/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ /* Code for handling red-black (balanced) binary trees. key in tree is allocated accrding to following: 1) If free_element function is given to init_tree or size < 0 then tree will not allocate keys and only a pointer to each key is saved in tree. key_sizes must be 0 to init and search. compare and search functions uses and returns key-pointer. 2) if key_size is given to init_tree then each node will continue the key and calls to insert_key may increase length of key. if key_size > sizeof(pointer) and key_size is a multiple of 8 (double allign) then key will be put on a 8 alligned adress. Else the key will be on adress (element+1). This is transparent for user compare and search functions uses a pointer to given key-argument. 3) If init_tree - keysize is 0 then key_size must be given to tree_insert and tree_insert will alloc space for key. compare and search functions uses a pointer to given key-argument. The actual key in TREE_ELEMENT is saved as a pointer or after the TREE_ELEMENT struct. If one uses only pointers in tree one can use tree_set_pointer() to change address of data. Copyright Monty Program KB. By monty. */ #include "mysys_priv.h" #include #include #define BLACK 1 #define RED 0 #define DEFAULT_ALLOC_SIZE (8192-MALLOC_OVERHEAD) static void delete_tree_element(TREE *,TREE_ELEMENT *); static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *, tree_walk_action,void *); static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *, tree_walk_action,void *); static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf); static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf); static void rb_insert(TREE *tree,TREE_ELEMENT ***parent, TREE_ELEMENT *leaf); static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent); /* The actuall code for handling binary trees */ void init_tree(TREE *tree, uint default_alloc_size, int size, qsort_cmp compare, my_bool with_delete, void (*free_element) (void *)) { DBUG_ENTER("init_tree"); DBUG_PRINT("enter",("tree: %lx size: %d",tree,size)); if (!default_alloc_size) default_alloc_size= DEFAULT_ALLOC_SIZE; bzero((gptr) &tree->null_element,sizeof(tree->null_element)); tree->root= &tree->null_element; tree->compare=compare; tree->size_of_element=size > 0 ? (uint) size : 0; tree->free=free_element; tree->elements_in_tree=0; tree->null_element.colour=BLACK; tree->null_element.left=tree->null_element.right=0; if (!free_element && size >= 0 && ((uint) size <= sizeof(void*) || ((uint) size & (sizeof(void*)-1)))) { tree->offset_to_key=sizeof(TREE_ELEMENT); /* Put key after element */ /* Fix allocation size so that we don't loose any memory */ default_alloc_size/=(sizeof(TREE_ELEMENT)+size); if (!default_alloc_size) default_alloc_size=1; default_alloc_size*=(sizeof(TREE_ELEMENT)+size); } else { tree->offset_to_key=0; /* use key through pointer */ tree->size_of_element+=sizeof(void*); } if (!(tree->with_delete=with_delete)) { init_alloc_root(&tree->mem_root, default_alloc_size,0); tree->mem_root.min_malloc=(sizeof(TREE_ELEMENT)+tree->size_of_element); } DBUG_VOID_RETURN; } void delete_tree(TREE *tree) { DBUG_ENTER("delete_tree"); DBUG_PRINT("enter",("tree: %lx",tree)); if (tree->root) /* If initialized */ { if (tree->with_delete) delete_tree_element(tree,tree->root); else { if (tree->free) delete_tree_element(tree,tree->root); free_root(&tree->mem_root,MYF(0)); } } tree->root= &tree->null_element; tree->elements_in_tree=0; DBUG_VOID_RETURN; } static void delete_tree_element(TREE *tree, TREE_ELEMENT *element) { if (element != &tree->null_element) { delete_tree_element(tree,element->left); delete_tree_element(tree,element->right); if (tree->free) (*tree->free)(ELEMENT_KEY(tree,element)); if (tree->with_delete) my_free((void*) element,MYF(0)); } } /* Code for insert, search and delete of elements */ /* parent[0] = & parent[-1][0]->left || parent[0] = & parent[-1][0]->right */ TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint key_size) { int cmp; TREE_ELEMENT *element,***parent; parent= tree->parents; *parent = &tree->root; element= tree->root; for (;;) { if (element == &tree->null_element || (cmp=(*tree->compare)(ELEMENT_KEY(tree,element),key)) == 0) break; if (cmp < 0) { *++parent= &element->right; element= element->right; } else { *++parent = &element->left; element= element->left; } } if (element == &tree->null_element) { key_size+=tree->size_of_element; if (tree->with_delete) element=(TREE_ELEMENT *) my_malloc(sizeof(TREE_ELEMENT)+key_size, MYF(MY_WME)); else element=(TREE_ELEMENT *) alloc_root(&tree->mem_root,sizeof(TREE_ELEMENT)+key_size); if (!element) return(NULL); **parent=element; element->left=element->right= &tree->null_element; if (!tree->offset_to_key) { if (key_size == sizeof(void*)) /* no length, save pointer */ *((void**) (element+1))=key; else { *((void**) (element+1))= (void*) ((void **) (element+1)+1); memcpy((byte*) *((void **) (element+1)),key, (size_t) (key_size-sizeof(void*))); } } else memcpy((byte*) element+tree->offset_to_key,key,(size_t) key_size); element->count=1; /* May give warning in purify */ tree->elements_in_tree++; rb_insert(tree,parent,element); /* rebalance tree */ } else element->count++; return element; } int tree_delete(TREE *tree, void *key) { int cmp,remove_colour; TREE_ELEMENT *element,***parent, ***org_parent, *nod; if (!tree->with_delete) return 1; /* not allowed */ parent= tree->parents; *parent= &tree->root; element= tree->root; for (;;) { if (element == &tree->null_element) return 1; /* Was not in tree */ if ((cmp=(*tree->compare)(ELEMENT_KEY(tree,element),key)) == 0) break; if (cmp < 0) { *++parent= &element->right; element= element->right; } else { *++parent = &element->left; element= element->left; } } if (element->left == &tree->null_element) { (**parent)=element->right; remove_colour= element->colour; } else if (element->right == &tree->null_element) { (**parent)=element->left; remove_colour= element->colour; } else { org_parent= parent; *++parent= &element->right; nod= element->right; while (nod->left != &tree->null_element) { *++parent= &nod->left; nod= nod->left; } (**parent)=nod->right; /* unlink nod from tree */ remove_colour= nod->colour; org_parent[0][0]=nod; /* put y in place of element */ org_parent[1]= &nod->right; nod->left=element->left; nod->right=element->right; nod->colour=element->colour; } if (remove_colour == BLACK) rb_delete_fixup(tree,parent); my_free((gptr) element,MYF(0)); tree->elements_in_tree--; return 0; } void *tree_search(TREE *tree, void *key) { int cmp; TREE_ELEMENT *element=tree->root; for (;;) { if (element == &tree->null_element) return (void*) 0; if ((cmp=(*tree->compare)(ELEMENT_KEY(tree,element),key)) == 0) return ELEMENT_KEY(tree,element); if (cmp < 0) element=element->right; else element=element->left; } } int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit) { switch (visit) { case left_root_right: return tree_walk_left_root_right(tree,tree->root,action,argument); case right_root_left: return tree_walk_right_root_left(tree,tree->root,action,argument); } return 0; /* Keep gcc happy */ } static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument) { int error; if (element->left) /* Not null_element */ { if ((error=tree_walk_left_root_right(tree,element->left,action, argument)) == 0 && (error=(*action)(ELEMENT_KEY(tree,element), (element_count) element->count, argument)) == 0) error=tree_walk_left_root_right(tree,element->right,action,argument); return error; } return 0; } static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument) { int error; if (element->right) /* Not null_element */ { if ((error=tree_walk_right_root_left(tree,element->right,action, argument)) == 0 && (error=(*action)(ELEMENT_KEY(tree,element), (element_count) element->count, argument)) == 0) error=tree_walk_right_root_left(tree,element->left,action,argument); return error; } return 0; } /* Functions to fix up the tree after insert and delete */ static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf) { TREE_ELEMENT *y; y=leaf->right; leaf->right=y->left; parent[0]=y; y->left=leaf; } static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf) { TREE_ELEMENT *x; x=leaf->left; leaf->left=x->right; parent[0]=x; x->right=leaf; } static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf) { TREE_ELEMENT *y,*par,*par2; leaf->colour=RED; while (leaf != tree->root && (par=parent[-1][0])->colour == RED) { if (par == (par2=parent[-2][0])->left) { y= par2->right; if (y->colour == RED) { par->colour=BLACK; y->colour=BLACK; leaf=par2; parent-=2; leaf->colour=RED; /* And the loop continues */ } else { if (leaf == par->right) { left_rotate(parent[-1],par); par=leaf; /* leaf is now parent to old leaf */ } par->colour=BLACK; par2->colour=RED; right_rotate(parent[-2],par2); break; } } else { y= par2->left; if (y->colour == RED) { par->colour=BLACK; y->colour=BLACK; leaf=par2; parent-=2; leaf->colour=RED; /* And the loop continues */ } else { if (leaf == par->left) { right_rotate(parent[-1],par); par=leaf; } par->colour=BLACK; par2->colour=RED; left_rotate(parent[-2],par2); break; } } } tree->root->colour=BLACK; } static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent) { TREE_ELEMENT *x,*w,*par; x= **parent; while (x != tree->root && x->colour == BLACK) { if (x == (par=parent[-1][0])->left) { w=par->right; if (w->colour == RED) { w->colour=BLACK; par->colour=RED; left_rotate(parent[-1],par); parent[0]= &w->left; *++parent= &par->left; w=par->right; } if (w->left->colour == BLACK && w->right->colour == BLACK) { w->colour=RED; x=par; parent--; } else { if (w->right->colour == BLACK) { w->left->colour=BLACK; w->colour=RED; right_rotate(&par->right,w); w=par->right; } w->colour=par->colour; par->colour=BLACK; w->right->colour=BLACK; left_rotate(parent[-1],par); x=tree->root; break; } } else { w=par->left; if (w->colour == RED) { w->colour=BLACK; par->colour=RED; right_rotate(parent[-1],par); parent[0]= &w->right; *++parent= &par->right; w=par->left; } if (w->right->colour == BLACK && w->left->colour == BLACK) { w->colour=RED; x=par; parent--; } else { if (w->left->colour == BLACK) { w->right->colour=BLACK; w->colour=RED; left_rotate(&par->left,w); w=par->left; } w->colour=par->colour; par->colour=BLACK; w->left->colour=BLACK; right_rotate(parent[-1],par); x=tree->root; break; } } } x->colour=BLACK; } #ifdef TESTING_TREES /* Test that the proporties for a red-black tree holds */ static int test_rb_tree(TREE_ELEMENT *element) { int count_l,count_r; if (!element->left) return 0; /* Found end of tree */ if (element->colour == RED && (element->left->colour == RED || element->right->colour == RED)) { printf("Wrong tree: Found two red in a row\n"); return -1; } count_l=test_rb_tree(element->left); count_r=test_rb_tree(element->right); if (count_l >= 0 && count_r >= 0) { if (count_l == count_r) return count_l+(element->colour == BLACK); printf("Wrong tree: Incorrect black-count: %d - %d\n",count_l,count_r); } return -1; } #endif