pool.stat.n_pages_read; pool_info->n_pages_created = buf_pool.stat.n_pages_created; pool_info->n_pages_written = buf_pool.stat.n_pages_written; pool_info->n_page_gets = buf_pool.stat.n_page_gets; pool_info->n_ra_pages_read_rnd = buf_pool.stat.n_ra_pages_read_rnd; pool_info->n_ra_pages_read = buf_pool.stat.n_ra_pages_read; pool_info->n_ra_pages_evicted = buf_pool.stat.n_ra_pages_evicted; pool_info->page_made_young_rate = static_cast(buf_pool.stat.n_pages_made_young - buf_pool.old_stat.n_pages_made_young) / time_elapsed; pool_info->page_not_made_young_rate = static_cast(buf_pool.stat.n_pages_not_made_young - buf_pool.old_stat.n_pages_not_made_young) / time_elapsed; pool_info->pages_read_rate = static_cast(buf_pool.stat.n_pages_read - buf_pool.old_stat.n_pages_read) / time_elapsed; pool_info->pages_created_rate = static_cast(buf_pool.stat.n_pages_created - buf_pool.old_stat.n_pages_created) / time_elapsed; pool_info->pages_written_rate = static_cast(buf_pool.stat.n_pages_written - buf_pool.old_stat.n_pages_written) / time_elapsed; pool_info->n_page_get_delta = buf_pool.stat.n_page_gets - buf_pool.old_stat.n_page_gets; if (pool_info->n_page_get_delta) { pool_info->page_read_delta = buf_pool.stat.n_pages_read - buf_pool.old_stat.n_pages_read; pool_info->young_making_delta = buf_pool.stat.n_pages_made_young - buf_pool.old_stat.n_pages_made_young; pool_info->not_young_making_delta = buf_pool.stat.n_pages_not_made_young - buf_pool.old_stat.n_pages_not_made_young; } pool_info->pages_readahead_rnd_rate = static_cast(buf_pool.stat.n_ra_pages_read_rnd - buf_pool.old_stat.n_ra_pages_read_rnd) / time_elapsed; pool_info->pages_readahead_rate = static_cast(buf_pool.stat.n_ra_pages_read - buf_pool.old_stat.n_ra_pages_read) / time_elapsed; pool_info->pages_evicted_rate = static_cast(buf_pool.stat.n_ra_pages_evicted - buf_pool.old_stat.n_ra_pages_evicted) / time_elapsed; pool_info->unzip_lru_len = UT_LIST_GET_LEN(buf_pool.unzip_LRU); pool_info->io_sum = buf_LRU_stat_sum.io; pool_info->io_cur = buf_LRU_stat_cur.io; pool_info->unzip_sum = buf_LRU_stat_sum.unzip; pool_info->unzip_cur = buf_LRU_stat_cur.unzip; buf_refresh_io_stats(); mysql_mutex_unlock(&buf_pool.mutex); } /*********************************************************************//** Prints info of the buffer i/o. */ static void buf_print_io_instance( /*==================*/ buf_pool_info_t*pool_info, /*!< in: buffer pool info */ FILE* file) /*!< in/out: buffer where to print */ { ut_ad(pool_info); fprintf(file, "Buffer pool size " ULINTPF "\n" "Free buffers " ULINTPF "\n" "Database pages " ULINTPF "\n" "Old database pages " ULINTPF "\n" "Modified db pages " ULINTPF "\n" "Percent of dirty pages(LRU & free pages): %.3f\n" "Max dirty pages percent: %.3f\n" "Pending reads " ULINTPF "\n" "Pending writes: LRU " ULINTPF ", flush list " ULINTPF "\n", pool_info->pool_size, pool_info->free_list_len, pool_info->lru_len, pool_info->old_lru_len, pool_info->flush_list_len, static_cast(pool_info->flush_list_len) / (static_cast(pool_info->lru_len + pool_info->free_list_len) + 1.0) * 100.0, srv_max_buf_pool_modified_pct, pool_info->n_pend_reads, pool_info->n_pending_flush_lru, pool_info->n_pending_flush_list); fprintf(file, "Pages made young " ULINTPF ", not young " ULINTPF "\n" "%.2f youngs/s, %.2f non-youngs/s\n" "Pages read " ULINTPF ", created " ULINTPF ", written " ULINTPF "\n" "%.2f reads/s, %.2f creates/s, %.2f writes/s\n", pool_info->n_pages_made_young, pool_info->n_pages_not_made_young, pool_info->page_made_young_rate, pool_info->page_not_made_young_rate, pool_info->n_pages_read, pool_info->n_pages_created, pool_info->n_pages_written, pool_info->pages_read_rate, pool_info->pages_created_rate, pool_info->pages_written_rate); if (pool_info->n_page_get_delta) { double hit_rate = static_cast( pool_info->page_read_delta) / static_cast(pool_info->n_page_get_delta); if (hit_rate > 1) { hit_rate = 1; } fprintf(file, "Buffer pool hit rate " ULINTPF " / 1000," " young-making rate " ULINTPF " / 1000 not " ULINTPF " / 1000\n", ulint(1000 * (1 - hit_rate)), ulint(1000 * double(pool_info->young_making_delta) / double(pool_info->n_page_get_delta)), ulint(1000 * double(pool_info->not_young_making_delta) / double(pool_info->n_page_get_delta))); } else { fputs("No buffer pool page gets since the last printout\n", file); } /* Statistics about read ahead algorithm */ fprintf(file, "Pages read ahead %.2f/s," " evicted without access %.2f/s," " Random read ahead %.2f/s\n", pool_info->pages_readahead_rate, pool_info->pages_evicted_rate, pool_info->pages_readahead_rnd_rate); /* Print some values to help us with visualizing what is happening with LRU eviction. */ fprintf(file, "LRU len: " ULINTPF ", unzip_LRU len: " ULINTPF "\n" "I/O sum[" ULINTPF "]:cur[" ULINTPF "], " "unzip sum[" ULINTPF "]:cur[" ULINTPF "]\n", pool_info->lru_len, pool_info->unzip_lru_len, pool_info->io_sum, pool_info->io_cur, pool_info->unzip_sum, pool_info->unzip_cur); } /*********************************************************************//** Prints info of the buffer i/o. */ void buf_print_io( /*=========*/ FILE* file) /*!< in/out: buffer where to print */ { buf_pool_info_t pool_info; buf_stats_get_pool_info(&pool_info); buf_print_io_instance(&pool_info, file); } /** Verify that post encryption checksum match with the calculated checksum. This function should be called only if tablespace contains crypt data metadata. @param page page frame @param fsp_flags contents of FSP_SPACE_FLAGS @return whether the page is encrypted and valid */ bool buf_page_verify_crypt_checksum(const byte *page, uint32_t fsp_flags) { if (!fil_space_t::full_crc32(fsp_flags)) { return fil_space_verify_crypt_checksum( page, fil_space_t::zip_size(fsp_flags)); } return !buf_page_is_corrupted(true, page, fsp_flags); } /** Print the given page_id_t object. @param[in,out] out the output stream @param[in] page_id the page_id_t object to be printed @return the output stream */ std::ostream& operator<<(std::ostream &out, const page_id_t page_id) { out << "[page id: space=" << page_id.space() << ", page number=" << page_id.page_no() << "]"; return out; } #endif /* !UNIV_INNOCHECKSUM */