/* Copyright (C) 2009 MySQL AB Copyright (c) 2019, 2020, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */ /** @file @brief functions to update persitent statistical tables and to read from them @defgroup Query_Optimizer Query Optimizer @{ */ #include "mariadb.h" #include "sql_base.h" #include "key.h" #include "sql_statistics.h" #include "opt_range.h" #include "uniques.h" #include "sql_show.h" #include "sql_partition.h" /* The system variable 'use_stat_tables' can take one of the following values: "never", "complementary", "preferably". If the values of the variable 'use_stat_tables' is set to "never then any statistical data from the persistent statistical tables is ignored by the optimizer. If the value of the variable 'use_stat_tables' is set to "complementary" then a particular statistical characteristic is used by the optimizer only if the database engine does not provide similar statistics. For example, 'nulls_ratio' for table columns currently are not provided by any engine. So optimizer uses this statistical data from the statistical tables. At the same time it does not use 'avg_frequency' for any index prefix from the statistical tables since the a similar statistical characteristic 'records_per_key' can be requested from the database engine. If the value the variable 'use_stat_tables' is set to "preferably" the optimizer uses a particular statistical data only if it can't be found in the statistical data. If an ANALYZE command is executed then it results in collecting statistical data for the tables specified by the command and storing the collected statistics in the persistent statistical tables only when the value of the variable 'use_stat_tables' is not equal to "never". */ /* Currently there are only 3 persistent statistical tables */ static const uint STATISTICS_TABLES= 3; /* The names of the statistical tables in this array must correspond the definitions of the tables in the file ../scripts/mysql_system_tables.sql */ static const LEX_CSTRING stat_table_name[STATISTICS_TABLES]= { { STRING_WITH_LEN("table_stats") }, { STRING_WITH_LEN("column_stats") }, { STRING_WITH_LEN("index_stats") } }; /** @details The function builds a list of TABLE_LIST elements for system statistical tables using array of TABLE_LIST passed as a parameter. The lock type of each element is set to TL_READ if for_write = FALSE, otherwise it is set to TL_WRITE. */ static inline void init_table_list_for_stat_tables(TABLE_LIST *tables, bool for_write) { uint i; memset((char *) &tables[0], 0, sizeof(TABLE_LIST) * STATISTICS_TABLES); for (i= 0; i < STATISTICS_TABLES; i++) { tables[i].db= MYSQL_SCHEMA_NAME; tables[i].table_name= stat_table_name[i]; tables[i].alias= stat_table_name[i]; tables[i].lock_type= for_write ? TL_WRITE : TL_READ; if (i < STATISTICS_TABLES - 1) tables[i].next_global= tables[i].next_local= tables[i].next_name_resolution_table= &tables[i+1]; if (i != 0) tables[i].prev_global= &tables[i-1].next_global; } } static Table_check_intact_log_error stat_table_intact; static const TABLE_FIELD_TYPE table_stat_fields[TABLE_STAT_N_FIELDS] = { { { STRING_WITH_LEN("db_name") }, { STRING_WITH_LEN("varchar(64)") }, { STRING_WITH_LEN("utf8") } }, { { STRING_WITH_LEN("table_name") }, { STRING_WITH_LEN("varchar(64)") }, { STRING_WITH_LEN("utf8") } }, { { STRING_WITH_LEN("cardinality") }, { STRING_WITH_LEN("bigint(21)") }, { NULL, 0 } }, }; static const uint table_stat_pk_col[]= {0,1}; static const TABLE_FIELD_DEF table_stat_def= {TABLE_STAT_N_FIELDS, table_stat_fields, 2, table_stat_pk_col }; static const TABLE_FIELD_TYPE column_stat_fields[COLUMN_STAT_N_FIELDS] = { { { STRING_WITH_LEN("db_name") }, { STRING_WITH_LEN("varchar(64)") }, { STRING_WITH_LEN("utf8") } }, { { STRING_WITH_LEN("table_name") }, { STRING_WITH_LEN("varchar(64)") }, { STRING_WITH_LEN("utf8") } }, { { STRING_WITH_LEN("column_name") }, { STRING_WITH_LEN("varchar(64)") }, { STRING_WITH_LEN("utf8") } }, { { STRING_WITH_LEN("min_value") }, { STRING_WITH_LEN("varbinary(255)") }, { NULL, 0 } }, { { STRING_WITH_LEN("max_value") }, { STRING_WITH_LEN("varbinary(255)") }, { NULL, 0 } }, { { STRING_WITH_LEN("nulls_ratio") }, { STRING_WITH_LEN("decimal(12,4)") }, { NULL, 0 } }, { { STRING_WITH_LEN("avg_length") }, { STRING_WITH_LEN("decimal(12,4)") }, { NULL, 0 } }, { { STRING_WITH_LEN("avg_frequency") }, { STRING_WITH_LEN("decimal(12,4)") }, { NULL, 0 } }, { { STRING_WITH_LEN("hist_size") }, { STRING_WITH_LEN("tinyint(3)") }, { NULL, 0 } }, { { STRING_WITH_LEN("hist_type") }, { STRING_WITH_LEN("enum('SINGLE_PREC_HB','DOUBLE_PREC_HB')") }, { STRING_WITH_LEN("utf8") } }, { { STRING_WITH_LEN("histogram") }, { STRING_WITH_LEN("varbinary(255)") }, { NULL, 0 } } }; static const uint column_stat_pk_col[]= {0,1,2}; static const TABLE_FIELD_DEF column_stat_def= {COLUMN_STAT_N_FIELDS, column_stat_fields, 3, column_stat_pk_col}; static const TABLE_FIELD_TYPE index_stat_fields[INDEX_STAT_N_FIELDS] = { { { STRING_WITH_LEN("db_name") }, { STRING_WITH_LEN("varchar(64)") }, { STRING_WITH_LEN("utf8") } }, { { STRING_WITH_LEN("table_name") }, { STRING_WITH_LEN("varchar(64)") }, { STRING_WITH_LEN("utf8") } }, { { STRING_WITH_LEN("index") }, { STRING_WITH_LEN("varchar(64)") }, { STRING_WITH_LEN("utf8") } }, { { STRING_WITH_LEN("prefix_arity") }, { STRING_WITH_LEN("int(11)") }, { NULL, 0 } }, { { STRING_WITH_LEN("avg_frequency") }, { STRING_WITH_LEN("decimal(12,4)") }, { NULL, 0 } } }; static const uint index_stat_pk_col[]= {0,1,2,3}; static const TABLE_FIELD_DEF index_stat_def= {INDEX_STAT_N_FIELDS, index_stat_fields, 4, index_stat_pk_col}; /** @brief Open all statistical tables and lock them */ static int open_stat_tables(THD *thd, TABLE_LIST *tables, Open_tables_backup *backup, bool for_write) { int rc; Dummy_error_handler deh; // suppress errors thd->push_internal_handler(&deh); init_table_list_for_stat_tables(tables, for_write); init_mdl_requests(tables); thd->in_sub_stmt|= SUB_STMT_STAT_TABLES; rc= open_system_tables_for_read(thd, tables, backup); thd->in_sub_stmt&= ~SUB_STMT_STAT_TABLES; thd->pop_internal_handler(); /* If the number of tables changes, we should revise the check below. */ compile_time_assert(STATISTICS_TABLES == 3); if (!rc && (stat_table_intact.check(tables[TABLE_STAT].table, &table_stat_def) || stat_table_intact.check(tables[COLUMN_STAT].table, &column_stat_def) || stat_table_intact.check(tables[INDEX_STAT].table, &index_stat_def))) { close_system_tables(thd, backup); rc= 1; } return rc; } /** @brief Open a statistical table and lock it @details This is used by DDLs. When a column or index is dropped or renamed, stat tables need to be adjusted accordingly. */ static inline int open_stat_table_for_ddl(THD *thd, TABLE_LIST *table, const LEX_CSTRING *stat_tab_name, Open_tables_backup *backup) { table->init_one_table(&MYSQL_SCHEMA_NAME, stat_tab_name, NULL, TL_WRITE); No_such_table_error_handler nst_handler; thd->push_internal_handler(&nst_handler); int res= open_system_tables_for_read(thd, table, backup); thd->pop_internal_handler(); return res; } /* The class Column_statistics_collected is a helper class used to collect statistics on a table column. The class is derived directly from the class Column_statistics, and, additionally to the fields of the latter, it contains the fields to accumulate the results of aggregation for the number of nulls in the column and for the size of the column values. There is also a container for distinct column values used to calculate the average number of records per distinct column value. */ class Column_statistics_collected :public Column_statistics { private: Field *column; /* The column to collect statistics on */ ha_rows nulls; /* To accumulate the number of nulls in the column */ ulonglong column_total_length; /* To accumulate the size of column values */ Count_distinct_field *count_distinct; /* The container for distinct column values */ bool is_single_pk_col; /* TRUE <-> the only column of the primary key */ public: inline void init(THD *thd, Field * table_field); inline bool add(); inline void finish(ha_rows rows, double sample_fraction); inline void cleanup(); }; /** Stat_table is the base class for classes Table_stat, Column_stat and Index_stat. The methods of these classes allow us to read statistical data from statistical tables, write collected statistical data into statistical tables and update statistical data in these tables as well as update access fields belonging to the primary key and delete records by prefixes of the primary key. Objects of the classes Table_stat, Column_stat and Index stat are used for reading/writing statistics from/into persistent tables table_stats, column_stats and index_stats correspondingly. These tables are stored in the system database 'mysql'. Statistics is read and written always for a given database table t. When an object of any of these classes is created a pointer to the TABLE structure for this database table is passed as a parameter to the constructor of the object. The other parameter is a pointer to the TABLE structure for the corresponding statistical table st. So construction of an object to read/write statistical data on table t from/into statistical table st requires both table t and st to be opened. In some cases the TABLE structure for table t may be undefined. Then the objects of the classes Table_stat, Column_stat and Index stat are created by the alternative constructor that require only the name of the table t and the name of the database it belongs to. Currently the alternative constructors are used only in the cases when some records belonging to the table are to be deleted, or its keys are to be updated Reading/writing statistical data from/into a statistical table is always performed by a key. At the moment there is only one key defined for each statistical table and this key is primary. The primary key for the table table_stats is built as (db_name, table_name). The primary key for the table column_stats is built as (db_name, table_name, column_name). The primary key for the table index_stats is built as (db_name, table_name, index_name, prefix_arity). Reading statistical data from a statistical table is performed by the following pattern. First a table dependent method sets the values of the the fields that comprise the lookup key. Then an implementation of the method get_stat_values() declared in Stat_table as a pure virtual method finds the row from the statistical table by the set key. If the row is found the values of statistical fields are read from this row and are distributed in the internal structures. Let's assume the statistical data is read for table t from database db. When statistical data is searched in the table table_stats first Table_stat::set_key_fields() should set the fields of db_name and table_name. Then get_stat_values looks for a row by the set key value, and, if the row is found, reads the value from the column table_stats.cardinality into the field read_stat.cardinality of the TABLE structure for table t and sets the value of read_stat.cardinality_is_null from this structure to FALSE. If the value of the 'cardinality' column in the row is null or if no row is found read_stat.cardinality_is_null is set to TRUE. When statistical data is searched in the table column_stats first Column_stat::set_key_fields() should set the fields of db_name, table_name and column_name with column_name taken out of the only parameter f of the Field* type passed to this method. After this get_stat_values looks for a row by the set key value. If the row is found the values of statistical data columns min_value, max_value, nulls_ratio, avg_length, avg_frequency, hist_size, hist_type, histogram are read into internal structures. Values of nulls_ratio, avg_length, avg_frequency, hist_size, hist_type, histogram are read into the corresponding fields of the read_stat structure from the Field object f, while values from min_value and max_value are copied into the min_value and max_value record buffers attached to the TABLE structure for table t. If the value of a statistical column in the found row is null, then the corresponding flag in the f->read_stat.column_stat_nulls bitmap is set off. Otherwise the flag is set on. If no row is found for the column the all flags in f->column_stat_nulls are set off. When statistical data is searched in the table index_stats first Index_stat::set_key_fields() has to be called to set the fields of db_name, table_name, index_name and prefix_arity. The value of index_name is extracted from the first parameter key_info of the KEY* type passed to the method. This parameter specifies the index of interest idx. The second parameter passed to the method specifies the arity k of the index prefix for which statistical data is to be read. E.g. if the index idx consists of 3 components (p1,p2,p3) the table index_stats usually will contain 3 rows for this index: the first - for the prefix (p1), the second - for the prefix (p1,p2), and the third - for the the prefix (p1,p2,p3). After the key fields has been set a call of get_stat_value looks for a row by the set key value. If the row is found and the value of the avg_frequency column is not null then this value is assigned to key_info->read_stat.avg_frequency[k]. Otherwise 0 is assigned to this element. The method Stat_table::update_stat is used to write statistical data collected in the internal structures into a statistical table st. It is assumed that before any invocation of this method a call of the function st.set_key_fields has set the values of the primary key fields that serve to locate the row from the statistical table st where the the collected statistical data from internal structures are to be written to. The statistical data is written from the counterparts of the statistical fields of internal structures into which it would be read by the functions get_stat_values. The counterpart fields are used only when statistics is collected When updating/inserting a row from the statistical table st the method Stat_table::update_stat calls the implementation of the pure virtual method store_field_values to transfer statistical data from the fields of internal structures to the fields of record buffer used for updates of the statistical table st. */ class Stat_table { private: /* Handler used for the retrieval of the statistical table stat_table */ handler *stat_file; uint stat_key_length; /* Length of the key to access stat_table */ uchar *record[2]; /* Record buffers used to access/update stat_table */ uint stat_key_idx; /* The number of the key to access stat_table */ /* This is a helper function used only by the Stat_table constructors */ void common_init_stat_table() { stat_file= stat_table->file; /* Currently any statistical table has only one key */ stat_key_idx= 0; stat_key_info= &stat_table->key_info[stat_key_idx]; stat_key_length= stat_key_info->key_length; record[0]= stat_table->record[0]; record[1]= stat_table->record[1]; } protected: /* Statistical table to read statistics from or to update/delete */ TABLE *stat_table; KEY *stat_key_info; /* Structure for the index to access stat_table */ /* Table for which statistical data is read / updated */ TABLE *table; TABLE_SHARE *table_share; /* Table share for 'table */ const LEX_CSTRING *db_name; /* Name of the database containing 'table' */ const LEX_CSTRING *table_name; /* Name of the table 'table' */ void store_record_for_update() { store_record(stat_table, record[1]); } void store_record_for_lookup() { DBUG_ASSERT(record[0] == stat_table->record[0]); } bool update_record() { int err; if ((err= stat_file->ha_update_row(record[1], record[0])) && err != HA_ERR_RECORD_IS_THE_SAME) return TRUE; /* Make change permanent and avoid 'table is marked as crashed' errors */ stat_file->extra(HA_EXTRA_FLUSH); return FALSE; } public: /** @details This constructor has to be called by any constructor of the derived classes. The constructor 'tunes' the private and protected members of the constructed object to the statistical table 'stat_table' with the statistical data of our interest and to the table 'tab' for which this statistics has been collected. */ Stat_table(TABLE *stat, TABLE *tab) :stat_table(stat), table(tab) { table_share= tab->s; common_init_stat_table(); db_name= &table_share->db; table_name= &table_share->table_name; } /** @details This constructor has to be called by any constructor of the derived classes. The constructor 'tunes' the private and protected members of the constructed object to the statistical table 'stat_table' with the statistical data of our interest and to the table t for which this statistics has been collected. The table t is uniquely specified by the database name 'db' and the table name 'tab'. */ Stat_table(TABLE *stat, const LEX_CSTRING *db, const LEX_CSTRING *tab) :stat_table(stat), table_share(NULL),db_name(db), table_name(tab) { common_init_stat_table(); } virtual ~Stat_table() {} /** @brief Store the given values of fields for database name and table name @details This is a purely virtual method. The implementation for any derived class shall store the given values of the database name and table name in the corresponding fields of stat_table. @note The method is called by the update_table_name_key_parts function. */ virtual void change_full_table_name(const LEX_CSTRING *db, const LEX_CSTRING *tab)= 0; /** @brief Store statistical data into fields of the statistical table @details This is a purely virtual method. The implementation for any derived class shall put the appropriate statistical data into the corresponding fields of stat_table. @note The method is called by the update_stat function. */ virtual void store_stat_fields()= 0; /** @brief Read statistical data from fields of the statistical table @details This is a purely virtual method. The implementation for any derived read shall read the appropriate statistical data from the corresponding fields of stat_table. */ virtual void get_stat_values()= 0; /** @brief Find a record in the statistical table by a primary key @details The function looks for a record in stat_table by its primary key. It assumes that the key fields have been already stored in the record buffer of stat_table. @retval FALSE the record is not found @retval TRUE the record is found */ bool find_stat() { uchar key[MAX_KEY_LENGTH]; key_copy(key, record[0], stat_key_info, stat_key_length); return !stat_file->ha_index_read_idx_map(record[0], stat_key_idx, key, HA_WHOLE_KEY, HA_READ_KEY_EXACT); } /** @brief Find a record in the statistical table by a key prefix value @details The function looks for a record in stat_table by the key value consisting of 'prefix_parts' major components for the primary index. It assumes that the key prefix fields have been already stored in the record buffer of stat_table. @retval FALSE the record is not found @retval TRUE the record is found */ bool find_next_stat_for_prefix(uint prefix_parts) { uchar key[MAX_KEY_LENGTH]; uint prefix_key_length= 0; for (uint i= 0; i < prefix_parts; i++) prefix_key_length+= stat_key_info->key_part[i].store_length; key_copy(key, record[0], stat_key_info, prefix_key_length); key_part_map prefix_map= (key_part_map) ((1 << prefix_parts) - 1); return !stat_file->ha_index_read_idx_map(record[0], stat_key_idx, key, prefix_map, HA_READ_KEY_EXACT); } /** @brief Update/insert a record in the statistical table with new statistics @details The function first looks for a record by its primary key in the statistical table stat_table. If the record is found the function updates statistical fields of the records. The data for these fields are taken from internal structures containing info on the table 'table'. If the record is not found the function inserts a new record with the primary key set to the search key and the statistical data taken from the internal structures. The function assumes that the key fields have been already stored in the record buffer of stat_table. @retval FALSE success with the update/insert of the record @retval TRUE failure with the update/insert of the record @note The function calls the virtual method store_stat_fields to populate the statistical fields of the updated/inserted row with new statistics. */ bool update_stat() { if (find_stat()) { bool res; store_record_for_update(); store_stat_fields(); res= update_record(); DBUG_ASSERT(res == 0); return res; } else { int err; store_stat_fields(); if ((err= stat_file->ha_write_row(record[0]))) { DBUG_ASSERT(0); return TRUE; } /* Make change permanent and avoid 'table is marked as crashed' errors */ stat_file->extra(HA_EXTRA_FLUSH); } return FALSE; } /** @brief Update the table name fields in the current record of stat_table @details The function updates the fields containing database name and table name for the last found record in the statistical table stat_table. The corresponding names for update is taken from the parameters db and tab. @retval FALSE success with the update of the record @retval TRUE failure with the update of the record @note The function calls the virtual method change_full_table_name to store the new names in the record buffer used for updates. */ bool update_table_name_key_parts(const LEX_CSTRING *db, const LEX_CSTRING *tab) { store_record_for_update(); change_full_table_name(db, tab); bool rc= update_record(); store_record_for_lookup(); return rc; } /** @brief Delete the current record of the statistical table stat_table @details The function deletes the last found record from the statistical table stat_table. @retval FALSE success with the deletion of the record @retval TRUE failure with the deletion of the record */ bool delete_stat() { int err; if ((err= stat_file->ha_delete_row(record[0]))) return TRUE; /* Make change permanent and avoid 'table is marked as crashed' errors */ stat_file->extra(HA_EXTRA_FLUSH); return FALSE; } friend class Stat_table_write_iter; }; /* An object of the class Table_stat is created to read statistical data on tables from the statistical table table_stats, to update table_stats with such statistical data, or to update columns of the primary key, or to delete the record by its primary key or its prefix. Rows from the statistical table are read and updated always by primary key. */ class Table_stat: public Stat_table { private: Field *db_name_field; /* Field for the column table_stats.db_name */ Field *table_name_field; /* Field for the column table_stats.table_name */ void common_init_table_stat() { db_name_field= stat_table->field[TABLE_STAT_DB_NAME]; table_name_field= stat_table->field[TABLE_STAT_TABLE_NAME]; } void change_full_table_name(const LEX_CSTRING *db, const LEX_CSTRING *tab) { db_name_field->store(db->str, db->length, system_charset_info); table_name_field->store(tab->str, tab->length, system_charset_info); } public: /** @details The constructor 'tunes' the private and protected members of the constructed object for the statistical table table_stats to read/update statistics on table 'tab'. The TABLE structure for the table table_stat must be passed as a value for the parameter 'stat'. */ Table_stat(TABLE *stat, TABLE *tab) :Stat_table(stat, tab) { common_init_table_stat(); } /** @details The constructor 'tunes' the private and protected members of the object constructed for the statistical table table_stat for the future updates/deletes of the record concerning the table 'tab' from the database 'db'. */ Table_stat(TABLE *stat, const LEX_CSTRING *db, const LEX_CSTRING *tab) :Stat_table(stat, db, tab) { common_init_table_stat(); } /** @brief Set the key fields for the statistical table table_stat @details The function sets the values of the fields db_name and table_name in the record buffer for the statistical table table_stat. These fields comprise the primary key for the table. @note The function is supposed to be called before any use of the method find_stat for an object of the Table_stat class. */ void set_key_fields() { db_name_field->store(db_name->str, db_name->length, system_charset_info); table_name_field->store(table_name->str, table_name->length, system_charset_info); } /** @brief Store statistical data into statistical fields of table_stat @details This implementation of a purely virtual method sets the value of the column 'cardinality' of the statistical table table_stat according to the value of the flag write_stat.cardinality_is_null and the value of the field write_stat.cardinality' from the TABLE structure for 'table'. */ void store_stat_fields() { Field *stat_field= stat_table->field[TABLE_STAT_CARDINALITY]; if (table->collected_stats->cardinality_is_null) stat_field->set_null(); else { stat_field->set_notnull(); stat_field->store(table->collected_stats->cardinality,true); } } /** @brief Read statistical data from statistical fields of table_stat @details This implementation of a purely virtual method first looks for a record the statistical table table_stat by its primary key set the record buffer with the help of Table_stat::set_key_fields. Then, if the row is found the function reads the value of the column 'cardinality' of the table table_stat and sets the value of the flag read_stat.cardinality_is_null and the value of the field read_stat.cardinality' from the TABLE structure for 'table' accordingly. */ void get_stat_values() { Table_statistics *read_stats= table_share->stats_cb.table_stats; read_stats->cardinality_is_null= TRUE; read_stats->cardinality= 0; if (find_stat()) { Field *stat_field= stat_table->field[TABLE_STAT_CARDINALITY]; if (!stat_field->is_null()) { read_stats->cardinality_is_null= FALSE; read_stats->cardinality= stat_field->val_int(); } } } }; /* An object of the class Column_stat is created to read statistical data on table columns from the statistical table column_stats, to update column_stats with such statistical data, or to update columns of the primary key, or to delete the record by its primary key or its prefix. Rows from the statistical table are read and updated always by primary key. */ class Column_stat: public Stat_table { private: Field *db_name_field; /* Field for the column column_stats.db_name */ Field *table_name_field; /* Field for the column column_stats.table_name */ Field *column_name_field; /* Field for the column column_stats.column_name */ Field *table_field; /* Field from 'table' to read /update statistics on */ void common_init_column_stat_table() { db_name_field= stat_table->field[COLUMN_STAT_DB_NAME]; table_name_field= stat_table->field[COLUMN_STAT_TABLE_NAME]; column_name_field= stat_table->field[COLUMN_STAT_COLUMN_NAME]; } void change_full_table_name(const LEX_CSTRING *db, const LEX_CSTRING *tab) { db_name_field->store(db->str, db->length, system_charset_info); table_name_field->store(tab->str, tab->length, system_charset_info); } public: /** @details The constructor 'tunes' the private and protected members of the constructed object for the statistical table column_stats to read/update statistics on fields of the table 'tab'. The TABLE structure for the table column_stats must be passed as a value for the parameter 'stat'. */ Column_stat(TABLE *stat, TABLE *tab) :Stat_table(stat, tab) { common_init_column_stat_table(); } /** @details The constructor 'tunes' the private and protected members of the object constructed for the statistical table column_stats for the future updates/deletes of the record concerning the table 'tab' from the database 'db'. */ Column_stat(TABLE *stat, const LEX_CSTRING *db, const LEX_CSTRING *tab) :Stat_table(stat, db, tab) { common_init_column_stat_table(); } /** @brief Set table name fields for the statistical table column_stats @details The function stores the values of the fields db_name and table_name of the statistical table column_stats in the record buffer. */ void set_full_table_name() { db_name_field->store(db_name->str, db_name->length, system_charset_info); table_name_field->store(table_name->str, table_name->length, system_charset_info); } /** @brief Set the key fields for the statistical table column_stats @param col Field for the 'table' column to read/update statistics on @details The function stores the values of the fields db_name, table_name and column_name in the record buffer for the statistical table column_stats. These fields comprise the primary key for the table. It also sets table_field to the passed parameter. @note The function is supposed to be called before any use of the method find_stat for an object of the Column_stat class. */ void set_key_fields(Field *col) { set_full_table_name(); column_name_field->store(col->field_name.str, col->field_name.length, system_charset_info); table_field= col; } /** @brief Update the table name fields in the current record of stat_table @details The function updates the primary key fields containing database name, table name, and column name for the last found record in the statistical table column_stats. @retval FALSE success with the update of the record @retval TRUE failure with the update of the record */ bool update_column_key_part(const char *col) { store_record_for_update(); set_full_table_name(); column_name_field->store(col, strlen(col), system_charset_info); bool rc= update_record(); store_record_for_lookup(); return rc; } /** @brief Store statistical data into statistical fields of column_stats @details This implementation of a purely virtual method sets the value of the columns 'min_value', 'max_value', 'nulls_ratio', 'avg_length', 'avg_frequency', 'hist_size', 'hist_type' and 'histogram' of the stistical table columns_stat according to the contents of the bitmap write_stat.column_stat_nulls and the values of the fields min_value, max_value, nulls_ratio, avg_length, avg_frequency, hist_size, hist_type and histogram of the structure write_stat from the Field structure for the field 'table_field'. The value of the k-th column in the table columns_stat is set to NULL if the k-th bit in the bitmap 'column_stat_nulls' is set to 1. @note A value from the field min_value/max_value is always converted into a varbinary string. If the length of the column 'min_value'/'max_value' is less than the length of the string the string is trimmed to fit the length of the column. */ void store_stat_fields() { StringBuffer val; MY_BITMAP *old_map= dbug_tmp_use_all_columns(stat_table, &stat_table->read_set); for (uint i= COLUMN_STAT_MIN_VALUE; i <= COLUMN_STAT_HISTOGRAM; i++) { Field *stat_field= stat_table->field[i]; Column_statistics *stats= table_field->collected_stats; if (stats->is_null(i)) stat_field->set_null(); else { stat_field->set_notnull(); switch (i) { case COLUMN_STAT_MIN_VALUE: if (table_field->type() == MYSQL_TYPE_BIT) stat_field->store(stats->min_value->val_int(),true); else { stats->min_value->val_str(&val); size_t length= Well_formed_prefix(val.charset(), val.ptr(), MY_MIN(val.length(), stat_field->field_length)).length(); stat_field->store(val.ptr(), length, &my_charset_bin); } break; case COLUMN_STAT_MAX_VALUE: if (table_field->type() == MYSQL_TYPE_BIT) stat_field->store(stats->max_value->val_int(),true); else { stats->max_value->val_str(&val); size_t length= Well_formed_prefix(val.charset(), val.ptr(), MY_MIN(val.length(), stat_field->field_length)).length(); stat_field->store(val.ptr(), length, &my_charset_bin); } break; case COLUMN_STAT_NULLS_RATIO: stat_field->store(stats->get_nulls_ratio()); break; case COLUMN_STAT_AVG_LENGTH: stat_field->store(stats->get_avg_length()); break; case COLUMN_STAT_AVG_FREQUENCY: stat_field->store(stats->get_avg_frequency()); break; case COLUMN_STAT_HIST_SIZE: stat_field->store(stats->histogram.get_size()); break; case COLUMN_STAT_HIST_TYPE: stat_field->store(stats->histogram.get_type() + 1); break; case COLUMN_STAT_HISTOGRAM: stat_field->store((char *)stats->histogram.get_values(), stats->histogram.get_size(), &my_charset_bin); break; } } } dbug_tmp_restore_column_map(&stat_table->read_set, old_map); } /** @brief Read statistical data from statistical fields of column_stats @details This implementation of a purely virtual method first looks for a record in the statistical table column_stats by its primary key set in the record buffer with the help of Column_stat::set_key_fields. Then, if the row is found, the function reads the values of the columns 'min_value', 'max_value', 'nulls_ratio', 'avg_length', 'avg_frequency', 'hist_size' and 'hist_type" of the table column_stat and sets accordingly the value of the bitmap read_stat.column_stat_nulls' and the values of the fields min_value, max_value, nulls_ratio, avg_length, avg_frequency, hist_size and hist_type of the structure read_stat from the Field structure for the field 'table_field'. */ void get_stat_values() { table_field->read_stats->set_all_nulls(); if (table_field->read_stats->min_value) table_field->read_stats->min_value->set_null(); if (table_field->read_stats->max_value) table_field->read_stats->max_value->set_null(); if (find_stat()) { char buff[MAX_FIELD_WIDTH]; String val(buff, sizeof(buff), &my_charset_bin); for (uint i= COLUMN_STAT_MIN_VALUE; i <= COLUMN_STAT_HIST_TYPE; i++) { Field *stat_field= stat_table->field[i]; if (!stat_field->is_null() && (i > COLUMN_STAT_MAX_VALUE || (i == COLUMN_STAT_MIN_VALUE && table_field->read_stats->min_value) || (i == COLUMN_STAT_MAX_VALUE && table_field->read_stats->max_value))) { table_field->read_stats->set_not_null(i); switch (i) { case COLUMN_STAT_MIN_VALUE: table_field->read_stats->min_value->set_notnull(); if (table_field->type() == MYSQL_TYPE_BIT) table_field->read_stats->min_value->store(stat_field->val_int(), true); else { stat_field->val_str(&val); table_field->read_stats->min_value->store(val.ptr(), val.length(), &my_charset_bin); } break; case COLUMN_STAT_MAX_VALUE: table_field->read_stats->max_value->set_notnull(); if (table_field->type() == MYSQL_TYPE_BIT) table_field->read_stats->max_value->store(stat_field->val_int(), true); else { stat_field->val_str(&val); table_field->read_stats->max_value->store(val.ptr(), val.length(), &my_charset_bin); } break; case COLUMN_STAT_NULLS_RATIO: table_field->read_stats->set_nulls_ratio(stat_field->val_real()); break; case COLUMN_STAT_AVG_LENGTH: table_field->read_stats->set_avg_length(stat_field->val_real()); break; case COLUMN_STAT_AVG_FREQUENCY: table_field->read_stats->set_avg_frequency(stat_field->val_real()); break; case COLUMN_STAT_HIST_SIZE: table_field->read_stats->histogram.set_size(stat_field->val_int()); break; case COLUMN_STAT_HIST_TYPE: Histogram_type hist_type= (Histogram_type) (stat_field->val_int() - 1); table_field->read_stats->histogram.set_type(hist_type); break; } } } } } /** @brief Read histogram from of column_stats @details This method first looks for a record in the statistical table column_stats by its primary key set the record buffer with the help of Column_stat::set_key_fields. Then, if the row is found, the function reads the value of the column 'histogram' of the table column_stat and sets accordingly the corresponding bit in the bitmap read_stat.column_stat_nulls. The method assumes that the value of histogram size and the pointer to the histogram location has been already set in the fields size and values of read_stats->histogram. */ void get_histogram_value() { if (find_stat()) { char buff[MAX_FIELD_WIDTH]; String val(buff, sizeof(buff), &my_charset_bin); uint fldno= COLUMN_STAT_HISTOGRAM; Field *stat_field= stat_table->field[fldno]; table_field->read_stats->set_not_null(fldno); stat_field->val_str(&val); memcpy(table_field->read_stats->histogram.get_values(), val.ptr(), table_field->read_stats->histogram.get_size()); } } }; /* An object of the class Index_stat is created to read statistical data on tables from the statistical table table_stat, to update index_stats with such statistical data, or to update columns of the primary key, or to delete the record by its primary key or its prefix. Rows from the statistical table are read and updated always by primary key. */ class Index_stat: public Stat_table { private: Field *db_name_field; /* Field for the column index_stats.db_name */ Field *table_name_field; /* Field for the column index_stats.table_name */ Field *index_name_field; /* Field for the column index_stats.table_name */ Field *prefix_arity_field; /* Field for the column index_stats.prefix_arity */ KEY *table_key_info; /* Info on the index to read/update statistics on */ uint prefix_arity; /* Number of components of the index prefix of interest */ void common_init_index_stat_table() { db_name_field= stat_table->field[INDEX_STAT_DB_NAME]; table_name_field= stat_table->field[INDEX_STAT_TABLE_NAME]; index_name_field= stat_table->field[INDEX_STAT_INDEX_NAME]; prefix_arity_field= stat_table->field[INDEX_STAT_PREFIX_ARITY]; } void change_full_table_name(const LEX_CSTRING *db, const LEX_CSTRING *tab) { db_name_field->store(db->str, db->length, system_charset_info); table_name_field->store(tab->str, tab->length, system_charset_info); } public: /** @details The constructor 'tunes' the private and protected members of the constructed object for the statistical table index_stats to read/update statistics on prefixes of different indexes of the table 'tab'. The TABLE structure for the table index_stats must be passed as a value for the parameter 'stat'. */ Index_stat(TABLE *stat, TABLE*tab) :Stat_table(stat, tab) { common_init_index_stat_table(); } /** @details The constructor 'tunes' the private and protected members of the object constructed for the statistical table index_stats for the future updates/deletes of the record concerning the table 'tab' from the database 'db'. */ Index_stat(TABLE *stat, const LEX_CSTRING *db, const LEX_CSTRING *tab) :Stat_table(stat, db, tab) { common_init_index_stat_table(); } /** @brief Set table name fields for the statistical table index_stats @details The function stores the values of the fields db_name and table_name of the statistical table index_stats in the record buffer. */ void set_full_table_name() { db_name_field->store(db_name->str, db_name->length, system_charset_info); table_name_field->store(table_name->str, table_name->length, system_charset_info); } /** @brief Set the key fields of index_stats used to access records for index prefixes @param index_info Info for the index of 'table' to read/update statistics on @details The function sets the values of the fields db_name, table_name and index_name in the record buffer for the statistical table index_stats. It also sets table_key_info to the passed parameter. @note The function is supposed to be called before any use of the method find_next_stat_for_prefix for an object of the Index_stat class. */ void set_index_prefix_key_fields(KEY *index_info) { set_full_table_name(); const char *index_name= index_info->name.str; index_name_field->store(index_name, index_info->name.length, system_charset_info); table_key_info= index_info; } /** @brief Set the key fields for the statistical table index_stats @param index_info Info for the index of 'table' to read/update statistics on @param index_prefix_arity Number of components in the index prefix of interest @details The function sets the values of the fields db_name, table_name and index_name, prefix_arity in the record buffer for the statistical table index_stats. These fields comprise the primary key for the table. @note The function is supposed to be called before any use of the method find_stat for an object of the Index_stat class. */ void set_key_fields(KEY *index_info, uint index_prefix_arity) { set_index_prefix_key_fields(index_info); prefix_arity= index_prefix_arity; prefix_arity_field->store(index_prefix_arity, TRUE); } /** @brief Store statistical data into statistical fields of table index_stats @details This implementation of a purely virtual method sets the value of the column 'avg_frequency' of the statistical table index_stats according to the value of write_stat.avg_frequency[Index_stat::prefix_arity] from the KEY_INFO structure 'table_key_info'. If the value of write_stat. avg_frequency[Index_stat::prefix_arity] is equal to 0, the value of the column is set to NULL. */ void store_stat_fields() { Field *stat_field= stat_table->field[INDEX_STAT_AVG_FREQUENCY]; double avg_frequency= table_key_info->collected_stats->get_avg_frequency(prefix_arity-1); if (avg_frequency == 0) stat_field->set_null(); else { stat_field->set_notnull(); stat_field->store(avg_frequency); } } /** @brief Read statistical data from statistical fields of index_stats @details This implementation of a purely virtual method first looks for a record the statistical table index_stats by its primary key set the record buffer with the help of Index_stat::set_key_fields. If the row is found the function reads the value of the column 'avg_freguency' of the table index_stat and sets the value of read_stat.avg_frequency[Index_stat::prefix_arity] from the KEY_INFO structure 'table_key_info' accordingly. If the value of the column is NULL, read_stat.avg_frequency[Index_stat::prefix_arity] is set to 0. Otherwise, read_stat.avg_frequency[Index_stat::prefix_arity] is set to the value of the column. */ void get_stat_values() { double avg_frequency= 0; if(find_stat()) { Field *stat_field= stat_table->field[INDEX_STAT_AVG_FREQUENCY]; if (!stat_field->is_null()) avg_frequency= stat_field->val_real(); } table_key_info->read_stats->set_avg_frequency(prefix_arity-1, avg_frequency); } }; /* An iterator to enumerate statistics table rows which allows to modify the rows while reading them. Used by RENAME TABLE handling to assign new dbname.tablename to statistic rows. */ class Stat_table_write_iter { Stat_table *owner; IO_CACHE io_cache; uchar *rowid_buf; uint rowid_size; public: Stat_table_write_iter(Stat_table *stat_table_arg) : owner(stat_table_arg), rowid_buf(NULL), rowid_size(owner->stat_file->ref_length) { my_b_clear(&io_cache); } /* Initialize the iterator. It will return rows with n_keyparts matching the curernt values. @return false - OK true - Error */ bool init(uint n_keyparts) { if (!(rowid_buf= (uchar*)my_malloc(rowid_size, MYF(0)))) return true; if (open_cached_file(&io_cache, mysql_tmpdir, TEMP_PREFIX, 1024, MYF(MY_WME))) return true; handler *h= owner->stat_file; uchar key[MAX_KEY_LENGTH]; uint prefix_len= 0; for (uint i= 0; i < n_keyparts; i++) prefix_len += owner->stat_key_info->key_part[i].store_length; key_copy(key, owner->record[0], owner->stat_key_info, prefix_len); key_part_map prefix_map= (key_part_map) ((1 << n_keyparts) - 1); h->ha_index_init(owner->stat_key_idx, false); int res= h->ha_index_read_map(owner->record[0], key, prefix_map, HA_READ_KEY_EXACT); if (res) { reinit_io_cache(&io_cache, READ_CACHE, 0L, 0, 0); /* "Key not found" is not considered an error */ return (res == HA_ERR_KEY_NOT_FOUND)? false: true; } do { h->position(owner->record[0]); my_b_write(&io_cache, h->ref, rowid_size); } while (!h->ha_index_next_same(owner->record[0], key, prefix_len)); /* Prepare for reading */ reinit_io_cache(&io_cache, READ_CACHE, 0L, 0, 0); h->ha_index_or_rnd_end(); if (h->ha_rnd_init(false)) return true; return false; } /* Read the next row. @return false OK true No more rows or error. */ bool get_next_row() { if (!my_b_inited(&io_cache) || my_b_read(&io_cache, rowid_buf, rowid_size)) return true; /* No more data */ handler *h= owner->stat_file; /* We should normally be able to find the row that we have rowid for. If we don't, let's consider this an error. */ int res= h->ha_rnd_pos(owner->record[0], rowid_buf); return (res==0)? false : true; } void cleanup() { if (rowid_buf) my_free(rowid_buf); rowid_buf= NULL; owner->stat_file->ha_index_or_rnd_end(); close_cached_file(&io_cache); my_b_clear(&io_cache); } ~Stat_table_write_iter() { /* Ensure that cleanup has been run */ DBUG_ASSERT(rowid_buf == 0); } }; /* Histogram_builder is a helper class that is used to build histograms for columns */ class Histogram_builder { Field *column; /* table field for which the histogram is built */ uint col_length; /* size of this field */ ha_rows records; /* number of records the histogram is built for */ Field *min_value; /* pointer to the minimal value for the field */ Field *max_value; /* pointer to the maximal value for the field */ Histogram *histogram; /* the histogram location */ uint hist_width; /* the number of points in the histogram */ double bucket_capacity; /* number of rows in a bucket of the histogram */ uint curr_bucket; /* number of the current bucket to be built */ ulonglong count; /* number of values retrieved */ ulonglong count_distinct; /* number of distinct values retrieved */ /* number of distinct values that occured only once */ ulonglong count_distinct_single_occurence; public: Histogram_builder(Field *col, uint col_len, ha_rows rows) : column(col), col_length(col_len), records(rows) { Column_statistics *col_stats= col->collected_stats; min_value= col_stats->min_value; max_value= col_stats->max_value; histogram= &col_stats->histogram; hist_width= histogram->get_width(); bucket_capacity= (double) records / (hist_width + 1); curr_bucket= 0; count= 0; count_distinct= 0; count_distinct_single_occurence= 0; } ulonglong get_count_distinct() const { return count_distinct; } ulonglong get_count_single_occurence() const { return count_distinct_single_occurence; } int next(void *elem, element_count elem_cnt) { count_distinct++; if (elem_cnt == 1) count_distinct_single_occurence++; count+= elem_cnt; if (curr_bucket == hist_width) return 0; if (count > bucket_capacity * (curr_bucket + 1)) { column->store_field_value((uchar *) elem, col_length); histogram->set_value(curr_bucket, column->pos_in_interval(min_value, max_value)); curr_bucket++; while (curr_bucket != hist_width && count > bucket_capacity * (curr_bucket + 1)) { histogram->set_prev_value(curr_bucket); curr_bucket++; } } return 0; } }; C_MODE_START int histogram_build_walk(void *elem, element_count elem_cnt, void *arg) { Histogram_builder *hist_builder= (Histogram_builder *) arg; return hist_builder->next(elem, elem_cnt); } static int count_distinct_single_occurence_walk(void *elem, element_count count, void *arg) { ((ulonglong*)arg)[0]+= 1; if (count == 1) ((ulonglong*)arg)[1]+= 1; return 0; } C_MODE_END /* The class Count_distinct_field is a helper class used to calculate the number of distinct values for a column. The class employs the Unique class for this purpose. The class Count_distinct_field is used only by the function collect_statistics_for_table to calculate the values for column avg_frequency of the statistical table column_stats. */ class Count_distinct_field: public Sql_alloc { protected: /* Field for which the number of distinct values is to be find out */ Field *table_field; Unique *tree; /* The helper object to contain distinct values */ uint tree_key_length; /* The length of the keys for the elements of 'tree */ ulonglong distincts; ulonglong distincts_single_occurence; public: Count_distinct_field() {} /** @param field Field for which the number of distinct values is to be find out @param max_heap_table_size The limit for the memory used by the RB tree container of the constructed Unique object 'tree' @details The constructor sets the values of 'table_field' and 'tree_key_length', and then calls the 'new' operation to create a Unique object for 'tree'. The type of 'field' and the value max_heap_table_size of determine the set of the parameters to be passed to the constructor of the Unique object. */ Count_distinct_field(Field *field, size_t max_heap_table_size) { table_field= field; tree_key_length= field->pack_length(); tree= new Unique((qsort_cmp2) simple_str_key_cmp, (void*) field, tree_key_length, max_heap_table_size, 1); } virtual ~Count_distinct_field() { delete tree; tree= NULL; } /* @brief Check whether the Unique object tree has been successfully created */ bool exists() { return (tree != NULL); } /* @brief Add the value of 'field' to the container of the Unique object 'tree' */ virtual bool add() { table_field->mark_unused_memory_as_defined(); return tree->unique_add(table_field->ptr); } /* @brief Calculate the number of elements accumulated in the container of 'tree' */ void walk_tree() { ulonglong counts[2] = {0, 0}; tree->walk(table_field->table, count_distinct_single_occurence_walk, counts); distincts= counts[0]; distincts_single_occurence= counts[1]; } /* @brief Calculate a histogram of the tree */ void walk_tree_with_histogram(ha_rows rows) { Histogram_builder hist_builder(table_field, tree_key_length, rows); tree->walk(table_field->table, histogram_build_walk, (void *) &hist_builder); distincts= hist_builder.get_count_distinct(); distincts_single_occurence= hist_builder.get_count_single_occurence(); } ulonglong get_count_distinct() { return distincts; } ulonglong get_count_distinct_single_occurence() { return distincts_single_occurence; } /* @brief Get the size of the histogram in bytes built for table_field */ uint get_hist_size() { return table_field->collected_stats->histogram.get_size(); } /* @brief Get the pointer to the histogram built for table_field */ uchar *get_histogram() { return table_field->collected_stats->histogram.get_values(); } }; static int simple_ulonglong_key_cmp(void* arg, uchar* key1, uchar* key2) { ulonglong *val1= (ulonglong *) key1; ulonglong *val2= (ulonglong *) key2; return *val1 > *val2 ? 1 : *val1 == *val2 ? 0 : -1; } /* The class Count_distinct_field_bit is derived from the class Count_distinct_field to be used only for fields of the MYSQL_TYPE_BIT type. The class provides a different implementation for the method add */ class Count_distinct_field_bit: public Count_distinct_field { public: Count_distinct_field_bit(Field *field, size_t max_heap_table_size) { table_field= field; tree_key_length= sizeof(ulonglong); tree= new Unique((qsort_cmp2) simple_ulonglong_key_cmp, (void*) &tree_key_length, tree_key_length, max_heap_table_size, 1); } bool add() { longlong val= table_field->val_int(); return tree->unique_add(&val); } }; /* The class Index_prefix_calc is a helper class used to calculate the values for the column 'avg_frequency' of the statistical table index_stats. For any table t from the database db and any k-component prefix of the index i for this table the row from index_stats with the primary key (db,t,i,k) must contain in the column 'avg_frequency' either NULL or the number that is the ratio of N and V, where N is the number of index entries without NULL values in the first k components of the index i, and V is the number of distinct tuples composed of the first k components encountered among these index entries. Currently the objects of this class are used only by the function collect_statistics_for_index. */ class Index_prefix_calc: public Sql_alloc { private: /* Table containing index specified by index_info */ TABLE *index_table; /* Info for the index i for whose prefix 'avg_frequency' is calculated */ KEY *index_info; /* The maximum number of the components in the prefixes of interest */ uint prefixes; bool empty; /* This structure is created for every k components of the index i */ class Prefix_calc_state { public: /* The number of the scanned index entries without nulls in the first k components */ ulonglong entry_count; /* The number if the scanned index entries without nulls with the last encountered k-component prefix */ ulonglong prefix_count; /* The values of the last encountered k-component prefix */ Cached_item *last_prefix; }; /* Array of structures used to calculate 'avg_frequency' for different prefixes of the index i */ Prefix_calc_state *calc_state; public: bool is_single_comp_pk; bool is_partial_fields_present; Index_prefix_calc(THD *thd, TABLE *table, KEY *key_info) : index_table(table), index_info(key_info), prefixes(0), empty(true), calc_state(NULL), is_single_comp_pk(false), is_partial_fields_present(false) { uint i; Prefix_calc_state *state; uint key_parts= table->actual_n_key_parts(key_info); uint pk= table->s->primary_key; if ((uint) (table->key_info - key_info) == pk && table->key_info[pk].user_defined_key_parts == 1) { prefixes= 1; is_single_comp_pk= TRUE; return; } if ((calc_state= (Prefix_calc_state *) thd->alloc(sizeof(Prefix_calc_state)*key_parts))) { uint keyno= (uint)(key_info-table->key_info); for (i= 0, state= calc_state; i < key_parts; i++, state++) { /* Do not consider prefixes containing a component that is only part of the field. This limitation is set to avoid fetching data when calculating the values of 'avg_frequency' for prefixes. */ if (!key_info->key_part[i].field->part_of_key.is_set(keyno)) { is_partial_fields_present= TRUE; break; } if (!(state->last_prefix= new (thd->mem_root) Cached_item_field(thd, key_info->key_part[i].field))) break; state->entry_count= state->prefix_count= 0; prefixes++; } } } /** @breif Change the elements of calc_state after reading the next index entry @details This function is to be called at the index scan each time the next index entry has been read into the record buffer. For each of the index prefixes the function checks whether nulls are encountered in any of the k components of the prefix. If this is not the case the value of calc_state[k-1].entry_count is incremented by 1. Then the function checks whether the value of any of these k components has changed. If so, the value of calc_state[k-1].prefix_count is incremented by 1. */ void add() { uint i; Prefix_calc_state *state; uint first_changed= prefixes; for (i= prefixes, state= calc_state+prefixes-1; i; i--, state--) { if (state->last_prefix->cmp()) first_changed= i-1; } if (empty) { first_changed= 0; empty= FALSE; } for (i= 0, state= calc_state; i < prefixes; i++, state++) { if (state->last_prefix->null_value) break; if (i >= first_changed) state->prefix_count++; state->entry_count++; } } /** @brief Calculate the values of avg_frequency for all prefixes of an index @details This function is to be called after the index scan to count the number of distinct index prefixes has been done. The function calculates the value of avg_frequency for the index prefix with k components as calc_state[k-1].entry_count/calc_state[k-1].prefix_count. If calc_state[k-1].prefix_count happens to be 0, the value of avg_frequency[k-1] is set to 0, i.e. is considered as unknown. */ void get_avg_frequency() { uint i; Prefix_calc_state *state; if (is_single_comp_pk) { index_info->collected_stats->set_avg_frequency(0, 1.0); return; } for (i= 0, state= calc_state; i < prefixes; i++, state++) { if (i < prefixes) { double val= state->prefix_count == 0 ? 0 : (double) state->entry_count / state->prefix_count; index_info->collected_stats->set_avg_frequency(i, val); } } } }; /** @brief Create fields for min/max values to collect column statistics @param table Table the fields are created for @details The function first allocates record buffers to store min/max values for 'table's fields. Then for each table field f it creates Field structures that points to these buffers rather that to the record buffer as the Field object for f does. The pointers of the created fields are placed in the collected_stats structure of the Field object for f. The function allocates the buffers for min/max values in the table memory. @note The buffers allocated when min/max values are used to read statistics from the persistent statistical tables differ from those buffers that are used when statistics on min/max values for column is collected as they are allocated in different mem_roots. The same is true for the fields created for min/max values. */ static void create_min_max_statistical_fields_for_table(TABLE *table) { uint rec_buff_length= table->s->rec_buff_length; if ((table->collected_stats->min_max_record_buffers= (uchar *) alloc_root(&table->mem_root, 2*rec_buff_length))) { uchar *record= table->collected_stats->min_max_record_buffers; memset(record, 0, 2*rec_buff_length); for (uint i=0; i < 2; i++, record+= rec_buff_length) { for (Field **field_ptr= table->field; *field_ptr; field_ptr++) { Field *fld; Field *table_field= *field_ptr; my_ptrdiff_t diff= record-table->record[0]; if (!bitmap_is_set(table->read_set, table_field->field_index)) continue; if (!(fld= table_field->clone(&table->mem_root, table, diff))) continue; if (i == 0) table_field->collected_stats->min_value= fld; else table_field->collected_stats->max_value= fld; } } } } /** @brief Create fields for min/max values to read column statistics @param thd Thread handler @param table_share Table share the fields are created for @param is_safe TRUE <-> at any time only one thread can perform the function @details The function first allocates record buffers to store min/max values for 'table_share's fields. Then for each field f it creates Field structures that points to these buffers rather that to the record buffer as the Field object for f does. The pointers of the created fields are placed in the read_stats structure of the Field object for f. The function allocates the buffers for min/max values in the table share memory. If the parameter is_safe is TRUE then it is guaranteed that at any given time only one thread is executed the code of the function. @note The buffers allocated when min/max values are used to collect statistics from the persistent statistical tables differ from those buffers that are used when statistics on min/max values for column is read as they are allocated in different mem_roots. The same is true for the fields created for min/max values. */ static void create_min_max_statistical_fields_for_table_share(THD *thd, TABLE_SHARE *table_share) { TABLE_STATISTICS_CB *stats_cb= &table_share->stats_cb; Table_statistics *stats= stats_cb->table_stats; if (stats->min_max_record_buffers) return; uint rec_buff_length= table_share->rec_buff_length; if ((stats->min_max_record_buffers= (uchar *) alloc_root(&stats_cb->mem_root, 2*rec_buff_length))) { uchar *record= stats->min_max_record_buffers; memset(record, 0, 2*rec_buff_length); for (uint i=0; i < 2; i++, record+= rec_buff_length) { for (Field **field_ptr= table_share->field; *field_ptr; field_ptr++) { Field *fld; Field *table_field= *field_ptr; my_ptrdiff_t diff= record - table_share->default_values; if (!(fld= table_field->clone(&stats_cb->mem_root, NULL, diff))) continue; if (i == 0) table_field->read_stats->min_value= fld; else table_field->read_stats->max_value= fld; } } } } /** @brief Allocate memory for the table's statistical data to be collected @param table Table for which the memory for statistical data is allocated @note The function allocates the memory for the statistical data on 'table' with the intention to collect the data there. The memory is allocated for the statistics on the table, on the table's columns, and on the table's indexes. The memory is allocated in the table's mem_root. @retval 0 If the memory for all statistical data has been successfully allocated @retval 1 Otherwise @note Each thread allocates its own memory to collect statistics on the table It allows us, for example, to collect statistics on the different indexes of the same table in parallel. */ int alloc_statistics_for_table(THD* thd, TABLE *table) { Field **field_ptr; DBUG_ENTER("alloc_statistics_for_table"); uint columns= 0; for (field_ptr= table->field; *field_ptr; field_ptr++) { if (bitmap_is_set(table->read_set, (*field_ptr)->field_index)) columns++; } Table_statistics *table_stats= (Table_statistics *) alloc_root(&table->mem_root, sizeof(Table_statistics)); Column_statistics_collected *column_stats= (Column_statistics_collected *) alloc_root(&table->mem_root, sizeof(Column_statistics_collected) * columns); uint keys= table->s->keys; Index_statistics *index_stats= (Index_statistics *) alloc_root(&table->mem_root, sizeof(Index_statistics) * keys); uint key_parts= table->s->ext_key_parts; ulonglong *idx_avg_frequency= (ulonglong*) alloc_root(&table->mem_root, sizeof(ulonglong) * key_parts); uint hist_size= thd->variables.histogram_size; Histogram_type hist_type= (Histogram_type) (thd->variables.histogram_type); uchar *histogram= NULL; if (hist_size > 0) { if ((histogram= (uchar *) alloc_root(&table->mem_root, hist_size * columns))) bzero(histogram, hist_size * columns); } if (!table_stats || !column_stats || !index_stats || !idx_avg_frequency || (hist_size && !histogram)) DBUG_RETURN(1); table->collected_stats= table_stats; table_stats->column_stats= column_stats; table_stats->index_stats= index_stats; table_stats->idx_avg_frequency= idx_avg_frequency; table_stats->histograms= histogram; memset(column_stats, 0, sizeof(Column_statistics) * columns); for (field_ptr= table->field; *field_ptr; field_ptr++) { if (bitmap_is_set(table->read_set, (*field_ptr)->field_index)) { column_stats->histogram.set_size(hist_size); column_stats->histogram.set_type(hist_type); column_stats->histogram.set_values(histogram); histogram+= hist_size; (*field_ptr)->collected_stats= column_stats++; } } memset(idx_avg_frequency, 0, sizeof(ulonglong) * key_parts); KEY *key_info, *end; for (key_info= table->key_info, end= key_info + table->s->keys; key_info < end; key_info++, index_stats++) { key_info->collected_stats= index_stats; key_info->collected_stats->init_avg_frequency(idx_avg_frequency); idx_avg_frequency+= key_info->ext_key_parts; } create_min_max_statistical_fields_for_table(table); DBUG_RETURN(0); } /** @brief Allocate memory for the statistical data used by a table share @param thd Thread handler @param table_share Table share for which the memory for statistical data is allocated @note The function allocates the memory for the statistical data on a table in the table's share memory with the intention to read the statistics there from the system persistent statistical tables mysql.table_stat, mysql.column_stats, mysql.index_stats. The memory is allocated for the statistics on the table, on the tables's columns, and on the table's indexes. The memory is allocated in the table_share's mem_root. @retval 0 If the memory for all statistical data has been successfully allocated @retval 1 Otherwise @note The situation when more than one thread try to allocate memory for statistical data is rare. It happens under the following scenario: 1. One thread executes a query over table t with the system variable 'use_stat_tables' set to 'never'. 2. After this the second thread sets 'use_stat_tables' to 'preferably' and executes a query over table t. 3. Simultaneously the third thread sets 'use_stat_tables' to 'preferably' and executes a query over table t. Here the second and the third threads try to allocate the memory for statistical data at the same time. The precautions are taken to guarantee the correctness of the allocation. */ static int alloc_statistics_for_table_share(THD* thd, TABLE_SHARE *table_share) { Field **field_ptr; KEY *key_info, *end; TABLE_STATISTICS_CB *stats_cb= &table_share->stats_cb; DBUG_ENTER("alloc_statistics_for_table_share"); Table_statistics *table_stats= stats_cb->table_stats; if (!table_stats) { table_stats= (Table_statistics *) alloc_root(&stats_cb->mem_root, sizeof(Table_statistics)); if (!table_stats) DBUG_RETURN(1); memset(table_stats, 0, sizeof(Table_statistics)); stats_cb->table_stats= table_stats; } uint fields= table_share->fields; Column_statistics *column_stats= table_stats->column_stats; if (!column_stats) { column_stats= (Column_statistics *) alloc_root(&stats_cb->mem_root, sizeof(Column_statistics) * (fields+1)); if (column_stats) { memset(column_stats, 0, sizeof(Column_statistics) * (fields+1)); table_stats->column_stats= column_stats; for (field_ptr= table_share->field; *field_ptr; field_ptr++, column_stats++) { (*field_ptr)->read_stats= column_stats; (*field_ptr)->read_stats->min_value= NULL; (*field_ptr)->read_stats->max_value= NULL; } create_min_max_statistical_fields_for_table_share(thd, table_share); } } uint keys= table_share->keys; Index_statistics *index_stats= table_stats->index_stats; if (!index_stats) { index_stats= (Index_statistics *) alloc_root(&stats_cb->mem_root, sizeof(Index_statistics) * keys); if (index_stats) { table_stats->index_stats= index_stats; for (key_info= table_share->key_info, end= key_info + keys; key_info < end; key_info++, index_stats++) { key_info->read_stats= index_stats; } } } uint key_parts= table_share->ext_key_parts; ulonglong *idx_avg_frequency= table_stats->idx_avg_frequency; if (!idx_avg_frequency) { idx_avg_frequency= (ulonglong*) alloc_root(&stats_cb->mem_root, sizeof(ulonglong) * key_parts); if (idx_avg_frequency) { memset(idx_avg_frequency, 0, sizeof(ulonglong) * key_parts); table_stats->idx_avg_frequency= idx_avg_frequency; for (key_info= table_share->key_info, end= key_info + keys; key_info < end; key_info++) { key_info->read_stats->init_avg_frequency(idx_avg_frequency); idx_avg_frequency+= key_info->ext_key_parts; } } } DBUG_RETURN(column_stats && index_stats && idx_avg_frequency ? 0 : 1); } /** @brief Initialize the aggregation fields to collect statistics on a column @param thd Thread handler @param table_field Column to collect statistics for */ inline void Column_statistics_collected::init(THD *thd, Field *table_field) { size_t max_heap_table_size= (size_t)thd->variables.max_heap_table_size; TABLE *table= table_field->table; uint pk= table->s->primary_key; is_single_pk_col= FALSE; if (pk != MAX_KEY && table->key_info[pk].user_defined_key_parts == 1 && table->key_info[pk].key_part[0].fieldnr == table_field->field_index + 1) is_single_pk_col= TRUE; column= table_field; set_all_nulls(); nulls= 0; column_total_length= 0; if (is_single_pk_col) count_distinct= NULL; if (table_field->flags & BLOB_FLAG) count_distinct= NULL; else { count_distinct= table_field->type() == MYSQL_TYPE_BIT ? new Count_distinct_field_bit(table_field, max_heap_table_size) : new Count_distinct_field(table_field, max_heap_table_size); } if (count_distinct && !count_distinct->exists()) count_distinct= NULL; } /** @brief Perform aggregation for a row when collecting statistics on a column @param rowno The order number of the row */ inline bool Column_statistics_collected::add() { bool err= 0; if (column->is_null()) nulls++; else { column_total_length+= column->value_length(); if (min_value && column->update_min(min_value, is_null(COLUMN_STAT_MIN_VALUE))) set_not_null(COLUMN_STAT_MIN_VALUE); if (max_value && column->update_max(max_value, is_null(COLUMN_STAT_MAX_VALUE))) set_not_null(COLUMN_STAT_MAX_VALUE); if (count_distinct) err= count_distinct->add(); } return err; } /** @brief Get the results of aggregation when collecting the statistics on a column @param rows The total number of rows in the table */ inline void Column_statistics_collected::finish(ha_rows rows, double sample_fraction) { double val; if (rows) { val= (double) nulls / rows; set_nulls_ratio(val); set_not_null(COLUMN_STAT_NULLS_RATIO); } if (rows - nulls) { val= (double) column_total_length / (rows - nulls); set_avg_length(val); set_not_null(COLUMN_STAT_AVG_LENGTH); } if (count_distinct) { uint hist_size= count_distinct->get_hist_size(); /* Compute cardinality statistics and optionally histogram. */ if (hist_size == 0) count_distinct->walk_tree(); else count_distinct->walk_tree_with_histogram(rows - nulls); ulonglong distincts= count_distinct->get_count_distinct(); ulonglong distincts_single_occurence= count_distinct->get_count_distinct_single_occurence(); if (distincts) { /* We use the unsmoothed first-order jackknife estimator" to estimate the number of distinct values. With a sufficient large percentage of rows sampled (80%), we revert back to computing the avg_frequency off of the raw data. */ if (sample_fraction > 0.8) val= (double) (rows - nulls) / distincts; else { if (nulls == 1) distincts_single_occurence+= 1; if (nulls) distincts+= 1; double fraction_single_occurence= static_cast(distincts_single_occurence) / rows; double total_number_of_rows= rows / sample_fraction; double estimate_total_distincts= total_number_of_rows / (distincts / (1.0 - (1.0 - sample_fraction) * fraction_single_occurence)); val = std::fmax(estimate_total_distincts * (rows - nulls) / rows, 1.0); } set_avg_frequency(val); set_not_null(COLUMN_STAT_AVG_FREQUENCY); } else hist_size= 0; histogram.set_size(hist_size); set_not_null(COLUMN_STAT_HIST_SIZE); if (hist_size && distincts) { set_not_null(COLUMN_STAT_HIST_TYPE); histogram.set_values(count_distinct->get_histogram()); set_not_null(COLUMN_STAT_HISTOGRAM); } delete count_distinct; count_distinct= NULL; } else if (is_single_pk_col) { val= 1.0; set_avg_frequency(val); set_not_null(COLUMN_STAT_AVG_FREQUENCY); } } /** @brief Clean up auxiliary structures used for aggregation */ inline void Column_statistics_collected::cleanup() { if (count_distinct) { delete count_distinct; count_distinct= NULL; } } /** @brief Collect statistical data on an index @param table The table the index belongs to index The number of this index in the table @details The function collects the value of 'avg_frequency' for the prefixes on an index from 'table'. The index is specified by its number. If the scan is successful the calculated statistics is saved in the elements of the array write_stat.avg_frequency of the KEY_INFO structure for the index. The statistics for the prefix with k components is saved in the element number k-1. @retval 0 If the statistics has been successfully collected @retval 1 Otherwise @note The function collects statistics for the index prefixes for one index scan during which no data is fetched from the table records. That's why statistical data for prefixes that contain part of a field is not collected. The function employs an object of the helper class Index_prefix_calc to count for each index prefix the number of index entries without nulls and the number of distinct entries among them. */ static int collect_statistics_for_index(THD *thd, TABLE *table, uint index) { int rc= 0; KEY *key_info= &table->key_info[index]; ha_rows rows= 0; DBUG_ENTER("collect_statistics_for_index"); /* No statistics for FULLTEXT indexes. */ if (key_info->flags & (HA_FULLTEXT|HA_SPATIAL)) DBUG_RETURN(rc); Index_prefix_calc index_prefix_calc(thd, table, key_info); DEBUG_SYNC(table->in_use, "statistics_collection_start1"); DEBUG_SYNC(table->in_use, "statistics_collection_start2"); if (index_prefix_calc.is_single_comp_pk) { index_prefix_calc.get_avg_frequency(); DBUG_RETURN(rc); } /* Request "only index read" in case of absence of fields which are partially in the index to avoid problems with partitioning (for example) which want to get whole field value. */ if (!index_prefix_calc.is_partial_fields_present) table->file->ha_start_keyread(index); table->file->ha_index_init(index, TRUE); rc= table->file->ha_index_first(table->record[0]); while (rc != HA_ERR_END_OF_FILE) { if (thd->killed) break; if (rc) break; rows++; index_prefix_calc.add(); rc= table->file->ha_index_next(table->record[0]); } table->file->ha_end_keyread(); table->file->ha_index_end(); rc= (rc == HA_ERR_END_OF_FILE && !thd->killed) ? 0 : 1; if (!rc) index_prefix_calc.get_avg_frequency(); DBUG_RETURN(rc); } /** @brief Collect statistical data for a table @param thd The thread handle @param table The table to collect statistics on @details The function collects data for various statistical characteristics on the table 'table'. These data is saved in the internal fields that could be reached from 'table'. The data is prepared to be saved in the persistent statistical table by the function update_statistics_for_table. The collected statistical values are not placed in the same fields that keep the statistical data used by the optimizer. Therefore, at any time, there is no collision between the statistics being collected and the one used by the optimizer to look for optimal query execution plans for other clients. @retval 0 If the statistics has been successfully collected @retval 1 Otherwise @note The function first collects statistical data for statistical characteristics to be saved in the statistical tables table_stat and column_stats. To do this it performs a full table scan of 'table'. At this scan the function collects statistics on each column of the table and count the total number of the scanned rows. To calculate the value of 'avg_frequency' for a column the function constructs an object of the helper class Count_distinct_field (or its derivation). Currently this class cannot count the number of distinct values for blob columns. So the value of 'avg_frequency' for blob columns is always null. After the full table scan the function calls collect_statistics_for_index for each table index. The latter performs full index scan for each index. @note Currently the statistical data is collected indiscriminately for all columns/indexes of 'table', for all statistical characteristics. TODO. Collect only specified statistical characteristics for specified columns/indexes. @note Currently the process of collecting statistical data is not optimized. For example, 'avg_frequency' for a column could be copied from the 'avg_frequency' collected for an index if this column is used as the first component of the index. Min and min values for this column could be extracted from the index as well. */ int collect_statistics_for_table(THD *thd, TABLE *table) { int rc; Field **field_ptr; Field *table_field; ha_rows rows= 0; handler *file=table->file; double sample_fraction= thd->variables.sample_percentage / 100; const ha_rows MIN_THRESHOLD_FOR_SAMPLING= 50000; DBUG_ENTER("collect_statistics_for_table"); table->collected_stats->cardinality_is_null= TRUE; table->collected_stats->cardinality= 0; if (thd->variables.sample_percentage == 0) { if (file->records() < MIN_THRESHOLD_FOR_SAMPLING) { sample_fraction= 1; } else { sample_fraction= std::fmin( (MIN_THRESHOLD_FOR_SAMPLING + 4096 * log(200 * file->records())) / file->records(), 1); } } for (field_ptr= table->field; *field_ptr; field_ptr++) { table_field= *field_ptr; if (!table_field->collected_stats) continue; table_field->collected_stats->init(thd, table_field); } restore_record(table, s->default_values); /* Perform a full table scan to collect statistics on 'table's columns */ if (!(rc= file->ha_rnd_init(TRUE))) { DEBUG_SYNC(table->in_use, "statistics_collection_start"); while ((rc= file->ha_rnd_next(table->record[0])) != HA_ERR_END_OF_FILE) { if (thd->killed) break; if (rc) break; if (thd_rnd(thd) <= sample_fraction) { for (field_ptr= table->field; *field_ptr; field_ptr++) { table_field= *field_ptr; if (!table_field->collected_stats) continue; if ((rc= table_field->collected_stats->add())) break; } if (rc) break; rows++; } } file->ha_rnd_end(); } rc= (rc == HA_ERR_END_OF_FILE && !thd->killed) ? 0 : 1; /* Calculate values for all statistical characteristics on columns and and for each field f of 'table' save them in the write_stat structure from the Field object for f. */ if (!rc) { table->collected_stats->cardinality_is_null= FALSE; table->collected_stats->cardinality= static_cast(rows / sample_fraction); } bitmap_clear_all(table->write_set); for (field_ptr= table->field; *field_ptr; field_ptr++) { table_field= *field_ptr; if (!table_field->collected_stats) continue; bitmap_set_bit(table->write_set, table_field->field_index); if (!rc) table_field->collected_stats->finish(rows, sample_fraction); else table_field->collected_stats->cleanup(); } bitmap_clear_all(table->write_set); if (!rc) { uint key; key_map::Iterator it(table->keys_in_use_for_query); MY_BITMAP *save_read_set= table->read_set; table->read_set= &table->tmp_set; bitmap_set_all(table->read_set); /* Collect statistics for indexes */ while ((key= it++) != key_map::Iterator::BITMAP_END) { if ((rc= collect_statistics_for_index(thd, table, key))) break; } table->read_set= save_read_set; } DBUG_RETURN(rc); } /** @brief Update statistics for a table in the persistent statistical tables @param thd The thread handle @param table The table to collect statistics on @details For each statistical table st the function looks for the rows from this table that contain statistical data on 'table'. If rows with given statistical characteristics exist they are updated with the new statistical values taken from internal structures for 'table'. Otherwise new rows with these statistical characteristics are added into st. It is assumed that values stored in the statistical tables are found and saved by the function collect_statistics_for_table. @retval 0 If all statistical tables has been successfully updated @retval 1 Otherwise @note The function is called when executing the ANALYZE actions for 'table'. The function first unlocks the opened table the statistics on which has been collected, but does not closes it, so all collected statistical data remains in internal structures for 'table'. Then the function opens the statistical tables and writes the statistical data for 'table'into them. It is not allowed just to open statistical tables for writing when some other tables are locked for reading. After the statistical tables have been opened they are updated one by one with the new statistics on 'table'. Objects of the helper classes Table_stat, Column_stat and Index_stat are employed for this. After having been updated the statistical system tables are closed. */ int update_statistics_for_table(THD *thd, TABLE *table) { TABLE_LIST tables[STATISTICS_TABLES]; Open_tables_backup open_tables_backup; uint i; int err; enum_binlog_format save_binlog_format; int rc= 0; TABLE *stat_table; DBUG_ENTER("update_statistics_for_table"); DEBUG_SYNC(thd, "statistics_update_start"); if (open_stat_tables(thd, tables, &open_tables_backup, TRUE)) DBUG_RETURN(rc); save_binlog_format= thd->set_current_stmt_binlog_format_stmt(); /* Update the statistical table table_stats */ stat_table= tables[TABLE_STAT].table; Table_stat table_stat(stat_table, table); restore_record(stat_table, s->default_values); table_stat.set_key_fields(); err= table_stat.update_stat(); if (err) rc= 1; /* Update the statistical table colum_stats */ stat_table= tables[COLUMN_STAT].table; Column_stat column_stat(stat_table, table); for (Field **field_ptr= table->field; *field_ptr; field_ptr++) { Field *table_field= *field_ptr; if (!table_field->collected_stats) continue; restore_record(stat_table, s->default_values); column_stat.set_key_fields(table_field); err= column_stat.update_stat(); if (err && !rc) rc= 1; } /* Update the statistical table index_stats */ stat_table= tables[INDEX_STAT].table; uint key; key_map::Iterator it(table->keys_in_use_for_query); Index_stat index_stat(stat_table, table); while ((key= it++) != key_map::Iterator::BITMAP_END) { KEY *key_info= table->key_info+key; uint key_parts= table->actual_n_key_parts(key_info); for (i= 0; i < key_parts; i++) { restore_record(stat_table, s->default_values); index_stat.set_key_fields(key_info, i+1); err= index_stat.update_stat(); if (err && !rc) rc= 1; } } thd->restore_stmt_binlog_format(save_binlog_format); close_system_tables(thd, &open_tables_backup); DBUG_RETURN(rc); } /** @brief Read statistics for a table from the persistent statistical tables @param thd The thread handle @param table The table to read statistics on @param stat_tables The array of TABLE_LIST objects for statistical tables @details For each statistical table the function looks for the rows from this table that contain statistical data on 'table'. If such rows is found the data from statistical columns of it is read into the appropriate fields of internal structures for 'table'. Later at the query processing this data are supposed to be used by the optimizer. The parameter stat_tables should point to an array of TABLE_LIST objects for all statistical tables linked into a list. All statistical tables are supposed to be opened. The function is called by read_statistics_for_tables_if_needed(). @retval 0 If data has been successfully read for the table @retval 1 Otherwise @note Objects of the helper classes Table_stat, Column_stat and Index_stat are employed to read statistical data from the statistical tables. now. */ static int read_statistics_for_table(THD *thd, TABLE *table, TABLE_LIST *stat_tables) { uint i; TABLE *stat_table; Field *table_field; Field **field_ptr; KEY *key_info, *key_info_end; TABLE_SHARE *table_share= table->s; DBUG_ENTER("read_statistics_for_table"); DEBUG_SYNC(thd, "statistics_mem_alloc_start1"); DEBUG_SYNC(thd, "statistics_mem_alloc_start2"); if (!table_share->stats_cb.start_stats_load()) DBUG_RETURN(table_share->stats_cb.stats_are_ready() ? 0 : 1); if (alloc_statistics_for_table_share(thd, table_share)) { table_share->stats_cb.abort_stats_load(); DBUG_RETURN(1); } /* Don't write warnings for internal field conversions */ Check_level_instant_set check_level_save(thd, CHECK_FIELD_IGNORE); /* Read statistics from the statistical table table_stats */ Table_statistics *read_stats= table_share->stats_cb.table_stats; stat_table= stat_tables[TABLE_STAT].table; Table_stat table_stat(stat_table, table); table_stat.set_key_fields(); table_stat.get_stat_values(); /* Read statistics from the statistical table column_stats */ stat_table= stat_tables[COLUMN_STAT].table; ulong total_hist_size= 0; Column_stat column_stat(stat_table, table); for (field_ptr= table_share->field; *field_ptr; field_ptr++) { table_field= *field_ptr; column_stat.set_key_fields(table_field); column_stat.get_stat_values(); total_hist_size+= table_field->read_stats->histogram.get_size(); } table_share->stats_cb.total_hist_size= total_hist_size; /* Read statistics from the statistical table index_stats */ stat_table= stat_tables[INDEX_STAT].table; Index_stat index_stat(stat_table, table); for (key_info= table_share->key_info, key_info_end= key_info + table_share->keys; key_info < key_info_end; key_info++) { uint key_parts= key_info->ext_key_parts; for (i= 0; i < key_parts; i++) { index_stat.set_key_fields(key_info, i+1); index_stat.get_stat_values(); } key_part_map ext_key_part_map= key_info->ext_key_part_map; if (key_info->user_defined_key_parts != key_info->ext_key_parts && key_info->read_stats->get_avg_frequency(key_info->user_defined_key_parts) == 0) { KEY *pk_key_info= table_share->key_info + table_share->primary_key; uint k= key_info->user_defined_key_parts; uint pk_parts= pk_key_info->user_defined_key_parts; ha_rows n_rows= read_stats->cardinality; double k_dist= n_rows / key_info->read_stats->get_avg_frequency(k-1); uint m= 0; for (uint j= 0; j < pk_parts; j++) { if (!(ext_key_part_map & 1 << j)) { for (uint l= k; l < k + m; l++) { double avg_frequency= pk_key_info->read_stats->get_avg_frequency(j-1); set_if_smaller(avg_frequency, 1); double val= pk_key_info->read_stats->get_avg_frequency(j) / avg_frequency; key_info->read_stats->set_avg_frequency (l, val); } } else { double avg_frequency= pk_key_info->read_stats->get_avg_frequency(j); key_info->read_stats->set_avg_frequency(k + m, avg_frequency); m++; } } for (uint l= k; l < k + m; l++) { double avg_frequency= key_info->read_stats->get_avg_frequency(l); if (avg_frequency == 0 || read_stats->cardinality_is_null) avg_frequency= 1; else if (avg_frequency > 1) { avg_frequency/= k_dist; set_if_bigger(avg_frequency, 1); } key_info->read_stats->set_avg_frequency(l, avg_frequency); } } } table_share->stats_cb.end_stats_load(); DBUG_RETURN(0); } /** @breif Cleanup of min/max statistical values for table share */ void delete_stat_values_for_table_share(TABLE_SHARE *table_share) { TABLE_STATISTICS_CB *stats_cb= &table_share->stats_cb; Table_statistics *table_stats= stats_cb->table_stats; if (!table_stats) return; Column_statistics *column_stats= table_stats->column_stats; if (!column_stats) return; for (Field **field_ptr= table_share->field; *field_ptr; field_ptr++, column_stats++) { if (column_stats->min_value) { delete column_stats->min_value; column_stats->min_value= NULL; } if (column_stats->max_value) { delete column_stats->max_value; column_stats->max_value= NULL; } } } /** @brief Read histogram for a table from the persistent statistical tables @param thd The thread handle @param table The table to read histograms for @param stat_tables The array of TABLE_LIST objects for statistical tables @details For the statistical table columns_stats the function looks for the rows from this table that contain statistical data on 'table'. If such rows are found the histograms from them are read into the memory allocated for histograms of 'table'. Later at the query processing these histogram are supposed to be used by the optimizer. The parameter stat_tables should point to an array of TABLE_LIST objects for all statistical tables linked into a list. All statistical tables are supposed to be opened. The function is called by read_statistics_for_tables_if_needed(). @retval 0 If data has been successfully read for the table @retval 1 Otherwise @note Objects of the helper Column_stat are employed read histogram from the statistical table column_stats now. */ static int read_histograms_for_table(THD *thd, TABLE *table, TABLE_LIST *stat_tables) { TABLE_STATISTICS_CB *stats_cb= &table->s->stats_cb; DBUG_ENTER("read_histograms_for_table"); if (stats_cb->start_histograms_load()) { uchar *histogram= (uchar *) alloc_root(&stats_cb->mem_root, stats_cb->total_hist_size); if (!histogram) { stats_cb->abort_histograms_load(); DBUG_RETURN(1); } memset(histogram, 0, stats_cb->total_hist_size); Column_stat column_stat(stat_tables[COLUMN_STAT].table, table); for (Field **field_ptr= table->s->field; *field_ptr; field_ptr++) { Field *table_field= *field_ptr; if (uint hist_size= table_field->read_stats->histogram.get_size()) { column_stat.set_key_fields(table_field); table_field->read_stats->histogram.set_values(histogram); column_stat.get_histogram_value(); histogram+= hist_size; } } stats_cb->end_histograms_load(); } table->histograms_are_read= true; DBUG_RETURN(0); } /** @brief Read statistics for tables from a table list if it is needed @param thd The thread handle @param tables The tables list for whose tables to read statistics @details The function first checks whether for any of the tables opened and locked for a statement statistics from statistical tables is needed to be read. Then, if so, it opens system statistical tables for read and reads the statistical data from them for those tables from the list for which it makes sense. Then the function closes system statistical tables. @retval 0 Statistics for tables was successfully read @retval 1 Otherwise */ int read_statistics_for_tables_if_needed(THD *thd, TABLE_LIST *tables) { switch (thd->lex->sql_command) { case SQLCOM_SELECT: case SQLCOM_INSERT: case SQLCOM_INSERT_SELECT: case SQLCOM_UPDATE: case SQLCOM_UPDATE_MULTI: case SQLCOM_DELETE: case SQLCOM_DELETE_MULTI: case SQLCOM_REPLACE: case SQLCOM_REPLACE_SELECT: case SQLCOM_CREATE_TABLE: case SQLCOM_SET_OPTION: case SQLCOM_DO: return read_statistics_for_tables(thd, tables); default: return 0; } } static void dump_stats_from_share_to_table(TABLE *table) { TABLE_SHARE *table_share= table->s; KEY *key_info= table_share->key_info; KEY *key_info_end= key_info + table_share->keys; KEY *table_key_info= table->key_info; for ( ; key_info < key_info_end; key_info++, table_key_info++) table_key_info->read_stats= key_info->read_stats; Field **field_ptr= table_share->field; Field **table_field_ptr= table->field; for ( ; *field_ptr; field_ptr++, table_field_ptr++) (*table_field_ptr)->read_stats= (*field_ptr)->read_stats; table->stats_is_read= true; } int read_statistics_for_tables(THD *thd, TABLE_LIST *tables) { TABLE_LIST stat_tables[STATISTICS_TABLES]; Open_tables_backup open_tables_backup; DBUG_ENTER("read_statistics_for_tables"); if (thd->bootstrap || thd->variables.use_stat_tables == NEVER) DBUG_RETURN(0); bool found_stat_table= false; bool statistics_for_tables_is_needed= false; for (TABLE_LIST *tl= tables; tl; tl= tl->next_global) { TABLE_SHARE *table_share; if (!tl->is_view_or_derived() && tl->table && (table_share= tl->table->s) && table_share->tmp_table == NO_TMP_TABLE) { if (table_share->table_category == TABLE_CATEGORY_USER) { if (table_share->stats_cb.stats_are_ready()) { if (!tl->table->stats_is_read) dump_stats_from_share_to_table(tl->table); tl->table->histograms_are_read= table_share->stats_cb.histograms_are_ready(); if (table_share->stats_cb.histograms_are_ready() || thd->variables.optimizer_use_condition_selectivity <= 3) continue; } statistics_for_tables_is_needed= true; } else if (is_stat_table(&tl->db, &tl->alias)) found_stat_table= true; } } DEBUG_SYNC(thd, "statistics_read_start"); /* Do not read statistics for any query that explicity involves statistical tables, failure to to do so we may end up in a deadlock. */ if (found_stat_table || !statistics_for_tables_is_needed) DBUG_RETURN(0); if (open_stat_tables(thd, stat_tables, &open_tables_backup, FALSE)) DBUG_RETURN(1); for (TABLE_LIST *tl= tables; tl; tl= tl->next_global) { TABLE_SHARE *table_share; if (!tl->is_view_or_derived() && tl->table && (table_share= tl->table->s) && table_share->tmp_table == NO_TMP_TABLE && table_share->table_category == TABLE_CATEGORY_USER) { if (!tl->table->stats_is_read) { if (!read_statistics_for_table(thd, tl->table, stat_tables)) dump_stats_from_share_to_table(tl->table); else continue; } if (thd->variables.optimizer_use_condition_selectivity > 3) (void) read_histograms_for_table(thd, tl->table, stat_tables); } } close_system_tables(thd, &open_tables_backup); DBUG_RETURN(0); } /** @brief Delete statistics on a table from all statistical tables @param thd The thread handle @param db The name of the database the table belongs to @param tab The name of the table whose statistics is to be deleted @details The function delete statistics on the table called 'tab' of the database 'db' from all statistical tables: table_stats, column_stats, index_stats. @retval 0 If all deletions are successful or we couldn't open statistics table @retval 1 Otherwise @note The function is called when executing the statement DROP TABLE 'tab'. */ int delete_statistics_for_table(THD *thd, const LEX_CSTRING *db, const LEX_CSTRING *tab) { int err; enum_binlog_format save_binlog_format; TABLE *stat_table; TABLE_LIST tables[STATISTICS_TABLES]; Open_tables_backup open_tables_backup; int rc= 0; DBUG_ENTER("delete_statistics_for_table"); if (open_stat_tables(thd, tables, &open_tables_backup, TRUE)) DBUG_RETURN(0); save_binlog_format= thd->set_current_stmt_binlog_format_stmt(); /* Delete statistics on table from the statistical table index_stats */ stat_table= tables[INDEX_STAT].table; Index_stat index_stat(stat_table, db, tab); index_stat.set_full_table_name(); while (index_stat.find_next_stat_for_prefix(2)) { err= index_stat.delete_stat(); if (err & !rc) rc= 1; } /* Delete statistics on table from the statistical table column_stats */ stat_table= tables[COLUMN_STAT].table; Column_stat column_stat(stat_table, db, tab); column_stat.set_full_table_name(); while (column_stat.find_next_stat_for_prefix(2)) { err= column_stat.delete_stat(); if (err & !rc) rc= 1; } /* Delete statistics on table from the statistical table table_stats */ stat_table= tables[TABLE_STAT].table; Table_stat table_stat(stat_table, db, tab); table_stat.set_key_fields(); if (table_stat.find_stat()) { err= table_stat.delete_stat(); if (err & !rc) rc= 1; } err= del_global_table_stat(thd, db, tab); if (err & !rc) rc= 1; thd->restore_stmt_binlog_format(save_binlog_format); close_system_tables(thd, &open_tables_backup); DBUG_RETURN(rc); } /** @brief Delete statistics on a column of the specified table @param thd The thread handle @param tab The table the column belongs to @param col The field of the column whose statistics is to be deleted @details The function delete statistics on the column 'col' belonging to the table 'tab' from the statistical table column_stats. @retval 0 If all deletions are successful or we couldn't open statistics table @retval 1 Otherwise @note The function is called when dropping a table column or when changing the definition of this column. */ int delete_statistics_for_column(THD *thd, TABLE *tab, Field *col) { int err; enum_binlog_format save_binlog_format; TABLE *stat_table; TABLE_LIST tables; Open_tables_backup open_tables_backup; int rc= 0; DBUG_ENTER("delete_statistics_for_column"); if (open_stat_table_for_ddl(thd, &tables, &stat_table_name[1], &open_tables_backup)) DBUG_RETURN(0); save_binlog_format= thd->set_current_stmt_binlog_format_stmt(); stat_table= tables.table; Column_stat column_stat(stat_table, tab); column_stat.set_key_fields(col); if (column_stat.find_stat()) { err= column_stat.delete_stat(); if (err) rc= 1; } thd->restore_stmt_binlog_format(save_binlog_format); close_system_tables(thd, &open_tables_backup); DBUG_RETURN(rc); } /** @brief Delete statistics on an index of the specified table @param thd The thread handle @param tab The table the index belongs to @param key_info The descriptor of the index whose statistics is to be deleted @param ext_prefixes_only Delete statistics only on the index prefixes extended by the components of the primary key @details The function delete statistics on the index specified by 'key_info' defined on the table 'tab' from the statistical table index_stats. @retval 0 If all deletions are successful or we couldn't open statistics table @retval 1 Otherwise @note The function is called when dropping an index, or dropping/changing the definition of a column used in the definition of the index. */ int delete_statistics_for_index(THD *thd, TABLE *tab, KEY *key_info, bool ext_prefixes_only) { int err; enum_binlog_format save_binlog_format; TABLE *stat_table; TABLE_LIST tables; Open_tables_backup open_tables_backup; int rc= 0; DBUG_ENTER("delete_statistics_for_index"); if (open_stat_table_for_ddl(thd, &tables, &stat_table_name[2], &open_tables_backup)) DBUG_RETURN(0); save_binlog_format= thd->set_current_stmt_binlog_format_stmt(); stat_table= tables.table; Index_stat index_stat(stat_table, tab); if (!ext_prefixes_only) { index_stat.set_index_prefix_key_fields(key_info); while (index_stat.find_next_stat_for_prefix(3)) { err= index_stat.delete_stat(); if (err && !rc) rc= 1; } } else { for (uint i= key_info->user_defined_key_parts; i < key_info->ext_key_parts; i++) { index_stat.set_key_fields(key_info, i+1); if (index_stat.find_next_stat_for_prefix(4)) { err= index_stat.delete_stat(); if (err && !rc) rc= 1; } } } err= del_global_index_stat(thd, tab, key_info); if (err && !rc) rc= 1; thd->restore_stmt_binlog_format(save_binlog_format); close_system_tables(thd, &open_tables_backup); DBUG_RETURN(rc); } /** @brief Rename a table in all statistical tables @param thd The thread handle @param db The name of the database the table belongs to @param tab The name of the table to be renamed in statistical tables @param new_tab The new name of the table @details The function replaces the name of the table 'tab' from the database 'db' for 'new_tab' in all all statistical tables: table_stats, column_stats, index_stats. @retval 0 If all updates of the table name are successful @retval 1 Otherwise @note The function is called when executing any statement that renames a table */ int rename_table_in_stat_tables(THD *thd, const LEX_CSTRING *db, const LEX_CSTRING *tab, const LEX_CSTRING *new_db, const LEX_CSTRING *new_tab) { int err; enum_binlog_format save_binlog_format; TABLE *stat_table; TABLE_LIST tables[STATISTICS_TABLES]; Open_tables_backup open_tables_backup; int rc= 0; DBUG_ENTER("rename_table_in_stat_tables"); if (open_stat_tables(thd, tables, &open_tables_backup, TRUE)) { DBUG_RETURN(0); // not an error } save_binlog_format= thd->set_current_stmt_binlog_format_stmt(); /* Rename table in the statistical table index_stats */ stat_table= tables[INDEX_STAT].table; Index_stat index_stat(stat_table, db, tab); index_stat.set_full_table_name(); Stat_table_write_iter index_iter(&index_stat); if (index_iter.init(2)) rc= 1; while (!index_iter.get_next_row()) { err= index_stat.update_table_name_key_parts(new_db, new_tab); if (err & !rc) rc= 1; index_stat.set_full_table_name(); } index_iter.cleanup(); /* Rename table in the statistical table column_stats */ stat_table= tables[COLUMN_STAT].table; Column_stat column_stat(stat_table, db, tab); column_stat.set_full_table_name(); Stat_table_write_iter column_iter(&column_stat); if (column_iter.init(2)) rc= 1; while (!column_iter.get_next_row()) { err= column_stat.update_table_name_key_parts(new_db, new_tab); if (err & !rc) rc= 1; column_stat.set_full_table_name(); } column_iter.cleanup(); /* Rename table in the statistical table table_stats */ stat_table= tables[TABLE_STAT].table; Table_stat table_stat(stat_table, db, tab); table_stat.set_key_fields(); if (table_stat.find_stat()) { err= table_stat.update_table_name_key_parts(new_db, new_tab); if (err & !rc) rc= 1; } thd->restore_stmt_binlog_format(save_binlog_format); close_system_tables(thd, &open_tables_backup); DBUG_RETURN(rc); } /** Rename a column in the statistical table column_stats @param thd The thread handle @param tab The table the column belongs to @param col The column to be renamed @param new_name The new column name @details The function replaces the name of the column 'col' belonging to the table 'tab' for 'new_name' in the statistical table column_stats. @retval 0 If all updates of the table name are successful @retval 1 Otherwise @note The function is called when executing any statement that renames a column, but does not change the column definition. */ int rename_column_in_stat_tables(THD *thd, TABLE *tab, Field *col, const char *new_name) { int err; enum_binlog_format save_binlog_format; TABLE *stat_table; TABLE_LIST tables; Open_tables_backup open_tables_backup; int rc= 0; DBUG_ENTER("rename_column_in_stat_tables"); if (tab->s->tmp_table != NO_TMP_TABLE) DBUG_RETURN(0); if (open_stat_table_for_ddl(thd, &tables, &stat_table_name[1], &open_tables_backup)) DBUG_RETURN(rc); save_binlog_format= thd->set_current_stmt_binlog_format_stmt(); /* Rename column in the statistical table table_stat */ stat_table= tables.table; Column_stat column_stat(stat_table, tab); column_stat.set_key_fields(col); if (column_stat.find_stat()) { err= column_stat.update_column_key_part(new_name); if (err & !rc) rc= 1; } thd->restore_stmt_binlog_format(save_binlog_format); close_system_tables(thd, &open_tables_backup); DBUG_RETURN(rc); } /** @brief Set statistics for a table that will be used by the optimizer @param thd The thread handle @param table The table to set statistics for @details Depending on the value of thd->variables.use_stat_tables the function performs the settings for the table that will control from where the statistical data used by the optimizer will be taken. */ void set_statistics_for_table(THD *thd, TABLE *table) { TABLE_STATISTICS_CB *stats_cb= &table->s->stats_cb; Table_statistics *read_stats= stats_cb->table_stats; table->used_stat_records= (!check_eits_preferred(thd) || !table->stats_is_read || read_stats->cardinality_is_null) ? table->file->stats.records : read_stats->cardinality; /* For partitioned table, EITS statistics is based on data from all partitions. On the other hand, Partition Pruning figures which partitions will be accessed and then computes the estimate of rows in used_partitions. Use the estimate from Partition Pruning as it is typically more precise. Ideally, EITS should provide per-partition statistics but this is not implemented currently. */ #ifdef WITH_PARTITION_STORAGE_ENGINE if (table->part_info) table->used_stat_records= table->file->stats.records; #endif KEY *key_info, *key_info_end; for (key_info= table->key_info, key_info_end= key_info+table->s->keys; key_info < key_info_end; key_info++) { key_info->is_statistics_from_stat_tables= (check_eits_preferred(thd) && table->stats_is_read && key_info->read_stats->avg_frequency_is_inited() && key_info->read_stats->get_avg_frequency(0) > 0.5); } } /** @brief Get the average frequency for a column @param field The column whose average frequency is required @retval The required average frequency */ double get_column_avg_frequency(Field * field) { double res; TABLE *table= field->table; /* Statistics is shared by table instances and is accessed through the table share. If table->s->field is not set for 'table', then no column statistics is available for the table . */ if (!table->s->field) { res= (double)table->stat_records(); return res; } Column_statistics *col_stats= field->read_stats; if (!col_stats) res= (double)table->stat_records(); else res= col_stats->get_avg_frequency(); return res; } /** @brief Estimate the number of rows in a column range using data from stat tables @param field The column whose range cardinality is to be estimated @param min_endp The left end of the range whose cardinality is required @param max_endp The right end of the range whose cardinality is required @param range_flag The range flags @details The function gets an estimate of the number of rows in a column range using the statistical data from the table column_stats. @retval - The required estimate of the rows in the column range - If there is some kind of error, this function should return DBL_MAX (and not HA_POS_ERROR as that is an integer constant). */ double get_column_range_cardinality(Field *field, key_range *min_endp, key_range *max_endp, uint range_flag) { double res; TABLE *table= field->table; Column_statistics *col_stats= field->read_stats; double tab_records= (double)table->stat_records(); if (!col_stats) return tab_records; /* Use statistics for a table only when we have actually read the statistics from the stat tables. For example due to chances of getting a deadlock we disable reading statistics for a table. */ if (!table->stats_is_read) return tab_records; THD *thd= table->in_use; double col_nulls= tab_records * col_stats->get_nulls_ratio(); double col_non_nulls= tab_records - col_nulls; bool nulls_incl= field->null_ptr && min_endp && min_endp->key[0] && !(range_flag & NEAR_MIN); if (col_non_nulls < 1) { if (nulls_incl) res= col_nulls; else res= 0; } else if (min_endp && max_endp && min_endp->length == max_endp->length && !memcmp(min_endp->key, max_endp->key, min_endp->length)) { if (nulls_incl) { /* This is null single point range */ res= col_nulls; } else { double avg_frequency= col_stats->get_avg_frequency(); res= avg_frequency; if (avg_frequency > 1.0 + 0.000001 && col_stats->min_max_values_are_provided()) { Histogram *hist= &col_stats->histogram; if (hist->is_usable(thd)) { store_key_image_to_rec(field, (uchar *) min_endp->key, field->key_length()); double pos= field->pos_in_interval(col_stats->min_value, col_stats->max_value); res= col_non_nulls * hist->point_selectivity(pos, avg_frequency / col_non_nulls); } } else if (avg_frequency == 0.0) { /* This actually means there is no statistics data */ res= tab_records; } } } else { if (col_stats->min_max_values_are_provided()) { double sel, min_mp_pos, max_mp_pos; if (min_endp && !(field->null_ptr && min_endp->key[0])) { store_key_image_to_rec(field, (uchar *) min_endp->key, field->key_length()); min_mp_pos= field->pos_in_interval(col_stats->min_value, col_stats->max_value); } else min_mp_pos= 0.0; if (max_endp) { store_key_image_to_rec(field, (uchar *) max_endp->key, field->key_length()); max_mp_pos= field->pos_in_interval(col_stats->min_value, col_stats->max_value); } else max_mp_pos= 1.0; Histogram *hist= &col_stats->histogram; if (hist->is_usable(thd)) sel= hist->range_selectivity(min_mp_pos, max_mp_pos); else sel= (max_mp_pos - min_mp_pos); res= col_non_nulls * sel; set_if_bigger(res, col_stats->get_avg_frequency()); } else res= col_non_nulls; if (nulls_incl) res+= col_nulls; } return res; } /* Estimate selectivity of "col=const" using a histogram @param pos Position of the "const" between column's min_value and max_value. This is a number in [0..1] range. @param avg_sel Average selectivity of condition "col=const" in this table. It is calcuated as (#non_null_values / #distinct_values). @return Expected condition selectivity (a number between 0 and 1) @notes [re_zero_length_buckets] If a bucket with zero value-length is in the middle of the histogram, we will not have min==max. Example: suppose, pos_value=0x12, and the histogram is: #n #n+1 #n+2 ... 0x10 0x12 0x12 0x14 ... | +------------- bucket with zero value-length Here, we will get min=#n+1, max=#n+2, and use the multi-bucket formula. The problem happens at the histogram ends. if pos_value=0, and the histogram is: 0x00 0x10 ... then min=0, max=0. This means pos_value is contained within bucket #0, but on the other hand, histogram data says that the bucket has only one value. */ double Histogram::point_selectivity(double pos, double avg_sel) { double sel; /* Find the bucket that contains the value 'pos'. */ uint min= find_bucket(pos, TRUE); uint pos_value= (uint) (pos * prec_factor()); /* Find how many buckets this value occupies */ uint max= min; while (max + 1 < get_width() && get_value(max + 1) == pos_value) max++; /* A special case: we're looking at a single bucket, and that bucket has zero value-length. Use the multi-bucket formula (attempt to use single-bucket formula will cause divison by zero). For more details see [re_zero_length_buckets] above. */ if (max == min && get_value(max) == ((max==0)? 0 : get_value(max-1))) max++; if (max > min) { /* The value occupies multiple buckets. Use start_bucket ... end_bucket as selectivity. */ double bucket_sel= 1.0/(get_width() + 1); sel= bucket_sel * (max - min + 1); } else { /* The value 'pos' fits within one single histogram bucket. Histogram buckets have the same numbers of rows, but they cover different ranges of values. We assume that values are uniformly distributed across the [0..1] value range. */ /* If all buckets covered value ranges of the same size, the width of value range would be: */ double avg_bucket_width= 1.0 / (get_width() + 1); /* Let's see what is the width of value range that our bucket is covering. (min==max currently. they are kept in the formula just in case we will want to extend it to handle multi-bucket case) */ double inv_prec_factor= (double) 1.0 / prec_factor(); double current_bucket_width= (max + 1 == get_width() ? 1.0 : (get_value(max) * inv_prec_factor)) - (min == 0 ? 0.0 : (get_value(min-1) * inv_prec_factor)); DBUG_ASSERT(current_bucket_width); /* We shouldn't get a one zero-width bucket */ /* So: - each bucket has the same #rows - values are unformly distributed across the [min_value,max_value] domain. If a bucket has value range that's N times bigger then average, than each value will have to have N times fewer rows than average. */ sel= avg_sel * avg_bucket_width / current_bucket_width; /* (Q: if we just follow this proportion we may end up in a situation where number of different values we expect to find in this bucket exceeds the number of rows that this histogram has in a bucket. Are we ok with this or we would want to have certain caps?) */ } return sel; } /* Check whether the table is one of the persistent statistical tables. */ bool is_stat_table(const LEX_CSTRING *db, LEX_CSTRING *table) { DBUG_ASSERT(db->str && table->str); if (!my_strcasecmp(table_alias_charset, db->str, MYSQL_SCHEMA_NAME.str)) { for (uint i= 0; i < STATISTICS_TABLES; i ++) { if (!my_strcasecmp(table_alias_charset, table->str, stat_table_name[i].str)) return true; } } return false; } /* Check wheter we can use EITS statistics for a field or not TRUE : Use EITS for the columns FALSE: Otherwise */ bool is_eits_usable(Field *field) { Column_statistics* col_stats= field->read_stats; // check if column_statistics was allocated for this field if (!col_stats) return false; DBUG_ASSERT(field->table->stats_is_read); /* (1): checks if we have EITS statistics for a particular column (2): Don't use EITS for GEOMETRY columns (3): Disabling reading EITS statistics for columns involved in the partition list of a table. We assume the selecticivity for such columns would be handled during partition pruning. */ return !col_stats->no_stat_values_provided() && //(1) field->type() != MYSQL_TYPE_GEOMETRY && //(2) #ifdef WITH_PARTITION_STORAGE_ENGINE (!field->table->part_info || !field->table->part_info->field_in_partition_expr(field)) && //(3) #endif true; }