/* Copyright (c) 2000, 2011, Oracle and/or its affiliates. Copyright (c) 2012, Monty Program Ab. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* Read and write locks for Posix threads. All tread must acquire all locks it needs through thr_multi_lock() to avoid dead-locks. A lock consists of a master lock (THR_LOCK), and lock instances (THR_LOCK_DATA). Any thread can have any number of lock instances (read and write:s) on any lock. All lock instances must be freed. Locks are prioritized according to: The current lock types are: TL_READ # Low priority read TL_READ_WITH_SHARED_LOCKS TL_READ_HIGH_PRIORITY # High priority read TL_READ_NO_INSERT # Read without concurrent inserts TL_WRITE_ALLOW_WRITE # Write lock that allows other writers TL_WRITE_CONCURRENT_INSERT # Insert that can be mixed when selects TL_WRITE_DELAYED # Used by delayed insert # Allows lower locks to take over TL_WRITE_LOW_PRIORITY # Low priority write TL_WRITE # High priority write TL_WRITE_ONLY # High priority write # Abort all new lock request with an error Locks are prioritized according to: WRITE_ALLOW_WRITE, WRITE_CONCURRENT_INSERT, WRITE_DELAYED, WRITE_LOW_PRIORITY, READ, WRITE, READ_HIGH_PRIORITY and WRITE_ONLY Locks in the same privilege level are scheduled in first-in-first-out order. To allow concurrent read/writes locks, with 'WRITE_CONCURRENT_INSERT' one should put a pointer to the following functions in the lock structure: (If the pointer is zero (default), the function is not called) check_status: Before giving a lock of type TL_WRITE_CONCURRENT_INSERT, we check if this function exists and returns 0. If not, then the lock is upgraded to TL_WRITE_LOCK In MyISAM this is a simple check if the insert can be done at the end of the datafile. update_status: in thr_reschedule_write_lock(), when an insert delayed thread downgrades TL_WRITE lock to TL_WRITE_DELAYED, to allow SELECT threads to proceed. A storage engine should also call update_status internally in the ::external_lock(F_UNLCK) method. In MyISAM and CSV this functions updates the length of the datafile. MySQL does in some exceptional cases (when doing DLL statements on open tables calls thr_unlock() followed by thr_lock() without calling ::external_lock() in between. In this case thr_unlock() is called with the THR_UNLOCK_UPDATE_STATUS flag and thr_unlock() will call update_status for write locks. get_status: When one gets a lock this functions is called. In MyISAM this stores the number of rows and size of the datafile for concurrent reads. The lock algorithm allows one to have one TL_WRITE_CONCURRENT_INSERT or one TL_WRITE_DELAYED lock at the same time as multiple read locks. In addition, if lock->allow_multiple_concurrent_insert is set then there can be any number of TL_WRITE_CONCURRENT_INSERT locks aktive at the same time. */ #if !defined(MAIN) && !defined(DBUG_OFF) && !defined(EXTRA_DEBUG) #define FORCE_DBUG_OFF #endif #include "mysys_priv.h" #include "thr_lock.h" #include "mysql/psi/mysql_table.h" #include #include my_bool thr_lock_inited=0; ulong locks_immediate = 0L, locks_waited = 0L; enum thr_lock_type thr_upgraded_concurrent_insert_lock = TL_WRITE; #ifdef WITH_WSREP static wsrep_thd_is_brute_force_fun wsrep_thd_is_brute_force= NULL; static wsrep_abort_thd_fun wsrep_abort_thd= NULL; static my_bool wsrep_debug; static my_bool wsrep_convert_LOCK_to_trx; static wsrep_on_fun wsrep_on = NULL; void wsrep_thr_lock_init( wsrep_thd_is_brute_force_fun bf_fun, wsrep_abort_thd_fun abort_fun, my_bool debug, my_bool convert_LOCK_to_trx, wsrep_on_fun on_fun ) { wsrep_thd_is_brute_force = bf_fun; wsrep_abort_thd = abort_fun; wsrep_debug = debug; wsrep_convert_LOCK_to_trx= convert_LOCK_to_trx; wsrep_on = on_fun; } #endif /* The following constants are only for debug output */ #define MAX_THREADS 1000 #define MAX_LOCKS 1000 LIST *thr_lock_thread_list; /* List of threads in use */ ulong max_write_lock_count= ~(ulong) 0L; static void (*before_lock_wait)(void)= 0; static void (*after_lock_wait)(void)= 0; void thr_set_lock_wait_callback(void (*before_wait)(void), void (*after_wait)(void)) { before_lock_wait= before_wait; after_lock_wait= after_wait; } static inline mysql_cond_t *get_cond(void) { return &my_thread_var->suspend; } /* Sort locks in priority order LOCK_CMP() A First lock B Second lock Return: 0 if A >= B 1 if A < B Priority for locks (decides in which order locks are locked) We want all write locks to be first, followed by read locks. Locks from MERGE tables has a little lower priority than other locks, to allow one to release merge tables without having to unlock and re-lock other locks. The lower the number, the higher the priority for the lock. For MERGE tables we add 2 (THR_LOCK_MERGE_PRIV) to the lock priority. THR_LOCK_LATE_PRIV (1) is used when one locks other tables to be merged with existing locks. This way we prioritize the original locks over the new locks. */ static inline int LOCK_CMP(THR_LOCK_DATA *a, THR_LOCK_DATA *b) { if (a->lock != b->lock) return a->lock < b->lock; if (a->type != b->type) return a->type > b->type; return a->priority < b->priority; } /* For the future (now the thread specific cond is alloced by my_pthread.c) */ my_bool init_thr_lock() { thr_lock_inited=1; return 0; } static inline my_bool thr_lock_owner_equal(THR_LOCK_INFO *rhs, THR_LOCK_INFO *lhs) { return rhs == lhs; } #ifdef EXTRA_DEBUG #define MAX_FOUND_ERRORS 10 /* Report 10 first errors */ static uint found_errors=0; static int check_lock(struct st_lock_list *list, const char* lock_type, const char *where, my_bool same_owner, my_bool no_cond, my_bool read_lock) { THR_LOCK_DATA *data,**prev; uint count=0; prev= &list->data; if (list->data) { enum thr_lock_type last_lock_type= list->data->type; THR_LOCK_INFO *first_owner= list->data->owner; for (data=list->data; data && count++ < MAX_LOCKS ; data=data->next) { if (data->type == TL_UNLOCK) { fprintf(stderr, "Warning: Found unlocked lock at %s: %s\n", lock_type, where); return 1; } if ((read_lock && data->type > TL_READ_NO_INSERT) || (!read_lock && data->type <= TL_READ_NO_INSERT)) { fprintf(stderr, "Warning: Found %s lock in %s queue at %s: %s\n", read_lock ? "write" : "read", read_lock ? "read" : "write", lock_type, where); return 1; } if (data->type != last_lock_type) last_lock_type=TL_IGNORE; if (data->prev != prev) { fprintf(stderr, "Warning: prev link %d didn't point at previous lock at %s: %s\n", count, lock_type, where); return 1; } if (same_owner && !thr_lock_owner_equal(data->owner, first_owner) && last_lock_type != TL_WRITE_ALLOW_WRITE && last_lock_type != TL_WRITE_CONCURRENT_INSERT) { fprintf(stderr, "Warning: Found locks from different threads for lock '%s' in '%s' at '%s'. org_lock_type: %d last_lock_type: %d new_lock_type: %d\n", data->lock->name ? data->lock->name : "", lock_type, where, list->data->type, last_lock_type, data->type); return 1; } if (no_cond && data->cond) { fprintf(stderr, "Warning: Found active lock with not reset cond %s: %s\n", lock_type,where); return 1; } prev= &data->next; } if (data) { fprintf(stderr,"Warning: found too many locks at %s: %s\n", lock_type,where); return 1; } } if (prev != list->last) { fprintf(stderr,"Warning: last didn't point at last lock at %s: %s\n", lock_type, where); return 1; } return 0; } static void check_locks(THR_LOCK *lock, const char *where, enum thr_lock_type type, my_bool allow_no_locks) { uint old_found_errors=found_errors; DBUG_ENTER("check_locks"); if (found_errors < MAX_FOUND_ERRORS) { if (check_lock(&lock->write,"write",where,1,1,0) | check_lock(&lock->write_wait,"write_wait",where,0,0,0) | check_lock(&lock->read,"read",where,0,1,1) | check_lock(&lock->read_wait,"read_wait",where,0,0,1)) { DBUG_ASSERT(my_assert_on_error == 0); found_errors++; } if (found_errors < MAX_FOUND_ERRORS) { uint count=0, count2= 0; THR_LOCK_DATA *data; for (data=lock->read.data ; data ; data=data->next) { count2++; if (data->type == TL_READ_NO_INSERT) count++; /* Protect against infinite loop. */ DBUG_ASSERT(count <= lock->read_no_write_count && count2 <= MAX_LOCKS); } if (count != lock->read_no_write_count) { found_errors++; fprintf(stderr, "Warning at '%s': Locks read_no_write_count was %u when it should have been %u\n", where, lock->read_no_write_count,count); } if (!lock->write.data) { if (!allow_no_locks && !lock->read.data && (lock->write_wait.data || lock->read_wait.data)) { found_errors++; fprintf(stderr, "Warning at '%s': No locks in use but locks are in wait queue\n", where); } if (!lock->write_wait.data) { if (!allow_no_locks && lock->read_wait.data) { found_errors++; fprintf(stderr, "Warning at '%s': No write locks and waiting read locks\n", where); } } else { if (!allow_no_locks && (((lock->write_wait.data->type == TL_WRITE_CONCURRENT_INSERT || lock->write_wait.data->type == TL_WRITE_ALLOW_WRITE) && !lock->read_no_write_count) || (lock->write_wait.data->type == TL_WRITE_DELAYED && !lock->read.data))) { found_errors++; fprintf(stderr, "Warning at '%s': Write lock %d waiting while no exclusive read locks\n",where,(int) lock->write_wait.data->type); DBUG_PRINT("warning", ("Warning at '%s': Write lock %d waiting while no exclusive read locks",where,(int) lock->write_wait.data->type)); } } } else { /* We have at least one write lock */ if (lock->write.data->type == TL_WRITE_CONCURRENT_INSERT) { count= 0; for (data=lock->write.data->next; data && count < MAX_LOCKS; data=data->next) { if (data->type != TL_WRITE_CONCURRENT_INSERT) { fprintf(stderr, "Warning at '%s': Found TL_WRITE_CONCURRENT_INSERT lock mixed with other write lock: %d\n", where, data->type); DBUG_PRINT("warning", ("Warning at '%s': Found TL_WRITE_CONCURRENT_INSERT lock mixed with other write lock: %d", where, data->type)); break; } } } if (lock->write_wait.data) { if (!allow_no_locks && lock->write.data->type == TL_WRITE_ALLOW_WRITE && lock->write_wait.data->type == TL_WRITE_ALLOW_WRITE) { found_errors++; fprintf(stderr, "Warning at '%s': Found WRITE_ALLOW_WRITE lock waiting for WRITE_ALLOW_WRITE lock\n", where); DBUG_PRINT("warning", ("Warning at '%s': Found WRITE_ALLOW_WRITE lock waiting for WRITE_ALLOW_WRITE lock", where)); } } if (lock->read.data) { for (data=lock->read.data ; data ; data=data->next) { if (!thr_lock_owner_equal(lock->write.data->owner, data->owner) && ((lock->write.data->type > TL_WRITE_DELAYED && lock->write.data->type != TL_WRITE_ONLY) || ((lock->write.data->type == TL_WRITE_CONCURRENT_INSERT || lock->write.data->type == TL_WRITE_ALLOW_WRITE) && data->type == TL_READ_NO_INSERT))) { found_errors++; fprintf(stderr, "Warning at '%s' for lock: %d: Found lock of type %d that is write and read locked. Read_no_write_count: %d\n", where, (int) type, lock->write.data->type, lock->read_no_write_count); DBUG_PRINT("warning",("At '%s' for lock %d: Found lock of type %d that is write and read locked", where, (int) type, lock->write.data->type)); } } } if (lock->read_wait.data) { if (!allow_no_locks && lock->write.data->type <= TL_WRITE_DELAYED && lock->read_wait.data->type <= TL_READ_HIGH_PRIORITY) { found_errors++; fprintf(stderr, "Warning at '%s': Found read lock of type %d waiting for write lock of type %d\n", where, (int) lock->read_wait.data->type, (int) lock->write.data->type); } } } } if (found_errors != old_found_errors) { DBUG_PRINT("error",("Found wrong lock")); } } DBUG_VOID_RETURN; } #else /* EXTRA_DEBUG */ #define check_locks(A,B,C,D) #endif /* Initialize a lock */ void thr_lock_init(THR_LOCK *lock) { DBUG_ENTER("thr_lock_init"); bzero((char*) lock,sizeof(*lock)); mysql_mutex_init(key_THR_LOCK_mutex, &lock->mutex, MY_MUTEX_INIT_FAST); lock->read.last= &lock->read.data; lock->read_wait.last= &lock->read_wait.data; lock->write_wait.last= &lock->write_wait.data; lock->write.last= &lock->write.data; mysql_mutex_lock(&THR_LOCK_lock); /* Add to locks in use */ lock->list.data=(void*) lock; thr_lock_thread_list=list_add(thr_lock_thread_list,&lock->list); mysql_mutex_unlock(&THR_LOCK_lock); DBUG_VOID_RETURN; } void thr_lock_delete(THR_LOCK *lock) { DBUG_ENTER("thr_lock_delete"); mysql_mutex_lock(&THR_LOCK_lock); thr_lock_thread_list=list_delete(thr_lock_thread_list,&lock->list); mysql_mutex_unlock(&THR_LOCK_lock); mysql_mutex_destroy(&lock->mutex); DBUG_VOID_RETURN; } void thr_lock_info_init(THR_LOCK_INFO *info) { struct st_my_thread_var *tmp= my_thread_var; info->thread= tmp->pthread_self; info->thread_id= tmp->id; } /* Initialize a lock instance */ void thr_lock_data_init(THR_LOCK *lock,THR_LOCK_DATA *data, void *param) { data->lock=lock; data->type=TL_UNLOCK; data->owner= 0; /* no owner yet */ data->status_param=param; data->cond=0; data->priority= 0; data->debug_print_param= 0; } static inline my_bool has_old_lock(THR_LOCK_DATA *data, THR_LOCK_INFO *owner) { for ( ; data ; data=data->next) { if (thr_lock_owner_equal(data->owner, owner)) return 1; /* Already locked by thread */ } return 0; } static void wake_up_waiters(THR_LOCK *lock); static enum enum_thr_lock_result wait_for_lock(struct st_lock_list *wait, THR_LOCK_DATA *data, my_bool in_wait_list, ulong lock_wait_timeout) { struct st_my_thread_var *thread_var= my_thread_var; mysql_cond_t *cond= &thread_var->suspend; struct timespec wait_timeout; enum enum_thr_lock_result result= THR_LOCK_ABORTED; PSI_stage_info old_stage; my_bool use_wait_callbacks= FALSE; DBUG_ENTER("wait_for_lock"); /* One can use this to signal when a thread is going to wait for a lock. See debug_sync.cc. Beware of waiting for a signal here. The lock has acquired its mutex. While waiting on a signal here, the locking thread could not acquire the mutex to release the lock. One could lock up the table completely. In detail it works so: When thr_lock() tries to acquire a table lock, it locks the lock->mutex, checks if it can have the lock, and if not, it calls wait_for_lock(). Here it unlocks the table lock while waiting on a condition. The sync point is located before this wait for condition. If we have a waiting action here, we hold the the table locks mutex all the time. Any attempt to look at the table lock by another thread blocks it immediately on lock->mutex. This can easily become an unexpected and unobvious blockage. So be warned: Do not request a WAIT_FOR action for the 'wait_for_lock' sync point unless you really know what you do. */ DEBUG_SYNC_C("wait_for_lock"); if (!in_wait_list) { (*wait->last)=data; /* Wait for lock */ data->prev= wait->last; wait->last= &data->next; } statistic_increment(locks_waited, &THR_LOCK_lock); /* Set up control struct to allow others to abort locks */ thread_var->current_mutex= &data->lock->mutex; thread_var->current_cond= cond; data->cond= cond; proc_info_hook(NULL, &stage_waiting_for_table_level_lock, &old_stage, __func__, __FILE__, __LINE__); /* Since before_lock_wait potentially can create more threads to scheduler work for, we don't want to call the before_lock_wait callback unless it will really start to wait. For similar reasons, we do not want to call before_lock_wait and after_lock_wait for each lap around the loop, so we restrict ourselves to call it before_lock_wait once before starting to wait and once after the thread has exited the wait loop. */ if ((!thread_var->abort || in_wait_list) && before_lock_wait) { use_wait_callbacks= TRUE; (*before_lock_wait)(); } set_timespec(wait_timeout, lock_wait_timeout); while (!thread_var->abort || in_wait_list) { int rc= mysql_cond_timedwait(cond, &data->lock->mutex, &wait_timeout); /* We must break the wait if one of the following occurs: - the connection has been aborted (!thread_var->abort), but this is not a delayed insert thread (in_wait_list). For a delayed insert thread the proper action at shutdown is, apparently, to acquire the lock and complete the insert. - the lock has been granted (data->cond is set to NULL by the granter), or the waiting has been aborted (additionally data->type is set to TL_UNLOCK). - the wait has timed out (rc == ETIMEDOUT) Order of checks below is important to not report about timeout if the predicate is true. */ if (data->cond == 0) { DBUG_PRINT("thr_lock", ("lock granted/aborted")); break; } if (rc == ETIMEDOUT || rc == ETIME) { /* purecov: begin inspected */ DBUG_PRINT("thr_lock", ("lock timed out")); result= THR_LOCK_WAIT_TIMEOUT; break; /* purecov: end */ } } /* We call the after_lock_wait callback once the wait loop has finished. */ if (after_lock_wait && use_wait_callbacks) (*after_lock_wait)(); DBUG_PRINT("thr_lock", ("aborted: %d in_wait_list: %d", thread_var->abort, in_wait_list)); if (data->cond || data->type == TL_UNLOCK) { if (data->cond) /* aborted or timed out */ { if (((*data->prev)=data->next)) /* remove from wait-list */ data->next->prev= data->prev; else wait->last=data->prev; data->type= TL_UNLOCK; /* No lock */ check_locks(data->lock, "killed or timed out wait_for_lock", data->type, 1); wake_up_waiters(data->lock); } else { DBUG_PRINT("thr_lock", ("lock aborted")); check_locks(data->lock, "aborted wait_for_lock", data->type, 0); } } else { result= THR_LOCK_SUCCESS; if (data->lock->get_status) (*data->lock->get_status)(data->status_param, data->type == TL_WRITE_CONCURRENT_INSERT); check_locks(data->lock,"got wait_for_lock", data->type, 0); } mysql_mutex_unlock(&data->lock->mutex); /* The following must be done after unlock of lock->mutex */ mysql_mutex_lock(&thread_var->mutex); thread_var->current_mutex= 0; thread_var->current_cond= 0; mysql_mutex_unlock(&thread_var->mutex); proc_info_hook(NULL, &old_stage, NULL, __func__, __FILE__, __LINE__); DBUG_RETURN(result); } #ifdef WITH_WSREP /* * If brute force applier would need to wait for a thr lock, * it needs to make sure that it will get the lock without (too much) * delay. * We identify here the owners of blocking locks and ask them to * abort. We then put our lock request in the first place in the * wait queue. When lock holders abort (one by one) the lock release * algorithm should grant the lock to us. We rely on this and proceed * to wait_for_locks(). * wsrep_break_locks() should be called in all the cases, where lock * wait would happen. * * TODO: current implementation might not cover all possible lock wait * situations. This needs an review still. * TODO: lock release, might favor some other lock (instead our bf). * This needs an condition to check for bf locks first. * TODO: we still have a debug fprintf, this should be removed */ static my_bool wsrep_break_lock( THR_LOCK_DATA *data, struct st_lock_list *lock_queue1, struct st_lock_list *wait_queue) { if (wsrep_on && wsrep_on(data->owner->mysql_thd) && wsrep_thd_is_brute_force && wsrep_thd_is_brute_force(data->owner->mysql_thd, TRUE)) { THR_LOCK_DATA *holder; /* if locking session conversion to transaction has been enabled, we know that this conflicting lock must be read lock and furthermore, lock holder is read-only. It is safe to wait for him. */ #ifdef TODO_WHEN_LOCK_TABLES_IS_A_TRANSACTION if (wsrep_convert_LOCK_to_trx && (THD*)(data->owner->mysql_thd)->in_lock_tables) { if (wsrep_debug) fprintf(stderr,"WSREP wsrep_break_lock read lock untouched\n"); return FALSE; } #endif if (wsrep_debug) fprintf(stderr,"WSREP wsrep_break_lock aborting locks\n"); /* aborting lock holder(s) here */ for (holder=(lock_queue1) ? lock_queue1->data : NULL; holder; holder=holder->next) { if (!wsrep_thd_is_brute_force(holder->owner->mysql_thd, TRUE)) { wsrep_abort_thd(data->owner->mysql_thd, holder->owner->mysql_thd, FALSE); } else { if (wsrep_debug) fprintf(stderr,"WSREP wsrep_break_lock skipping BF lock conflict\n"); return FALSE; } } /* Add our lock to the head of the wait queue */ if (*(wait_queue->last)==wait_queue->data) { wait_queue->last=&data->next; assert(wait_queue->data==0); } else { assert(wait_queue->data!=0); wait_queue->data->prev=&data->next; } data->next=wait_queue->data; data->prev=&wait_queue->data; wait_queue->data=data; data->cond=get_cond(); statistic_increment(locks_immediate,&THR_LOCK_lock); return TRUE; } return FALSE; } #endif static enum enum_thr_lock_result thr_lock(THR_LOCK_DATA *data, THR_LOCK_INFO *owner, ulong lock_wait_timeout) { THR_LOCK *lock=data->lock; enum enum_thr_lock_result result= THR_LOCK_SUCCESS; struct st_lock_list *wait_queue; enum thr_lock_type lock_type= data->type; #ifdef WITH_WSREP my_bool wsrep_lock_inserted= FALSE; #endif MYSQL_TABLE_WAIT_VARIABLES(locker, state) /* no ';' */ DBUG_ENTER("thr_lock"); data->next=0; data->cond=0; /* safety */ data->owner= owner; /* Must be reset ! */ data->priority&= ~THR_LOCK_LATE_PRIV; MYSQL_START_TABLE_LOCK_WAIT(locker, &state, data->m_psi, PSI_TABLE_LOCK, lock_type); mysql_mutex_lock(&lock->mutex); DBUG_PRINT("lock",("data: 0x%lx thread: 0x%lx lock: 0x%lx type: %d", (long) data, data->owner->thread_id, (long) lock, (int) lock_type)); check_locks(lock,(uint) lock_type <= (uint) TL_READ_NO_INSERT ? "enter read_lock" : "enter write_lock", lock_type, 0); if ((int) lock_type <= (int) TL_READ_NO_INSERT) { /* Request for READ lock */ if (lock->write.data) { /* We can allow a read lock even if there is already a write lock on the table if they are owned by the same thread or if they satisfy the following lock compatibility matrix: Request /------- H|++++ WRITE_ALLOW_WRITE e|+++- WRITE_CONCURRENT_INSERT l|++++ WRITE_DELAYED d |||| |||\= READ_NO_INSERT ||\ = READ_HIGH_PRIORITY |\ = READ_WITH_SHARED_LOCKS \ = READ + = Request can be satisfied. - = Request cannot be satisfied. READ_NO_INSERT and WRITE_ALLOW_WRITE should in principle be incompatible. However this will cause starvation of LOCK TABLE READ in InnoDB under high write load. See Bug#42147 for more information. */ DBUG_PRINT("lock",("write locked 1 by thread: 0x%lx", lock->write.data->owner->thread_id)); if (thr_lock_owner_equal(data->owner, lock->write.data->owner) || (lock->write.data->type <= TL_WRITE_DELAYED && (((int) lock_type <= (int) TL_READ_HIGH_PRIORITY) || (lock->write.data->type != TL_WRITE_CONCURRENT_INSERT)))) { /* Already got a write lock */ (*lock->read.last)=data; /* Add to running FIFO */ data->prev=lock->read.last; lock->read.last= &data->next; if (lock_type == TL_READ_NO_INSERT) lock->read_no_write_count++; check_locks(lock,"read lock with old write lock", lock_type, 0); if (lock->get_status) (*lock->get_status)(data->status_param, 0); statistic_increment(locks_immediate,&THR_LOCK_lock); goto end; } if (lock->write.data->type == TL_WRITE_ONLY) { /* We are not allowed to get a READ lock in this case */ data->type=TL_UNLOCK; result= THR_LOCK_ABORTED; /* Can't wait for this one */ goto end; } } else if (!lock->write_wait.data || lock->write_wait.data->type <= TL_WRITE_LOW_PRIORITY || lock_type == TL_READ_HIGH_PRIORITY || has_old_lock(lock->read.data, data->owner)) /* Has old read lock */ { /* No important write-locks */ (*lock->read.last)=data; /* Add to running FIFO */ data->prev=lock->read.last; lock->read.last= &data->next; if (lock_type == TL_READ_NO_INSERT) lock->read_no_write_count++; check_locks(lock,"read lock with no write locks", lock_type, 0); if (lock->get_status) (*lock->get_status)(data->status_param, 0); statistic_increment(locks_immediate,&THR_LOCK_lock); goto end; } /* We're here if there is an active write lock or no write lock but a high priority write waiting in the write_wait queue. In the latter case we should yield the lock to the writer. */ #ifdef WITH_WSREP if (wsrep_break_lock(data, &lock->write, &lock->read_wait)) { wsrep_lock_inserted= TRUE; } #endif wait_queue= &lock->read_wait; } else /* Request for WRITE lock */ { if (lock_type == TL_WRITE_DELAYED) { if (lock->write.data && lock->write.data->type == TL_WRITE_ONLY) { data->type=TL_UNLOCK; result= THR_LOCK_ABORTED; /* Can't wait for this one */ goto end; } if (lock->write.data || lock->read.data) { /* Add delayed write lock to write_wait queue, and return at once */ (*lock->write_wait.last)=data; data->prev=lock->write_wait.last; lock->write_wait.last= &data->next; data->cond=get_cond(); /* We don't have to do get_status here as we will do it when we change the delayed lock to a real write lock */ statistic_increment(locks_immediate,&THR_LOCK_lock); goto end; } } else if (lock_type == TL_WRITE_CONCURRENT_INSERT && ! lock->check_status) data->type=lock_type= thr_upgraded_concurrent_insert_lock; if (lock->write.data) /* If there is a write lock */ { if (lock->write.data->type == TL_WRITE_ONLY) { /* purecov: begin tested */ /* Allow lock owner to bypass TL_WRITE_ONLY. */ if (!thr_lock_owner_equal(data->owner, lock->write.data->owner)) { /* We are not allowed to get a lock in this case */ data->type=TL_UNLOCK; result= THR_LOCK_ABORTED; /* Can't wait for this one */ goto end; } /* purecov: end */ } /* The idea is to allow us to get a lock at once if we already have a write lock or if there is no pending write locks and if all write locks are of the same type and are either TL_WRITE_ALLOW_WRITE or TL_WRITE_CONCURRENT_INSERT and there is no TL_READ_NO_INSERT lock. Note that, since lock requests for the same table are sorted in such way that requests with higher thr_lock_type value come first (with one exception (*)), lock being requested usually (**) has equal or "weaker" type than one which thread might have already acquired. *) The only exception to this rule is case when type of old lock is TL_WRITE_LOW_PRIORITY and type of new lock is changed inside of thr_lock() from TL_WRITE_CONCURRENT_INSERT to TL_WRITE since engine turns out to be not supporting concurrent inserts. Note that since TL_WRITE has the same compatibility rules as TL_WRITE_LOW_PRIORITY (their only difference is priority), it is OK to grant new lock without additional checks in such situation. **) The exceptions are situations when: - when old lock type is TL_WRITE_DELAYED But these should never happen within MariaDB. Therefore it is OK to allow acquiring write lock on the table if this thread already holds some write lock on it. (INSERT INTO t1 VALUES (f1()), where f1() is stored function which tries to update t1, is an example of statement which requests two different types of write lock on the same table). */ DBUG_ASSERT(! has_old_lock(lock->write.data, data->owner) || ((lock_type <= lock->write.data->type || (lock_type == TL_WRITE && lock->write.data->type == TL_WRITE_LOW_PRIORITY)) && lock->write.data->type != TL_WRITE_DELAYED)); if (((lock_type == TL_WRITE_ALLOW_WRITE || (lock_type == TL_WRITE_CONCURRENT_INSERT && lock->allow_multiple_concurrent_insert && !lock->read_no_write_count)) && ! lock->write_wait.data && lock->write.data->type == lock_type && ! lock->read_no_write_count) || has_old_lock(lock->write.data, data->owner)) { DBUG_PRINT("info", ("write_wait.data: 0x%lx old_type: %d", (ulong) lock->write_wait.data, lock->write.data->type)); (*lock->write.last)=data; /* Add to running fifo */ data->prev=lock->write.last; lock->write.last= &data->next; check_locks(lock,"second write lock", lock_type, 0); if (lock->get_status) (*lock->get_status)(data->status_param, lock_type == TL_WRITE_CONCURRENT_INSERT); statistic_increment(locks_immediate,&THR_LOCK_lock); goto end; } DBUG_PRINT("lock",("write locked 2 by thread: 0x%lx", lock->write.data->owner->thread_id)); } else { DBUG_PRINT("info", ("write_wait.data: 0x%lx", (ulong) lock->write_wait.data)); if (!lock->write_wait.data) { /* no scheduled write locks */ my_bool concurrent_insert= 0; if (lock_type == TL_WRITE_CONCURRENT_INSERT) { concurrent_insert= 1; if ((*lock->check_status)(data->status_param)) { concurrent_insert= 0; data->type=lock_type= thr_upgraded_concurrent_insert_lock; } } if (!lock->read.data || (lock_type <= TL_WRITE_DELAYED && ((lock_type != TL_WRITE_CONCURRENT_INSERT && lock_type != TL_WRITE_ALLOW_WRITE) || !lock->read_no_write_count))) { (*lock->write.last)=data; /* Add as current write lock */ data->prev=lock->write.last; lock->write.last= &data->next; if (lock->get_status) (*lock->get_status)(data->status_param, concurrent_insert); check_locks(lock,"only write lock", lock_type, 0); statistic_increment(locks_immediate,&THR_LOCK_lock); goto end; } } DBUG_PRINT("lock",("write locked 3 by thread: 0x%lx type: %d", lock->read.data->owner->thread_id, data->type)); } #ifdef WITH_WSREP if (wsrep_break_lock(data, &lock->write, &lock->write_wait)) { wsrep_lock_inserted= TRUE; } #endif wait_queue= &lock->write_wait; } /* Can't get lock yet; Wait for it */ #ifdef WITH_WSREP if (wsrep_lock_inserted && wsrep_on(data->owner->mysql_thd)) DBUG_RETURN(wait_for_lock(wait_queue, data, 1, lock_wait_timeout)); #endif result= wait_for_lock(wait_queue, data, 0, lock_wait_timeout); MYSQL_END_TABLE_LOCK_WAIT(locker); DBUG_RETURN(result); end: mysql_mutex_unlock(&lock->mutex); MYSQL_END_TABLE_LOCK_WAIT(locker); DBUG_RETURN(result); } static inline void free_all_read_locks(THR_LOCK *lock, my_bool using_concurrent_insert) { THR_LOCK_DATA *data=lock->read_wait.data; check_locks(lock,"before freeing read locks", TL_UNLOCK, 1); /* move all locks from read_wait list to read list */ (*lock->read.last)=data; data->prev=lock->read.last; lock->read.last=lock->read_wait.last; /* Clear read_wait list */ lock->read_wait.last= &lock->read_wait.data; do { mysql_cond_t *cond= data->cond; if ((int) data->type == (int) TL_READ_NO_INSERT) { if (using_concurrent_insert) { /* We can't free this lock; Link lock away from read chain back into read_wait chain */ if (((*data->prev)=data->next)) data->next->prev=data->prev; else lock->read.last=data->prev; *lock->read_wait.last= data; data->prev= lock->read_wait.last; lock->read_wait.last= &data->next; continue; } lock->read_no_write_count++; } /* purecov: begin inspected */ DBUG_PRINT("lock",("giving read lock to thread: 0x%lx", data->owner->thread_id)); /* purecov: end */ data->cond=0; /* Mark thread free */ mysql_cond_signal(cond); } while ((data=data->next)); *lock->read_wait.last=0; if (!lock->read_wait.data) lock->write_lock_count=0; check_locks(lock,"after giving read locks", TL_UNLOCK, 0); } /* Unlock lock and free next thread on same lock */ void thr_unlock(THR_LOCK_DATA *data, uint unlock_flags) { THR_LOCK *lock=data->lock; enum thr_lock_type lock_type=data->type; DBUG_ENTER("thr_unlock"); DBUG_PRINT("lock",("data: 0x%lx thread: 0x%lx lock: 0x%lx", (long) data, data->owner->thread_id, (long) lock)); mysql_mutex_lock(&lock->mutex); check_locks(lock,"start of release lock", lock_type, 0); if (((*data->prev)=data->next)) /* remove from lock-list */ data->next->prev= data->prev; else if (lock_type <= TL_READ_NO_INSERT) lock->read.last=data->prev; else if (lock_type == TL_WRITE_DELAYED && data->cond) { /* This only happens in extreme circumstances when a write delayed lock that is waiting for a lock */ lock->write_wait.last=data->prev; /* Put it on wait queue */ } else lock->write.last=data->prev; if (unlock_flags & THR_UNLOCK_UPDATE_STATUS) { /* External lock was not called; Update or restore status */ if (lock_type >= TL_WRITE_CONCURRENT_INSERT) { if (lock->update_status) (*lock->update_status)(data->status_param); } else { if (lock->restore_status) (*lock->restore_status)(data->status_param); } } if (lock_type == TL_READ_NO_INSERT) lock->read_no_write_count--; data->type=TL_UNLOCK; /* Mark unlocked */ wake_up_waiters(lock); mysql_mutex_unlock(&lock->mutex); DBUG_VOID_RETURN; } /** @brief Wake up all threads which pending requests for the lock can be satisfied. @param lock Lock for which threads should be woken up */ static void wake_up_waiters(THR_LOCK *lock) { THR_LOCK_DATA *data; enum thr_lock_type lock_type; DBUG_ENTER("wake_up_waiters"); check_locks(lock, "before waking up waiters", TL_UNLOCK, 1); if (!lock->write.data) /* If no active write locks */ { data=lock->write_wait.data; if (!lock->read.data) /* If no more locks in use */ { /* Release write-locks with TL_WRITE or TL_WRITE_ONLY priority first */ if (data && (data->type != TL_WRITE_LOW_PRIORITY || !lock->read_wait.data || lock->read_wait.data->type < TL_READ_HIGH_PRIORITY)) { if (lock->write_lock_count++ > max_write_lock_count) { /* Too many write locks in a row; Release all waiting read locks */ lock->write_lock_count=0; if (lock->read_wait.data) { DBUG_PRINT("info",("Freeing all read_locks because of max_write_lock_count")); free_all_read_locks(lock,0); goto end; } } for (;;) { if (((*data->prev)=data->next)) /* remove from wait-list */ data->next->prev= data->prev; else lock->write_wait.last=data->prev; (*lock->write.last)=data; /* Put in execute list */ data->prev=lock->write.last; data->next=0; lock->write.last= &data->next; if (data->type == TL_WRITE_CONCURRENT_INSERT && (*lock->check_status)(data->status_param)) data->type=TL_WRITE; /* Upgrade lock */ /* purecov: begin inspected */ DBUG_PRINT("lock",("giving write lock of type %d to thread: 0x%lx", data->type, data->owner->thread_id)); /* purecov: end */ { mysql_cond_t *cond= data->cond; data->cond=0; /* Mark thread free */ mysql_cond_signal(cond); /* Start waiting thread */ } if (data->type != TL_WRITE_ALLOW_WRITE || !lock->write_wait.data || lock->write_wait.data->type != TL_WRITE_ALLOW_WRITE) break; data=lock->write_wait.data; /* Free this too */ } if (data->type >= TL_WRITE_LOW_PRIORITY) goto end; /* Release possible read locks together with the write lock */ } if (lock->read_wait.data) free_all_read_locks(lock, data && (data->type == TL_WRITE_CONCURRENT_INSERT || data->type == TL_WRITE_ALLOW_WRITE)); else { DBUG_PRINT("lock",("No waiting read locks to free")); } } else if (data && (lock_type=data->type) <= TL_WRITE_DELAYED && ((lock_type != TL_WRITE_CONCURRENT_INSERT && lock_type != TL_WRITE_ALLOW_WRITE) || !lock->read_no_write_count)) { /* For DELAYED, ALLOW_READ, WRITE_ALLOW_WRITE or CONCURRENT_INSERT locks start WRITE locks together with the READ locks */ if (lock_type == TL_WRITE_CONCURRENT_INSERT && (*lock->check_status)(data->status_param)) { data->type=TL_WRITE; /* Upgrade lock */ if (lock->read_wait.data) free_all_read_locks(lock,0); goto end; } do { mysql_cond_t *cond= data->cond; if (((*data->prev)=data->next)) /* remove from wait-list */ data->next->prev= data->prev; else lock->write_wait.last=data->prev; (*lock->write.last)=data; /* Put in execute list */ data->prev=lock->write.last; lock->write.last= &data->next; data->next=0; /* Only one write lock */ data->cond=0; /* Mark thread free */ mysql_cond_signal(cond); /* Start waiting thread */ } while (lock_type == TL_WRITE_ALLOW_WRITE && (data=lock->write_wait.data) && data->type == TL_WRITE_ALLOW_WRITE); if (lock->read_wait.data) free_all_read_locks(lock, (lock_type == TL_WRITE_CONCURRENT_INSERT || lock_type == TL_WRITE_ALLOW_WRITE)); } else if (!data && lock->read_wait.data) free_all_read_locks(lock,0); } end: check_locks(lock, "after waking up waiters", TL_UNLOCK, 0); DBUG_VOID_RETURN; } /* Get all locks in a specific order to avoid dead-locks Sort according to lock position and put write_locks before read_locks if lock on same lock. Locks on MERGE tables has lower priority than other locks of the same type. See comment for lock_priority. */ static void sort_locks(THR_LOCK_DATA **data,uint count) { THR_LOCK_DATA **pos,**end,**prev,*tmp; /* Sort locks with insertion sort (fast because almost always few locks) */ for (pos=data+1,end=data+count; pos < end ; pos++) { tmp= *pos; if (LOCK_CMP(tmp,pos[-1])) { prev=pos; do { prev[0]=prev[-1]; } while (--prev != data && LOCK_CMP(tmp,prev[-1])); prev[0]=tmp; } } } enum enum_thr_lock_result thr_multi_lock(THR_LOCK_DATA **data, uint count, THR_LOCK_INFO *owner, ulong lock_wait_timeout) { THR_LOCK_DATA **pos, **end, **first_lock; DBUG_ENTER("thr_multi_lock"); DBUG_PRINT("lock",("data: 0x%lx count: %d", (long) data, count)); if (count > 1) sort_locks(data,count); else if (count == 0) DBUG_RETURN(THR_LOCK_SUCCESS); /* lock everything */ for (pos=data,end=data+count; pos < end ; pos++) { enum enum_thr_lock_result result= thr_lock(*pos, owner, lock_wait_timeout); if (result != THR_LOCK_SUCCESS) { /* Aborted */ thr_multi_unlock(data,(uint) (pos-data), 0); /* Mark all requested locks as TL_UNLOCK (to simplify lock checking) */ for ( ; pos < end ; pos++) (*pos)->type= TL_UNLOCK; DBUG_RETURN(result); } DEBUG_SYNC_C("thr_multi_lock_after_thr_lock"); #ifdef MAIN printf("Thread: %s Got lock: 0x%lx type: %d\n",my_thread_name(), (long) pos[0]->lock, pos[0]->type); fflush(stdout); #endif } /* Call start_trans for all locks. If we lock the same table multiple times, we must use the same status_param; We ensure this by calling copy_status() for all copies of the same tables. */ if ((*data)->lock->start_trans) ((*data)->lock->start_trans)((*data)->status_param); for (first_lock=data, pos= data+1 ; pos < end ; pos++) { /* Get the current status (row count, checksum, trid etc) */ if ((*pos)->lock->start_trans) (*(*pos)->lock->start_trans)((*pos)->status_param); /* If same table as previous table use pointer to previous status information to ensure that all read/write tables shares same state. */ if (pos[0]->lock == pos[-1]->lock && pos[0]->lock->copy_status) (pos[0]->lock->copy_status)((*pos)->status_param, (*first_lock)->status_param); else { /* Different lock, use this as base for next lock */ first_lock= pos; } } DBUG_RETURN(THR_LOCK_SUCCESS); } /** Merge two sets of locks. @param data All locks. First old locks, then new locks. @param old_count Original number of locks. These are first in 'data'. @param new_count How many new locks The merge is needed if the new locks contains same tables as the old locks, in which case we have to ensure that same tables shares the same status (as after a thr_multi_lock()). */ void thr_merge_locks(THR_LOCK_DATA **data, uint old_count, uint new_count) { THR_LOCK_DATA **pos, **end, **first_lock= 0; DBUG_ENTER("thr_merge_lock"); /* Remove marks on old locks to make them sort before new ones */ for (pos=data, end= pos + old_count; pos < end ; pos++) (*pos)->priority&= ~THR_LOCK_LATE_PRIV; /* Mark new locks with LATE_PRIV to make them sort after org ones */ for (pos=data + old_count, end= pos + new_count; pos < end ; pos++) (*pos)->priority|= THR_LOCK_LATE_PRIV; sort_locks(data, old_count + new_count); for (pos=data ; pos < end ; pos++) { /* Check if lock was unlocked before */ if (pos[0]->type == TL_UNLOCK || ! pos[0]->lock->fix_status) { DBUG_PRINT("info", ("lock skipped. unlocked: %d fix_status: %d", pos[0]->type == TL_UNLOCK, pos[0]->lock->fix_status == 0)); continue; } /* If same table as previous table use pointer to previous status information to ensure that all read/write tables shares same state. */ if (first_lock && pos[0]->lock == first_lock[0]->lock) (pos[0]->lock->fix_status)((*first_lock)->status_param, (*pos)->status_param); else { /* Different lock, use this as base for next lock */ first_lock= pos; (pos[0]->lock->fix_status)((*first_lock)->status_param, 0); } } DBUG_VOID_RETURN; } /* Unlock all locks */ void thr_multi_unlock(THR_LOCK_DATA **data,uint count, uint unlock_flags) { THR_LOCK_DATA **pos,**end; DBUG_ENTER("thr_multi_unlock"); DBUG_PRINT("lock",("data: 0x%lx count: %d flags: %u", (long) data, count, unlock_flags)); for (pos=data,end=data+count; pos < end ; pos++) { #ifdef MAIN printf("Thread: %s Rel lock: 0x%lx type: %d\n", my_thread_name(), (long) pos[0]->lock, pos[0]->type); fflush(stdout); #endif if ((*pos)->type != TL_UNLOCK) thr_unlock(*pos, unlock_flags); else { DBUG_PRINT("lock",("Free lock: data: 0x%lx thread: 0x%lx lock: 0x%lx", (long) *pos, (*pos)->owner->thread_id, (long) (*pos)->lock)); } } DBUG_VOID_RETURN; } /* Abort all threads waiting for a lock. The lock will be upgraded to TL_WRITE_ONLY to abort any new accesses to the lock */ void thr_abort_locks(THR_LOCK *lock, my_bool upgrade_lock) { THR_LOCK_DATA *data; DBUG_ENTER("thr_abort_locks"); mysql_mutex_lock(&lock->mutex); for (data=lock->read_wait.data; data ; data=data->next) { data->type=TL_UNLOCK; /* Mark killed */ /* It's safe to signal the cond first: we're still holding the mutex. */ mysql_cond_signal(data->cond); data->cond=0; /* Removed from list */ } for (data=lock->write_wait.data; data ; data=data->next) { data->type=TL_UNLOCK; mysql_cond_signal(data->cond); data->cond=0; } lock->read_wait.last= &lock->read_wait.data; lock->write_wait.last= &lock->write_wait.data; lock->read_wait.data=lock->write_wait.data=0; if (upgrade_lock && lock->write.data) lock->write.data->type=TL_WRITE_ONLY; mysql_mutex_unlock(&lock->mutex); DBUG_VOID_RETURN; } /* Abort all locks for specific table/thread combination This is used to abort all locks for a specific thread */ my_bool thr_abort_locks_for_thread(THR_LOCK *lock, my_thread_id thread_id) { THR_LOCK_DATA *data; my_bool found= FALSE; DBUG_ENTER("thr_abort_locks_for_thread"); mysql_mutex_lock(&lock->mutex); for (data= lock->read_wait.data; data ; data= data->next) { if (data->owner->thread_id == thread_id) /* purecov: tested */ { DBUG_PRINT("info",("Aborting read-wait lock")); data->type= TL_UNLOCK; /* Mark killed */ /* It's safe to signal the cond first: we're still holding the mutex. */ found= TRUE; mysql_cond_signal(data->cond); data->cond= 0; /* Removed from list */ if (((*data->prev)= data->next)) data->next->prev= data->prev; else lock->read_wait.last= data->prev; } } for (data= lock->write_wait.data; data ; data= data->next) { if (data->owner->thread_id == thread_id) /* purecov: tested */ { DBUG_PRINT("info",("Aborting write-wait lock")); data->type= TL_UNLOCK; found= TRUE; mysql_cond_signal(data->cond); data->cond= 0; if (((*data->prev)= data->next)) data->next->prev= data->prev; else lock->write_wait.last= data->prev; } } wake_up_waiters(lock); mysql_mutex_unlock(&lock->mutex); DBUG_RETURN(found); } /* Downgrade a WRITE_* to a lower WRITE level SYNOPSIS thr_downgrade_write_lock() in_data Lock data of thread downgrading its lock new_lock_type New write lock type RETURN VALUE NONE DESCRIPTION This can be used to downgrade a lock already owned. When the downgrade occurs also other waiters, both readers and writers can be allowed to start. The previous lock is often TL_WRITE_ONLY but can also be TL_WRITE. The normal downgrade variants are: TL_WRITE_ONLY => TL_WRITE after a short exclusive lock while holding a write table lock TL_WRITE_ONLY => TL_WRITE_ALLOW_WRITE After a short exclusive lock after already earlier having dongraded lock to TL_WRITE_ALLOW_WRITE The implementation is conservative and rather don't start rather than go on unknown paths to start, the common cases are handled. NOTE: In its current implementation it is only allowed to downgrade from TL_WRITE_ONLY. In this case there are no waiters. Thus no wake up logic is required. */ void thr_downgrade_write_lock(THR_LOCK_DATA *in_data, enum thr_lock_type new_lock_type) { THR_LOCK *lock=in_data->lock; #ifndef DBUG_OFF enum thr_lock_type old_lock_type= in_data->type; #endif DBUG_ENTER("thr_downgrade_write_only_lock"); mysql_mutex_lock(&lock->mutex); DBUG_ASSERT(old_lock_type == TL_WRITE_ONLY); DBUG_ASSERT(old_lock_type > new_lock_type); in_data->type= new_lock_type; check_locks(lock,"after downgrading lock", old_lock_type, 0); mysql_mutex_unlock(&lock->mutex); DBUG_VOID_RETURN; } /* Upgrade a WRITE_DELAY lock to a WRITE_LOCK */ my_bool thr_upgrade_write_delay_lock(THR_LOCK_DATA *data, enum thr_lock_type new_lock_type, ulong lock_wait_timeout) { THR_LOCK *lock=data->lock; enum enum_thr_lock_result res; DBUG_ENTER("thr_upgrade_write_delay_lock"); mysql_mutex_lock(&lock->mutex); if (data->type == TL_UNLOCK || data->type >= TL_WRITE_LOW_PRIORITY) { mysql_mutex_unlock(&lock->mutex); DBUG_RETURN(data->type == TL_UNLOCK); /* Test if Aborted */ } check_locks(lock,"before upgrading lock", data->type, 0); /* TODO: Upgrade to TL_WRITE_CONCURRENT_INSERT in some cases */ data->type= new_lock_type; /* Upgrade lock */ /* Check if someone has given us the lock */ if (!data->cond) { if (!lock->read.data) /* No read locks */ { /* We have the lock */ if (data->lock->get_status) (*data->lock->get_status)(data->status_param, 0); mysql_mutex_unlock(&lock->mutex); if (lock->start_trans) (*lock->start_trans)(data->status_param); DBUG_RETURN(0); } if (((*data->prev)=data->next)) /* remove from lock-list */ data->next->prev= data->prev; else lock->write.last=data->prev; if ((data->next=lock->write_wait.data)) /* Put first in lock_list */ data->next->prev= &data->next; else lock->write_wait.last= &data->next; data->prev= &lock->write_wait.data; lock->write_wait.data=data; check_locks(lock,"upgrading lock", new_lock_type, 0); } else { check_locks(lock,"waiting for lock", new_lock_type, 0); } res= wait_for_lock(&lock->write_wait, data, 1, lock_wait_timeout); if (res == THR_LOCK_SUCCESS && lock->start_trans) DBUG_RETURN((*lock->start_trans)(data->status_param)); DBUG_RETURN(0); } /* downgrade a WRITE lock to a WRITE_DELAY lock if there is pending locks */ my_bool thr_reschedule_write_lock(THR_LOCK_DATA *data, ulong lock_wait_timeout) { THR_LOCK *lock=data->lock; enum thr_lock_type write_lock_type; DBUG_ENTER("thr_reschedule_write_lock"); mysql_mutex_lock(&lock->mutex); if (!lock->read_wait.data) /* No waiting read locks */ { mysql_mutex_unlock(&lock->mutex); DBUG_RETURN(0); } write_lock_type= data->type; data->type=TL_WRITE_DELAYED; if (lock->update_status) (*lock->update_status)(data->status_param); if (((*data->prev)=data->next)) /* remove from lock-list */ data->next->prev= data->prev; else lock->write.last=data->prev; if ((data->next=lock->write_wait.data)) /* Put first in lock_list */ data->next->prev= &data->next; else lock->write_wait.last= &data->next; data->prev= &lock->write_wait.data; data->cond=get_cond(); /* This was zero */ lock->write_wait.data=data; free_all_read_locks(lock,0); mysql_mutex_unlock(&lock->mutex); DBUG_RETURN(thr_upgrade_write_delay_lock(data, write_lock_type, lock_wait_timeout)); } #include static void thr_print_lock(const char* name,struct st_lock_list *list) { THR_LOCK_DATA *data,**prev; uint count=0; if (list->data) { printf("%-10s: ",name); prev= &list->data; for (data=list->data; data && count++ < MAX_LOCKS ; data=data->next) { printf("0x%lx (%lu:%d); ", (ulong) data, data->owner->thread_id, (int) data->type); if (data->prev != prev) printf("\nWarning: prev didn't point at previous lock\n"); prev= &data->next; } puts(""); if (prev != list->last) printf("Warning: last didn't point at last lock\n"); } } void thr_print_locks(void) { LIST *list; uint count=0; mysql_mutex_lock(&THR_LOCK_lock); puts("Current locks:"); for (list= thr_lock_thread_list; list && count++ < MAX_THREADS; list= list_rest(list)) { THR_LOCK *lock=(THR_LOCK*) list->data; mysql_mutex_lock(&lock->mutex); printf("lock: 0x%lx:",(ulong) lock); if ((lock->write_wait.data || lock->read_wait.data) && (! lock->read.data && ! lock->write.data)) printf(" WARNING: "); if (lock->write.data) printf(" write"); if (lock->write_wait.data) printf(" write_wait"); if (lock->read.data) printf(" read"); if (lock->read_wait.data) printf(" read_wait"); puts(""); thr_print_lock("write",&lock->write); thr_print_lock("write_wait",&lock->write_wait); thr_print_lock("read",&lock->read); thr_print_lock("read_wait",&lock->read_wait); mysql_mutex_unlock(&lock->mutex); puts(""); } fflush(stdout); mysql_mutex_unlock(&THR_LOCK_lock); } /***************************************************************************** ** Test of thread locks ****************************************************************************/ #ifdef MAIN struct st_test { uint lock_nr; enum thr_lock_type lock_type; }; THR_LOCK locks[6]; /* Number of locks +1 */ struct st_test test_0[] = {{0,TL_READ}}; /* One lock */ struct st_test test_1[] = {{0,TL_READ},{0,TL_WRITE}}; /* Read and write lock of lock 0 */ struct st_test test_2[] = {{1,TL_WRITE},{0,TL_READ},{2,TL_READ}}; struct st_test test_3[] = {{2,TL_WRITE},{1,TL_READ},{0,TL_READ}}; /* Deadlock with test_2 ? */ struct st_test test_4[] = {{0,TL_WRITE},{0,TL_READ},{0,TL_WRITE},{0,TL_READ}}; struct st_test test_5[] = {{0,TL_READ},{1,TL_READ},{2,TL_READ},{3,TL_READ}}; /* Many reads */ struct st_test test_6[] = {{0,TL_WRITE},{1,TL_WRITE},{2,TL_WRITE},{3,TL_WRITE}}; /* Many writes */ struct st_test test_7[] = {{3,TL_READ}}; struct st_test test_8[] = {{1,TL_READ_NO_INSERT},{2,TL_READ_NO_INSERT},{3,TL_READ_NO_INSERT}}; /* Should be quick */ struct st_test test_9[] = {{4,TL_READ_HIGH_PRIORITY}}; struct st_test test_10[] ={{4,TL_WRITE}}; struct st_test test_11[] = {{0,TL_WRITE_LOW_PRIORITY},{1,TL_WRITE_LOW_PRIORITY},{2,TL_WRITE_LOW_PRIORITY},{3,TL_WRITE_LOW_PRIORITY}}; /* Many writes */ struct st_test test_12[] = {{0,TL_WRITE_CONCURRENT_INSERT},{1,TL_WRITE_CONCURRENT_INSERT},{2,TL_WRITE_CONCURRENT_INSERT},{3,TL_WRITE_CONCURRENT_INSERT}}; struct st_test test_13[] = {{0,TL_WRITE_CONCURRENT_INSERT},{1,TL_READ}}; struct st_test test_14[] = {{0,TL_WRITE_ALLOW_WRITE},{1,TL_READ}}; struct st_test test_15[] = {{0,TL_WRITE_ALLOW_WRITE},{1,TL_WRITE_ALLOW_WRITE}}; struct st_test *tests[] = {test_0,test_1,test_2,test_3,test_4,test_5,test_6, test_7,test_8,test_9,test_10,test_11,test_12, test_13,test_14,test_15}; int lock_counts[]= {sizeof(test_0)/sizeof(struct st_test), sizeof(test_1)/sizeof(struct st_test), sizeof(test_2)/sizeof(struct st_test), sizeof(test_3)/sizeof(struct st_test), sizeof(test_4)/sizeof(struct st_test), sizeof(test_5)/sizeof(struct st_test), sizeof(test_6)/sizeof(struct st_test), sizeof(test_7)/sizeof(struct st_test), sizeof(test_8)/sizeof(struct st_test), sizeof(test_9)/sizeof(struct st_test), sizeof(test_10)/sizeof(struct st_test), sizeof(test_11)/sizeof(struct st_test), sizeof(test_12)/sizeof(struct st_test), sizeof(test_13)/sizeof(struct st_test), sizeof(test_14)/sizeof(struct st_test), sizeof(test_15)/sizeof(struct st_test) }; static mysql_cond_t COND_thread_count; static mysql_mutex_t LOCK_thread_count; static uint thread_count; static ulong sum=0; #define MAX_LOCK_COUNT 8 #define TEST_TIMEOUT 100000 /* The following functions is for WRITE_CONCURRENT_INSERT */ static void test_get_status(void* param __attribute__((unused)), my_bool concurrent_insert __attribute__((unused))) { } static void test_update_status(void* param __attribute__((unused))) { } static void test_copy_status(void* to __attribute__((unused)) , void *from __attribute__((unused))) { } static my_bool test_check_status(void* param __attribute__((unused))) { return 0; } static void *test_thread(void *arg) { int i,j,param=*((int*) arg); THR_LOCK_DATA data[MAX_LOCK_COUNT]; THR_LOCK_INFO lock_info; THR_LOCK_DATA *multi_locks[MAX_LOCK_COUNT]; my_thread_init(); printf("Thread %s (%d) started\n",my_thread_name(),param); fflush(stdout); thr_lock_info_init(&lock_info); for (i=0; i < lock_counts[param] ; i++) thr_lock_data_init(locks+tests[param][i].lock_nr,data+i,NULL); for (j=1 ; j < 10 ; j++) /* try locking 10 times */ { for (i=0; i < lock_counts[param] ; i++) { /* Init multi locks */ multi_locks[i]= &data[i]; data[i].type= tests[param][i].lock_type; } thr_multi_lock(multi_locks, lock_counts[param], &lock_info, TEST_TIMEOUT); mysql_mutex_lock(&LOCK_thread_count); { int tmp=rand() & 7; /* Do something from 0-2 sec */ if (tmp == 0) sleep(1); else if (tmp == 1) sleep(2); else { ulong k; for (k=0 ; k < (ulong) (tmp-2)*100000L ; k++) sum+=k; } } mysql_mutex_unlock(&LOCK_thread_count); thr_multi_unlock(multi_locks,lock_counts[param], THR_UNLOCK_UPDATE_STATUS); } printf("Thread %s (%d) ended\n",my_thread_name(),param); fflush(stdout); thr_print_locks(); mysql_mutex_lock(&LOCK_thread_count); thread_count--; mysql_cond_signal(&COND_thread_count); /* Tell main we are ready */ mysql_mutex_unlock(&LOCK_thread_count); my_thread_end(); return 0; } int main(int argc __attribute__((unused)),char **argv __attribute__((unused))) { pthread_t tid; pthread_attr_t thr_attr; int param[array_elements(lock_counts)], error; uint i; MY_INIT(argv[0]); if (argc > 1 && argv[1][0] == '-' && argv[1][1] == '#') DBUG_PUSH(argv[1]+2); printf("Main thread: %s\n",my_thread_name()); if ((error= mysql_cond_init(0, &COND_thread_count, NULL))) { fprintf(stderr, "Got error: %d from mysql_cond_init (errno: %d)", error,errno); exit(1); } if ((error= mysql_mutex_init(0, &LOCK_thread_count, MY_MUTEX_INIT_FAST))) { fprintf(stderr, "Got error: %d from mysql_cond_init (errno: %d)", error,errno); exit(1); } for (i=0 ; i < array_elements(locks) ; i++) { thr_lock_init(locks+i); locks[i].check_status= test_check_status; locks[i].update_status=test_update_status; locks[i].copy_status= test_copy_status; locks[i].get_status= test_get_status; locks[i].allow_multiple_concurrent_insert= 1; } if ((error=pthread_attr_init(&thr_attr))) { fprintf(stderr,"Got error: %d from pthread_attr_init (errno: %d)", error,errno); exit(1); } if ((error=pthread_attr_setdetachstate(&thr_attr,PTHREAD_CREATE_DETACHED))) { fprintf(stderr, "Got error: %d from pthread_attr_setdetachstate (errno: %d)", error,errno); exit(1); } #ifndef pthread_attr_setstacksize /* void return value */ if ((error=pthread_attr_setstacksize(&thr_attr,65536L))) { fprintf(stderr,"Got error: %d from pthread_attr_setstacksize (errno: %d)", error,errno); exit(1); } #endif #ifdef HAVE_THR_SETCONCURRENCY (void) thr_setconcurrency(2); #endif for (i=0 ; i < array_elements(lock_counts) ; i++) { param[i]= i; if ((error= mysql_mutex_lock(&LOCK_thread_count))) { fprintf(stderr, "Got error: %d from mysql_mutex_lock (errno: %d)", error, errno); exit(1); } if ((error= mysql_thread_create(0, &tid, &thr_attr, test_thread, (void*) ¶m[i]))) { fprintf(stderr, "Got error: %d from mysql_thread_create (errno: %d)\n", error, errno); mysql_mutex_unlock(&LOCK_thread_count); exit(1); } thread_count++; mysql_mutex_unlock(&LOCK_thread_count); } pthread_attr_destroy(&thr_attr); if ((error= mysql_mutex_lock(&LOCK_thread_count))) fprintf(stderr, "Got error: %d from mysql_mutex_lock\n", error); while (thread_count) { if ((error= mysql_cond_wait(&COND_thread_count, &LOCK_thread_count))) fprintf(stderr, "Got error: %d from mysql_cond_wait\n", error); } if ((error= mysql_mutex_unlock(&LOCK_thread_count))) fprintf(stderr, "Got error: %d from mysql_mutex_unlock\n", error); for (i=0 ; i < array_elements(locks) ; i++) thr_lock_delete(locks+i); #ifdef EXTRA_DEBUG if (found_errors) printf("Got %d warnings\n",found_errors); else #endif printf("Test succeeded\n"); mysql_cond_destroy(&COND_thread_count); mysql_mutex_destroy(&LOCK_thread_count); my_end(MY_CHECK_ERROR); return 0; } #endif /* MAIN */