From 285e7aa179a6081531be3274772b89e8989fd107 Mon Sep 17 00:00:00 2001
From: Alexander Barkov
Date: Thu, 26 Sep 2013 18:02:17 +0400
Subject: MDEV-4425 REGEXP enhancements
---
pcre/AUTHORS | 45 +
pcre/CMakeLists.txt | 973 ++
pcre/ChangeLog | 5149 ++++++++
pcre/HACKING | 473 +
pcre/INSTALL | 370 +
pcre/LICENCE | 92 +
pcre/NEWS | 635 +
pcre/NON-AUTOTOOLS-BUILD | 764 ++
pcre/NON-UNIX-USE | 7 +
pcre/README | 974 ++
pcre/RunGrepTest | 567 +
pcre/RunTest | 1063 ++
pcre/RunTest.bat | 616 +
pcre/cmake/COPYING-CMAKE-SCRIPTS | 22 +
pcre/cmake/FindEditline.cmake | 17 +
pcre/cmake/FindPackageHandleStandardArgs.cmake | 58 +
pcre/cmake/FindReadline.cmake | 29 +
pcre/config-cmake.h.in | 54 +
pcre/config.h | 54 +
pcre/configure.ac | 1093 ++
pcre/doc/html/NON-AUTOTOOLS-BUILD.txt | 764 ++
pcre/doc/html/README.txt | 974 ++
pcre/doc/html/index.html | 185 +
pcre/doc/html/pcre-config.html | 109 +
pcre/doc/html/pcre.html | 210 +
pcre/doc/html/pcre16.html | 384 +
pcre/doc/html/pcre32.html | 383 +
pcre/doc/html/pcre_assign_jit_stack.html | 76 +
pcre/doc/html/pcre_compile.html | 108 +
pcre/doc/html/pcre_compile2.html | 112 +
pcre/doc/html/pcre_config.html | 91 +
pcre/doc/html/pcre_copy_named_substring.html | 65 +
pcre/doc/html/pcre_copy_substring.html | 61 +
pcre/doc/html/pcre_dfa_exec.html | 129 +
pcre/doc/html/pcre_exec.html | 111 +
pcre/doc/html/pcre_free_study.html | 46 +
pcre/doc/html/pcre_free_substring.html | 46 +
pcre/doc/html/pcre_free_substring_list.html | 46 +
pcre/doc/html/pcre_fullinfo.html | 108 +
pcre/doc/html/pcre_get_named_substring.html | 68 +
pcre/doc/html/pcre_get_stringnumber.html | 57 +
pcre/doc/html/pcre_get_stringtable_entries.html | 60 +
pcre/doc/html/pcre_get_substring.html | 64 +
pcre/doc/html/pcre_get_substring_list.html | 61 +
pcre/doc/html/pcre_jit_exec.html | 108 +
pcre/doc/html/pcre_jit_stack_alloc.html | 55 +
pcre/doc/html/pcre_jit_stack_free.html | 48 +
pcre/doc/html/pcre_maketables.html | 48 +
pcre/doc/html/pcre_pattern_to_host_byte_order.html | 58 +
pcre/doc/html/pcre_refcount.html | 51 +
pcre/doc/html/pcre_study.html | 68 +
pcre/doc/html/pcre_utf16_to_host_byte_order.html | 57 +
pcre/doc/html/pcre_utf32_to_host_byte_order.html | 57 +
pcre/doc/html/pcre_version.html | 46 +
pcre/doc/html/pcreapi.html | 2859 +++++
pcre/doc/html/pcrebuild.html | 534 +
pcre/doc/html/pcrecallout.html | 251 +
pcre/doc/html/pcrecompat.html | 229 +
pcre/doc/html/pcrecpp.html | 368 +
pcre/doc/html/pcredemo.html | 426 +
pcre/doc/html/pcregrep.html | 757 ++
pcre/doc/html/pcrejit.html | 452 +
pcre/doc/html/pcrelimits.html | 86 +
pcre/doc/html/pcrematching.html | 233 +
pcre/doc/html/pcrepartial.html | 499 +
pcre/doc/html/pcrepattern.html | 3118 +++++
pcre/doc/html/pcreperform.html | 195 +
pcre/doc/html/pcreposix.html | 292 +
pcre/doc/html/pcreprecompile.html | 158 +
pcre/doc/html/pcresample.html | 110 +
pcre/doc/html/pcrestack.html | 225 +
pcre/doc/html/pcresyntax.html | 525 +
pcre/doc/html/pcretest.html | 1100 ++
pcre/doc/html/pcreunicode.html | 262 +
pcre/doc/index.html.src | 185 +
pcre/doc/pcre-config.1 | 92 +
pcre/doc/pcre-config.txt | 86 +
pcre/doc/pcre.3 | 215 +
pcre/doc/pcre.txt | 10181 +++++++++++++++
pcre/doc/pcre16.3 | 391 +
pcre/doc/pcre32.3 | 390 +
pcre/doc/pcre_assign_jit_stack.3 | 61 +
pcre/doc/pcre_compile.3 | 98 +
pcre/doc/pcre_compile2.3 | 106 +
pcre/doc/pcre_config.3 | 76 +
pcre/doc/pcre_copy_named_substring.3 | 59 +
pcre/doc/pcre_copy_substring.3 | 52 +
pcre/doc/pcre_dfa_exec.3 | 126 +
pcre/doc/pcre_exec.3 | 104 +
pcre/doc/pcre_free_study.3 | 31 +
pcre/doc/pcre_free_substring.3 | 31 +
pcre/doc/pcre_free_substring_list.3 | 31 +
pcre/doc/pcre_fullinfo.3 | 95 +
pcre/doc/pcre_get_named_substring.3 | 62 +
pcre/doc/pcre_get_stringnumber.3 | 45 +
pcre/doc/pcre_get_stringtable_entries.3 | 48 +
pcre/doc/pcre_get_substring.3 | 55 +
pcre/doc/pcre_get_substring_list.3 | 49 +
pcre/doc/pcre_jit_exec.3 | 104 +
pcre/doc/pcre_jit_stack_alloc.3 | 45 +
pcre/doc/pcre_jit_stack_free.3 | 35 +
pcre/doc/pcre_maketables.3 | 33 +
pcre/doc/pcre_pattern_to_host_byte_order.3 | 46 +
pcre/doc/pcre_refcount.3 | 36 +
pcre/doc/pcre_study.3 | 56 +
pcre/doc/pcre_utf16_to_host_byte_order.3 | 46 +
pcre/doc/pcre_utf32_to_host_byte_order.3 | 46 +
pcre/doc/pcre_version.3 | 31 +
pcre/doc/pcreapi.3 | 2891 +++++
pcre/doc/pcrebuild.3 | 550 +
pcre/doc/pcrecallout.3 | 222 +
pcre/doc/pcrecompat.3 | 195 +
pcre/doc/pcrecpp.3 | 348 +
pcre/doc/pcredemo.3 | 424 +
pcre/doc/pcregrep.1 | 679 +
pcre/doc/pcregrep.txt | 740 ++
pcre/doc/pcrejit.3 | 431 +
pcre/doc/pcrelimits.3 | 67 +
pcre/doc/pcrematching.3 | 206 +
pcre/doc/pcrepartial.3 | 467 +
pcre/doc/pcrepattern.3 | 3150 +++++
pcre/doc/pcreperform.3 | 177 +
pcre/doc/pcreposix.3 | 270 +
pcre/doc/pcreprecompile.3 | 151 +
pcre/doc/pcresample.3 | 99 +
pcre/doc/pcrestack.3 | 215 +
pcre/doc/pcresyntax.3 | 500 +
pcre/doc/pcretest.1 | 1099 ++
pcre/doc/pcretest.txt | 1034 ++
pcre/doc/pcreunicode.3 | 249 +
pcre/doc/perltest.txt | 42 +
pcre/pcre.h | 663 +
pcre/pcre.h.in | 663 +
pcre/pcre16_byte_order.c | 45 +
pcre/pcre16_chartables.c | 45 +
pcre/pcre16_compile.c | 45 +
pcre/pcre16_config.c | 45 +
pcre/pcre16_dfa_exec.c | 45 +
pcre/pcre16_exec.c | 45 +
pcre/pcre16_fullinfo.c | 45 +
pcre/pcre16_get.c | 45 +
pcre/pcre16_globals.c | 45 +
pcre/pcre16_jit_compile.c | 45 +
pcre/pcre16_maketables.c | 45 +
pcre/pcre16_newline.c | 45 +
pcre/pcre16_ord2utf16.c | 90 +
pcre/pcre16_printint.c | 45 +
pcre/pcre16_refcount.c | 45 +
pcre/pcre16_string_utils.c | 45 +
pcre/pcre16_study.c | 45 +
pcre/pcre16_tables.c | 45 +
pcre/pcre16_ucd.c | 45 +
pcre/pcre16_utf16_utils.c | 130 +
pcre/pcre16_valid_utf16.c | 137 +
pcre/pcre16_version.c | 45 +
pcre/pcre16_xclass.c | 45 +
pcre/pcre32_byte_order.c | 45 +
pcre/pcre32_chartables.c | 45 +
pcre/pcre32_compile.c | 45 +
pcre/pcre32_config.c | 45 +
pcre/pcre32_dfa_exec.c | 45 +
pcre/pcre32_exec.c | 45 +
pcre/pcre32_fullinfo.c | 45 +
pcre/pcre32_get.c | 45 +
pcre/pcre32_globals.c | 45 +
pcre/pcre32_jit_compile.c | 45 +
pcre/pcre32_maketables.c | 45 +
pcre/pcre32_newline.c | 45 +
pcre/pcre32_ord2utf32.c | 82 +
pcre/pcre32_printint.c | 45 +
pcre/pcre32_refcount.c | 45 +
pcre/pcre32_string_utils.c | 45 +
pcre/pcre32_study.c | 45 +
pcre/pcre32_tables.c | 45 +
pcre/pcre32_ucd.c | 45 +
pcre/pcre32_utf32_utils.c | 141 +
pcre/pcre32_valid_utf32.c | 124 +
pcre/pcre32_version.c | 45 +
pcre/pcre32_xclass.c | 45 +
pcre/pcre_byte_order.c | 319 +
pcre/pcre_chartables.c | 198 +
pcre/pcre_chartables.c.dist | 198 +
pcre/pcre_compile.c | 8432 ++++++++++++
pcre/pcre_config.c | 186 +
pcre/pcre_dfa_exec.c | 3608 ++++++
pcre/pcre_exec.c | 7213 +++++++++++
pcre/pcre_fullinfo.c | 241 +
pcre/pcre_get.c | 662 +
pcre/pcre_globals.c | 84 +
pcre/pcre_internal.h | 2771 ++++
pcre/pcre_jit_compile.c | 9752 ++++++++++++++
pcre/pcre_jit_test.c | 1691 +++
pcre/pcre_maketables.c | 151 +
pcre/pcre_newline.c | 210 +
pcre/pcre_ord2utf8.c | 94 +
pcre/pcre_printint.c | 766 ++
pcre/pcre_refcount.c | 92 +
pcre/pcre_scanner.cc | 199 +
pcre/pcre_scanner.h | 172 +
pcre/pcre_scanner_unittest.cc | 159 +
pcre/pcre_string_utils.c | 211 +
pcre/pcre_stringpiece.cc | 43 +
pcre/pcre_stringpiece.h | 179 +
pcre/pcre_stringpiece.h.in | 179 +
pcre/pcre_stringpiece_unittest.cc | 150 +
pcre/pcre_study.c | 1562 +++
pcre/pcre_tables.c | 658 +
pcre/pcre_ucd.c | 3298 +++++
pcre/pcre_valid_utf8.c | 301 +
pcre/pcre_version.c | 98 +
pcre/pcre_xclass.c | 212 +
pcre/pcrecpp.cc | 922 ++
pcre/pcrecpp.h | 710 ++
pcre/pcrecpp_internal.h | 71 +
pcre/pcrecpp_unittest.cc | 1291 ++
pcre/pcrecpparg.h | 174 +
pcre/pcrecpparg.h.in | 174 +
pcre/pcredemo.c | 406 +
pcre/pcregrep.c | 3186 +++++
pcre/pcreposix.c | 420 +
pcre/pcreposix.h | 150 +
pcre/pcretest.c | 5524 ++++++++
pcre/testdata/grepbinary | Bin 0 -> 45 bytes
pcre/testdata/grepfilelist | 3 +
pcre/testdata/grepinput | 611 +
pcre/testdata/grepinput3 | 15 +
pcre/testdata/grepinput8 | 11 +
pcre/testdata/grepinputv | 4 +
pcre/testdata/grepinputx | 43 +
pcre/testdata/greplist | 7 +
pcre/testdata/grepoutput | 742 ++
pcre/testdata/grepoutput8 | 12 +
pcre/testdata/grepoutputN | 16 +
pcre/testdata/greppatN4 | 2 +
pcre/testdata/saved16 | Bin 0 -> 86 bytes
pcre/testdata/saved16BE-1 | Bin 0 -> 410 bytes
pcre/testdata/saved16BE-2 | Bin 0 -> 344 bytes
pcre/testdata/saved16LE-1 | Bin 0 -> 410 bytes
pcre/testdata/saved16LE-2 | Bin 0 -> 344 bytes
pcre/testdata/saved32 | Bin 0 -> 108 bytes
pcre/testdata/saved32BE-1 | Bin 0 -> 552 bytes
pcre/testdata/saved32BE-2 | Bin 0 -> 456 bytes
pcre/testdata/saved32LE-1 | Bin 0 -> 552 bytes
pcre/testdata/saved32LE-2 | Bin 0 -> 456 bytes
pcre/testdata/saved8 | Bin 0 -> 77 bytes
pcre/testdata/testinput1 | 5611 ++++++++
pcre/testdata/testinput10 | 1401 ++
pcre/testdata/testinput11 | 135 +
pcre/testdata/testinput12 | 90 +
pcre/testdata/testinput13 | 9 +
pcre/testdata/testinput14 | 329 +
pcre/testdata/testinput15 | 364 +
pcre/testdata/testinput16 | 35 +
pcre/testdata/testinput17 | 296 +
pcre/testdata/testinput18 | 298 +
pcre/testdata/testinput19 | 22 +
pcre/testdata/testinput2 | 3840 ++++++
pcre/testdata/testinput20 | 19 +
pcre/testdata/testinput21 | 22 +
pcre/testdata/testinput22 | 18 +
pcre/testdata/testinput23 | 16 +
pcre/testdata/testinput24 | 9 +
pcre/testdata/testinput25 | 32 +
pcre/testdata/testinput26 | 10 +
pcre/testdata/testinput3 | 95 +
pcre/testdata/testinput4 | 714 ++
pcre/testdata/testinput5 | 772 ++
pcre/testdata/testinput6 | 1327 ++
pcre/testdata/testinput7 | 738 ++
pcre/testdata/testinput8 | 4804 +++++++
pcre/testdata/testinput9 | 717 ++
pcre/testdata/testinputEBC | 121 +
pcre/testdata/testoutput1 | 9203 ++++++++++++++
pcre/testdata/testoutput10 | 2851 +++++
pcre/testdata/testoutput11-16 | 713 ++
pcre/testdata/testoutput11-32 | 713 ++
pcre/testdata/testoutput11-8 | 713 ++
pcre/testdata/testoutput12 | 176 +
pcre/testdata/testoutput13 | 21 +
pcre/testdata/testoutput14 | 476 +
pcre/testdata/testoutput15 | 1137 ++
pcre/testdata/testoutput16 | 121 +
pcre/testdata/testoutput17 | 505 +
pcre/testdata/testoutput18-16 | 1024 ++
pcre/testdata/testoutput18-32 | 1021 ++
pcre/testdata/testoutput19 | 88 +
pcre/testdata/testoutput2 | 12668 +++++++++++++++++++
pcre/testdata/testoutput20 | 27 +
pcre/testdata/testoutput21-16 | 96 +
pcre/testdata/testoutput21-32 | 96 +
pcre/testdata/testoutput22-16 | 76 +
pcre/testdata/testoutput22-32 | 76 +
pcre/testdata/testoutput23 | 42 +
pcre/testdata/testoutput24 | 11 +
pcre/testdata/testoutput25 | 79 +
pcre/testdata/testoutput26 | 12 +
pcre/testdata/testoutput3 | 169 +
pcre/testdata/testoutput4 | 1260 ++
pcre/testdata/testoutput5 | 1849 +++
pcre/testdata/testoutput6 | 2149 ++++
pcre/testdata/testoutput7 | 1581 +++
pcre/testdata/testoutput8 | 8023 ++++++++++++
pcre/testdata/testoutput9 | 1371 ++
pcre/testdata/testoutputEBC | 182 +
pcre/testdata/wintestinput3 | 91 +
pcre/testdata/wintestoutput3 | 166 +
pcre/ucp.h | 197 +
307 files changed, 191241 insertions(+)
create mode 100644 pcre/AUTHORS
create mode 100644 pcre/CMakeLists.txt
create mode 100644 pcre/ChangeLog
create mode 100644 pcre/HACKING
create mode 100644 pcre/INSTALL
create mode 100644 pcre/LICENCE
create mode 100644 pcre/NEWS
create mode 100644 pcre/NON-AUTOTOOLS-BUILD
create mode 100644 pcre/NON-UNIX-USE
create mode 100644 pcre/README
create mode 100755 pcre/RunGrepTest
create mode 100755 pcre/RunTest
create mode 100644 pcre/RunTest.bat
create mode 100644 pcre/cmake/COPYING-CMAKE-SCRIPTS
create mode 100644 pcre/cmake/FindEditline.cmake
create mode 100644 pcre/cmake/FindPackageHandleStandardArgs.cmake
create mode 100644 pcre/cmake/FindReadline.cmake
create mode 100644 pcre/config-cmake.h.in
create mode 100644 pcre/config.h
create mode 100644 pcre/configure.ac
create mode 100644 pcre/doc/html/NON-AUTOTOOLS-BUILD.txt
create mode 100644 pcre/doc/html/README.txt
create mode 100644 pcre/doc/html/index.html
create mode 100644 pcre/doc/html/pcre-config.html
create mode 100644 pcre/doc/html/pcre.html
create mode 100644 pcre/doc/html/pcre16.html
create mode 100644 pcre/doc/html/pcre32.html
create mode 100644 pcre/doc/html/pcre_assign_jit_stack.html
create mode 100644 pcre/doc/html/pcre_compile.html
create mode 100644 pcre/doc/html/pcre_compile2.html
create mode 100644 pcre/doc/html/pcre_config.html
create mode 100644 pcre/doc/html/pcre_copy_named_substring.html
create mode 100644 pcre/doc/html/pcre_copy_substring.html
create mode 100644 pcre/doc/html/pcre_dfa_exec.html
create mode 100644 pcre/doc/html/pcre_exec.html
create mode 100644 pcre/doc/html/pcre_free_study.html
create mode 100644 pcre/doc/html/pcre_free_substring.html
create mode 100644 pcre/doc/html/pcre_free_substring_list.html
create mode 100644 pcre/doc/html/pcre_fullinfo.html
create mode 100644 pcre/doc/html/pcre_get_named_substring.html
create mode 100644 pcre/doc/html/pcre_get_stringnumber.html
create mode 100644 pcre/doc/html/pcre_get_stringtable_entries.html
create mode 100644 pcre/doc/html/pcre_get_substring.html
create mode 100644 pcre/doc/html/pcre_get_substring_list.html
create mode 100644 pcre/doc/html/pcre_jit_exec.html
create mode 100644 pcre/doc/html/pcre_jit_stack_alloc.html
create mode 100644 pcre/doc/html/pcre_jit_stack_free.html
create mode 100644 pcre/doc/html/pcre_maketables.html
create mode 100644 pcre/doc/html/pcre_pattern_to_host_byte_order.html
create mode 100644 pcre/doc/html/pcre_refcount.html
create mode 100644 pcre/doc/html/pcre_study.html
create mode 100644 pcre/doc/html/pcre_utf16_to_host_byte_order.html
create mode 100644 pcre/doc/html/pcre_utf32_to_host_byte_order.html
create mode 100644 pcre/doc/html/pcre_version.html
create mode 100644 pcre/doc/html/pcreapi.html
create mode 100644 pcre/doc/html/pcrebuild.html
create mode 100644 pcre/doc/html/pcrecallout.html
create mode 100644 pcre/doc/html/pcrecompat.html
create mode 100644 pcre/doc/html/pcrecpp.html
create mode 100644 pcre/doc/html/pcredemo.html
create mode 100644 pcre/doc/html/pcregrep.html
create mode 100644 pcre/doc/html/pcrejit.html
create mode 100644 pcre/doc/html/pcrelimits.html
create mode 100644 pcre/doc/html/pcrematching.html
create mode 100644 pcre/doc/html/pcrepartial.html
create mode 100644 pcre/doc/html/pcrepattern.html
create mode 100644 pcre/doc/html/pcreperform.html
create mode 100644 pcre/doc/html/pcreposix.html
create mode 100644 pcre/doc/html/pcreprecompile.html
create mode 100644 pcre/doc/html/pcresample.html
create mode 100644 pcre/doc/html/pcrestack.html
create mode 100644 pcre/doc/html/pcresyntax.html
create mode 100644 pcre/doc/html/pcretest.html
create mode 100644 pcre/doc/html/pcreunicode.html
create mode 100644 pcre/doc/index.html.src
create mode 100644 pcre/doc/pcre-config.1
create mode 100644 pcre/doc/pcre-config.txt
create mode 100644 pcre/doc/pcre.3
create mode 100644 pcre/doc/pcre.txt
create mode 100644 pcre/doc/pcre16.3
create mode 100644 pcre/doc/pcre32.3
create mode 100644 pcre/doc/pcre_assign_jit_stack.3
create mode 100644 pcre/doc/pcre_compile.3
create mode 100644 pcre/doc/pcre_compile2.3
create mode 100644 pcre/doc/pcre_config.3
create mode 100644 pcre/doc/pcre_copy_named_substring.3
create mode 100644 pcre/doc/pcre_copy_substring.3
create mode 100644 pcre/doc/pcre_dfa_exec.3
create mode 100644 pcre/doc/pcre_exec.3
create mode 100644 pcre/doc/pcre_free_study.3
create mode 100644 pcre/doc/pcre_free_substring.3
create mode 100644 pcre/doc/pcre_free_substring_list.3
create mode 100644 pcre/doc/pcre_fullinfo.3
create mode 100644 pcre/doc/pcre_get_named_substring.3
create mode 100644 pcre/doc/pcre_get_stringnumber.3
create mode 100644 pcre/doc/pcre_get_stringtable_entries.3
create mode 100644 pcre/doc/pcre_get_substring.3
create mode 100644 pcre/doc/pcre_get_substring_list.3
create mode 100644 pcre/doc/pcre_jit_exec.3
create mode 100644 pcre/doc/pcre_jit_stack_alloc.3
create mode 100644 pcre/doc/pcre_jit_stack_free.3
create mode 100644 pcre/doc/pcre_maketables.3
create mode 100644 pcre/doc/pcre_pattern_to_host_byte_order.3
create mode 100644 pcre/doc/pcre_refcount.3
create mode 100644 pcre/doc/pcre_study.3
create mode 100644 pcre/doc/pcre_utf16_to_host_byte_order.3
create mode 100644 pcre/doc/pcre_utf32_to_host_byte_order.3
create mode 100644 pcre/doc/pcre_version.3
create mode 100644 pcre/doc/pcreapi.3
create mode 100644 pcre/doc/pcrebuild.3
create mode 100644 pcre/doc/pcrecallout.3
create mode 100644 pcre/doc/pcrecompat.3
create mode 100644 pcre/doc/pcrecpp.3
create mode 100644 pcre/doc/pcredemo.3
create mode 100644 pcre/doc/pcregrep.1
create mode 100644 pcre/doc/pcregrep.txt
create mode 100644 pcre/doc/pcrejit.3
create mode 100644 pcre/doc/pcrelimits.3
create mode 100644 pcre/doc/pcrematching.3
create mode 100644 pcre/doc/pcrepartial.3
create mode 100644 pcre/doc/pcrepattern.3
create mode 100644 pcre/doc/pcreperform.3
create mode 100644 pcre/doc/pcreposix.3
create mode 100644 pcre/doc/pcreprecompile.3
create mode 100644 pcre/doc/pcresample.3
create mode 100644 pcre/doc/pcrestack.3
create mode 100644 pcre/doc/pcresyntax.3
create mode 100644 pcre/doc/pcretest.1
create mode 100644 pcre/doc/pcretest.txt
create mode 100644 pcre/doc/pcreunicode.3
create mode 100644 pcre/doc/perltest.txt
create mode 100644 pcre/pcre.h
create mode 100644 pcre/pcre.h.in
create mode 100644 pcre/pcre16_byte_order.c
create mode 100644 pcre/pcre16_chartables.c
create mode 100644 pcre/pcre16_compile.c
create mode 100644 pcre/pcre16_config.c
create mode 100644 pcre/pcre16_dfa_exec.c
create mode 100644 pcre/pcre16_exec.c
create mode 100644 pcre/pcre16_fullinfo.c
create mode 100644 pcre/pcre16_get.c
create mode 100644 pcre/pcre16_globals.c
create mode 100644 pcre/pcre16_jit_compile.c
create mode 100644 pcre/pcre16_maketables.c
create mode 100644 pcre/pcre16_newline.c
create mode 100644 pcre/pcre16_ord2utf16.c
create mode 100644 pcre/pcre16_printint.c
create mode 100644 pcre/pcre16_refcount.c
create mode 100644 pcre/pcre16_string_utils.c
create mode 100644 pcre/pcre16_study.c
create mode 100644 pcre/pcre16_tables.c
create mode 100644 pcre/pcre16_ucd.c
create mode 100644 pcre/pcre16_utf16_utils.c
create mode 100644 pcre/pcre16_valid_utf16.c
create mode 100644 pcre/pcre16_version.c
create mode 100644 pcre/pcre16_xclass.c
create mode 100644 pcre/pcre32_byte_order.c
create mode 100644 pcre/pcre32_chartables.c
create mode 100644 pcre/pcre32_compile.c
create mode 100644 pcre/pcre32_config.c
create mode 100644 pcre/pcre32_dfa_exec.c
create mode 100644 pcre/pcre32_exec.c
create mode 100644 pcre/pcre32_fullinfo.c
create mode 100644 pcre/pcre32_get.c
create mode 100644 pcre/pcre32_globals.c
create mode 100644 pcre/pcre32_jit_compile.c
create mode 100644 pcre/pcre32_maketables.c
create mode 100644 pcre/pcre32_newline.c
create mode 100644 pcre/pcre32_ord2utf32.c
create mode 100644 pcre/pcre32_printint.c
create mode 100644 pcre/pcre32_refcount.c
create mode 100644 pcre/pcre32_string_utils.c
create mode 100644 pcre/pcre32_study.c
create mode 100644 pcre/pcre32_tables.c
create mode 100644 pcre/pcre32_ucd.c
create mode 100644 pcre/pcre32_utf32_utils.c
create mode 100644 pcre/pcre32_valid_utf32.c
create mode 100644 pcre/pcre32_version.c
create mode 100644 pcre/pcre32_xclass.c
create mode 100644 pcre/pcre_byte_order.c
create mode 100644 pcre/pcre_chartables.c
create mode 100644 pcre/pcre_chartables.c.dist
create mode 100644 pcre/pcre_compile.c
create mode 100644 pcre/pcre_config.c
create mode 100644 pcre/pcre_dfa_exec.c
create mode 100644 pcre/pcre_exec.c
create mode 100644 pcre/pcre_fullinfo.c
create mode 100644 pcre/pcre_get.c
create mode 100644 pcre/pcre_globals.c
create mode 100644 pcre/pcre_internal.h
create mode 100644 pcre/pcre_jit_compile.c
create mode 100644 pcre/pcre_jit_test.c
create mode 100644 pcre/pcre_maketables.c
create mode 100644 pcre/pcre_newline.c
create mode 100644 pcre/pcre_ord2utf8.c
create mode 100644 pcre/pcre_printint.c
create mode 100644 pcre/pcre_refcount.c
create mode 100644 pcre/pcre_scanner.cc
create mode 100644 pcre/pcre_scanner.h
create mode 100644 pcre/pcre_scanner_unittest.cc
create mode 100644 pcre/pcre_string_utils.c
create mode 100644 pcre/pcre_stringpiece.cc
create mode 100644 pcre/pcre_stringpiece.h
create mode 100644 pcre/pcre_stringpiece.h.in
create mode 100644 pcre/pcre_stringpiece_unittest.cc
create mode 100644 pcre/pcre_study.c
create mode 100644 pcre/pcre_tables.c
create mode 100644 pcre/pcre_ucd.c
create mode 100644 pcre/pcre_valid_utf8.c
create mode 100644 pcre/pcre_version.c
create mode 100644 pcre/pcre_xclass.c
create mode 100644 pcre/pcrecpp.cc
create mode 100644 pcre/pcrecpp.h
create mode 100644 pcre/pcrecpp_internal.h
create mode 100644 pcre/pcrecpp_unittest.cc
create mode 100644 pcre/pcrecpparg.h
create mode 100644 pcre/pcrecpparg.h.in
create mode 100644 pcre/pcredemo.c
create mode 100644 pcre/pcregrep.c
create mode 100644 pcre/pcreposix.c
create mode 100644 pcre/pcreposix.h
create mode 100644 pcre/pcretest.c
create mode 100644 pcre/testdata/grepbinary
create mode 100644 pcre/testdata/grepfilelist
create mode 100644 pcre/testdata/grepinput
create mode 100644 pcre/testdata/grepinput3
create mode 100644 pcre/testdata/grepinput8
create mode 100644 pcre/testdata/grepinputv
create mode 100644 pcre/testdata/grepinputx
create mode 100644 pcre/testdata/greplist
create mode 100644 pcre/testdata/grepoutput
create mode 100644 pcre/testdata/grepoutput8
create mode 100644 pcre/testdata/grepoutputN
create mode 100644 pcre/testdata/greppatN4
create mode 100644 pcre/testdata/saved16
create mode 100644 pcre/testdata/saved16BE-1
create mode 100644 pcre/testdata/saved16BE-2
create mode 100644 pcre/testdata/saved16LE-1
create mode 100644 pcre/testdata/saved16LE-2
create mode 100644 pcre/testdata/saved32
create mode 100644 pcre/testdata/saved32BE-1
create mode 100644 pcre/testdata/saved32BE-2
create mode 100644 pcre/testdata/saved32LE-1
create mode 100644 pcre/testdata/saved32LE-2
create mode 100644 pcre/testdata/saved8
create mode 100644 pcre/testdata/testinput1
create mode 100644 pcre/testdata/testinput10
create mode 100644 pcre/testdata/testinput11
create mode 100644 pcre/testdata/testinput12
create mode 100644 pcre/testdata/testinput13
create mode 100644 pcre/testdata/testinput14
create mode 100644 pcre/testdata/testinput15
create mode 100644 pcre/testdata/testinput16
create mode 100644 pcre/testdata/testinput17
create mode 100644 pcre/testdata/testinput18
create mode 100644 pcre/testdata/testinput19
create mode 100644 pcre/testdata/testinput2
create mode 100644 pcre/testdata/testinput20
create mode 100644 pcre/testdata/testinput21
create mode 100644 pcre/testdata/testinput22
create mode 100644 pcre/testdata/testinput23
create mode 100644 pcre/testdata/testinput24
create mode 100644 pcre/testdata/testinput25
create mode 100644 pcre/testdata/testinput26
create mode 100644 pcre/testdata/testinput3
create mode 100644 pcre/testdata/testinput4
create mode 100644 pcre/testdata/testinput5
create mode 100644 pcre/testdata/testinput6
create mode 100644 pcre/testdata/testinput7
create mode 100644 pcre/testdata/testinput8
create mode 100644 pcre/testdata/testinput9
create mode 100644 pcre/testdata/testinputEBC
create mode 100644 pcre/testdata/testoutput1
create mode 100644 pcre/testdata/testoutput10
create mode 100644 pcre/testdata/testoutput11-16
create mode 100644 pcre/testdata/testoutput11-32
create mode 100644 pcre/testdata/testoutput11-8
create mode 100644 pcre/testdata/testoutput12
create mode 100644 pcre/testdata/testoutput13
create mode 100644 pcre/testdata/testoutput14
create mode 100644 pcre/testdata/testoutput15
create mode 100644 pcre/testdata/testoutput16
create mode 100644 pcre/testdata/testoutput17
create mode 100644 pcre/testdata/testoutput18-16
create mode 100644 pcre/testdata/testoutput18-32
create mode 100644 pcre/testdata/testoutput19
create mode 100644 pcre/testdata/testoutput2
create mode 100644 pcre/testdata/testoutput20
create mode 100644 pcre/testdata/testoutput21-16
create mode 100644 pcre/testdata/testoutput21-32
create mode 100644 pcre/testdata/testoutput22-16
create mode 100644 pcre/testdata/testoutput22-32
create mode 100644 pcre/testdata/testoutput23
create mode 100644 pcre/testdata/testoutput24
create mode 100644 pcre/testdata/testoutput25
create mode 100644 pcre/testdata/testoutput26
create mode 100644 pcre/testdata/testoutput3
create mode 100644 pcre/testdata/testoutput4
create mode 100644 pcre/testdata/testoutput5
create mode 100644 pcre/testdata/testoutput6
create mode 100644 pcre/testdata/testoutput7
create mode 100644 pcre/testdata/testoutput8
create mode 100644 pcre/testdata/testoutput9
create mode 100644 pcre/testdata/testoutputEBC
create mode 100644 pcre/testdata/wintestinput3
create mode 100644 pcre/testdata/wintestoutput3
create mode 100644 pcre/ucp.h
(limited to 'pcre')
diff --git a/pcre/AUTHORS b/pcre/AUTHORS
new file mode 100644
index 00000000000..97d8c71dd67
--- /dev/null
+++ b/pcre/AUTHORS
@@ -0,0 +1,45 @@
+THE MAIN PCRE LIBRARY
+---------------------
+
+Written by: Philip Hazel
+Email local part: ph10
+Email domain: cam.ac.uk
+
+University of Cambridge Computing Service,
+Cambridge, England.
+
+Copyright (c) 1997-2013 University of Cambridge
+All rights reserved
+
+
+PCRE JUST-IN-TIME COMPILATION SUPPORT
+-------------------------------------
+
+Written by: Zoltan Herczeg
+Email local part: hzmester
+Emain domain: freemail.hu
+
+Copyright(c) 2010-2013 Zoltan Herczeg
+All rights reserved.
+
+
+STACK-LESS JUST-IN-TIME COMPILER
+--------------------------------
+
+Written by: Zoltan Herczeg
+Email local part: hzmester
+Emain domain: freemail.hu
+
+Copyright(c) 2009-2013 Zoltan Herczeg
+All rights reserved.
+
+
+THE C++ WRAPPER LIBRARY
+-----------------------
+
+Written by: Google Inc.
+
+Copyright (c) 2007-2012 Google Inc
+All rights reserved
+
+####
diff --git a/pcre/CMakeLists.txt b/pcre/CMakeLists.txt
new file mode 100644
index 00000000000..4767f9c7e9c
--- /dev/null
+++ b/pcre/CMakeLists.txt
@@ -0,0 +1,973 @@
+# CMakeLists.txt
+#
+#
+# This file allows building PCRE with the CMake configuration and build
+# tool. Download CMake in source or binary form from http://www.cmake.org/
+#
+# Original listfile by Christian Ehrlicher
+# Refined and expanded by Daniel Richard G.
+# 2007-09-14 mod by Sheri so 7.4 supported configuration options can be entered
+# 2007-09-19 Adjusted by PH to retain previous default settings
+# 2007-12-26 (a) On UNIX, use names libpcre instead of just pcre
+# (b) Ensure pcretest and pcregrep link with the local library,
+# not a previously-installed one.
+# (c) Add PCRE_SUPPORT_LIBREADLINE, PCRE_SUPPORT_LIBZ, and
+# PCRE_SUPPORT_LIBBZ2.
+# 2008-01-20 Brought up to date to include several new features by Christian
+# Ehrlicher.
+# 2008-01-22 Sheri added options for backward compatibility of library names
+# when building with minGW:
+# if "ON", NON_STANDARD_LIB_PREFIX causes shared libraries to
+# be built without "lib" as prefix. (The libraries will be named
+# pcre.dll, pcreposix.dll and pcrecpp.dll).
+# if "ON", NON_STANDARD_LIB_SUFFIX causes shared libraries to
+# be built with suffix of "-0.dll". (The libraries will be named
+# libpcre-0.dll, libpcreposix-0.dll and libpcrecpp-0.dll - same names
+# built by default with Configure and Make.
+# 2008-01-23 PH removed the automatic build of pcredemo.
+# 2008-04-22 PH modified READLINE support so it finds NCURSES when needed.
+# 2008-07-03 PH updated for revised UCP property support (change of files)
+# 2009-03-23 PH applied Steven Van Ingelgem's patch to change the name
+# CMAKE_BINARY_DIR to PROJECT_BINARY_DIR so that it works when PCRE
+# is included within another project.
+# 2009-03-23 PH applied a modified version of Steven Van Ingelgem's patches to
+# add options to stop the building of pcregrep and the tests, and
+# to disable the final configuration report.
+# 2009-04-11 PH applied Christian Ehrlicher's patch to show compiler flags that
+# are set by specifying a release type.
+# 2010-01-02 PH added test for stdint.h
+# 2010-03-02 PH added test for inttypes.h
+# 2011-08-01 PH added PCREGREP_BUFSIZE
+# 2011-08-22 PH added PCRE_SUPPORT_JIT
+# 2011-09-06 PH modified WIN32 ADD_TEST line as suggested by Sergey Cherepanov
+# 2011-09-06 PH added PCRE_SUPPORT_PCREGREP_JIT
+# 2011-10-04 Sheri added support for including coff data in windows shared libraries
+# compiled with MINGW if pcre.rc and/or pcreposix.rc are placed in
+# the source dir by the user prior to building
+# 2011-10-04 Sheri changed various add_test's to use exes' location built instead
+# of DEBUG location only (likely only matters in MSVC)
+# 2011-10-04 Sheri added scripts to provide needed variables to RunTest and
+# RunGrepTest (used for UNIX and Msys)
+# 2011-10-04 Sheri added scripts to provide needed variables and to execute
+# RunTest.bat in Win32 (for effortless testing with "make test")
+# 2011-10-04 Sheri Increased minimum required cmake version
+# 2012-01-06 PH removed pcre_info.c and added pcre_string_utils.c
+# 2012-01-10 Zoltan Herczeg added libpcre16 support
+# 2012-01-13 Stephen Kelly added out of source build support
+# 2012-01-17 PH applied Stephen Kelly's patch to parse the version data out
+# of the configure.ac file
+# 2012-02-26 PH added support for libedit
+# 2012-09-06 PH added support for PCRE_EBCDIC_NL25
+# 2012-09-08 ChPe added PCRE32 support
+# 2012-10-23 PH added support for VALGRIND and GCOV
+# 2012-12-08 PH added patch from Daniel Richard G to quash some MSVC warnings
+
+PROJECT(PCRE C CXX)
+
+# Increased minimum to 2.8.0 to support newer add_test features
+
+CMAKE_MINIMUM_REQUIRED(VERSION 2.8.0)
+
+SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake) # for FindReadline.cmake
+
+# Enable UTF support
+OPTION(PCRE_SUPPORT_UTF "uft support" ON)
+
+# Enable Unicode properties
+OPTION(PCRE_SUPPORT_UNICODE_PROPERTIES "Unicode properties" ON)
+
+INCLUDE_DIRECTORIES(${CMAKE_SOURCE_DIR}/include)
+
+#INSTALL(FILES "my_regex.h" DESTINATION ${INSTALL_INCLUDEDIR}/private COMPONENT Development)
+
+# external packages
+FIND_PACKAGE( BZip2 )
+FIND_PACKAGE( ZLIB )
+FIND_PACKAGE( Readline )
+FIND_PACKAGE( Editline )
+
+# Configuration checks
+
+INCLUDE(CheckIncludeFile)
+INCLUDE(CheckIncludeFileCXX)
+INCLUDE(CheckFunctionExists)
+INCLUDE(CheckTypeSize)
+
+CHECK_INCLUDE_FILE(dirent.h HAVE_DIRENT_H)
+CHECK_INCLUDE_FILE(stdint.h HAVE_STDINT_H)
+CHECK_INCLUDE_FILE(inttypes.h HAVE_INTTYPES_H)
+CHECK_INCLUDE_FILE(sys/stat.h HAVE_SYS_STAT_H)
+CHECK_INCLUDE_FILE(sys/types.h HAVE_SYS_TYPES_H)
+CHECK_INCLUDE_FILE(unistd.h HAVE_UNISTD_H)
+CHECK_INCLUDE_FILE(windows.h HAVE_WINDOWS_H)
+
+CHECK_INCLUDE_FILE_CXX(type_traits.h HAVE_TYPE_TRAITS_H)
+CHECK_INCLUDE_FILE_CXX(bits/type_traits.h HAVE_BITS_TYPE_TRAITS_H)
+
+CHECK_FUNCTION_EXISTS(bcopy HAVE_BCOPY)
+CHECK_FUNCTION_EXISTS(memmove HAVE_MEMMOVE)
+CHECK_FUNCTION_EXISTS(strerror HAVE_STRERROR)
+CHECK_FUNCTION_EXISTS(strtoll HAVE_STRTOLL)
+CHECK_FUNCTION_EXISTS(strtoq HAVE_STRTOQ)
+CHECK_FUNCTION_EXISTS(_strtoi64 HAVE__STRTOI64)
+
+CHECK_TYPE_SIZE("long long" LONG_LONG)
+CHECK_TYPE_SIZE("unsigned long long" UNSIGNED_LONG_LONG)
+
+# User-configurable options
+#
+# (Note: CMakeSetup displays these in alphabetical order, regardless of
+# the order we use here)
+
+SET(BUILD_SHARED_LIBS OFF CACHE BOOL
+ "Build shared libraries instead of static ones.")
+
+OPTION(PCRE_BUILD_PCRE8 "Build 8 bit PCRE library" ON)
+
+OPTION(PCRE_BUILD_PCRE16 "Build 16 bit PCRE library" OFF)
+
+OPTION(PCRE_BUILD_PCRE32 "Build 32 bit PCRE library" OFF)
+
+OPTION(PCRE_BUILD_PCRECPP "Build the PCRE C++ library (pcrecpp)." ON)
+
+SET(PCRE_EBCDIC OFF CACHE BOOL
+ "Use EBCDIC coding instead of ASCII. (This is rarely used outside of mainframe systems.)")
+
+SET(PCRE_EBCDIC_NL25 OFF CACHE BOOL
+ "Use 0x25 as EBCDIC NL character instead of 0x15; implies EBCDIC.")
+
+SET(PCRE_LINK_SIZE "2" CACHE STRING
+ "Internal link size (2, 3 or 4 allowed). See LINK_SIZE in config.h.in for details.")
+
+SET(PCRE_MATCH_LIMIT "10000000" CACHE STRING
+ "Default limit on internal looping. See MATCH_LIMIT in config.h.in for details.")
+
+SET(PCRE_MATCH_LIMIT_RECURSION "MATCH_LIMIT" CACHE STRING
+ "Default limit on internal recursion. See MATCH_LIMIT_RECURSION in config.h.in for details.")
+
+SET(PCREGREP_BUFSIZE "20480" CACHE STRING
+ "Buffer size parameter for pcregrep. See PCREGREP_BUFSIZE in config.h.in for details.")
+
+SET(PCRE_NEWLINE "LF" CACHE STRING
+ "What to recognize as a newline (one of CR, LF, CRLF, ANY, ANYCRLF).")
+
+SET(PCRE_NO_RECURSE OFF CACHE BOOL
+ "If ON, then don't use stack recursion when matching. See NO_RECURSE in config.h.in for details.")
+
+SET(PCRE_POSIX_MALLOC_THRESHOLD "10" CACHE STRING
+ "Threshold for malloc() usage. See POSIX_MALLOC_THRESHOLD in config.h.in for details.")
+
+SET(PCRE_SUPPORT_JIT OFF CACHE BOOL
+ "Enable support for Just-in-time compiling.")
+
+SET(PCRE_SUPPORT_PCREGREP_JIT ON CACHE BOOL
+ "Enable use of Just-in-time compiling in pcregrep.")
+
+SET(PCRE_SUPPORT_UTF OFF CACHE BOOL
+ "Enable support for Unicode Transformation Format (UTF-8/UTF-16/UTF-32) encoding.")
+
+SET(PCRE_SUPPORT_UNICODE_PROPERTIES OFF CACHE BOOL
+ "Enable support for Unicode properties (if set, UTF support will be enabled as well).")
+
+SET(PCRE_SUPPORT_BSR_ANYCRLF OFF CACHE BOOL
+ "ON=Backslash-R matches only LF CR and CRLF, OFF=Backslash-R matches all Unicode Linebreaks")
+
+SET(PCRE_SUPPORT_VALGRIND OFF CACHE BOOL
+ "Enable Valgrind support.")
+
+SET(PCRE_SUPPORT_COVERAGE OFF CACHE BOOL
+ "Enable code coverage support using gcov.")
+
+OPTION(PCRE_SHOW_REPORT "Show the final configuration report" ON)
+OPTION(PCRE_BUILD_PCREGREP "Build pcregrep" ON)
+OPTION(PCRE_BUILD_TESTS "Build the tests" ON)
+
+IF (MINGW)
+ OPTION(NON_STANDARD_LIB_PREFIX
+ "ON=Shared libraries built in mingw will be named pcre.dll, etc., instead of libpcre.dll, etc."
+ OFF)
+
+ OPTION(NON_STANDARD_LIB_SUFFIX
+ "ON=Shared libraries built in mingw will be named libpcre-0.dll, etc., instead of libpcre.dll, etc."
+ OFF)
+ENDIF(MINGW)
+
+# bzip2 lib
+IF(BZIP2_FOUND)
+ OPTION (PCRE_SUPPORT_LIBBZ2 "Enable support for linking pcregrep with libbz2." ON)
+ENDIF(BZIP2_FOUND)
+IF(PCRE_SUPPORT_LIBBZ2)
+ INCLUDE_DIRECTORIES(${BZIP2_INCLUDE_DIR})
+ENDIF(PCRE_SUPPORT_LIBBZ2)
+
+# zlib
+IF(ZLIB_FOUND)
+ OPTION (PCRE_SUPPORT_LIBZ "Enable support for linking pcregrep with libz." ON)
+ENDIF(ZLIB_FOUND)
+IF(PCRE_SUPPORT_LIBZ)
+ INCLUDE_DIRECTORIES(${ZLIB_INCLUDE_DIR})
+ENDIF(PCRE_SUPPORT_LIBZ)
+
+# editline lib
+IF(EDITLINE_FOUND)
+ OPTION (PCRE_SUPPORT_LIBEDIT "Enable support for linking pcretest with libedit." OFF)
+ENDIF(EDITLINE_FOUND)
+IF(PCRE_SUPPORT_LIBEDIT)
+ INCLUDE_DIRECTORIES(${EDITLINE_INCLUDE_DIR})
+ENDIF(PCRE_SUPPORT_LIBEDIT)
+
+# readline lib
+IF(READLINE_FOUND)
+ OPTION (PCRE_SUPPORT_LIBREADLINE "Enable support for linking pcretest with libreadline." ON)
+ENDIF(READLINE_FOUND)
+IF(PCRE_SUPPORT_LIBREADLINE)
+ INCLUDE_DIRECTORIES(${READLINE_INCLUDE_DIR})
+ENDIF(PCRE_SUPPORT_LIBREADLINE)
+
+# Prepare build configuration
+
+SET(pcre_have_type_traits 0)
+SET(pcre_have_bits_type_traits 0)
+
+IF(HAVE_TYPE_TRAITS_H)
+ SET(pcre_have_type_traits 1)
+ENDIF(HAVE_TYPE_TRAITS_H)
+
+IF(HAVE_BITS_TYPE_TRAITS_H)
+ SET(pcre_have_bits_type_traits 1)
+ENDIF(HAVE_BITS_TYPE_TRAITS_H)
+
+SET(pcre_have_long_long 0)
+SET(pcre_have_ulong_long 0)
+
+IF(HAVE_LONG_LONG)
+ SET(pcre_have_long_long 1)
+ENDIF(HAVE_LONG_LONG)
+
+IF(HAVE_UNSIGNED_LONG_LONG)
+ SET(pcre_have_ulong_long 1)
+ENDIF(HAVE_UNSIGNED_LONG_LONG)
+
+IF(NOT BUILD_SHARED_LIBS)
+ SET(PCRE_STATIC 1)
+ENDIF(NOT BUILD_SHARED_LIBS)
+
+IF(NOT PCRE_BUILD_PCRE8 AND NOT PCRE_BUILD_PCRE16 AND NOT PCRE_BUILD_PCRE32)
+ MESSAGE(FATAL_ERROR "At least one of PCRE_BUILD_PCRE8, PCRE_BUILD_PCRE16 or PCRE_BUILD_PCRE32 must be enabled")
+ENDIF(NOT PCRE_BUILD_PCRE8 AND NOT PCRE_BUILD_PCRE16 AND NOT PCRE_BUILD_PCRE32)
+
+IF(PCRE_BUILD_PCRE8)
+ SET(SUPPORT_PCRE8 1)
+ENDIF(PCRE_BUILD_PCRE8)
+
+IF(PCRE_BUILD_PCRE16)
+ SET(SUPPORT_PCRE16 1)
+ENDIF(PCRE_BUILD_PCRE16)
+
+IF(PCRE_BUILD_PCRE32)
+ SET(SUPPORT_PCRE32 1)
+ENDIF(PCRE_BUILD_PCRE32)
+
+IF(PCRE_BUILD_PCRECPP AND NOT PCRE_BUILD_PCRE8)
+ MESSAGE(STATUS "** PCRE_BUILD_PCRE8 must be enabled for the C++ library support")
+ SET(PCRE_BUILD_PCRECPP OFF)
+ENDIF(PCRE_BUILD_PCRECPP AND NOT PCRE_BUILD_PCRE8)
+
+IF(PCRE_BUILD_PCREGREP AND NOT PCRE_BUILD_PCRE8)
+ MESSAGE(STATUS "** PCRE_BUILD_PCRE8 must be enabled for the pcregrep program")
+ SET(PCRE_BUILD_PCREGREP OFF)
+ENDIF(PCRE_BUILD_PCREGREP AND NOT PCRE_BUILD_PCRE8)
+
+IF(PCRE_SUPPORT_LIBREADLINE AND PCRE_SUPPORT_LIBEDIT)
+ MESSAGE(FATAL_ERROR "Only one of libreadline or libeditline can be specified")
+ENDIF(PCRE_SUPPORT_LIBREADLINE AND PCRE_SUPPORT_LIBEDIT)
+
+IF(PCRE_SUPPORT_BSR_ANYCRLF)
+ SET(BSR_ANYCRLF 1)
+ENDIF(PCRE_SUPPORT_BSR_ANYCRLF)
+
+IF(PCRE_SUPPORT_UTF OR PCRE_SUPPORT_UNICODE_PROPERTIES)
+ SET(SUPPORT_UTF 1)
+ SET(PCRE_SUPPORT_UTF ON)
+ENDIF(PCRE_SUPPORT_UTF OR PCRE_SUPPORT_UNICODE_PROPERTIES)
+
+IF(PCRE_SUPPORT_UNICODE_PROPERTIES)
+ SET(SUPPORT_UCP 1)
+ENDIF(PCRE_SUPPORT_UNICODE_PROPERTIES)
+
+IF(PCRE_SUPPORT_JIT)
+ SET(SUPPORT_JIT 1)
+ENDIF(PCRE_SUPPORT_JIT)
+
+IF(PCRE_SUPPORT_PCREGREP_JIT)
+ SET(SUPPORT_PCREGREP_JIT 1)
+ENDIF(PCRE_SUPPORT_PCREGREP_JIT)
+
+IF(PCRE_SUPPORT_VALGRIND)
+ SET(SUPPORT_VALGRIND 1)
+ENDIF(PCRE_SUPPORT_VALGRIND)
+
+IF(PCRE_SUPPORT_COVERAGE)
+ SET(SUPPORT_GCOV 1)
+ IF(NOT CMAKE_COMPILER_IS_GNUCC)
+ MESSAGE(FATAL_ERROR "Code coverage reports can only be generated when using GCC")
+ ENDIF(NOT CMAKE_COMPILER_IS_GNUCC)
+ENDIF(PCRE_SUPPORT_COVERAGE)
+
+# This next one used to contain
+# SET(PCRETEST_LIBS ${READLINE_LIBRARY})
+# but I was advised to add the NCURSES test as well, along with
+# some modifications to cmake/FindReadline.cmake which should
+# make it possible to override the default if necessary. PH
+
+IF(PCRE_SUPPORT_LIBREADLINE)
+ SET(SUPPORT_LIBREADLINE 1)
+ SET(PCRETEST_LIBS ${READLINE_LIBRARY} ${NCURSES_LIBRARY})
+ENDIF(PCRE_SUPPORT_LIBREADLINE)
+
+# libedit is a plug-compatible alternative to libreadline
+
+IF(PCRE_SUPPORT_LIBEDIT)
+ SET(SUPPORT_LIBEDIT 1)
+ SET(PCRETEST_LIBS ${EDITLINE_LIBRARY} ${NCURSES_LIBRARY})
+ENDIF(PCRE_SUPPORT_LIBEDIT)
+
+IF(PCRE_SUPPORT_LIBZ)
+ SET(SUPPORT_LIBZ 1)
+ SET(PCREGREP_LIBS ${PCREGREP_LIBS} ${ZLIB_LIBRARIES})
+ENDIF(PCRE_SUPPORT_LIBZ)
+
+IF(PCRE_SUPPORT_LIBBZ2)
+ SET(SUPPORT_LIBBZ2 1)
+ SET(PCREGREP_LIBS ${PCREGREP_LIBS} ${BZIP2_LIBRARIES})
+ENDIF(PCRE_SUPPORT_LIBBZ2)
+
+SET(NEWLINE "")
+
+IF(PCRE_NEWLINE STREQUAL "LF")
+ SET(NEWLINE "10")
+ENDIF(PCRE_NEWLINE STREQUAL "LF")
+IF(PCRE_NEWLINE STREQUAL "CR")
+ SET(NEWLINE "13")
+ENDIF(PCRE_NEWLINE STREQUAL "CR")
+IF(PCRE_NEWLINE STREQUAL "CRLF")
+ SET(NEWLINE "3338")
+ENDIF(PCRE_NEWLINE STREQUAL "CRLF")
+IF(PCRE_NEWLINE STREQUAL "ANY")
+ SET(NEWLINE "-1")
+ENDIF(PCRE_NEWLINE STREQUAL "ANY")
+IF(PCRE_NEWLINE STREQUAL "ANYCRLF")
+ SET(NEWLINE "-2")
+ENDIF(PCRE_NEWLINE STREQUAL "ANYCRLF")
+
+IF(NEWLINE STREQUAL "")
+ MESSAGE(FATAL_ERROR "The PCRE_NEWLINE variable must be set to one of the following values: \"LF\", \"CR\", \"CRLF\", \"ANY\", \"ANYCRLF\".")
+ENDIF(NEWLINE STREQUAL "")
+
+IF(PCRE_EBCDIC)
+ SET(EBCDIC 1)
+IF(PCRE_NEWLINE STREQUAL "LF")
+ SET(NEWLINE "21")
+ENDIF(PCRE_NEWLINE STREQUAL "LF")
+IF(PCRE_NEWLINE STREQUAL "CRLF")
+ SET(NEWLINE "3349")
+ENDIF(PCRE_NEWLINE STREQUAL "CRLF")
+ENDIF(PCRE_EBCDIC)
+
+IF(PCRE_EBCDIC_NL25)
+ SET(EBCDIC 1)
+ SET(EBCDIC_NL25 1)
+IF(PCRE_NEWLINE STREQUAL "LF")
+ SET(NEWLINE "37")
+ENDIF(PCRE_NEWLINE STREQUAL "LF")
+IF(PCRE_NEWLINE STREQUAL "CRLF")
+ SET(NEWLINE "3365")
+ENDIF(PCRE_NEWLINE STREQUAL "CRLF")
+ENDIF(PCRE_EBCDIC_NL25)
+
+IF(PCRE_NO_RECURSE)
+ SET(NO_RECURSE 1)
+ENDIF(PCRE_NO_RECURSE)
+
+# Output files
+CONFIGURE_FILE(config-cmake.h.in
+ ${PROJECT_BINARY_DIR}/config.h
+ @ONLY)
+
+# Parse version numbers and date out of configure.ac
+
+file(STRINGS ${PROJECT_SOURCE_DIR}/configure.ac
+ configure_lines
+ LIMIT_COUNT 50 # Read only the first 50 lines of the file
+)
+
+set(SEARCHED_VARIABLES "pcre_major" "pcre_minor" "pcre_prerelease" "pcre_date")
+foreach(configure_line ${configure_lines})
+ foreach(_substitution_variable ${SEARCHED_VARIABLES})
+ string(TOUPPER ${_substitution_variable} _substitution_variable_upper)
+ if (NOT ${_substitution_variable_upper})
+ string(REGEX MATCH "m4_define\\(${_substitution_variable}, \\[(.*)\\]" MACTHED_STRING ${configure_line})
+ if (CMAKE_MATCH_1)
+ set(${_substitution_variable_upper} ${CMAKE_MATCH_1})
+ endif()
+ endif()
+ endforeach()
+endforeach()
+
+CONFIGURE_FILE(pcre.h.in
+ ${PROJECT_BINARY_DIR}/pcre.h
+ @ONLY)
+
+# What about pcre-config and libpcre.pc?
+
+IF(PCRE_BUILD_PCRECPP)
+ CONFIGURE_FILE(pcre_stringpiece.h.in
+ ${PROJECT_BINARY_DIR}/pcre_stringpiece.h
+ @ONLY)
+
+ CONFIGURE_FILE(pcrecpparg.h.in
+ ${PROJECT_BINARY_DIR}/pcrecpparg.h
+ @ONLY)
+ENDIF(PCRE_BUILD_PCRECPP)
+
+# Character table generation
+
+OPTION(PCRE_REBUILD_CHARTABLES "Rebuild char tables" OFF)
+IF(PCRE_REBUILD_CHARTABLES)
+ ADD_EXECUTABLE(dftables dftables.c)
+
+ GET_TARGET_PROPERTY(DFTABLES_EXE dftables LOCATION)
+
+ ADD_CUSTOM_COMMAND(
+ COMMENT "Generating character tables (pcre_chartables.c) for current locale"
+ DEPENDS dftables
+ COMMAND ${DFTABLES_EXE}
+ ARGS ${PROJECT_BINARY_DIR}/pcre_chartables.c
+ OUTPUT ${PROJECT_BINARY_DIR}/pcre_chartables.c
+ )
+ELSE(PCRE_REBUILD_CHARTABLES)
+ CONFIGURE_FILE(${PROJECT_SOURCE_DIR}/pcre_chartables.c.dist
+ ${PROJECT_BINARY_DIR}/pcre_chartables.c
+ COPYONLY)
+ENDIF(PCRE_REBUILD_CHARTABLES)
+
+# Source code
+
+SET(PCRE_HEADERS ${PROJECT_BINARY_DIR}/pcre.h)
+
+IF(PCRE_BUILD_PCRE8)
+SET(PCRE_SOURCES
+ pcre_byte_order.c
+ pcre_chartables.c
+ pcre_compile.c
+ pcre_config.c
+ pcre_dfa_exec.c
+ pcre_exec.c
+ pcre_fullinfo.c
+ pcre_get.c
+ pcre_globals.c
+ pcre_jit_compile.c
+ pcre_maketables.c
+ pcre_newline.c
+ pcre_ord2utf8.c
+ pcre_refcount.c
+ pcre_string_utils.c
+ pcre_study.c
+ pcre_tables.c
+ pcre_ucd.c
+ pcre_valid_utf8.c
+ pcre_version.c
+ pcre_xclass.c
+)
+
+SET(PCREPOSIX_HEADERS pcreposix.h)
+
+SET(PCREPOSIX_SOURCES pcreposix.c)
+
+ENDIF(PCRE_BUILD_PCRE8)
+
+IF(PCRE_BUILD_PCRE16)
+SET(PCRE16_SOURCES
+ pcre16_byte_order.c
+ pcre16_chartables.c
+ pcre16_compile.c
+ pcre16_config.c
+ pcre16_dfa_exec.c
+ pcre16_exec.c
+ pcre16_fullinfo.c
+ pcre16_get.c
+ pcre16_globals.c
+ pcre16_jit_compile.c
+ pcre16_maketables.c
+ pcre16_newline.c
+ pcre16_ord2utf16.c
+ pcre16_refcount.c
+ pcre16_string_utils.c
+ pcre16_study.c
+ pcre16_tables.c
+ pcre16_ucd.c
+ pcre16_utf16_utils.c
+ pcre16_valid_utf16.c
+ pcre16_version.c
+ pcre16_xclass.c
+)
+ENDIF(PCRE_BUILD_PCRE16)
+
+IF(PCRE_BUILD_PCRE32)
+SET(PCRE32_SOURCES
+ pcre32_byte_order.c
+ pcre32_chartables.c
+ pcre32_compile.c
+ pcre32_config.c
+ pcre32_dfa_exec.c
+ pcre32_exec.c
+ pcre32_fullinfo.c
+ pcre32_get.c
+ pcre32_globals.c
+ pcre32_jit_compile.c
+ pcre32_maketables.c
+ pcre32_newline.c
+ pcre32_ord2utf32.c
+ pcre32_refcount.c
+ pcre32_string_utils.c
+ pcre32_study.c
+ pcre32_tables.c
+ pcre32_ucd.c
+ pcre32_utf32_utils.c
+ pcre32_valid_utf32.c
+ pcre32_version.c
+ pcre32_xclass.c
+)
+ENDIF(PCRE_BUILD_PCRE32)
+
+IF(MINGW AND NOT PCRE_STATIC)
+IF (EXISTS ${PROJECT_SOURCE_DIR}/pcre.rc)
+ADD_CUSTOM_COMMAND(OUTPUT ${PROJECT_SOURCE_DIR}/pcre.o
+PRE-LINK
+COMMAND windres ARGS pcre.rc pcre.o
+WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}
+COMMENT Using pcre coff info in mingw build)
+SET(PCRE_SOURCES
+ ${PCRE_SOURCES} ${PROJECT_SOURCE_DIR}/pcre.o
+)
+ENDIF(EXISTS ${PROJECT_SOURCE_DIR}/pcre.rc)
+IF (EXISTS ${PROJECT_SOURCE_DIR}/pcreposix.rc)
+ADD_CUSTOM_COMMAND(OUTPUT ${PROJECT_SOURCE_DIR}/pcreposix.o
+PRE-LINK
+COMMAND windres ARGS pcreposix.rc pcreposix.o
+WORKING_DIRECTORY ${PROJECT_SOURCE_DIR}
+COMMENT Using pcreposix coff info in mingw build)
+SET(PCREPOSIX_SOURCES
+ ${PCREPOSIX_SOURCES} ${PROJECT_SOURCE_DIR}/pcreposix.o
+)
+ENDIF(EXISTS ${PROJECT_SOURCE_DIR}/pcreposix.rc)
+ENDIF(MINGW AND NOT PCRE_STATIC)
+
+SET(PCRECPP_HEADERS
+ pcrecpp.h
+ pcre_scanner.h
+ ${PROJECT_BINARY_DIR}/pcrecpparg.h
+ ${PROJECT_BINARY_DIR}/pcre_stringpiece.h
+)
+
+SET(PCRECPP_SOURCES
+ pcrecpp.cc
+ pcre_scanner.cc
+ pcre_stringpiece.cc
+)
+
+# Build setup
+
+ADD_DEFINITIONS(-DHAVE_CONFIG_H)
+
+IF(MSVC)
+ ADD_DEFINITIONS(-D_CRT_SECURE_NO_DEPRECATE -D_CRT_SECURE_NO_WARNINGS)
+ENDIF(MSVC)
+
+SET(CMAKE_INCLUDE_CURRENT_DIR 1)
+# needed to make sure to not link debug libs
+# against release libs and vice versa
+IF(WIN32)
+ SET(CMAKE_DEBUG_POSTFIX "d")
+ENDIF(WIN32)
+
+SET(targets)
+
+# Libraries
+# pcre
+IF(PCRE_BUILD_PCRE8)
+ADD_LIBRARY(pcre ${PCRE_HEADERS} ${PCRE_SOURCES} ${PROJECT_BINARY_DIR}/config.h)
+SET(targets ${targets} pcre)
+ADD_LIBRARY(pcreposix ${PCREPOSIX_HEADERS} ${PCREPOSIX_SOURCES})
+SET(targets ${targets} pcreposix)
+TARGET_LINK_LIBRARIES(pcreposix pcre)
+
+IF(MINGW AND NOT PCRE_STATIC)
+ IF(NON_STANDARD_LIB_PREFIX)
+ SET_TARGET_PROPERTIES(pcre pcreposix
+ PROPERTIES PREFIX ""
+ )
+ ENDIF(NON_STANDARD_LIB_PREFIX)
+
+ IF(NON_STANDARD_LIB_SUFFIX)
+ SET_TARGET_PROPERTIES(pcre pcreposix
+ PROPERTIES SUFFIX "-0.dll"
+ )
+ ENDIF(NON_STANDARD_LIB_SUFFIX)
+ENDIF(MINGW AND NOT PCRE_STATIC)
+
+ENDIF(PCRE_BUILD_PCRE8)
+
+IF(PCRE_BUILD_PCRE16)
+ADD_LIBRARY(pcre16 ${PCRE_HEADERS} ${PCRE16_SOURCES} ${PROJECT_BINARY_DIR}/config.h)
+SET(targets ${targets} pcre16)
+
+IF(MINGW AND NOT PCRE_STATIC)
+ IF(NON_STANDARD_LIB_PREFIX)
+ SET_TARGET_PROPERTIES(pcre16
+ PROPERTIES PREFIX ""
+ )
+ ENDIF(NON_STANDARD_LIB_PREFIX)
+
+ IF(NON_STANDARD_LIB_SUFFIX)
+ SET_TARGET_PROPERTIES(pcre16
+ PROPERTIES SUFFIX "-0.dll"
+ )
+ ENDIF(NON_STANDARD_LIB_SUFFIX)
+ENDIF(MINGW AND NOT PCRE_STATIC)
+
+ENDIF(PCRE_BUILD_PCRE16)
+
+IF(PCRE_BUILD_PCRE32)
+ADD_LIBRARY(pcre32 ${PCRE_HEADERS} ${PCRE32_SOURCES} ${PROJECT_BINARY_DIR}/config.h)
+SET(targets ${targets} pcre32)
+
+IF(MINGW AND NOT PCRE_STATIC)
+ IF(NON_STANDARD_LIB_PREFIX)
+ SET_TARGET_PROPERTIES(pcre32
+ PROPERTIES PREFIX ""
+ )
+ ENDIF(NON_STANDARD_LIB_PREFIX)
+
+ IF(NON_STANDARD_LIB_SUFFIX)
+ SET_TARGET_PROPERTIES(pcre32
+ PROPERTIES SUFFIX "-0.dll"
+ )
+ ENDIF(NON_STANDARD_LIB_SUFFIX)
+ENDIF(MINGW AND NOT PCRE_STATIC)
+
+ENDIF(PCRE_BUILD_PCRE32)
+
+# pcrecpp
+IF(PCRE_BUILD_PCRECPP)
+ADD_LIBRARY(pcrecpp ${PCRECPP_HEADERS} ${PCRECPP_SOURCES})
+SET(targets ${targets} pcrecpp)
+TARGET_LINK_LIBRARIES(pcrecpp pcre)
+
+ IF(MINGW AND NOT PCRE_STATIC)
+ IF(NON_STANDARD_LIB_PREFIX)
+ SET_TARGET_PROPERTIES(pcrecpp
+ PROPERTIES PREFIX ""
+ )
+ ENDIF(NON_STANDARD_LIB_PREFIX)
+
+ IF(NON_STANDARD_LIB_SUFFIX)
+ SET_TARGET_PROPERTIES(pcrecpp
+ PROPERTIES SUFFIX "-0.dll"
+ )
+ ENDIF(NON_STANDARD_LIB_SUFFIX)
+ ENDIF(MINGW AND NOT PCRE_STATIC)
+ENDIF(PCRE_BUILD_PCRECPP)
+
+
+# Executables
+
+# Removed by PH (2008-01-23) because pcredemo shouldn't really be built
+# automatically, and it gave trouble in some environments anyway.
+# ADD_EXECUTABLE(pcredemo pcredemo.c)
+# TARGET_LINK_LIBRARIES(pcredemo pcreposix)
+# IF(NOT BUILD_SHARED_LIBS)
+# # make sure to not use declspec(dllimport) in static mode on windows
+# SET_TARGET_PROPERTIES(pcredemo PROPERTIES COMPILE_FLAGS "-DPCRE_STATIC")
+# ENDIF(NOT BUILD_SHARED_LIBS)
+
+IF(PCRE_BUILD_PCREGREP)
+ ADD_EXECUTABLE(pcregrep pcregrep.c)
+ SET(targets ${targets} pcregrep)
+ TARGET_LINK_LIBRARIES(pcregrep pcreposix ${PCREGREP_LIBS})
+ENDIF(PCRE_BUILD_PCREGREP)
+
+# Testing
+IF(PCRE_BUILD_TESTS)
+ ENABLE_TESTING()
+
+ SET(PCRETEST_SOURCES pcretest.c)
+ IF(PCRE_BUILD_PCRE8)
+ LIST(APPEND PCRETEST_SOURCES pcre_printint.c)
+ ENDIF(PCRE_BUILD_PCRE8)
+ IF(PCRE_BUILD_PCRE16)
+ LIST(APPEND PCRETEST_SOURCES pcre16_printint.c)
+ ENDIF(PCRE_BUILD_PCRE16)
+ IF(PCRE_BUILD_PCRE32)
+ LIST(APPEND PCRETEST_SOURCES pcre32_printint.c)
+ ENDIF(PCRE_BUILD_PCRE32)
+
+ ADD_EXECUTABLE(pcretest ${PCRETEST_SOURCES})
+ SET(targets ${targets} pcretest)
+ IF(PCRE_BUILD_PCRE8)
+ LIST(APPEND PCRETEST_LIBS pcreposix pcre)
+ ENDIF(PCRE_BUILD_PCRE8)
+ IF(PCRE_BUILD_PCRE16)
+ LIST(APPEND PCRETEST_LIBS pcre16)
+ ENDIF(PCRE_BUILD_PCRE16)
+ IF(PCRE_BUILD_PCRE32)
+ LIST(APPEND PCRETEST_LIBS pcre32)
+ ENDIF(PCRE_BUILD_PCRE32)
+ TARGET_LINK_LIBRARIES(pcretest ${PCRETEST_LIBS})
+
+ IF(PCRE_SUPPORT_JIT)
+ ADD_EXECUTABLE(pcre_jit_test pcre_jit_test.c)
+ SET(targets ${targets} pcre_jit_test)
+ SET(PCRE_JIT_TEST_LIBS )
+ IF(PCRE_BUILD_PCRE8)
+ LIST(APPEND PCRE_JIT_TEST_LIBS pcre)
+ ENDIF(PCRE_BUILD_PCRE8)
+ IF(PCRE_BUILD_PCRE16)
+ LIST(APPEND PCRE_JIT_TEST_LIBS pcre16)
+ ENDIF(PCRE_BUILD_PCRE16)
+ IF(PCRE_BUILD_PCRE32)
+ LIST(APPEND PCRE_JIT_TEST_LIBS pcre32)
+ ENDIF(PCRE_BUILD_PCRE32)
+ TARGET_LINK_LIBRARIES(pcre_jit_test ${PCRE_JIT_TEST_LIBS})
+ ENDIF(PCRE_SUPPORT_JIT)
+
+ IF(PCRE_BUILD_PCRECPP)
+ ADD_EXECUTABLE(pcrecpp_unittest pcrecpp_unittest.cc)
+ SET(targets ${targets} pcrecpp_unittest)
+ TARGET_LINK_LIBRARIES(pcrecpp_unittest pcrecpp)
+ IF(MINGW AND NON_STANDARD_LIB_NAMES AND NOT PCRE_STATIC)
+ SET_TARGET_PROPERTIES(pcrecpp
+ PROPERTIES PREFIX ""
+ )
+ ENDIF(MINGW AND NON_STANDARD_LIB_NAMES AND NOT PCRE_STATIC)
+
+ ADD_EXECUTABLE(pcre_scanner_unittest pcre_scanner_unittest.cc)
+ SET(targets ${targets} pcre_scanner_unittest)
+ TARGET_LINK_LIBRARIES(pcre_scanner_unittest pcrecpp)
+
+ ADD_EXECUTABLE(pcre_stringpiece_unittest pcre_stringpiece_unittest.cc)
+ SET(targets ${targets} pcre_stringpiece_unittest)
+ TARGET_LINK_LIBRARIES(pcre_stringpiece_unittest pcrecpp)
+ ENDIF(PCRE_BUILD_PCRECPP)
+
+ # exes in Debug location tested by the RunTest shell script
+ # via "make test"
+ IF(PCRE_BUILD_PCREGREP)
+ GET_TARGET_PROPERTY(PCREGREP_EXE pcregrep DEBUG_LOCATION)
+ ENDIF(PCRE_BUILD_PCREGREP)
+
+ GET_TARGET_PROPERTY(PCRETEST_EXE pcretest DEBUG_LOCATION)
+ STRING(REGEX REPLACE "[^/]+$" "" PCRETEST_DIR ${PCRETEST_EXE})
+
+# =================================================
+ # Write out a CTest configuration file
+ #
+ FILE(WRITE ${PROJECT_BINARY_DIR}/CTestCustom.ctest
+ "# This is a generated file.
+MESSAGE(\"When testing is complete, review test output in the
+\\\"${PROJECT_BINARY_DIR}/Testing/Temporary\\\" folder.\")
+MESSAGE(\" \")
+")
+
+ FILE(WRITE ${PROJECT_BINARY_DIR}/pcre_test.sh
+ "#! /bin/sh
+# This is a generated file.
+srcdir=${PROJECT_SOURCE_DIR}
+pcretest=${PCRETEST_EXE}
+cd ${PCRETEST_DIR}
+source ${PROJECT_SOURCE_DIR}/RunTest
+if test \"$?\" != \"0\"; then exit 1; fi
+# End
+")
+
+ IF(UNIX)
+ ADD_TEST(pcre_test sh ${PROJECT_BINARY_DIR}/pcre_test.sh)
+ ENDIF(UNIX)
+
+ IF(PCRE_BUILD_PCREGREP)
+ FILE(WRITE ${PROJECT_BINARY_DIR}/pcre_grep_test.sh
+ "#! /bin/sh
+# This is a generated file.
+srcdir=${PROJECT_SOURCE_DIR}
+pcregrep=${PCREGREP_EXE}
+pcretest=${PCRETEST_EXE}
+cd ${PCRETEST_DIR}
+source ${PROJECT_SOURCE_DIR}/RunGrepTest
+if test \"$?\" != \"0\"; then exit 1; fi
+# End
+")
+
+ IF(UNIX)
+ ADD_TEST(pcre_grep_test sh ${PROJECT_BINARY_DIR}/pcre_grep_test.sh)
+ ENDIF(UNIX)
+ ENDIF(PCRE_BUILD_PCREGREP)
+
+ IF(WIN32)
+ # Provide environment for executing the bat file version of RunTest
+ FILE(TO_NATIVE_PATH ${PROJECT_SOURCE_DIR} winsrc)
+ FILE(TO_NATIVE_PATH ${PROJECT_BINARY_DIR} winbin)
+ FILE(TO_NATIVE_PATH ${PCRETEST_EXE} winexe)
+
+ FILE(WRITE ${PROJECT_BINARY_DIR}/pcre_test.bat
+ "\@REM This is a generated file.
+\@echo off
+setlocal
+SET srcdir=\"${winsrc}\"
+SET pcretest=\"${winexe}\"
+if not [%CMAKE_CONFIG_TYPE%]==[] SET pcretest=\"${winbin}\\%CMAKE_CONFIG_TYPE%\\pcretest.exe\"
+call %srcdir%\\RunTest.Bat
+if errorlevel 1 exit /b 1
+echo RunTest.bat tests successfully completed
+")
+
+ ADD_TEST(NAME pcre_test_bat
+ COMMAND pcre_test.bat)
+ SET_TESTS_PROPERTIES(pcre_test_bat PROPERTIES
+ PASS_REGULAR_EXPRESSION "RunTest\\.bat tests successfully completed")
+
+ IF("$ENV{OSTYPE}" STREQUAL "msys")
+ # Both the sh and bat file versions of RunTest are run if make test is used
+ # in msys
+ ADD_TEST(pcre_test_sh sh.exe ${PROJECT_BINARY_DIR}/pcre_test.sh)
+ IF(PCRE_BUILD_PCREGREP)
+ ADD_TEST(pcre_grep_test sh.exe ${PROJECT_BINARY_DIR}/pcre_grep_test.sh)
+ ENDIF(PCRE_BUILD_PCREGREP)
+ ENDIF("$ENV{OSTYPE}" STREQUAL "msys")
+
+ ENDIF(WIN32)
+
+ # Changed to accommodate testing whichever location was just built
+
+ IF(PCRE_SUPPORT_JIT)
+ ADD_TEST(pcre_jit_test pcre_jit_test)
+ ENDIF(PCRE_SUPPORT_JIT)
+
+ IF(PCRE_BUILD_PCRECPP)
+ ADD_TEST(pcrecpp_test pcrecpp_unittest)
+ ADD_TEST(pcre_scanner_test pcre_scanner_unittest)
+ ADD_TEST(pcre_stringpiece_test pcre_stringpiece_unittest)
+ ENDIF(PCRE_BUILD_PCRECPP)
+
+ENDIF(PCRE_BUILD_TESTS)
+
+# Installation
+SET(CMAKE_INSTALL_ALWAYS 1)
+
+INSTALL(TARGETS ${targets}
+ RUNTIME DESTINATION bin
+ LIBRARY DESTINATION lib
+ ARCHIVE DESTINATION lib)
+
+INSTALL(FILES ${PCRE_HEADERS} ${PCREPOSIX_HEADERS} DESTINATION include)
+
+FILE(GLOB html ${PROJECT_SOURCE_DIR}/doc/html/*.html)
+FILE(GLOB man1 ${PROJECT_SOURCE_DIR}/doc/*.1)
+FILE(GLOB man3 ${PROJECT_SOURCE_DIR}/doc/*.3)
+
+IF(PCRE_BUILD_PCRECPP)
+ INSTALL(FILES ${PCRECPP_HEADERS} DESTINATION include)
+ELSE(PCRE_BUILD_PCRECPP)
+ # Remove pcrecpp.3
+ FOREACH(man ${man3})
+ GET_FILENAME_COMPONENT(man_tmp ${man} NAME)
+ IF(NOT man_tmp STREQUAL "pcrecpp.3")
+ SET(man3_new ${man3} ${man})
+ ENDIF(NOT man_tmp STREQUAL "pcrecpp.3")
+ ENDFOREACH(man ${man3})
+ SET(man3 ${man3_new})
+ENDIF(PCRE_BUILD_PCRECPP)
+
+INSTALL(FILES ${man1} DESTINATION man/man1)
+INSTALL(FILES ${man3} DESTINATION man/man3)
+INSTALL(FILES ${html} DESTINATION share/doc/pcre/html)
+
+# help, only for nice output
+IF(BUILD_SHARED_LIBS)
+ SET(BUILD_STATIC_LIBS OFF)
+ELSE(BUILD_SHARED_LIBS)
+ SET(BUILD_STATIC_LIBS ON)
+ENDIF(BUILD_SHARED_LIBS)
+
+IF(PCRE_SHOW_REPORT)
+ STRING(TOUPPER "${CMAKE_BUILD_TYPE}" buildtype)
+ IF (CMAKE_C_FLAGS)
+ SET(cfsp " ")
+ ENDIF(CMAKE_C_FLAGS)
+ IF (CMAKE_CXX_FLAGS)
+ SET(cxxfsp " ")
+ ENDIF(CMAKE_CXX_FLAGS)
+ MESSAGE(STATUS "")
+ MESSAGE(STATUS "")
+ MESSAGE(STATUS "PCRE configuration summary:")
+ MESSAGE(STATUS "")
+ MESSAGE(STATUS " Install prefix .................. : ${CMAKE_INSTALL_PREFIX}")
+ MESSAGE(STATUS " C compiler ...................... : ${CMAKE_C_COMPILER}")
+ MESSAGE(STATUS " C++ compiler .................... : ${CMAKE_CXX_COMPILER}")
+ MESSAGE(STATUS " C compiler flags ................ : ${CMAKE_C_FLAGS}${cfsp}${CMAKE_C_FLAGS_${buildtype}}")
+ MESSAGE(STATUS " C++ compiler flags .............. : ${CMAKE_CXX_FLAGS}${cxxfsp}${CMAKE_CXX_FLAGS_${buildtype}}")
+ MESSAGE(STATUS "")
+ MESSAGE(STATUS " Build 8 bit PCRE library ........ : ${PCRE_BUILD_PCRE8}")
+ MESSAGE(STATUS " Build 16 bit PCRE library ....... : ${PCRE_BUILD_PCRE16}")
+ MESSAGE(STATUS " Build 32 bit PCRE library ....... : ${PCRE_BUILD_PCRE32}")
+ MESSAGE(STATUS " Build C++ library ............... : ${PCRE_BUILD_PCRECPP}")
+ MESSAGE(STATUS " Enable JIT compiling support .... : ${PCRE_SUPPORT_JIT}")
+ MESSAGE(STATUS " Enable UTF support .............. : ${PCRE_SUPPORT_UTF}")
+ MESSAGE(STATUS " Unicode properties .............. : ${PCRE_SUPPORT_UNICODE_PROPERTIES}")
+ MESSAGE(STATUS " Newline char/sequence ........... : ${PCRE_NEWLINE}")
+ MESSAGE(STATUS " \\R matches only ANYCRLF ......... : ${PCRE_SUPPORT_BSR_ANYCRLF}")
+ MESSAGE(STATUS " EBCDIC coding ................... : ${PCRE_EBCDIC}")
+ MESSAGE(STATUS " EBCDIC coding with NL=0x25 ...... : ${PCRE_EBCDIC_NL25}")
+ MESSAGE(STATUS " Rebuild char tables ............. : ${PCRE_REBUILD_CHARTABLES}")
+ MESSAGE(STATUS " No stack recursion .............. : ${PCRE_NO_RECURSE}")
+ MESSAGE(STATUS " POSIX mem threshold ............. : ${PCRE_POSIX_MALLOC_THRESHOLD}")
+ MESSAGE(STATUS " Internal link size .............. : ${PCRE_LINK_SIZE}")
+ MESSAGE(STATUS " Match limit ..................... : ${PCRE_MATCH_LIMIT}")
+ MESSAGE(STATUS " Match limit recursion ........... : ${PCRE_MATCH_LIMIT_RECURSION}")
+ MESSAGE(STATUS " Build shared libs ............... : ${BUILD_SHARED_LIBS}")
+ MESSAGE(STATUS " Build static libs ............... : ${BUILD_STATIC_LIBS}")
+ MESSAGE(STATUS " Build pcregrep .................. : ${PCRE_BUILD_PCREGREP}")
+ MESSAGE(STATUS " Enable JIT in pcregrep .......... : ${PCRE_SUPPORT_PCREGREP_JIT}")
+ MESSAGE(STATUS " Buffer size for pcregrep ........ : ${PCREGREP_BUFSIZE}")
+ MESSAGE(STATUS " Build tests (implies pcretest .. : ${PCRE_BUILD_TESTS}")
+ MESSAGE(STATUS " and pcregrep)")
+ IF(ZLIB_FOUND)
+ MESSAGE(STATUS " Link pcregrep with libz ......... : ${PCRE_SUPPORT_LIBZ}")
+ ELSE(ZLIB_FOUND)
+ MESSAGE(STATUS " Link pcregrep with libz ......... : Library not found" )
+ ENDIF(ZLIB_FOUND)
+ IF(BZIP2_FOUND)
+ MESSAGE(STATUS " Link pcregrep with libbz2 ....... : ${PCRE_SUPPORT_LIBBZ2}")
+ ELSE(BZIP2_FOUND)
+ MESSAGE(STATUS " Link pcregrep with libbz2 ....... : Library not found" )
+ ENDIF(BZIP2_FOUND)
+ IF(EDITLINE_FOUND)
+ MESSAGE(STATUS " Link pcretest with libeditline .. : ${PCRE_SUPPORT_LIBEDIT}")
+ ELSE(EDITLINE_FOUND)
+ MESSAGE(STATUS " Link pcretest with libeditline .. : Library not found" )
+ ENDIF(EDITLINE_FOUND)
+ IF(READLINE_FOUND)
+ MESSAGE(STATUS " Link pcretest with libreadline .. : ${PCRE_SUPPORT_LIBREADLINE}")
+ ELSE(READLINE_FOUND)
+ MESSAGE(STATUS " Link pcretest with libreadline .. : Library not found" )
+ ENDIF(READLINE_FOUND)
+ MESSAGE(STATUS " Support Valgrind .................: ${PCRE_SUPPORT_VALGRIND}")
+ MESSAGE(STATUS " Support coverage .................: ${PCRE_SUPPORT_COVERAGE}")
+
+ IF(MINGW AND NOT PCRE_STATIC)
+ MESSAGE(STATUS " Non-standard dll names (prefix) . : ${NON_STANDARD_LIB_PREFIX}")
+ MESSAGE(STATUS " Non-standard dll names (suffix) . : ${NON_STANDARD_LIB_SUFFIX}")
+ ENDIF(MINGW AND NOT PCRE_STATIC)
+ MESSAGE(STATUS "")
+ENDIF(PCRE_SHOW_REPORT)
+
+# end CMakeLists.txt
diff --git a/pcre/ChangeLog b/pcre/ChangeLog
new file mode 100644
index 00000000000..21cada49c9e
--- /dev/null
+++ b/pcre/ChangeLog
@@ -0,0 +1,5149 @@
+ChangeLog for PCRE
+------------------
+
+Version 8.33 28-May-2013
+--------------------------
+
+1. Added 'U' to some constants that are compared to unsigned integers, to
+ avoid compiler signed/unsigned warnings. Added (int) casts to unsigned
+ variables that are added to signed variables, to ensure the result is
+ signed and can be negated.
+
+2. Applied patch by Daniel Richard G for quashing MSVC warnings to the
+ CMake config files.
+
+3. Revise the creation of config.h.generic so that all boolean macros are
+ #undefined, whereas non-boolean macros are #ifndef/#endif-ed. This makes
+ overriding via -D on the command line possible.
+
+4. Changing the definition of the variable "op" in pcre_exec.c from pcre_uchar
+ to unsigned int is reported to make a quite noticeable speed difference in
+ a specific Windows environment. Testing on Linux did also appear to show
+ some benefit (and it is clearly not harmful). Also fixed the definition of
+ Xop which should be unsigned.
+
+5. Related to (4), changing the definition of the intermediate variable cc
+ in repeated character loops from pcre_uchar to pcre_uint32 also gave speed
+ improvements.
+
+6. Fix forward search in JIT when link size is 3 or greater. Also removed some
+ unnecessary spaces.
+
+7. Adjust autogen.sh and configure.ac to lose warnings given by automake 1.12
+ and later.
+
+8. Fix two buffer over read issues in 16 and 32 bit modes. Affects JIT only.
+
+9. Optimizing fast_forward_start_bits in JIT.
+
+10. Adding support for callouts in JIT, and fixing some issues revealed
+ during this work. Namely:
+
+ (a) Unoptimized capturing brackets incorrectly reset on backtrack.
+
+ (b) Minimum length was not checked before the matching is started.
+
+11. The value of capture_last that is passed to callouts was incorrect in some
+ cases when there was a capture on one path that was subsequently abandoned
+ after a backtrack. Also, the capture_last value is now reset after a
+ recursion, since all captures are also reset in this case.
+
+12. The interpreter no longer returns the "too many substrings" error in the
+ case when an overflowing capture is in a branch that is subsequently
+ abandoned after a backtrack.
+
+13. In the pathological case when an offset vector of size 2 is used, pcretest
+ now prints out the matched string after a yield of 0 or 1.
+
+14. Inlining subpatterns in recursions, when certain conditions are fulfilled.
+ Only supported by the JIT compiler at the moment.
+
+15. JIT compiler now supports 32 bit Macs thanks to Lawrence Velazquez.
+
+16. Partial matches now set offsets[2] to the "bumpalong" value, that is, the
+ offset of the starting point of the matching process, provided the offsets
+ vector is large enough.
+
+17. The \A escape now records a lookbehind value of 1, though its execution
+ does not actually inspect the previous character. This is to ensure that,
+ in partial multi-segment matching, at least one character from the old
+ segment is retained when a new segment is processed. Otherwise, if there
+ are no lookbehinds in the pattern, \A might match incorrectly at the start
+ of a new segment.
+
+18. Added some #ifdef __VMS code into pcretest.c to help VMS implementations.
+
+19. Redefined some pcre_uchar variables in pcre_exec.c as pcre_uint32; this
+ gives some modest performance improvement in 8-bit mode.
+
+20. Added the PCRE-specific property \p{Xuc} for matching characters that can
+ be expressed in certain programming languages using Universal Character
+ Names.
+
+21. Unicode validation has been updated in the light of Unicode Corrigendum #9,
+ which points out that "non characters" are not "characters that may not
+ appear in Unicode strings" but rather "characters that are reserved for
+ internal use and have only local meaning".
+
+22. When a pattern was compiled with automatic callouts (PCRE_AUTO_CALLOUT) and
+ there was a conditional group that depended on an assertion, if the
+ assertion was false, the callout that immediately followed the alternation
+ in the condition was skipped when pcre_exec() was used for matching.
+
+23. Allow an explicit callout to be inserted before an assertion that is the
+ condition for a conditional group, for compatibility with automatic
+ callouts, which always insert a callout at this point.
+
+24. In 8.31, (*COMMIT) was confined to within a recursive subpattern. Perl also
+ confines (*SKIP) and (*PRUNE) in the same way, and this has now been done.
+
+25. (*PRUNE) is now supported by the JIT compiler.
+
+26. Fix infinite loop when /(?<=(*SKIP)ac)a/ is matched against aa.
+
+27. Fix the case where there are two or more SKIPs with arguments that may be
+ ignored.
+
+28. (*SKIP) is now supported by the JIT compiler.
+
+29. (*THEN) is now supported by the JIT compiler.
+
+30. Update RunTest with additional test selector options.
+
+31. The way PCRE handles backtracking verbs has been changed in two ways.
+
+ (1) Previously, in something like (*COMMIT)(*SKIP), COMMIT would override
+ SKIP. Now, PCRE acts on whichever backtracking verb is reached first by
+ backtracking. In some cases this makes it more Perl-compatible, but Perl's
+ rather obscure rules do not always do the same thing.
+
+ (2) Previously, backtracking verbs were confined within assertions. This is
+ no longer the case for positive assertions, except for (*ACCEPT). Again,
+ this sometimes improves Perl compatibility, and sometimes does not.
+
+32. A number of tests that were in test 2 because Perl did things differently
+ have been moved to test 1, because either Perl or PCRE has changed, and
+ these tests are now compatible.
+
+32. Backtracking control verbs are now handled in the same way in JIT and
+ interpreter.
+
+33. An opening parenthesis in a MARK/PRUNE/SKIP/THEN name in a pattern that
+ contained a forward subroutine reference caused a compile error.
+
+34. Auto-detect and optimize limited repetitions in JIT.
+
+35. Implement PCRE_NEVER_UTF to lock out the use of UTF, in particular,
+ blocking (*UTF) etc.
+
+36. In the interpreter, maximizing pattern repetitions for characters and
+ character types now use tail recursion, which reduces stack usage.
+
+37. The value of the max lookbehind was not correctly preserved if a compiled
+ and saved regex was reloaded on a host of different endianness.
+
+38. Implemented (*LIMIT_MATCH) and (*LIMIT_RECURSION). As part of the extension
+ of the compiled pattern block, expand the flags field from 16 to 32 bits
+ because it was almost full.
+
+39. Try madvise first before posix_madvise.
+
+40. Change 7 for PCRE 7.9 made it impossible for pcregrep to find empty lines
+ with a pattern such as ^$. It has taken 4 years for anybody to notice! The
+ original change locked out all matches of empty strings. This has been
+ changed so that one match of an empty string per line is recognized.
+ Subsequent searches on the same line (for colouring or for --only-matching,
+ for example) do not recognize empty strings.
+
+41. Applied a user patch to fix a number of spelling mistakes in comments.
+
+42. Data lines longer than 65536 caused pcretest to crash.
+
+43. Clarified the data type for length and startoffset arguments for pcre_exec
+ and pcre_dfa_exec in the function-specific man pages, where they were
+ explicitly stated to be in bytes, never having been updated. I also added
+ some clarification to the pcreapi man page.
+
+44. A call to pcre_dfa_exec() with an output vector size less than 2 caused
+ a segmentation fault.
+
+
+Version 8.32 30-November-2012
+-----------------------------
+
+1. Improved JIT compiler optimizations for first character search and single
+ character iterators.
+
+2. Supporting IBM XL C compilers for PPC architectures in the JIT compiler.
+ Patch by Daniel Richard G.
+
+3. Single character iterator optimizations in the JIT compiler.
+
+4. Improved JIT compiler optimizations for character ranges.
+
+5. Rename the "leave" variable names to "quit" to improve WinCE compatibility.
+ Reported by Giuseppe D'Angelo.
+
+6. The PCRE_STARTLINE bit, indicating that a match can occur only at the start
+ of a line, was being set incorrectly in cases where .* appeared inside
+ atomic brackets at the start of a pattern, or where there was a subsequent
+ *PRUNE or *SKIP.
+
+7. Improved instruction cache flush for POWER/PowerPC.
+ Patch by Daniel Richard G.
+
+8. Fixed a number of issues in pcregrep, making it more compatible with GNU
+ grep:
+
+ (a) There is now no limit to the number of patterns to be matched.
+
+ (b) An error is given if a pattern is too long.
+
+ (c) Multiple uses of --exclude, --exclude-dir, --include, and --include-dir
+ are now supported.
+
+ (d) --exclude-from and --include-from (multiple use) have been added.
+
+ (e) Exclusions and inclusions now apply to all files and directories, not
+ just to those obtained from scanning a directory recursively.
+
+ (f) Multiple uses of -f and --file-list are now supported.
+
+ (g) In a Windows environment, the default for -d has been changed from
+ "read" (the GNU grep default) to "skip", because otherwise the presence
+ of a directory in the file list provokes an error.
+
+ (h) The documentation has been revised and clarified in places.
+
+9. Improve the matching speed of capturing brackets.
+
+10. Changed the meaning of \X so that it now matches a Unicode extended
+ grapheme cluster.
+
+11. Patch by Daniel Richard G to the autoconf files to add a macro for sorting
+ out POSIX threads when JIT support is configured.
+
+12. Added support for PCRE_STUDY_EXTRA_NEEDED.
+
+13. In the POSIX wrapper regcomp() function, setting re_nsub field in the preg
+ structure could go wrong in environments where size_t is not the same size
+ as int.
+
+14. Applied user-supplied patch to pcrecpp.cc to allow PCRE_NO_UTF8_CHECK to be
+ set.
+
+15. The EBCDIC support had decayed; later updates to the code had included
+ explicit references to (e.g.) \x0a instead of CHAR_LF. There has been a
+ general tidy up of EBCDIC-related issues, and the documentation was also
+ not quite right. There is now a test that can be run on ASCII systems to
+ check some of the EBCDIC-related things (but is it not a full test).
+
+16. The new PCRE_STUDY_EXTRA_NEEDED option is now used by pcregrep, resulting
+ in a small tidy to the code.
+
+17. Fix JIT tests when UTF is disabled and both 8 and 16 bit mode are enabled.
+
+18. If the --only-matching (-o) option in pcregrep is specified multiple
+ times, each one causes appropriate output. For example, -o1 -o2 outputs the
+ substrings matched by the 1st and 2nd capturing parentheses. A separating
+ string can be specified by --om-separator (default empty).
+
+19. Improving the first n character searches.
+
+20. Turn case lists for horizontal and vertical white space into macros so that
+ they are defined only once.
+
+21. This set of changes together give more compatible Unicode case-folding
+ behaviour for characters that have more than one other case when UCP
+ support is available.
+
+ (a) The Unicode property table now has offsets into a new table of sets of
+ three or more characters that are case-equivalent. The MultiStage2.py
+ script that generates these tables (the pcre_ucd.c file) now scans
+ CaseFolding.txt instead of UnicodeData.txt for character case
+ information.
+
+ (b) The code for adding characters or ranges of characters to a character
+ class has been abstracted into a generalized function that also handles
+ case-independence. In UTF-mode with UCP support, this uses the new data
+ to handle characters with more than one other case.
+
+ (c) A bug that is fixed as a result of (b) is that codepoints less than 256
+ whose other case is greater than 256 are now correctly matched
+ caselessly. Previously, the high codepoint matched the low one, but not
+ vice versa.
+
+ (d) The processing of \h, \H, \v, and \ in character classes now makes use
+ of the new class addition function, using character lists defined as
+ macros alongside the case definitions of 20 above.
+
+ (e) Caseless back references now work with characters that have more than
+ one other case.
+
+ (f) General caseless matching of characters with more than one other case
+ is supported.
+
+22. Unicode character properties were updated from Unicode 6.2.0
+
+23. Improved CMake support under Windows. Patch by Daniel Richard G.
+
+24. Add support for 32-bit character strings, and UTF-32
+
+25. Major JIT compiler update (code refactoring and bugfixing).
+ Experimental Sparc 32 support is added.
+
+26. Applied a modified version of Daniel Richard G's patch to create
+ pcre.h.generic and config.h.generic by "make" instead of in the
+ PrepareRelease script.
+
+27. Added a definition for CHAR_NULL (helpful for the z/OS port), and use it in
+ pcre_compile.c when checking for a zero character.
+
+28. Introducing a native interface for JIT. Through this interface, the compiled
+ machine code can be directly executed. The purpose of this interface is to
+ provide fast pattern matching, so several sanity checks are not performed.
+ However, feature tests are still performed. The new interface provides
+ 1.4x speedup compared to the old one.
+
+29. If pcre_exec() or pcre_dfa_exec() was called with a negative value for
+ the subject string length, the error given was PCRE_ERROR_BADOFFSET, which
+ was confusing. There is now a new error PCRE_ERROR_BADLENGTH for this case.
+
+30. In 8-bit UTF-8 mode, pcretest failed to give an error for data codepoints
+ greater than 0x7fffffff (which cannot be represented in UTF-8, even under
+ the "old" RFC 2279). Instead, it ended up passing a negative length to
+ pcre_exec().
+
+31. Add support for GCC's visibility feature to hide internal functions.
+
+32. Running "pcretest -C pcre8" or "pcretest -C pcre16" gave a spurious error
+ "unknown -C option" after outputting 0 or 1.
+
+33. There is now support for generating a code coverage report for the test
+ suite in environments where gcc is the compiler and lcov is installed. This
+ is mainly for the benefit of the developers.
+
+34. If PCRE is built with --enable-valgrind, certain memory regions are marked
+ unaddressable using valgrind annotations, allowing valgrind to detect
+ invalid memory accesses. This is mainly for the benefit of the developers.
+
+25. (*UTF) can now be used to start a pattern in any of the three libraries.
+
+26. Give configure error if --enable-cpp but no C++ compiler found.
+
+
+Version 8.31 06-July-2012
+-------------------------
+
+1. Fixing a wrong JIT test case and some compiler warnings.
+
+2. Removed a bashism from the RunTest script.
+
+3. Add a cast to pcre_exec.c to fix the warning "unary minus operator applied
+ to unsigned type, result still unsigned" that was given by an MS compiler
+ on encountering the code "-sizeof(xxx)".
+
+4. Partial matching support is added to the JIT compiler.
+
+5. Fixed several bugs concerned with partial matching of items that consist
+ of more than one character:
+
+ (a) /^(..)\1/ did not partially match "aba" because checking references was
+ done on an "all or nothing" basis. This also applied to repeated
+ references.
+
+ (b) \R did not give a hard partial match if \r was found at the end of the
+ subject.
+
+ (c) \X did not give a hard partial match after matching one or more
+ characters at the end of the subject.
+
+ (d) When newline was set to CRLF, a pattern such as /a$/ did not recognize
+ a partial match for the string "\r".
+
+ (e) When newline was set to CRLF, the metacharacter "." did not recognize
+ a partial match for a CR character at the end of the subject string.
+
+6. If JIT is requested using /S++ or -s++ (instead of just /S+ or -s+) when
+ running pcretest, the text "(JIT)" added to the output whenever JIT is
+ actually used to run the match.
+
+7. Individual JIT compile options can be set in pcretest by following -s+[+]
+ or /S+[+] with a digit between 1 and 7.
+
+8. OP_NOT now supports any UTF character not just single-byte ones.
+
+9. (*MARK) control verb is now supported by the JIT compiler.
+
+10. The command "./RunTest list" lists the available tests without actually
+ running any of them. (Because I keep forgetting what they all are.)
+
+11. Add PCRE_INFO_MAXLOOKBEHIND.
+
+12. Applied a (slightly modified) user-supplied patch that improves performance
+ when the heap is used for recursion (compiled with --disable-stack-for-
+ recursion). Instead of malloc and free for each heap frame each time a
+ logical recursion happens, frames are retained on a chain and re-used where
+ possible. This sometimes gives as much as 30% improvement.
+
+13. As documented, (*COMMIT) is now confined to within a recursive subpattern
+ call.
+
+14. As documented, (*COMMIT) is now confined to within a positive assertion.
+
+15. It is now possible to link pcretest with libedit as an alternative to
+ libreadline.
+
+16. (*COMMIT) control verb is now supported by the JIT compiler.
+
+17. The Unicode data tables have been updated to Unicode 6.1.0.
+
+18. Added --file-list option to pcregrep.
+
+19. Added binary file support to pcregrep, including the -a, --binary-files,
+ -I, and --text options.
+
+20. The madvise function is renamed for posix_madvise for QNX compatibility
+ reasons. Fixed by Giuseppe D'Angelo.
+
+21. Fixed a bug for backward assertions with REVERSE 0 in the JIT compiler.
+
+22. Changed the option for creating symbolic links for 16-bit man pages from
+ -s to -sf so that re-installing does not cause issues.
+
+23. Support PCRE_NO_START_OPTIMIZE in JIT as (*MARK) support requires it.
+
+24. Fixed a very old bug in pcretest that caused errors with restarted DFA
+ matches in certain environments (the workspace was not being correctly
+ retained). Also added to pcre_dfa_exec() a simple plausibility check on
+ some of the workspace data at the beginning of a restart.
+
+25. \s*\R was auto-possessifying the \s* when it should not, whereas \S*\R
+ was not doing so when it should - probably a typo introduced by SVN 528
+ (change 8.10/14).
+
+26. When PCRE_UCP was not set, \w+\x{c4} was incorrectly auto-possessifying the
+ \w+ when the character tables indicated that \x{c4} was a word character.
+ There were several related cases, all because the tests for doing a table
+ lookup were testing for characters less than 127 instead of 255.
+
+27. If a pattern contains capturing parentheses that are not used in a match,
+ their slots in the ovector are set to -1. For those that are higher than
+ any matched groups, this happens at the end of processing. In the case when
+ there were back references that the ovector was too small to contain
+ (causing temporary malloc'd memory to be used during matching), and the
+ highest capturing number was not used, memory off the end of the ovector
+ was incorrectly being set to -1. (It was using the size of the temporary
+ memory instead of the true size.)
+
+28. To catch bugs like 27 using valgrind, when pcretest is asked to specify an
+ ovector size, it uses memory at the end of the block that it has got.
+
+29. Check for an overlong MARK name and give an error at compile time. The
+ limit is 255 for the 8-bit library and 65535 for the 16-bit library.
+
+30. JIT compiler update.
+
+31. JIT is now supported on jailbroken iOS devices. Thanks for Ruiger
+ Rill for the patch.
+
+32. Put spaces around SLJIT_PRINT_D in the JIT compiler. Required by CXX11.
+
+33. Variable renamings in the PCRE-JIT compiler. No functionality change.
+
+34. Fixed typos in pcregrep: in two places there was SUPPORT_LIBZ2 instead of
+ SUPPORT_LIBBZ2. This caused a build problem when bzip2 but not gzip (zlib)
+ was enabled.
+
+35. Improve JIT code generation for greedy plus quantifier.
+
+36. When /((?:a?)*)*c/ or /((?>a?)*)*c/ was matched against "aac", it set group
+ 1 to "aa" instead of to an empty string. The bug affected repeated groups
+ that could potentially match an empty string.
+
+37. Optimizing single character iterators in JIT.
+
+38. Wide characters specified with \uxxxx in JavaScript mode are now subject to
+ the same checks as \x{...} characters in non-JavaScript mode. Specifically,
+ codepoints that are too big for the mode are faulted, and in a UTF mode,
+ disallowed codepoints are also faulted.
+
+39. If PCRE was compiled with UTF support, in three places in the DFA
+ matcher there was code that should only have been obeyed in UTF mode, but
+ was being obeyed unconditionally. In 8-bit mode this could cause incorrect
+ processing when bytes with values greater than 127 were present. In 16-bit
+ mode the bug would be provoked by values in the range 0xfc00 to 0xdc00. In
+ both cases the values are those that cannot be the first data item in a UTF
+ character. The three items that might have provoked this were recursions,
+ possessively repeated groups, and atomic groups.
+
+40. Ensure that libpcre is explicitly listed in the link commands for pcretest
+ and pcregrep, because some OS require shared objects to be explicitly
+ passed to ld, causing the link step to fail if they are not.
+
+41. There were two incorrect #ifdefs in pcre_study.c, meaning that, in 16-bit
+ mode, patterns that started with \h* or \R* might be incorrectly matched.
+
+
+Version 8.30 04-February-2012
+-----------------------------
+
+1. Renamed "isnumber" as "is_a_number" because in some Mac environments this
+ name is defined in ctype.h.
+
+2. Fixed a bug in fixed-length calculation for lookbehinds that would show up
+ only in quite long subpatterns.
+
+3. Removed the function pcre_info(), which has been obsolete and deprecated
+ since it was replaced by pcre_fullinfo() in February 2000.
+
+4. For a non-anchored pattern, if (*SKIP) was given with a name that did not
+ match a (*MARK), and the match failed at the start of the subject, a
+ reference to memory before the start of the subject could occur. This bug
+ was introduced by fix 17 of release 8.21.
+
+5. A reference to an unset group with zero minimum repetition was giving
+ totally wrong answers (in non-JavaScript-compatibility mode). For example,
+ /(another)?(\1?)test/ matched against "hello world test". This bug was
+ introduced in release 8.13.
+
+6. Add support for 16-bit character strings (a large amount of work involving
+ many changes and refactorings).
+
+7. RunGrepTest failed on msys because \r\n was replaced by whitespace when the
+ command "pattern=`printf 'xxx\r\njkl'`" was run. The pattern is now taken
+ from a file.
+
+8. Ovector size of 2 is also supported by JIT based pcre_exec (the ovector size
+ rounding is not applied in this particular case).
+
+9. The invalid Unicode surrogate codepoints U+D800 to U+DFFF are now rejected
+ if they appear, or are escaped, in patterns.
+
+10. Get rid of a number of -Wunused-but-set-variable warnings.
+
+11. The pattern /(?=(*:x))(q|)/ matches an empty string, and returns the mark
+ "x". The similar pattern /(?=(*:x))((*:y)q|)/ did not return a mark at all.
+ Oddly, Perl behaves the same way. PCRE has been fixed so that this pattern
+ also returns the mark "x". This bug applied to capturing parentheses,
+ non-capturing parentheses, and atomic parentheses. It also applied to some
+ assertions.
+
+12. Stephen Kelly's patch to CMakeLists.txt allows it to parse the version
+ information out of configure.ac instead of relying on pcre.h.generic, which
+ is not stored in the repository.
+
+13. Applied Dmitry V. Levin's patch for a more portable method for linking with
+ -lreadline.
+
+14. ZH added PCRE_CONFIG_JITTARGET; added its output to pcretest -C.
+
+15. Applied Graycode's patch to put the top-level frame on the stack rather
+ than the heap when not using the stack for recursion. This gives a
+ performance improvement in many cases when recursion is not deep.
+
+16. Experimental code added to "pcretest -C" to output the stack frame size.
+
+
+Version 8.21 12-Dec-2011
+------------------------
+
+1. Updating the JIT compiler.
+
+2. JIT compiler now supports OP_NCREF, OP_RREF and OP_NRREF. New test cases
+ are added as well.
+
+3. Fix cache-flush issue on PowerPC (It is still an experimental JIT port).
+ PCRE_EXTRA_TABLES is not suported by JIT, and should be checked before
+ calling _pcre_jit_exec. Some extra comments are added.
+
+4. (*MARK) settings inside atomic groups that do not contain any capturing
+ parentheses, for example, (?>a(*:m)), were not being passed out. This bug
+ was introduced by change 18 for 8.20.
+
+5. Supporting of \x, \U and \u in JavaScript compatibility mode based on the
+ ECMA-262 standard.
+
+6. Lookbehinds such as (?<=a{2}b) that contained a fixed repetition were
+ erroneously being rejected as "not fixed length" if PCRE_CASELESS was set.
+ This bug was probably introduced by change 9 of 8.13.
+
+7. While fixing 6 above, I noticed that a number of other items were being
+ incorrectly rejected as "not fixed length". This arose partly because newer
+ opcodes had not been added to the fixed-length checking code. I have (a)
+ corrected the bug and added tests for these items, and (b) arranged for an
+ error to occur if an unknown opcode is encountered while checking for fixed
+ length instead of just assuming "not fixed length". The items that were
+ rejected were: (*ACCEPT), (*COMMIT), (*FAIL), (*MARK), (*PRUNE), (*SKIP),
+ (*THEN), \h, \H, \v, \V, and single character negative classes with fixed
+ repetitions, e.g. [^a]{3}, with and without PCRE_CASELESS.
+
+8. A possessively repeated conditional subpattern such as (?(?=c)c|d)++ was
+ being incorrectly compiled and would have given unpredicatble results.
+
+9. A possessively repeated subpattern with minimum repeat count greater than
+ one behaved incorrectly. For example, (A){2,}+ behaved as if it was
+ (A)(A)++ which meant that, after a subsequent mismatch, backtracking into
+ the first (A) could occur when it should not.
+
+10. Add a cast and remove a redundant test from the code.
+
+11. JIT should use pcre_malloc/pcre_free for allocation.
+
+12. Updated pcre-config so that it no longer shows -L/usr/lib, which seems
+ best practice nowadays, and helps with cross-compiling. (If the exec_prefix
+ is anything other than /usr, -L is still shown).
+
+13. In non-UTF-8 mode, \C is now supported in lookbehinds and DFA matching.
+
+14. Perl does not support \N without a following name in a [] class; PCRE now
+ also gives an error.
+
+15. If a forward reference was repeated with an upper limit of around 2000,
+ it caused the error "internal error: overran compiling workspace". The
+ maximum number of forward references (including repeats) was limited by the
+ internal workspace, and dependent on the LINK_SIZE. The code has been
+ rewritten so that the workspace expands (via pcre_malloc) if necessary, and
+ the default depends on LINK_SIZE. There is a new upper limit (for safety)
+ of around 200,000 forward references. While doing this, I also speeded up
+ the filling in of repeated forward references.
+
+16. A repeated forward reference in a pattern such as (a)(?2){2}(.) was
+ incorrectly expecting the subject to contain another "a" after the start.
+
+17. When (*SKIP:name) is activated without a corresponding (*MARK:name) earlier
+ in the match, the SKIP should be ignored. This was not happening; instead
+ the SKIP was being treated as NOMATCH. For patterns such as
+ /A(*MARK:A)A+(*SKIP:B)Z|AAC/ this meant that the AAC branch was never
+ tested.
+
+18. The behaviour of (*MARK), (*PRUNE), and (*THEN) has been reworked and is
+ now much more compatible with Perl, in particular in cases where the result
+ is a non-match for a non-anchored pattern. For example, if
+ /b(*:m)f|a(*:n)w/ is matched against "abc", the non-match returns the name
+ "m", where previously it did not return a name. A side effect of this
+ change is that for partial matches, the last encountered mark name is
+ returned, as for non matches. A number of tests that were previously not
+ Perl-compatible have been moved into the Perl-compatible test files. The
+ refactoring has had the pleasing side effect of removing one argument from
+ the match() function, thus reducing its stack requirements.
+
+19. If the /S+ option was used in pcretest to study a pattern using JIT,
+ subsequent uses of /S (without +) incorrectly behaved like /S+.
+
+21. Retrieve executable code size support for the JIT compiler and fixing
+ some warnings.
+
+22. A caseless match of a UTF-8 character whose other case uses fewer bytes did
+ not work when the shorter character appeared right at the end of the
+ subject string.
+
+23. Added some (int) casts to non-JIT modules to reduce warnings on 64-bit
+ systems.
+
+24. Added PCRE_INFO_JITSIZE to pass on the value from (21) above, and also
+ output it when the /M option is used in pcretest.
+
+25. The CheckMan script was not being included in the distribution. Also, added
+ an explicit "perl" to run Perl scripts from the PrepareRelease script
+ because this is reportedly needed in Windows.
+
+26. If study data was being save in a file and studying had not found a set of
+ "starts with" bytes for the pattern, the data written to the file (though
+ never used) was taken from uninitialized memory and so caused valgrind to
+ complain.
+
+27. Updated RunTest.bat as provided by Sheri Pierce.
+
+28. Fixed a possible uninitialized memory bug in pcre_jit_compile.c.
+
+29. Computation of memory usage for the table of capturing group names was
+ giving an unnecessarily large value.
+
+
+Version 8.20 21-Oct-2011
+------------------------
+
+1. Change 37 of 8.13 broke patterns like [:a]...[b:] because it thought it had
+ a POSIX class. After further experiments with Perl, which convinced me that
+ Perl has bugs and confusions, a closing square bracket is no longer allowed
+ in a POSIX name. This bug also affected patterns with classes that started
+ with full stops.
+
+2. If a pattern such as /(a)b|ac/ is matched against "ac", there is no
+ captured substring, but while checking the failing first alternative,
+ substring 1 is temporarily captured. If the output vector supplied to
+ pcre_exec() was not big enough for this capture, the yield of the function
+ was still zero ("insufficient space for captured substrings"). This cannot
+ be totally fixed without adding another stack variable, which seems a lot
+ of expense for a edge case. However, I have improved the situation in cases
+ such as /(a)(b)x|abc/ matched against "abc", where the return code
+ indicates that fewer than the maximum number of slots in the ovector have
+ been set.
+
+3. Related to (2) above: when there are more back references in a pattern than
+ slots in the output vector, pcre_exec() uses temporary memory during
+ matching, and copies in the captures as far as possible afterwards. It was
+ using the entire output vector, but this conflicts with the specification
+ that only 2/3 is used for passing back captured substrings. Now it uses
+ only the first 2/3, for compatibility. This is, of course, another edge
+ case.
+
+4. Zoltan Herczeg's just-in-time compiler support has been integrated into the
+ main code base, and can be used by building with --enable-jit. When this is
+ done, pcregrep automatically uses it unless --disable-pcregrep-jit or the
+ runtime --no-jit option is given.
+
+5. When the number of matches in a pcre_dfa_exec() run exactly filled the
+ ovector, the return from the function was zero, implying that there were
+ other matches that did not fit. The correct "exactly full" value is now
+ returned.
+
+6. If a subpattern that was called recursively or as a subroutine contained
+ (*PRUNE) or any other control that caused it to give a non-standard return,
+ invalid errors such as "Error -26 (nested recursion at the same subject
+ position)" or even infinite loops could occur.
+
+7. If a pattern such as /a(*SKIP)c|b(*ACCEPT)|/ was studied, it stopped
+ computing the minimum length on reaching *ACCEPT, and so ended up with the
+ wrong value of 1 rather than 0. Further investigation indicates that
+ computing a minimum subject length in the presence of *ACCEPT is difficult
+ (think back references, subroutine calls), and so I have changed the code
+ so that no minimum is registered for a pattern that contains *ACCEPT.
+
+8. If (*THEN) was present in the first (true) branch of a conditional group,
+ it was not handled as intended. [But see 16 below.]
+
+9. Replaced RunTest.bat and CMakeLists.txt with improved versions provided by
+ Sheri Pierce.
+
+10. A pathological pattern such as /(*ACCEPT)a/ was miscompiled, thinking that
+ the first byte in a match must be "a".
+
+11. Change 17 for 8.13 increased the recursion depth for patterns like
+ /a(?:.)*?a/ drastically. I've improved things by remembering whether a
+ pattern contains any instances of (*THEN). If it does not, the old
+ optimizations are restored. It would be nice to do this on a per-group
+ basis, but at the moment that is not feasible.
+
+12. In some environments, the output of pcretest -C is CRLF terminated. This
+ broke RunTest's code that checks for the link size. A single white space
+ character after the value is now allowed for.
+
+13. RunTest now checks for the "fr" locale as well as for "fr_FR" and "french".
+ For "fr", it uses the Windows-specific input and output files.
+
+14. If (*THEN) appeared in a group that was called recursively or as a
+ subroutine, it did not work as intended. [But see next item.]
+
+15. Consider the pattern /A (B(*THEN)C) | D/ where A, B, C, and D are complex
+ pattern fragments (but not containing any | characters). If A and B are
+ matched, but there is a failure in C so that it backtracks to (*THEN), PCRE
+ was behaving differently to Perl. PCRE backtracked into A, but Perl goes to
+ D. In other words, Perl considers parentheses that do not contain any |
+ characters to be part of a surrounding alternative, whereas PCRE was
+ treading (B(*THEN)C) the same as (B(*THEN)C|(*FAIL)) -- which Perl handles
+ differently. PCRE now behaves in the same way as Perl, except in the case
+ of subroutine/recursion calls such as (?1) which have in any case always
+ been different (but PCRE had them first :-).
+
+16. Related to 15 above: Perl does not treat the | in a conditional group as
+ creating alternatives. Such a group is treated in the same way as an
+ ordinary group without any | characters when processing (*THEN). PCRE has
+ been changed to match Perl's behaviour.
+
+17. If a user had set PCREGREP_COLO(U)R to something other than 1:31, the
+ RunGrepTest script failed.
+
+18. Change 22 for version 13 caused atomic groups to use more stack. This is
+ inevitable for groups that contain captures, but it can lead to a lot of
+ stack use in large patterns. The old behaviour has been restored for atomic
+ groups that do not contain any capturing parentheses.
+
+19. If the PCRE_NO_START_OPTIMIZE option was set for pcre_compile(), it did not
+ suppress the check for a minimum subject length at run time. (If it was
+ given to pcre_exec() or pcre_dfa_exec() it did work.)
+
+20. Fixed an ASCII-dependent infelicity in pcretest that would have made it
+ fail to work when decoding hex characters in data strings in EBCDIC
+ environments.
+
+21. It appears that in at least one Mac OS environment, the isxdigit() function
+ is implemented as a macro that evaluates to its argument more than once,
+ contravening the C 90 Standard (I haven't checked a later standard). There
+ was an instance in pcretest which caused it to go wrong when processing
+ \x{...} escapes in subject strings. The has been rewritten to avoid using
+ things like p++ in the argument of isxdigit().
+
+
+Version 8.13 16-Aug-2011
+------------------------
+
+1. The Unicode data tables have been updated to Unicode 6.0.0.
+
+2. Two minor typos in pcre_internal.h have been fixed.
+
+3. Added #include to pcre_scanner_unittest.cc, pcrecpp.cc, and
+ pcrecpp_unittest.cc. They are needed for strcmp(), memset(), and strchr()
+ in some environments (e.g. Solaris 10/SPARC using Sun Studio 12U2).
+
+4. There were a number of related bugs in the code for matching backrefences
+ caselessly in UTF-8 mode when codes for the characters concerned were
+ different numbers of bytes. For example, U+023A and U+2C65 are an upper
+ and lower case pair, using 2 and 3 bytes, respectively. The main bugs were:
+ (a) A reference to 3 copies of a 2-byte code matched only 2 of a 3-byte
+ code. (b) A reference to 2 copies of a 3-byte code would not match 2 of a
+ 2-byte code at the end of the subject (it thought there wasn't enough data
+ left).
+
+5. Comprehensive information about what went wrong is now returned by
+ pcre_exec() and pcre_dfa_exec() when the UTF-8 string check fails, as long
+ as the output vector has at least 2 elements. The offset of the start of
+ the failing character and a reason code are placed in the vector.
+
+6. When the UTF-8 string check fails for pcre_compile(), the offset that is
+ now returned is for the first byte of the failing character, instead of the
+ last byte inspected. This is an incompatible change, but I hope it is small
+ enough not to be a problem. It makes the returned offset consistent with
+ pcre_exec() and pcre_dfa_exec().
+
+7. pcretest now gives a text phrase as well as the error number when
+ pcre_exec() or pcre_dfa_exec() fails; if the error is a UTF-8 check
+ failure, the offset and reason code are output.
+
+8. When \R was used with a maximizing quantifier it failed to skip backwards
+ over a \r\n pair if the subsequent match failed. Instead, it just skipped
+ back over a single character (\n). This seems wrong (because it treated the
+ two characters as a single entity when going forwards), conflicts with the
+ documentation that \R is equivalent to (?>\r\n|\n|...etc), and makes the
+ behaviour of \R* different to (\R)*, which also seems wrong. The behaviour
+ has been changed.
+
+9. Some internal refactoring has changed the processing so that the handling
+ of the PCRE_CASELESS and PCRE_MULTILINE options is done entirely at compile
+ time (the PCRE_DOTALL option was changed this way some time ago: version
+ 7.7 change 16). This has made it possible to abolish the OP_OPT op code,
+ which was always a bit of a fudge. It also means that there is one less
+ argument for the match() function, which reduces its stack requirements
+ slightly. This change also fixes an incompatibility with Perl: the pattern
+ (?i:([^b]))(?1) should not match "ab", but previously PCRE gave a match.
+
+10. More internal refactoring has drastically reduced the number of recursive
+ calls to match() for possessively repeated groups such as (abc)++ when
+ using pcre_exec().
+
+11. While implementing 10, a number of bugs in the handling of groups were
+ discovered and fixed:
+
+ (?<=(a)+) was not diagnosed as invalid (non-fixed-length lookbehind).
+ (a|)*(?1) gave a compile-time internal error.
+ ((a|)+)+ did not notice that the outer group could match an empty string.
+ (^a|^)+ was not marked as anchored.
+ (.*a|.*)+ was not marked as matching at start or after a newline.
+
+12. Yet more internal refactoring has removed another argument from the match()
+ function. Special calls to this function are now indicated by setting a
+ value in a variable in the "match data" data block.
+
+13. Be more explicit in pcre_study() instead of relying on "default" for
+ opcodes that mean there is no starting character; this means that when new
+ ones are added and accidentally left out of pcre_study(), testing should
+ pick them up.
+
+14. The -s option of pcretest has been documented for ages as being an old
+ synonym of -m (show memory usage). I have changed it to mean "force study
+ for every regex", that is, assume /S for every regex. This is similar to -i
+ and -d etc. It's slightly incompatible, but I'm hoping nobody is still
+ using it. It makes it easier to run collections of tests with and without
+ study enabled, and thereby test pcre_study() more easily. All the standard
+ tests are now run with and without -s (but some patterns can be marked as
+ "never study" - see 20 below).
+
+15. When (*ACCEPT) was used in a subpattern that was called recursively, the
+ restoration of the capturing data to the outer values was not happening
+ correctly.
+
+16. If a recursively called subpattern ended with (*ACCEPT) and matched an
+ empty string, and PCRE_NOTEMPTY was set, pcre_exec() thought the whole
+ pattern had matched an empty string, and so incorrectly returned a no
+ match.
+
+17. There was optimizing code for the last branch of non-capturing parentheses,
+ and also for the obeyed branch of a conditional subexpression, which used
+ tail recursion to cut down on stack usage. Unfortunately, now that there is
+ the possibility of (*THEN) occurring in these branches, tail recursion is
+ no longer possible because the return has to be checked for (*THEN). These
+ two optimizations have therefore been removed. [But see 8.20/11 above.]
+
+18. If a pattern containing \R was studied, it was assumed that \R always
+ matched two bytes, thus causing the minimum subject length to be
+ incorrectly computed because \R can also match just one byte.
+
+19. If a pattern containing (*ACCEPT) was studied, the minimum subject length
+ was incorrectly computed.
+
+20. If /S is present twice on a test pattern in pcretest input, it now
+ *disables* studying, thereby overriding the use of -s on the command line
+ (see 14 above). This is necessary for one or two tests to keep the output
+ identical in both cases.
+
+21. When (*ACCEPT) was used in an assertion that matched an empty string and
+ PCRE_NOTEMPTY was set, PCRE applied the non-empty test to the assertion.
+
+22. When an atomic group that contained a capturing parenthesis was
+ successfully matched, but the branch in which it appeared failed, the
+ capturing was not being forgotten if a higher numbered group was later
+ captured. For example, /(?>(a))b|(a)c/ when matching "ac" set capturing
+ group 1 to "a", when in fact it should be unset. This applied to multi-
+ branched capturing and non-capturing groups, repeated or not, and also to
+ positive assertions (capturing in negative assertions does not happen
+ in PCRE) and also to nested atomic groups.
+
+23. Add the ++ qualifier feature to pcretest, to show the remainder of the
+ subject after a captured substring, to make it easier to tell which of a
+ number of identical substrings has been captured.
+
+24. The way atomic groups are processed by pcre_exec() has been changed so that
+ if they are repeated, backtracking one repetition now resets captured
+ values correctly. For example, if ((?>(a+)b)+aabab) is matched against
+ "aaaabaaabaabab" the value of captured group 2 is now correctly recorded as
+ "aaa". Previously, it would have been "a". As part of this code
+ refactoring, the way recursive calls are handled has also been changed.
+
+25. If an assertion condition captured any substrings, they were not passed
+ back unless some other capturing happened later. For example, if
+ (?(?=(a))a) was matched against "a", no capturing was returned.
+
+26. When studying a pattern that contained subroutine calls or assertions,
+ the code for finding the minimum length of a possible match was handling
+ direct recursions such as (xxx(?1)|yyy) but not mutual recursions (where
+ group 1 called group 2 while simultaneously a separate group 2 called group
+ 1). A stack overflow occurred in this case. I have fixed this by limiting
+ the recursion depth to 10.
+
+27. Updated RunTest.bat in the distribution to the version supplied by Tom
+ Fortmann. This supports explicit test numbers on the command line, and has
+ argument validation and error reporting.
+
+28. An instance of \X with an unlimited repeat could fail if at any point the
+ first character it looked at was a mark character.
+
+29. Some minor code refactoring concerning Unicode properties and scripts
+ should reduce the stack requirement of match() slightly.
+
+30. Added the '=' option to pcretest to check the setting of unused capturing
+ slots at the end of the pattern, which are documented as being -1, but are
+ not included in the return count.
+
+31. If \k was not followed by a braced, angle-bracketed, or quoted name, PCRE
+ compiled something random. Now it gives a compile-time error (as does
+ Perl).
+
+32. A *MARK encountered during the processing of a positive assertion is now
+ recorded and passed back (compatible with Perl).
+
+33. If --only-matching or --colour was set on a pcregrep call whose pattern
+ had alternative anchored branches, the search for a second match in a line
+ was done as if at the line start. Thus, for example, /^01|^02/ incorrectly
+ matched the line "0102" twice. The same bug affected patterns that started
+ with a backwards assertion. For example /\b01|\b02/ also matched "0102"
+ twice.
+
+34. Previously, PCRE did not allow quantification of assertions. However, Perl
+ does, and because of capturing effects, quantifying parenthesized
+ assertions may at times be useful. Quantifiers are now allowed for
+ parenthesized assertions.
+
+35. A minor code tidy in pcre_compile() when checking options for \R usage.
+
+36. \g was being checked for fancy things in a character class, when it should
+ just be a literal "g".
+
+37. PCRE was rejecting [:a[:digit:]] whereas Perl was not. It seems that the
+ appearance of a nested POSIX class supersedes an apparent external class.
+ For example, [:a[:digit:]b:] matches "a", "b", ":", or a digit. Also,
+ unescaped square brackets may also appear as part of class names. For
+ example, [:a[:abc]b:] gives unknown class "[:abc]b:]". PCRE now behaves
+ more like Perl. (But see 8.20/1 above.)
+
+38. PCRE was giving an error for \N with a braced quantifier such as {1,} (this
+ was because it thought it was \N{name}, which is not supported).
+
+39. Add minix to OS list not supporting the -S option in pcretest.
+
+40. PCRE tries to detect cases of infinite recursion at compile time, but it
+ cannot analyze patterns in sufficient detail to catch mutual recursions
+ such as ((?1))((?2)). There is now a runtime test that gives an error if a
+ subgroup is called recursively as a subpattern for a second time at the
+ same position in the subject string. In previous releases this might have
+ been caught by the recursion limit, or it might have run out of stack.
+
+41. A pattern such as /(?(R)a+|(?R)b)/ is quite safe, as the recursion can
+ happen only once. PCRE was, however incorrectly giving a compile time error
+ "recursive call could loop indefinitely" because it cannot analyze the
+ pattern in sufficient detail. The compile time test no longer happens when
+ PCRE is compiling a conditional subpattern, but actual runaway loops are
+ now caught at runtime (see 40 above).
+
+42. It seems that Perl allows any characters other than a closing parenthesis
+ to be part of the NAME in (*MARK:NAME) and other backtracking verbs. PCRE
+ has been changed to be the same.
+
+43. Updated configure.ac to put in more quoting round AC_LANG_PROGRAM etc. so
+ as not to get warnings when autogen.sh is called. Also changed
+ AC_PROG_LIBTOOL (deprecated) to LT_INIT (the current macro).
+
+44. To help people who use pcregrep to scan files containing exceedingly long
+ lines, the following changes have been made:
+
+ (a) The default value of the buffer size parameter has been increased from
+ 8K to 20K. (The actual buffer used is three times this size.)
+
+ (b) The default can be changed by ./configure --with-pcregrep-bufsize when
+ PCRE is built.
+
+ (c) A --buffer-size=n option has been added to pcregrep, to allow the size
+ to be set at run time.
+
+ (d) Numerical values in pcregrep options can be followed by K or M, for
+ example --buffer-size=50K.
+
+ (e) If a line being scanned overflows pcregrep's buffer, an error is now
+ given and the return code is set to 2.
+
+45. Add a pointer to the latest mark to the callout data block.
+
+46. The pattern /.(*F)/, when applied to "abc" with PCRE_PARTIAL_HARD, gave a
+ partial match of an empty string instead of no match. This was specific to
+ the use of ".".
+
+47. The pattern /f.*/8s, when applied to "for" with PCRE_PARTIAL_HARD, gave a
+ complete match instead of a partial match. This bug was dependent on both
+ the PCRE_UTF8 and PCRE_DOTALL options being set.
+
+48. For a pattern such as /\babc|\bdef/ pcre_study() was failing to set up the
+ starting byte set, because \b was not being ignored.
+
+
+Version 8.12 15-Jan-2011
+------------------------
+
+1. Fixed some typos in the markup of the man pages, and wrote a script that
+ checks for such things as part of the documentation building process.
+
+2. On a big-endian 64-bit system, pcregrep did not correctly process the
+ --match-limit and --recursion-limit options (added for 8.11). In
+ particular, this made one of the standard tests fail. (The integer value
+ went into the wrong half of a long int.)
+
+3. If the --colour option was given to pcregrep with -v (invert match), it
+ did strange things, either producing crazy output, or crashing. It should,
+ of course, ignore a request for colour when reporting lines that do not
+ match.
+
+4. Another pcregrep bug caused similar problems if --colour was specified with
+ -M (multiline) and the pattern match finished with a line ending.
+
+5. In pcregrep, when a pattern that ended with a literal newline sequence was
+ matched in multiline mode, the following line was shown as part of the
+ match. This seems wrong, so I have changed it.
+
+6. Another pcregrep bug in multiline mode, when --colour was specified, caused
+ the check for further matches in the same line (so they could be coloured)
+ to overrun the end of the current line. If another match was found, it was
+ incorrectly shown (and then shown again when found in the next line).
+
+7. If pcregrep was compiled under Windows, there was a reference to the
+ function pcregrep_exit() before it was defined. I am assuming this was
+ the cause of the "error C2371: 'pcregrep_exit' : redefinition;" that was
+ reported by a user. I've moved the definition above the reference.
+
+
+Version 8.11 10-Dec-2010
+------------------------
+
+1. (*THEN) was not working properly if there were untried alternatives prior
+ to it in the current branch. For example, in ((a|b)(*THEN)(*F)|c..) it
+ backtracked to try for "b" instead of moving to the next alternative branch
+ at the same level (in this case, to look for "c"). The Perl documentation
+ is clear that when (*THEN) is backtracked onto, it goes to the "next
+ alternative in the innermost enclosing group".
+
+2. (*COMMIT) was not overriding (*THEN), as it does in Perl. In a pattern
+ such as (A(*COMMIT)B(*THEN)C|D) any failure after matching A should
+ result in overall failure. Similarly, (*COMMIT) now overrides (*PRUNE) and
+ (*SKIP), (*SKIP) overrides (*PRUNE) and (*THEN), and (*PRUNE) overrides
+ (*THEN).
+
+3. If \s appeared in a character class, it removed the VT character from
+ the class, even if it had been included by some previous item, for example
+ in [\x00-\xff\s]. (This was a bug related to the fact that VT is not part
+ of \s, but is part of the POSIX "space" class.)
+
+4. A partial match never returns an empty string (because you can always
+ match an empty string at the end of the subject); however the checking for
+ an empty string was starting at the "start of match" point. This has been
+ changed to the "earliest inspected character" point, because the returned
+ data for a partial match starts at this character. This means that, for
+ example, /(?<=abc)def/ gives a partial match for the subject "abc"
+ (previously it gave "no match").
+
+5. Changes have been made to the way PCRE_PARTIAL_HARD affects the matching
+ of $, \z, \Z, \b, and \B. If the match point is at the end of the string,
+ previously a full match would be given. However, setting PCRE_PARTIAL_HARD
+ has an implication that the given string is incomplete (because a partial
+ match is preferred over a full match). For this reason, these items now
+ give a partial match in this situation. [Aside: previously, the one case
+ /t\b/ matched against "cat" with PCRE_PARTIAL_HARD set did return a partial
+ match rather than a full match, which was wrong by the old rules, but is
+ now correct.]
+
+6. There was a bug in the handling of #-introduced comments, recognized when
+ PCRE_EXTENDED is set, when PCRE_NEWLINE_ANY and PCRE_UTF8 were also set.
+ If a UTF-8 multi-byte character included the byte 0x85 (e.g. +U0445, whose
+ UTF-8 encoding is 0xd1,0x85), this was misinterpreted as a newline when
+ scanning for the end of the comment. (*Character* 0x85 is an "any" newline,
+ but *byte* 0x85 is not, in UTF-8 mode). This bug was present in several
+ places in pcre_compile().
+
+7. Related to (6) above, when pcre_compile() was skipping #-introduced
+ comments when looking ahead for named forward references to subpatterns,
+ the only newline sequence it recognized was NL. It now handles newlines
+ according to the set newline convention.
+
+8. SunOS4 doesn't have strerror() or strtoul(); pcregrep dealt with the
+ former, but used strtoul(), whereas pcretest avoided strtoul() but did not
+ cater for a lack of strerror(). These oversights have been fixed.
+
+9. Added --match-limit and --recursion-limit to pcregrep.
+
+10. Added two casts needed to build with Visual Studio when NO_RECURSE is set.
+
+11. When the -o option was used, pcregrep was setting a return code of 1, even
+ when matches were found, and --line-buffered was not being honoured.
+
+12. Added an optional parentheses number to the -o and --only-matching options
+ of pcregrep.
+
+13. Imitating Perl's /g action for multiple matches is tricky when the pattern
+ can match an empty string. The code to do it in pcretest and pcredemo
+ needed fixing:
+
+ (a) When the newline convention was "crlf", pcretest got it wrong, skipping
+ only one byte after an empty string match just before CRLF (this case
+ just got forgotten; "any" and "anycrlf" were OK).
+
+ (b) The pcretest code also had a bug, causing it to loop forever in UTF-8
+ mode when an empty string match preceded an ASCII character followed by
+ a non-ASCII character. (The code for advancing by one character rather
+ than one byte was nonsense.)
+
+ (c) The pcredemo.c sample program did not have any code at all to handle
+ the cases when CRLF is a valid newline sequence.
+
+14. Neither pcre_exec() nor pcre_dfa_exec() was checking that the value given
+ as a starting offset was within the subject string. There is now a new
+ error, PCRE_ERROR_BADOFFSET, which is returned if the starting offset is
+ negative or greater than the length of the string. In order to test this,
+ pcretest is extended to allow the setting of negative starting offsets.
+
+15. In both pcre_exec() and pcre_dfa_exec() the code for checking that the
+ starting offset points to the beginning of a UTF-8 character was
+ unnecessarily clumsy. I tidied it up.
+
+16. Added PCRE_ERROR_SHORTUTF8 to make it possible to distinguish between a
+ bad UTF-8 sequence and one that is incomplete when using PCRE_PARTIAL_HARD.
+
+17. Nobody had reported that the --include_dir option, which was added in
+ release 7.7 should have been called --include-dir (hyphen, not underscore)
+ for compatibility with GNU grep. I have changed it to --include-dir, but
+ left --include_dir as an undocumented synonym, and the same for
+ --exclude-dir, though that is not available in GNU grep, at least as of
+ release 2.5.4.
+
+18. At a user's suggestion, the macros GETCHAR and friends (which pick up UTF-8
+ characters from a string of bytes) have been redefined so as not to use
+ loops, in order to improve performance in some environments. At the same
+ time, I abstracted some of the common code into auxiliary macros to save
+ repetition (this should not affect the compiled code).
+
+19. If \c was followed by a multibyte UTF-8 character, bad things happened. A
+ compile-time error is now given if \c is not followed by an ASCII
+ character, that is, a byte less than 128. (In EBCDIC mode, the code is
+ different, and any byte value is allowed.)
+
+20. Recognize (*NO_START_OPT) at the start of a pattern to set the PCRE_NO_
+ START_OPTIMIZE option, which is now allowed at compile time - but just
+ passed through to pcre_exec() or pcre_dfa_exec(). This makes it available
+ to pcregrep and other applications that have no direct access to PCRE
+ options. The new /Y option in pcretest sets this option when calling
+ pcre_compile().
+
+21. Change 18 of release 8.01 broke the use of named subpatterns for recursive
+ back references. Groups containing recursive back references were forced to
+ be atomic by that change, but in the case of named groups, the amount of
+ memory required was incorrectly computed, leading to "Failed: internal
+ error: code overflow". This has been fixed.
+
+22. Some patches to pcre_stringpiece.h, pcre_stringpiece_unittest.cc, and
+ pcretest.c, to avoid build problems in some Borland environments.
+
+
+Version 8.10 25-Jun-2010
+------------------------
+
+1. Added support for (*MARK:ARG) and for ARG additions to PRUNE, SKIP, and
+ THEN.
+
+2. (*ACCEPT) was not working when inside an atomic group.
+
+3. Inside a character class, \B is treated as a literal by default, but
+ faulted if PCRE_EXTRA is set. This mimics Perl's behaviour (the -w option
+ causes the error). The code is unchanged, but I tidied the documentation.
+
+4. Inside a character class, PCRE always treated \R and \X as literals,
+ whereas Perl faults them if its -w option is set. I have changed PCRE so
+ that it faults them when PCRE_EXTRA is set.
+
+5. Added support for \N, which always matches any character other than
+ newline. (It is the same as "." when PCRE_DOTALL is not set.)
+
+6. When compiling pcregrep with newer versions of gcc which may have
+ FORTIFY_SOURCE set, several warnings "ignoring return value of 'fwrite',
+ declared with attribute warn_unused_result" were given. Just casting the
+ result to (void) does not stop the warnings; a more elaborate fudge is
+ needed. I've used a macro to implement this.
+
+7. Minor change to pcretest.c to avoid a compiler warning.
+
+8. Added four artifical Unicode properties to help with an option to make
+ \s etc use properties (see next item). The new properties are: Xan
+ (alphanumeric), Xsp (Perl space), Xps (POSIX space), and Xwd (word).
+
+9. Added PCRE_UCP to make \b, \d, \s, \w, and certain POSIX character classes
+ use Unicode properties. (*UCP) at the start of a pattern can be used to set
+ this option. Modified pcretest to add /W to test this facility. Added
+ REG_UCP to make it available via the POSIX interface.
+
+10. Added --line-buffered to pcregrep.
+
+11. In UTF-8 mode, if a pattern that was compiled with PCRE_CASELESS was
+ studied, and the match started with a letter with a code point greater than
+ 127 whose first byte was different to the first byte of the other case of
+ the letter, the other case of this starting letter was not recognized
+ (#976).
+
+12. If a pattern that was studied started with a repeated Unicode property
+ test, for example, \p{Nd}+, there was the theoretical possibility of
+ setting up an incorrect bitmap of starting bytes, but fortunately it could
+ not have actually happened in practice until change 8 above was made (it
+ added property types that matched character-matching opcodes).
+
+13. pcre_study() now recognizes \h, \v, and \R when constructing a bit map of
+ possible starting bytes for non-anchored patterns.
+
+14. Extended the "auto-possessify" feature of pcre_compile(). It now recognizes
+ \R, and also a number of cases that involve Unicode properties, both
+ explicit and implicit when PCRE_UCP is set.
+
+15. If a repeated Unicode property match (e.g. \p{Lu}*) was used with non-UTF-8
+ input, it could crash or give wrong results if characters with values
+ greater than 0xc0 were present in the subject string. (Detail: it assumed
+ UTF-8 input when processing these items.)
+
+16. Added a lot of (int) casts to avoid compiler warnings in systems where
+ size_t is 64-bit (#991).
+
+17. Added a check for running out of memory when PCRE is compiled with
+ --disable-stack-for-recursion (#990).
+
+18. If the last data line in a file for pcretest does not have a newline on
+ the end, a newline was missing in the output.
+
+19. The default pcre_chartables.c file recognizes only ASCII characters (values
+ less than 128) in its various bitmaps. However, there is a facility for
+ generating tables according to the current locale when PCRE is compiled. It
+ turns out that in some environments, 0x85 and 0xa0, which are Unicode space
+ characters, are recognized by isspace() and therefore were getting set in
+ these tables, and indeed these tables seem to approximate to ISO 8859. This
+ caused a problem in UTF-8 mode when pcre_study() was used to create a list
+ of bytes that can start a match. For \s, it was including 0x85 and 0xa0,
+ which of course cannot start UTF-8 characters. I have changed the code so
+ that only real ASCII characters (less than 128) and the correct starting
+ bytes for UTF-8 encodings are set for characters greater than 127 when in
+ UTF-8 mode. (When PCRE_UCP is set - see 9 above - the code is different
+ altogether.)
+
+20. Added the /T option to pcretest so as to be able to run tests with non-
+ standard character tables, thus making it possible to include the tests
+ used for 19 above in the standard set of tests.
+
+21. A pattern such as (?&t)(?#()(?(DEFINE)(?a)) which has a forward
+ reference to a subpattern the other side of a comment that contains an
+ opening parenthesis caused either an internal compiling error, or a
+ reference to the wrong subpattern.
+
+
+Version 8.02 19-Mar-2010
+------------------------
+
+1. The Unicode data tables have been updated to Unicode 5.2.0.
+
+2. Added the option --libs-cpp to pcre-config, but only when C++ support is
+ configured.
+
+3. Updated the licensing terms in the pcregexp.pas file, as agreed with the
+ original author of that file, following a query about its status.
+
+4. On systems that do not have stdint.h (e.g. Solaris), check for and include
+ inttypes.h instead. This fixes a bug that was introduced by change 8.01/8.
+
+5. A pattern such as (?&t)*+(?(DEFINE)(?.)) which has a possessive
+ quantifier applied to a forward-referencing subroutine call, could compile
+ incorrect code or give the error "internal error: previously-checked
+ referenced subpattern not found".
+
+6. Both MS Visual Studio and Symbian OS have problems with initializing
+ variables to point to external functions. For these systems, therefore,
+ pcre_malloc etc. are now initialized to local functions that call the
+ relevant global functions.
+
+7. There were two entries missing in the vectors called coptable and poptable
+ in pcre_dfa_exec.c. This could lead to memory accesses outsize the vectors.
+ I've fixed the data, and added a kludgy way of testing at compile time that
+ the lengths are correct (equal to the number of opcodes).
+
+8. Following on from 7, I added a similar kludge to check the length of the
+ eint vector in pcreposix.c.
+
+9. Error texts for pcre_compile() are held as one long string to avoid too
+ much relocation at load time. To find a text, the string is searched,
+ counting zeros. There was no check for running off the end of the string,
+ which could happen if a new error number was added without updating the
+ string.
+
+10. \K gave a compile-time error if it appeared in a lookbehind assersion.
+
+11. \K was not working if it appeared in an atomic group or in a group that
+ was called as a "subroutine", or in an assertion. Perl 5.11 documents that
+ \K is "not well defined" if used in an assertion. PCRE now accepts it if
+ the assertion is positive, but not if it is negative.
+
+12. Change 11 fortuitously reduced the size of the stack frame used in the
+ "match()" function of pcre_exec.c by one pointer. Forthcoming
+ implementation of support for (*MARK) will need an extra pointer on the
+ stack; I have reserved it now, so that the stack frame size does not
+ decrease.
+
+13. A pattern such as (?P(?P0)|(?P>L2)(?P>L1)) in which the only other
+ item in branch that calls a recursion is a subroutine call - as in the
+ second branch in the above example - was incorrectly given the compile-
+ time error "recursive call could loop indefinitely" because pcre_compile()
+ was not correctly checking the subroutine for matching a non-empty string.
+
+14. The checks for overrunning compiling workspace could trigger after an
+ overrun had occurred. This is a "should never occur" error, but it can be
+ triggered by pathological patterns such as hundreds of nested parentheses.
+ The checks now trigger 100 bytes before the end of the workspace.
+
+15. Fix typo in configure.ac: "srtoq" should be "strtoq".
+
+
+Version 8.01 19-Jan-2010
+------------------------
+
+1. If a pattern contained a conditional subpattern with only one branch (in
+ particular, this includes all (*DEFINE) patterns), a call to pcre_study()
+ computed the wrong minimum data length (which is of course zero for such
+ subpatterns). This could cause incorrect "no match" results.
+
+2. For patterns such as (?i)a(?-i)b|c where an option setting at the start of
+ the pattern is reset in the first branch, pcre_compile() failed with
+ "internal error: code overflow at offset...". This happened only when
+ the reset was to the original external option setting. (An optimization
+ abstracts leading options settings into an external setting, which was the
+ cause of this.)
+
+3. A pattern such as ^(?!a(*SKIP)b) where a negative assertion contained one
+ of the verbs SKIP, PRUNE, or COMMIT, did not work correctly. When the
+ assertion pattern did not match (meaning that the assertion was true), it
+ was incorrectly treated as false if the SKIP had been reached during the
+ matching. This also applied to assertions used as conditions.
+
+4. If an item that is not supported by pcre_dfa_exec() was encountered in an
+ assertion subpattern, including such a pattern used as a condition,
+ unpredictable results occurred, instead of the error return
+ PCRE_ERROR_DFA_UITEM.
+
+5. The C++ GlobalReplace function was not working like Perl for the special
+ situation when an empty string is matched. It now does the fancy magic
+ stuff that is necessary.
+
+6. In pcre_internal.h, obsolete includes to setjmp.h and stdarg.h have been
+ removed. (These were left over from very, very early versions of PCRE.)
+
+7. Some cosmetic changes to the code to make life easier when compiling it
+ as part of something else:
+
+ (a) Change DEBUG to PCRE_DEBUG.
+
+ (b) In pcre_compile(), rename the member of the "branch_chain" structure
+ called "current" as "current_branch", to prevent a collision with the
+ Linux macro when compiled as a kernel module.
+
+ (c) In pcre_study(), rename the function set_bit() as set_table_bit(), to
+ prevent a collision with the Linux macro when compiled as a kernel
+ module.
+
+8. In pcre_compile() there are some checks for integer overflows that used to
+ cast potentially large values to (double). This has been changed to that
+ when building, a check for int64_t is made, and if it is found, it is used
+ instead, thus avoiding the use of floating point arithmetic. (There is no
+ other use of FP in PCRE.) If int64_t is not found, the fallback is to
+ double.
+
+9. Added two casts to avoid signed/unsigned warnings from VS Studio Express
+ 2005 (difference between two addresses compared to an unsigned value).
+
+10. Change the standard AC_CHECK_LIB test for libbz2 in configure.ac to a
+ custom one, because of the following reported problem in Windows:
+
+ - libbz2 uses the Pascal calling convention (WINAPI) for the functions
+ under Win32.
+ - The standard autoconf AC_CHECK_LIB fails to include "bzlib.h",
+ therefore missing the function definition.
+ - The compiler thus generates a "C" signature for the test function.
+ - The linker fails to find the "C" function.
+ - PCRE fails to configure if asked to do so against libbz2.
+
+11. When running libtoolize from libtool-2.2.6b as part of autogen.sh, these
+ messages were output:
+
+ Consider adding `AC_CONFIG_MACRO_DIR([m4])' to configure.ac and
+ rerunning libtoolize, to keep the correct libtool macros in-tree.
+ Consider adding `-I m4' to ACLOCAL_AMFLAGS in Makefile.am.
+
+ I have done both of these things.
+
+12. Although pcre_dfa_exec() does not use nearly as much stack as pcre_exec()
+ most of the time, it *can* run out if it is given a pattern that contains a
+ runaway infinite recursion. I updated the discussion in the pcrestack man
+ page.
+
+13. Now that we have gone to the x.xx style of version numbers, the minor
+ version may start with zero. Using 08 or 09 is a bad idea because users
+ might check the value of PCRE_MINOR in their code, and 08 or 09 may be
+ interpreted as invalid octal numbers. I've updated the previous comment in
+ configure.ac, and also added a check that gives an error if 08 or 09 are
+ used.
+
+14. Change 8.00/11 was not quite complete: code had been accidentally omitted,
+ causing partial matching to fail when the end of the subject matched \W
+ in a UTF-8 pattern where \W was quantified with a minimum of 3.
+
+15. There were some discrepancies between the declarations in pcre_internal.h
+ of _pcre_is_newline(), _pcre_was_newline(), and _pcre_valid_utf8() and
+ their definitions. The declarations used "const uschar *" and the
+ definitions used USPTR. Even though USPTR is normally defined as "const
+ unsigned char *" (and uschar is typedeffed as "unsigned char"), it was
+ reported that: "This difference in casting confuses some C++ compilers, for
+ example, SunCC recognizes above declarations as different functions and
+ generates broken code for hbpcre." I have changed the declarations to use
+ USPTR.
+
+16. GNU libtool is named differently on some systems. The autogen.sh script now
+ tries several variants such as glibtoolize (MacOSX) and libtoolize1x
+ (FreeBSD).
+
+17. Applied Craig's patch that fixes an HP aCC compile error in pcre 8.00
+ (strtoXX undefined when compiling pcrecpp.cc). The patch contains this
+ comment: "Figure out how to create a longlong from a string: strtoll and
+ equivalent. It's not enough to call AC_CHECK_FUNCS: hpux has a strtoll, for
+ instance, but it only takes 2 args instead of 3!"
+
+18. A subtle bug concerned with back references has been fixed by a change of
+ specification, with a corresponding code fix. A pattern such as
+ ^(xa|=?\1a)+$ which contains a back reference inside the group to which it
+ refers, was giving matches when it shouldn't. For example, xa=xaaa would
+ match that pattern. Interestingly, Perl (at least up to 5.11.3) has the
+ same bug. Such groups have to be quantified to be useful, or contained
+ inside another quantified group. (If there's no repetition, the reference
+ can never match.) The problem arises because, having left the group and
+ moved on to the rest of the pattern, a later failure that backtracks into
+ the group uses the captured value from the final iteration of the group
+ rather than the correct earlier one. I have fixed this in PCRE by forcing
+ any group that contains a reference to itself to be an atomic group; that
+ is, there cannot be any backtracking into it once it has completed. This is
+ similar to recursive and subroutine calls.
+
+
+Version 8.00 19-Oct-09
+----------------------
+
+1. The table for translating pcre_compile() error codes into POSIX error codes
+ was out-of-date, and there was no check on the pcre_compile() error code
+ being within the table. This could lead to an OK return being given in
+ error.
+
+2. Changed the call to open a subject file in pcregrep from fopen(pathname,
+ "r") to fopen(pathname, "rb"), which fixed a problem with some of the tests
+ in a Windows environment.
+
+3. The pcregrep --count option prints the count for each file even when it is
+ zero, as does GNU grep. However, pcregrep was also printing all files when
+ --files-with-matches was added. Now, when both options are given, it prints
+ counts only for those files that have at least one match. (GNU grep just
+ prints the file name in this circumstance, but including the count seems
+ more useful - otherwise, why use --count?) Also ensured that the
+ combination -clh just lists non-zero counts, with no names.
+
+4. The long form of the pcregrep -F option was incorrectly implemented as
+ --fixed_strings instead of --fixed-strings. This is an incompatible change,
+ but it seems right to fix it, and I didn't think it was worth preserving
+ the old behaviour.
+
+5. The command line items --regex=pattern and --regexp=pattern were not
+ recognized by pcregrep, which required --regex pattern or --regexp pattern
+ (with a space rather than an '='). The man page documented the '=' forms,
+ which are compatible with GNU grep; these now work.
+
+6. No libpcreposix.pc file was created for pkg-config; there was just
+ libpcre.pc and libpcrecpp.pc. The omission has been rectified.
+
+7. Added #ifndef SUPPORT_UCP into the pcre_ucd.c module, to reduce its size
+ when UCP support is not needed, by modifying the Python script that
+ generates it from Unicode data files. This should not matter if the module
+ is correctly used as a library, but I received one complaint about 50K of
+ unwanted data. My guess is that the person linked everything into his
+ program rather than using a library. Anyway, it does no harm.
+
+8. A pattern such as /\x{123}{2,2}+/8 was incorrectly compiled; the trigger
+ was a minimum greater than 1 for a wide character in a possessive
+ repetition. The same bug could also affect patterns like /(\x{ff}{0,2})*/8
+ which had an unlimited repeat of a nested, fixed maximum repeat of a wide
+ character. Chaos in the form of incorrect output or a compiling loop could
+ result.
+
+9. The restrictions on what a pattern can contain when partial matching is
+ requested for pcre_exec() have been removed. All patterns can now be
+ partially matched by this function. In addition, if there are at least two
+ slots in the offset vector, the offset of the earliest inspected character
+ for the match and the offset of the end of the subject are set in them when
+ PCRE_ERROR_PARTIAL is returned.
+
+10. Partial matching has been split into two forms: PCRE_PARTIAL_SOFT, which is
+ synonymous with PCRE_PARTIAL, for backwards compatibility, and
+ PCRE_PARTIAL_HARD, which causes a partial match to supersede a full match,
+ and may be more useful for multi-segment matching.
+
+11. Partial matching with pcre_exec() is now more intuitive. A partial match
+ used to be given if ever the end of the subject was reached; now it is
+ given only if matching could not proceed because another character was
+ needed. This makes a difference in some odd cases such as Z(*FAIL) with the
+ string "Z", which now yields "no match" instead of "partial match". In the
+ case of pcre_dfa_exec(), "no match" is given if every matching path for the
+ final character ended with (*FAIL).
+
+12. Restarting a match using pcre_dfa_exec() after a partial match did not work
+ if the pattern had a "must contain" character that was already found in the
+ earlier partial match, unless partial matching was again requested. For
+ example, with the pattern /dog.(body)?/, the "must contain" character is
+ "g". If the first part-match was for the string "dog", restarting with
+ "sbody" failed. This bug has been fixed.
+
+13. The string returned by pcre_dfa_exec() after a partial match has been
+ changed so that it starts at the first inspected character rather than the
+ first character of the match. This makes a difference only if the pattern
+ starts with a lookbehind assertion or \b or \B (\K is not supported by
+ pcre_dfa_exec()). It's an incompatible change, but it makes the two
+ matching functions compatible, and I think it's the right thing to do.
+
+14. Added a pcredemo man page, created automatically from the pcredemo.c file,
+ so that the demonstration program is easily available in environments where
+ PCRE has not been installed from source.
+
+15. Arranged to add -DPCRE_STATIC to cflags in libpcre.pc, libpcreposix.cp,
+ libpcrecpp.pc and pcre-config when PCRE is not compiled as a shared
+ library.
+
+16. Added REG_UNGREEDY to the pcreposix interface, at the request of a user.
+ It maps to PCRE_UNGREEDY. It is not, of course, POSIX-compatible, but it
+ is not the first non-POSIX option to be added. Clearly some people find
+ these options useful.
+
+17. If a caller to the POSIX matching function regexec() passes a non-zero
+ value for nmatch with a NULL value for pmatch, the value of
+ nmatch is forced to zero.
+
+18. RunGrepTest did not have a test for the availability of the -u option of
+ the diff command, as RunTest does. It now checks in the same way as
+ RunTest, and also checks for the -b option.
+
+19. If an odd number of negated classes containing just a single character
+ interposed, within parentheses, between a forward reference to a named
+ subpattern and the definition of the subpattern, compilation crashed with
+ an internal error, complaining that it could not find the referenced
+ subpattern. An example of a crashing pattern is /(?&A)(([^m])(?))/.
+ [The bug was that it was starting one character too far in when skipping
+ over the character class, thus treating the ] as data rather than
+ terminating the class. This meant it could skip too much.]
+
+20. Added PCRE_NOTEMPTY_ATSTART in order to be able to correctly implement the
+ /g option in pcretest when the pattern contains \K, which makes it possible
+ to have an empty string match not at the start, even when the pattern is
+ anchored. Updated pcretest and pcredemo to use this option.
+
+21. If the maximum number of capturing subpatterns in a recursion was greater
+ than the maximum at the outer level, the higher number was returned, but
+ with unset values at the outer level. The correct (outer level) value is
+ now given.
+
+22. If (*ACCEPT) appeared inside capturing parentheses, previous releases of
+ PCRE did not set those parentheses (unlike Perl). I have now found a way to
+ make it do so. The string so far is captured, making this feature
+ compatible with Perl.
+
+23. The tests have been re-organized, adding tests 11 and 12, to make it
+ possible to check the Perl 5.10 features against Perl 5.10.
+
+24. Perl 5.10 allows subroutine calls in lookbehinds, as long as the subroutine
+ pattern matches a fixed length string. PCRE did not allow this; now it
+ does. Neither allows recursion.
+
+25. I finally figured out how to implement a request to provide the minimum
+ length of subject string that was needed in order to match a given pattern.
+ (It was back references and recursion that I had previously got hung up
+ on.) This code has now been added to pcre_study(); it finds a lower bound
+ to the length of subject needed. It is not necessarily the greatest lower
+ bound, but using it to avoid searching strings that are too short does give
+ some useful speed-ups. The value is available to calling programs via
+ pcre_fullinfo().
+
+26. While implementing 25, I discovered to my embarrassment that pcretest had
+ not been passing the result of pcre_study() to pcre_dfa_exec(), so the
+ study optimizations had never been tested with that matching function.
+ Oops. What is worse, even when it was passed study data, there was a bug in
+ pcre_dfa_exec() that meant it never actually used it. Double oops. There
+ were also very few tests of studied patterns with pcre_dfa_exec().
+
+27. If (?| is used to create subpatterns with duplicate numbers, they are now
+ allowed to have the same name, even if PCRE_DUPNAMES is not set. However,
+ on the other side of the coin, they are no longer allowed to have different
+ names, because these cannot be distinguished in PCRE, and this has caused
+ confusion. (This is a difference from Perl.)
+
+28. When duplicate subpattern names are present (necessarily with different
+ numbers, as required by 27 above), and a test is made by name in a
+ conditional pattern, either for a subpattern having been matched, or for
+ recursion in such a pattern, all the associated numbered subpatterns are
+ tested, and the overall condition is true if the condition is true for any
+ one of them. This is the way Perl works, and is also more like the way
+ testing by number works.
+
+
+Version 7.9 11-Apr-09
+---------------------
+
+1. When building with support for bzlib/zlib (pcregrep) and/or readline
+ (pcretest), all targets were linked against these libraries. This included
+ libpcre, libpcreposix, and libpcrecpp, even though they do not use these
+ libraries. This caused unwanted dependencies to be created. This problem
+ has been fixed, and now only pcregrep is linked with bzlib/zlib and only
+ pcretest is linked with readline.
+
+2. The "typedef int BOOL" in pcre_internal.h that was included inside the
+ "#ifndef FALSE" condition by an earlier change (probably 7.8/18) has been
+ moved outside it again, because FALSE and TRUE are already defined in AIX,
+ but BOOL is not.
+
+3. The pcre_config() function was treating the PCRE_MATCH_LIMIT and
+ PCRE_MATCH_LIMIT_RECURSION values as ints, when they should be long ints.
+
+4. The pcregrep documentation said spaces were inserted as well as colons (or
+ hyphens) following file names and line numbers when outputting matching
+ lines. This is not true; no spaces are inserted. I have also clarified the
+ wording for the --colour (or --color) option.
+
+5. In pcregrep, when --colour was used with -o, the list of matching strings
+ was not coloured; this is different to GNU grep, so I have changed it to be
+ the same.
+
+6. When --colo(u)r was used in pcregrep, only the first matching substring in
+ each matching line was coloured. Now it goes on to look for further matches
+ of any of the test patterns, which is the same behaviour as GNU grep.
+
+7. A pattern that could match an empty string could cause pcregrep to loop; it
+ doesn't make sense to accept an empty string match in pcregrep, so I have
+ locked it out (using PCRE's PCRE_NOTEMPTY option). By experiment, this
+ seems to be how GNU grep behaves. [But see later change 40 for release
+ 8.33.]
+
+8. The pattern (?(?=.*b)b|^) was incorrectly compiled as "match must be at
+ start or after a newline", because the conditional assertion was not being
+ correctly handled. The rule now is that both the assertion and what follows
+ in the first alternative must satisfy the test.
+
+9. If auto-callout was enabled in a pattern with a conditional group whose
+ condition was an assertion, PCRE could crash during matching, both with
+ pcre_exec() and pcre_dfa_exec().
+
+10. The PCRE_DOLLAR_ENDONLY option was not working when pcre_dfa_exec() was
+ used for matching.
+
+11. Unicode property support in character classes was not working for
+ characters (bytes) greater than 127 when not in UTF-8 mode.
+
+12. Added the -M command line option to pcretest.
+
+14. Added the non-standard REG_NOTEMPTY option to the POSIX interface.
+
+15. Added the PCRE_NO_START_OPTIMIZE match-time option.
+
+16. Added comments and documentation about mis-use of no_arg in the C++
+ wrapper.
+
+17. Implemented support for UTF-8 encoding in EBCDIC environments, a patch
+ from Martin Jerabek that uses macro names for all relevant character and
+ string constants.
+
+18. Added to pcre_internal.h two configuration checks: (a) If both EBCDIC and
+ SUPPORT_UTF8 are set, give an error; (b) If SUPPORT_UCP is set without
+ SUPPORT_UTF8, define SUPPORT_UTF8. The "configure" script handles both of
+ these, but not everybody uses configure.
+
+19. A conditional group that had only one branch was not being correctly
+ recognized as an item that could match an empty string. This meant that an
+ enclosing group might also not be so recognized, causing infinite looping
+ (and probably a segfault) for patterns such as ^"((?(?=[a])[^"])|b)*"$
+ with the subject "ab", where knowledge that the repeated group can match
+ nothing is needed in order to break the loop.
+
+20. If a pattern that was compiled with callouts was matched using pcre_dfa_
+ exec(), but without supplying a callout function, matching went wrong.
+
+21. If PCRE_ERROR_MATCHLIMIT occurred during a recursion, there was a memory
+ leak if the size of the offset vector was greater than 30. When the vector
+ is smaller, the saved offsets during recursion go onto a local stack
+ vector, but for larger vectors malloc() is used. It was failing to free
+ when the recursion yielded PCRE_ERROR_MATCH_LIMIT (or any other "abnormal"
+ error, in fact).
+
+22. There was a missing #ifdef SUPPORT_UTF8 round one of the variables in the
+ heapframe that is used only when UTF-8 support is enabled. This caused no
+ problem, but was untidy.
+
+23. Steven Van Ingelgem's patch to CMakeLists.txt to change the name
+ CMAKE_BINARY_DIR to PROJECT_BINARY_DIR so that it works when PCRE is
+ included within another project.
+
+24. Steven Van Ingelgem's patches to add more options to the CMake support,
+ slightly modified by me:
+
+ (a) PCRE_BUILD_TESTS can be set OFF not to build the tests, including
+ not building pcregrep.
+
+ (b) PCRE_BUILD_PCREGREP can be see OFF not to build pcregrep, but only
+ if PCRE_BUILD_TESTS is also set OFF, because the tests use pcregrep.
+
+25. Forward references, both numeric and by name, in patterns that made use of
+ duplicate group numbers, could behave incorrectly or give incorrect errors,
+ because when scanning forward to find the reference group, PCRE was not
+ taking into account the duplicate group numbers. A pattern such as
+ ^X(?3)(a)(?|(b)|(q))(Y) is an example.
+
+26. Changed a few more instances of "const unsigned char *" to USPTR, making
+ the feature of a custom pointer more persuasive (as requested by a user).
+
+27. Wrapped the definitions of fileno and isatty for Windows, which appear in
+ pcretest.c, inside #ifndefs, because it seems they are sometimes already
+ pre-defined.
+
+28. Added support for (*UTF8) at the start of a pattern.
+
+29. Arrange for flags added by the "release type" setting in CMake to be shown
+ in the configuration summary.
+
+
+Version 7.8 05-Sep-08
+---------------------
+
+1. Replaced UCP searching code with optimized version as implemented for Ad
+ Muncher (http://www.admuncher.com/) by Peter Kankowski. This uses a two-
+ stage table and inline lookup instead of a function, giving speed ups of 2
+ to 5 times on some simple patterns that I tested. Permission was given to
+ distribute the MultiStage2.py script that generates the tables (it's not in
+ the tarball, but is in the Subversion repository).
+
+2. Updated the Unicode datatables to Unicode 5.1.0. This adds yet more
+ scripts.
+
+3. Change 12 for 7.7 introduced a bug in pcre_study() when a pattern contained
+ a group with a zero qualifier. The result of the study could be incorrect,
+ or the function might crash, depending on the pattern.
+
+4. Caseless matching was not working for non-ASCII characters in back
+ references. For example, /(\x{de})\1/8i was not matching \x{de}\x{fe}.
+ It now works when Unicode Property Support is available.
+
+5. In pcretest, an escape such as \x{de} in the data was always generating
+ a UTF-8 string, even in non-UTF-8 mode. Now it generates a single byte in
+ non-UTF-8 mode. If the value is greater than 255, it gives a warning about
+ truncation.
+
+6. Minor bugfix in pcrecpp.cc (change "" == ... to NULL == ...).
+
+7. Added two (int) casts to pcregrep when printing the difference of two
+ pointers, in case they are 64-bit values.
+
+8. Added comments about Mac OS X stack usage to the pcrestack man page and to
+ test 2 if it fails.
+
+9. Added PCRE_CALL_CONVENTION just before the names of all exported functions,
+ and a #define of that name to empty if it is not externally set. This is to
+ allow users of MSVC to set it if necessary.
+
+10. The PCRE_EXP_DEFN macro which precedes exported functions was missing from
+ the convenience functions in the pcre_get.c source file.
+
+11. An option change at the start of a pattern that had top-level alternatives
+ could cause overwriting and/or a crash. This command provoked a crash in
+ some environments:
+
+ printf "/(?i)[\xc3\xa9\xc3\xbd]|[\xc3\xa9\xc3\xbdA]/8\n" | pcretest
+
+ This potential security problem was recorded as CVE-2008-2371.
+
+12. For a pattern where the match had to start at the beginning or immediately
+ after a newline (e.g /.*anything/ without the DOTALL flag), pcre_exec() and
+ pcre_dfa_exec() could read past the end of the passed subject if there was
+ no match. To help with detecting such bugs (e.g. with valgrind), I modified
+ pcretest so that it places the subject at the end of its malloc-ed buffer.
+
+13. The change to pcretest in 12 above threw up a couple more cases when pcre_
+ exec() might read past the end of the data buffer in UTF-8 mode.
+
+14. A similar bug to 7.3/2 existed when the PCRE_FIRSTLINE option was set and
+ the data contained the byte 0x85 as part of a UTF-8 character within its
+ first line. This applied both to normal and DFA matching.
+
+15. Lazy qualifiers were not working in some cases in UTF-8 mode. For example,
+ /^[^d]*?$/8 failed to match "abc".
+
+16. Added a missing copyright notice to pcrecpp_internal.h.
+
+17. Make it more clear in the documentation that values returned from
+ pcre_exec() in ovector are byte offsets, not character counts.
+
+18. Tidied a few places to stop certain compilers from issuing warnings.
+
+19. Updated the Virtual Pascal + BCC files to compile the latest v7.7, as
+ supplied by Stefan Weber. I made a further small update for 7.8 because
+ there is a change of source arrangements: the pcre_searchfuncs.c module is
+ replaced by pcre_ucd.c.
+
+
+Version 7.7 07-May-08
+---------------------
+
+1. Applied Craig's patch to sort out a long long problem: "If we can't convert
+ a string to a long long, pretend we don't even have a long long." This is
+ done by checking for the strtoq, strtoll, and _strtoi64 functions.
+
+2. Applied Craig's patch to pcrecpp.cc to restore ABI compatibility with
+ pre-7.6 versions, which defined a global no_arg variable instead of putting
+ it in the RE class. (See also #8 below.)
+
+3. Remove a line of dead code, identified by coverity and reported by Nuno
+ Lopes.
+
+4. Fixed two related pcregrep bugs involving -r with --include or --exclude:
+
+ (1) The include/exclude patterns were being applied to the whole pathnames
+ of files, instead of just to the final components.
+
+ (2) If there was more than one level of directory, the subdirectories were
+ skipped unless they satisfied the include/exclude conditions. This is
+ inconsistent with GNU grep (and could even be seen as contrary to the
+ pcregrep specification - which I improved to make it absolutely clear).
+ The action now is always to scan all levels of directory, and just
+ apply the include/exclude patterns to regular files.
+
+5. Added the --include_dir and --exclude_dir patterns to pcregrep, and used
+ --exclude_dir in the tests to avoid scanning .svn directories.
+
+6. Applied Craig's patch to the QuoteMeta function so that it escapes the
+ NUL character as backslash + 0 rather than backslash + NUL, because PCRE
+ doesn't support NULs in patterns.
+
+7. Added some missing "const"s to declarations of static tables in
+ pcre_compile.c and pcre_dfa_exec.c.
+
+8. Applied Craig's patch to pcrecpp.cc to fix a problem in OS X that was
+ caused by fix #2 above. (Subsequently also a second patch to fix the
+ first patch. And a third patch - this was a messy problem.)
+
+9. Applied Craig's patch to remove the use of push_back().
+
+10. Applied Alan Lehotsky's patch to add REG_STARTEND support to the POSIX
+ matching function regexec().
+
+11. Added support for the Oniguruma syntax \g, \g, \g'name', \g'n',
+ which, however, unlike Perl's \g{...}, are subroutine calls, not back
+ references. PCRE supports relative numbers with this syntax (I don't think
+ Oniguruma does).
+
+12. Previously, a group with a zero repeat such as (...){0} was completely
+ omitted from the compiled regex. However, this means that if the group
+ was called as a subroutine from elsewhere in the pattern, things went wrong
+ (an internal error was given). Such groups are now left in the compiled
+ pattern, with a new opcode that causes them to be skipped at execution
+ time.
+
+13. Added the PCRE_JAVASCRIPT_COMPAT option. This makes the following changes
+ to the way PCRE behaves:
+
+ (a) A lone ] character is dis-allowed (Perl treats it as data).
+
+ (b) A back reference to an unmatched subpattern matches an empty string
+ (Perl fails the current match path).
+
+ (c) A data ] in a character class must be notated as \] because if the
+ first data character in a class is ], it defines an empty class. (In
+ Perl it is not possible to have an empty class.) The empty class []
+ never matches; it forces failure and is equivalent to (*FAIL) or (?!).
+ The negative empty class [^] matches any one character, independently
+ of the DOTALL setting.
+
+14. A pattern such as /(?2)[]a()b](abc)/ which had a forward reference to a
+ non-existent subpattern following a character class starting with ']' and
+ containing () gave an internal compiling error instead of "reference to
+ non-existent subpattern". Fortunately, when the pattern did exist, the
+ compiled code was correct. (When scanning forwards to check for the
+ existence of the subpattern, it was treating the data ']' as terminating
+ the class, so got the count wrong. When actually compiling, the reference
+ was subsequently set up correctly.)
+
+15. The "always fail" assertion (?!) is optimzed to (*FAIL) by pcre_compile;
+ it was being rejected as not supported by pcre_dfa_exec(), even though
+ other assertions are supported. I have made pcre_dfa_exec() support
+ (*FAIL).
+
+16. The implementation of 13c above involved the invention of a new opcode,
+ OP_ALLANY, which is like OP_ANY but doesn't check the /s flag. Since /s
+ cannot be changed at match time, I realized I could make a small
+ improvement to matching performance by compiling OP_ALLANY instead of
+ OP_ANY for "." when DOTALL was set, and then removing the runtime tests
+ on the OP_ANY path.
+
+17. Compiling pcretest on Windows with readline support failed without the
+ following two fixes: (1) Make the unistd.h include conditional on
+ HAVE_UNISTD_H; (2) #define isatty and fileno as _isatty and _fileno.
+
+18. Changed CMakeLists.txt and cmake/FindReadline.cmake to arrange for the
+ ncurses library to be included for pcretest when ReadLine support is
+ requested, but also to allow for it to be overridden. This patch came from
+ Daniel Bergstrm.
+
+19. There was a typo in the file ucpinternal.h where f0_rangeflag was defined
+ as 0x00f00000 instead of 0x00800000. Luckily, this would not have caused
+ any errors with the current Unicode tables. Thanks to Peter Kankowski for
+ spotting this.
+
+
+Version 7.6 28-Jan-08
+---------------------
+
+1. A character class containing a very large number of characters with
+ codepoints greater than 255 (in UTF-8 mode, of course) caused a buffer
+ overflow.
+
+2. Patch to cut out the "long long" test in pcrecpp_unittest when
+ HAVE_LONG_LONG is not defined.
+
+3. Applied Christian Ehrlicher's patch to update the CMake build files to
+ bring them up to date and include new features. This patch includes:
+
+ - Fixed PH's badly added libz and libbz2 support.
+ - Fixed a problem with static linking.
+ - Added pcredemo. [But later removed - see 7 below.]
+ - Fixed dftables problem and added an option.
+ - Added a number of HAVE_XXX tests, including HAVE_WINDOWS_H and
+ HAVE_LONG_LONG.
+ - Added readline support for pcretest.
+ - Added an listing of the option settings after cmake has run.
+
+4. A user submitted a patch to Makefile that makes it easy to create
+ "pcre.dll" under mingw when using Configure/Make. I added stuff to
+ Makefile.am that cause it to include this special target, without
+ affecting anything else. Note that the same mingw target plus all
+ the other distribution libraries and programs are now supported
+ when configuring with CMake (see 6 below) instead of with
+ Configure/Make.
+
+5. Applied Craig's patch that moves no_arg into the RE class in the C++ code.
+ This is an attempt to solve the reported problem "pcrecpp::no_arg is not
+ exported in the Windows port". It has not yet been confirmed that the patch
+ solves the problem, but it does no harm.
+
+6. Applied Sheri's patch to CMakeLists.txt to add NON_STANDARD_LIB_PREFIX and
+ NON_STANDARD_LIB_SUFFIX for dll names built with mingw when configured
+ with CMake, and also correct the comment about stack recursion.
+
+7. Remove the automatic building of pcredemo from the ./configure system and
+ from CMakeLists.txt. The whole idea of pcredemo.c is that it is an example
+ of a program that users should build themselves after PCRE is installed, so
+ building it automatically is not really right. What is more, it gave
+ trouble in some build environments.
+
+8. Further tidies to CMakeLists.txt from Sheri and Christian.
+
+
+Version 7.5 10-Jan-08
+---------------------
+
+1. Applied a patch from Craig: "This patch makes it possible to 'ignore'
+ values in parens when parsing an RE using the C++ wrapper."
+
+2. Negative specials like \S did not work in character classes in UTF-8 mode.
+ Characters greater than 255 were excluded from the class instead of being
+ included.
+
+3. The same bug as (2) above applied to negated POSIX classes such as
+ [:^space:].
+
+4. PCRECPP_STATIC was referenced in pcrecpp_internal.h, but nowhere was it
+ defined or documented. It seems to have been a typo for PCRE_STATIC, so
+ I have changed it.
+
+5. The construct (?&) was not diagnosed as a syntax error (it referenced the
+ first named subpattern) and a construct such as (?&a) would reference the
+ first named subpattern whose name started with "a" (in other words, the
+ length check was missing). Both these problems are fixed. "Subpattern name
+ expected" is now given for (?&) (a zero-length name), and this patch also
+ makes it give the same error for \k'' (previously it complained that that
+ was a reference to a non-existent subpattern).
+
+6. The erroneous patterns (?+-a) and (?-+a) give different error messages;
+ this is right because (?- can be followed by option settings as well as by
+ digits. I have, however, made the messages clearer.
+
+7. Patterns such as (?(1)a|b) (a pattern that contains fewer subpatterns
+ than the number used in the conditional) now cause a compile-time error.
+ This is actually not compatible with Perl, which accepts such patterns, but
+ treats the conditional as always being FALSE (as PCRE used to), but it
+ seems to me that giving a diagnostic is better.
+
+8. Change "alphameric" to the more common word "alphanumeric" in comments
+ and messages.
+
+9. Fix two occurrences of "backslash" in comments that should have been
+ "backspace".
+
+10. Remove two redundant lines of code that can never be obeyed (their function
+ was moved elsewhere).
+
+11. The program that makes PCRE's Unicode character property table had a bug
+ which caused it to generate incorrect table entries for sequences of
+ characters that have the same character type, but are in different scripts.
+ It amalgamated them into a single range, with the script of the first of
+ them. In other words, some characters were in the wrong script. There were
+ thirteen such cases, affecting characters in the following ranges:
+
+ U+002b0 - U+002c1
+ U+0060c - U+0060d
+ U+0061e - U+00612
+ U+0064b - U+0065e
+ U+0074d - U+0076d
+ U+01800 - U+01805
+ U+01d00 - U+01d77
+ U+01d9b - U+01dbf
+ U+0200b - U+0200f
+ U+030fc - U+030fe
+ U+03260 - U+0327f
+ U+0fb46 - U+0fbb1
+ U+10450 - U+1049d
+
+12. The -o option (show only the matching part of a line) for pcregrep was not
+ compatible with GNU grep in that, if there was more than one match in a
+ line, it showed only the first of them. It now behaves in the same way as
+ GNU grep.
+
+13. If the -o and -v options were combined for pcregrep, it printed a blank
+ line for every non-matching line. GNU grep prints nothing, and pcregrep now
+ does the same. The return code can be used to tell if there were any
+ non-matching lines.
+
+14. Added --file-offsets and --line-offsets to pcregrep.
+
+15. The pattern (?=something)(?R) was not being diagnosed as a potentially
+ infinitely looping recursion. The bug was that positive lookaheads were not
+ being skipped when checking for a possible empty match (negative lookaheads
+ and both kinds of lookbehind were skipped).
+
+16. Fixed two typos in the Windows-only code in pcregrep.c, and moved the
+ inclusion of to before rather than after the definition of
+ INVALID_FILE_ATTRIBUTES (patch from David Byron).
+
+17. Specifying a possessive quantifier with a specific limit for a Unicode
+ character property caused pcre_compile() to compile bad code, which led at
+ runtime to PCRE_ERROR_INTERNAL (-14). Examples of patterns that caused this
+ are: /\p{Zl}{2,3}+/8 and /\p{Cc}{2}+/8. It was the possessive "+" that
+ caused the error; without that there was no problem.
+
+18. Added --enable-pcregrep-libz and --enable-pcregrep-libbz2.
+
+19. Added --enable-pcretest-libreadline.
+
+20. In pcrecpp.cc, the variable 'count' was incremented twice in
+ RE::GlobalReplace(). As a result, the number of replacements returned was
+ double what it should be. I removed one of the increments, but Craig sent a
+ later patch that removed the other one (the right fix) and added unit tests
+ that check the return values (which was not done before).
+
+21. Several CMake things:
+
+ (1) Arranged that, when cmake is used on Unix, the libraries end up with
+ the names libpcre and libpcreposix, not just pcre and pcreposix.
+
+ (2) The above change means that pcretest and pcregrep are now correctly
+ linked with the newly-built libraries, not previously installed ones.
+
+ (3) Added PCRE_SUPPORT_LIBREADLINE, PCRE_SUPPORT_LIBZ, PCRE_SUPPORT_LIBBZ2.
+
+22. In UTF-8 mode, with newline set to "any", a pattern such as .*a.*=.b.*
+ crashed when matching a string such as a\x{2029}b (note that \x{2029} is a
+ UTF-8 newline character). The key issue is that the pattern starts .*;
+ this means that the match must be either at the beginning, or after a
+ newline. The bug was in the code for advancing after a failed match and
+ checking that the new position followed a newline. It was not taking
+ account of UTF-8 characters correctly.
+
+23. PCRE was behaving differently from Perl in the way it recognized POSIX
+ character classes. PCRE was not treating the sequence [:...:] as a
+ character class unless the ... were all letters. Perl, however, seems to
+ allow any characters between [: and :], though of course it rejects as
+ unknown any "names" that contain non-letters, because all the known class
+ names consist only of letters. Thus, Perl gives an error for [[:1234:]],
+ for example, whereas PCRE did not - it did not recognize a POSIX character
+ class. This seemed a bit dangerous, so the code has been changed to be
+ closer to Perl. The behaviour is not identical to Perl, because PCRE will
+ diagnose an unknown class for, for example, [[:l\ower:]] where Perl will
+ treat it as [[:lower:]]. However, PCRE does now give "unknown" errors where
+ Perl does, and where it didn't before.
+
+24. Rewrite so as to remove the single use of %n from pcregrep because in some
+ Windows environments %n is disabled by default.
+
+
+Version 7.4 21-Sep-07
+---------------------
+
+1. Change 7.3/28 was implemented for classes by looking at the bitmap. This
+ means that a class such as [\s] counted as "explicit reference to CR or
+ LF". That isn't really right - the whole point of the change was to try to
+ help when there was an actual mention of one of the two characters. So now
+ the change happens only if \r or \n (or a literal CR or LF) character is
+ encountered.
+
+2. The 32-bit options word was also used for 6 internal flags, but the numbers
+ of both had grown to the point where there were only 3 bits left.
+ Fortunately, there was spare space in the data structure, and so I have
+ moved the internal flags into a new 16-bit field to free up more option
+ bits.
+
+3. The appearance of (?J) at the start of a pattern set the DUPNAMES option,
+ but did not set the internal JCHANGED flag - either of these is enough to
+ control the way the "get" function works - but the PCRE_INFO_JCHANGED
+ facility is supposed to tell if (?J) was ever used, so now (?J) at the
+ start sets both bits.
+
+4. Added options (at build time, compile time, exec time) to change \R from
+ matching any Unicode line ending sequence to just matching CR, LF, or CRLF.
+
+5. doc/pcresyntax.html was missing from the distribution.
+
+6. Put back the definition of PCRE_ERROR_NULLWSLIMIT, for backward
+ compatibility, even though it is no longer used.
+
+7. Added macro for snprintf to pcrecpp_unittest.cc and also for strtoll and
+ strtoull to pcrecpp.cc to select the available functions in WIN32 when the
+ windows.h file is present (where different names are used). [This was
+ reversed later after testing - see 16 below.]
+
+8. Changed all #include to #include "config.h". There were also
+ some further cases that I changed to "pcre.h".
+
+9. When pcregrep was used with the --colour option, it missed the line ending
+ sequence off the lines that it output.
+
+10. It was pointed out to me that arrays of string pointers cause lots of
+ relocations when a shared library is dynamically loaded. A technique of
+ using a single long string with a table of offsets can drastically reduce
+ these. I have refactored PCRE in four places to do this. The result is
+ dramatic:
+
+ Originally: 290
+ After changing UCP table: 187
+ After changing error message table: 43
+ After changing table of "verbs" 36
+ After changing table of Posix names 22
+
+ Thanks to the folks working on Gregex for glib for this insight.
+
+11. --disable-stack-for-recursion caused compiling to fail unless -enable-
+ unicode-properties was also set.
+
+12. Updated the tests so that they work when \R is defaulted to ANYCRLF.
+
+13. Added checks for ANY and ANYCRLF to pcrecpp.cc where it previously
+ checked only for CRLF.
+
+14. Added casts to pcretest.c to avoid compiler warnings.
+
+15. Added Craig's patch to various pcrecpp modules to avoid compiler warnings.
+
+16. Added Craig's patch to remove the WINDOWS_H tests, that were not working,
+ and instead check for _strtoi64 explicitly, and avoid the use of snprintf()
+ entirely. This removes changes made in 7 above.
+
+17. The CMake files have been updated, and there is now more information about
+ building with CMake in the NON-UNIX-USE document.
+
+
+Version 7.3 28-Aug-07
+---------------------
+
+ 1. In the rejigging of the build system that eventually resulted in 7.1, the
+ line "#include " was included in pcre_internal.h. The use of angle
+ brackets there is not right, since it causes compilers to look for an
+ installed pcre.h, not the version that is in the source that is being
+ compiled (which of course may be different). I have changed it back to:
+
+ #include "pcre.h"
+
+ I have a vague recollection that the change was concerned with compiling in
+ different directories, but in the new build system, that is taken care of
+ by the VPATH setting the Makefile.
+
+ 2. The pattern .*$ when run in not-DOTALL UTF-8 mode with newline=any failed
+ when the subject happened to end in the byte 0x85 (e.g. if the last
+ character was \x{1ec5}). *Character* 0x85 is one of the "any" newline
+ characters but of course it shouldn't be taken as a newline when it is part
+ of another character. The bug was that, for an unlimited repeat of . in
+ not-DOTALL UTF-8 mode, PCRE was advancing by bytes rather than by
+ characters when looking for a newline.
+
+ 3. A small performance improvement in the DOTALL UTF-8 mode .* case.
+
+ 4. Debugging: adjusted the names of opcodes for different kinds of parentheses
+ in debug output.
+
+ 5. Arrange to use "%I64d" instead of "%lld" and "%I64u" instead of "%llu" for
+ long printing in the pcrecpp unittest when running under MinGW.
+
+ 6. ESC_K was left out of the EBCDIC table.
+
+ 7. Change 7.0/38 introduced a new limit on the number of nested non-capturing
+ parentheses; I made it 1000, which seemed large enough. Unfortunately, the
+ limit also applies to "virtual nesting" when a pattern is recursive, and in
+ this case 1000 isn't so big. I have been able to remove this limit at the
+ expense of backing off one optimization in certain circumstances. Normally,
+ when pcre_exec() would call its internal match() function recursively and
+ immediately return the result unconditionally, it uses a "tail recursion"
+ feature to save stack. However, when a subpattern that can match an empty
+ string has an unlimited repetition quantifier, it no longer makes this
+ optimization. That gives it a stack frame in which to save the data for
+ checking that an empty string has been matched. Previously this was taken
+ from the 1000-entry workspace that had been reserved. So now there is no
+ explicit limit, but more stack is used.
+
+ 8. Applied Daniel's patches to solve problems with the import/export magic
+ syntax that is required for Windows, and which was going wrong for the
+ pcreposix and pcrecpp parts of the library. These were overlooked when this
+ problem was solved for the main library.
+
+ 9. There were some crude static tests to avoid integer overflow when computing
+ the size of patterns that contain repeated groups with explicit upper
+ limits. As the maximum quantifier is 65535, the maximum group length was
+ set at 30,000 so that the product of these two numbers did not overflow a
+ 32-bit integer. However, it turns out that people want to use groups that
+ are longer than 30,000 bytes (though not repeat them that many times).
+ Change 7.0/17 (the refactoring of the way the pattern size is computed) has
+ made it possible to implement the integer overflow checks in a much more
+ dynamic way, which I have now done. The artificial limitation on group
+ length has been removed - we now have only the limit on the total length of
+ the compiled pattern, which depends on the LINK_SIZE setting.
+
+10. Fixed a bug in the documentation for get/copy named substring when
+ duplicate names are permitted. If none of the named substrings are set, the
+ functions return PCRE_ERROR_NOSUBSTRING (7); the doc said they returned an
+ empty string.
+
+11. Because Perl interprets \Q...\E at a high level, and ignores orphan \E
+ instances, patterns such as [\Q\E] or [\E] or even [^\E] cause an error,
+ because the ] is interpreted as the first data character and the
+ terminating ] is not found. PCRE has been made compatible with Perl in this
+ regard. Previously, it interpreted [\Q\E] as an empty class, and [\E] could
+ cause memory overwriting.
+
+10. Like Perl, PCRE automatically breaks an unlimited repeat after an empty
+ string has been matched (to stop an infinite loop). It was not recognizing
+ a conditional subpattern that could match an empty string if that
+ subpattern was within another subpattern. For example, it looped when
+ trying to match (((?(1)X|))*) but it was OK with ((?(1)X|)*) where the
+ condition was not nested. This bug has been fixed.
+
+12. A pattern like \X?\d or \P{L}?\d in non-UTF-8 mode could cause a backtrack
+ past the start of the subject in the presence of bytes with the top bit
+ set, for example "\x8aBCD".
+
+13. Added Perl 5.10 experimental backtracking controls (*FAIL), (*F), (*PRUNE),
+ (*SKIP), (*THEN), (*COMMIT), and (*ACCEPT).
+
+14. Optimized (?!) to (*FAIL).
+
+15. Updated the test for a valid UTF-8 string to conform to the later RFC 3629.
+ This restricts code points to be within the range 0 to 0x10FFFF, excluding
+ the "low surrogate" sequence 0xD800 to 0xDFFF. Previously, PCRE allowed the
+ full range 0 to 0x7FFFFFFF, as defined by RFC 2279. Internally, it still
+ does: it's just the validity check that is more restrictive.
+
+16. Inserted checks for integer overflows during escape sequence (backslash)
+ processing, and also fixed erroneous offset values for syntax errors during
+ backslash processing.
+
+17. Fixed another case of looking too far back in non-UTF-8 mode (cf 12 above)
+ for patterns like [\PPP\x8a]{1,}\x80 with the subject "A\x80".
+
+18. An unterminated class in a pattern like (?1)\c[ with a "forward reference"
+ caused an overrun.
+
+19. A pattern like (?:[\PPa*]*){8,} which had an "extended class" (one with
+ something other than just ASCII characters) inside a group that had an
+ unlimited repeat caused a loop at compile time (while checking to see
+ whether the group could match an empty string).
+
+20. Debugging a pattern containing \p or \P could cause a crash. For example,
+ [\P{Any}] did so. (Error in the code for printing property names.)
+
+21. An orphan \E inside a character class could cause a crash.
+
+22. A repeated capturing bracket such as (A)? could cause a wild memory
+ reference during compilation.
+
+23. There are several functions in pcre_compile() that scan along a compiled
+ expression for various reasons (e.g. to see if it's fixed length for look
+ behind). There were bugs in these functions when a repeated \p or \P was
+ present in the pattern. These operators have additional parameters compared
+ with \d, etc, and these were not being taken into account when moving along
+ the compiled data. Specifically:
+
+ (a) A item such as \p{Yi}{3} in a lookbehind was not treated as fixed
+ length.
+
+ (b) An item such as \pL+ within a repeated group could cause crashes or
+ loops.
+
+ (c) A pattern such as \p{Yi}+(\P{Yi}+)(?1) could give an incorrect
+ "reference to non-existent subpattern" error.
+
+ (d) A pattern like (\P{Yi}{2}\277)? could loop at compile time.
+
+24. A repeated \S or \W in UTF-8 mode could give wrong answers when multibyte
+ characters were involved (for example /\S{2}/8g with "A\x{a3}BC").
+
+25. Using pcregrep in multiline, inverted mode (-Mv) caused it to loop.
+
+26. Patterns such as [\P{Yi}A] which include \p or \P and just one other
+ character were causing crashes (broken optimization).
+
+27. Patterns such as (\P{Yi}*\277)* (group with possible zero repeat containing
+ \p or \P) caused a compile-time loop.
+
+28. More problems have arisen in unanchored patterns when CRLF is a valid line
+ break. For example, the unstudied pattern [\r\n]A does not match the string
+ "\r\nA" because change 7.0/46 below moves the current point on by two
+ characters after failing to match at the start. However, the pattern \nA
+ *does* match, because it doesn't start till \n, and if [\r\n]A is studied,
+ the same is true. There doesn't seem any very clean way out of this, but
+ what I have chosen to do makes the common cases work: PCRE now takes note
+ of whether there can be an explicit match for \r or \n anywhere in the
+ pattern, and if so, 7.0/46 no longer applies. As part of this change,
+ there's a new PCRE_INFO_HASCRORLF option for finding out whether a compiled
+ pattern has explicit CR or LF references.
+
+29. Added (*CR) etc for changing newline setting at start of pattern.
+
+
+Version 7.2 19-Jun-07
+---------------------
+
+ 1. If the fr_FR locale cannot be found for test 3, try the "french" locale,
+ which is apparently normally available under Windows.
+
+ 2. Re-jig the pcregrep tests with different newline settings in an attempt
+ to make them independent of the local environment's newline setting.
+
+ 3. Add code to configure.ac to remove -g from the CFLAGS default settings.
+
+ 4. Some of the "internals" tests were previously cut out when the link size
+ was not 2, because the output contained actual offsets. The recent new
+ "Z" feature of pcretest means that these can be cut out, making the tests
+ usable with all link sizes.
+
+ 5. Implemented Stan Switzer's goto replacement for longjmp() when not using
+ stack recursion. This gives a massive performance boost under BSD, but just
+ a small improvement under Linux. However, it saves one field in the frame
+ in all cases.
+
+ 6. Added more features from the forthcoming Perl 5.10:
+
+ (a) (?-n) (where n is a string of digits) is a relative subroutine or
+ recursion call. It refers to the nth most recently opened parentheses.
+
+ (b) (?+n) is also a relative subroutine call; it refers to the nth next
+ to be opened parentheses.
+
+ (c) Conditions that refer to capturing parentheses can be specified
+ relatively, for example, (?(-2)... or (?(+3)...
+
+ (d) \K resets the start of the current match so that everything before
+ is not part of it.
+
+ (e) \k{name} is synonymous with \k and \k'name' (.NET compatible).
+
+ (f) \g{name} is another synonym - part of Perl 5.10's unification of
+ reference syntax.
+
+ (g) (?| introduces a group in which the numbering of parentheses in each
+ alternative starts with the same number.
+
+ (h) \h, \H, \v, and \V match horizontal and vertical whitespace.
+
+ 7. Added two new calls to pcre_fullinfo(): PCRE_INFO_OKPARTIAL and
+ PCRE_INFO_JCHANGED.
+
+ 8. A pattern such as (.*(.)?)* caused pcre_exec() to fail by either not
+ terminating or by crashing. Diagnosed by Viktor Griph; it was in the code
+ for detecting groups that can match an empty string.
+
+ 9. A pattern with a very large number of alternatives (more than several
+ hundred) was running out of internal workspace during the pre-compile
+ phase, where pcre_compile() figures out how much memory will be needed. A
+ bit of new cunning has reduced the workspace needed for groups with
+ alternatives. The 1000-alternative test pattern now uses 12 bytes of
+ workspace instead of running out of the 4096 that are available.
+
+10. Inserted some missing (unsigned int) casts to get rid of compiler warnings.
+
+11. Applied patch from Google to remove an optimization that didn't quite work.
+ The report of the bug said:
+
+ pcrecpp::RE("a*").FullMatch("aaa") matches, while
+ pcrecpp::RE("a*?").FullMatch("aaa") does not, and
+ pcrecpp::RE("a*?\\z").FullMatch("aaa") does again.
+
+12. If \p or \P was used in non-UTF-8 mode on a character greater than 127
+ it matched the wrong number of bytes.
+
+
+Version 7.1 24-Apr-07
+---------------------
+
+ 1. Applied Bob Rossi and Daniel G's patches to convert the build system to one
+ that is more "standard", making use of automake and other Autotools. There
+ is some re-arrangement of the files and adjustment of comments consequent
+ on this.
+
+ 2. Part of the patch fixed a problem with the pcregrep tests. The test of -r
+ for recursive directory scanning broke on some systems because the files
+ are not scanned in any specific order and on different systems the order
+ was different. A call to "sort" has been inserted into RunGrepTest for the
+ approprate test as a short-term fix. In the longer term there may be an
+ alternative.
+
+ 3. I had an email from Eric Raymond about problems translating some of PCRE's
+ man pages to HTML (despite the fact that I distribute HTML pages, some
+ people do their own conversions for various reasons). The problems
+ concerned the use of low-level troff macros .br and .in. I have therefore
+ removed all such uses from the man pages (some were redundant, some could
+ be replaced by .nf/.fi pairs). The 132html script that I use to generate
+ HTML has been updated to handle .nf/.fi and to complain if it encounters
+ .br or .in.
+
+ 4. Updated comments in configure.ac that get placed in config.h.in and also
+ arranged for config.h to be included in the distribution, with the name
+ config.h.generic, for the benefit of those who have to compile without
+ Autotools (compare pcre.h, which is now distributed as pcre.h.generic).
+
+ 5. Updated the support (such as it is) for Virtual Pascal, thanks to Stefan
+ Weber: (1) pcre_internal.h was missing some function renames; (2) updated
+ makevp.bat for the current PCRE, using the additional files
+ makevp_c.txt, makevp_l.txt, and pcregexp.pas.
+
+ 6. A Windows user reported a minor discrepancy with test 2, which turned out
+ to be caused by a trailing space on an input line that had got lost in his
+ copy. The trailing space was an accident, so I've just removed it.
+
+ 7. Add -Wl,-R... flags in pcre-config.in for *BSD* systems, as I'm told
+ that is needed.
+
+ 8. Mark ucp_table (in ucptable.h) and ucp_gentype (in pcre_ucp_searchfuncs.c)
+ as "const" (a) because they are and (b) because it helps the PHP
+ maintainers who have recently made a script to detect big data structures
+ in the php code that should be moved to the .rodata section. I remembered
+ to update Builducptable as well, so it won't revert if ucptable.h is ever
+ re-created.
+
+ 9. Added some extra #ifdef SUPPORT_UTF8 conditionals into pcretest.c,
+ pcre_printint.src, pcre_compile.c, pcre_study.c, and pcre_tables.c, in
+ order to be able to cut out the UTF-8 tables in the latter when UTF-8
+ support is not required. This saves 1.5-2K of code, which is important in
+ some applications.
+
+ Later: more #ifdefs are needed in pcre_ord2utf8.c and pcre_valid_utf8.c
+ so as not to refer to the tables, even though these functions will never be
+ called when UTF-8 support is disabled. Otherwise there are problems with a
+ shared library.
+
+10. Fixed two bugs in the emulated memmove() function in pcre_internal.h:
+
+ (a) It was defining its arguments as char * instead of void *.
+
+ (b) It was assuming that all moves were upwards in memory; this was true
+ a long time ago when I wrote it, but is no longer the case.
+
+ The emulated memove() is provided for those environments that have neither
+ memmove() nor bcopy(). I didn't think anyone used it these days, but that
+ is clearly not the case, as these two bugs were recently reported.
+
+11. The script PrepareRelease is now distributed: it calls 132html, CleanTxt,
+ and Detrail to create the HTML documentation, the .txt form of the man
+ pages, and it removes trailing spaces from listed files. It also creates
+ pcre.h.generic and config.h.generic from pcre.h and config.h. In the latter
+ case, it wraps all the #defines with #ifndefs. This script should be run
+ before "make dist".
+
+12. Fixed two fairly obscure bugs concerned with quantified caseless matching
+ with Unicode property support.
+
+ (a) For a maximizing quantifier, if the two different cases of the
+ character were of different lengths in their UTF-8 codings (there are
+ some cases like this - I found 11), and the matching function had to
+ back up over a mixture of the two cases, it incorrectly assumed they
+ were both the same length.
+
+ (b) When PCRE was configured to use the heap rather than the stack for
+ recursion during matching, it was not correctly preserving the data for
+ the other case of a UTF-8 character when checking ahead for a match
+ while processing a minimizing repeat. If the check also involved
+ matching a wide character, but failed, corruption could cause an
+ erroneous result when trying to check for a repeat of the original
+ character.
+
+13. Some tidying changes to the testing mechanism:
+
+ (a) The RunTest script now detects the internal link size and whether there
+ is UTF-8 and UCP support by running ./pcretest -C instead of relying on
+ values substituted by "configure". (The RunGrepTest script already did
+ this for UTF-8.) The configure.ac script no longer substitutes the
+ relevant variables.
+
+ (b) The debugging options /B and /D in pcretest show the compiled bytecode
+ with length and offset values. This means that the output is different
+ for different internal link sizes. Test 2 is skipped for link sizes
+ other than 2 because of this, bypassing the problem. Unfortunately,
+ there was also a test in test 3 (the locale tests) that used /B and
+ failed for link sizes other than 2. Rather than cut the whole test out,
+ I have added a new /Z option to pcretest that replaces the length and
+ offset values with spaces. This is now used to make test 3 independent
+ of link size. (Test 2 will be tidied up later.)
+
+14. If erroroffset was passed as NULL to pcre_compile, it provoked a
+ segmentation fault instead of returning the appropriate error message.
+
+15. In multiline mode when the newline sequence was set to "any", the pattern
+ ^$ would give a match between the \r and \n of a subject such as "A\r\nB".
+ This doesn't seem right; it now treats the CRLF combination as the line
+ ending, and so does not match in that case. It's only a pattern such as ^$
+ that would hit this one: something like ^ABC$ would have failed after \r
+ and then tried again after \r\n.
+
+16. Changed the comparison command for RunGrepTest from "diff -u" to "diff -ub"
+ in an attempt to make files that differ only in their line terminators
+ compare equal. This works on Linux.
+
+17. Under certain error circumstances pcregrep might try to free random memory
+ as it exited. This is now fixed, thanks to valgrind.
+
+19. In pcretest, if the pattern /(?m)^$/g was matched against the string
+ "abc\r\n\r\n", it found an unwanted second match after the second \r. This
+ was because its rules for how to advance for /g after matching an empty
+ string at the end of a line did not allow for this case. They now check for
+ it specially.
+
+20. pcretest is supposed to handle patterns and data of any length, by
+ extending its buffers when necessary. It was getting this wrong when the
+ buffer for a data line had to be extended.
+
+21. Added PCRE_NEWLINE_ANYCRLF which is like ANY, but matches only CR, LF, or
+ CRLF as a newline sequence.
+
+22. Code for handling Unicode properties in pcre_dfa_exec() wasn't being cut
+ out by #ifdef SUPPORT_UCP. This did no harm, as it could never be used, but
+ I have nevertheless tidied it up.
+
+23. Added some casts to kill warnings from HP-UX ia64 compiler.
+
+24. Added a man page for pcre-config.
+
+
+Version 7.0 19-Dec-06
+---------------------
+
+ 1. Fixed a signed/unsigned compiler warning in pcre_compile.c, shown up by
+ moving to gcc 4.1.1.
+
+ 2. The -S option for pcretest uses setrlimit(); I had omitted to #include
+ sys/time.h, which is documented as needed for this function. It doesn't
+ seem to matter on Linux, but it showed up on some releases of OS X.
+
+ 3. It seems that there are systems where bytes whose values are greater than
+ 127 match isprint() in the "C" locale. The "C" locale should be the
+ default when a C program starts up. In most systems, only ASCII printing
+ characters match isprint(). This difference caused the output from pcretest
+ to vary, making some of the tests fail. I have changed pcretest so that:
+
+ (a) When it is outputting text in the compiled version of a pattern, bytes
+ other than 32-126 are always shown as hex escapes.
+
+ (b) When it is outputting text that is a matched part of a subject string,
+ it does the same, unless a different locale has been set for the match
+ (using the /L modifier). In this case, it uses isprint() to decide.
+
+ 4. Fixed a major bug that caused incorrect computation of the amount of memory
+ required for a compiled pattern when options that changed within the
+ pattern affected the logic of the preliminary scan that determines the
+ length. The relevant options are -x, and -i in UTF-8 mode. The result was
+ that the computed length was too small. The symptoms of this bug were
+ either the PCRE error "internal error: code overflow" from pcre_compile(),
+ or a glibc crash with a message such as "pcretest: free(): invalid next
+ size (fast)". Examples of patterns that provoked this bug (shown in
+ pcretest format) are:
+
+ /(?-x: )/x
+ /(?x)(?-x: \s*#\s*)/
+ /((?i)[\x{c0}])/8
+ /(?i:[\x{c0}])/8
+
+ HOWEVER: Change 17 below makes this fix obsolete as the memory computation
+ is now done differently.
+
+ 5. Applied patches from Google to: (a) add a QuoteMeta function to the C++
+ wrapper classes; (b) implement a new function in the C++ scanner that is
+ more efficient than the old way of doing things because it avoids levels of
+ recursion in the regex matching; (c) add a paragraph to the documentation
+ for the FullMatch() function.
+
+ 6. The escape sequence \n was being treated as whatever was defined as
+ "newline". Not only was this contrary to the documentation, which states
+ that \n is character 10 (hex 0A), but it also went horribly wrong when
+ "newline" was defined as CRLF. This has been fixed.
+
+ 7. In pcre_dfa_exec.c the value of an unsigned integer (the variable called c)
+ was being set to -1 for the "end of line" case (supposedly a value that no
+ character can have). Though this value is never used (the check for end of
+ line is "zero bytes in current character"), it caused compiler complaints.
+ I've changed it to 0xffffffff.
+
+ 8. In pcre_version.c, the version string was being built by a sequence of
+ C macros that, in the event of PCRE_PRERELEASE being defined as an empty
+ string (as it is for production releases) called a macro with an empty
+ argument. The C standard says the result of this is undefined. The gcc
+ compiler treats it as an empty string (which was what was wanted) but it is
+ reported that Visual C gives an error. The source has been hacked around to
+ avoid this problem.
+
+ 9. On the advice of a Windows user, included and in Windows
+ builds of pcretest, and changed the call to _setmode() to use _O_BINARY
+ instead of 0x8000. Made all the #ifdefs test both _WIN32 and WIN32 (not all
+ of them did).
+
+10. Originally, pcretest opened its input and output without "b"; then I was
+ told that "b" was needed in some environments, so it was added for release
+ 5.0 to both the input and output. (It makes no difference on Unix-like
+ systems.) Later I was told that it is wrong for the input on Windows. I've
+ now abstracted the modes into two macros, to make it easier to fiddle with
+ them, and removed "b" from the input mode under Windows.
+
+11. Added pkgconfig support for the C++ wrapper library, libpcrecpp.
+
+12. Added -help and --help to pcretest as an official way of being reminded
+ of the options.
+
+13. Removed some redundant semicolons after macro calls in pcrecpparg.h.in
+ and pcrecpp.cc because they annoy compilers at high warning levels.
+
+14. A bit of tidying/refactoring in pcre_exec.c in the main bumpalong loop.
+
+15. Fixed an occurrence of == in configure.ac that should have been = (shell
+ scripts are not C programs :-) and which was not noticed because it works
+ on Linux.
+
+16. pcretest is supposed to handle any length of pattern and data line (as one
+ line or as a continued sequence of lines) by extending its input buffer if
+ necessary. This feature was broken for very long pattern lines, leading to
+ a string of junk being passed to pcre_compile() if the pattern was longer
+ than about 50K.
+
+17. I have done a major re-factoring of the way pcre_compile() computes the
+ amount of memory needed for a compiled pattern. Previously, there was code
+ that made a preliminary scan of the pattern in order to do this. That was
+ OK when PCRE was new, but as the facilities have expanded, it has become
+ harder and harder to keep it in step with the real compile phase, and there
+ have been a number of bugs (see for example, 4 above). I have now found a
+ cunning way of running the real compile function in a "fake" mode that
+ enables it to compute how much memory it would need, while actually only
+ ever using a few hundred bytes of working memory and without too many
+ tests of the mode. This should make future maintenance and development
+ easier. A side effect of this work is that the limit of 200 on the nesting
+ depth of parentheses has been removed (though this was never a serious
+ limitation, I suspect). However, there is a downside: pcre_compile() now
+ runs more slowly than before (30% or more, depending on the pattern). I
+ hope this isn't a big issue. There is no effect on runtime performance.
+
+18. Fixed a minor bug in pcretest: if a pattern line was not terminated by a
+ newline (only possible for the last line of a file) and it was a
+ pattern that set a locale (followed by /Lsomething), pcretest crashed.
+
+19. Added additional timing features to pcretest. (1) The -tm option now times
+ matching only, not compiling. (2) Both -t and -tm can be followed, as a
+ separate command line item, by a number that specifies the number of
+ repeats to use when timing. The default is 50000; this gives better
+ precision, but takes uncomfortably long for very large patterns.
+
+20. Extended pcre_study() to be more clever in cases where a branch of a
+ subpattern has no definite first character. For example, (a*|b*)[cd] would
+ previously give no result from pcre_study(). Now it recognizes that the
+ first character must be a, b, c, or d.
+
+21. There was an incorrect error "recursive call could loop indefinitely" if
+ a subpattern (or the entire pattern) that was being tested for matching an
+ empty string contained only one non-empty item after a nested subpattern.
+ For example, the pattern (?>\x{100}*)\d(?R) provoked this error
+ incorrectly, because the \d was being skipped in the check.
+
+22. The pcretest program now has a new pattern option /B and a command line
+ option -b, which is equivalent to adding /B to every pattern. This causes
+ it to show the compiled bytecode, without the additional information that
+ -d shows. The effect of -d is now the same as -b with -i (and similarly, /D
+ is the same as /B/I).
+
+23. A new optimization is now able automatically to treat some sequences such
+ as a*b as a*+b. More specifically, if something simple (such as a character
+ or a simple class like \d) has an unlimited quantifier, and is followed by
+ something that cannot possibly match the quantified thing, the quantifier
+ is automatically "possessified".
+
+24. A recursive reference to a subpattern whose number was greater than 39
+ went wrong under certain circumstances in UTF-8 mode. This bug could also
+ have affected the operation of pcre_study().
+
+25. Realized that a little bit of performance could be had by replacing
+ (c & 0xc0) == 0xc0 with c >= 0xc0 when processing UTF-8 characters.
+
+26. Timing data from pcretest is now shown to 4 decimal places instead of 3.
+
+27. Possessive quantifiers such as a++ were previously implemented by turning
+ them into atomic groups such as ($>a+). Now they have their own opcodes,
+ which improves performance. This includes the automatically created ones
+ from 23 above.
+
+28. A pattern such as (?=(\w+))\1: which simulates an atomic group using a
+ lookahead was broken if it was not anchored. PCRE was mistakenly expecting
+ the first matched character to be a colon. This applied both to named and
+ numbered groups.
+
+29. The ucpinternal.h header file was missing its idempotency #ifdef.
+
+30. I was sent a "project" file called libpcre.a.dev which I understand makes
+ building PCRE on Windows easier, so I have included it in the distribution.
+
+31. There is now a check in pcretest against a ridiculously large number being
+ returned by pcre_exec() or pcre_dfa_exec(). If this happens in a /g or /G
+ loop, the loop is abandoned.
+
+32. Forward references to subpatterns in conditions such as (?(2)...) where
+ subpattern 2 is defined later cause pcre_compile() to search forwards in
+ the pattern for the relevant set of parentheses. This search went wrong
+ when there were unescaped parentheses in a character class, parentheses
+ escaped with \Q...\E, or parentheses in a #-comment in /x mode.
+
+33. "Subroutine" calls and backreferences were previously restricted to
+ referencing subpatterns earlier in the regex. This restriction has now
+ been removed.
+
+34. Added a number of extra features that are going to be in Perl 5.10. On the
+ whole, these are just syntactic alternatives for features that PCRE had
+ previously implemented using the Python syntax or my own invention. The
+ other formats are all retained for compatibility.
+
+ (a) Named groups can now be defined as (?...) or (?'name'...) as well
+ as (?P...). The new forms, as well as being in Perl 5.10, are
+ also .NET compatible.
+
+ (b) A recursion or subroutine call to a named group can now be defined as
+ (?&name) as well as (?P>name).
+
+ (c) A backreference to a named group can now be defined as \k or
+ \k'name' as well as (?P=name). The new forms, as well as being in Perl
+ 5.10, are also .NET compatible.
+
+ (d) A conditional reference to a named group can now use the syntax
+ (?() or (?('name') as well as (?(name).
+
+ (e) A "conditional group" of the form (?(DEFINE)...) can be used to define
+ groups (named and numbered) that are never evaluated inline, but can be
+ called as "subroutines" from elsewhere. In effect, the DEFINE condition
+ is always false. There may be only one alternative in such a group.
+
+ (f) A test for recursion can be given as (?(R1).. or (?(R&name)... as well
+ as the simple (?(R). The condition is true only if the most recent
+ recursion is that of the given number or name. It does not search out
+ through the entire recursion stack.
+
+ (g) The escape \gN or \g{N} has been added, where N is a positive or
+ negative number, specifying an absolute or relative reference.
+
+35. Tidied to get rid of some further signed/unsigned compiler warnings and
+ some "unreachable code" warnings.
+
+36. Updated the Unicode property tables to Unicode version 5.0.0. Amongst other
+ things, this adds five new scripts.
+
+37. Perl ignores orphaned \E escapes completely. PCRE now does the same.
+ There were also incompatibilities regarding the handling of \Q..\E inside
+ character classes, for example with patterns like [\Qa\E-\Qz\E] where the
+ hyphen was adjacent to \Q or \E. I hope I've cleared all this up now.
+
+38. Like Perl, PCRE detects when an indefinitely repeated parenthesized group
+ matches an empty string, and forcibly breaks the loop. There were bugs in
+ this code in non-simple cases. For a pattern such as ^(a()*)* matched
+ against aaaa the result was just "a" rather than "aaaa", for example. Two
+ separate and independent bugs (that affected different cases) have been
+ fixed.
+
+39. Refactored the code to abolish the use of different opcodes for small
+ capturing bracket numbers. This is a tidy that I avoided doing when I
+ removed the limit on the number of capturing brackets for 3.5 back in 2001.
+ The new approach is not only tidier, it makes it possible to reduce the
+ memory needed to fix the previous bug (38).
+
+40. Implemented PCRE_NEWLINE_ANY to recognize any of the Unicode newline
+ sequences (http://unicode.org/unicode/reports/tr18/) as "newline" when
+ processing dot, circumflex, or dollar metacharacters, or #-comments in /x
+ mode.
+
+41. Add \R to match any Unicode newline sequence, as suggested in the Unicode
+ report.
+
+42. Applied patch, originally from Ari Pollak, modified by Google, to allow
+ copy construction and assignment in the C++ wrapper.
+
+43. Updated pcregrep to support "--newline=any". In the process, I fixed a
+ couple of bugs that could have given wrong results in the "--newline=crlf"
+ case.
+
+44. Added a number of casts and did some reorganization of signed/unsigned int
+ variables following suggestions from Dair Grant. Also renamed the variable
+ "this" as "item" because it is a C++ keyword.
+
+45. Arranged for dftables to add
+
+ #include "pcre_internal.h"
+
+ to pcre_chartables.c because without it, gcc 4.x may remove the array
+ definition from the final binary if PCRE is built into a static library and
+ dead code stripping is activated.
+
+46. For an unanchored pattern, if a match attempt fails at the start of a
+ newline sequence, and the newline setting is CRLF or ANY, and the next two
+ characters are CRLF, advance by two characters instead of one.
+
+
+Version 6.7 04-Jul-06
+---------------------
+
+ 1. In order to handle tests when input lines are enormously long, pcretest has
+ been re-factored so that it automatically extends its buffers when
+ necessary. The code is crude, but this _is_ just a test program. The
+ default size has been increased from 32K to 50K.
+
+ 2. The code in pcre_study() was using the value of the re argument before
+ testing it for NULL. (Of course, in any sensible call of the function, it
+ won't be NULL.)
+
+ 3. The memmove() emulation function in pcre_internal.h, which is used on
+ systems that lack both memmove() and bcopy() - that is, hardly ever -
+ was missing a "static" storage class specifier.
+
+ 4. When UTF-8 mode was not set, PCRE looped when compiling certain patterns
+ containing an extended class (one that cannot be represented by a bitmap
+ because it contains high-valued characters or Unicode property items, e.g.
+ [\pZ]). Almost always one would set UTF-8 mode when processing such a
+ pattern, but PCRE should not loop if you do not (it no longer does).
+ [Detail: two cases were found: (a) a repeated subpattern containing an
+ extended class; (b) a recursive reference to a subpattern that followed a
+ previous extended class. It wasn't skipping over the extended class
+ correctly when UTF-8 mode was not set.]
+
+ 5. A negated single-character class was not being recognized as fixed-length
+ in lookbehind assertions such as (?<=[^f]), leading to an incorrect
+ compile error "lookbehind assertion is not fixed length".
+
+ 6. The RunPerlTest auxiliary script was showing an unexpected difference
+ between PCRE and Perl for UTF-8 tests. It turns out that it is hard to
+ write a Perl script that can interpret lines of an input file either as
+ byte characters or as UTF-8, which is what "perltest" was being required to
+ do for the non-UTF-8 and UTF-8 tests, respectively. Essentially what you
+ can't do is switch easily at run time between having the "use utf8;" pragma
+ or not. In the end, I fudged it by using the RunPerlTest script to insert
+ "use utf8;" explicitly for the UTF-8 tests.
+
+ 7. In multiline (/m) mode, PCRE was matching ^ after a terminating newline at
+ the end of the subject string, contrary to the documentation and to what
+ Perl does. This was true of both matching functions. Now it matches only at
+ the start of the subject and immediately after *internal* newlines.
+
+ 8. A call of pcre_fullinfo() from pcretest to get the option bits was passing
+ a pointer to an int instead of a pointer to an unsigned long int. This
+ caused problems on 64-bit systems.
+
+ 9. Applied a patch from the folks at Google to pcrecpp.cc, to fix "another
+ instance of the 'standard' template library not being so standard".
+
+10. There was no check on the number of named subpatterns nor the maximum
+ length of a subpattern name. The product of these values is used to compute
+ the size of the memory block for a compiled pattern. By supplying a very
+ long subpattern name and a large number of named subpatterns, the size
+ computation could be caused to overflow. This is now prevented by limiting
+ the length of names to 32 characters, and the number of named subpatterns
+ to 10,000.
+
+11. Subpatterns that are repeated with specific counts have to be replicated in
+ the compiled pattern. The size of memory for this was computed from the
+ length of the subpattern and the repeat count. The latter is limited to
+ 65535, but there was no limit on the former, meaning that integer overflow
+ could in principle occur. The compiled length of a repeated subpattern is
+ now limited to 30,000 bytes in order to prevent this.
+
+12. Added the optional facility to have named substrings with the same name.
+
+13. Added the ability to use a named substring as a condition, using the
+ Python syntax: (?(name)yes|no). This overloads (?(R)... and names that
+ are numbers (not recommended). Forward references are permitted.
+
+14. Added forward references in named backreferences (if you see what I mean).
+
+15. In UTF-8 mode, with the PCRE_DOTALL option set, a quantified dot in the
+ pattern could run off the end of the subject. For example, the pattern
+ "(?s)(.{1,5})"8 did this with the subject "ab".
+
+16. If PCRE_DOTALL or PCRE_MULTILINE were set, pcre_dfa_exec() behaved as if
+ PCRE_CASELESS was set when matching characters that were quantified with ?
+ or *.
+
+17. A character class other than a single negated character that had a minimum
+ but no maximum quantifier - for example [ab]{6,} - was not handled
+ correctly by pce_dfa_exec(). It would match only one character.
+
+18. A valid (though odd) pattern that looked like a POSIX character
+ class but used an invalid character after [ (for example [[,abc,]]) caused
+ pcre_compile() to give the error "Failed: internal error: code overflow" or
+ in some cases to crash with a glibc free() error. This could even happen if
+ the pattern terminated after [[ but there just happened to be a sequence of
+ letters, a binary zero, and a closing ] in the memory that followed.
+
+19. Perl's treatment of octal escapes in the range \400 to \777 has changed
+ over the years. Originally (before any Unicode support), just the bottom 8
+ bits were taken. Thus, for example, \500 really meant \100. Nowadays the
+ output from "man perlunicode" includes this:
+
+ The regular expression compiler produces polymorphic opcodes. That
+ is, the pattern adapts to the data and automatically switches to
+ the Unicode character scheme when presented with Unicode data--or
+ instead uses a traditional byte scheme when presented with byte
+ data.
+
+ Sadly, a wide octal escape does not cause a switch, and in a string with
+ no other multibyte characters, these octal escapes are treated as before.
+ Thus, in Perl, the pattern /\500/ actually matches \100 but the pattern
+ /\500|\x{1ff}/ matches \500 or \777 because the whole thing is treated as a
+ Unicode string.
+
+ I have not perpetrated such confusion in PCRE. Up till now, it took just
+ the bottom 8 bits, as in old Perl. I have now made octal escapes with
+ values greater than \377 illegal in non-UTF-8 mode. In UTF-8 mode they
+ translate to the appropriate multibyte character.
+
+29. Applied some refactoring to reduce the number of warnings from Microsoft
+ and Borland compilers. This has included removing the fudge introduced
+ seven years ago for the OS/2 compiler (see 2.02/2 below) because it caused
+ a warning about an unused variable.
+
+21. PCRE has not included VT (character 0x0b) in the set of whitespace
+ characters since release 4.0, because Perl (from release 5.004) does not.
+ [Or at least, is documented not to: some releases seem to be in conflict
+ with the documentation.] However, when a pattern was studied with
+ pcre_study() and all its branches started with \s, PCRE still included VT
+ as a possible starting character. Of course, this did no harm; it just
+ caused an unnecessary match attempt.
+
+22. Removed a now-redundant internal flag bit that recorded the fact that case
+ dependency changed within the pattern. This was once needed for "required
+ byte" processing, but is no longer used. This recovers a now-scarce options
+ bit. Also moved the least significant internal flag bit to the most-
+ significant bit of the word, which was not previously used (hangover from
+ the days when it was an int rather than a uint) to free up another bit for
+ the future.
+
+23. Added support for CRLF line endings as well as CR and LF. As well as the
+ default being selectable at build time, it can now be changed at runtime
+ via the PCRE_NEWLINE_xxx flags. There are now options for pcregrep to
+ specify that it is scanning data with non-default line endings.
+
+24. Changed the definition of CXXLINK to make it agree with the definition of
+ LINK in the Makefile, by replacing LDFLAGS to CXXFLAGS.
+
+25. Applied Ian Taylor's patches to avoid using another stack frame for tail
+ recursions. This makes a big different to stack usage for some patterns.
+
+26. If a subpattern containing a named recursion or subroutine reference such
+ as (?P>B) was quantified, for example (xxx(?P>B)){3}, the calculation of
+ the space required for the compiled pattern went wrong and gave too small a
+ value. Depending on the environment, this could lead to "Failed: internal
+ error: code overflow at offset 49" or "glibc detected double free or
+ corruption" errors.
+
+27. Applied patches from Google (a) to support the new newline modes and (b) to
+ advance over multibyte UTF-8 characters in GlobalReplace.
+
+28. Change free() to pcre_free() in pcredemo.c. Apparently this makes a
+ difference for some implementation of PCRE in some Windows version.
+
+29. Added some extra testing facilities to pcretest:
+
+ \q in a data line sets the "match limit" value
+ \Q in a data line sets the "match recursion limt" value
+ -S sets the stack size, where is in megabytes
+
+ The -S option isn't available for Windows.
+
+
+Version 6.6 06-Feb-06
+---------------------
+
+ 1. Change 16(a) for 6.5 broke things, because PCRE_DATA_SCOPE was not defined
+ in pcreposix.h. I have copied the definition from pcre.h.
+
+ 2. Change 25 for 6.5 broke compilation in a build directory out-of-tree
+ because pcre.h is no longer a built file.
+
+ 3. Added Jeff Friedl's additional debugging patches to pcregrep. These are
+ not normally included in the compiled code.
+
+
+Version 6.5 01-Feb-06
+---------------------
+
+ 1. When using the partial match feature with pcre_dfa_exec(), it was not
+ anchoring the second and subsequent partial matches at the new starting
+ point. This could lead to incorrect results. For example, with the pattern
+ /1234/, partially matching against "123" and then "a4" gave a match.
+
+ 2. Changes to pcregrep:
+
+ (a) All non-match returns from pcre_exec() were being treated as failures
+ to match the line. Now, unless the error is PCRE_ERROR_NOMATCH, an
+ error message is output. Some extra information is given for the
+ PCRE_ERROR_MATCHLIMIT and PCRE_ERROR_RECURSIONLIMIT errors, which are
+ probably the only errors that are likely to be caused by users (by
+ specifying a regex that has nested indefinite repeats, for instance).
+ If there are more than 20 of these errors, pcregrep is abandoned.
+
+ (b) A binary zero was treated as data while matching, but terminated the
+ output line if it was written out. This has been fixed: binary zeroes
+ are now no different to any other data bytes.
+
+ (c) Whichever of the LC_ALL or LC_CTYPE environment variables is set is
+ used to set a locale for matching. The --locale=xxxx long option has
+ been added (no short equivalent) to specify a locale explicitly on the
+ pcregrep command, overriding the environment variables.
+
+ (d) When -B was used with -n, some line numbers in the output were one less
+ than they should have been.
+
+ (e) Added the -o (--only-matching) option.
+
+ (f) If -A or -C was used with -c (count only), some lines of context were
+ accidentally printed for the final match.
+
+ (g) Added the -H (--with-filename) option.
+
+ (h) The combination of options -rh failed to suppress file names for files
+ that were found from directory arguments.
+
+ (i) Added the -D (--devices) and -d (--directories) options.
+
+ (j) Added the -F (--fixed-strings) option.
+
+ (k) Allow "-" to be used as a file name for -f as well as for a data file.
+
+ (l) Added the --colo(u)r option.
+
+ (m) Added Jeffrey Friedl's -S testing option, but within #ifdefs so that it
+ is not present by default.
+
+ 3. A nasty bug was discovered in the handling of recursive patterns, that is,
+ items such as (?R) or (?1), when the recursion could match a number of
+ alternatives. If it matched one of the alternatives, but subsequently,
+ outside the recursion, there was a failure, the code tried to back up into
+ the recursion. However, because of the way PCRE is implemented, this is not
+ possible, and the result was an incorrect result from the match.
+
+ In order to prevent this happening, the specification of recursion has
+ been changed so that all such subpatterns are automatically treated as
+ atomic groups. Thus, for example, (?R) is treated as if it were (?>(?R)).
+
+ 4. I had overlooked the fact that, in some locales, there are characters for
+ which isalpha() is true but neither isupper() nor islower() are true. In
+ the fr_FR locale, for instance, the \xAA and \xBA characters (ordmasculine
+ and ordfeminine) are like this. This affected the treatment of \w and \W
+ when they appeared in character classes, but not when they appeared outside
+ a character class. The bit map for "word" characters is now created
+ separately from the results of isalnum() instead of just taking it from the
+ upper, lower, and digit maps. (Plus the underscore character, of course.)
+
+ 5. The above bug also affected the handling of POSIX character classes such as
+ [[:alpha:]] and [[:alnum:]]. These do not have their own bit maps in PCRE's
+ permanent tables. Instead, the bit maps for such a class were previously
+ created as the appropriate unions of the upper, lower, and digit bitmaps.
+ Now they are created by subtraction from the [[:word:]] class, which has
+ its own bitmap.
+
+ 6. The [[:blank:]] character class matches horizontal, but not vertical space.
+ It is created by subtracting the vertical space characters (\x09, \x0a,
+ \x0b, \x0c) from the [[:space:]] bitmap. Previously, however, the
+ subtraction was done in the overall bitmap for a character class, meaning
+ that a class such as [\x0c[:blank:]] was incorrect because \x0c would not
+ be recognized. This bug has been fixed.
+
+ 7. Patches from the folks at Google:
+
+ (a) pcrecpp.cc: "to handle a corner case that may or may not happen in
+ real life, but is still worth protecting against".
+
+ (b) pcrecpp.cc: "corrects a bug when negative radixes are used with
+ regular expressions".
+
+ (c) pcre_scanner.cc: avoid use of std::count() because not all systems
+ have it.
+
+ (d) Split off pcrecpparg.h from pcrecpp.h and had the former built by
+ "configure" and the latter not, in order to fix a problem somebody had
+ with compiling the Arg class on HP-UX.
+
+ (e) Improve the error-handling of the C++ wrapper a little bit.
+
+ (f) New tests for checking recursion limiting.
+
+ 8. The pcre_memmove() function, which is used only if the environment does not
+ have a standard memmove() function (and is therefore rarely compiled),
+ contained two bugs: (a) use of int instead of size_t, and (b) it was not
+ returning a result (though PCRE never actually uses the result).
+
+ 9. In the POSIX regexec() interface, if nmatch is specified as a ridiculously
+ large number - greater than INT_MAX/(3*sizeof(int)) - REG_ESPACE is
+ returned instead of calling malloc() with an overflowing number that would
+ most likely cause subsequent chaos.
+
+10. The debugging option of pcretest was not showing the NO_AUTO_CAPTURE flag.
+
+11. The POSIX flag REG_NOSUB is now supported. When a pattern that was compiled
+ with this option is matched, the nmatch and pmatch options of regexec() are
+ ignored.
+
+12. Added REG_UTF8 to the POSIX interface. This is not defined by POSIX, but is
+ provided in case anyone wants to the the POSIX interface with UTF-8
+ strings.
+
+13. Added CXXLDFLAGS to the Makefile parameters to provide settings only on the
+ C++ linking (needed for some HP-UX environments).
+
+14. Avoid compiler warnings in get_ucpname() when compiled without UCP support
+ (unused parameter) and in the pcre_printint() function (omitted "default"
+ switch label when the default is to do nothing).
+
+15. Added some code to make it possible, when PCRE is compiled as a C++
+ library, to replace subject pointers for pcre_exec() with a smart pointer
+ class, thus making it possible to process discontinuous strings.
+
+16. The two macros PCRE_EXPORT and PCRE_DATA_SCOPE are confusing, and perform
+ much the same function. They were added by different people who were trying
+ to make PCRE easy to compile on non-Unix systems. It has been suggested
+ that PCRE_EXPORT be abolished now that there is more automatic apparatus
+ for compiling on Windows systems. I have therefore replaced it with
+ PCRE_DATA_SCOPE. This is set automatically for Windows; if not set it
+ defaults to "extern" for C or "extern C" for C++, which works fine on
+ Unix-like systems. It is now possible to override the value of PCRE_DATA_
+ SCOPE with something explicit in config.h. In addition:
+
+ (a) pcreposix.h still had just "extern" instead of either of these macros;
+ I have replaced it with PCRE_DATA_SCOPE.
+
+ (b) Functions such as _pcre_xclass(), which are internal to the library,
+ but external in the C sense, all had PCRE_EXPORT in their definitions.
+ This is apparently wrong for the Windows case, so I have removed it.
+ (It makes no difference on Unix-like systems.)
+
+17. Added a new limit, MATCH_LIMIT_RECURSION, which limits the depth of nesting
+ of recursive calls to match(). This is different to MATCH_LIMIT because
+ that limits the total number of calls to match(), not all of which increase
+ the depth of recursion. Limiting the recursion depth limits the amount of
+ stack (or heap if NO_RECURSE is set) that is used. The default can be set
+ when PCRE is compiled, and changed at run time. A patch from Google adds
+ this functionality to the C++ interface.
+
+18. Changes to the handling of Unicode character properties:
+
+ (a) Updated the table to Unicode 4.1.0.
+
+ (b) Recognize characters that are not in the table as "Cn" (undefined).
+
+ (c) I revised the way the table is implemented to a much improved format
+ which includes recognition of ranges. It now supports the ranges that
+ are defined in UnicodeData.txt, and it also amalgamates other
+ characters into ranges. This has reduced the number of entries in the
+ table from around 16,000 to around 3,000, thus reducing its size
+ considerably. I realized I did not need to use a tree structure after
+ all - a binary chop search is just as efficient. Having reduced the
+ number of entries, I extended their size from 6 bytes to 8 bytes to
+ allow for more data.
+
+ (d) Added support for Unicode script names via properties such as \p{Han}.
+
+19. In UTF-8 mode, a backslash followed by a non-Ascii character was not
+ matching that character.
+
+20. When matching a repeated Unicode property with a minimum greater than zero,
+ (for example \pL{2,}), PCRE could look past the end of the subject if it
+ reached it while seeking the minimum number of characters. This could
+ happen only if some of the characters were more than one byte long, because
+ there is a check for at least the minimum number of bytes.
+
+21. Refactored the implementation of \p and \P so as to be more general, to
+ allow for more different types of property in future. This has changed the
+ compiled form incompatibly. Anybody with saved compiled patterns that use
+ \p or \P will have to recompile them.
+
+22. Added "Any" and "L&" to the supported property types.
+
+23. Recognize \x{...} as a code point specifier, even when not in UTF-8 mode,
+ but give a compile time error if the value is greater than 0xff.
+
+24. The man pages for pcrepartial, pcreprecompile, and pcre_compile2 were
+ accidentally not being installed or uninstalled.
+
+25. The pcre.h file was built from pcre.h.in, but the only changes that were
+ made were to insert the current release number. This seemed silly, because
+ it made things harder for people building PCRE on systems that don't run
+ "configure". I have turned pcre.h into a distributed file, no longer built
+ by "configure", with the version identification directly included. There is
+ no longer a pcre.h.in file.
+
+ However, this change necessitated a change to the pcre-config script as
+ well. It is built from pcre-config.in, and one of the substitutions was the
+ release number. I have updated configure.ac so that ./configure now finds
+ the release number by grepping pcre.h.
+
+26. Added the ability to run the tests under valgrind.
+
+
+Version 6.4 05-Sep-05
+---------------------
+
+ 1. Change 6.0/10/(l) to pcregrep introduced a bug that caused separator lines
+ "--" to be printed when multiple files were scanned, even when none of the
+ -A, -B, or -C options were used. This is not compatible with Gnu grep, so I
+ consider it to be a bug, and have restored the previous behaviour.
+
+ 2. A couple of code tidies to get rid of compiler warnings.
+
+ 3. The pcretest program used to cheat by referring to symbols in the library
+ whose names begin with _pcre_. These are internal symbols that are not
+ really supposed to be visible externally, and in some environments it is
+ possible to suppress them. The cheating is now confined to including
+ certain files from the library's source, which is a bit cleaner.
+
+ 4. Renamed pcre.in as pcre.h.in to go with pcrecpp.h.in; it also makes the
+ file's purpose clearer.
+
+ 5. Reorganized pcre_ucp_findchar().
+
+
+Version 6.3 15-Aug-05
+---------------------
+
+ 1. The file libpcre.pc.in did not have general read permission in the tarball.
+
+ 2. There were some problems when building without C++ support:
+
+ (a) If C++ support was not built, "make install" and "make test" still
+ tried to test it.
+
+ (b) There were problems when the value of CXX was explicitly set. Some
+ changes have been made to try to fix these, and ...
+
+ (c) --disable-cpp can now be used to explicitly disable C++ support.
+
+ (d) The use of @CPP_OBJ@ directly caused a blank line preceded by a
+ backslash in a target when C++ was disabled. This confuses some
+ versions of "make", apparently. Using an intermediate variable solves
+ this. (Same for CPP_LOBJ.)
+
+ 3. $(LINK_FOR_BUILD) now includes $(CFLAGS_FOR_BUILD) and $(LINK)
+ (non-Windows) now includes $(CFLAGS) because these flags are sometimes
+ necessary on certain architectures.
+
+ 4. Added a setting of -export-symbols-regex to the link command to remove
+ those symbols that are exported in the C sense, but actually are local
+ within the library, and not documented. Their names all begin with
+ "_pcre_". This is not a perfect job, because (a) we have to except some
+ symbols that pcretest ("illegally") uses, and (b) the facility isn't always
+ available (and never for static libraries). I have made a note to try to
+ find a way round (a) in the future.
+
+
+Version 6.2 01-Aug-05
+---------------------
+
+ 1. There was no test for integer overflow of quantifier values. A construction
+ such as {1111111111111111} would give undefined results. What is worse, if
+ a minimum quantifier for a parenthesized subpattern overflowed and became
+ negative, the calculation of the memory size went wrong. This could have
+ led to memory overwriting.
+
+ 2. Building PCRE using VPATH was broken. Hopefully it is now fixed.
+
+ 3. Added "b" to the 2nd argument of fopen() in dftables.c, for non-Unix-like
+ operating environments where this matters.
+
+ 4. Applied Giuseppe Maxia's patch to add additional features for controlling
+ PCRE options from within the C++ wrapper.
+
+ 5. Named capturing subpatterns were not being correctly counted when a pattern
+ was compiled. This caused two problems: (a) If there were more than 100
+ such subpatterns, the calculation of the memory needed for the whole
+ compiled pattern went wrong, leading to an overflow error. (b) Numerical
+ back references of the form \12, where the number was greater than 9, were
+ not recognized as back references, even though there were sufficient
+ previous subpatterns.
+
+ 6. Two minor patches to pcrecpp.cc in order to allow it to compile on older
+ versions of gcc, e.g. 2.95.4.
+
+
+Version 6.1 21-Jun-05
+---------------------
+
+ 1. There was one reference to the variable "posix" in pcretest.c that was not
+ surrounded by "#if !defined NOPOSIX".
+
+ 2. Make it possible to compile pcretest without DFA support, UTF8 support, or
+ the cross-check on the old pcre_info() function, for the benefit of the
+ cut-down version of PCRE that is currently imported into Exim.
+
+ 3. A (silly) pattern starting with (?i)(?-i) caused an internal space
+ allocation error. I've done the easy fix, which wastes 2 bytes for sensible
+ patterns that start (?i) but I don't think that matters. The use of (?i) is
+ just an example; this all applies to the other options as well.
+
+ 4. Since libtool seems to echo the compile commands it is issuing, the output
+ from "make" can be reduced a bit by putting "@" in front of each libtool
+ compile command.
+
+ 5. Patch from the folks at Google for configure.in to be a bit more thorough
+ in checking for a suitable C++ installation before trying to compile the
+ C++ stuff. This should fix a reported problem when a compiler was present,
+ but no suitable headers.
+
+ 6. The man pages all had just "PCRE" as their title. I have changed them to
+ be the relevant file name. I have also arranged that these names are
+ retained in the file doc/pcre.txt, which is a concatenation in text format
+ of all the man pages except the little individual ones for each function.
+
+ 7. The NON-UNIX-USE file had not been updated for the different set of source
+ files that come with release 6. I also added a few comments about the C++
+ wrapper.
+
+
+Version 6.0 07-Jun-05
+---------------------
+
+ 1. Some minor internal re-organization to help with my DFA experiments.
+
+ 2. Some missing #ifdef SUPPORT_UCP conditionals in pcretest and printint that
+ didn't matter for the library itself when fully configured, but did matter
+ when compiling without UCP support, or within Exim, where the ucp files are
+ not imported.
+
+ 3. Refactoring of the library code to split up the various functions into
+ different source modules. The addition of the new DFA matching code (see
+ below) to a single monolithic source would have made it really too
+ unwieldy, quite apart from causing all the code to be include in a
+ statically linked application, when only some functions are used. This is
+ relevant even without the DFA addition now that patterns can be compiled in
+ one application and matched in another.
+
+ The downside of splitting up is that there have to be some external
+ functions and data tables that are used internally in different modules of
+ the library but which are not part of the API. These have all had their
+ names changed to start with "_pcre_" so that they are unlikely to clash
+ with other external names.
+
+ 4. Added an alternate matching function, pcre_dfa_exec(), which matches using
+ a different (DFA) algorithm. Although it is slower than the original
+ function, it does have some advantages for certain types of matching
+ problem.
+
+ 5. Upgrades to pcretest in order to test the features of pcre_dfa_exec(),
+ including restarting after a partial match.
+
+ 6. A patch for pcregrep that defines INVALID_FILE_ATTRIBUTES if it is not
+ defined when compiling for Windows was sent to me. I have put it into the
+ code, though I have no means of testing or verifying it.
+
+ 7. Added the pcre_refcount() auxiliary function.
+
+ 8. Added the PCRE_FIRSTLINE option. This constrains an unanchored pattern to
+ match before or at the first newline in the subject string. In pcretest,
+ the /f option on a pattern can be used to set this.
+
+ 9. A repeated \w when used in UTF-8 mode with characters greater than 256
+ would behave wrongly. This has been present in PCRE since release 4.0.
+
+10. A number of changes to the pcregrep command:
+
+ (a) Refactored how -x works; insert ^(...)$ instead of setting
+ PCRE_ANCHORED and checking the length, in preparation for adding
+ something similar for -w.
+
+ (b) Added the -w (match as a word) option.
+
+ (c) Refactored the way lines are read and buffered so as to have more
+ than one at a time available.
+
+ (d) Implemented a pcregrep test script.
+
+ (e) Added the -M (multiline match) option. This allows patterns to match
+ over several lines of the subject. The buffering ensures that at least
+ 8K, or the rest of the document (whichever is the shorter) is available
+ for matching (and similarly the previous 8K for lookbehind assertions).
+
+ (f) Changed the --help output so that it now says
+
+ -w, --word-regex(p)
+
+ instead of two lines, one with "regex" and the other with "regexp"
+ because that confused at least one person since the short forms are the
+ same. (This required a bit of code, as the output is generated
+ automatically from a table. It wasn't just a text change.)
+
+ (g) -- can be used to terminate pcregrep options if the next thing isn't an
+ option but starts with a hyphen. Could be a pattern or a path name
+ starting with a hyphen, for instance.
+
+ (h) "-" can be given as a file name to represent stdin.
+
+ (i) When file names are being printed, "(standard input)" is used for
+ the standard input, for compatibility with GNU grep. Previously
+ "" was used.
+
+ (j) The option --label=xxx can be used to supply a name to be used for
+ stdin when file names are being printed. There is no short form.
+
+ (k) Re-factored the options decoding logic because we are going to add
+ two more options that take data. Such options can now be given in four
+ different ways, e.g. "-fname", "-f name", "--file=name", "--file name".
+
+ (l) Added the -A, -B, and -C options for requesting that lines of context
+ around matches be printed.
+
+ (m) Added the -L option to print the names of files that do not contain
+ any matching lines, that is, the complement of -l.
+
+ (n) The return code is 2 if any file cannot be opened, but pcregrep does
+ continue to scan other files.
+
+ (o) The -s option was incorrectly implemented. For compatibility with other
+ greps, it now suppresses the error message for a non-existent or non-
+ accessible file (but not the return code). There is a new option called
+ -q that suppresses the output of matching lines, which was what -s was
+ previously doing.
+
+ (p) Added --include and --exclude options to specify files for inclusion
+ and exclusion when recursing.
+
+11. The Makefile was not using the Autoconf-supported LDFLAGS macro properly.
+ Hopefully, it now does.
+
+12. Missing cast in pcre_study().
+
+13. Added an "uninstall" target to the makefile.
+
+14. Replaced "extern" in the function prototypes in Makefile.in with
+ "PCRE_DATA_SCOPE", which defaults to 'extern' or 'extern "C"' in the Unix
+ world, but is set differently for Windows.
+
+15. Added a second compiling function called pcre_compile2(). The only
+ difference is that it has an extra argument, which is a pointer to an
+ integer error code. When there is a compile-time failure, this is set
+ non-zero, in addition to the error test pointer being set to point to an
+ error message. The new argument may be NULL if no error number is required
+ (but then you may as well call pcre_compile(), which is now just a
+ wrapper). This facility is provided because some applications need a
+ numeric error indication, but it has also enabled me to tidy up the way
+ compile-time errors are handled in the POSIX wrapper.
+
+16. Added VPATH=.libs to the makefile; this should help when building with one
+ prefix path and installing with another. (Or so I'm told by someone who
+ knows more about this stuff than I do.)
+
+17. Added a new option, REG_DOTALL, to the POSIX function regcomp(). This
+ passes PCRE_DOTALL to the pcre_compile() function, making the "." character
+ match everything, including newlines. This is not POSIX-compatible, but
+ somebody wanted the feature. From pcretest it can be activated by using
+ both the P and the s flags.
+
+18. AC_PROG_LIBTOOL appeared twice in Makefile.in. Removed one.
+
+19. libpcre.pc was being incorrectly installed as executable.
+
+20. A couple of places in pcretest check for end-of-line by looking for '\n';
+ it now also looks for '\r' so that it will work unmodified on Windows.
+
+21. Added Google's contributed C++ wrapper to the distribution.
+
+22. Added some untidy missing memory free() calls in pcretest, to keep
+ Electric Fence happy when testing.
+
+
+
+Version 5.0 13-Sep-04
+---------------------
+
+ 1. Internal change: literal characters are no longer packed up into items
+ containing multiple characters in a single byte-string. Each character
+ is now matched using a separate opcode. However, there may be more than one
+ byte in the character in UTF-8 mode.
+
+ 2. The pcre_callout_block structure has two new fields: pattern_position and
+ next_item_length. These contain the offset in the pattern to the next match
+ item, and its length, respectively.
+
+ 3. The PCRE_AUTO_CALLOUT option for pcre_compile() requests the automatic
+ insertion of callouts before each pattern item. Added the /C option to
+ pcretest to make use of this.
+
+ 4. On the advice of a Windows user, the lines
+
+ #if defined(_WIN32) || defined(WIN32)
+ _setmode( _fileno( stdout ), 0x8000 );
+ #endif /* defined(_WIN32) || defined(WIN32) */
+
+ have been added to the source of pcretest. This apparently does useful
+ magic in relation to line terminators.
+
+ 5. Changed "r" and "w" in the calls to fopen() in pcretest to "rb" and "wb"
+ for the benefit of those environments where the "b" makes a difference.
+
+ 6. The icc compiler has the same options as gcc, but "configure" doesn't seem
+ to know about it. I have put a hack into configure.in that adds in code
+ to set GCC=yes if CC=icc. This seems to end up at a point in the
+ generated configure script that is early enough to affect the setting of
+ compiler options, which is what is needed, but I have no means of testing
+ whether it really works. (The user who reported this had patched the
+ generated configure script, which of course I cannot do.)
+
+ LATER: After change 22 below (new libtool files), the configure script
+ seems to know about icc (and also ecc). Therefore, I have commented out
+ this hack in configure.in.
+
+ 7. Added support for pkg-config (2 patches were sent in).
+
+ 8. Negated POSIX character classes that used a combination of internal tables
+ were completely broken. These were [[:^alpha:]], [[:^alnum:]], and
+ [[:^ascii]]. Typically, they would match almost any characters. The other
+ POSIX classes were not broken in this way.
+
+ 9. Matching the pattern "\b.*?" against "ab cd", starting at offset 1, failed
+ to find the match, as PCRE was deluded into thinking that the match had to
+ start at the start point or following a newline. The same bug applied to
+ patterns with negative forward assertions or any backward assertions
+ preceding ".*" at the start, unless the pattern required a fixed first
+ character. This was a failing pattern: "(?!.bcd).*". The bug is now fixed.
+
+10. In UTF-8 mode, when moving forwards in the subject after a failed match
+ starting at the last subject character, bytes beyond the end of the subject
+ string were read.
+
+11. Renamed the variable "class" as "classbits" to make life easier for C++
+ users. (Previously there was a macro definition, but it apparently wasn't
+ enough.)
+
+12. Added the new field "tables" to the extra data so that tables can be passed
+ in at exec time, or the internal tables can be re-selected. This allows
+ a compiled regex to be saved and re-used at a later time by a different
+ program that might have everything at different addresses.
+
+13. Modified the pcre-config script so that, when run on Solaris, it shows a
+ -R library as well as a -L library.
+
+14. The debugging options of pcretest (-d on the command line or D on a
+ pattern) showed incorrect output for anything following an extended class
+ that contained multibyte characters and which was followed by a quantifier.
+
+15. Added optional support for general category Unicode character properties
+ via the \p, \P, and \X escapes. Unicode property support implies UTF-8
+ support. It adds about 90K to the size of the library. The meanings of the
+ inbuilt class escapes such as \d and \s have NOT been changed.
+
+16. Updated pcredemo.c to include calls to free() to release the memory for the
+ compiled pattern.
+
+17. The generated file chartables.c was being created in the source directory
+ instead of in the building directory. This caused the build to fail if the
+ source directory was different from the building directory, and was
+ read-only.
+
+18. Added some sample Win commands from Mark Tetrode into the NON-UNIX-USE
+ file. No doubt somebody will tell me if they don't make sense... Also added
+ Dan Mooney's comments about building on OpenVMS.
+
+19. Added support for partial matching via the PCRE_PARTIAL option for
+ pcre_exec() and the \P data escape in pcretest.
+
+20. Extended pcretest with 3 new pattern features:
+
+ (i) A pattern option of the form ">rest-of-line" causes pcretest to
+ write the compiled pattern to the file whose name is "rest-of-line".
+ This is a straight binary dump of the data, with the saved pointer to
+ the character tables forced to be NULL. The study data, if any, is
+ written too. After writing, pcretest reads a new pattern.
+
+ (ii) If, instead of a pattern, ": new target
+ : new target
+ : use native compiler
+ : use native linker
+ : handle Windows platform correctly
+ : ditto
+ : ditto
+ copy DLL to top builddir before testing
+
+ As part of these changes, -no-undefined was removed again. This was reported
+ to give trouble on HP-UX 11.0, so getting rid of it seems like a good idea
+ in any case.
+
+3. Some tidies to get rid of compiler warnings:
+
+ . In the match_data structure, match_limit was an unsigned long int, whereas
+ match_call_count was an int. I've made them both unsigned long ints.
+
+ . In pcretest the fact that a const uschar * doesn't automatically cast to
+ a void * provoked a warning.
+
+ . Turning on some more compiler warnings threw up some "shadow" variables
+ and a few more missing casts.
+
+4. If PCRE was complied with UTF-8 support, but called without the PCRE_UTF8
+ option, a class that contained a single character with a value between 128
+ and 255 (e.g. /[\xFF]/) caused PCRE to crash.
+
+5. If PCRE was compiled with UTF-8 support, but called without the PCRE_UTF8
+ option, a class that contained several characters, but with at least one
+ whose value was between 128 and 255 caused PCRE to crash.
+
+
+Version 4.1 12-Mar-03
+---------------------
+
+1. Compiling with gcc -pedantic found a couple of places where casts were
+needed, and a string in dftables.c that was longer than standard compilers are
+required to support.
+
+2. Compiling with Sun's compiler found a few more places where the code could
+be tidied up in order to avoid warnings.
+
+3. The variables for cross-compiling were called HOST_CC and HOST_CFLAGS; the
+first of these names is deprecated in the latest Autoconf in favour of the name
+CC_FOR_BUILD, because "host" is typically used to mean the system on which the
+compiled code will be run. I can't find a reference for HOST_CFLAGS, but by
+analogy I have changed it to CFLAGS_FOR_BUILD.
+
+4. Added -no-undefined to the linking command in the Makefile, because this is
+apparently helpful for Windows. To make it work, also added "-L. -lpcre" to the
+linking step for the pcreposix library.
+
+5. PCRE was failing to diagnose the case of two named groups with the same
+name.
+
+6. A problem with one of PCRE's optimizations was discovered. PCRE remembers a
+literal character that is needed in the subject for a match, and scans along to
+ensure that it is present before embarking on the full matching process. This
+saves time in cases of nested unlimited repeats that are never going to match.
+Problem: the scan can take a lot of time if the subject is very long (e.g.
+megabytes), thus penalizing straightforward matches. It is now done only if the
+amount of subject to be scanned is less than 1000 bytes.
+
+7. A lesser problem with the same optimization is that it was recording the
+first character of an anchored pattern as "needed", thus provoking a search
+right along the subject, even when the first match of the pattern was going to
+fail. The "needed" character is now not set for anchored patterns, unless it
+follows something in the pattern that is of non-fixed length. Thus, it still
+fulfils its original purpose of finding quick non-matches in cases of nested
+unlimited repeats, but isn't used for simple anchored patterns such as /^abc/.
+
+
+Version 4.0 17-Feb-03
+---------------------
+
+1. If a comment in an extended regex that started immediately after a meta-item
+extended to the end of string, PCRE compiled incorrect data. This could lead to
+all kinds of weird effects. Example: /#/ was bad; /()#/ was bad; /a#/ was not.
+
+2. Moved to autoconf 2.53 and libtool 1.4.2.
+
+3. Perl 5.8 no longer needs "use utf8" for doing UTF-8 things. Consequently,
+the special perltest8 script is no longer needed - all the tests can be run
+from a single perltest script.
+
+4. From 5.004, Perl has not included the VT character (0x0b) in the set defined
+by \s. It has now been removed in PCRE. This means it isn't recognized as
+whitespace in /x regexes too, which is the same as Perl. Note that the POSIX
+class [:space:] *does* include VT, thereby creating a mess.
+
+5. Added the class [:blank:] (a GNU extension from Perl 5.8) to match only
+space and tab.
+
+6. Perl 5.005 was a long time ago. It's time to amalgamate the tests that use
+its new features into the main test script, reducing the number of scripts.
+
+7. Perl 5.8 has changed the meaning of patterns like /a(?i)b/. Earlier versions
+were backward compatible, and made the (?i) apply to the whole pattern, as if
+/i were given. Now it behaves more logically, and applies the option setting
+only to what follows. PCRE has been changed to follow suit. However, if it
+finds options settings right at the start of the pattern, it extracts them into
+the global options, as before. Thus, they show up in the info data.
+
+8. Added support for the \Q...\E escape sequence. Characters in between are
+treated as literals. This is slightly different from Perl in that $ and @ are
+also handled as literals inside the quotes. In Perl, they will cause variable
+interpolation. Note the following examples:
+
+ Pattern PCRE matches Perl matches
+
+ \Qabc$xyz\E abc$xyz abc followed by the contents of $xyz
+ \Qabc\$xyz\E abc\$xyz abc\$xyz
+ \Qabc\E\$\Qxyz\E abc$xyz abc$xyz
+
+For compatibility with Perl, \Q...\E sequences are recognized inside character
+classes as well as outside them.
+
+9. Re-organized 3 code statements in pcretest to avoid "overflow in
+floating-point constant arithmetic" warnings from a Microsoft compiler. Added a
+(size_t) cast to one statement in pcretest and one in pcreposix to avoid
+signed/unsigned warnings.
+
+10. SunOS4 doesn't have strtoul(). This was used only for unpicking the -o
+option for pcretest, so I've replaced it by a simple function that does just
+that job.
+
+11. pcregrep was ending with code 0 instead of 2 for the commands "pcregrep" or
+"pcregrep -".
+
+12. Added "possessive quantifiers" ?+, *+, ++, and {,}+ which come from Sun's
+Java package. This provides some syntactic sugar for simple cases of what my
+documentation calls "once-only subpatterns". A pattern such as x*+ is the same
+as (?>x*). In other words, if what is inside (?>...) is just a single repeated
+item, you can use this simplified notation. Note that only makes sense with
+greedy quantifiers. Consequently, the use of the possessive quantifier forces
+greediness, whatever the setting of the PCRE_UNGREEDY option.
+
+13. A change of greediness default within a pattern was not taking effect at
+the current level for patterns like /(b+(?U)a+)/. It did apply to parenthesized
+subpatterns that followed. Patterns like /b+(?U)a+/ worked because the option
+was abstracted outside.
+
+14. PCRE now supports the \G assertion. It is true when the current matching
+position is at the start point of the match. This differs from \A when the
+starting offset is non-zero. Used with the /g option of pcretest (or similar
+code), it works in the same way as it does for Perl's /g option. If all
+alternatives of a regex begin with \G, the expression is anchored to the start
+match position, and the "anchored" flag is set in the compiled expression.
+
+15. Some bugs concerning the handling of certain option changes within patterns
+have been fixed. These applied to options other than (?ims). For example,
+"a(?x: b c )d" did not match "XabcdY" but did match "Xa b c dY". It should have
+been the other way round. Some of this was related to change 7 above.
+
+16. PCRE now gives errors for /[.x.]/ and /[=x=]/ as unsupported POSIX
+features, as Perl does. Previously, PCRE gave the warnings only for /[[.x.]]/
+and /[[=x=]]/. PCRE now also gives an error for /[:name:]/ because it supports
+POSIX classes only within a class (e.g. /[[:alpha:]]/).
+
+17. Added support for Perl's \C escape. This matches one byte, even in UTF8
+mode. Unlike ".", it always matches newline, whatever the setting of
+PCRE_DOTALL. However, PCRE does not permit \C to appear in lookbehind
+assertions. Perl allows it, but it doesn't (in general) work because it can't
+calculate the length of the lookbehind. At least, that's the case for Perl
+5.8.0 - I've been told they are going to document that it doesn't work in
+future.
+
+18. Added an error diagnosis for escapes that PCRE does not support: these are
+\L, \l, \N, \P, \p, \U, \u, and \X.
+
+19. Although correctly diagnosing a missing ']' in a character class, PCRE was
+reading past the end of the pattern in cases such as /[abcd/.
+
+20. PCRE was getting more memory than necessary for patterns with classes that
+contained both POSIX named classes and other characters, e.g. /[[:space:]abc/.
+
+21. Added some code, conditional on #ifdef VPCOMPAT, to make life easier for
+compiling PCRE for use with Virtual Pascal.
+
+22. Small fix to the Makefile to make it work properly if the build is done
+outside the source tree.
+
+23. Added a new extension: a condition to go with recursion. If a conditional
+subpattern starts with (?(R) the "true" branch is used if recursion has
+happened, whereas the "false" branch is used only at the top level.
+
+24. When there was a very long string of literal characters (over 255 bytes
+without UTF support, over 250 bytes with UTF support), the computation of how
+much memory was required could be incorrect, leading to segfaults or other
+strange effects.
+
+25. PCRE was incorrectly assuming anchoring (either to start of subject or to
+start of line for a non-DOTALL pattern) when a pattern started with (.*) and
+there was a subsequent back reference to those brackets. This meant that, for
+example, /(.*)\d+\1/ failed to match "abc123bc". Unfortunately, it isn't
+possible to check for precisely this case. All we can do is abandon the
+optimization if .* occurs inside capturing brackets when there are any back
+references whatsoever. (See below for a better fix that came later.)
+
+26. The handling of the optimization for finding the first character of a
+non-anchored pattern, and for finding a character that is required later in the
+match were failing in some cases. This didn't break the matching; it just
+failed to optimize when it could. The way this is done has been re-implemented.
+
+27. Fixed typo in error message for invalid (?R item (it said "(?p").
+
+28. Added a new feature that provides some of the functionality that Perl
+provides with (?{...}). The facility is termed a "callout". The way it is done
+in PCRE is for the caller to provide an optional function, by setting
+pcre_callout to its entry point. Like pcre_malloc and pcre_free, this is a
+global variable. By default it is unset, which disables all calling out. To get
+the function called, the regex must include (?C) at appropriate points. This
+is, in fact, equivalent to (?C0), and any number <= 255 may be given with (?C).
+This provides a means of identifying different callout points. When PCRE
+reaches such a point in the regex, if pcre_callout has been set, the external
+function is called. It is provided with data in a structure called
+pcre_callout_block, which is defined in pcre.h. If the function returns 0,
+matching continues; if it returns a non-zero value, the match at the current
+point fails. However, backtracking will occur if possible. [This was changed
+later and other features added - see item 49 below.]
+
+29. pcretest is upgraded to test the callout functionality. It provides a
+callout function that displays information. By default, it shows the start of
+the match and the current position in the text. There are some new data escapes
+to vary what happens:
+
+ \C+ in addition, show current contents of captured substrings
+ \C- do not supply a callout function
+ \C!n return 1 when callout number n is reached
+ \C!n!m return 1 when callout number n is reached for the mth time
+
+30. If pcregrep was called with the -l option and just a single file name, it
+output "" if a match was found, instead of the file name.
+
+31. Improve the efficiency of the POSIX API to PCRE. If the number of capturing
+slots is less than POSIX_MALLOC_THRESHOLD, use a block on the stack to pass to
+pcre_exec(). This saves a malloc/free per call. The default value of
+POSIX_MALLOC_THRESHOLD is 10; it can be changed by --with-posix-malloc-threshold
+when configuring.
+
+32. The default maximum size of a compiled pattern is 64K. There have been a
+few cases of people hitting this limit. The code now uses macros to handle the
+storing of links as offsets within the compiled pattern. It defaults to 2-byte
+links, but this can be changed to 3 or 4 bytes by --with-link-size when
+configuring. Tests 2 and 5 work only with 2-byte links because they output
+debugging information about compiled patterns.
+
+33. Internal code re-arrangements:
+
+(a) Moved the debugging function for printing out a compiled regex into
+ its own source file (printint.c) and used #include to pull it into
+ pcretest.c and, when DEBUG is defined, into pcre.c, instead of having two
+ separate copies.
+
+(b) Defined the list of op-code names for debugging as a macro in
+ internal.h so that it is next to the definition of the opcodes.
+
+(c) Defined a table of op-code lengths for simpler skipping along compiled
+ code. This is again a macro in internal.h so that it is next to the
+ definition of the opcodes.
+
+34. Added support for recursive calls to individual subpatterns, along the
+lines of Robin Houston's patch (but implemented somewhat differently).
+
+35. Further mods to the Makefile to help Win32. Also, added code to pcregrep to
+allow it to read and process whole directories in Win32. This code was
+contributed by Lionel Fourquaux; it has not been tested by me.
+
+36. Added support for named subpatterns. The Python syntax (?P...) is
+used to name a group. Names consist of alphanumerics and underscores, and must
+be unique. Back references use the syntax (?P=name) and recursive calls use
+(?P>name) which is a PCRE extension to the Python extension. Groups still have
+numbers. The function pcre_fullinfo() can be used after compilation to extract
+a name/number map. There are three relevant calls:
+
+ PCRE_INFO_NAMEENTRYSIZE yields the size of each entry in the map
+ PCRE_INFO_NAMECOUNT yields the number of entries
+ PCRE_INFO_NAMETABLE yields a pointer to the map.
+
+The map is a vector of fixed-size entries. The size of each entry depends on
+the length of the longest name used. The first two bytes of each entry are the
+group number, most significant byte first. There follows the corresponding
+name, zero terminated. The names are in alphabetical order.
+
+37. Make the maximum literal string in the compiled code 250 for the non-UTF-8
+case instead of 255. Making it the same both with and without UTF-8 support
+means that the same test output works with both.
+
+38. There was a case of malloc(0) in the POSIX testing code in pcretest. Avoid
+calling malloc() with a zero argument.
+
+39. Change 25 above had to resort to a heavy-handed test for the .* anchoring
+optimization. I've improved things by keeping a bitmap of backreferences with
+numbers 1-31 so that if .* occurs inside capturing brackets that are not in
+fact referenced, the optimization can be applied. It is unlikely that a
+relevant occurrence of .* (i.e. one which might indicate anchoring or forcing
+the match to follow \n) will appear inside brackets with a number greater than
+31, but if it does, any back reference > 31 suppresses the optimization.
+
+40. Added a new compile-time option PCRE_NO_AUTO_CAPTURE. This has the effect
+of disabling numbered capturing parentheses. Any opening parenthesis that is
+not followed by ? behaves as if it were followed by ?: but named parentheses
+can still be used for capturing (and they will acquire numbers in the usual
+way).
+
+41. Redesigned the return codes from the match() function into yes/no/error so
+that errors can be passed back from deep inside the nested calls. A malloc
+failure while inside a recursive subpattern call now causes the
+PCRE_ERROR_NOMEMORY return instead of quietly going wrong.
+
+42. It is now possible to set a limit on the number of times the match()
+function is called in a call to pcre_exec(). This facility makes it possible to
+limit the amount of recursion and backtracking, though not in a directly
+obvious way, because the match() function is used in a number of different
+circumstances. The count starts from zero for each position in the subject
+string (for non-anchored patterns). The default limit is, for compatibility, a
+large number, namely 10 000 000. You can change this in two ways:
+
+(a) When configuring PCRE before making, you can use --with-match-limit=n
+ to set a default value for the compiled library.
+
+(b) For each call to pcre_exec(), you can pass a pcre_extra block in which
+ a different value is set. See 45 below.
+
+If the limit is exceeded, pcre_exec() returns PCRE_ERROR_MATCHLIMIT.
+
+43. Added a new function pcre_config(int, void *) to enable run-time extraction
+of things that can be changed at compile time. The first argument specifies
+what is wanted and the second points to where the information is to be placed.
+The current list of available information is:
+
+ PCRE_CONFIG_UTF8
+
+The output is an integer that is set to one if UTF-8 support is available;
+otherwise it is set to zero.
+
+ PCRE_CONFIG_NEWLINE
+
+The output is an integer that it set to the value of the code that is used for
+newline. It is either LF (10) or CR (13).
+
+ PCRE_CONFIG_LINK_SIZE
+
+The output is an integer that contains the number of bytes used for internal
+linkage in compiled expressions. The value is 2, 3, or 4. See item 32 above.
+
+ PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
+
+The output is an integer that contains the threshold above which the POSIX
+interface uses malloc() for output vectors. See item 31 above.
+
+ PCRE_CONFIG_MATCH_LIMIT
+
+The output is an unsigned integer that contains the default limit of the number
+of match() calls in a pcre_exec() execution. See 42 above.
+
+44. pcretest has been upgraded by the addition of the -C option. This causes it
+to extract all the available output from the new pcre_config() function, and to
+output it. The program then exits immediately.
+
+45. A need has arisen to pass over additional data with calls to pcre_exec() in
+order to support additional features. One way would have been to define
+pcre_exec2() (for example) with extra arguments, but this would not have been
+extensible, and would also have required all calls to the original function to
+be mapped to the new one. Instead, I have chosen to extend the mechanism that
+is used for passing in "extra" data from pcre_study().
+
+The pcre_extra structure is now exposed and defined in pcre.h. It currently
+contains the following fields:
+
+ flags a bitmap indicating which of the following fields are set
+ study_data opaque data from pcre_study()
+ match_limit a way of specifying a limit on match() calls for a specific
+ call to pcre_exec()
+ callout_data data for callouts (see 49 below)
+
+The flag bits are also defined in pcre.h, and are
+
+ PCRE_EXTRA_STUDY_DATA
+ PCRE_EXTRA_MATCH_LIMIT
+ PCRE_EXTRA_CALLOUT_DATA
+
+The pcre_study() function now returns one of these new pcre_extra blocks, with
+the actual study data pointed to by the study_data field, and the
+PCRE_EXTRA_STUDY_DATA flag set. This can be passed directly to pcre_exec() as
+before. That is, this change is entirely upwards-compatible and requires no
+change to existing code.
+
+If you want to pass in additional data to pcre_exec(), you can either place it
+in a pcre_extra block provided by pcre_study(), or create your own pcre_extra
+block.
+
+46. pcretest has been extended to test the PCRE_EXTRA_MATCH_LIMIT feature. If a
+data string contains the escape sequence \M, pcretest calls pcre_exec() several
+times with different match limits, until it finds the minimum value needed for
+pcre_exec() to complete. The value is then output. This can be instructive; for
+most simple matches the number is quite small, but for pathological cases it
+gets very large very quickly.
+
+47. There's a new option for pcre_fullinfo() called PCRE_INFO_STUDYSIZE. It
+returns the size of the data block pointed to by the study_data field in a
+pcre_extra block, that is, the value that was passed as the argument to
+pcre_malloc() when PCRE was getting memory in which to place the information
+created by pcre_study(). The fourth argument should point to a size_t variable.
+pcretest has been extended so that this information is shown after a successful
+pcre_study() call when information about the compiled regex is being displayed.
+
+48. Cosmetic change to Makefile: there's no need to have / after $(DESTDIR)
+because what follows is always an absolute path. (Later: it turns out that this
+is more than cosmetic for MinGW, because it doesn't like empty path
+components.)
+
+49. Some changes have been made to the callout feature (see 28 above):
+
+(i) A callout function now has three choices for what it returns:
+
+ 0 => success, carry on matching
+ > 0 => failure at this point, but backtrack if possible
+ < 0 => serious error, return this value from pcre_exec()
+
+ Negative values should normally be chosen from the set of PCRE_ERROR_xxx
+ values. In particular, returning PCRE_ERROR_NOMATCH forces a standard
+ "match failed" error. The error number PCRE_ERROR_CALLOUT is reserved for
+ use by callout functions. It will never be used by PCRE itself.
+
+(ii) The pcre_extra structure (see 45 above) has a void * field called
+ callout_data, with corresponding flag bit PCRE_EXTRA_CALLOUT_DATA. The
+ pcre_callout_block structure has a field of the same name. The contents of
+ the field passed in the pcre_extra structure are passed to the callout
+ function in the corresponding field in the callout block. This makes it
+ easier to use the same callout-containing regex from multiple threads. For
+ testing, the pcretest program has a new data escape
+
+ \C*n pass the number n (may be negative) as callout_data
+
+ If the callout function in pcretest receives a non-zero value as
+ callout_data, it returns that value.
+
+50. Makefile wasn't handling CFLAGS properly when compiling dftables. Also,
+there were some redundant $(CFLAGS) in commands that are now specified as
+$(LINK), which already includes $(CFLAGS).
+
+51. Extensions to UTF-8 support are listed below. These all apply when (a) PCRE
+has been compiled with UTF-8 support *and* pcre_compile() has been compiled
+with the PCRE_UTF8 flag. Patterns that are compiled without that flag assume
+one-byte characters throughout. Note that case-insensitive matching applies
+only to characters whose values are less than 256. PCRE doesn't support the
+notion of cases for higher-valued characters.
+
+(i) A character class whose characters are all within 0-255 is handled as
+ a bit map, and the map is inverted for negative classes. Previously, a
+ character > 255 always failed to match such a class; however it should
+ match if the class was a negative one (e.g. [^ab]). This has been fixed.
+
+(ii) A negated character class with a single character < 255 is coded as
+ "not this character" (OP_NOT). This wasn't working properly when the test
+ character was multibyte, either singly or repeated.
+
+(iii) Repeats of multibyte characters are now handled correctly in UTF-8
+ mode, for example: \x{100}{2,3}.
+
+(iv) The character escapes \b, \B, \d, \D, \s, \S, \w, and \W (either
+ singly or repeated) now correctly test multibyte characters. However,
+ PCRE doesn't recognize any characters with values greater than 255 as
+ digits, spaces, or word characters. Such characters always match \D, \S,
+ and \W, and never match \d, \s, or \w.
+
+(v) Classes may now contain characters and character ranges with values
+ greater than 255. For example: [ab\x{100}-\x{400}].
+
+(vi) pcregrep now has a --utf-8 option (synonym -u) which makes it call
+ PCRE in UTF-8 mode.
+
+52. The info request value PCRE_INFO_FIRSTCHAR has been renamed
+PCRE_INFO_FIRSTBYTE because it is a byte value. However, the old name is
+retained for backwards compatibility. (Note that LASTLITERAL is also a byte
+value.)
+
+53. The single man page has become too large. I have therefore split it up into
+a number of separate man pages. These also give rise to individual HTML pages;
+these are now put in a separate directory, and there is an index.html page that
+lists them all. Some hyperlinking between the pages has been installed.
+
+54. Added convenience functions for handling named capturing parentheses.
+
+55. Unknown escapes inside character classes (e.g. [\M]) and escapes that
+aren't interpreted therein (e.g. [\C]) are literals in Perl. This is now also
+true in PCRE, except when the PCRE_EXTENDED option is set, in which case they
+are faulted.
+
+56. Introduced HOST_CC and HOST_CFLAGS which can be set in the environment when
+calling configure. These values are used when compiling the dftables.c program
+which is run to generate the source of the default character tables. They
+default to the values of CC and CFLAGS. If you are cross-compiling PCRE,
+you will need to set these values.
+
+57. Updated the building process for Windows DLL, as provided by Fred Cox.
+
+
+Version 3.9 02-Jan-02
+---------------------
+
+1. A bit of extraneous text had somehow crept into the pcregrep documentation.
+
+2. If --disable-static was given, the building process failed when trying to
+build pcretest and pcregrep. (For some reason it was using libtool to compile
+them, which is not right, as they aren't part of the library.)
+
+
+Version 3.8 18-Dec-01
+---------------------
+
+1. The experimental UTF-8 code was completely screwed up. It was packing the
+bytes in the wrong order. How dumb can you get?
+
+
+Version 3.7 29-Oct-01
+---------------------
+
+1. In updating pcretest to check change 1 of version 3.6, I screwed up.
+This caused pcretest, when used on the test data, to segfault. Unfortunately,
+this didn't happen under Solaris 8, where I normally test things.
+
+2. The Makefile had to be changed to make it work on BSD systems, where 'make'
+doesn't seem to recognize that ./xxx and xxx are the same file. (This entry
+isn't in ChangeLog distributed with 3.7 because I forgot when I hastily made
+this fix an hour or so after the initial 3.7 release.)
+
+
+Version 3.6 23-Oct-01
+---------------------
+
+1. Crashed with /(sens|respons)e and \1ibility/ and "sense and sensibility" if
+offsets passed as NULL with zero offset count.
+
+2. The config.guess and config.sub files had not been updated when I moved to
+the latest autoconf.
+
+
+Version 3.5 15-Aug-01
+---------------------
+
+1. Added some missing #if !defined NOPOSIX conditionals in pcretest.c that
+had been forgotten.
+
+2. By using declared but undefined structures, we can avoid using "void"
+definitions in pcre.h while keeping the internal definitions of the structures
+private.
+
+3. The distribution is now built using autoconf 2.50 and libtool 1.4. From a
+user point of view, this means that both static and shared libraries are built
+by default, but this can be individually controlled. More of the work of
+handling this static/shared cases is now inside libtool instead of PCRE's make
+file.
+
+4. The pcretest utility is now installed along with pcregrep because it is
+useful for users (to test regexs) and by doing this, it automatically gets
+relinked by libtool. The documentation has been turned into a man page, so
+there are now .1, .txt, and .html versions in /doc.
+
+5. Upgrades to pcregrep:
+ (i) Added long-form option names like gnu grep.
+ (ii) Added --help to list all options with an explanatory phrase.
+ (iii) Added -r, --recursive to recurse into sub-directories.
+ (iv) Added -f, --file to read patterns from a file.
+
+6. pcre_exec() was referring to its "code" argument before testing that
+argument for NULL (and giving an error if it was NULL).
+
+7. Upgraded Makefile.in to allow for compiling in a different directory from
+the source directory.
+
+8. Tiny buglet in pcretest: when pcre_fullinfo() was called to retrieve the
+options bits, the pointer it was passed was to an int instead of to an unsigned
+long int. This mattered only on 64-bit systems.
+
+9. Fixed typo (3.4/1) in pcre.h again. Sigh. I had changed pcre.h (which is
+generated) instead of pcre.in, which it its source. Also made the same change
+in several of the .c files.
+
+10. A new release of gcc defines printf() as a macro, which broke pcretest
+because it had an ifdef in the middle of a string argument for printf(). Fixed
+by using separate calls to printf().
+
+11. Added --enable-newline-is-cr and --enable-newline-is-lf to the configure
+script, to force use of CR or LF instead of \n in the source. On non-Unix
+systems, the value can be set in config.h.
+
+12. The limit of 200 on non-capturing parentheses is a _nesting_ limit, not an
+absolute limit. Changed the text of the error message to make this clear, and
+likewise updated the man page.
+
+13. The limit of 99 on the number of capturing subpatterns has been removed.
+The new limit is 65535, which I hope will not be a "real" limit.
+
+
+Version 3.4 22-Aug-00
+---------------------
+
+1. Fixed typo in pcre.h: unsigned const char * changed to const unsigned char *.
+
+2. Diagnose condition (?(0) as an error instead of crashing on matching.
+
+
+Version 3.3 01-Aug-00
+---------------------
+
+1. If an octal character was given, but the value was greater than \377, it
+was not getting masked to the least significant bits, as documented. This could
+lead to crashes in some systems.
+
+2. Perl 5.6 (if not earlier versions) accepts classes like [a-\d] and treats
+the hyphen as a literal. PCRE used to give an error; it now behaves like Perl.
+
+3. Added the functions pcre_free_substring() and pcre_free_substring_list().
+These just pass their arguments on to (pcre_free)(), but they are provided
+because some uses of PCRE bind it to non-C systems that can call its functions,
+but cannot call free() or pcre_free() directly.
+
+4. Add "make test" as a synonym for "make check". Corrected some comments in
+the Makefile.
+
+5. Add $(DESTDIR)/ in front of all the paths in the "install" target in the
+Makefile.
+
+6. Changed the name of pgrep to pcregrep, because Solaris has introduced a
+command called pgrep for grepping around the active processes.
+
+7. Added the beginnings of support for UTF-8 character strings.
+
+8. Arranged for the Makefile to pass over the settings of CC, CFLAGS, and
+RANLIB to ./ltconfig so that they are used by libtool. I think these are all
+the relevant ones. (AR is not passed because ./ltconfig does its own figuring
+out for the ar command.)
+
+
+Version 3.2 12-May-00
+---------------------
+
+This is purely a bug fixing release.
+
+1. If the pattern /((Z)+|A)*/ was matched agained ZABCDEFG it matched Z instead
+of ZA. This was just one example of several cases that could provoke this bug,
+which was introduced by change 9 of version 2.00. The code for breaking
+infinite loops after an iteration that matches an empty string was't working
+correctly.
+
+2. The pcretest program was not imitating Perl correctly for the pattern /a*/g
+when matched against abbab (for example). After matching an empty string, it
+wasn't forcing anchoring when setting PCRE_NOTEMPTY for the next attempt; this
+caused it to match further down the string than it should.
+
+3. The code contained an inclusion of sys/types.h. It isn't clear why this
+was there because it doesn't seem to be needed, and it causes trouble on some
+systems, as it is not a Standard C header. It has been removed.
+
+4. Made 4 silly changes to the source to avoid stupid compiler warnings that
+were reported on the Macintosh. The changes were from
+
+ while ((c = *(++ptr)) != 0 && c != '\n');
+to
+ while ((c = *(++ptr)) != 0 && c != '\n') ;
+
+Totally extraordinary, but if that's what it takes...
+
+5. PCRE is being used in one environment where neither memmove() nor bcopy() is
+available. Added HAVE_BCOPY and an autoconf test for it; if neither
+HAVE_MEMMOVE nor HAVE_BCOPY is set, use a built-in emulation function which
+assumes the way PCRE uses memmove() (always moving upwards).
+
+6. PCRE is being used in one environment where strchr() is not available. There
+was only one use in pcre.c, and writing it out to avoid strchr() probably gives
+faster code anyway.
+
+
+Version 3.1 09-Feb-00
+---------------------
+
+The only change in this release is the fixing of some bugs in Makefile.in for
+the "install" target:
+
+(1) It was failing to install pcreposix.h.
+
+(2) It was overwriting the pcre.3 man page with the pcreposix.3 man page.
+
+
+Version 3.0 01-Feb-00
+---------------------
+
+1. Add support for the /+ modifier to perltest (to output $` like it does in
+pcretest).
+
+2. Add support for the /g modifier to perltest.
+
+3. Fix pcretest so that it behaves even more like Perl for /g when the pattern
+matches null strings.
+
+4. Fix perltest so that it doesn't do unwanted things when fed an empty
+pattern. Perl treats empty patterns specially - it reuses the most recent
+pattern, which is not what we want. Replace // by /(?#)/ in order to avoid this
+effect.
+
+5. The POSIX interface was broken in that it was just handing over the POSIX
+captured string vector to pcre_exec(), but (since release 2.00) PCRE has
+required a bigger vector, with some working space on the end. This means that
+the POSIX wrapper now has to get and free some memory, and copy the results.
+
+6. Added some simple autoconf support, placing the test data and the
+documentation in separate directories, re-organizing some of the
+information files, and making it build pcre-config (a GNU standard). Also added
+libtool support for building PCRE as a shared library, which is now the
+default.
+
+7. Got rid of the leading zero in the definition of PCRE_MINOR because 08 and
+09 are not valid octal constants. Single digits will be used for minor values
+less than 10.
+
+8. Defined REG_EXTENDED and REG_NOSUB as zero in the POSIX header, so that
+existing programs that set these in the POSIX interface can use PCRE without
+modification.
+
+9. Added a new function, pcre_fullinfo() with an extensible interface. It can
+return all that pcre_info() returns, plus additional data. The pcre_info()
+function is retained for compatibility, but is considered to be obsolete.
+
+10. Added experimental recursion feature (?R) to handle one common case that
+Perl 5.6 will be able to do with (?p{...}).
+
+11. Added support for POSIX character classes like [:alpha:], which Perl is
+adopting.
+
+
+Version 2.08 31-Aug-99
+----------------------
+
+1. When startoffset was not zero and the pattern began with ".*", PCRE was not
+trying to match at the startoffset position, but instead was moving forward to
+the next newline as if a previous match had failed.
+
+2. pcretest was not making use of PCRE_NOTEMPTY when repeating for /g and /G,
+and could get into a loop if a null string was matched other than at the start
+of the subject.
+
+3. Added definitions of PCRE_MAJOR and PCRE_MINOR to pcre.h so the version can
+be distinguished at compile time, and for completeness also added PCRE_DATE.
+
+5. Added Paul Sokolovsky's minor changes to make it easy to compile a Win32 DLL
+in GnuWin32 environments.
+
+
+Version 2.07 29-Jul-99
+----------------------
+
+1. The documentation is now supplied in plain text form and HTML as well as in
+the form of man page sources.
+
+2. C++ compilers don't like assigning (void *) values to other pointer types.
+In particular this affects malloc(). Although there is no problem in Standard
+C, I've put in casts to keep C++ compilers happy.
+
+3. Typo on pcretest.c; a cast of (unsigned char *) in the POSIX regexec() call
+should be (const char *).
+
+4. If NOPOSIX is defined, pcretest.c compiles without POSIX support. This may
+be useful for non-Unix systems who don't want to bother with the POSIX stuff.
+However, I haven't made this a standard facility. The documentation doesn't
+mention it, and the Makefile doesn't support it.
+
+5. The Makefile now contains an "install" target, with editable destinations at
+the top of the file. The pcretest program is not installed.
+
+6. pgrep -V now gives the PCRE version number and date.
+
+7. Fixed bug: a zero repetition after a literal string (e.g. /abcde{0}/) was
+causing the entire string to be ignored, instead of just the last character.
+
+8. If a pattern like /"([^\\"]+|\\.)*"/ is applied in the normal way to a
+non-matching string, it can take a very, very long time, even for strings of
+quite modest length, because of the nested recursion. PCRE now does better in
+some of these cases. It does this by remembering the last required literal
+character in the pattern, and pre-searching the subject to ensure it is present
+before running the real match. In other words, it applies a heuristic to detect
+some types of certain failure quickly, and in the above example, if presented
+with a string that has no trailing " it gives "no match" very quickly.
+
+9. A new runtime option PCRE_NOTEMPTY causes null string matches to be ignored;
+other alternatives are tried instead.
+
+
+Version 2.06 09-Jun-99
+----------------------
+
+1. Change pcretest's output for amount of store used to show just the code
+space, because the remainder (the data block) varies in size between 32-bit and
+64-bit systems.
+
+2. Added an extra argument to pcre_exec() to supply an offset in the subject to
+start matching at. This allows lookbehinds to work when searching for multiple
+occurrences in a string.
+
+3. Added additional options to pcretest for testing multiple occurrences:
+
+ /+ outputs the rest of the string that follows a match
+ /g loops for multiple occurrences, using the new startoffset argument
+ /G loops for multiple occurrences by passing an incremented pointer
+
+4. PCRE wasn't doing the "first character" optimization for patterns starting
+with \b or \B, though it was doing it for other lookbehind assertions. That is,
+it wasn't noticing that a match for a pattern such as /\bxyz/ has to start with
+the letter 'x'. On long subject strings, this gives a significant speed-up.
+
+
+Version 2.05 21-Apr-99
+----------------------
+
+1. Changed the type of magic_number from int to long int so that it works
+properly on 16-bit systems.
+
+2. Fixed a bug which caused patterns starting with .* not to work correctly
+when the subject string contained newline characters. PCRE was assuming
+anchoring for such patterns in all cases, which is not correct because .* will
+not pass a newline unless PCRE_DOTALL is set. It now assumes anchoring only if
+DOTALL is set at top level; otherwise it knows that patterns starting with .*
+must be retried after every newline in the subject.
+
+
+Version 2.04 18-Feb-99
+----------------------
+
+1. For parenthesized subpatterns with repeats whose minimum was zero, the
+computation of the store needed to hold the pattern was incorrect (too large).
+If such patterns were nested a few deep, this could multiply and become a real
+problem.
+
+2. Added /M option to pcretest to show the memory requirement of a specific
+pattern. Made -m a synonym of -s (which does this globally) for compatibility.
+
+3. Subpatterns of the form (regex){n,m} (i.e. limited maximum) were being
+compiled in such a way that the backtracking after subsequent failure was
+pessimal. Something like (a){0,3} was compiled as (a)?(a)?(a)? instead of
+((a)((a)(a)?)?)? with disastrous performance if the maximum was of any size.
+
+
+Version 2.03 02-Feb-99
+----------------------
+
+1. Fixed typo and small mistake in man page.
+
+2. Added 4th condition (GPL supersedes if conflict) and created separate
+LICENCE file containing the conditions.
+
+3. Updated pcretest so that patterns such as /abc\/def/ work like they do in
+Perl, that is the internal \ allows the delimiter to be included in the
+pattern. Locked out the use of \ as a delimiter. If \ immediately follows
+the final delimiter, add \ to the end of the pattern (to test the error).
+
+4. Added the convenience functions for extracting substrings after a successful
+match. Updated pcretest to make it able to test these functions.
+
+
+Version 2.02 14-Jan-99
+----------------------
+
+1. Initialized the working variables associated with each extraction so that
+their saving and restoring doesn't refer to uninitialized store.
+
+2. Put dummy code into study.c in order to trick the optimizer of the IBM C
+compiler for OS/2 into generating correct code. Apparently IBM isn't going to
+fix the problem.
+
+3. Pcretest: the timing code wasn't using LOOPREPEAT for timing execution
+calls, and wasn't printing the correct value for compiling calls. Increased the
+default value of LOOPREPEAT, and the number of significant figures in the
+times.
+
+4. Changed "/bin/rm" in the Makefile to "-rm" so it works on Windows NT.
+
+5. Renamed "deftables" as "dftables" to get it down to 8 characters, to avoid
+a building problem on Windows NT with a FAT file system.
+
+
+Version 2.01 21-Oct-98
+----------------------
+
+1. Changed the API for pcre_compile() to allow for the provision of a pointer
+to character tables built by pcre_maketables() in the current locale. If NULL
+is passed, the default tables are used.
+
+
+Version 2.00 24-Sep-98
+----------------------
+
+1. Since the (>?) facility is in Perl 5.005, don't require PCRE_EXTRA to enable
+it any more.
+
+2. Allow quantification of (?>) groups, and make it work correctly.
+
+3. The first character computation wasn't working for (?>) groups.
+
+4. Correct the implementation of \Z (it is permitted to match on the \n at the
+end of the subject) and add 5.005's \z, which really does match only at the
+very end of the subject.
+
+5. Remove the \X "cut" facility; Perl doesn't have it, and (?> is neater.
+
+6. Remove the ability to specify CASELESS, MULTILINE, DOTALL, and
+DOLLAR_END_ONLY at runtime, to make it possible to implement the Perl 5.005
+localized options. All options to pcre_study() were also removed.
+
+7. Add other new features from 5.005:
+
+ $(?<= positive lookbehind
+ $(?a*))*/ (a PCRE_EXTRA facility).
+
+
+Version 1.00 18-Nov-97
+----------------------
+
+1. Added compile-time macros to support systems such as SunOS4 which don't have
+memmove() or strerror() but have other things that can be used instead.
+
+2. Arranged that "make clean" removes the executables.
+
+
+Version 0.99 27-Oct-97
+----------------------
+
+1. Fixed bug in code for optimizing classes with only one character. It was
+initializing a 32-byte map regardless, which could cause it to run off the end
+of the memory it had got.
+
+2. Added, conditional on PCRE_EXTRA, the proposed (?>REGEX) construction.
+
+
+Version 0.98 22-Oct-97
+----------------------
+
+1. Fixed bug in code for handling temporary memory usage when there are more
+back references than supplied space in the ovector. This could cause segfaults.
+
+
+Version 0.97 21-Oct-97
+----------------------
+
+1. Added the \X "cut" facility, conditional on PCRE_EXTRA.
+
+2. Optimized negated single characters not to use a bit map.
+
+3. Brought error texts together as macro definitions; clarified some of them;
+fixed one that was wrong - it said "range out of order" when it meant "invalid
+escape sequence".
+
+4. Changed some char * arguments to const char *.
+
+5. Added PCRE_NOTBOL and PCRE_NOTEOL (from POSIX).
+
+6. Added the POSIX-style API wrapper in pcreposix.a and testing facilities in
+pcretest.
+
+
+Version 0.96 16-Oct-97
+----------------------
+
+1. Added a simple "pgrep" utility to the distribution.
+
+2. Fixed an incompatibility with Perl: "{" is now treated as a normal character
+unless it appears in one of the precise forms "{ddd}", "{ddd,}", or "{ddd,ddd}"
+where "ddd" means "one or more decimal digits".
+
+3. Fixed serious bug. If a pattern had a back reference, but the call to
+pcre_exec() didn't supply a large enough ovector to record the related
+identifying subpattern, the match always failed. PCRE now remembers the number
+of the largest back reference, and gets some temporary memory in which to save
+the offsets during matching if necessary, in order to ensure that
+backreferences always work.
+
+4. Increased the compatibility with Perl in a number of ways:
+
+ (a) . no longer matches \n by default; an option PCRE_DOTALL is provided
+ to request this handling. The option can be set at compile or exec time.
+
+ (b) $ matches before a terminating newline by default; an option
+ PCRE_DOLLAR_ENDONLY is provided to override this (but not in multiline
+ mode). The option can be set at compile or exec time.
+
+ (c) The handling of \ followed by a digit other than 0 is now supposed to be
+ the same as Perl's. If the decimal number it represents is less than 10
+ or there aren't that many previous left capturing parentheses, an octal
+ escape is read. Inside a character class, it's always an octal escape,
+ even if it is a single digit.
+
+ (d) An escaped but undefined alphabetic character is taken as a literal,
+ unless PCRE_EXTRA is set. Currently this just reserves the remaining
+ escapes.
+
+ (e) {0} is now permitted. (The previous item is removed from the compiled
+ pattern).
+
+5. Changed all the names of code files so that the basic parts are no longer
+than 10 characters, and abolished the teeny "globals.c" file.
+
+6. Changed the handling of character classes; they are now done with a 32-byte
+bit map always.
+
+7. Added the -d and /D options to pcretest to make it possible to look at the
+internals of compilation without having to recompile pcre.
+
+
+Version 0.95 23-Sep-97
+----------------------
+
+1. Fixed bug in pre-pass concerning escaped "normal" characters such as \x5c or
+\x20 at the start of a run of normal characters. These were being treated as
+real characters, instead of the source characters being re-checked.
+
+
+Version 0.94 18-Sep-97
+----------------------
+
+1. The functions are now thread-safe, with the caveat that the global variables
+containing pointers to malloc() and free() or alternative functions are the
+same for all threads.
+
+2. Get pcre_study() to generate a bitmap of initial characters for non-
+anchored patterns when this is possible, and use it if passed to pcre_exec().
+
+
+Version 0.93 15-Sep-97
+----------------------
+
+1. /(b)|(:+)/ was computing an incorrect first character.
+
+2. Add pcre_study() to the API and the passing of pcre_extra to pcre_exec(),
+but not actually doing anything yet.
+
+3. Treat "-" characters in classes that cannot be part of ranges as literals,
+as Perl does (e.g. [-az] or [az-]).
+
+4. Set the anchored flag if a branch starts with .* or .*? because that tests
+all possible positions.
+
+5. Split up into different modules to avoid including unneeded functions in a
+compiled binary. However, compile and exec are still in one module. The "study"
+function is split off.
+
+6. The character tables are now in a separate module whose source is generated
+by an auxiliary program - but can then be edited by hand if required. There are
+now no calls to isalnum(), isspace(), isdigit(), isxdigit(), tolower() or
+toupper() in the code.
+
+7. Turn the malloc/free funtions variables into pcre_malloc and pcre_free and
+make them global. Abolish the function for setting them, as the caller can now
+set them directly.
+
+
+Version 0.92 11-Sep-97
+----------------------
+
+1. A repeat with a fixed maximum and a minimum of 1 for an ordinary character
+(e.g. /a{1,3}/) was broken (I mis-optimized it).
+
+2. Caseless matching was not working in character classes if the characters in
+the pattern were in upper case.
+
+3. Make ranges like [W-c] work in the same way as Perl for caseless matching.
+
+4. Make PCRE_ANCHORED public and accept as a compile option.
+
+5. Add an options word to pcre_exec() and accept PCRE_ANCHORED and
+PCRE_CASELESS at run time. Add escapes \A and \I to pcretest to cause it to
+pass them.
+
+6. Give an error if bad option bits passed at compile or run time.
+
+7. Add PCRE_MULTILINE at compile and exec time, and (?m) as well. Add \M to
+pcretest to cause it to pass that flag.
+
+8. Add pcre_info(), to get the number of identifying subpatterns, the stored
+options, and the first character, if set.
+
+9. Recognize C+ or C{n,m} where n >= 1 as providing a fixed starting character.
+
+
+Version 0.91 10-Sep-97
+----------------------
+
+1. PCRE was failing to diagnose unlimited repeats of subpatterns that could
+match the empty string as in /(a*)*/. It was looping and ultimately crashing.
+
+2. PCRE was looping on encountering an indefinitely repeated back reference to
+a subpattern that had matched an empty string, e.g. /(a|)\1*/. It now does what
+Perl does - treats the match as successful.
+
+****
diff --git a/pcre/HACKING b/pcre/HACKING
new file mode 100644
index 00000000000..a90ddf87975
--- /dev/null
+++ b/pcre/HACKING
@@ -0,0 +1,473 @@
+Technical Notes about PCRE
+--------------------------
+
+These are very rough technical notes that record potentially useful information
+about PCRE internals. For information about testing PCRE, see the pcretest
+documentation and the comment at the head of the RunTest file.
+
+
+Historical note 1
+-----------------
+
+Many years ago I implemented some regular expression functions to an algorithm
+suggested by Martin Richards. These were not Unix-like in form, and were quite
+restricted in what they could do by comparison with Perl. The interesting part
+about the algorithm was that the amount of space required to hold the compiled
+form of an expression was known in advance. The code to apply an expression did
+not operate by backtracking, as the original Henry Spencer code and current
+Perl code does, but instead checked all possibilities simultaneously by keeping
+a list of current states and checking all of them as it advanced through the
+subject string. In the terminology of Jeffrey Friedl's book, it was a "DFA
+algorithm", though it was not a traditional Finite State Machine (FSM). When
+the pattern was all used up, all remaining states were possible matches, and
+the one matching the longest subset of the subject string was chosen. This did
+not necessarily maximize the individual wild portions of the pattern, as is
+expected in Unix and Perl-style regular expressions.
+
+
+Historical note 2
+-----------------
+
+By contrast, the code originally written by Henry Spencer (which was
+subsequently heavily modified for Perl) compiles the expression twice: once in
+a dummy mode in order to find out how much store will be needed, and then for
+real. (The Perl version probably doesn't do this any more; I'm talking about
+the original library.) The execution function operates by backtracking and
+maximizing (or, optionally, minimizing in Perl) the amount of the subject that
+matches individual wild portions of the pattern. This is an "NFA algorithm" in
+Friedl's terminology.
+
+
+OK, here's the real stuff
+-------------------------
+
+For the set of functions that form the "basic" PCRE library (which are
+unrelated to those mentioned above), I tried at first to invent an algorithm
+that used an amount of store bounded by a multiple of the number of characters
+in the pattern, to save on compiling time. However, because of the greater
+complexity in Perl regular expressions, I couldn't do this. In any case, a
+first pass through the pattern is helpful for other reasons.
+
+
+Support for 16-bit and 32-bit data strings
+-------------------------------------------
+
+From release 8.30, PCRE supports 16-bit as well as 8-bit data strings; and from
+release 8.32, PCRE supports 32-bit data strings. The library can be compiled
+in any combination of 8-bit, 16-bit or 32-bit modes, creating different
+libraries. In the description that follows, the word "short" is
+used for a 16-bit data quantity, and the word "unit" is used for a quantity
+that is a byte in 8-bit mode, a short in 16-bit mode and a 32-bit unsigned
+integer in 32-bit mode. However, so as not to over-complicate the text, the
+names of PCRE functions are given in 8-bit form only.
+
+
+Computing the memory requirement: how it was
+--------------------------------------------
+
+Up to and including release 6.7, PCRE worked by running a very degenerate first
+pass to calculate a maximum store size, and then a second pass to do the real
+compile - which might use a bit less than the predicted amount of memory. The
+idea was that this would turn out faster than the Henry Spencer code because
+the first pass is degenerate and the second pass can just store stuff straight
+into the vector, which it knows is big enough.
+
+
+Computing the memory requirement: how it is
+-------------------------------------------
+
+By the time I was working on a potential 6.8 release, the degenerate first pass
+had become very complicated and hard to maintain. Indeed one of the early
+things I did for 6.8 was to fix Yet Another Bug in the memory computation. Then
+I had a flash of inspiration as to how I could run the real compile function in
+a "fake" mode that enables it to compute how much memory it would need, while
+actually only ever using a few hundred bytes of working memory, and without too
+many tests of the mode that might slow it down. So I refactored the compiling
+functions to work this way. This got rid of about 600 lines of source. It
+should make future maintenance and development easier. As this was such a major
+change, I never released 6.8, instead upping the number to 7.0 (other quite
+major changes were also present in the 7.0 release).
+
+A side effect of this work was that the previous limit of 200 on the nesting
+depth of parentheses was removed. However, there is a downside: pcre_compile()
+runs more slowly than before (30% or more, depending on the pattern) because it
+is doing a full analysis of the pattern. My hope was that this would not be a
+big issue, and in the event, nobody has commented on it.
+
+
+Traditional matching function
+-----------------------------
+
+The "traditional", and original, matching function is called pcre_exec(), and
+it implements an NFA algorithm, similar to the original Henry Spencer algorithm
+and the way that Perl works. This is not surprising, since it is intended to be
+as compatible with Perl as possible. This is the function most users of PCRE
+will use most of the time. From release 8.20, if PCRE is compiled with
+just-in-time (JIT) support, and studying a compiled pattern with JIT is
+successful, the JIT code is run instead of the normal pcre_exec() code, but the
+result is the same.
+
+
+Supplementary matching function
+-------------------------------
+
+From PCRE 6.0, there is also a supplementary matching function called
+pcre_dfa_exec(). This implements a DFA matching algorithm that searches
+simultaneously for all possible matches that start at one point in the subject
+string. (Going back to my roots: see Historical Note 1 above.) This function
+intreprets the same compiled pattern data as pcre_exec(); however, not all the
+facilities are available, and those that are do not always work in quite the
+same way. See the user documentation for details.
+
+The algorithm that is used for pcre_dfa_exec() is not a traditional FSM,
+because it may have a number of states active at one time. More work would be
+needed at compile time to produce a traditional FSM where only one state is
+ever active at once. I believe some other regex matchers work this way.
+
+
+Changeable options
+------------------
+
+The /i, /m, or /s options (PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL) may
+change in the middle of patterns. From PCRE 8.13, their processing is handled
+entirely at compile time by generating different opcodes for the different
+settings. The runtime functions do not need to keep track of an options state
+any more.
+
+
+Format of compiled patterns
+---------------------------
+
+The compiled form of a pattern is a vector of units (bytes in 8-bit mode, or
+shorts in 16-bit mode, 32-bit unsigned integers in 32-bit mode), containing
+items of variable length. The first unit in an item contains an opcode, and
+the length of the item is either implicit in the opcode or contained in the
+data that follows it.
+
+In many cases listed below, LINK_SIZE data values are specified for offsets
+within the compiled pattern. LINK_SIZE always specifies a number of bytes. The
+default value for LINK_SIZE is 2, but PCRE can be compiled to use 3-byte or
+4-byte values for these offsets, although this impairs the performance. (3-byte
+LINK_SIZE values are available only in 8-bit mode.) Specifing a LINK_SIZE
+larger than 2 is necessary only when patterns whose compiled length is greater
+than 64K are going to be processed. In this description, we assume the "normal"
+compilation options. Data values that are counts (e.g. for quantifiers) are
+always just two bytes long (one short in 16-bit mode).
+
+Opcodes with no following data
+------------------------------
+
+These items are all just one unit long
+
+ OP_END end of pattern
+ OP_ANY match any one character other than newline
+ OP_ALLANY match any one character, including newline
+ OP_ANYBYTE match any single byte, even in UTF-8 mode
+ OP_SOD match start of data: \A
+ OP_SOM, start of match (subject + offset): \G
+ OP_SET_SOM, set start of match (\K)
+ OP_CIRC ^ (start of data)
+ OP_CIRCM ^ multiline mode (start of data or after newline)
+ OP_NOT_WORD_BOUNDARY \W
+ OP_WORD_BOUNDARY \w
+ OP_NOT_DIGIT \D
+ OP_DIGIT \d
+ OP_NOT_HSPACE \H
+ OP_HSPACE \h
+ OP_NOT_WHITESPACE \S
+ OP_WHITESPACE \s
+ OP_NOT_VSPACE \V
+ OP_VSPACE \v
+ OP_NOT_WORDCHAR \W
+ OP_WORDCHAR \w
+ OP_EODN match end of data or \n at end: \Z
+ OP_EOD match end of data: \z
+ OP_DOLL $ (end of data, or before final newline)
+ OP_DOLLM $ multiline mode (end of data or before newline)
+ OP_EXTUNI match an extended Unicode character
+ OP_ANYNL match any Unicode newline sequence
+
+ OP_ACCEPT ) These are Perl 5.10's "backtracking control
+ OP_COMMIT ) verbs". If OP_ACCEPT is inside capturing
+ OP_FAIL ) parentheses, it may be preceded by one or more
+ OP_PRUNE ) OP_CLOSE, followed by a 2-byte number,
+ OP_SKIP ) indicating which parentheses must be closed.
+
+
+Backtracking control verbs with (optional) data
+-----------------------------------------------
+
+(*THEN) without an argument generates the opcode OP_THEN and no following data.
+OP_MARK is followed by the mark name, preceded by a one-unit length, and
+followed by a binary zero. For (*PRUNE), (*SKIP), and (*THEN) with arguments,
+the opcodes OP_PRUNE_ARG, OP_SKIP_ARG, and OP_THEN_ARG are used, with the name
+following in the same format.
+
+
+Matching literal characters
+---------------------------
+
+The OP_CHAR opcode is followed by a single character that is to be matched
+casefully. For caseless matching, OP_CHARI is used. In UTF-8 or UTF-16 modes,
+the character may be more than one unit long. In UTF-32 mode, characters
+are always exactly one unit long.
+
+
+Repeating single characters
+---------------------------
+
+The common repeats (*, +, ?), when applied to a single character, use the
+following opcodes, which come in caseful and caseless versions:
+
+ Caseful Caseless
+ OP_STAR OP_STARI
+ OP_MINSTAR OP_MINSTARI
+ OP_POSSTAR OP_POSSTARI
+ OP_PLUS OP_PLUSI
+ OP_MINPLUS OP_MINPLUSI
+ OP_POSPLUS OP_POSPLUSI
+ OP_QUERY OP_QUERYI
+ OP_MINQUERY OP_MINQUERYI
+ OP_POSQUERY OP_POSQUERYI
+
+Each opcode is followed by the character that is to be repeated. In ASCII mode,
+these are two-unit items; in UTF-8 or UTF-16 modes, the length is variable; in
+UTF-32 mode these are one-unit items.
+Those with "MIN" in their names are the minimizing versions. Those with "POS"
+in their names are possessive versions. Other repeats make use of these
+opcodes:
+
+ Caseful Caseless
+ OP_UPTO OP_UPTOI
+ OP_MINUPTO OP_MINUPTOI
+ OP_POSUPTO OP_POSUPTOI
+ OP_EXACT OP_EXACTI
+
+Each of these is followed by a two-byte (one short) count (most significant
+byte first in 8-bit mode) and then the repeated character. OP_UPTO matches from
+0 to the given number. A repeat with a non-zero minimum and a fixed maximum is
+coded as an OP_EXACT followed by an OP_UPTO (or OP_MINUPTO or OPT_POSUPTO).
+
+
+Repeating character types
+-------------------------
+
+Repeats of things like \d are done exactly as for single characters, except
+that instead of a character, the opcode for the type is stored in the data
+unit. The opcodes are:
+
+ OP_TYPESTAR
+ OP_TYPEMINSTAR
+ OP_TYPEPOSSTAR
+ OP_TYPEPLUS
+ OP_TYPEMINPLUS
+ OP_TYPEPOSPLUS
+ OP_TYPEQUERY
+ OP_TYPEMINQUERY
+ OP_TYPEPOSQUERY
+ OP_TYPEUPTO
+ OP_TYPEMINUPTO
+ OP_TYPEPOSUPTO
+ OP_TYPEEXACT
+
+
+Match by Unicode property
+-------------------------
+
+OP_PROP and OP_NOTPROP are used for positive and negative matches of a
+character by testing its Unicode property (the \p and \P escape sequences).
+Each is followed by two units that encode the desired property as a type and a
+value.
+
+Repeats of these items use the OP_TYPESTAR etc. set of opcodes, followed by
+three units: OP_PROP or OP_NOTPROP, and then the desired property type and
+value.
+
+
+Character classes
+-----------------
+
+If there is only one character in the class, OP_CHAR or OP_CHARI is used for a
+positive class, and OP_NOT or OP_NOTI for a negative one (that is, for
+something like [^a]).
+
+Another set of 13 repeating opcodes (called OP_NOTSTAR etc.) are used for
+repeated, negated, single-character classes. The normal single-character
+opcodes (OP_STAR, etc.) are used for repeated positive single-character
+classes.
+
+When there is more than one character in a class and all the characters are
+less than 256, OP_CLASS is used for a positive class, and OP_NCLASS for a
+negative one. In either case, the opcode is followed by a 32-byte (16-short)
+bit map containing a 1 bit for every character that is acceptable. The bits are
+counted from the least significant end of each unit. In caseless mode, bits for
+both cases are set.
+
+The reason for having both OP_CLASS and OP_NCLASS is so that, in UTF-8/16/32 mode,
+subject characters with values greater than 255 can be handled correctly. For
+OP_CLASS they do not match, whereas for OP_NCLASS they do.
+
+For classes containing characters with values greater than 255, OP_XCLASS is
+used. It optionally uses a bit map (if any characters lie within it), followed
+by a list of pairs (for a range) and single characters. In caseless mode, both
+cases are explicitly listed. There is a flag character than indicates whether
+it is a positive or a negative class.
+
+
+Back references
+---------------
+
+OP_REF (caseful) or OP_REFI (caseless) is followed by two bytes (one short)
+containing the reference number.
+
+
+Repeating character classes and back references
+-----------------------------------------------
+
+Single-character classes are handled specially (see above). This section
+applies to OP_CLASS and OP_REF[I]. In both cases, the repeat information
+follows the base item. The matching code looks at the following opcode to see
+if it is one of
+
+ OP_CRSTAR
+ OP_CRMINSTAR
+ OP_CRPLUS
+ OP_CRMINPLUS
+ OP_CRQUERY
+ OP_CRMINQUERY
+ OP_CRRANGE
+ OP_CRMINRANGE
+
+All but the last two are just single-unit items. The others are followed by
+four bytes (two shorts) of data, comprising the minimum and maximum repeat
+counts. There are no special possessive opcodes for these repeats; a possessive
+repeat is compiled into an atomic group.
+
+
+Brackets and alternation
+------------------------
+
+A pair of non-capturing (round) brackets is wrapped round each expression at
+compile time, so alternation always happens in the context of brackets.
+
+[Note for North Americans: "bracket" to some English speakers, including
+myself, can be round, square, curly, or pointy. Hence this usage rather than
+"parentheses".]
+
+Non-capturing brackets use the opcode OP_BRA. Originally PCRE was limited to 99
+capturing brackets and it used a different opcode for each one. From release
+3.5, the limit was removed by putting the bracket number into the data for
+higher-numbered brackets. From release 7.0 all capturing brackets are handled
+this way, using the single opcode OP_CBRA.
+
+A bracket opcode is followed by LINK_SIZE bytes which give the offset to the
+next alternative OP_ALT or, if there aren't any branches, to the matching
+OP_KET opcode. Each OP_ALT is followed by LINK_SIZE bytes giving the offset to
+the next one, or to the OP_KET opcode. For capturing brackets, the bracket
+number immediately follows the offset, always as a 2-byte (one short) item.
+
+OP_KET is used for subpatterns that do not repeat indefinitely, and
+OP_KETRMIN and OP_KETRMAX are used for indefinite repetitions, minimally or
+maximally respectively (see below for possessive repetitions). All three are
+followed by LINK_SIZE bytes giving (as a positive number) the offset back to
+the matching bracket opcode.
+
+If a subpattern is quantified such that it is permitted to match zero times, it
+is preceded by one of OP_BRAZERO, OP_BRAMINZERO, or OP_SKIPZERO. These are
+single-unit opcodes that tell the matcher that skipping the following
+subpattern entirely is a valid branch. In the case of the first two, not
+skipping the pattern is also valid (greedy and non-greedy). The third is used
+when a pattern has the quantifier {0,0}. It cannot be entirely discarded,
+because it may be called as a subroutine from elsewhere in the regex.
+
+A subpattern with an indefinite maximum repetition is replicated in the
+compiled data its minimum number of times (or once with OP_BRAZERO if the
+minimum is zero), with the final copy terminating with OP_KETRMIN or OP_KETRMAX
+as appropriate.
+
+A subpattern with a bounded maximum repetition is replicated in a nested
+fashion up to the maximum number of times, with OP_BRAZERO or OP_BRAMINZERO
+before each replication after the minimum, so that, for example, (abc){2,5} is
+compiled as (abc)(abc)((abc)((abc)(abc)?)?)?, except that each bracketed group
+has the same number.
+
+When a repeated subpattern has an unbounded upper limit, it is checked to see
+whether it could match an empty string. If this is the case, the opcode in the
+final replication is changed to OP_SBRA or OP_SCBRA. This tells the matcher
+that it needs to check for matching an empty string when it hits OP_KETRMIN or
+OP_KETRMAX, and if so, to break the loop.
+
+Possessive brackets
+-------------------
+
+When a repeated group (capturing or non-capturing) is marked as possessive by
+the "+" notation, e.g. (abc)++, different opcodes are used. Their names all
+have POS on the end, e.g. OP_BRAPOS instead of OP_BRA and OP_SCPBRPOS instead
+of OP_SCBRA. The end of such a group is marked by OP_KETRPOS. If the minimum
+repetition is zero, the group is preceded by OP_BRAPOSZERO.
+
+
+Assertions
+----------
+
+Forward assertions are just like other subpatterns, but starting with one of
+the opcodes OP_ASSERT or OP_ASSERT_NOT. Backward assertions use the opcodes
+OP_ASSERTBACK and OP_ASSERTBACK_NOT, and the first opcode inside the assertion
+is OP_REVERSE, followed by a two byte (one short) count of the number of
+characters to move back the pointer in the subject string. In ASCII mode, the
+count is a number of units, but in UTF-8/16 mode each character may occupy more
+than one unit; in UTF-32 mode each character occupies exactly one unit.
+A separate count is present in each alternative of a lookbehind
+assertion, allowing them to have different fixed lengths.
+
+
+Once-only (atomic) subpatterns
+------------------------------
+
+These are also just like other subpatterns, but they start with the opcode
+OP_ONCE. The check for matching an empty string in an unbounded repeat is
+handled entirely at runtime, so there is just this one opcode.
+
+
+Conditional subpatterns
+-----------------------
+
+These are like other subpatterns, but they start with the opcode OP_COND, or
+OP_SCOND for one that might match an empty string in an unbounded repeat. If
+the condition is a back reference, this is stored at the start of the
+subpattern using the opcode OP_CREF followed by two bytes (one short)
+containing the reference number. OP_NCREF is used instead if the reference was
+generated by name (so that the runtime code knows to check for duplicate
+names).
+
+If the condition is "in recursion" (coded as "(?(R)"), or "in recursion of
+group x" (coded as "(?(Rx)"), the group number is stored at the start of the
+subpattern using the opcode OP_RREF or OP_NRREF (cf OP_NCREF), and a value of
+zero for "the whole pattern". For a DEFINE condition, just the single unit
+OP_DEF is used (it has no associated data). Otherwise, a conditional subpattern
+always starts with one of the assertions.
+
+
+Recursion
+---------
+
+Recursion either matches the current regex, or some subexpression. The opcode
+OP_RECURSE is followed by an value which is the offset to the starting bracket
+from the start of the whole pattern. From release 6.5, OP_RECURSE is
+automatically wrapped inside OP_ONCE brackets (because otherwise some patterns
+broke it). OP_RECURSE is also used for "subroutine" calls, even though they
+are not strictly a recursion.
+
+
+Callout
+-------
+
+OP_CALLOUT is followed by one unit of data that holds a callout number in the
+range 0 to 254 for manual callouts, or 255 for an automatic callout. In both
+cases there follows a two-byte (one short) value giving the offset in the
+pattern to the start of the following item, and another two-byte (one short)
+item giving the length of the next item.
+
+
+Philip Hazel
+February 2012
diff --git a/pcre/INSTALL b/pcre/INSTALL
new file mode 100644
index 00000000000..007e9396d0a
--- /dev/null
+++ b/pcre/INSTALL
@@ -0,0 +1,370 @@
+Installation Instructions
+*************************
+
+Copyright (C) 1994-1996, 1999-2002, 2004-2013 Free Software Foundation,
+Inc.
+
+ Copying and distribution of this file, with or without modification,
+are permitted in any medium without royalty provided the copyright
+notice and this notice are preserved. This file is offered as-is,
+without warranty of any kind.
+
+Basic Installation
+==================
+
+ Briefly, the shell commands `./configure; make; make install' should
+configure, build, and install this package. The following
+more-detailed instructions are generic; see the `README' file for
+instructions specific to this package. Some packages provide this
+`INSTALL' file but do not implement all of the features documented
+below. The lack of an optional feature in a given package is not
+necessarily a bug. More recommendations for GNU packages can be found
+in *note Makefile Conventions: (standards)Makefile Conventions.
+
+ The `configure' shell script attempts to guess correct values for
+various system-dependent variables used during compilation. It uses
+those values to create a `Makefile' in each directory of the package.
+It may also create one or more `.h' files containing system-dependent
+definitions. Finally, it creates a shell script `config.status' that
+you can run in the future to recreate the current configuration, and a
+file `config.log' containing compiler output (useful mainly for
+debugging `configure').
+
+ It can also use an optional file (typically called `config.cache'
+and enabled with `--cache-file=config.cache' or simply `-C') that saves
+the results of its tests to speed up reconfiguring. Caching is
+disabled by default to prevent problems with accidental use of stale
+cache files.
+
+ If you need to do unusual things to compile the package, please try
+to figure out how `configure' could check whether to do them, and mail
+diffs or instructions to the address given in the `README' so they can
+be considered for the next release. If you are using the cache, and at
+some point `config.cache' contains results you don't want to keep, you
+may remove or edit it.
+
+ The file `configure.ac' (or `configure.in') is used to create
+`configure' by a program called `autoconf'. You need `configure.ac' if
+you want to change it or regenerate `configure' using a newer version
+of `autoconf'.
+
+ The simplest way to compile this package is:
+
+ 1. `cd' to the directory containing the package's source code and type
+ `./configure' to configure the package for your system.
+
+ Running `configure' might take a while. While running, it prints
+ some messages telling which features it is checking for.
+
+ 2. Type `make' to compile the package.
+
+ 3. Optionally, type `make check' to run any self-tests that come with
+ the package, generally using the just-built uninstalled binaries.
+
+ 4. Type `make install' to install the programs and any data files and
+ documentation. When installing into a prefix owned by root, it is
+ recommended that the package be configured and built as a regular
+ user, and only the `make install' phase executed with root
+ privileges.
+
+ 5. Optionally, type `make installcheck' to repeat any self-tests, but
+ this time using the binaries in their final installed location.
+ This target does not install anything. Running this target as a
+ regular user, particularly if the prior `make install' required
+ root privileges, verifies that the installation completed
+ correctly.
+
+ 6. You can remove the program binaries and object files from the
+ source code directory by typing `make clean'. To also remove the
+ files that `configure' created (so you can compile the package for
+ a different kind of computer), type `make distclean'. There is
+ also a `make maintainer-clean' target, but that is intended mainly
+ for the package's developers. If you use it, you may have to get
+ all sorts of other programs in order to regenerate files that came
+ with the distribution.
+
+ 7. Often, you can also type `make uninstall' to remove the installed
+ files again. In practice, not all packages have tested that
+ uninstallation works correctly, even though it is required by the
+ GNU Coding Standards.
+
+ 8. Some packages, particularly those that use Automake, provide `make
+ distcheck', which can by used by developers to test that all other
+ targets like `make install' and `make uninstall' work correctly.
+ This target is generally not run by end users.
+
+Compilers and Options
+=====================
+
+ Some systems require unusual options for compilation or linking that
+the `configure' script does not know about. Run `./configure --help'
+for details on some of the pertinent environment variables.
+
+ You can give `configure' initial values for configuration parameters
+by setting variables in the command line or in the environment. Here
+is an example:
+
+ ./configure CC=c99 CFLAGS=-g LIBS=-lposix
+
+ *Note Defining Variables::, for more details.
+
+Compiling For Multiple Architectures
+====================================
+
+ You can compile the package for more than one kind of computer at the
+same time, by placing the object files for each architecture in their
+own directory. To do this, you can use GNU `make'. `cd' to the
+directory where you want the object files and executables to go and run
+the `configure' script. `configure' automatically checks for the
+source code in the directory that `configure' is in and in `..'. This
+is known as a "VPATH" build.
+
+ With a non-GNU `make', it is safer to compile the package for one
+architecture at a time in the source code directory. After you have
+installed the package for one architecture, use `make distclean' before
+reconfiguring for another architecture.
+
+ On MacOS X 10.5 and later systems, you can create libraries and
+executables that work on multiple system types--known as "fat" or
+"universal" binaries--by specifying multiple `-arch' options to the
+compiler but only a single `-arch' option to the preprocessor. Like
+this:
+
+ ./configure CC="gcc -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
+ CXX="g++ -arch i386 -arch x86_64 -arch ppc -arch ppc64" \
+ CPP="gcc -E" CXXCPP="g++ -E"
+
+ This is not guaranteed to produce working output in all cases, you
+may have to build one architecture at a time and combine the results
+using the `lipo' tool if you have problems.
+
+Installation Names
+==================
+
+ By default, `make install' installs the package's commands under
+`/usr/local/bin', include files under `/usr/local/include', etc. You
+can specify an installation prefix other than `/usr/local' by giving
+`configure' the option `--prefix=PREFIX', where PREFIX must be an
+absolute file name.
+
+ You can specify separate installation prefixes for
+architecture-specific files and architecture-independent files. If you
+pass the option `--exec-prefix=PREFIX' to `configure', the package uses
+PREFIX as the prefix for installing programs and libraries.
+Documentation and other data files still use the regular prefix.
+
+ In addition, if you use an unusual directory layout you can give
+options like `--bindir=DIR' to specify different values for particular
+kinds of files. Run `configure --help' for a list of the directories
+you can set and what kinds of files go in them. In general, the
+default for these options is expressed in terms of `${prefix}', so that
+specifying just `--prefix' will affect all of the other directory
+specifications that were not explicitly provided.
+
+ The most portable way to affect installation locations is to pass the
+correct locations to `configure'; however, many packages provide one or
+both of the following shortcuts of passing variable assignments to the
+`make install' command line to change installation locations without
+having to reconfigure or recompile.
+
+ The first method involves providing an override variable for each
+affected directory. For example, `make install
+prefix=/alternate/directory' will choose an alternate location for all
+directory configuration variables that were expressed in terms of
+`${prefix}'. Any directories that were specified during `configure',
+but not in terms of `${prefix}', must each be overridden at install
+time for the entire installation to be relocated. The approach of
+makefile variable overrides for each directory variable is required by
+the GNU Coding Standards, and ideally causes no recompilation.
+However, some platforms have known limitations with the semantics of
+shared libraries that end up requiring recompilation when using this
+method, particularly noticeable in packages that use GNU Libtool.
+
+ The second method involves providing the `DESTDIR' variable. For
+example, `make install DESTDIR=/alternate/directory' will prepend
+`/alternate/directory' before all installation names. The approach of
+`DESTDIR' overrides is not required by the GNU Coding Standards, and
+does not work on platforms that have drive letters. On the other hand,
+it does better at avoiding recompilation issues, and works well even
+when some directory options were not specified in terms of `${prefix}'
+at `configure' time.
+
+Optional Features
+=================
+
+ If the package supports it, you can cause programs to be installed
+with an extra prefix or suffix on their names by giving `configure' the
+option `--program-prefix=PREFIX' or `--program-suffix=SUFFIX'.
+
+ Some packages pay attention to `--enable-FEATURE' options to
+`configure', where FEATURE indicates an optional part of the package.
+They may also pay attention to `--with-PACKAGE' options, where PACKAGE
+is something like `gnu-as' or `x' (for the X Window System). The
+`README' should mention any `--enable-' and `--with-' options that the
+package recognizes.
+
+ For packages that use the X Window System, `configure' can usually
+find the X include and library files automatically, but if it doesn't,
+you can use the `configure' options `--x-includes=DIR' and
+`--x-libraries=DIR' to specify their locations.
+
+ Some packages offer the ability to configure how verbose the
+execution of `make' will be. For these packages, running `./configure
+--enable-silent-rules' sets the default to minimal output, which can be
+overridden with `make V=1'; while running `./configure
+--disable-silent-rules' sets the default to verbose, which can be
+overridden with `make V=0'.
+
+Particular systems
+==================
+
+ On HP-UX, the default C compiler is not ANSI C compatible. If GNU
+CC is not installed, it is recommended to use the following options in
+order to use an ANSI C compiler:
+
+ ./configure CC="cc -Ae -D_XOPEN_SOURCE=500"
+
+and if that doesn't work, install pre-built binaries of GCC for HP-UX.
+
+ HP-UX `make' updates targets which have the same time stamps as
+their prerequisites, which makes it generally unusable when shipped
+generated files such as `configure' are involved. Use GNU `make'
+instead.
+
+ On OSF/1 a.k.a. Tru64, some versions of the default C compiler cannot
+parse its `' header file. The option `-nodtk' can be used as
+a workaround. If GNU CC is not installed, it is therefore recommended
+to try
+
+ ./configure CC="cc"
+
+and if that doesn't work, try
+
+ ./configure CC="cc -nodtk"
+
+ On Solaris, don't put `/usr/ucb' early in your `PATH'. This
+directory contains several dysfunctional programs; working variants of
+these programs are available in `/usr/bin'. So, if you need `/usr/ucb'
+in your `PATH', put it _after_ `/usr/bin'.
+
+ On Haiku, software installed for all users goes in `/boot/common',
+not `/usr/local'. It is recommended to use the following options:
+
+ ./configure --prefix=/boot/common
+
+Specifying the System Type
+==========================
+
+ There may be some features `configure' cannot figure out
+automatically, but needs to determine by the type of machine the package
+will run on. Usually, assuming the package is built to be run on the
+_same_ architectures, `configure' can figure that out, but if it prints
+a message saying it cannot guess the machine type, give it the
+`--build=TYPE' option. TYPE can either be a short name for the system
+type, such as `sun4', or a canonical name which has the form:
+
+ CPU-COMPANY-SYSTEM
+
+where SYSTEM can have one of these forms:
+
+ OS
+ KERNEL-OS
+
+ See the file `config.sub' for the possible values of each field. If
+`config.sub' isn't included in this package, then this package doesn't
+need to know the machine type.
+
+ If you are _building_ compiler tools for cross-compiling, you should
+use the option `--target=TYPE' to select the type of system they will
+produce code for.
+
+ If you want to _use_ a cross compiler, that generates code for a
+platform different from the build platform, you should specify the
+"host" platform (i.e., that on which the generated programs will
+eventually be run) with `--host=TYPE'.
+
+Sharing Defaults
+================
+
+ If you want to set default values for `configure' scripts to share,
+you can create a site shell script called `config.site' that gives
+default values for variables like `CC', `cache_file', and `prefix'.
+`configure' looks for `PREFIX/share/config.site' if it exists, then
+`PREFIX/etc/config.site' if it exists. Or, you can set the
+`CONFIG_SITE' environment variable to the location of the site script.
+A warning: not all `configure' scripts look for a site script.
+
+Defining Variables
+==================
+
+ Variables not defined in a site shell script can be set in the
+environment passed to `configure'. However, some packages may run
+configure again during the build, and the customized values of these
+variables may be lost. In order to avoid this problem, you should set
+them in the `configure' command line, using `VAR=value'. For example:
+
+ ./configure CC=/usr/local2/bin/gcc
+
+causes the specified `gcc' to be used as the C compiler (unless it is
+overridden in the site shell script).
+
+Unfortunately, this technique does not work for `CONFIG_SHELL' due to
+an Autoconf limitation. Until the limitation is lifted, you can use
+this workaround:
+
+ CONFIG_SHELL=/bin/bash ./configure CONFIG_SHELL=/bin/bash
+
+`configure' Invocation
+======================
+
+ `configure' recognizes the following options to control how it
+operates.
+
+`--help'
+`-h'
+ Print a summary of all of the options to `configure', and exit.
+
+`--help=short'
+`--help=recursive'
+ Print a summary of the options unique to this package's
+ `configure', and exit. The `short' variant lists options used
+ only in the top level, while the `recursive' variant lists options
+ also present in any nested packages.
+
+`--version'
+`-V'
+ Print the version of Autoconf used to generate the `configure'
+ script, and exit.
+
+`--cache-file=FILE'
+ Enable the cache: use and save the results of the tests in FILE,
+ traditionally `config.cache'. FILE defaults to `/dev/null' to
+ disable caching.
+
+`--config-cache'
+`-C'
+ Alias for `--cache-file=config.cache'.
+
+`--quiet'
+`--silent'
+`-q'
+ Do not print messages saying which checks are being made. To
+ suppress all normal output, redirect it to `/dev/null' (any error
+ messages will still be shown).
+
+`--srcdir=DIR'
+ Look for the package's source code in directory DIR. Usually
+ `configure' can determine that directory automatically.
+
+`--prefix=DIR'
+ Use DIR as the installation prefix. *note Installation Names::
+ for more details, including other options available for fine-tuning
+ the installation locations.
+
+`--no-create'
+`-n'
+ Run the configure checks, but stop before creating any output
+ files.
+
+`configure' also accepts some other, not widely useful, options. Run
+`configure --help' for more details.
diff --git a/pcre/LICENCE b/pcre/LICENCE
new file mode 100644
index 00000000000..3aff6a62c00
--- /dev/null
+++ b/pcre/LICENCE
@@ -0,0 +1,92 @@
+PCRE LICENCE
+------------
+
+PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+Release 8 of PCRE is distributed under the terms of the "BSD" licence, as
+specified below. The documentation for PCRE, supplied in the "doc"
+directory, is distributed under the same terms as the software itself.
+
+The basic library functions are written in C and are freestanding. Also
+included in the distribution is a set of C++ wrapper functions, and a
+just-in-time compiler that can be used to optimize pattern matching. These
+are both optional features that can be omitted when the library is built.
+
+
+THE BASIC LIBRARY FUNCTIONS
+---------------------------
+
+Written by: Philip Hazel
+Email local part: ph10
+Email domain: cam.ac.uk
+
+University of Cambridge Computing Service,
+Cambridge, England.
+
+Copyright (c) 1997-2013 University of Cambridge
+All rights reserved.
+
+
+PCRE JUST-IN-TIME COMPILATION SUPPORT
+-------------------------------------
+
+Written by: Zoltan Herczeg
+Email local part: hzmester
+Emain domain: freemail.hu
+
+Copyright(c) 2010-2013 Zoltan Herczeg
+All rights reserved.
+
+
+STACK-LESS JUST-IN-TIME COMPILER
+--------------------------------
+
+Written by: Zoltan Herczeg
+Email local part: hzmester
+Emain domain: freemail.hu
+
+Copyright(c) 2009-2013 Zoltan Herczeg
+All rights reserved.
+
+
+THE C++ WRAPPER FUNCTIONS
+-------------------------
+
+Contributed by: Google Inc.
+
+Copyright (c) 2007-2012, Google Inc.
+All rights reserved.
+
+
+THE "BSD" LICENCE
+-----------------
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the name of Google
+ Inc. nor the names of their contributors may be used to endorse or
+ promote products derived from this software without specific prior
+ written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+
+End
diff --git a/pcre/NEWS b/pcre/NEWS
new file mode 100644
index 00000000000..2ff69cbdd78
--- /dev/null
+++ b/pcre/NEWS
@@ -0,0 +1,635 @@
+News about PCRE releases
+------------------------
+
+Release 8.33 28-May-2013
+--------------------------
+
+A number of bugs are fixed, and some performance improvements have been made.
+There are also some new features, of which these are the most important:
+
+. The behaviour of the backtracking verbs has been rationalized and
+ documented in more detail.
+
+. JIT now supports callouts and all of the backtracking verbs.
+
+. Unicode validation has been updated in the light of Unicode Corrigendum #9,
+ which points out that "non characters" are not "characters that may not
+ appear in Unicode strings" but rather "characters that are reserved for
+ internal use and have only local meaning".
+
+. (*LIMIT_MATCH=d) and (*LIMIT_RECURSION=d) have been added so that the
+ creator of a pattern can specify lower (but not higher) limits for the
+ matching process.
+
+. The PCRE_NEVER_UTF option is available to prevent pattern-writers from using
+ the (*UTF) feature, as this could be a security issue.
+
+
+Release 8.32 30-November-2012
+-----------------------------
+
+This release fixes a number of bugs, but also has some new features. These are
+the highlights:
+
+. There is now support for 32-bit character strings and UTF-32. Like the
+ 16-bit support, this is done by compiling a separate 32-bit library.
+
+. \X now matches a Unicode extended grapheme cluster.
+
+. Case-independent matching of Unicode characters that have more than one
+ "other case" now makes all three (or more) characters equivalent. This
+ applies, for example, to Greek Sigma, which has two lowercase versions.
+
+. Unicode character properties are updated to Unicode 6.2.0.
+
+. The EBCDIC support, which had decayed, has had a spring clean.
+
+. A number of JIT optimizations have been added, which give faster JIT
+ execution speed. In addition, a new direct interface to JIT execution is
+ available. This bypasses some of the sanity checks of pcre_exec() to give a
+ noticeable speed-up.
+
+. A number of issues in pcregrep have been fixed, making it more compatible
+ with GNU grep. In particular, --exclude and --include (and variants) apply
+ to all files now, not just those obtained from scanning a directory
+ recursively. In Windows environments, the default action for directories is
+ now "skip" instead of "read" (which provokes an error).
+
+. If the --only-matching (-o) option in pcregrep is specified multiple
+ times, each one causes appropriate output. For example, -o1 -o2 outputs the
+ substrings matched by the 1st and 2nd capturing parentheses. A separating
+ string can be specified by --om-separator (default empty).
+
+. When PCRE is built via Autotools using a version of gcc that has the
+ "visibility" feature, it is used to hide internal library functions that are
+ not part of the public API.
+
+
+Release 8.31 06-July-2012
+-------------------------
+
+This is mainly a bug-fixing release, with a small number of developments:
+
+. The JIT compiler now supports partial matching and the (*MARK) and
+ (*COMMIT) verbs.
+
+. PCRE_INFO_MAXLOOKBEHIND can be used to find the longest lookbehind in a
+ pattern.
+
+. There should be a performance improvement when using the heap instead of the
+ stack for recursion.
+
+. pcregrep can now be linked with libedit as an alternative to libreadline.
+
+. pcregrep now has a --file-list option where the list of files to scan is
+ given as a file.
+
+. pcregrep now recognizes binary files and there are related options.
+
+. The Unicode tables have been updated to 6.1.0.
+
+As always, the full list of changes is in the ChangeLog file.
+
+
+Release 8.30 04-February-2012
+-----------------------------
+
+Release 8.30 introduces a major new feature: support for 16-bit character
+strings, compiled as a separate library. There are a few changes to the
+8-bit library, in addition to some bug fixes.
+
+. The pcre_info() function, which has been obsolete for over 10 years, has
+ been removed.
+
+. When a compiled pattern was saved to a file and later reloaded on a host
+ with different endianness, PCRE used automatically to swap the bytes in some
+ of the data fields. With the advent of the 16-bit library, where more of this
+ swapping is needed, it is no longer done automatically. Instead, the bad
+ endianness is detected and a specific error is given. The user can then call
+ a new function called pcre_pattern_to_host_byte_order() (or an equivalent
+ 16-bit function) to do the swap.
+
+. In UTF-8 mode, the values 0xd800 to 0xdfff are not legal Unicode
+ code points and are now faulted. (They are the so-called "surrogates"
+ that are reserved for coding high values in UTF-16.)
+
+
+Release 8.21 12-Dec-2011
+------------------------
+
+This is almost entirely a bug-fix release. The only new feature is the ability
+to obtain the size of the memory used by the JIT compiler.
+
+
+Release 8.20 21-Oct-2011
+------------------------
+
+The main change in this release is the inclusion of Zoltan Herczeg's
+just-in-time compiler support, which can be accessed by building PCRE with
+--enable-jit. Large performance benefits can be had in many situations. 8.20
+also fixes an unfortunate bug that was introduced in 8.13 as well as tidying up
+a number of infelicities and differences from Perl.
+
+
+Release 8.13 16-Aug-2011
+------------------------
+
+This is mainly a bug-fix release. There has been a lot of internal refactoring.
+The Unicode tables have been updated. The only new feature in the library is
+the passing of *MARK information to callouts. Some additions have been made to
+pcretest to make testing easier and more comprehensive. There is a new option
+for pcregrep to adjust its internal buffer size.
+
+
+Release 8.12 15-Jan-2011
+------------------------
+
+This release fixes some bugs in pcregrep, one of which caused the tests to fail
+on 64-bit big-endian systems. There are no changes to the code of the library.
+
+
+Release 8.11 10-Dec-2010
+------------------------
+
+A number of bugs in the library and in pcregrep have been fixed. As always, see
+ChangeLog for details. The following are the non-bug-fix changes:
+
+. Added --match-limit and --recursion-limit to pcregrep.
+
+. Added an optional parentheses number to the -o and --only-matching options
+ of pcregrep.
+
+. Changed the way PCRE_PARTIAL_HARD affects the matching of $, \z, \Z, \b, and
+ \B.
+
+. Added PCRE_ERROR_SHORTUTF8 to make it possible to distinguish between a
+ bad UTF-8 sequence and one that is incomplete when using PCRE_PARTIAL_HARD.
+
+. Recognize (*NO_START_OPT) at the start of a pattern to set the PCRE_NO_
+ START_OPTIMIZE option, which is now allowed at compile time
+
+
+Release 8.10 25-Jun-2010
+------------------------
+
+There are two major additions: support for (*MARK) and friends, and the option
+PCRE_UCP, which changes the behaviour of \b, \d, \s, and \w (and their
+opposites) so that they make use of Unicode properties. There are also a number
+of lesser new features, and several bugs have been fixed. A new option,
+--line-buffered, has been added to pcregrep, for use when it is connected to
+pipes.
+
+
+Release 8.02 19-Mar-2010
+------------------------
+
+Another bug-fix release.
+
+
+Release 8.01 19-Jan-2010
+------------------------
+
+This is a bug-fix release. Several bugs in the code itself and some bugs and
+infelicities in the build system have been fixed.
+
+
+Release 8.00 19-Oct-09
+----------------------
+
+Bugs have been fixed in the library and in pcregrep. There are also some
+enhancements. Restrictions on patterns used for partial matching have been
+removed, extra information is given for partial matches, the partial matching
+process has been improved, and an option to make a partial match override a
+full match is available. The "study" process has been enhanced by finding a
+lower bound matching length. Groups with duplicate numbers may now have
+duplicated names without the use of PCRE_DUPNAMES. However, they may not have
+different names. The documentation has been revised to reflect these changes.
+The version number has been expanded to 3 digits as it is clear that the rate
+of change is not slowing down.
+
+
+Release 7.9 11-Apr-09
+---------------------
+
+Mostly bugfixes and tidies with just a couple of minor functional additions.
+
+
+Release 7.8 05-Sep-08
+---------------------
+
+More bug fixes, plus a performance improvement in Unicode character property
+lookup.
+
+
+Release 7.7 07-May-08
+---------------------
+
+This is once again mainly a bug-fix release, but there are a couple of new
+features.
+
+
+Release 7.6 28-Jan-08
+---------------------
+
+The main reason for having this release so soon after 7.5 is because it fixes a
+potential buffer overflow problem in pcre_compile() when run in UTF-8 mode. In
+addition, the CMake configuration files have been brought up to date.
+
+
+Release 7.5 10-Jan-08
+---------------------
+
+This is mainly a bug-fix release. However the ability to link pcregrep with
+libz or libbz2 and the ability to link pcretest with libreadline have been
+added. Also the --line-offsets and --file-offsets options were added to
+pcregrep.
+
+
+Release 7.4 21-Sep-07
+---------------------
+
+The only change of specification is the addition of options to control whether
+\R matches any Unicode line ending (the default) or just CR, LF, and CRLF.
+Otherwise, the changes are bug fixes and a refactoring to reduce the number of
+relocations needed in a shared library. There have also been some documentation
+updates, in particular, some more information about using CMake to build PCRE
+has been added to the NON-UNIX-USE file.
+
+
+Release 7.3 28-Aug-07
+---------------------
+
+Most changes are bug fixes. Some that are not:
+
+1. There is some support for Perl 5.10's experimental "backtracking control
+ verbs" such as (*PRUNE).
+
+2. UTF-8 checking is now as per RFC 3629 instead of RFC 2279; this is more
+ restrictive in the strings it accepts.
+
+3. Checking for potential integer overflow has been made more dynamic, and as a
+ consequence there is no longer a hard limit on the size of a subpattern that
+ has a limited repeat count.
+
+4. When CRLF is a valid line-ending sequence, pcre_exec() and pcre_dfa_exec()
+ no longer advance by two characters instead of one when an unanchored match
+ fails at CRLF if there are explicit CR or LF matches within the pattern.
+ This gets rid of some anomalous effects that previously occurred.
+
+5. Some PCRE-specific settings for varying the newline options at the start of
+ a pattern have been added.
+
+
+Release 7.2 19-Jun-07
+---------------------
+
+WARNING: saved patterns that were compiled by earlier versions of PCRE must be
+recompiled for use with 7.2 (necessitated by the addition of \K, \h, \H, \v,
+and \V).
+
+Correction to the notes for 7.1: the note about shared libraries for Windows is
+wrong. Previously, three libraries were built, but each could function
+independently. For example, the pcreposix library also included all the
+functions from the basic pcre library. The change is that the three libraries
+are no longer independent. They are like the Unix libraries. To use the
+pcreposix functions, for example, you need to link with both the pcreposix and
+the basic pcre library.
+
+Some more features from Perl 5.10 have been added:
+
+ (?-n) and (?+n) relative references for recursion and subroutines.
+
+ (?(-n) and (?(+n) relative references as conditions.
+
+ \k{name} and \g{name} are synonyms for \k.
+
+ \K to reset the start of the matched string; for example, (foo)\Kbar
+ matches bar preceded by foo, but only sets bar as the matched string.
+
+ (?| introduces a group where the capturing parentheses in each alternative
+ start from the same number; for example, (?|(abc)|(xyz)) sets capturing
+ parentheses number 1 in both cases.
+
+ \h, \H, \v, \V match horizontal and vertical whitespace, respectively.
+
+
+Release 7.1 24-Apr-07
+---------------------
+
+There is only one new feature in this release: a linebreak setting of
+PCRE_NEWLINE_ANYCRLF. It is a cut-down version of PCRE_NEWLINE_ANY, which
+recognizes only CRLF, CR, and LF as linebreaks.
+
+A few bugs are fixed (see ChangeLog for details), but the major change is a
+complete re-implementation of the build system. This now has full Autotools
+support and so is now "standard" in some sense. It should help with compiling
+PCRE in a wide variety of environments.
+
+NOTE: when building shared libraries for Windows, three dlls are now built,
+called libpcre, libpcreposix, and libpcrecpp. Previously, everything was
+included in a single dll.
+
+Another important change is that the dftables auxiliary program is no longer
+compiled and run at "make" time by default. Instead, a default set of character
+tables (assuming ASCII coding) is used. If you want to use dftables to generate
+the character tables as previously, add --enable-rebuild-chartables to the
+"configure" command. You must do this if you are compiling PCRE to run on a
+system that uses EBCDIC code.
+
+There is a discussion about character tables in the README file. The default is
+not to use dftables so that that there is no problem when cross-compiling.
+
+
+Release 7.0 19-Dec-06
+---------------------
+
+This release has a new major number because there have been some internal
+upheavals to facilitate the addition of new optimizations and other facilities,
+and to make subsequent maintenance and extension easier. Compilation is likely
+to be a bit slower, but there should be no major effect on runtime performance.
+Previously compiled patterns are NOT upwards compatible with this release. If
+you have saved compiled patterns from a previous release, you will have to
+re-compile them. Important changes that are visible to users are:
+
+1. The Unicode property tables have been updated to Unicode 5.0.0, which adds
+ some more scripts.
+
+2. The option PCRE_NEWLINE_ANY causes PCRE to recognize any Unicode newline
+ sequence as a newline.
+
+3. The \R escape matches a single Unicode newline sequence as a single unit.
+
+4. New features that will appear in Perl 5.10 are now in PCRE. These include
+ alternative Perl syntax for named parentheses, and Perl syntax for
+ recursion.
+
+5. The C++ wrapper interface has been extended by the addition of a
+ QuoteMeta function and the ability to allow copy construction and
+ assignment.
+
+For a complete list of changes, see the ChangeLog file.
+
+
+Release 6.7 04-Jul-06
+---------------------
+
+The main additions to this release are the ability to use the same name for
+multiple sets of parentheses, and support for CRLF line endings in both the
+library and pcregrep (and in pcretest for testing).
+
+Thanks to Ian Taylor, the stack usage for many kinds of pattern has been
+significantly reduced for certain subject strings.
+
+
+Release 6.5 01-Feb-06
+---------------------
+
+Important changes in this release:
+
+1. A number of new features have been added to pcregrep.
+
+2. The Unicode property tables have been updated to Unicode 4.1.0, and the
+ supported properties have been extended with script names such as "Arabic",
+ and the derived properties "Any" and "L&". This has necessitated a change to
+ the interal format of compiled patterns. Any saved compiled patterns that
+ use \p or \P must be recompiled.
+
+3. The specification of recursion in patterns has been changed so that all
+ recursive subpatterns are automatically treated as atomic groups. Thus, for
+ example, (?R) is treated as if it were (?>(?R)). This is necessary because
+ otherwise there are situations where recursion does not work.
+
+See the ChangeLog for a complete list of changes, which include a number of bug
+fixes and tidies.
+
+
+Release 6.0 07-Jun-05
+---------------------
+
+The release number has been increased to 6.0 because of the addition of several
+major new pieces of functionality.
+
+A new function, pcre_dfa_exec(), which implements pattern matching using a DFA
+algorithm, has been added. This has a number of advantages for certain cases,
+though it does run more slowly, and lacks the ability to capture substrings. On
+the other hand, it does find all matches, not just the first, and it works
+better for partial matching. The pcrematching man page discusses the
+differences.
+
+The pcretest program has been enhanced so that it can make use of the new
+pcre_dfa_exec() matching function and the extra features it provides.
+
+The distribution now includes a C++ wrapper library. This is built
+automatically if a C++ compiler is found. The pcrecpp man page discusses this
+interface.
+
+The code itself has been re-organized into many more files, one for each
+function, so it no longer requires everything to be linked in when static
+linkage is used. As a consequence, some internal functions have had to have
+their names exposed. These functions all have names starting with _pcre_. They
+are undocumented, and are not intended for use by outside callers.
+
+The pcregrep program has been enhanced with new functionality such as
+multiline-matching and options for output more matching context. See the
+ChangeLog for a complete list of changes to the library and the utility
+programs.
+
+
+Release 5.0 13-Sep-04
+---------------------
+
+The licence under which PCRE is released has been changed to the more
+conventional "BSD" licence.
+
+In the code, some bugs have been fixed, and there are also some major changes
+in this release (which is why I've increased the number to 5.0). Some changes
+are internal rearrangements, and some provide a number of new facilities. The
+new features are:
+
+1. There's an "automatic callout" feature that inserts callouts before every
+ item in the regex, and there's a new callout field that gives the position
+ in the pattern - useful for debugging and tracing.
+
+2. The extra_data structure can now be used to pass in a set of character
+ tables at exec time. This is useful if compiled regex are saved and re-used
+ at a later time when the tables may not be at the same address. If the
+ default internal tables are used, the pointer saved with the compiled
+ pattern is now set to NULL, which means that you don't need to do anything
+ special unless you are using custom tables.
+
+3. It is possible, with some restrictions on the content of the regex, to
+ request "partial" matching. A special return code is given if all of the
+ subject string matched part of the regex. This could be useful for testing
+ an input field as it is being typed.
+
+4. There is now some optional support for Unicode character properties, which
+ means that the patterns items such as \p{Lu} and \X can now be used. Only
+ the general category properties are supported. If PCRE is compiled with this
+ support, an additional 90K data structure is include, which increases the
+ size of the library dramatically.
+
+5. There is support for saving compiled patterns and re-using them later.
+
+6. There is support for running regular expressions that were compiled on a
+ different host with the opposite endianness.
+
+7. The pcretest program has been extended to accommodate the new features.
+
+The main internal rearrangement is that sequences of literal characters are no
+longer handled as strings. Instead, each character is handled on its own. This
+makes some UTF-8 handling easier, and makes the support of partial matching
+possible. Compiled patterns containing long literal strings will be larger as a
+result of this change; I hope that performance will not be much affected.
+
+
+Release 4.5 01-Dec-03
+---------------------
+
+Again mainly a bug-fix and tidying release, with only a couple of new features:
+
+1. It's possible now to compile PCRE so that it does not use recursive
+function calls when matching. Instead it gets memory from the heap. This slows
+things down, but may be necessary on systems with limited stacks.
+
+2. UTF-8 string checking has been tightened to reject overlong sequences and to
+check that a starting offset points to the start of a character. Failure of the
+latter returns a new error code: PCRE_ERROR_BADUTF8_OFFSET.
+
+3. PCRE can now be compiled for systems that use EBCDIC code.
+
+
+Release 4.4 21-Aug-03
+---------------------
+
+This is mainly a bug-fix and tidying release. The only new feature is that PCRE
+checks UTF-8 strings for validity by default. There is an option to suppress
+this, just in case anybody wants that teeny extra bit of performance.
+
+
+Releases 4.1 - 4.3
+------------------
+
+Sorry, I forgot about updating the NEWS file for these releases. Please take a
+look at ChangeLog.
+
+
+Release 4.0 17-Feb-03
+---------------------
+
+There have been a lot of changes for the 4.0 release, adding additional
+functionality and mending bugs. Below is a list of the highlights of the new
+functionality. For full details of these features, please consult the
+documentation. For a complete list of changes, see the ChangeLog file.
+
+1. Support for Perl's \Q...\E escapes.
+
+2. "Possessive quantifiers" ?+, *+, ++, and {,}+ which come from Sun's Java
+package. They provide some syntactic sugar for simple cases of "atomic
+grouping".
+
+3. Support for the \G assertion. It is true when the current matching position
+is at the start point of the match.
+
+4. A new feature that provides some of the functionality that Perl provides
+with (?{...}). The facility is termed a "callout". The way it is done in PCRE
+is for the caller to provide an optional function, by setting pcre_callout to
+its entry point. To get the function called, the regex must include (?C) at
+appropriate points.
+
+5. Support for recursive calls to individual subpatterns. This makes it really
+easy to get totally confused.
+
+6. Support for named subpatterns. The Python syntax (?P...) is used to
+name a group.
+
+7. Several extensions to UTF-8 support; it is now fairly complete. There is an
+option for pcregrep to make it operate in UTF-8 mode.
+
+8. The single man page has been split into a number of separate man pages.
+These also give rise to individual HTML pages which are put in a separate
+directory. There is an index.html page that lists them all. Some hyperlinking
+between the pages has been installed.
+
+
+Release 3.5 15-Aug-01
+---------------------
+
+1. The configuring system has been upgraded to use later versions of autoconf
+and libtool. By default it builds both a shared and a static library if the OS
+supports it. You can use --disable-shared or --disable-static on the configure
+command if you want only one of them.
+
+2. The pcretest utility is now installed along with pcregrep because it is
+useful for users (to test regexs) and by doing this, it automatically gets
+relinked by libtool. The documentation has been turned into a man page, so
+there are now .1, .txt, and .html versions in /doc.
+
+3. Upgrades to pcregrep:
+ (i) Added long-form option names like gnu grep.
+ (ii) Added --help to list all options with an explanatory phrase.
+ (iii) Added -r, --recursive to recurse into sub-directories.
+ (iv) Added -f, --file to read patterns from a file.
+
+4. Added --enable-newline-is-cr and --enable-newline-is-lf to the configure
+script, to force use of CR or LF instead of \n in the source. On non-Unix
+systems, the value can be set in config.h.
+
+5. The limit of 200 on non-capturing parentheses is a _nesting_ limit, not an
+absolute limit. Changed the text of the error message to make this clear, and
+likewise updated the man page.
+
+6. The limit of 99 on the number of capturing subpatterns has been removed.
+The new limit is 65535, which I hope will not be a "real" limit.
+
+
+Release 3.3 01-Aug-00
+---------------------
+
+There is some support for UTF-8 character strings. This is incomplete and
+experimental. The documentation describes what is and what is not implemented.
+Otherwise, this is just a bug-fixing release.
+
+
+Release 3.0 01-Feb-00
+---------------------
+
+1. A "configure" script is now used to configure PCRE for Unix systems. It
+builds a Makefile, a config.h file, and the pcre-config script.
+
+2. PCRE is built as a shared library by default.
+
+3. There is support for POSIX classes such as [:alpha:].
+
+5. There is an experimental recursion feature.
+
+----------------------------------------------------------------------------
+ IMPORTANT FOR THOSE UPGRADING FROM VERSIONS BEFORE 2.00
+
+Please note that there has been a change in the API such that a larger
+ovector is required at matching time, to provide some additional workspace.
+The new man page has details. This change was necessary in order to support
+some of the new functionality in Perl 5.005.
+
+ IMPORTANT FOR THOSE UPGRADING FROM VERSION 2.00
+
+Another (I hope this is the last!) change has been made to the API for the
+pcre_compile() function. An additional argument has been added to make it
+possible to pass over a pointer to character tables built in the current
+locale by pcre_maketables(). To use the default tables, this new argument
+should be passed as NULL.
+
+ IMPORTANT FOR THOSE UPGRADING FROM VERSION 2.05
+
+Yet another (and again I hope this really is the last) change has been made
+to the API for the pcre_exec() function. An additional argument has been
+added to make it possible to start the match other than at the start of the
+subject string. This is important if there are lookbehinds. The new man
+page has the details, but you just want to convert existing programs, all
+you need to do is to stick in a new fifth argument to pcre_exec(), with a
+value of zero. For example, change
+
+ pcre_exec(pattern, extra, subject, length, options, ovec, ovecsize)
+to
+ pcre_exec(pattern, extra, subject, length, 0, options, ovec, ovecsize)
+
+****
diff --git a/pcre/NON-AUTOTOOLS-BUILD b/pcre/NON-AUTOTOOLS-BUILD
new file mode 100644
index 00000000000..74075f0160a
--- /dev/null
+++ b/pcre/NON-AUTOTOOLS-BUILD
@@ -0,0 +1,764 @@
+Building PCRE without using autotools
+-------------------------------------
+
+This document contains the following sections:
+
+ General
+ Generic instructions for the PCRE C library
+ The C++ wrapper functions
+ Building for virtual Pascal
+ Stack size in Windows environments
+ Linking programs in Windows environments
+ Calling conventions in Windows environments
+ Comments about Win32 builds
+ Building PCRE on Windows with CMake
+ Use of relative paths with CMake on Windows
+ Testing with RunTest.bat
+ Building under Windows CE with Visual Studio 200x
+ Building under Windows with BCC5.5
+ Building using Borland C++ Builder 2007 (CB2007) and higher
+ Building PCRE on OpenVMS
+ Building PCRE on Stratus OpenVOS
+ Building PCRE on native z/OS and z/VM
+
+
+GENERAL
+
+I (Philip Hazel) have no experience of Windows or VMS sytems and how their
+libraries work. The items in the PCRE distribution and Makefile that relate to
+anything other than Linux systems are untested by me.
+
+There are some other comments and files (including some documentation in CHM
+format) in the Contrib directory on the FTP site:
+
+ ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/Contrib
+
+The basic PCRE library consists entirely of code written in Standard C, and so
+should compile successfully on any system that has a Standard C compiler and
+library. The C++ wrapper functions are a separate issue (see below).
+
+The PCRE distribution includes a "configure" file for use by the configure/make
+(autotools) build system, as found in many Unix-like environments. The README
+file contains information about the options for "configure".
+
+There is also support for CMake, which some users prefer, especially in Windows
+environments, though it can also be run in Unix-like environments. See the
+section entitled "Building PCRE on Windows with CMake" below.
+
+Versions of config.h and pcre.h are distributed in the PCRE tarballs under the
+names config.h.generic and pcre.h.generic. These are provided for those who
+build PCRE without using "configure" or CMake. If you use "configure" or CMake,
+the .generic versions are not used.
+
+
+GENERIC INSTRUCTIONS FOR THE PCRE C LIBRARY
+
+The following are generic instructions for building the PCRE C library "by
+hand". If you are going to use CMake, this section does not apply to you; you
+can skip ahead to the CMake section.
+
+ (1) Copy or rename the file config.h.generic as config.h, and edit the macro
+ settings that it contains to whatever is appropriate for your environment.
+
+ In particular, you can alter the definition of the NEWLINE macro to
+ specify what character(s) you want to be interpreted as line terminators.
+ In an EBCDIC environment, you MUST change NEWLINE, because its default
+ value is 10, an ASCII LF. The usual EBCDIC newline character is 21 (0x15,
+ NL), though in some cases it may be 37 (0x25).
+
+ When you compile any of the PCRE modules, you must specify -DHAVE_CONFIG_H
+ to your compiler so that config.h is included in the sources.
+
+ An alternative approach is not to edit config.h, but to use -D on the
+ compiler command line to make any changes that you need to the
+ configuration options. In this case -DHAVE_CONFIG_H must not be set.
+
+ NOTE: There have been occasions when the way in which certain parameters
+ in config.h are used has changed between releases. (In the configure/make
+ world, this is handled automatically.) When upgrading to a new release,
+ you are strongly advised to review config.h.generic before re-using what
+ you had previously.
+
+ (2) Copy or rename the file pcre.h.generic as pcre.h.
+
+ (3) EITHER:
+ Copy or rename file pcre_chartables.c.dist as pcre_chartables.c.
+
+ OR:
+ Compile dftables.c as a stand-alone program (using -DHAVE_CONFIG_H if
+ you have set up config.h), and then run it with the single argument
+ "pcre_chartables.c". This generates a set of standard character tables
+ and writes them to that file. The tables are generated using the default
+ C locale for your system. If you want to use a locale that is specified
+ by LC_xxx environment variables, add the -L option to the dftables
+ command. You must use this method if you are building on a system that
+ uses EBCDIC code.
+
+ The tables in pcre_chartables.c are defaults. The caller of PCRE can
+ specify alternative tables at run time.
+
+ (4) Ensure that you have the following header files:
+
+ pcre_internal.h
+ ucp.h
+
+ (5) For an 8-bit library, compile the following source files, setting
+ -DHAVE_CONFIG_H as a compiler option if you have set up config.h with your
+ configuration, or else use other -D settings to change the configuration
+ as required.
+
+ pcre_byte_order.c
+ pcre_chartables.c
+ pcre_compile.c
+ pcre_config.c
+ pcre_dfa_exec.c
+ pcre_exec.c
+ pcre_fullinfo.c
+ pcre_get.c
+ pcre_globals.c
+ pcre_jit_compile.c
+ pcre_maketables.c
+ pcre_newline.c
+ pcre_ord2utf8.c
+ pcre_refcount.c
+ pcre_string_utils.c
+ pcre_study.c
+ pcre_tables.c
+ pcre_ucd.c
+ pcre_valid_utf8.c
+ pcre_version.c
+ pcre_xclass.c
+
+ Make sure that you include -I. in the compiler command (or equivalent for
+ an unusual compiler) so that all included PCRE header files are first
+ sought in the current directory. Otherwise you run the risk of picking up
+ a previously-installed file from somewhere else.
+
+ Note that you must still compile pcre_jit_compile.c, even if you have not
+ defined SUPPORT_JIT in config.h, because when JIT support is not
+ configured, dummy functions are compiled. When JIT support IS configured,
+ pcre_jit_compile.c #includes sources from the sljit subdirectory, where
+ there should be 16 files, all of whose names begin with "sljit".
+
+ (6) Now link all the compiled code into an object library in whichever form
+ your system keeps such libraries. This is the basic PCRE C 8-bit library.
+ If your system has static and shared libraries, you may have to do this
+ once for each type.
+
+ (7) If you want to build a 16-bit library (as well as, or instead of the 8-bit
+ or 32-bit libraries) repeat steps 5-6 with the following files:
+
+ pcre16_byte_order.c
+ pcre16_chartables.c
+ pcre16_compile.c
+ pcre16_config.c
+ pcre16_dfa_exec.c
+ pcre16_exec.c
+ pcre16_fullinfo.c
+ pcre16_get.c
+ pcre16_globals.c
+ pcre16_jit_compile.c
+ pcre16_maketables.c
+ pcre16_newline.c
+ pcre16_ord2utf16.c
+ pcre16_refcount.c
+ pcre16_string_utils.c
+ pcre16_study.c
+ pcre16_tables.c
+ pcre16_ucd.c
+ pcre16_utf16_utils.c
+ pcre16_valid_utf16.c
+ pcre16_version.c
+ pcre16_xclass.c
+
+ (8) If you want to build a 16-bit library (as well as, or instead of the 8-bit
+ or 32-bit libraries) repeat steps 5-6 with the following files:
+
+ pcre32_byte_order.c
+ pcre32_chartables.c
+ pcre32_compile.c
+ pcre32_config.c
+ pcre32_dfa_exec.c
+ pcre32_exec.c
+ pcre32_fullinfo.c
+ pcre32_get.c
+ pcre32_globals.c
+ pcre32_jit_compile.c
+ pcre32_maketables.c
+ pcre32_newline.c
+ pcre32_ord2utf32.c
+ pcre32_refcount.c
+ pcre32_string_utils.c
+ pcre32_study.c
+ pcre32_tables.c
+ pcre32_ucd.c
+ pcre32_utf32_utils.c
+ pcre32_valid_utf32.c
+ pcre32_version.c
+ pcre32_xclass.c
+
+ (9) If you want to build the POSIX wrapper functions (which apply only to the
+ 8-bit library), ensure that you have the pcreposix.h file and then compile
+ pcreposix.c (remembering -DHAVE_CONFIG_H if necessary). Link the result
+ (on its own) as the pcreposix library.
+
+(10) The pcretest program can be linked with any combination of the 8-bit,
+ 16-bit and 32-bit libraries (depending on what you selected in config.h).
+ Compile pcretest.c and pcre_printint.c (again, don't forget
+ -DHAVE_CONFIG_H) and link them together with the appropriate library/ies.
+ If you compiled an 8-bit library, pcretest also needs the pcreposix
+ wrapper library unless you compiled it with -DNOPOSIX.
+
+(11) Run pcretest on the testinput files in the testdata directory, and check
+ that the output matches the corresponding testoutput files. There are
+ comments about what each test does in the section entitled "Testing PCRE"
+ in the README file. If you compiled more than one of the 8-bit, 16-bit and
+ 32-bit libraries, you need to run pcretest with the -16 option to do
+ 16-bit tests and with the -32 option to do 32-bit tests.
+
+ Some tests are relevant only when certain build-time options are selected.
+ For example, test 4 is for UTF-8/UTF-16/UTF-32 support, and will not run
+ if you have built PCRE without it. See the comments at the start of each
+ testinput file. If you have a suitable Unix-like shell, the RunTest script
+ will run the appropriate tests for you. The command "RunTest list" will
+ output a list of all the tests.
+
+ Note that the supplied files are in Unix format, with just LF characters
+ as line terminators. You may need to edit them to change this if your
+ system uses a different convention. If you are using Windows, you probably
+ should use the wintestinput3 file instead of testinput3 (and the
+ corresponding output file). This is a locale test; wintestinput3 sets the
+ locale to "french" rather than "fr_FR", and there some minor output
+ differences.
+
+(12) If you have built PCRE with SUPPORT_JIT, the JIT features will be tested
+ by the testdata files. However, you might also like to build and run
+ the freestanding JIT test program, pcre_jit_test.c.
+
+(13) If you want to use the pcregrep command, compile and link pcregrep.c; it
+ uses only the basic 8-bit PCRE library (it does not need the pcreposix
+ library).
+
+
+THE C++ WRAPPER FUNCTIONS
+
+The PCRE distribution also contains some C++ wrapper functions and tests,
+applicable to the 8-bit library, which were contributed by Google Inc. On a
+system that can use "configure" and "make", the functions are automatically
+built into a library called pcrecpp. It should be straightforward to compile
+the .cc files manually on other systems. The files called xxx_unittest.cc are
+test programs for each of the corresponding xxx.cc files.
+
+
+BUILDING FOR VIRTUAL PASCAL
+
+A script for building PCRE using Borland's C++ compiler for use with VPASCAL
+was contributed by Alexander Tokarev. Stefan Weber updated the script and added
+additional files. The following files in the distribution are for building PCRE
+for use with VP/Borland: makevp_c.txt, makevp_l.txt, makevp.bat, pcregexp.pas.
+
+
+STACK SIZE IN WINDOWS ENVIRONMENTS
+
+The default processor stack size of 1Mb in some Windows environments is too
+small for matching patterns that need much recursion. In particular, test 2 may
+fail because of this. Normally, running out of stack causes a crash, but there
+have been cases where the test program has just died silently. See your linker
+documentation for how to increase stack size if you experience problems. The
+Linux default of 8Mb is a reasonable choice for the stack, though even that can
+be too small for some pattern/subject combinations.
+
+PCRE has a compile configuration option to disable the use of stack for
+recursion so that heap is used instead. However, pattern matching is
+significantly slower when this is done. There is more about stack usage in the
+"pcrestack" documentation.
+
+
+LINKING PROGRAMS IN WINDOWS ENVIRONMENTS
+
+If you want to statically link a program against a PCRE library in the form of
+a non-dll .a file, you must define PCRE_STATIC before including pcre.h or
+pcrecpp.h, otherwise the pcre_malloc() and pcre_free() exported functions will
+be declared __declspec(dllimport), with unwanted results.
+
+
+CALLING CONVENTIONS IN WINDOWS ENVIRONMENTS
+
+It is possible to compile programs to use different calling conventions using
+MSVC. Search the web for "calling conventions" for more information. To make it
+easier to change the calling convention for the exported functions in the
+PCRE library, the macro PCRE_CALL_CONVENTION is present in all the external
+definitions. It can be set externally when compiling (e.g. in CFLAGS). If it is
+not set, it defaults to empty; the default calling convention is then used
+(which is what is wanted most of the time).
+
+
+COMMENTS ABOUT WIN32 BUILDS (see also "BUILDING PCRE ON WINDOWS WITH CMAKE")
+
+There are two ways of building PCRE using the "configure, make, make install"
+paradigm on Windows systems: using MinGW or using Cygwin. These are not at all
+the same thing; they are completely different from each other. There is also
+support for building using CMake, which some users find a more straightforward
+way of building PCRE under Windows.
+
+The MinGW home page (http://www.mingw.org/) says this:
+
+ MinGW: A collection of freely available and freely distributable Windows
+ specific header files and import libraries combined with GNU toolsets that
+ allow one to produce native Windows programs that do not rely on any
+ 3rd-party C runtime DLLs.
+
+The Cygwin home page (http://www.cygwin.com/) says this:
+
+ Cygwin is a Linux-like environment for Windows. It consists of two parts:
+
+ . A DLL (cygwin1.dll) which acts as a Linux API emulation layer providing
+ substantial Linux API functionality
+
+ . A collection of tools which provide Linux look and feel.
+
+ The Cygwin DLL currently works with all recent, commercially released x86 32
+ bit and 64 bit versions of Windows, with the exception of Windows CE.
+
+On both MinGW and Cygwin, PCRE should build correctly using:
+
+ ./configure && make && make install
+
+This should create two libraries called libpcre and libpcreposix, and, if you
+have enabled building the C++ wrapper, a third one called libpcrecpp. These are
+independent libraries: when you link with libpcreposix or libpcrecpp you must
+also link with libpcre, which contains the basic functions. (Some earlier
+releases of PCRE included the basic libpcre functions in libpcreposix. This no
+longer happens.)
+
+A user submitted a special-purpose patch that makes it easy to create
+"pcre.dll" under mingw32 using the "msys" environment. It provides "pcre.dll"
+as a special target. If you use this target, no other files are built, and in
+particular, the pcretest and pcregrep programs are not built. An example of how
+this might be used is:
+
+ ./configure --enable-utf --disable-cpp CFLAGS="-03 -s"; make pcre.dll
+
+Using Cygwin's compiler generates libraries and executables that depend on
+cygwin1.dll. If a library that is generated this way is distributed,
+cygwin1.dll has to be distributed as well. Since cygwin1.dll is under the GPL
+licence, this forces not only PCRE to be under the GPL, but also the entire
+application. A distributor who wants to keep their own code proprietary must
+purchase an appropriate Cygwin licence.
+
+MinGW has no such restrictions. The MinGW compiler generates a library or
+executable that can run standalone on Windows without any third party dll or
+licensing issues.
+
+But there is more complication:
+
+If a Cygwin user uses the -mno-cygwin Cygwin gcc flag, what that really does is
+to tell Cygwin's gcc to use the MinGW gcc. Cygwin's gcc is only acting as a
+front end to MinGW's gcc (if you install Cygwin's gcc, you get both Cygwin's
+gcc and MinGW's gcc). So, a user can:
+
+. Build native binaries by using MinGW or by getting Cygwin and using
+ -mno-cygwin.
+
+. Build binaries that depend on cygwin1.dll by using Cygwin with the normal
+ compiler flags.
+
+The test files that are supplied with PCRE are in UNIX format, with LF
+characters as line terminators. Unless your PCRE library uses a default newline
+option that includes LF as a valid newline, it may be necessary to change the
+line terminators in the test files to get some of the tests to work.
+
+
+BUILDING PCRE ON WINDOWS WITH CMAKE
+
+CMake is an alternative configuration facility that can be used instead of
+"configure". CMake creates project files (make files, solution files, etc.)
+tailored to numerous development environments, including Visual Studio,
+Borland, Msys, MinGW, NMake, and Unix. If possible, use short paths with no
+spaces in the names for your CMake installation and your PCRE source and build
+directories.
+
+The following instructions were contributed by a PCRE user. If they are not
+followed exactly, errors may occur. In the event that errors do occur, it is
+recommended that you delete the CMake cache before attempting to repeat the
+CMake build process. In the CMake GUI, the cache can be deleted by selecting
+"File > Delete Cache".
+
+1. Install the latest CMake version available from http://www.cmake.org/, and
+ ensure that cmake\bin is on your path.
+
+2. Unzip (retaining folder structure) the PCRE source tree into a source
+ directory such as C:\pcre. You should ensure your local date and time
+ is not earlier than the file dates in your source dir if the release is
+ very new.
+
+3. Create a new, empty build directory, preferably a subdirectory of the
+ source dir. For example, C:\pcre\pcre-xx\build.
+
+4. Run cmake-gui from the Shell envirornment of your build tool, for example,
+ Msys for Msys/MinGW or Visual Studio Command Prompt for VC/VC++. Do not try
+ to start Cmake from the Windows Start menu, as this can lead to errors.
+
+5. Enter C:\pcre\pcre-xx and C:\pcre\pcre-xx\build for the source and build
+ directories, respectively.
+
+6. Hit the "Configure" button.
+
+7. Select the particular IDE / build tool that you are using (Visual
+ Studio, MSYS makefiles, MinGW makefiles, etc.)
+
+8. The GUI will then list several configuration options. This is where
+ you can enable UTF-8 support or other PCRE optional features.
+
+9. Hit "Configure" again. The adjacent "Generate" button should now be
+ active.
+
+10. Hit "Generate".
+
+11. The build directory should now contain a usable build system, be it a
+ solution file for Visual Studio, makefiles for MinGW, etc. Exit from
+ cmake-gui and use the generated build system with your compiler or IDE.
+ E.g., for MinGW you can run "make", or for Visual Studio, open the PCRE
+ solution, select the desired configuration (Debug, or Release, etc.) and
+ build the ALL_BUILD project.
+
+12. If during configuration with cmake-gui you've elected to build the test
+ programs, you can execute them by building the test project. E.g., for
+ MinGW: "make test"; for Visual Studio build the RUN_TESTS project. The
+ most recent build configuration is targeted by the tests. A summary of
+ test results is presented. Complete test output is subsequently
+ available for review in Testing\Temporary under your build dir.
+
+
+USE OF RELATIVE PATHS WITH CMAKE ON WINDOWS
+
+A PCRE user comments as follows: I thought that others may want to know the
+current state of CMAKE_USE_RELATIVE_PATHS support on Windows. Here it is:
+
+-- AdditionalIncludeDirectories is only partially modified (only the
+ first path - see below)
+-- Only some of the contained file paths are modified - shown below for
+ pcre.vcproj
+-- It properly modifies
+
+I am sure CMake people can fix that if they want to. Until then one will
+need to replace existing absolute paths in project files with relative
+paths manually (e.g. from VS) - relative to project file location. I did
+just that before being told to try CMAKE_USE_RELATIVE_PATHS. Not a big
+deal.
+
+AdditionalIncludeDirectories="E:\builds\pcre\build;E:\builds\pcre\pcre-7.5;"
+AdditionalIncludeDirectories=".;E:\builds\pcre\pcre-7.5;"
+
+RelativePath="pcre.h"
+RelativePath="pcre_chartables.c"
+RelativePath="pcre_chartables.c.rule"
+
+
+TESTING WITH RUNTEST.BAT
+
+If configured with CMake, building the test project ("make test" or building
+ALL_TESTS in Visual Studio) creates (and runs) pcre_test.bat (and depending
+on your configuration options, possibly other test programs) in the build
+directory. Pcre_test.bat runs RunTest.Bat with correct source and exe paths.
+
+For manual testing with RunTest.bat, provided the build dir is a subdirectory
+of the source directory: Open command shell window. Chdir to the location
+of your pcretest.exe and pcregrep.exe programs. Call RunTest.bat with
+"..\RunTest.Bat" or "..\..\RunTest.bat" as appropriate.
+
+To run only a particular test with RunTest.Bat provide a test number argument.
+
+Otherwise:
+
+1. Copy RunTest.bat into the directory where pcretest.exe and pcregrep.exe
+ have been created.
+
+2. Edit RunTest.bat to indentify the full or relative location of
+ the pcre source (wherein which the testdata folder resides), e.g.:
+
+ set srcdir=C:\pcre\pcre-8.20
+
+3. In a Windows command environment, chdir to the location of your bat and
+ exe programs.
+
+4. Run RunTest.bat. Test outputs will automatically be compared to expected
+ results, and discrepancies will be identified in the console output.
+
+To independently test the just-in-time compiler, run pcre_jit_test.exe.
+To test pcrecpp, run pcrecpp_unittest.exe, pcre_stringpiece_unittest.exe and
+pcre_scanner_unittest.exe.
+
+
+BUILDING UNDER WINDOWS CE WITH VISUAL STUDIO 200x
+
+Vincent Richomme sent a zip archive of files to help with this process. They
+can be found in the file "pcre-vsbuild.zip" in the Contrib directory of the FTP
+site.
+
+
+BUILDING UNDER WINDOWS WITH BCC5.5
+
+Michael Roy sent these comments about building PCRE under Windows with BCC5.5:
+
+Some of the core BCC libraries have a version of PCRE from 1998 built in, which
+can lead to pcre_exec() giving an erroneous PCRE_ERROR_NULL from a version
+mismatch. I'm including an easy workaround below, if you'd like to include it
+in the non-unix instructions:
+
+When linking a project with BCC5.5, pcre.lib must be included before any of the
+libraries cw32.lib, cw32i.lib, cw32mt.lib, and cw32mti.lib on the command line.
+
+
+BUILDING USING BORLAND C++ BUILDER 2007 (CB2007) AND HIGHER
+
+A PCRE user sent these comments about this environment (see also the comment
+from another user that follows them):
+
+The XE versions of C++ Builder come with a RegularExpressionsCore class which
+contain a version of TPerlRegEx. However, direct use of the C PCRE library may
+be desirable.
+
+The default makevp.bat, however, supplied with PCRE builds a version of PCRE
+that is not usable with any version of C++ Builder because the compiler ships
+with an embedded version of PCRE, version 2.01 from 1998! [See also the note
+about BCC5.5 above.] If you want to use PCRE you'll need to rename the
+functions (pcre_compile to pcre_compile_bcc, etc) or do as I have done and just
+use the 16 bit versions. I'm using std::wstring everywhere anyway. Since the
+embedded version of PCRE does not have the 16 bit function names, there is no
+conflict.
+
+Building PCRE using a C++ Builder static library project file (recommended):
+
+1. Rename or remove pcre.h, pcreposi.h, and pcreposix.h from your C++ Builder
+original include path.
+
+2. Download PCRE from pcre.org and extract to a directory.
+
+3. Rename pcre_chartables.c.dist to pcre_chartables.c, pcre.h.generic to
+pcre.h, and config.h.generic to config.h.
+
+4. Edit pcre.h and pcre_config.c so that they include config.h.
+
+5. Edit config.h like so:
+
+Comment out the following lines:
+#define PACKAGE "pcre"
+#define PACKAGE_BUGREPORT ""
+#define PACKAGE_NAME "PCRE"
+#define PACKAGE_STRING "PCRE 8.32"
+#define PACKAGE_TARNAME "pcre"
+#define PACKAGE_URL ""
+#define PACKAGE_VERSION "8.32"
+
+Add the following lines:
+#ifndef SUPPORT_UTF
+#define SUPPORT_UTF 100 // any value is fine
+#endif
+
+#ifndef SUPPORT_UCP
+#define SUPPORT_UCP 101 // any value is fine
+#endif
+
+#ifndef SUPPORT_UCP
+#define SUPPORT_PCRE16 102 // any value is fine
+#endif
+
+#ifndef SUPPORT_UTF8
+#define SUPPORT_UTF8 103 // any value is fine
+#endif
+
+6. Build a C++ Builder project using the IDE. Go to File / New / Other and
+choose Static Library. You can name it pcre.cbproj or whatever. Now set your
+paths by going to Project / Options. Set the Include path. Do this from the
+"Base" option to apply to both Release and Debug builds. Now add the following
+files to the project:
+
+pcre.h
+pcre16_byte_order.c
+pcre16_chartables.c
+pcre16_compile.c
+pcre16_config.c
+pcre16_dfa_exec.c
+pcre16_exec.c
+pcre16_fullinfo.c
+pcre16_get.c
+pcre16_globals.c
+pcre16_maketables.c
+pcre16_newline.c
+pcre16_ord2utf16.c
+pcre16_printint.c
+pcre16_refcount.c
+pcre16_string_utils.c
+pcre16_study.c
+pcre16_tables.c
+pcre16_ucd.c
+pcre16_utf16_utils.c
+pcre16_valid_utf16.c
+pcre16_version.c
+pcre16_xclass.c
+
+//Optional
+pcre_version.c
+
+7. After compiling the .lib file, copy the .lib and header files to a project
+you want to use PCRE with. Enjoy.
+
+Optional ... Building PCRE using the makevp.bat file:
+
+1. Edit makevp_c.txt and makevp_l.txt and change all the names to the 16 bit
+versions.
+
+2. Edit makevp.bat and set the path to C++ Builder. Run makevp.bat.
+
+Another PCRE user added this comment:
+
+Another approach I successfully used for some years with BCB 5 and 6 was to
+make sure that include and library paths of PCRE are configured before the
+default paths of the IDE in the dialogs where one can manage those paths.
+Afterwards one can open the project files using a text editor and manually add
+the self created library for pcre itself, pcrecpp doesn't ship with the IDE, in
+the library nodes where the IDE manages its own libraries to link against in
+front of the IDE-own libraries. This way one can use the default PCRE function
+names without getting access violations on runtime.
+
+
+
+
+BUILDING PCRE ON OPENVMS
+
+Stephen Hoffman sent the following, in December 2012:
+
+"Here is a very short write-up on the
+OpenVMS port and here
+
+
+
+is a zip with the OpenVMS files, and with one modified testing-related PCRE
+file." This is a port of PCRE 8.32.
+
+Earlier, Dan Mooney sent the following comments about building PCRE on OpenVMS.
+They relate to an older version of PCRE that used fewer source files, so the
+exact commands will need changing. See the current list of source files above.
+
+"It was quite easy to compile and link the library. I don't have a formal
+make file but the attached file [reproduced below] contains the OpenVMS DCL
+commands I used to build the library. I had to add #define
+POSIX_MALLOC_THRESHOLD 10 to pcre.h since it was not defined anywhere.
+
+The library was built on:
+O/S: HP OpenVMS v7.3-1
+Compiler: Compaq C v6.5-001-48BCD
+Linker: vA13-01
+
+The test results did not match 100% due to the issues you mention in your
+documentation regarding isprint(), iscntrl(), isgraph() and ispunct(). I
+modified some of the character tables temporarily and was able to get the
+results to match. Tests using the fr locale did not match since I don't have
+that locale loaded. The study size was always reported to be 3 less than the
+value in the standard test output files."
+
+=========================
+$! This DCL procedure builds PCRE on OpenVMS
+$!
+$! I followed the instructions in the non-unix-use file in the distribution.
+$!
+$ COMPILE == "CC/LIST/NOMEMBER_ALIGNMENT/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES
+$ COMPILE DFTABLES.C
+$ LINK/EXE=DFTABLES.EXE DFTABLES.OBJ
+$ RUN DFTABLES.EXE/OUTPUT=CHARTABLES.C
+$ COMPILE MAKETABLES.C
+$ COMPILE GET.C
+$ COMPILE STUDY.C
+$! I had to set POSIX_MALLOC_THRESHOLD to 10 in PCRE.H since the symbol
+$! did not seem to be defined anywhere.
+$! I edited pcre.h and added #DEFINE SUPPORT_UTF8 to enable UTF8 support.
+$ COMPILE PCRE.C
+$ LIB/CREATE PCRE MAKETABLES.OBJ, GET.OBJ, STUDY.OBJ, PCRE.OBJ
+$! I had to set POSIX_MALLOC_THRESHOLD to 10 in PCRE.H since the symbol
+$! did not seem to be defined anywhere.
+$ COMPILE PCREPOSIX.C
+$ LIB/CREATE PCREPOSIX PCREPOSIX.OBJ
+$ COMPILE PCRETEST.C
+$ LINK/EXE=PCRETEST.EXE PCRETEST.OBJ, PCRE/LIB, PCREPOSIX/LIB
+$! C programs that want access to command line arguments must be
+$! defined as a symbol
+$ PCRETEST :== "$ SYS$ROADSUSERS:[DMOONEY.REGEXP]PCRETEST.EXE"
+$! Arguments must be enclosed in quotes.
+$ PCRETEST "-C"
+$! Test results:
+$!
+$! The test results did not match 100%. The functions isprint(), iscntrl(),
+$! isgraph() and ispunct() on OpenVMS must not produce the same results
+$! as the system that built the test output files provided with the
+$! distribution.
+$!
+$! The study size did not match and was always 3 less on OpenVMS.
+$!
+$! Locale could not be set to fr
+$!
+=========================
+
+
+BUILDING PCRE ON STRATUS OPENVOS
+
+These notes on the port of PCRE to VOS (lightly edited) were supplied by
+Ashutosh Warikoo, whose email address has the local part awarikoo and the
+domain nse.co.in. The port was for version 7.9 in August 2009.
+
+1. Building PCRE
+
+I built pcre on OpenVOS Release 17.0.1at using GNU Tools 3.4a without any
+problems. I used the following packages to build PCRE:
+
+ ftp://ftp.stratus.com/pub/vos/posix/ga/posix.save.evf.gz
+
+Please read and follow the instructions that come with these packages. To start
+the build of pcre, from the root of the package type:
+
+ ./build.sh
+
+2. Installing PCRE
+
+Once you have successfully built PCRE, login to the SysAdmin group, switch to
+the root user, and type
+
+ [ !create_dir (master_disk)>usr --if needed ]
+ [ !create_dir (master_disk)>usr>local --if needed ]
+ !gmake install
+
+This installs PCRE and its man pages into /usr/local. You can add
+(master_disk)>usr>local>bin to your command search paths, or if you are in
+BASH, add /usr/local/bin to the PATH environment variable.
+
+4. Restrictions
+
+This port requires readline library optionally. However during the build I
+faced some yet unexplored errors while linking with readline. As it was an
+optional component I chose to disable it.
+
+5. Known Problems
+
+I ran the test suite, but you will have to be your own judge of whether this
+command, and this port, suits your purposes. If you find any problems that
+appear to be related to the port itself, please let me know. Please see the
+build.log file in the root of the package also.
+
+
+BUILDING PCRE ON NATIVE Z/OS AND Z/VM
+
+z/OS and z/VM are operating systems for mainframe computers, produced by IBM.
+The character code used is EBCDIC, not ASCII or Unicode. In z/OS, UNIX APIs and
+applications can be supported through UNIX System Services, and in such an
+environment PCRE can be built in the same way as in other systems. However, in
+native z/OS (without UNIX System Services) and in z/VM, special ports are
+required. For details, please see this web site:
+
+ http://www.zaconsultants.net
+
+There is also a mirror here:
+
+ http://www.vsoft-software.com/downloads.html
+
+==========================
+Last Updated: 14 May 2013
diff --git a/pcre/NON-UNIX-USE b/pcre/NON-UNIX-USE
new file mode 100644
index 00000000000..a25546b6ff5
--- /dev/null
+++ b/pcre/NON-UNIX-USE
@@ -0,0 +1,7 @@
+Compiling PCRE on non-Unix systems
+----------------------------------
+
+This has been renamed to better reflect its contents. Please see the file
+NON-AUTOTOOLS-BUILD for details of how to build PCRE without using autotools.
+
+####
diff --git a/pcre/README b/pcre/README
new file mode 100644
index 00000000000..e14935efeba
--- /dev/null
+++ b/pcre/README
@@ -0,0 +1,974 @@
+README file for PCRE (Perl-compatible regular expression library)
+-----------------------------------------------------------------
+
+The latest release of PCRE is always available in three alternative formats
+from:
+
+ ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre-xxx.tar.gz
+ ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre-xxx.tar.bz2
+ ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre-xxx.zip
+
+There is a mailing list for discussion about the development of PCRE at
+
+ pcre-dev@exim.org
+
+Please read the NEWS file if you are upgrading from a previous release.
+The contents of this README file are:
+
+ The PCRE APIs
+ Documentation for PCRE
+ Contributions by users of PCRE
+ Building PCRE on non-Unix-like systems
+ Building PCRE without using autotools
+ Building PCRE using autotools
+ Retrieving configuration information
+ Shared libraries
+ Cross-compiling using autotools
+ Using HP's ANSI C++ compiler (aCC)
+ Compiling in Tru64 using native compilers
+ Using Sun's compilers for Solaris
+ Using PCRE from MySQL
+ Making new tarballs
+ Testing PCRE
+ Character tables
+ File manifest
+
+
+The PCRE APIs
+-------------
+
+PCRE is written in C, and it has its own API. There are three sets of
+functions, one for the 8-bit library, which processes strings of bytes, one for
+the 16-bit library, which processes strings of 16-bit values, and one for the
+32-bit library, which processes strings of 32-bit values. The distribution also
+includes a set of C++ wrapper functions (see the pcrecpp man page for details),
+courtesy of Google Inc., which can be used to call the 8-bit PCRE library from
+C++.
+
+In addition, there is a set of C wrapper functions (again, just for the 8-bit
+library) that are based on the POSIX regular expression API (see the pcreposix
+man page). These end up in the library called libpcreposix. Note that this just
+provides a POSIX calling interface to PCRE; the regular expressions themselves
+still follow Perl syntax and semantics. The POSIX API is restricted, and does
+not give full access to all of PCRE's facilities.
+
+The header file for the POSIX-style functions is called pcreposix.h. The
+official POSIX name is regex.h, but I did not want to risk possible problems
+with existing files of that name by distributing it that way. To use PCRE with
+an existing program that uses the POSIX API, pcreposix.h will have to be
+renamed or pointed at by a link.
+
+If you are using the POSIX interface to PCRE and there is already a POSIX regex
+library installed on your system, as well as worrying about the regex.h header
+file (as mentioned above), you must also take care when linking programs to
+ensure that they link with PCRE's libpcreposix library. Otherwise they may pick
+up the POSIX functions of the same name from the other library.
+
+One way of avoiding this confusion is to compile PCRE with the addition of
+-Dregcomp=PCREregcomp (and similarly for the other POSIX functions) to the
+compiler flags (CFLAGS if you are using "configure" -- see below). This has the
+effect of renaming the functions so that the names no longer clash. Of course,
+you have to do the same thing for your applications, or write them using the
+new names.
+
+
+Documentation for PCRE
+----------------------
+
+If you install PCRE in the normal way on a Unix-like system, you will end up
+with a set of man pages whose names all start with "pcre". The one that is just
+called "pcre" lists all the others. In addition to these man pages, the PCRE
+documentation is supplied in two other forms:
+
+ 1. There are files called doc/pcre.txt, doc/pcregrep.txt, and
+ doc/pcretest.txt in the source distribution. The first of these is a
+ concatenation of the text forms of all the section 3 man pages except
+ those that summarize individual functions. The other two are the text
+ forms of the section 1 man pages for the pcregrep and pcretest commands.
+ These text forms are provided for ease of scanning with text editors or
+ similar tools. They are installed in /share/doc/pcre, where
+ is the installation prefix (defaulting to /usr/local).
+
+ 2. A set of files containing all the documentation in HTML form, hyperlinked
+ in various ways, and rooted in a file called index.html, is distributed in
+ doc/html and installed in /share/doc/pcre/html.
+
+Users of PCRE have contributed files containing the documentation for various
+releases in CHM format. These can be found in the Contrib directory of the FTP
+site (see next section).
+
+
+Contributions by users of PCRE
+------------------------------
+
+You can find contributions from PCRE users in the directory
+
+ ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/Contrib
+
+There is a README file giving brief descriptions of what they are. Some are
+complete in themselves; others are pointers to URLs containing relevant files.
+Some of this material is likely to be well out-of-date. Several of the earlier
+contributions provided support for compiling PCRE on various flavours of
+Windows (I myself do not use Windows). Nowadays there is more Windows support
+in the standard distribution, so these contibutions have been archived.
+
+
+Building PCRE on non-Unix-like systems
+--------------------------------------
+
+For a non-Unix-like system, please read the comments in the file
+NON-AUTOTOOLS-BUILD, though if your system supports the use of "configure" and
+"make" you may be able to build PCRE using autotools in the same way as for
+many Unix-like systems.
+
+PCRE can also be configured using the GUI facility provided by CMake's
+cmake-gui command. This creates Makefiles, solution files, etc. The file
+NON-AUTOTOOLS-BUILD has information about CMake.
+
+PCRE has been compiled on many different operating systems. It should be
+straightforward to build PCRE on any system that has a Standard C compiler and
+library, because it uses only Standard C functions.
+
+
+Building PCRE without using autotools
+-------------------------------------
+
+The use of autotools (in particular, libtool) is problematic in some
+environments, even some that are Unix or Unix-like. See the NON-AUTOTOOLS-BUILD
+file for ways of building PCRE without using autotools.
+
+
+Building PCRE using autotools
+-----------------------------
+
+If you are using HP's ANSI C++ compiler (aCC), please see the special note
+in the section entitled "Using HP's ANSI C++ compiler (aCC)" below.
+
+The following instructions assume the use of the widely used "configure; make;
+make install" (autotools) process.
+
+To build PCRE on system that supports autotools, first run the "configure"
+command from the PCRE distribution directory, with your current directory set
+to the directory where you want the files to be created. This command is a
+standard GNU "autoconf" configuration script, for which generic instructions
+are supplied in the file INSTALL.
+
+Most commonly, people build PCRE within its own distribution directory, and in
+this case, on many systems, just running "./configure" is sufficient. However,
+the usual methods of changing standard defaults are available. For example:
+
+CFLAGS='-O2 -Wall' ./configure --prefix=/opt/local
+
+This command specifies that the C compiler should be run with the flags '-O2
+-Wall' instead of the default, and that "make install" should install PCRE
+under /opt/local instead of the default /usr/local.
+
+If you want to build in a different directory, just run "configure" with that
+directory as current. For example, suppose you have unpacked the PCRE source
+into /source/pcre/pcre-xxx, but you want to build it in /build/pcre/pcre-xxx:
+
+cd /build/pcre/pcre-xxx
+/source/pcre/pcre-xxx/configure
+
+PCRE is written in C and is normally compiled as a C library. However, it is
+possible to build it as a C++ library, though the provided building apparatus
+does not have any features to support this.
+
+There are some optional features that can be included or omitted from the PCRE
+library. They are also documented in the pcrebuild man page.
+
+. By default, both shared and static libraries are built. You can change this
+ by adding one of these options to the "configure" command:
+
+ --disable-shared
+ --disable-static
+
+ (See also "Shared libraries on Unix-like systems" below.)
+
+. By default, only the 8-bit library is built. If you add --enable-pcre16 to
+ the "configure" command, the 16-bit library is also built. If you add
+ --enable-pcre32 to the "configure" command, the 32-bit library is also built.
+ If you want only the 16-bit or 32-bit library, use --disable-pcre8 to disable
+ building the 8-bit library.
+
+. If you are building the 8-bit library and want to suppress the building of
+ the C++ wrapper library, you can add --disable-cpp to the "configure"
+ command. Otherwise, when "configure" is run without --disable-pcre8, it will
+ try to find a C++ compiler and C++ header files, and if it succeeds, it will
+ try to build the C++ wrapper.
+
+. If you want to include support for just-in-time compiling, which can give
+ large performance improvements on certain platforms, add --enable-jit to the
+ "configure" command. This support is available only for certain hardware
+ architectures. If you try to enable it on an unsupported architecture, there
+ will be a compile time error.
+
+. When JIT support is enabled, pcregrep automatically makes use of it, unless
+ you add --disable-pcregrep-jit to the "configure" command.
+
+. If you want to make use of the support for UTF-8 Unicode character strings in
+ the 8-bit library, or UTF-16 Unicode character strings in the 16-bit library,
+ or UTF-32 Unicode character strings in the 32-bit library, you must add
+ --enable-utf to the "configure" command. Without it, the code for handling
+ UTF-8, UTF-16 and UTF-8 is not included in the relevant library. Even
+ when --enable-utf is included, the use of a UTF encoding still has to be
+ enabled by an option at run time. When PCRE is compiled with this option, its
+ input can only either be ASCII or UTF-8/16/32, even when running on EBCDIC
+ platforms. It is not possible to use both --enable-utf and --enable-ebcdic at
+ the same time.
+
+. There are no separate options for enabling UTF-8, UTF-16 and UTF-32
+ independently because that would allow ridiculous settings such as requesting
+ UTF-16 support while building only the 8-bit library. However, the option
+ --enable-utf8 is retained for backwards compatibility with earlier releases
+ that did not support 16-bit or 32-bit character strings. It is synonymous with
+ --enable-utf. It is not possible to configure one library with UTF support
+ and the other without in the same configuration.
+
+. If, in addition to support for UTF-8/16/32 character strings, you want to
+ include support for the \P, \p, and \X sequences that recognize Unicode
+ character properties, you must add --enable-unicode-properties to the
+ "configure" command. This adds about 30K to the size of the library (in the
+ form of a property table); only the basic two-letter properties such as Lu
+ are supported.
+
+. You can build PCRE to recognize either CR or LF or the sequence CRLF or any
+ of the preceding, or any of the Unicode newline sequences as indicating the
+ end of a line. Whatever you specify at build time is the default; the caller
+ of PCRE can change the selection at run time. The default newline indicator
+ is a single LF character (the Unix standard). You can specify the default
+ newline indicator by adding --enable-newline-is-cr or --enable-newline-is-lf
+ or --enable-newline-is-crlf or --enable-newline-is-anycrlf or
+ --enable-newline-is-any to the "configure" command, respectively.
+
+ If you specify --enable-newline-is-cr or --enable-newline-is-crlf, some of
+ the standard tests will fail, because the lines in the test files end with
+ LF. Even if the files are edited to change the line endings, there are likely
+ to be some failures. With --enable-newline-is-anycrlf or
+ --enable-newline-is-any, many tests should succeed, but there may be some
+ failures.
+
+. By default, the sequence \R in a pattern matches any Unicode line ending
+ sequence. This is independent of the option specifying what PCRE considers to
+ be the end of a line (see above). However, the caller of PCRE can restrict \R
+ to match only CR, LF, or CRLF. You can make this the default by adding
+ --enable-bsr-anycrlf to the "configure" command (bsr = "backslash R").
+
+. When called via the POSIX interface, PCRE uses malloc() to get additional
+ storage for processing capturing parentheses if there are more than 10 of
+ them in a pattern. You can increase this threshold by setting, for example,
+
+ --with-posix-malloc-threshold=20
+
+ on the "configure" command.
+
+. PCRE has a counter that can be set to limit the amount of resources it uses.
+ If the limit is exceeded during a match, the match fails. The default is ten
+ million. You can change the default by setting, for example,
+
+ --with-match-limit=500000
+
+ on the "configure" command. This is just the default; individual calls to
+ pcre_exec() can supply their own value. There is more discussion on the
+ pcreapi man page.
+
+. There is a separate counter that limits the depth of recursive function calls
+ during a matching process. This also has a default of ten million, which is
+ essentially "unlimited". You can change the default by setting, for example,
+
+ --with-match-limit-recursion=500000
+
+ Recursive function calls use up the runtime stack; running out of stack can
+ cause programs to crash in strange ways. There is a discussion about stack
+ sizes in the pcrestack man page.
+
+. The default maximum compiled pattern size is around 64K. You can increase
+ this by adding --with-link-size=3 to the "configure" command. In the 8-bit
+ library, PCRE then uses three bytes instead of two for offsets to different
+ parts of the compiled pattern. In the 16-bit library, --with-link-size=3 is
+ the same as --with-link-size=4, which (in both libraries) uses four-byte
+ offsets. Increasing the internal link size reduces performance. In the 32-bit
+ library, the only supported link size is 4.
+
+. You can build PCRE so that its internal match() function that is called from
+ pcre_exec() does not call itself recursively. Instead, it uses memory blocks
+ obtained from the heap via the special functions pcre_stack_malloc() and
+ pcre_stack_free() to save data that would otherwise be saved on the stack. To
+ build PCRE like this, use
+
+ --disable-stack-for-recursion
+
+ on the "configure" command. PCRE runs more slowly in this mode, but it may be
+ necessary in environments with limited stack sizes. This applies only to the
+ normal execution of the pcre_exec() function; if JIT support is being
+ successfully used, it is not relevant. Equally, it does not apply to
+ pcre_dfa_exec(), which does not use deeply nested recursion. There is a
+ discussion about stack sizes in the pcrestack man page.
+
+. For speed, PCRE uses four tables for manipulating and identifying characters
+ whose code point values are less than 256. By default, it uses a set of
+ tables for ASCII encoding that is part of the distribution. If you specify
+
+ --enable-rebuild-chartables
+
+ a program called dftables is compiled and run in the default C locale when
+ you obey "make". It builds a source file called pcre_chartables.c. If you do
+ not specify this option, pcre_chartables.c is created as a copy of
+ pcre_chartables.c.dist. See "Character tables" below for further information.
+
+. It is possible to compile PCRE for use on systems that use EBCDIC as their
+ character code (as opposed to ASCII/Unicode) by specifying
+
+ --enable-ebcdic
+
+ This automatically implies --enable-rebuild-chartables (see above). However,
+ when PCRE is built this way, it always operates in EBCDIC. It cannot support
+ both EBCDIC and UTF-8/16/32. There is a second option, --enable-ebcdic-nl25,
+ which specifies that the code value for the EBCDIC NL character is 0x25
+ instead of the default 0x15.
+
+. In environments where valgrind is installed, if you specify
+
+ --enable-valgrind
+
+ PCRE will use valgrind annotations to mark certain memory regions as
+ unaddressable. This allows it to detect invalid memory accesses, and is
+ mostly useful for debugging PCRE itself.
+
+. In environments where the gcc compiler is used and lcov version 1.6 or above
+ is installed, if you specify
+
+ --enable-coverage
+
+ the build process implements a code coverage report for the test suite. The
+ report is generated by running "make coverage". If ccache is installed on
+ your system, it must be disabled when building PCRE for coverage reporting.
+ You can do this by setting the environment variable CCACHE_DISABLE=1 before
+ running "make" to build PCRE.
+
+. The pcregrep program currently supports only 8-bit data files, and so
+ requires the 8-bit PCRE library. It is possible to compile pcregrep to use
+ libz and/or libbz2, in order to read .gz and .bz2 files (respectively), by
+ specifying one or both of
+
+ --enable-pcregrep-libz
+ --enable-pcregrep-libbz2
+
+ Of course, the relevant libraries must be installed on your system.
+
+. The default size of internal buffer used by pcregrep can be set by, for
+ example:
+
+ --with-pcregrep-bufsize=50K
+
+ The default value is 20K.
+
+. It is possible to compile pcretest so that it links with the libreadline
+ or libedit libraries, by specifying, respectively,
+
+ --enable-pcretest-libreadline or --enable-pcretest-libedit
+
+ If this is done, when pcretest's input is from a terminal, it reads it using
+ the readline() function. This provides line-editing and history facilities.
+ Note that libreadline is GPL-licenced, so if you distribute a binary of
+ pcretest linked in this way, there may be licensing issues. These can be
+ avoided by linking with libedit (which has a BSD licence) instead.
+
+ Enabling libreadline causes the -lreadline option to be added to the pcretest
+ build. In many operating environments with a sytem-installed readline
+ library this is sufficient. However, in some environments (e.g. if an
+ unmodified distribution version of readline is in use), it may be necessary
+ to specify something like LIBS="-lncurses" as well. This is because, to quote
+ the readline INSTALL, "Readline uses the termcap functions, but does not link
+ with the termcap or curses library itself, allowing applications which link
+ with readline the to choose an appropriate library." If you get error
+ messages about missing functions tgetstr, tgetent, tputs, tgetflag, or tgoto,
+ this is the problem, and linking with the ncurses library should fix it.
+
+The "configure" script builds the following files for the basic C library:
+
+. Makefile the makefile that builds the library
+. config.h build-time configuration options for the library
+. pcre.h the public PCRE header file
+. pcre-config script that shows the building settings such as CFLAGS
+ that were set for "configure"
+. libpcre.pc ) data for the pkg-config command
+. libpcre16.pc )
+. libpcre32.pc )
+. libpcreposix.pc )
+. libtool script that builds shared and/or static libraries
+
+Versions of config.h and pcre.h are distributed in the PCRE tarballs under the
+names config.h.generic and pcre.h.generic. These are provided for those who
+have to built PCRE without using "configure" or CMake. If you use "configure"
+or CMake, the .generic versions are not used.
+
+When building the 8-bit library, if a C++ compiler is found, the following
+files are also built:
+
+. libpcrecpp.pc data for the pkg-config command
+. pcrecpparg.h header file for calling PCRE via the C++ wrapper
+. pcre_stringpiece.h header for the C++ "stringpiece" functions
+
+The "configure" script also creates config.status, which is an executable
+script that can be run to recreate the configuration, and config.log, which
+contains compiler output from tests that "configure" runs.
+
+Once "configure" has run, you can run "make". This builds the the libraries
+libpcre, libpcre16 and/or libpcre32, and a test program called pcretest. If you
+enabled JIT support with --enable-jit, a test program called pcre_jit_test is
+built as well.
+
+If the 8-bit library is built, libpcreposix and the pcregrep command are also
+built, and if a C++ compiler was found on your system, and you did not disable
+it with --disable-cpp, "make" builds the C++ wrapper library, which is called
+libpcrecpp, as well as some test programs called pcrecpp_unittest,
+pcre_scanner_unittest, and pcre_stringpiece_unittest.
+
+The command "make check" runs all the appropriate tests. Details of the PCRE
+tests are given below in a separate section of this document.
+
+You can use "make install" to install PCRE into live directories on your
+system. The following are installed (file names are all relative to the
+ that is set when "configure" is run):
+
+ Commands (bin):
+ pcretest
+ pcregrep (if 8-bit support is enabled)
+ pcre-config
+
+ Libraries (lib):
+ libpcre16 (if 16-bit support is enabled)
+ libpcre32 (if 32-bit support is enabled)
+ libpcre (if 8-bit support is enabled)
+ libpcreposix (if 8-bit support is enabled)
+ libpcrecpp (if 8-bit and C++ support is enabled)
+
+ Configuration information (lib/pkgconfig):
+ libpcre16.pc
+ libpcre32.pc
+ libpcre.pc
+ libpcreposix.pc
+ libpcrecpp.pc (if C++ support is enabled)
+
+ Header files (include):
+ pcre.h
+ pcreposix.h
+ pcre_scanner.h )
+ pcre_stringpiece.h ) if C++ support is enabled
+ pcrecpp.h )
+ pcrecpparg.h )
+
+ Man pages (share/man/man{1,3}):
+ pcregrep.1
+ pcretest.1
+ pcre-config.1
+ pcre.3
+ pcre*.3 (lots more pages, all starting "pcre")
+
+ HTML documentation (share/doc/pcre/html):
+ index.html
+ *.html (lots more pages, hyperlinked from index.html)
+
+ Text file documentation (share/doc/pcre):
+ AUTHORS
+ COPYING
+ ChangeLog
+ LICENCE
+ NEWS
+ README
+ pcre.txt (a concatenation of the man(3) pages)
+ pcretest.txt the pcretest man page
+ pcregrep.txt the pcregrep man page
+ pcre-config.txt the pcre-config man page
+
+If you want to remove PCRE from your system, you can run "make uninstall".
+This removes all the files that "make install" installed. However, it does not
+remove any directories, because these are often shared with other programs.
+
+
+Retrieving configuration information
+------------------------------------
+
+Running "make install" installs the command pcre-config, which can be used to
+recall information about the PCRE configuration and installation. For example:
+
+ pcre-config --version
+
+prints the version number, and
+
+ pcre-config --libs
+
+outputs information about where the library is installed. This command can be
+included in makefiles for programs that use PCRE, saving the programmer from
+having to remember too many details.
+
+The pkg-config command is another system for saving and retrieving information
+about installed libraries. Instead of separate commands for each library, a
+single command is used. For example:
+
+ pkg-config --cflags pcre
+
+The data is held in *.pc files that are installed in a directory called
+/lib/pkgconfig.
+
+
+Shared libraries
+----------------
+
+The default distribution builds PCRE as shared libraries and static libraries,
+as long as the operating system supports shared libraries. Shared library
+support relies on the "libtool" script which is built as part of the
+"configure" process.
+
+The libtool script is used to compile and link both shared and static
+libraries. They are placed in a subdirectory called .libs when they are newly
+built. The programs pcretest and pcregrep are built to use these uninstalled
+libraries (by means of wrapper scripts in the case of shared libraries). When
+you use "make install" to install shared libraries, pcregrep and pcretest are
+automatically re-built to use the newly installed shared libraries before being
+installed themselves. However, the versions left in the build directory still
+use the uninstalled libraries.
+
+To build PCRE using static libraries only you must use --disable-shared when
+configuring it. For example:
+
+./configure --prefix=/usr/gnu --disable-shared
+
+Then run "make" in the usual way. Similarly, you can use --disable-static to
+build only shared libraries.
+
+
+Cross-compiling using autotools
+-------------------------------
+
+You can specify CC and CFLAGS in the normal way to the "configure" command, in
+order to cross-compile PCRE for some other host. However, you should NOT
+specify --enable-rebuild-chartables, because if you do, the dftables.c source
+file is compiled and run on the local host, in order to generate the inbuilt
+character tables (the pcre_chartables.c file). This will probably not work,
+because dftables.c needs to be compiled with the local compiler, not the cross
+compiler.
+
+When --enable-rebuild-chartables is not specified, pcre_chartables.c is created
+by making a copy of pcre_chartables.c.dist, which is a default set of tables
+that assumes ASCII code. Cross-compiling with the default tables should not be
+a problem.
+
+If you need to modify the character tables when cross-compiling, you should
+move pcre_chartables.c.dist out of the way, then compile dftables.c by hand and
+run it on the local host to make a new version of pcre_chartables.c.dist.
+Then when you cross-compile PCRE this new version of the tables will be used.
+
+
+Using HP's ANSI C++ compiler (aCC)
+----------------------------------
+
+Unless C++ support is disabled by specifying the "--disable-cpp" option of the
+"configure" script, you must include the "-AA" option in the CXXFLAGS
+environment variable in order for the C++ components to compile correctly.
+
+Also, note that the aCC compiler on PA-RISC platforms may have a defect whereby
+needed libraries fail to get included when specifying the "-AA" compiler
+option. If you experience unresolved symbols when linking the C++ programs,
+use the workaround of specifying the following environment variable prior to
+running the "configure" script:
+
+ CXXLDFLAGS="-lstd_v2 -lCsup_v2"
+
+
+Compiling in Tru64 using native compilers
+-----------------------------------------
+
+The following error may occur when compiling with native compilers in the Tru64
+operating system:
+
+ CXX libpcrecpp_la-pcrecpp.lo
+cxx: Error: /usr/lib/cmplrs/cxx/V7.1-006/include/cxx/iosfwd, line 58: #error
+ directive: "cannot include iosfwd -- define __USE_STD_IOSTREAM to
+ override default - see section 7.1.2 of the C++ Using Guide"
+#error "cannot include iosfwd -- define __USE_STD_IOSTREAM to override default
+- see section 7.1.2 of the C++ Using Guide"
+
+This may be followed by other errors, complaining that 'namespace "std" has no
+member'. The solution to this is to add the line
+
+#define __USE_STD_IOSTREAM 1
+
+to the config.h file.
+
+
+Using Sun's compilers for Solaris
+---------------------------------
+
+A user reports that the following configurations work on Solaris 9 sparcv9 and
+Solaris 9 x86 (32-bit):
+
+ Solaris 9 sparcv9: ./configure --disable-cpp CC=/bin/cc CFLAGS="-m64 -g"
+ Solaris 9 x86: ./configure --disable-cpp CC=/bin/cc CFLAGS="-g"
+
+
+Using PCRE from MySQL
+---------------------
+
+On systems where both PCRE and MySQL are installed, it is possible to make use
+of PCRE from within MySQL, as an alternative to the built-in pattern matching.
+There is a web page that tells you how to do this:
+
+ http://www.mysqludf.org/lib_mysqludf_preg/index.php
+
+
+Making new tarballs
+-------------------
+
+The command "make dist" creates three PCRE tarballs, in tar.gz, tar.bz2, and
+zip formats. The command "make distcheck" does the same, but then does a trial
+build of the new distribution to ensure that it works.
+
+If you have modified any of the man page sources in the doc directory, you
+should first run the PrepareRelease script before making a distribution. This
+script creates the .txt and HTML forms of the documentation from the man pages.
+
+
+Testing PCRE
+------------
+
+To test the basic PCRE library on a Unix-like system, run the RunTest script.
+There is another script called RunGrepTest that tests the options of the
+pcregrep command. If the C++ wrapper library is built, three test programs
+called pcrecpp_unittest, pcre_scanner_unittest, and pcre_stringpiece_unittest
+are also built. When JIT support is enabled, another test program called
+pcre_jit_test is built.
+
+Both the scripts and all the program tests are run if you obey "make check" or
+"make test". For other environments, see the instructions in
+NON-AUTOTOOLS-BUILD.
+
+The RunTest script runs the pcretest test program (which is documented in its
+own man page) on each of the relevant testinput files in the testdata
+directory, and compares the output with the contents of the corresponding
+testoutput files. RunTest uses a file called testtry to hold the main output
+from pcretest. Other files whose names begin with "test" are used as working
+files in some tests.
+
+Some tests are relevant only when certain build-time options were selected. For
+example, the tests for UTF-8/16/32 support are run only if --enable-utf was
+used. RunTest outputs a comment when it skips a test.
+
+Many of the tests that are not skipped are run up to three times. The second
+run forces pcre_study() to be called for all patterns except for a few in some
+tests that are marked "never study" (see the pcretest program for how this is
+done). If JIT support is available, the non-DFA tests are run a third time,
+this time with a forced pcre_study() with the PCRE_STUDY_JIT_COMPILE option.
+This testing can be suppressed by putting "nojit" on the RunTest command line.
+
+The entire set of tests is run once for each of the 8-bit, 16-bit and 32-bit
+libraries that are enabled. If you want to run just one set of tests, call
+RunTest with either the -8, -16 or -32 option.
+
+If valgrind is installed, you can run the tests under it by putting "valgrind"
+on the RunTest command line. To run pcretest on just one or more specific test
+files, give their numbers as arguments to RunTest, for example:
+
+ RunTest 2 7 11
+
+You can also specify ranges of tests such as 3-6 or 3- (meaning 3 to the
+end), or a number preceded by ~ to exclude a test. For example:
+
+ Runtest 3-15 ~10
+
+This runs tests 3 to 15, excluding test 10, and just ~13 runs all the tests
+except test 13. Whatever order the arguments are in, the tests are always run
+in numerical order.
+
+You can also call RunTest with the single argument "list" to cause it to output
+a list of tests.
+
+The first test file can be fed directly into the perltest.pl script to check
+that Perl gives the same results. The only difference you should see is in the
+first few lines, where the Perl version is given instead of the PCRE version.
+
+The second set of tests check pcre_fullinfo(), pcre_study(),
+pcre_copy_substring(), pcre_get_substring(), pcre_get_substring_list(), error
+detection, and run-time flags that are specific to PCRE, as well as the POSIX
+wrapper API. It also uses the debugging flags to check some of the internals of
+pcre_compile().
+
+If you build PCRE with a locale setting that is not the standard C locale, the
+character tables may be different (see next paragraph). In some cases, this may
+cause failures in the second set of tests. For example, in a locale where the
+isprint() function yields TRUE for characters in the range 128-255, the use of
+[:isascii:] inside a character class defines a different set of characters, and
+this shows up in this test as a difference in the compiled code, which is being
+listed for checking. Where the comparison test output contains [\x00-\x7f] the
+test will contain [\x00-\xff], and similarly in some other cases. This is not a
+bug in PCRE.
+
+The third set of tests checks pcre_maketables(), the facility for building a
+set of character tables for a specific locale and using them instead of the
+default tables. The tests make use of the "fr_FR" (French) locale. Before
+running the test, the script checks for the presence of this locale by running
+the "locale" command. If that command fails, or if it doesn't include "fr_FR"
+in the list of available locales, the third test cannot be run, and a comment
+is output to say why. If running this test produces instances of the error
+
+ ** Failed to set locale "fr_FR"
+
+in the comparison output, it means that locale is not available on your system,
+despite being listed by "locale". This does not mean that PCRE is broken.
+
+[If you are trying to run this test on Windows, you may be able to get it to
+work by changing "fr_FR" to "french" everywhere it occurs. Alternatively, use
+RunTest.bat. The version of RunTest.bat included with PCRE 7.4 and above uses
+Windows versions of test 2. More info on using RunTest.bat is included in the
+document entitled NON-UNIX-USE.]
+
+The fourth and fifth tests check the UTF-8/16/32 support and error handling and
+internal UTF features of PCRE that are not relevant to Perl, respectively. The
+sixth and seventh tests do the same for Unicode character properties support.
+
+The eighth, ninth, and tenth tests check the pcre_dfa_exec() alternative
+matching function, in non-UTF-8/16/32 mode, UTF-8/16/32 mode, and UTF-8/16/32
+mode with Unicode property support, respectively.
+
+The eleventh test checks some internal offsets and code size features; it is
+run only when the default "link size" of 2 is set (in other cases the sizes
+change) and when Unicode property support is enabled.
+
+The twelfth test is run only when JIT support is available, and the thirteenth
+test is run only when JIT support is not available. They test some JIT-specific
+features such as information output from pcretest about JIT compilation.
+
+The fourteenth, fifteenth, and sixteenth tests are run only in 8-bit mode, and
+the seventeenth, eighteenth, and nineteenth tests are run only in 16/32-bit
+mode. These are tests that generate different output in the two modes. They are
+for general cases, UTF-8/16/32 support, and Unicode property support,
+respectively.
+
+The twentieth test is run only in 16/32-bit mode. It tests some specific
+16/32-bit features of the DFA matching engine.
+
+The twenty-first and twenty-second tests are run only in 16/32-bit mode, when
+the link size is set to 2 for the 16-bit library. They test reloading
+pre-compiled patterns.
+
+The twenty-third and twenty-fourth tests are run only in 16-bit mode. They are
+for general cases, and UTF-16 support, respectively.
+
+The twenty-fifth and twenty-sixth tests are run only in 32-bit mode. They are
+for general cases, and UTF-32 support, respectively.
+
+
+Character tables
+----------------
+
+For speed, PCRE uses four tables for manipulating and identifying characters
+whose code point values are less than 256. The final argument of the
+pcre_compile() function is a pointer to a block of memory containing the
+concatenated tables. A call to pcre_maketables() can be used to generate a set
+of tables in the current locale. If the final argument for pcre_compile() is
+passed as NULL, a set of default tables that is built into the binary is used.
+
+The source file called pcre_chartables.c contains the default set of tables. By
+default, this is created as a copy of pcre_chartables.c.dist, which contains
+tables for ASCII coding. However, if --enable-rebuild-chartables is specified
+for ./configure, a different version of pcre_chartables.c is built by the
+program dftables (compiled from dftables.c), which uses the ANSI C character
+handling functions such as isalnum(), isalpha(), isupper(), islower(), etc. to
+build the table sources. This means that the default C locale which is set for
+your system will control the contents of these default tables. You can change
+the default tables by editing pcre_chartables.c and then re-building PCRE. If
+you do this, you should take care to ensure that the file does not get
+automatically re-generated. The best way to do this is to move
+pcre_chartables.c.dist out of the way and replace it with your customized
+tables.
+
+When the dftables program is run as a result of --enable-rebuild-chartables,
+it uses the default C locale that is set on your system. It does not pay
+attention to the LC_xxx environment variables. In other words, it uses the
+system's default locale rather than whatever the compiling user happens to have
+set. If you really do want to build a source set of character tables in a
+locale that is specified by the LC_xxx variables, you can run the dftables
+program by hand with the -L option. For example:
+
+ ./dftables -L pcre_chartables.c.special
+
+The first two 256-byte tables provide lower casing and case flipping functions,
+respectively. The next table consists of three 32-byte bit maps which identify
+digits, "word" characters, and white space, respectively. These are used when
+building 32-byte bit maps that represent character classes for code points less
+than 256.
+
+The final 256-byte table has bits indicating various character types, as
+follows:
+
+ 1 white space character
+ 2 letter
+ 4 decimal digit
+ 8 hexadecimal digit
+ 16 alphanumeric or '_'
+ 128 regular expression metacharacter or binary zero
+
+You should not alter the set of characters that contain the 128 bit, as that
+will cause PCRE to malfunction.
+
+
+File manifest
+-------------
+
+The distribution should contain the files listed below. Where a file name is
+given as pcre[16|32]_xxx it means that there are three files, one with the name
+pcre_xxx, one with the name pcre16_xx, and a third with the name pcre32_xxx.
+
+(A) Source files of the PCRE library functions and their headers:
+
+ dftables.c auxiliary program for building pcre_chartables.c
+ when --enable-rebuild-chartables is specified
+
+ pcre_chartables.c.dist a default set of character tables that assume ASCII
+ coding; used, unless --enable-rebuild-chartables is
+ specified, by copying to pcre[16]_chartables.c
+
+ pcreposix.c )
+ pcre[16|32]_byte_order.c )
+ pcre[16|32]_compile.c )
+ pcre[16|32]_config.c )
+ pcre[16|32]_dfa_exec.c )
+ pcre[16|32]_exec.c )
+ pcre[16|32]_fullinfo.c )
+ pcre[16|32]_get.c ) sources for the functions in the library,
+ pcre[16|32]_globals.c ) and some internal functions that they use
+ pcre[16|32]_jit_compile.c )
+ pcre[16|32]_maketables.c )
+ pcre[16|32]_newline.c )
+ pcre[16|32]_refcount.c )
+ pcre[16|32]_string_utils.c )
+ pcre[16|32]_study.c )
+ pcre[16|32]_tables.c )
+ pcre[16|32]_ucd.c )
+ pcre[16|32]_version.c )
+ pcre[16|32]_xclass.c )
+ pcre_ord2utf8.c )
+ pcre_valid_utf8.c )
+ pcre16_ord2utf16.c )
+ pcre16_utf16_utils.c )
+ pcre16_valid_utf16.c )
+ pcre32_utf32_utils.c )
+ pcre32_valid_utf32.c )
+
+ pcre[16|32]_printint.c ) debugging function that is used by pcretest,
+ ) and can also be #included in pcre_compile()
+
+ pcre.h.in template for pcre.h when built by "configure"
+ pcreposix.h header for the external POSIX wrapper API
+ pcre_internal.h header for internal use
+ sljit/* 16 files that make up the JIT compiler
+ ucp.h header for Unicode property handling
+
+ config.h.in template for config.h, which is built by "configure"
+
+ pcrecpp.h public header file for the C++ wrapper
+ pcrecpparg.h.in template for another C++ header file
+ pcre_scanner.h public header file for C++ scanner functions
+ pcrecpp.cc )
+ pcre_scanner.cc ) source for the C++ wrapper library
+
+ pcre_stringpiece.h.in template for pcre_stringpiece.h, the header for the
+ C++ stringpiece functions
+ pcre_stringpiece.cc source for the C++ stringpiece functions
+
+(B) Source files for programs that use PCRE:
+
+ pcredemo.c simple demonstration of coding calls to PCRE
+ pcregrep.c source of a grep utility that uses PCRE
+ pcretest.c comprehensive test program
+
+(C) Auxiliary files:
+
+ 132html script to turn "man" pages into HTML
+ AUTHORS information about the author of PCRE
+ ChangeLog log of changes to the code
+ CleanTxt script to clean nroff output for txt man pages
+ Detrail script to remove trailing spaces
+ HACKING some notes about the internals of PCRE
+ INSTALL generic installation instructions
+ LICENCE conditions for the use of PCRE
+ COPYING the same, using GNU's standard name
+ Makefile.in ) template for Unix Makefile, which is built by
+ ) "configure"
+ Makefile.am ) the automake input that was used to create
+ ) Makefile.in
+ NEWS important changes in this release
+ NON-UNIX-USE the previous name for NON-AUTOTOOLS-BUILD
+ NON-AUTOTOOLS-BUILD notes on building PCRE without using autotools
+ PrepareRelease script to make preparations for "make dist"
+ README this file
+ RunTest a Unix shell script for running tests
+ RunGrepTest a Unix shell script for pcregrep tests
+ aclocal.m4 m4 macros (generated by "aclocal")
+ config.guess ) files used by libtool,
+ config.sub ) used only when building a shared library
+ configure a configuring shell script (built by autoconf)
+ configure.ac ) the autoconf input that was used to build
+ ) "configure" and config.h
+ depcomp ) script to find program dependencies, generated by
+ ) automake
+ doc/*.3 man page sources for PCRE
+ doc/*.1 man page sources for pcregrep and pcretest
+ doc/index.html.src the base HTML page
+ doc/html/* HTML documentation
+ doc/pcre.txt plain text version of the man pages
+ doc/pcretest.txt plain text documentation of test program
+ doc/perltest.txt plain text documentation of Perl test program
+ install-sh a shell script for installing files
+ libpcre16.pc.in template for libpcre16.pc for pkg-config
+ libpcre32.pc.in template for libpcre32.pc for pkg-config
+ libpcre.pc.in template for libpcre.pc for pkg-config
+ libpcreposix.pc.in template for libpcreposix.pc for pkg-config
+ libpcrecpp.pc.in template for libpcrecpp.pc for pkg-config
+ ltmain.sh file used to build a libtool script
+ missing ) common stub for a few missing GNU programs while
+ ) installing, generated by automake
+ mkinstalldirs script for making install directories
+ perltest.pl Perl test program
+ pcre-config.in source of script which retains PCRE information
+ pcre_jit_test.c test program for the JIT compiler
+ pcrecpp_unittest.cc )
+ pcre_scanner_unittest.cc ) test programs for the C++ wrapper
+ pcre_stringpiece_unittest.cc )
+ testdata/testinput* test data for main library tests
+ testdata/testoutput* expected test results
+ testdata/grep* input and output for pcregrep tests
+ testdata/* other supporting test files
+
+(D) Auxiliary files for cmake support
+
+ cmake/COPYING-CMAKE-SCRIPTS
+ cmake/FindPackageHandleStandardArgs.cmake
+ cmake/FindEditline.cmake
+ cmake/FindReadline.cmake
+ CMakeLists.txt
+ config-cmake.h.in
+
+(E) Auxiliary files for VPASCAL
+
+ makevp.bat
+ makevp_c.txt
+ makevp_l.txt
+ pcregexp.pas
+
+(F) Auxiliary files for building PCRE "by hand"
+
+ pcre.h.generic ) a version of the public PCRE header file
+ ) for use in non-"configure" environments
+ config.h.generic ) a version of config.h for use in non-"configure"
+ ) environments
+
+(F) Miscellaneous
+
+ RunTest.bat a script for running tests under Windows
+
+Philip Hazel
+Email local part: ph10
+Email domain: cam.ac.uk
+Last updated: 28 April 2013
diff --git a/pcre/RunGrepTest b/pcre/RunGrepTest
new file mode 100755
index 00000000000..daaf8af47ac
--- /dev/null
+++ b/pcre/RunGrepTest
@@ -0,0 +1,567 @@
+#! /bin/sh
+
+# Run pcregrep tests. The assumption is that the PCRE tests check the library
+# itself. What we are checking here is the file handling and options that are
+# supported by pcregrep. This script must be run in the build directory.
+
+# Set the C locale, so that sort(1) behaves predictably.
+
+LC_ALL=C
+export LC_ALL
+
+# Remove any non-default colouring and aliases that the caller may have set.
+
+unset PCREGREP_COLOUR PCREGREP_COLOR
+unset cp ls mv rm
+
+# Remember the current (build) directory, set the program to be tested, and
+# valgrind settings when requested.
+
+builddir=`pwd`
+pcregrep=$builddir/pcregrep
+
+valgrind=
+while [ $# -gt 0 ] ; do
+ case $1 in
+ valgrind) valgrind="valgrind -q --leak-check=no --smc-check=all";;
+ *) echo "RunGrepTest: Unknown argument $1"; exit 1;;
+ esac
+ shift
+done
+
+echo " "
+pcregrep_version=`$pcregrep -V`
+if [ "$valgrind" = "" ] ; then
+ echo "Testing $pcregrep_version"
+else
+ echo "Testing $pcregrep_version using valgrind"
+fi
+
+# Set up a suitable "diff" command for comparison. Some systems have a diff
+# that lacks a -u option. Try to deal with this; better do the test for the -b
+# option as well.
+
+cf="diff"
+diff -b /dev/null /dev/null 2>/dev/null && cf="diff -b"
+diff -u /dev/null /dev/null 2>/dev/null && cf="diff -u"
+diff -ub /dev/null /dev/null 2>/dev/null && cf="diff -ub"
+
+# If this test is being run from "make check", $srcdir will be set. If not, set
+# it to the current or parent directory, whichever one contains the test data.
+# Subsequently, we run most of the pcregrep tests in the source directory so
+# that the file names in the output are always the same.
+
+if [ -z "$srcdir" -o ! -d "$srcdir/testdata" ] ; then
+ if [ -d "./testdata" ] ; then
+ srcdir=.
+ elif [ -d "../testdata" ] ; then
+ srcdir=..
+ else
+ echo "Cannot find the testdata directory"
+ exit 1
+ fi
+fi
+
+# Check for the availability of UTF-8 support
+
+./pcretest -C utf >/dev/null
+utf8=$?
+
+echo "Testing pcregrep main features"
+
+echo "---------------------------- Test 1 ------------------------------" >testtry
+(cd $srcdir; $valgrind $pcregrep PATTERN ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 2 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep '^PATTERN' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 3 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -in PATTERN ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 4 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -ic PATTERN ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 5 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -in PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 6 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -inh PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 7 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -il PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 8 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -l PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 9 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -q PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 10 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -q NEVER-PATTERN ./testdata/grepinput ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 11 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -vn pattern ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 12 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -ix pattern ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 13 -----------------------------" >>testtry
+echo seventeen >testtemp1
+(cd $srcdir; $valgrind $pcregrep -f./testdata/greplist -f $builddir/testtemp1 ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 14 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -w pat ./testdata/grepinput ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 15 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep 'abc^*' ./testdata/grepinput) 2>>testtry >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 16 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep abc ./testdata/grepinput ./testdata/nonexistfile) 2>>testtry >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 17 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -M 'the\noutput' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 18 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -Mn '(the\noutput|dog\.\n--)' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 19 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -Mix 'Pattern' ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 20 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -Mixn 'complete pair\nof lines' ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 21 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -nA3 'four' ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 22 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -nB3 'four' ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 23 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -C3 'four' ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 24 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -A9 'four' ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 25 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -nB9 'four' ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 26 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -A9 -B9 'four' ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 27 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -A10 'four' ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 28 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -nB10 'four' ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 29 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -C12 -B10 'four' ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 30 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -inB3 'pattern' ./testdata/grepinput ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 31 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -inA3 'pattern' ./testdata/grepinput ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 32 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -L 'fox' ./testdata/grepinput ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 33 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep 'fox' ./testdata/grepnonexist) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 34 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -s 'fox' ./testdata/grepnonexist) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 35 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -L -r --include=grepinputx --include grepinput8 --exclude-dir='^\.' 'fox' ./testdata | sort) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 36 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -L -r --include=grepinput --exclude 'grepinput$' --exclude=grepinput8 --exclude-dir='^\.' 'fox' ./testdata | sort) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 37 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep '^(a+)*\d' ./testdata/grepinput) >>testtry 2>teststderr
+echo "RC=$?" >>testtry
+echo "======== STDERR ========" >>testtry
+cat teststderr >>testtry
+
+echo "---------------------------- Test 38 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep '>\x00<' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 39 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -A1 'before the binary zero' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 40 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -B1 'after the binary zero' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 41 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -B1 -o '\w+ the binary zero' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 42 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -B1 -onH '\w+ the binary zero' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 43 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -on 'before|zero|after' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 44 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -on -e before -ezero -e after ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 45 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -on -f ./testdata/greplist -e binary ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 46 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -eabc -e '(unclosed' ./testdata/grepinput) 2>>testtry >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 47 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -Fx "AB.VE
+elephant" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 48 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -F "AB.VE
+elephant" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 49 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -F -e DATA -e "AB.VE
+elephant" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 50 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep "^(abc|def|ghi|jkl)" ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 51 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -Mv "brown\sfox" ./testdata/grepinputv) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 52 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --colour=always jumps ./testdata/grepinputv) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 53 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --file-offsets 'before|zero|after' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 54 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --line-offsets 'before|zero|after' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 55 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -f./testdata/greplist --color=always ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 56 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -c lazy ./testdata/grepinput*) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 57 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -c -l lazy ./testdata/grepinput*) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 58 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --regex=PATTERN ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 59 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --regexp=PATTERN ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 60 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --regex PATTERN ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 61 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --regexp PATTERN ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 62 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --match-limit=1000 --no-jit -M 'This is a file(.|\R)*file.' ./testdata/grepinput) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 63 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --recursion-limit=1000 --no-jit -M 'This is a file(.|\R)*file.' ./testdata/grepinput) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 64 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o1 '(?<=PAT)TERN (ap(pear)s)' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 65 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o2 '(?<=PAT)TERN (ap(pear)s)' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 66 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o3 '(?<=PAT)TERN (ap(pear)s)' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 67 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o12 '(?<=PAT)TERN (ap(pear)s)' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 68 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --only-matching=2 '(?<=PAT)TERN (ap(pear)s)' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 69 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -vn --colour=always pattern ./testdata/grepinputx) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 70 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --color=always -M "triple:\t.*\n\n" ./testdata/grepinput3) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 71 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o "^01|^02|^03" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 72 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --color=always "^01|^02|^03" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 73 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o --colour=always "^01|^02|^03" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 74 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o "^01|02|^03" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 75 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --color=always "^01|02|^03" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 76 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o --colour=always "^01|02|^03" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 77 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o "^01|^02|03" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 78 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --color=always "^01|^02|03" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 79 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o --colour=always "^01|^02|03" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 80 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o "\b01|\b02" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 81 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --color=always "\\b01|\\b02" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 82 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o --colour=always "\\b01|\\b02" ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 83 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --buffer-size=100 "^a" ./testdata/grepinput3) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 84 -----------------------------" >>testtry
+echo testdata/grepinput3 >testtemp1
+(cd $srcdir; $valgrind $pcregrep --file-list ./testdata/grepfilelist --file-list $builddir/testtemp1 "fox|complete|t7") >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 85 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --file-list=./testdata/grepfilelist "dolor" ./testdata/grepinput3) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 86 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep "dog" ./testdata/grepbinary) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 87 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep "cat" ./testdata/grepbinary) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 88 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -v "cat" ./testdata/grepbinary) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 89 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -I "dog" ./testdata/grepbinary) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 90 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --binary-files=without-match "dog" ./testdata/grepbinary) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 91 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -a "dog" ./testdata/grepbinary) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 92 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --binary-files=text "dog" ./testdata/grepbinary) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 93 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --text "dog" ./testdata/grepbinary) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 94 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -L -r --include=grepinputx --include grepinput8 'fox' ./testdata/grepinput* | sort) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 95 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --file-list ./testdata/grepfilelist --exclude grepinputv "fox|complete") >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 96 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -L -r --include-dir=testdata --exclude '^(?!grepinput)' 'fox' ./test* | sort) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 97 -----------------------------" >>testtry
+echo "grepinput$" >testtemp1
+echo "grepinput8" >>testtemp1
+(cd $srcdir; $valgrind $pcregrep -L -r --include=grepinput --exclude-from $builddir/testtemp1 --exclude-dir='^\.' 'fox' ./testdata | sort) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 98 -----------------------------" >>testtry
+echo "grepinput$" >testtemp1
+echo "grepinput8" >>testtemp1
+(cd $srcdir; $valgrind $pcregrep -L -r --exclude=grepinput3 --include=grepinput --exclude-from $builddir/testtemp1 --exclude-dir='^\.' 'fox' ./testdata | sort) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 99 -----------------------------" >>testtry
+echo "grepinput$" >testtemp1
+echo "grepinput8" >testtemp2
+(cd $srcdir; $valgrind $pcregrep -L -r --include grepinput --exclude-from $builddir/testtemp1 --exclude-from=$builddir/testtemp2 --exclude-dir='^\.' 'fox' ./testdata | sort) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 100 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -Ho2 --only-matching=1 -o3 '(\w+) binary (\w+)(\.)?' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 101 ------------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -o3 -Ho2 -o12 --only-matching=1 -o3 --colour=always --om-separator='|' '(\w+) binary (\w+)(\.)?' ./testdata/grepinput) >>testtry
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 102 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -n "^$" ./testdata/grepinput3) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 103 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --only-matching "^$" ./testdata/grepinput3) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 104 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep -n --only-matching "^$" ./testdata/grepinput3) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+echo "---------------------------- Test 105 -----------------------------" >>testtry
+(cd $srcdir; $valgrind $pcregrep --colour=always "ipsum|" ./testdata/grepinput3) >>testtry 2>&1
+echo "RC=$?" >>testtry
+
+
+# Now compare the results.
+
+$cf $srcdir/testdata/grepoutput testtry
+if [ $? != 0 ] ; then exit 1; fi
+
+
+# These tests require UTF-8 support
+
+if [ $utf8 -ne 0 ] ; then
+ echo "Testing pcregrep UTF-8 features"
+
+ echo "---------------------------- Test U1 ------------------------------" >testtry
+ (cd $srcdir; $valgrind $pcregrep -n -u --newline=any "^X" ./testdata/grepinput8) >>testtry
+ echo "RC=$?" >>testtry
+
+ echo "---------------------------- Test U2 ------------------------------" >>testtry
+ (cd $srcdir; $valgrind $pcregrep -n -u -C 3 --newline=any "Match" ./testdata/grepinput8) >>testtry
+ echo "RC=$?" >>testtry
+
+ $cf $srcdir/testdata/grepoutput8 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+
+else
+ echo "Skipping pcregrep UTF-8 tests: no UTF-8 support in PCRE library"
+fi
+
+
+# We go to some contortions to try to ensure that the tests for the various
+# newline settings will work in environments where the normal newline sequence
+# is not \n. Do not use exported files, whose line endings might be changed.
+# Instead, create an input file using printf so that its contents are exactly
+# what we want. Note the messy fudge to get printf to write a string that
+# starts with a hyphen. These tests are run in the build directory.
+
+echo "Testing pcregrep newline settings"
+printf "abc\rdef\r\nghi\njkl" >testNinput
+
+printf "%c--------------------------- Test N1 ------------------------------\r\n" - >testtry
+$valgrind $pcregrep -n -N CR "^(abc|def|ghi|jkl)" testNinput >>testtry
+
+printf "%c--------------------------- Test N2 ------------------------------\r\n" - >>testtry
+$valgrind $pcregrep -n --newline=crlf "^(abc|def|ghi|jkl)" testNinput >>testtry
+
+printf "%c--------------------------- Test N3 ------------------------------\r\n" - >>testtry
+pattern=`printf 'def\rjkl'`
+$valgrind $pcregrep -n --newline=cr -F "$pattern" testNinput >>testtry
+
+printf "%c--------------------------- Test N4 ------------------------------\r\n" - >>testtry
+$valgrind $pcregrep -n --newline=crlf -F -f $srcdir/testdata/greppatN4 testNinput >>testtry
+
+printf "%c--------------------------- Test N5 ------------------------------\r\n" - >>testtry
+$valgrind $pcregrep -n --newline=any "^(abc|def|ghi|jkl)" testNinput >>testtry
+
+printf "%c--------------------------- Test N6 ------------------------------\r\n" - >>testtry
+$valgrind $pcregrep -n --newline=anycrlf "^(abc|def|ghi|jkl)" testNinput >>testtry
+
+$cf $srcdir/testdata/grepoutputN testtry
+if [ $? != 0 ] ; then exit 1; fi
+
+exit 0
+
+# End
diff --git a/pcre/RunTest b/pcre/RunTest
new file mode 100755
index 00000000000..505a0bf14b5
--- /dev/null
+++ b/pcre/RunTest
@@ -0,0 +1,1063 @@
+#! /bin/sh
+
+###############################################################################
+# Run the PCRE tests using the pcretest program. The appropriate tests are
+# selected, depending on which build-time options were used.
+#
+# All tests are now run both with and without -s, to ensure that everything is
+# tested with and without studying. However, there are some tests that produce
+# different output after studying, typically when we are tracing the actual
+# matching process (for example, using auto-callouts). In these few cases, the
+# tests are duplicated in the files, one with /S to force studying always, and
+# one with /SS to force *not* studying always. The use of -s doesn't then make
+# any difference to their output. There is also one test which compiles invalid
+# UTF-8 with the UTF-8 check turned off; for this, studying must also be
+# disabled with /SS.
+#
+# When JIT support is available, all the tests are also run with -s+ to test
+# (again, almost) everything with studying and the JIT option, unless "nojit"
+# is given on the command line. There are also two tests for JIT-specific
+# features, one to be run when JIT support is available (unless "nojit" is
+# specified), and one when it is not.
+#
+# Whichever of the 8-, 16- and 32-bit libraries exist are tested. It is also
+# possible to select which to test by giving "-8", "-16" or "-32" on the
+# command line.
+#
+# As well as "nojit", "-8", "-16", and "-32", arguments for this script are
+# individual test numbers, ranges of tests such as 3-6 or 3- (meaning 3 to the
+# end), or a number preceded by ~ to exclude a test. For example, "3-15 ~10"
+# runs tests 3 to 15, excluding test 10, and just "~10" runs all the tests
+# except test 10. Whatever order the arguments are in, the tests are always run
+# in numerical order.
+
+# Other arguments can be one of the words "valgrind", "valgrind-log", or "sim"
+# followed by an argument to run cross- compiled executables under a simulator,
+# for example:
+#
+# RunTest 3 sim "qemu-arm -s 8388608"
+#
+# There are two special cases where only one argument is allowed:
+#
+# If the first and only argument is "ebcdic", the script runs the special
+# EBCDIC test that can be useful for checking certain EBCDIC features, even
+# when run in an ASCII environment.
+#
+# If the script is obeyed as "RunTest list", a list of available tests is
+# output, but none of them are run.
+###############################################################################
+
+# Define test titles in variables so that they can be output as a list. Some
+# of them are modified (e.g. with -8 or -16) when used in the actual tests.
+
+title1="Test 1: Main functionality (Compatible with Perl >= 5.10)"
+title2="Test 2: API, errors, internals, and non-Perl stuff"
+title3="Test 3: Locale-specific features"
+title4A="Test 4: UTF"
+title4B=" support (Compatible with Perl >= 5.10)"
+title5="Test 5: API, internals, and non-Perl stuff for UTF"
+title6="Test 6: Unicode property support (Compatible with Perl >= 5.10)"
+title7="Test 7: API, internals, and non-Perl stuff for Unicode property support"
+title8="Test 8: DFA matching main functionality"
+title9="Test 9: DFA matching with UTF"
+title10="Test 10: DFA matching with Unicode properties"
+title11="Test 11: Internal offsets and code size tests"
+title12="Test 12: JIT-specific features (JIT available)"
+title13="Test 13: JIT-specific features (JIT not available)"
+title14="Test 14: Specials for the basic 8-bit library"
+title15="Test 15: Specials for the 8-bit library with UTF-8 support"
+title16="Test 16: Specials for the 8-bit library with Unicode propery support"
+title17="Test 17: Specials for the basic 16/32-bit library"
+title18="Test 18: Specials for the 16/32-bit library with UTF-16/32 support"
+title19="Test 19: Specials for the 16/32-bit library with Unicode property support"
+title20="Test 20: DFA specials for the basic 16/32-bit library"
+title21="Test 21: Reloads for the basic 16/32-bit library"
+title22="Test 22: Reloads for the 16/32-bit library with UTF-16/32 support"
+title23="Test 23: Specials for the 16-bit library"
+title24="Test 24: Specials for the 16-bit library with UTF-16 support"
+title25="Test 25: Specials for the 32-bit library"
+title26="Test 26: Specials for the 32-bit library with UTF-32 support"
+
+maxtest=26
+
+if [ $# -eq 1 -a "$1" = "list" ]; then
+ echo $title1
+ echo $title2 "(not UTF)"
+ echo $title3
+ echo $title4A $title4B
+ echo $title5 support
+ echo $title6
+ echo $title7
+ echo $title8
+ echo $title9
+ echo $title10
+ echo $title11
+ echo $title12
+ echo $title13
+ echo $title14
+ echo $title15
+ echo $title16
+ echo $title17
+ echo $title18
+ echo $title19
+ echo $title20
+ echo $title21
+ echo $title22
+ echo $title23
+ echo $title24
+ echo $title25
+ echo $title26
+ exit 0
+fi
+
+# Set up a suitable "diff" command for comparison. Some systems
+# have a diff that lacks a -u option. Try to deal with this.
+
+cf="diff"
+diff -u /dev/null /dev/null 2>/dev/null && cf="diff -u"
+
+# Find the test data
+
+if [ -n "$srcdir" -a -d "$srcdir" ] ; then
+ testdata="$srcdir/testdata"
+elif [ -d "./testdata" ] ; then
+ testdata=./testdata
+elif [ -d "../testdata" ] ; then
+ testdata=../testdata
+else
+ echo "Cannot find the testdata directory"
+ exit 1
+fi
+
+
+# ------ Special EBCDIC Test -------
+
+if [ $# -eq 1 -a "$1" = "ebcdic" ]; then
+ ./pcretest -C ebcdic >/dev/null
+ ebcdic=$?
+ if [ $ebcdic -ne 1 ] ; then
+ echo "Cannot run EBCDIC tests: EBCDIC support not compiled"
+ exit 1
+ fi
+
+ for opt in "" "-s" "-dfa" "-s -dfa"; do
+ ./pcretest -q $opt $testdata/testinputEBC >testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutputEBC testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-dfa" ] ; then echo " OK using DFA"
+ elif [ "$opt" = "-s -dfa" ] ; then echo " OK using DFA with study"
+ else echo " OK"
+ fi
+ done
+
+exit 0
+fi
+
+
+# ------ Normal Tests ------
+
+# Default values
+
+arg8=
+arg16=
+arg32=
+nojit=
+sim=
+skip=
+valgrind=
+
+# This is in case the caller has set aliases (as I do - PH)
+unset cp ls mv rm
+
+# Process options and select which tests to run; for those that are explicitly
+# requested, check that the necessary optional facilities are available.
+
+do1=no
+do2=no
+do3=no
+do4=no
+do5=no
+do6=no
+do7=no
+do8=no
+do9=no
+do10=no
+do11=no
+do12=no
+do13=no
+do14=no
+do15=no
+do16=no
+do17=no
+do18=no
+do19=no
+do20=no
+do21=no
+do22=no
+do23=no
+do24=no
+do25=no
+do26=no
+
+while [ $# -gt 0 ] ; do
+ case $1 in
+ 1) do1=yes;;
+ 2) do2=yes;;
+ 3) do3=yes;;
+ 4) do4=yes;;
+ 5) do5=yes;;
+ 6) do6=yes;;
+ 7) do7=yes;;
+ 8) do8=yes;;
+ 9) do9=yes;;
+ 10) do10=yes;;
+ 11) do11=yes;;
+ 12) do12=yes;;
+ 13) do13=yes;;
+ 14) do14=yes;;
+ 15) do15=yes;;
+ 16) do16=yes;;
+ 17) do17=yes;;
+ 18) do18=yes;;
+ 19) do19=yes;;
+ 20) do20=yes;;
+ 21) do21=yes;;
+ 22) do22=yes;;
+ 23) do23=yes;;
+ 24) do24=yes;;
+ 25) do25=yes;;
+ 26) do26=yes;;
+ -8) arg8=yes;;
+ -16) arg16=yes;;
+ -32) arg32=yes;;
+ nojit) nojit=yes;;
+ sim) shift; sim=$1;;
+ valgrind) valgrind="valgrind --tool=memcheck -q --smc-check=all";;
+ valgrind-log) valgrind="valgrind --tool=memcheck --num-callers=30 --leak-check=no --error-limit=no --smc-check=all --log-file=report.%p ";;
+ ~*)
+ if expr "$1" : '~[0-9][0-9]*$' >/dev/null; then
+ skip="$skip `expr "$1" : '~\([0-9]*\)*$'`"
+ else
+ echo "Unknown option or test selector '$1'"; exit 1
+ fi
+ ;;
+ *-*)
+ if expr "$1" : '[0-9][0-9]*-[0-9]*$' >/dev/null; then
+ tf=`expr "$1" : '\([0-9]*\)'`
+ tt=`expr "$1" : '.*-\([0-9]*\)'`
+ if [ "$tt" = "" ] ; then tt=$maxtest; fi
+ if expr \( "$tf" "<" 1 \) \| \( "$tt" ">" "$maxtest" \) >/dev/null; then
+ echo "Invalid test range '$1'"; exit 1
+ fi
+ while expr "$tf" "<=" "$tt" >/dev/null; do
+ eval do${tf}=yes
+ tf=`expr $tf + 1`
+ done
+ else
+ echo "Invalid test range '$1'"; exit 1
+ fi
+ ;;
+ *) echo "Unknown option or test selector '$1'"; exit 1;;
+ esac
+ shift
+done
+
+# Find which optional facilities are available.
+
+$sim ./pcretest -C linksize >/dev/null
+link_size=$?
+if [ $link_size -lt 2 ] ; then
+ echo "Failed to find internal link size"
+ exit 1
+fi
+if [ $link_size -gt 4 ] ; then
+ echo "Failed to find internal link size"
+ exit 1
+fi
+
+# All of 8-bit, 16-bit, and 32-bit character strings may be supported, but only
+# one need be.
+
+$sim ./pcretest -C pcre8 >/dev/null
+support8=$?
+$sim ./pcretest -C pcre16 >/dev/null
+support16=$?
+$sim ./pcretest -C pcre32 >/dev/null
+support32=$?
+
+# Initialize all bitsizes skipped
+
+test8=skip
+test16=skip
+test32=skip
+
+# If no bitsize arguments, select all that are available
+
+if [ "$arg8$arg16$arg32" = "" ] ; then
+ if [ $support8 -ne 0 ] ; then
+ test8=
+ fi
+ if [ $support16 -ne 0 ] ; then
+ test16=-16
+ fi
+ if [ $support32 -ne 0 ] ; then
+ test32=-32
+ fi
+
+# Select requested bit sizes
+
+else
+ if [ "$arg8" = yes ] ; then
+ if [ $support8 -eq 0 ] ; then
+ echo "Cannot run 8-bit library tests: 8-bit library not compiled"
+ exit 1
+ fi
+ test8=
+ fi
+ if [ "$arg16" = yes ] ; then
+ if [ $support16 -eq 0 ] ; then
+ echo "Cannot run 16-bit library tests: 16-bit library not compiled"
+ exit 1
+ fi
+ test16=-16
+ fi
+ if [ "$arg32" = yes ] ; then
+ if [ $support32 -eq 0 ] ; then
+ echo "Cannot run 32-bit library tests: 32-bit library not compiled"
+ exit 1
+ fi
+ test32=-32
+ fi
+fi
+
+# UTF support always applies to all bit sizes if both are supported; we can't
+# have UTF-8 support without UTF-16 support (for example).
+
+$sim ./pcretest -C utf >/dev/null
+utf=$?
+
+$sim ./pcretest -C ucp >/dev/null
+ucp=$?
+
+jitopt=
+$sim ./pcretest -C jit >/dev/null
+jit=$?
+if [ $jit -ne 0 -a "$nojit" != "yes" ] ; then
+ jitopt=-s+
+fi
+
+# Handle any explicit skips
+
+for i in $skip; do eval do$i=no; done
+
+# If any unsuitable tests were explicitly requested, grumble.
+
+if [ $utf -eq 0 ] ; then
+ if [ $do4 = yes ] ; then
+ echo "Can't run test 4 because UTF support is not configured"
+ exit 1
+ fi
+ if [ $do5 = yes ] ; then
+ echo "Can't run test 5 because UTF support is not configured"
+ exit 1
+ fi
+ if [ $do9 = yes ] ; then
+ echo "Can't run test 8 because UTF support is not configured"
+ exit 1
+ fi
+ if [ $do15 = yes ] ; then
+ echo "Can't run test 15 because UTF support is not configured"
+ exit 1
+ fi
+ if [ $do18 = yes ] ; then
+ echo "Can't run test 18 because UTF support is not configured"
+ fi
+ if [ $do22 = yes ] ; then
+ echo "Can't run test 22 because UTF support is not configured"
+ fi
+fi
+
+if [ $ucp -eq 0 ] ; then
+ if [ $do6 = yes ] ; then
+ echo "Can't run test 6 because Unicode property support is not configured"
+ exit 1
+ fi
+ if [ $do7 = yes ] ; then
+ echo "Can't run test 7 because Unicode property support is not configured"
+ exit 1
+ fi
+ if [ $do10 = yes ] ; then
+ echo "Can't run test 10 because Unicode property support is not configured"
+ exit 1
+ fi
+ if [ $do16 = yes ] ; then
+ echo "Can't run test 16 because Unicode property support is not configured"
+ exit 1
+ fi
+ if [ $do19 = yes ] ; then
+ echo "Can't run test 19 because Unicode property support is not configured"
+ exit 1
+ fi
+fi
+
+if [ $link_size -ne 2 ] ; then
+ if [ $do11 = yes ] ; then
+ echo "Can't run test 11 because the link size ($link_size) is not 2"
+ exit 1
+ fi
+fi
+
+if [ $jit -eq 0 ] ; then
+ if [ $do12 = "yes" ] ; then
+ echo "Can't run test 12 because JIT support is not configured"
+ exit 1
+ fi
+else
+ if [ $do13 = "yes" ] ; then
+ echo "Can't run test 13 because JIT support is configured"
+ exit 1
+ fi
+fi
+
+# If no specific tests were requested, select all. Those that are not
+# relevant will be automatically skipped.
+
+if [ $do1 = no -a $do2 = no -a $do3 = no -a $do4 = no -a \
+ $do5 = no -a $do6 = no -a $do7 = no -a $do8 = no -a \
+ $do9 = no -a $do10 = no -a $do11 = no -a $do12 = no -a \
+ $do13 = no -a $do14 = no -a $do15 = no -a $do16 = no -a \
+ $do17 = no -a $do18 = no -a $do19 = no -a $do20 = no -a \
+ $do21 = no -a $do22 = no -a $do23 = no -a $do24 = no -a \
+ $do25 = no -a $do26 = no ] ; then
+ do1=yes
+ do2=yes
+ do3=yes
+ do4=yes
+ do5=yes
+ do6=yes
+ do7=yes
+ do8=yes
+ do9=yes
+ do10=yes
+ do11=yes
+ do12=yes
+ do13=yes
+ do14=yes
+ do15=yes
+ do16=yes
+ do17=yes
+ do18=yes
+ do19=yes
+ do20=yes
+ do21=yes
+ do22=yes
+ do23=yes
+ do24=yes
+ do25=yes
+ do26=yes
+fi
+
+# Handle any explicit skips (again, so that an argument list may consist only
+# of explicit skips).
+
+for i in $skip; do eval do$i=no; done
+
+# Show which release and which test data
+
+echo ""
+echo PCRE C library tests using test data from $testdata
+$sim ./pcretest /dev/null
+
+for bmode in "$test8" "$test16" "$test32"; do
+ case "$bmode" in
+ skip) continue;;
+ -16) if [ "$test8$test32" != "skipskip" ] ; then echo ""; fi
+ bits=16; echo "---- Testing 16-bit library ----"; echo "";;
+ -32) if [ "$test8$test16" != "skipskip" ] ; then echo ""; fi
+ bits=32; echo "---- Testing 32-bit library ----"; echo "";;
+ *) bits=8; echo "---- Testing 8-bit library ----"; echo "";;
+ esac
+
+# Primary test, compatible with JIT and all versions of Perl >= 5.8
+
+if [ $do1 = yes ] ; then
+ echo $title1
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput1 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput1 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+fi
+
+# PCRE tests that are not JIT or Perl-compatible: API, errors, internals
+
+if [ $do2 = yes ] ; then
+ echo $title2 "(not UTF-$bits)"
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput2 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput2 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else
+ echo " "
+ echo "** Test 2 requires a lot of stack. If it has crashed with a"
+ echo "** segmentation fault, it may be that you do not have enough"
+ echo "** stack available by default. Please see the 'pcrestack' man"
+ echo "** page for a discussion of PCRE's stack usage."
+ echo " "
+ exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+fi
+
+# Locale-specific tests, provided that either the "fr_FR" or the "french"
+# locale is available. The former is the Unix-like standard; the latter is
+# for Windows. Another possibility is "fr", which needs to be run against
+# the Windows-specific input and output files.
+
+if [ $do3 = yes ] ; then
+ locale -a | grep '^fr_FR$' >/dev/null
+ if [ $? -eq 0 ] ; then
+ locale=fr_FR
+ infile=$testdata/testinput3
+ outfile=$testdata/testoutput3
+ else
+ infile=test3input
+ outfile=test3output
+ locale -a | grep '^french$' >/dev/null
+ if [ $? -eq 0 ] ; then
+ locale=french
+ sed 's/fr_FR/french/' $testdata/testinput3 >test3input
+ sed 's/fr_FR/french/' $testdata/testoutput3 >test3output
+ else
+ locale -a | grep '^fr$' >/dev/null
+ if [ $? -eq 0 ] ; then
+ locale=fr
+ sed 's/fr_FR/fr/' $testdata/wintestinput3 >test3input
+ sed 's/fr_FR/fr/' $testdata/wintestoutput3 >test3output
+ else
+ locale=
+ fi
+ fi
+ fi
+
+ if [ "$locale" != "" ] ; then
+ echo $title3 "(using '$locale' locale)"
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $infile testtry
+ if [ $? = 0 ] ; then
+ $cf $outfile testtry
+ if [ $? != 0 ] ; then
+ echo " "
+ echo "Locale test did not run entirely successfully."
+ echo "This usually means that there is a problem with the locale"
+ echo "settings rather than a bug in PCRE."
+ break;
+ else
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ fi
+ else exit 1
+ fi
+ done
+ else
+ echo "Cannot test locale-specific features - none of the 'fr_FR', 'fr' or"
+ echo "'french' locales exist, or the \"locale\" command is not available"
+ echo "to check for them."
+ echo " "
+ fi
+fi
+
+# Additional tests for UTF support
+
+if [ $do4 = yes ] ; then
+ echo ${title4A}-${bits}${title4B}
+ if [ $utf -eq 0 ] ; then
+ echo " Skipped because UTF-$bits support is not available"
+ else
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput4 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput4 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+ fi
+fi
+
+if [ $do5 = yes ] ; then
+ echo ${title5}-${bits} support
+ if [ $utf -eq 0 ] ; then
+ echo " Skipped because UTF-$bits support is not available"
+ else
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput5 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput5 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+ fi
+fi
+
+if [ $do6 = yes ] ; then
+ echo $title6
+ if [ $utf -eq 0 -o $ucp -eq 0 ] ; then
+ echo " Skipped because Unicode property support is not available"
+ else
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput6 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput6 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+ fi
+fi
+
+# Test non-Perl-compatible Unicode property support
+
+if [ $do7 = yes ] ; then
+ echo $title7
+ if [ $utf -eq 0 -o $ucp -eq 0 ] ; then
+ echo " Skipped because Unicode property support is not available"
+ else
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput7 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput7 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+ fi
+fi
+
+# Tests for DFA matching support
+
+if [ $do8 = yes ] ; then
+ echo $title8
+ for opt in "" "-s"; do
+ $sim $valgrind ./pcretest -q $bmode $opt -dfa $testdata/testinput8 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput8 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study" ; else echo " OK"; fi
+ done
+fi
+
+if [ $do9 = yes ] ; then
+ echo ${title9}-${bits}
+ if [ $utf -eq 0 ] ; then
+ echo " Skipped because UTF-$bits support is not available"
+ else
+ for opt in "" "-s"; do
+ $sim $valgrind ./pcretest -q $bmode $opt -dfa $testdata/testinput9 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput9 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study" ; else echo " OK"; fi
+ done
+ fi
+fi
+
+if [ $do10 = yes ] ; then
+ echo $title10
+ if [ $utf -eq 0 -o $ucp -eq 0 ] ; then
+ echo " Skipped because Unicode property support is not available"
+ else
+ for opt in "" "-s"; do
+ $sim $valgrind ./pcretest -q $bmode $opt -dfa $testdata/testinput10 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput10 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study" ; else echo " OK"; fi
+ done
+ fi
+fi
+
+# Test of internal offsets and code sizes. This test is run only when there
+# is Unicode property support and the link size is 2. The actual tests are
+# mostly the same as in some of the above, but in this test we inspect some
+# offsets and sizes that require a known link size. This is a doublecheck for
+# the maintainer, just in case something changes unexpectely. The output from
+# this test is not the same in 8-bit and 16-bit modes.
+
+if [ $do11 = yes ] ; then
+ echo $title11
+ if [ $link_size -ne 2 ] ; then
+ echo " Skipped because link size is not 2"
+ elif [ $ucp -eq 0 ] ; then
+ echo " Skipped because Unicode property support is not available"
+ else
+ for opt in "" "-s"; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput11 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput11-$bits testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study" ; else echo " OK"; fi
+ done
+ fi
+fi
+
+# Test JIT-specific features when JIT is available
+
+if [ $do12 = yes ] ; then
+ echo $title12
+ if [ $jit -eq 0 -o "$nojit" = "yes" ] ; then
+ echo " Skipped because JIT is not available or not usable"
+ else
+ $sim $valgrind ./pcretest -q $bmode $testdata/testinput12 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput12 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ echo " OK"
+ fi
+fi
+
+# Test JIT-specific features when JIT is not available
+
+if [ $do13 = yes ] ; then
+ echo $title13
+ if [ $jit -ne 0 ] ; then
+ echo " Skipped because JIT is available"
+ else
+ $sim $valgrind ./pcretest -q $bmode $testdata/testinput13 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput13 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ echo " OK"
+ fi
+fi
+
+# Tests for 8-bit-specific features
+
+if [ "$do14" = yes ] ; then
+ echo $title14
+ if [ "$bits" = "16" -o "$bits" = "32" ] ; then
+ echo " Skipped when running 16/32-bit tests"
+ else
+ cp -f $testdata/saved16 testsaved16
+ cp -f $testdata/saved32 testsaved32
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput14 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput14 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+ fi
+fi
+
+# Tests for 8-bit-specific features (needs UTF-8 support)
+
+if [ "$do15" = yes ] ; then
+ echo $title15
+ if [ "$bits" = "16" -o "$bits" = "32" ] ; then
+ echo " Skipped when running 16/32-bit tests"
+ elif [ $utf -eq 0 ] ; then
+ echo " Skipped because UTF-$bits support is not available"
+ else
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput15 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput15 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+ fi
+fi
+
+# Tests for 8-bit-specific features (Unicode property support)
+
+if [ $do16 = yes ] ; then
+ echo $title16
+ if [ "$bits" = "16" -o "$bits" = "32" ] ; then
+ echo " Skipped when running 16/32-bit tests"
+ elif [ $ucp -eq 0 ] ; then
+ echo " Skipped because Unicode property support is not available"
+ else
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput16 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput16 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+ fi
+fi
+
+# Tests for 16/32-bit-specific features
+
+if [ $do17 = yes ] ; then
+ echo $title17
+ if [ "$bits" = "8" ] ; then
+ echo " Skipped when running 8-bit tests"
+ else
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput17 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput17 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+ fi
+fi
+
+# Tests for 16/32-bit-specific features (UTF-16/32 support)
+
+if [ $do18 = yes ] ; then
+ echo $title18
+ if [ "$bits" = "8" ] ; then
+ echo " Skipped when running 8-bit tests"
+ elif [ $utf -eq 0 ] ; then
+ echo " Skipped because UTF-$bits support is not available"
+ else
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput18 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput18-$bits testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+ fi
+fi
+
+# Tests for 16/32-bit-specific features (Unicode property support)
+
+if [ $do19 = yes ] ; then
+ echo $title19
+ if [ "$bits" = "8" ] ; then
+ echo " Skipped when running 8-bit tests"
+ elif [ $ucp -eq 0 ] ; then
+ echo " Skipped because Unicode property support is not available"
+ else
+ for opt in "" "-s" $jitopt; do
+ $sim $valgrind ./pcretest -q $bmode $opt $testdata/testinput19 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput19 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ elif [ "$opt" = "-s+" ] ; then echo " OK with JIT study"
+ else echo " OK"
+ fi
+ done
+ fi
+fi
+
+# Tests for 16/32-bit-specific features in DFA non-UTF-16/32 mode
+
+if [ $do20 = yes ] ; then
+ echo $title20
+ if [ "$bits" = "8" ] ; then
+ echo " Skipped when running 8-bit tests"
+ else
+ for opt in "" "-s"; do
+ $sim $valgrind ./pcretest -q $bmode $opt -dfa $testdata/testinput20 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput20 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ if [ "$opt" = "-s" ] ; then echo " OK with study"
+ else echo " OK"
+ fi
+ done
+ fi
+fi
+
+# Tests for reloads with 16/32-bit library
+
+if [ $do21 = yes ] ; then
+ echo $title21
+ if [ "$bits" = "8" ] ; then
+ echo " Skipped when running 8-bit tests"
+ elif [ $link_size -ne 2 ] ; then
+ echo " Skipped because link size is not 2"
+ else
+ cp -f $testdata/saved8 testsaved8
+ cp -f $testdata/saved16LE-1 testsaved16LE-1
+ cp -f $testdata/saved16BE-1 testsaved16BE-1
+ cp -f $testdata/saved32LE-1 testsaved32LE-1
+ cp -f $testdata/saved32BE-1 testsaved32BE-1
+ $sim $valgrind ./pcretest -q $bmode $testdata/testinput21 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput21-$bits testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ echo " OK"
+ fi
+fi
+
+# Tests for reloads with 16/32-bit library (UTF-16 support)
+
+if [ $do22 = yes ] ; then
+ echo $title22
+ if [ "$bits" = "8" ] ; then
+ echo " Skipped when running 8-bit tests"
+ elif [ $utf -eq 0 ] ; then
+ echo " Skipped because UTF-$bits support is not available"
+ elif [ $link_size -ne 2 ] ; then
+ echo " Skipped because link size is not 2"
+ else
+ cp -f $testdata/saved16LE-2 testsaved16LE-2
+ cp -f $testdata/saved16BE-2 testsaved16BE-2
+ cp -f $testdata/saved32LE-2 testsaved32LE-2
+ cp -f $testdata/saved32BE-2 testsaved32BE-2
+ $sim $valgrind ./pcretest -q $bmode $testdata/testinput22 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput22-$bits testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ echo " OK"
+ fi
+fi
+
+if [ $do23 = yes ] ; then
+ echo $title23
+ if [ "$bits" = "8" -o "$bits" = "32" ] ; then
+ echo " Skipped when running 8/32-bit tests"
+ else
+ $sim $valgrind ./pcretest -q $bmode $testdata/testinput23 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput23 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ echo " OK"
+ fi
+fi
+
+if [ $do24 = yes ] ; then
+ echo $title24
+ if [ "$bits" = "8" -o "$bits" = "32" ] ; then
+ echo " Skipped when running 8/32-bit tests"
+ elif [ $utf -eq 0 ] ; then
+ echo " Skipped because UTF-$bits support is not available"
+ else
+ $sim $valgrind ./pcretest -q $bmode $testdata/testinput24 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput24 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ echo " OK"
+ fi
+fi
+
+if [ $do25 = yes ] ; then
+ echo $title25
+ if [ "$bits" = "8" -o "$bits" = "16" ] ; then
+ echo " Skipped when running 8/16-bit tests"
+ else
+ $sim $valgrind ./pcretest -q $bmode $testdata/testinput25 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput25 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ echo " OK"
+ fi
+fi
+
+if [ $do26 = yes ] ; then
+ echo $title26
+ if [ "$bits" = "8" -o "$bits" = "16" ] ; then
+ echo " Skipped when running 8/16-bit tests"
+ elif [ $utf -eq 0 ] ; then
+ echo " Skipped because UTF-$bits support is not available"
+ else
+ $sim $valgrind ./pcretest -q $bmode $testdata/testinput26 testtry
+ if [ $? = 0 ] ; then
+ $cf $testdata/testoutput26 testtry
+ if [ $? != 0 ] ; then exit 1; fi
+ else exit 1
+ fi
+ echo " OK"
+ fi
+fi
+
+# End of loop for 8/16/32-bit tests
+done
+
+# Clean up local working files
+rm -f test3input test3output testNinput testsaved* teststderr teststdout testtry
+
+# End
diff --git a/pcre/RunTest.bat b/pcre/RunTest.bat
new file mode 100644
index 00000000000..35d7f71f9e8
--- /dev/null
+++ b/pcre/RunTest.bat
@@ -0,0 +1,616 @@
+@echo off
+@rem This file must use CRLF linebreaks to function properly
+@rem and requires both pcretest and pcregrep
+@rem This file was originally contributed by Ralf Junker, and touched up by
+@rem Daniel Richard G. Tests 10-12 added by Philip H.
+@rem Philip H also changed test 3 to use "wintest" files.
+@rem
+@rem Updated by Tom Fortmann to support explicit test numbers on the command line.
+@rem Added argument validation and added error reporting.
+@rem
+@rem MS Windows batch file to run pcretest on testfiles with the correct
+@rem options.
+@rem
+@rem Sheri Pierce added logic to skip feature dependent tests
+@rem tests 4 5 9 15 and 18 require utf support
+@rem tests 6 7 10 16 and 19 require ucp support
+@rem 11 requires ucp and link size 2
+@rem 12 requires presence of jit support
+@rem 13 requires absence of jit support
+@rem Sheri P also added override tests for study and jit testing
+@rem Zoltan Herczeg added libpcre16 support
+@rem Zoltan Herczeg added libpcre32 support
+
+setlocal enabledelayedexpansion
+if [%srcdir%]==[] (
+if exist testdata\ set srcdir=.)
+if [%srcdir%]==[] (
+if exist ..\testdata\ set srcdir=..)
+if [%srcdir%]==[] (
+if exist ..\..\testdata\ set srcdir=..\..)
+if NOT exist %srcdir%\testdata\ (
+Error: echo distribution testdata folder not found!
+call :conferror
+exit /b 1
+goto :eof
+)
+
+if [%pcretest%]==[] set pcretest=.\pcretest.exe
+
+echo source dir is %srcdir%
+echo pcretest=%pcretest%
+
+if NOT exist %pcretest% (
+echo Error: %pcretest% not found!
+echo.
+call :conferror
+exit /b 1
+)
+
+%pcretest% -C linksize >NUL
+set link_size=%ERRORLEVEL%
+%pcretest% -C pcre8 >NUL
+set support8=%ERRORLEVEL%
+%pcretest% -C pcre16 >NUL
+set support16=%ERRORLEVEL%
+%pcretest% -C pcre32 >NUL
+set support32=%ERRORLEVEL%
+%pcretest% -C utf >NUL
+set utf=%ERRORLEVEL%
+%pcretest% -C ucp >NUL
+set ucp=%ERRORLEVEL%
+%pcretest% -C jit >NUL
+set jit=%ERRORLEVEL%
+
+if %support8% EQU 1 (
+if not exist testout8 md testout8
+if not exist testoutstudy8 md testoutstudy8
+if not exist testoutjit8 md testoutjit8
+)
+
+if %support16% EQU 1 (
+if not exist testout16 md testout16
+if not exist testoutstudy16 md testoutstudy16
+if not exist testoutjit16 md testoutjit16
+)
+
+if %support16% EQU 1 (
+if not exist testout32 md testout32
+if not exist testoutstudy32 md testoutstudy32
+if not exist testoutjit32 md testoutjit32
+)
+
+set do1=no
+set do2=no
+set do3=no
+set do4=no
+set do5=no
+set do6=no
+set do7=no
+set do8=no
+set do9=no
+set do10=no
+set do11=no
+set do12=no
+set do13=no
+set do14=no
+set do15=no
+set do16=no
+set do17=no
+set do18=no
+set do19=no
+set do20=no
+set do21=no
+set do22=no
+set do23=no
+set do24=no
+set do25=no
+set do26=no
+set all=yes
+
+for %%a in (%*) do (
+ set valid=no
+ for %%v in (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26) do if %%v == %%a set valid=yes
+ if "!valid!" == "yes" (
+ set do%%a=yes
+ set all=no
+) else (
+ echo Invalid test number - %%a!
+ echo Usage %0 [ test_number ] ...
+ echo Where test_number is one or more optional test numbers 1 through 26, default is all tests.
+ exit /b 1
+)
+)
+set failed="no"
+
+if "%all%" == "yes" (
+ set do1=yes
+ set do2=yes
+ set do3=yes
+ set do4=yes
+ set do5=yes
+ set do6=yes
+ set do7=yes
+ set do8=yes
+ set do9=yes
+ set do10=yes
+ set do11=yes
+ set do12=yes
+ set do13=yes
+ set do14=yes
+ set do15=yes
+ set do16=yes
+ set do17=yes
+ set do18=yes
+ set do19=yes
+ set do20=yes
+ set do21=yes
+ set do22=yes
+ set do23=yes
+ set do24=yes
+ set do25=yes
+ set do26=yes
+)
+
+@echo RunTest.bat's pcretest output is written to newly created subfolders named
+@echo testout, testoutstudy and testoutjit.
+@echo.
+
+set mode=
+set bits=8
+
+:nextMode
+if "%mode%" == "" (
+ if %support8% EQU 0 goto modeSkip
+ echo.
+ echo ---- Testing 8-bit library ----
+ echo.
+)
+if "%mode%" == "-16" (
+ if %support16% EQU 0 goto modeSkip
+ echo.
+ echo ---- Testing 16-bit library ----
+ echo.
+)
+if "%mode%" == "-32" (
+ if %support32% EQU 0 goto modeSkip
+ echo.
+ echo ---- Testing 32-bit library ----
+ echo.
+)
+if "%do1%" == "yes" call :do1
+if "%do2%" == "yes" call :do2
+if "%do3%" == "yes" call :do3
+if "%do4%" == "yes" call :do4
+if "%do5%" == "yes" call :do5
+if "%do6%" == "yes" call :do6
+if "%do7%" == "yes" call :do7
+if "%do8%" == "yes" call :do8
+if "%do9%" == "yes" call :do9
+if "%do10%" == "yes" call :do10
+if "%do11%" == "yes" call :do11
+if "%do12%" == "yes" call :do12
+if "%do13%" == "yes" call :do13
+if "%do14%" == "yes" call :do14
+if "%do15%" == "yes" call :do15
+if "%do16%" == "yes" call :do16
+if "%do17%" == "yes" call :do17
+if "%do18%" == "yes" call :do18
+if "%do19%" == "yes" call :do19
+if "%do20%" == "yes" call :do20
+if "%do21%" == "yes" call :do21
+if "%do22%" == "yes" call :do22
+if "%do23%" == "yes" call :do23
+if "%do24%" == "yes" call :do24
+if "%do25%" == "yes" call :do25
+if "%do26%" == "yes" call :do26
+:modeSkip
+if "%mode%" == "" (
+ set mode=-16
+ set bits=16
+ goto nextMode
+)
+if "%mode%" == "-16" (
+ set mode=-32
+ set bits=32
+ goto nextMode
+)
+
+@rem If mode is -32, testing is finished
+if %failed% == "yes" (
+echo In above output, one or more of the various tests failed!
+exit /b 1
+)
+echo All OK
+goto :eof
+
+:runsub
+@rem Function to execute pcretest and compare the output
+@rem Arguments are as follows:
+@rem
+@rem 1 = test number
+@rem 2 = outputdir
+@rem 3 = test name use double quotes
+@rem 4 - 9 = pcretest options
+
+if [%1] == [] (
+ echo Missing test number argument!
+ exit /b 1
+)
+
+if [%2] == [] (
+ echo Missing outputdir!
+ exit /b 1
+)
+
+if [%3] == [] (
+ echo Missing test name argument!
+ exit /b 1
+)
+
+set testinput=testinput%1
+set testoutput=testoutput%1
+if exist %srcdir%\testdata\win%testinput% (
+ set testinput=wintestinput%1
+ set testoutput=wintestoutput%1
+)
+
+echo Test %1: %3
+%pcretest% %mode% %4 %5 %6 %7 %8 %9 %srcdir%\testdata\%testinput% >%2%bits%\%testoutput%
+if errorlevel 1 (
+ echo. failed executing command-line:
+ echo. %pcretest% %mode% %4 %5 %6 %7 %8 %9 %srcdir%\testdata\%testinput% ^>%2%bits%\%testoutput%
+ set failed="yes"
+ goto :eof
+)
+
+set type=
+if [%1]==[11] (
+ set type=-%bits%
+)
+if [%1]==[18] (
+ set type=-%bits%
+)
+if [%1]==[21] (
+ set type=-%bits%
+)
+if [%1]==[22] (
+ set type=-%bits%
+)
+
+fc /n %srcdir%\testdata\%testoutput%%type% %2%bits%\%testoutput% >NUL
+
+if errorlevel 1 (
+ echo. failed comparison: fc /n %srcdir%\testdata\%testoutput% %2%bits%\%testoutput%
+ if [%1]==[2] (
+ echo.
+ echo ** Test 2 requires a lot of stack. PCRE can be configured to
+ echo ** use heap for recursion. Otherwise, to pass Test 2
+ echo ** you generally need to allocate 8 mb stack to PCRE.
+ echo ** See the 'pcrestack' page for a discussion of PCRE's
+ echo ** stack usage.
+ echo.
+)
+ if [%1]==[3] (
+ echo.
+ echo ** Test 3 failure usually means french locale is not
+ echo ** available on the system, rather than a bug or problem with PCRE.
+ echo.
+ goto :eof
+)
+
+ set failed="yes"
+ goto :eof
+)
+
+echo. Passed.
+goto :eof
+
+:do1
+call :runsub 1 testout "Main functionality (Compatible with Perl >= 5.10)" -q
+call :runsub 1 testoutstudy "Test with Study Override" -q -s
+if %jit% EQU 1 call :runsub 1 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do2
+ call :runsub 2 testout "API, errors, internals, and non-Perl stuff" -q
+ call :runsub 2 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 2 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do3
+ call :runsub 3 testout "Locale-specific features" -q
+ call :runsub 3 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 3 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do4
+if %utf% EQU 0 (
+ echo Test 4 Skipped due to absence of UTF-%bits% support.
+ goto :eof
+)
+ call :runsub 4 testout "UTF-%bits% support - (Compatible with Perl >= 5.10)" -q
+ call :runsub 4 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 4 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do5
+if %utf% EQU 0 (
+ echo Test 5 Skipped due to absence of UTF-%bits% support.
+ goto :eof
+)
+ call :runsub 5 testout "API, internals, and non-Perl stuff for UTF-%bits%" -q
+ call :runsub 5 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 5 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do6
+if %ucp% EQU 0 (
+ echo Test 6 Skipped due to absence of Unicode property support.
+ goto :eof
+)
+ call :runsub 6 testout "Unicode property support (Compatible with Perl >= 5.10)" -q
+ call :runsub 6 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 6 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do7
+if %ucp% EQU 0 (
+ echo Test 7 Skipped due to absence of Unicode property support.
+ goto :eof
+)
+ call :runsub 7 testout "API, internals, and non-Perl stuff for Unicode property support" -q
+ call :runsub 7 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 7 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do8
+ call :runsub 8 testout "DFA matching main functionality" -q -dfa
+ call :runsub 8 testoutstudy "Test with Study Override" -q -dfa -s
+goto :eof
+
+:do9
+if %utf% EQU 0 (
+ echo Test 9 Skipped due to absence of UTF-%bits% support.
+ goto :eof
+)
+ call :runsub 9 testout "DFA matching with UTF-%bits%" -q -dfa
+ call :runsub 9 testoutstudy "Test with Study Override" -q -dfa -s
+ goto :eof
+
+:do10
+if %ucp% EQU 0 (
+ echo Test 10 Skipped due to absence of Unicode property support.
+ goto :eof
+)
+ call :runsub 10 testout "DFA matching with Unicode properties" -q -dfa
+ call :runsub 10 testoutstudy "Test with Study Override" -q -dfa -s
+goto :eof
+
+:do11
+if NOT %link_size% EQU 2 (
+ echo Test 11 Skipped because link size is not 2.
+ goto :eof
+)
+if %ucp% EQU 0 (
+ echo Test 11 Skipped due to absence of Unicode property support.
+ goto :eof
+)
+ call :runsub 11 testout "Internal offsets and code size tests" -q
+ call :runsub 11 testoutstudy "Test with Study Override" -q -s
+goto :eof
+
+:do12
+if %jit% EQU 0 (
+ echo Test 12 Skipped due to absence of JIT support.
+ goto :eof
+)
+ call :runsub 12 testout "JIT-specific features (JIT available)" -q
+goto :eof
+
+:do13
+if %jit% EQU 1 (
+ echo Test 13 Skipped due to presence of JIT support.
+ goto :eof
+)
+ call :runsub 13 testout "JIT-specific features (JIT not available)" -q
+goto :eof
+
+:do14
+if NOT %bits% EQU 8 (
+ echo Test 14 Skipped when running 16/32-bit tests.
+ goto :eof
+)
+ copy /Y %srcdir%\testdata\saved16 testsaved16
+ copy /Y %srcdir%\testdata\saved32 testsaved32
+ call :runsub 14 testout "Specials for the basic 8-bit library" -q
+ call :runsub 14 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 14 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do15
+if NOT %bits% EQU 8 (
+ echo Test 15 Skipped when running 16/32-bit tests.
+ goto :eof
+)
+if %utf% EQU 0 (
+ echo Test 15 Skipped due to absence of UTF-%bits% support.
+ goto :eof
+)
+ call :runsub 15 testout "Specials for the 8-bit library with UTF-%bits% support" -q
+ call :runsub 15 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 15 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do16
+if NOT %bits% EQU 8 (
+ echo Test 16 Skipped when running 16/32-bit tests.
+ goto :eof
+)
+if %ucp% EQU 0 (
+ echo Test 16 Skipped due to absence of Unicode property support.
+ goto :eof
+)
+ call :runsub 16 testout "Specials for the 8-bit library with Unicode propery support" -q
+ call :runsub 16 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 16 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do17
+if %bits% EQU 8 (
+ echo Test 17 Skipped when running 8-bit tests.
+ goto :eof
+)
+ call :runsub 17 testout "Specials for the basic 16/32-bit library" -q
+ call :runsub 17 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 17 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do18
+if %bits% EQU 8 (
+ echo Test 18 Skipped when running 8-bit tests.
+ goto :eof
+)
+if %utf% EQU 0 (
+ echo Test 18 Skipped due to absence of UTF-%bits% support.
+ goto :eof
+)
+ call :runsub 18 testout "Specials for the 16/32-bit library with UTF-%bits% support" -q
+ call :runsub 18 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 18 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do19
+if %bits% EQU 8 (
+ echo Test 19 Skipped when running 8-bit tests.
+ goto :eof
+)
+if %ucp% EQU 0 (
+ echo Test 19 Skipped due to absence of Unicode property support.
+ goto :eof
+)
+ call :runsub 19 testout "Specials for the 16/32-bit library with Unicode property support" -q
+ call :runsub 19 testoutstudy "Test with Study Override" -q -s
+ if %jit% EQU 1 call :runsub 19 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do20
+if %bits% EQU 8 (
+ echo Test 20 Skipped when running 8-bit tests.
+ goto :eof
+)
+ call :runsub 20 testout "DFA specials for the basic 16/32-bit library" -q -dfa
+ call :runsub 20 testoutstudy "Test with Study Override" -q -dfa -s
+goto :eof
+
+:do21
+if %bits% EQU 8 (
+ echo Test 21 Skipped when running 8-bit tests.
+ goto :eof
+)
+if NOT %link_size% EQU 2 (
+ echo Test 21 Skipped because link size is not 2.
+ goto :eof
+)
+copy /Y %srcdir%\testdata\saved8 testsaved8
+copy /Y %srcdir%\testdata\saved16LE-1 testsaved16LE-1
+copy /Y %srcdir%\testdata\saved16BE-1 testsaved16BE-1
+copy /Y %srcdir%\testdata\saved32LE-1 testsaved32LE-1
+copy /Y %srcdir%\testdata\saved32BE-1 testsaved32BE-1
+call :runsub 21 testout "Reloads for the basic 16/32-bit library" -q
+call :runsub 21 testoutstudy "Test with Study Override" -q -s
+if %jit% EQU 1 call :runsub 21 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do22
+if %bits% EQU 8 (
+ echo Test 22 Skipped when running 8-bit tests.
+ goto :eof
+)
+if %utf% EQU 0 (
+ echo Test 22 Skipped due to absence of UTF-%bits% support.
+ goto :eof
+)
+if NOT %link_size% EQU 2 (
+ echo Test 22 Skipped because link size is not 2.
+ goto :eof
+)
+copy /Y %srcdir%\testdata\saved16LE-2 testsaved16LE-2
+copy /Y %srcdir%\testdata\saved16BE-2 testsaved16BE-2
+copy /Y %srcdir%\testdata\saved32LE-2 testsaved32LE-2
+copy /Y %srcdir%\testdata\saved32BE-2 testsaved32BE-2
+call :runsub 22 testout "Reloads for the 16/32-bit library with UTF-16/32 support" -q
+call :runsub 22 testoutstudy "Test with Study Override" -q -s
+if %jit% EQU 1 call :runsub 22 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do23
+if NOT %bits% EQU 16 (
+ echo Test 23 Skipped when running 8/32-bit tests.
+ goto :eof
+)
+call :runsub 23 testout "Specials for the 16-bit library" -q
+call :runsub 23 testoutstudy "Test with Study Override" -q -s
+if %jit% EQU 1 call :runsub 23 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do24
+if NOT %bits% EQU 16 (
+ echo Test 24 Skipped when running 8/32-bit tests.
+ goto :eof
+)
+if %utf% EQU 0 (
+ echo Test 24 Skipped due to absence of UTF-%bits% support.
+ goto :eof
+)
+call :runsub 24 testout "Specials for the 16-bit library with UTF-16 support" -q
+call :runsub 24 testoutstudy "Test with Study Override" -q -s
+if %jit% EQU 1 call :runsub 24 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do25
+if NOT %bits% EQU 32 (
+ echo Test 25 Skipped when running 8/16-bit tests.
+ goto :eof
+)
+call :runsub 25 testout "Specials for the 32-bit library" -q
+call :runsub 25 testoutstudy "Test with Study Override" -q -s
+if %jit% EQU 1 call :runsub 25 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:do26
+if NOT %bits% EQU 32 (
+ echo Test 26 Skipped when running 8/16-bit tests.
+ goto :eof
+)
+if %utf% EQU 0 (
+ echo Test 26 Skipped due to absence of UTF-%bits% support.
+ goto :eof
+)
+call :runsub 26 testout "Specials for the 32-bit library with UTF-32 support" -q
+call :runsub 26 testoutstudy "Test with Study Override" -q -s
+if %jit% EQU 1 call :runsub 26 testoutjit "Test with JIT Override" -q -s+
+goto :eof
+
+:conferror
+@echo.
+@echo Either your build is incomplete or you have a configuration error.
+@echo.
+@echo If configured with cmake and executed via "make test" or the MSVC "RUN_TESTS"
+@echo project, pcre_test.bat defines variables and automatically calls RunTest.bat.
+@echo For manual testing of all available features, after configuring with cmake
+@echo and building, you can run the built pcre_test.bat. For best results with
+@echo cmake builds and tests avoid directories with full path names that include
+@echo spaces for source or build.
+@echo.
+@echo Otherwise, if the build dir is in a subdir of the source dir, testdata needed
+@echo for input and verification should be found automatically when (from the
+@echo location of the the built exes) you call RunTest.bat. By default RunTest.bat
+@echo runs all tests compatible with the linked pcre library but it can be given
+@echo a test number as an argument.
+@echo.
+@echo If the build dir is not under the source dir you can either copy your exes
+@echo to the source folder or copy RunTest.bat and the testdata folder to the
+@echo location of your built exes and then run RunTest.bat.
+@echo.
+goto :eof
diff --git a/pcre/cmake/COPYING-CMAKE-SCRIPTS b/pcre/cmake/COPYING-CMAKE-SCRIPTS
new file mode 100644
index 00000000000..4b417765f3a
--- /dev/null
+++ b/pcre/cmake/COPYING-CMAKE-SCRIPTS
@@ -0,0 +1,22 @@
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions
+are met:
+
+1. Redistributions of source code must retain the copyright
+ notice, this list of conditions and the following disclaimer.
+2. Redistributions in binary form must reproduce the copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+3. The name of the author may not be used to endorse or promote products
+ derived from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
+IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
+IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
+INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
+THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
diff --git a/pcre/cmake/FindEditline.cmake b/pcre/cmake/FindEditline.cmake
new file mode 100644
index 00000000000..2d0b7cc543c
--- /dev/null
+++ b/pcre/cmake/FindEditline.cmake
@@ -0,0 +1,17 @@
+# Modified from FindReadline.cmake (PH Feb 2012)
+
+if(EDITLINE_INCLUDE_DIR AND EDITLINE_LIBRARY AND NCURSES_LIBRARY)
+ set(EDITLINE_FOUND TRUE)
+else(EDITLINE_INCLUDE_DIR AND EDITLINE_LIBRARY AND NCURSES_LIBRARY)
+ FIND_PATH(EDITLINE_INCLUDE_DIR readline.h
+ /usr/include/editline
+ /usr/include/edit/readline
+ /usr/include/readline
+ )
+
+ FIND_LIBRARY(EDITLINE_LIBRARY NAMES edit)
+ include(FindPackageHandleStandardArgs)
+ FIND_PACKAGE_HANDLE_STANDARD_ARGS(Editline DEFAULT_MSG EDITLINE_INCLUDE_DIR EDITLINE_LIBRARY )
+
+ MARK_AS_ADVANCED(EDITLINE_INCLUDE_DIR EDITLINE_LIBRARY)
+endif(EDITLINE_INCLUDE_DIR AND EDITLINE_LIBRARY AND NCURSES_LIBRARY)
diff --git a/pcre/cmake/FindPackageHandleStandardArgs.cmake b/pcre/cmake/FindPackageHandleStandardArgs.cmake
new file mode 100644
index 00000000000..151d8125031
--- /dev/null
+++ b/pcre/cmake/FindPackageHandleStandardArgs.cmake
@@ -0,0 +1,58 @@
+# FIND_PACKAGE_HANDLE_STANDARD_ARGS(NAME (DEFAULT_MSG|"Custom failure message") VAR1 ... )
+# This macro is intended to be used in FindXXX.cmake modules files.
+# It handles the REQUIRED and QUIET argument to FIND_PACKAGE() and
+# it also sets the _FOUND variable.
+# The package is found if all variables listed are TRUE.
+# Example:
+#
+# FIND_PACKAGE_HANDLE_STANDARD_ARGS(LibXml2 DEFAULT_MSG LIBXML2_LIBRARIES LIBXML2_INCLUDE_DIR)
+#
+# LibXml2 is considered to be found, if both LIBXML2_LIBRARIES and
+# LIBXML2_INCLUDE_DIR are valid. Then also LIBXML2_FOUND is set to TRUE.
+# If it is not found and REQUIRED was used, it fails with FATAL_ERROR,
+# independent whether QUIET was used or not.
+# If it is found, the location is reported using the VAR1 argument, so
+# here a message "Found LibXml2: /usr/lib/libxml2.so" will be printed out.
+# If the second argument is DEFAULT_MSG, the message in the failure case will
+# be "Could NOT find LibXml2", if you don't like this message you can specify
+# your own custom failure message there.
+
+MACRO(FIND_PACKAGE_HANDLE_STANDARD_ARGS _NAME _FAIL_MSG _VAR1 )
+
+ IF("${_FAIL_MSG}" STREQUAL "DEFAULT_MSG")
+ IF (${_NAME}_FIND_REQUIRED)
+ SET(_FAIL_MESSAGE "Could not find REQUIRED package ${_NAME}")
+ ELSE (${_NAME}_FIND_REQUIRED)
+ SET(_FAIL_MESSAGE "Could not find OPTIONAL package ${_NAME}")
+ ENDIF (${_NAME}_FIND_REQUIRED)
+ ELSE("${_FAIL_MSG}" STREQUAL "DEFAULT_MSG")
+ SET(_FAIL_MESSAGE "${_FAIL_MSG}")
+ ENDIF("${_FAIL_MSG}" STREQUAL "DEFAULT_MSG")
+
+ STRING(TOUPPER ${_NAME} _NAME_UPPER)
+
+ SET(${_NAME_UPPER}_FOUND TRUE)
+ IF(NOT ${_VAR1})
+ SET(${_NAME_UPPER}_FOUND FALSE)
+ ENDIF(NOT ${_VAR1})
+
+ FOREACH(_CURRENT_VAR ${ARGN})
+ IF(NOT ${_CURRENT_VAR})
+ SET(${_NAME_UPPER}_FOUND FALSE)
+ ENDIF(NOT ${_CURRENT_VAR})
+ ENDFOREACH(_CURRENT_VAR)
+
+ IF (${_NAME_UPPER}_FOUND)
+ IF (NOT ${_NAME}_FIND_QUIETLY)
+ MESSAGE(STATUS "Found ${_NAME}: ${${_VAR1}}")
+ ENDIF (NOT ${_NAME}_FIND_QUIETLY)
+ ELSE (${_NAME_UPPER}_FOUND)
+ IF (${_NAME}_FIND_REQUIRED)
+ MESSAGE(FATAL_ERROR "${_FAIL_MESSAGE}")
+ ELSE (${_NAME}_FIND_REQUIRED)
+ IF (NOT ${_NAME}_FIND_QUIETLY)
+ MESSAGE(STATUS "${_FAIL_MESSAGE}")
+ ENDIF (NOT ${_NAME}_FIND_QUIETLY)
+ ENDIF (${_NAME}_FIND_REQUIRED)
+ ENDIF (${_NAME_UPPER}_FOUND)
+ENDMACRO(FIND_PACKAGE_HANDLE_STANDARD_ARGS)
diff --git a/pcre/cmake/FindReadline.cmake b/pcre/cmake/FindReadline.cmake
new file mode 100644
index 00000000000..1d4cc558431
--- /dev/null
+++ b/pcre/cmake/FindReadline.cmake
@@ -0,0 +1,29 @@
+# from http://websvn.kde.org/trunk/KDE/kdeedu/cmake/modules/FindReadline.cmake
+# http://websvn.kde.org/trunk/KDE/kdeedu/cmake/modules/COPYING-CMAKE-SCRIPTS
+# --> BSD licensed
+#
+# GNU Readline library finder
+if(READLINE_INCLUDE_DIR AND READLINE_LIBRARY AND NCURSES_LIBRARY)
+ set(READLINE_FOUND TRUE)
+else(READLINE_INCLUDE_DIR AND READLINE_LIBRARY AND NCURSES_LIBRARY)
+ FIND_PATH(READLINE_INCLUDE_DIR readline/readline.h
+ /usr/include/readline
+ )
+
+# 2008-04-22 The next clause used to read like this:
+#
+# FIND_LIBRARY(READLINE_LIBRARY NAMES readline)
+# FIND_LIBRARY(NCURSES_LIBRARY NAMES ncurses )
+# include(FindPackageHandleStandardArgs)
+# FIND_PACKAGE_HANDLE_STANDARD_ARGS(Readline DEFAULT_MSG NCURSES_LIBRARY READLINE_INCLUDE_DIR READLINE_LIBRARY )
+#
+# I was advised to modify it such that it will find an ncurses library if
+# required, but not if one was explicitly given, that is, it allows the
+# default to be overridden. PH
+
+ FIND_LIBRARY(READLINE_LIBRARY NAMES readline)
+ include(FindPackageHandleStandardArgs)
+ FIND_PACKAGE_HANDLE_STANDARD_ARGS(Readline DEFAULT_MSG READLINE_INCLUDE_DIR READLINE_LIBRARY )
+
+ MARK_AS_ADVANCED(READLINE_INCLUDE_DIR READLINE_LIBRARY)
+endif(READLINE_INCLUDE_DIR AND READLINE_LIBRARY AND NCURSES_LIBRARY)
diff --git a/pcre/config-cmake.h.in b/pcre/config-cmake.h.in
new file mode 100644
index 00000000000..a93263fa8cc
--- /dev/null
+++ b/pcre/config-cmake.h.in
@@ -0,0 +1,54 @@
+/* config.h for CMake builds */
+
+#cmakedefine HAVE_DIRENT_H 1
+#cmakedefine HAVE_SYS_STAT_H 1
+#cmakedefine HAVE_SYS_TYPES_H 1
+#cmakedefine HAVE_UNISTD_H 1
+#cmakedefine HAVE_WINDOWS_H 1
+
+#cmakedefine HAVE_TYPE_TRAITS_H 1
+#cmakedefine HAVE_BITS_TYPE_TRAITS_H 1
+
+#cmakedefine HAVE_BCOPY 1
+#cmakedefine HAVE_MEMMOVE 1
+#cmakedefine HAVE_STRERROR 1
+#cmakedefine HAVE_STRTOLL 1
+#cmakedefine HAVE_STRTOQ 1
+#cmakedefine HAVE__STRTOI64 1
+
+#cmakedefine PCRE_STATIC 1
+
+#cmakedefine SUPPORT_PCRE8 1
+#cmakedefine SUPPORT_PCRE16 1
+#cmakedefine SUPPORT_PCRE32 1
+#cmakedefine SUPPORT_JIT 1
+#cmakedefine SUPPORT_PCREGREP_JIT 1
+#cmakedefine SUPPORT_UTF 1
+#cmakedefine SUPPORT_UCP 1
+#cmakedefine EBCDIC 1
+#cmakedefine EBCDIC_NL25 1
+#cmakedefine BSR_ANYCRLF 1
+#cmakedefine NO_RECURSE 1
+
+#cmakedefine HAVE_LONG_LONG 1
+#cmakedefine HAVE_UNSIGNED_LONG_LONG 1
+
+#cmakedefine SUPPORT_LIBBZ2 1
+#cmakedefine SUPPORT_LIBZ 1
+#cmakedefine SUPPORT_LIBEDIT 1
+#cmakedefine SUPPORT_LIBREADLINE 1
+
+#cmakedefine SUPPORT_VALGRIND 1
+#cmakedefine SUPPORT_GCOV 1
+
+#define NEWLINE @NEWLINE@
+#define POSIX_MALLOC_THRESHOLD @PCRE_POSIX_MALLOC_THRESHOLD@
+#define LINK_SIZE @PCRE_LINK_SIZE@
+#define MATCH_LIMIT @PCRE_MATCH_LIMIT@
+#define MATCH_LIMIT_RECURSION @PCRE_MATCH_LIMIT_RECURSION@
+#define PCREGREP_BUFSIZE @PCREGREP_BUFSIZE@
+
+#define MAX_NAME_SIZE 32
+#define MAX_NAME_COUNT 10000
+
+/* end config.h for CMake builds */
diff --git a/pcre/config.h b/pcre/config.h
new file mode 100644
index 00000000000..c6357434770
--- /dev/null
+++ b/pcre/config.h
@@ -0,0 +1,54 @@
+/* config.h for CMake builds */
+
+#define HAVE_DIRENT_H 1
+#define HAVE_SYS_STAT_H 1
+#define HAVE_SYS_TYPES_H 1
+#define HAVE_UNISTD_H 1
+/* #undef HAVE_WINDOWS_H */
+
+/* #undef HAVE_TYPE_TRAITS_H */
+/* #undef HAVE_BITS_TYPE_TRAITS_H */
+
+#define HAVE_BCOPY 1
+#define HAVE_MEMMOVE 1
+#define HAVE_STRERROR 1
+#define HAVE_STRTOLL 1
+#define HAVE_STRTOQ 1
+/* #undef HAVE__STRTOI64 */
+
+#define PCRE_STATIC 1
+
+#define SUPPORT_PCRE8 1
+/* #undef SUPPORT_PCRE16 */
+/* #undef SUPPORT_PCRE32 */
+/* #undef SUPPORT_JIT */
+#define SUPPORT_PCREGREP_JIT 1
+#define SUPPORT_UTF 1
+#define SUPPORT_UCP 1
+/* #undef EBCDIC */
+/* #undef EBCDIC_NL25 */
+/* #undef BSR_ANYCRLF */
+/* #undef NO_RECURSE */
+
+#define HAVE_LONG_LONG 1
+#define HAVE_UNSIGNED_LONG_LONG 1
+
+#define SUPPORT_LIBBZ2 1
+#define SUPPORT_LIBZ 1
+/* #undef SUPPORT_LIBEDIT */
+#define SUPPORT_LIBREADLINE 1
+
+/* #undef SUPPORT_VALGRIND */
+/* #undef SUPPORT_GCOV */
+
+#define NEWLINE 10
+#define POSIX_MALLOC_THRESHOLD 10
+#define LINK_SIZE 2
+#define MATCH_LIMIT 10000000
+#define MATCH_LIMIT_RECURSION MATCH_LIMIT
+#define PCREGREP_BUFSIZE 20480
+
+#define MAX_NAME_SIZE 32
+#define MAX_NAME_COUNT 10000
+
+/* end config.h for CMake builds */
diff --git a/pcre/configure.ac b/pcre/configure.ac
new file mode 100644
index 00000000000..e70ceae2336
--- /dev/null
+++ b/pcre/configure.ac
@@ -0,0 +1,1093 @@
+dnl Process this file with autoconf to produce a configure script.
+
+dnl NOTE FOR MAINTAINERS: Do not use minor version numbers 08 or 09 because
+dnl the leading zeros may cause them to be treated as invalid octal constants
+dnl if a PCRE user writes code that uses PCRE_MINOR as a number. There is now
+dnl a check further down that throws an error if 08 or 09 are used.
+
+dnl The PCRE_PRERELEASE feature is for identifying release candidates. It might
+dnl be defined as -RC2, for example. For real releases, it should be empty.
+
+m4_define(pcre_major, [8])
+m4_define(pcre_minor, [33])
+m4_define(pcre_prerelease, [])
+m4_define(pcre_date, [2013-05-28])
+
+# NOTE: The CMakeLists.txt file searches for the above variables in the first
+# 50 lines of this file. Please update that if the variables above are moved.
+
+# Libtool shared library interface versions (current:revision:age)
+m4_define(libpcre_version, [3:1:2])
+m4_define(libpcre16_version, [2:1:2])
+m4_define(libpcre32_version, [0:1:0])
+m4_define(libpcreposix_version, [0:2:0])
+m4_define(libpcrecpp_version, [0:0:0])
+
+AC_PREREQ(2.57)
+AC_INIT(PCRE, pcre_major.pcre_minor[]pcre_prerelease, , pcre)
+AC_CONFIG_SRCDIR([pcre.h.in])
+AM_INIT_AUTOMAKE([dist-bzip2 dist-zip])
+m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
+AC_CONFIG_HEADERS(config.h)
+
+# This is a new thing required to stop a warning from automake 1.12
+m4_ifdef([AM_PROG_AR], [AM_PROG_AR])
+
+# This was added at the suggestion of libtoolize (03-Jan-10)
+AC_CONFIG_MACRO_DIR([m4])
+
+# The default CFLAGS and CXXFLAGS in Autoconf are "-g -O2" for gcc and just
+# "-g" for any other compiler. There doesn't seem to be a standard way of
+# getting rid of the -g (which I don't think is needed for a production
+# library). This fudge seems to achieve the necessary. First, we remember the
+# externally set values of CFLAGS and CXXFLAGS. Then call the AC_PROG_CC and
+# AC_PROG_CXX macros to find the compilers - if CFLAGS and CXXFLAGS are not
+# set, they will be set to Autoconf's defaults. Afterwards, if the original
+# values were not set, remove the -g from the Autoconf defaults.
+# (PH 02-May-07)
+
+remember_set_CFLAGS="$CFLAGS"
+remember_set_CXXFLAGS="$CXXFLAGS"
+
+AC_PROG_CC
+AC_PROG_CXX
+AM_PROG_CC_C_O
+
+if test "x$remember_set_CFLAGS" = "x"
+then
+ if test "$CFLAGS" = "-g -O2"
+ then
+ CFLAGS="-O2"
+ elif test "$CFLAGS" = "-g"
+ then
+ CFLAGS=""
+ fi
+fi
+
+if test "x$remember_set_CXXFLAGS" = "x"
+then
+ if test "$CXXFLAGS" = "-g -O2"
+ then
+ CXXFLAGS="-O2"
+ elif test "$CXXFLAGS" = "-g"
+ then
+ CXXFLAGS=""
+ fi
+fi
+
+# AC_PROG_CXX will return "g++" even if no c++ compiler is installed.
+# Check for that case, and just disable c++ code if g++ doesn't run.
+AC_LANG_PUSH(C++)
+AC_COMPILE_IFELSE([AC_LANG_PROGRAM([],[])],, CXX=""; CXXCP=""; CXXFLAGS="")
+AC_LANG_POP
+
+# Check for a 64-bit integer type
+AC_TYPE_INT64_T
+
+AC_PROG_INSTALL
+AC_LIBTOOL_WIN32_DLL
+LT_INIT
+AC_PROG_LN_S
+
+# Check for GCC visibility feature
+
+PCRE_VISIBILITY
+
+# Versioning
+
+PCRE_MAJOR="pcre_major"
+PCRE_MINOR="pcre_minor"
+PCRE_PRERELEASE="pcre_prerelease"
+PCRE_DATE="pcre_date"
+
+if test "$PCRE_MINOR" = "08" -o "$PCRE_MINOR" = "09"
+then
+ echo "***"
+ echo "*** Minor version number $PCRE_MINOR must not be used. ***"
+ echo "*** Use only 01 to 07 or 10 onwards, to avoid octal issues. ***"
+ echo "***"
+ exit 1
+fi
+
+AC_SUBST(PCRE_MAJOR)
+AC_SUBST(PCRE_MINOR)
+AC_SUBST(PCRE_PRERELEASE)
+AC_SUBST(PCRE_DATE)
+
+# Set a more sensible default value for $(htmldir).
+if test "x$htmldir" = 'x${docdir}'
+then
+ htmldir='${docdir}/html'
+fi
+
+# Handle --disable-pcre8 (enabled by default)
+AC_ARG_ENABLE(pcre8,
+ AS_HELP_STRING([--disable-pcre8],
+ [disable 8 bit character support]),
+ , enable_pcre8=unset)
+AC_SUBST(enable_pcre8)
+
+# Handle --enable-pcre16 (disabled by default)
+AC_ARG_ENABLE(pcre16,
+ AS_HELP_STRING([--enable-pcre16],
+ [enable 16 bit character support]),
+ , enable_pcre16=unset)
+AC_SUBST(enable_pcre16)
+
+# Handle --enable-pcre32 (disabled by default)
+AC_ARG_ENABLE(pcre32,
+ AS_HELP_STRING([--enable-pcre32],
+ [enable 32 bit character support]),
+ , enable_pcre32=unset)
+AC_SUBST(enable_pcre32)
+
+# Handle --disable-cpp. The substitution of enable_cpp is needed for use in
+# pcre-config.
+AC_ARG_ENABLE(cpp,
+ AS_HELP_STRING([--disable-cpp],
+ [disable C++ support]),
+ , enable_cpp=unset)
+AC_SUBST(enable_cpp)
+
+# Handle --enable-jit (disabled by default)
+AC_ARG_ENABLE(jit,
+ AS_HELP_STRING([--enable-jit],
+ [enable Just-In-Time compiling support]),
+ , enable_jit=no)
+
+# Handle --disable-pcregrep-jit (enabled by default)
+AC_ARG_ENABLE(pcregrep-jit,
+ AS_HELP_STRING([--disable-pcregrep-jit],
+ [disable JIT support in pcregrep]),
+ , enable_pcregrep_jit=yes)
+
+# Handle --enable-rebuild-chartables
+AC_ARG_ENABLE(rebuild-chartables,
+ AS_HELP_STRING([--enable-rebuild-chartables],
+ [rebuild character tables in current locale]),
+ , enable_rebuild_chartables=no)
+
+# Handle --enable-utf8 (disabled by default)
+AC_ARG_ENABLE(utf8,
+ AS_HELP_STRING([--enable-utf8],
+ [another name for --enable-utf. Kept only for compatibility reasons]),
+ , enable_utf8=unset)
+
+# Handle --enable-utf (disabled by default)
+AC_ARG_ENABLE(utf,
+ AS_HELP_STRING([--enable-utf],
+ [enable UTF-8/16/32 support (incompatible with --enable-ebcdic)]),
+ , enable_utf=unset)
+
+# Handle --enable-unicode-properties
+AC_ARG_ENABLE(unicode-properties,
+ AS_HELP_STRING([--enable-unicode-properties],
+ [enable Unicode properties support (implies --enable-utf)]),
+ , enable_unicode_properties=no)
+
+# Handle newline options
+ac_pcre_newline=lf
+AC_ARG_ENABLE(newline-is-cr,
+ AS_HELP_STRING([--enable-newline-is-cr],
+ [use CR as newline character]),
+ ac_pcre_newline=cr)
+AC_ARG_ENABLE(newline-is-lf,
+ AS_HELP_STRING([--enable-newline-is-lf],
+ [use LF as newline character (default)]),
+ ac_pcre_newline=lf)
+AC_ARG_ENABLE(newline-is-crlf,
+ AS_HELP_STRING([--enable-newline-is-crlf],
+ [use CRLF as newline sequence]),
+ ac_pcre_newline=crlf)
+AC_ARG_ENABLE(newline-is-anycrlf,
+ AS_HELP_STRING([--enable-newline-is-anycrlf],
+ [use CR, LF, or CRLF as newline sequence]),
+ ac_pcre_newline=anycrlf)
+AC_ARG_ENABLE(newline-is-any,
+ AS_HELP_STRING([--enable-newline-is-any],
+ [use any valid Unicode newline sequence]),
+ ac_pcre_newline=any)
+enable_newline="$ac_pcre_newline"
+
+# Handle --enable-bsr-anycrlf
+AC_ARG_ENABLE(bsr-anycrlf,
+ AS_HELP_STRING([--enable-bsr-anycrlf],
+ [\R matches only CR, LF, CRLF by default]),
+ , enable_bsr_anycrlf=no)
+
+# Handle --enable-ebcdic
+AC_ARG_ENABLE(ebcdic,
+ AS_HELP_STRING([--enable-ebcdic],
+ [assume EBCDIC coding rather than ASCII; incompatible with --enable-utf; use only in (uncommon) EBCDIC environments; it implies --enable-rebuild-chartables]),
+ , enable_ebcdic=no)
+
+# Handle --enable-ebcdic-nl25
+AC_ARG_ENABLE(ebcdic-nl25,
+ AS_HELP_STRING([--enable-ebcdic-nl25],
+ [set EBCDIC code for NL to 0x25 instead of 0x15; it implies --enable-ebcdic]),
+ , enable_ebcdic_nl25=no)
+
+# Handle --disable-stack-for-recursion
+AC_ARG_ENABLE(stack-for-recursion,
+ AS_HELP_STRING([--disable-stack-for-recursion],
+ [don't use stack recursion when matching]),
+ , enable_stack_for_recursion=yes)
+
+# Handle --enable-pcregrep-libz
+AC_ARG_ENABLE(pcregrep-libz,
+ AS_HELP_STRING([--enable-pcregrep-libz],
+ [link pcregrep with libz to handle .gz files]),
+ , enable_pcregrep_libz=no)
+
+# Handle --enable-pcregrep-libbz2
+AC_ARG_ENABLE(pcregrep-libbz2,
+ AS_HELP_STRING([--enable-pcregrep-libbz2],
+ [link pcregrep with libbz2 to handle .bz2 files]),
+ , enable_pcregrep_libbz2=no)
+
+# Handle --with-pcregrep-bufsize=N
+AC_ARG_WITH(pcregrep-bufsize,
+ AS_HELP_STRING([--with-pcregrep-bufsize=N],
+ [pcregrep buffer size (default=20480)]),
+ , with_pcregrep_bufsize=20480)
+
+# Handle --enable-pcretest-libedit
+AC_ARG_ENABLE(pcretest-libedit,
+ AS_HELP_STRING([--enable-pcretest-libedit],
+ [link pcretest with libedit]),
+ , enable_pcretest_libedit=no)
+
+# Handle --enable-pcretest-libreadline
+AC_ARG_ENABLE(pcretest-libreadline,
+ AS_HELP_STRING([--enable-pcretest-libreadline],
+ [link pcretest with libreadline]),
+ , enable_pcretest_libreadline=no)
+
+# Handle --with-posix-malloc-threshold=NBYTES
+AC_ARG_WITH(posix-malloc-threshold,
+ AS_HELP_STRING([--with-posix-malloc-threshold=NBYTES],
+ [threshold for POSIX malloc usage (default=10)]),
+ , with_posix_malloc_threshold=10)
+
+# Handle --with-link-size=N
+AC_ARG_WITH(link-size,
+ AS_HELP_STRING([--with-link-size=N],
+ [internal link size (2, 3, or 4 allowed; default=2)]),
+ , with_link_size=2)
+
+# Handle --with-match-limit=N
+AC_ARG_WITH(match-limit,
+ AS_HELP_STRING([--with-match-limit=N],
+ [default limit on internal looping (default=10000000)]),
+ , with_match_limit=10000000)
+
+# Handle --with-match-limit_recursion=N
+#
+# Note: In config.h, the default is to define MATCH_LIMIT_RECURSION
+# symbolically as MATCH_LIMIT, which in turn is defined to be some numeric
+# value (e.g. 10000000). MATCH_LIMIT_RECURSION can otherwise be set to some
+# different numeric value (or even the same numeric value as MATCH_LIMIT,
+# though no longer defined in terms of the latter).
+#
+AC_ARG_WITH(match-limit-recursion,
+ AS_HELP_STRING([--with-match-limit-recursion=N],
+ [default limit on internal recursion (default=MATCH_LIMIT)]),
+ , with_match_limit_recursion=MATCH_LIMIT)
+
+# Handle --enable-valgrind
+AC_ARG_ENABLE(valgrind,
+ AS_HELP_STRING([--enable-valgrind],
+ [valgrind support]),
+ , enable_valgrind=no)
+
+# Enable code coverage reports using gcov
+AC_ARG_ENABLE(coverage,
+ AS_HELP_STRING([--enable-coverage],
+ [enable code coverage reports using gcov]),
+ , enable_coverage=no)
+
+# Copy enable_utf8 value to enable_utf for compatibility reasons
+if test "x$enable_utf8" != "xunset"
+then
+ if test "x$enable_utf" != "xunset"
+ then
+ AC_MSG_ERROR([--enable/disable-utf8 is kept only for compatibility reasons and its value is copied to --enable/disable-utf. Newer code must use --enable/disable-utf alone.])
+ fi
+ enable_utf=$enable_utf8
+fi
+
+# Set the default value for pcre8
+if test "x$enable_pcre8" = "xunset"
+then
+ enable_pcre8=yes
+fi
+
+# Set the default value for pcre16
+if test "x$enable_pcre16" = "xunset"
+then
+ enable_pcre16=no
+fi
+
+# Set the default value for pcre32
+if test "x$enable_pcre32" = "xunset"
+then
+ enable_pcre32=no
+fi
+
+# Make sure enable_pcre8 or enable_pcre16 was set
+if test "x$enable_pcre8$enable_pcre16$enable_pcre32" = "xnonono"
+then
+ AC_MSG_ERROR([At least one of 8, 16 or 32 bit pcre library must be enabled])
+fi
+
+# Make sure that if enable_unicode_properties was set, that UTF support is enabled.
+if test "x$enable_unicode_properties" = "xyes"
+then
+ if test "x$enable_utf" = "xno"
+ then
+ AC_MSG_ERROR([support for Unicode properties requires UTF-8/16/32 support])
+ fi
+ enable_utf=yes
+fi
+
+# enable_utf is disabled by default.
+if test "x$enable_utf" = "xunset"
+then
+ enable_utf=no
+fi
+
+# enable_cpp copies the value of enable_pcre8 by default
+if test "x$enable_cpp" = "xunset"
+then
+ enable_cpp=$enable_pcre8
+fi
+
+# Make sure that if enable_cpp was set, that enable_pcre8 support is enabled
+if test "x$enable_cpp" = "xyes"
+then
+ if test "x$enable_pcre8" = "xno"
+ then
+ AC_MSG_ERROR([C++ library requires pcre library with 8 bit characters])
+ fi
+fi
+
+# Convert the newline identifier into the appropriate integer value. The first
+# three are ASCII values 0x0a, 0x0d, and 0x0d0a, but if EBCDIC is enabled, they
+# are changed below.
+
+case "$enable_newline" in
+ lf) ac_pcre_newline_value=10 ;;
+ cr) ac_pcre_newline_value=13 ;;
+ crlf) ac_pcre_newline_value=3338 ;;
+ anycrlf) ac_pcre_newline_value=-2 ;;
+ any) ac_pcre_newline_value=-1 ;;
+ *)
+ AC_MSG_ERROR([invalid argument \"$enable_newline\" to --enable-newline option])
+ ;;
+esac
+
+# --enable-ebcdic-nl25 implies --enable-ebcdic
+if test "x$enable_ebcdic_nl25" = "xyes"; then
+ enable_ebcdic=yes
+fi
+
+# Make sure that if enable_ebcdic is set, rebuild_chartables is also enabled,
+# and the newline value is adjusted appropriately (CR is still 13, but LF is
+# 21 or 37). Also check that UTF support is not requested, because PCRE cannot
+# handle EBCDIC and UTF in the same build. To do so it would need to use
+# different character constants depending on the mode.
+#
+if test "x$enable_ebcdic" = "xyes"; then
+ enable_rebuild_chartables=yes
+
+ if test "x$enable_utf" = "xyes"; then
+ AC_MSG_ERROR([support for EBCDIC and UTF-8/16/32 cannot be enabled at the same time])
+ fi
+
+ if test "x$enable_ebcdic_nl25" = "xno"; then
+ case "$ac_pcre_newline_value" in
+ 10) ac_pcre_newline_value=21 ;;
+ 3338) ac_pcre_newline_value=3349 ;;
+ esac
+ else
+ case "$ac_pcre_newline_value" in
+ 10) ac_pcre_newline_value=37 ;;
+ 3338) ac_pcre_newline_value=3365 ;;
+ esac
+ fi
+fi
+
+# Check argument to --with-link-size
+case "$with_link_size" in
+ 2|3|4) ;;
+ *)
+ AC_MSG_ERROR([invalid argument \"$with_link_size\" to --with-link-size option])
+ ;;
+esac
+
+AH_TOP([
+/* PCRE is written in Standard C, but there are a few non-standard things it
+can cope with, allowing it to run on SunOS4 and other "close to standard"
+systems.
+
+In environments that support the GNU autotools, config.h.in is converted into
+config.h by the "configure" script. In environments that use CMake,
+config-cmake.in is converted into config.h. If you are going to build PCRE "by
+hand" without using "configure" or CMake, you should copy the distributed
+config.h.generic to config.h, and edit the macro definitions to be the way you
+need them. You must then add -DHAVE_CONFIG_H to all of your compile commands,
+so that config.h is included at the start of every source.
+
+Alternatively, you can avoid editing by using -D on the compiler command line
+to set the macro values. In this case, you do not have to set -DHAVE_CONFIG_H,
+but if you do, default values will be taken from config.h for non-boolean
+macros that are not defined on the command line.
+
+Boolean macros such as HAVE_STDLIB_H and SUPPORT_PCRE8 should either be defined
+(conventionally to 1) for TRUE, and not defined at all for FALSE. All such
+macros are listed as a commented #undef in config.h.generic. Macros such as
+MATCH_LIMIT, whose actual value is relevant, have defaults defined, but are
+surrounded by #ifndef/#endif lines so that the value can be overridden by -D.
+
+PCRE uses memmove() if HAVE_MEMMOVE is defined; otherwise it uses bcopy() if
+HAVE_BCOPY is defined. If your system has neither bcopy() nor memmove(), make
+sure both macros are undefined; an emulation function will then be used. */])
+
+# Checks for header files.
+AC_HEADER_STDC
+AC_CHECK_HEADERS(limits.h sys/types.h sys/stat.h dirent.h windows.h)
+
+# The files below are C++ header files.
+pcre_have_type_traits="0"
+pcre_have_bits_type_traits="0"
+
+if test "x$enable_cpp" = "xyes" -a -z "$CXX"; then
+ AC_MSG_ERROR([You need a C++ compiler for C++ support.])
+fi
+
+if test "x$enable_cpp" = "xyes" -a -n "$CXX"
+then
+AC_LANG_PUSH(C++)
+
+# Older versions of pcre defined pcrecpp::no_arg, but in new versions
+# it's called pcrecpp::RE::no_arg. For backwards ABI compatibility,
+# we want to make one an alias for the other. Different systems do
+# this in different ways. Some systems, for instance, can do it via
+# a linker flag: -alias (for os x 10.5) or -i (for os x <=10.4).
+OLD_LDFLAGS="$LDFLAGS"
+for flag in "-alias,__ZN7pcrecpp2RE6no_argE,__ZN7pcrecpp6no_argE" \
+ "-i__ZN7pcrecpp6no_argE:__ZN7pcrecpp2RE6no_argE"; do
+ AC_MSG_CHECKING([for alias support in the linker])
+ LDFLAGS="$OLD_LDFLAGS -Wl,$flag"
+ # We try to run the linker with this new ld flag. If the link fails,
+ # we give up and remove the new flag from LDFLAGS.
+ AC_LINK_IFELSE([AC_LANG_PROGRAM([namespace pcrecpp {
+ class RE { static int no_arg; };
+ int RE::no_arg;
+ }],
+ [])],
+ [AC_MSG_RESULT([yes]);
+ EXTRA_LIBPCRECPP_LDFLAGS="$EXTRA_LIBPCRECPP_LDFLAGS -Wl,$flag";
+ break;],
+ AC_MSG_RESULT([no]))
+done
+LDFLAGS="$OLD_LDFLAGS"
+
+# We could be more clever here, given we're doing AC_SUBST with this
+# (eg set a var to be the name of the include file we want). But we're not
+# so it's easy to change back to 'regular' autoconf vars if we needed to.
+AC_CHECK_HEADERS(string, [pcre_have_cpp_headers="1"],
+ [pcre_have_cpp_headers="0"])
+AC_CHECK_HEADERS(bits/type_traits.h, [pcre_have_bits_type_traits="1"],
+ [pcre_have_bits_type_traits="0"])
+AC_CHECK_HEADERS(type_traits.h, [pcre_have_type_traits="1"],
+ [pcre_have_type_traits="0"])
+
+# (This isn't c++-specific, but is only used in pcrecpp.cc, so try this
+# in a c++ context. This matters becuase strtoimax is C99 and may not
+# be supported by the C++ compiler.)
+# Figure out how to create a longlong from a string: strtoll and
+# equiv. It's not enough to call AC_CHECK_FUNCS: hpux has a
+# strtoll, for instance, but it only takes 2 args instead of 3!
+# We have to call AH_TEMPLATE since AC_DEFINE_UNQUOTED below is complex.
+AH_TEMPLATE(HAVE_STRTOQ, [Define to 1 if you have `strtoq'.])
+AH_TEMPLATE(HAVE_STRTOLL, [Define to 1 if you have `strtoll'.])
+AH_TEMPLATE(HAVE__STRTOI64, [Define to 1 if you have `_strtoi64'.])
+AH_TEMPLATE(HAVE_STRTOIMAX, [Define to 1 if you have `strtoimax'.])
+have_strto_fn=0
+for fn in strtoq strtoll _strtoi64 strtoimax; do
+ AC_MSG_CHECKING([for $fn])
+ if test "$fn" = strtoimax; then
+ include=stdint.h
+ else
+ include=stdlib.h
+ fi
+ AC_COMPILE_IFELSE([AC_LANG_PROGRAM([#include <$include>],
+ [char* e; return $fn("100", &e, 10)])],
+ [AC_MSG_RESULT(yes)
+ AC_DEFINE_UNQUOTED(HAVE_`echo $fn | tr abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ`, 1,
+ [Define to 1 if you have `$fn'.])
+ have_strto_fn=1
+ break],
+ [AC_MSG_RESULT(no)])
+done
+
+if test "$have_strto_fn" = 1; then
+ AC_CHECK_TYPES([long long],
+ [pcre_have_long_long="1"],
+ [pcre_have_long_long="0"])
+ AC_CHECK_TYPES([unsigned long long],
+ [pcre_have_ulong_long="1"],
+ [pcre_have_ulong_long="0"])
+else
+ pcre_have_long_long="0"
+ pcre_have_ulong_long="0"
+fi
+AC_SUBST(pcre_have_long_long)
+AC_SUBST(pcre_have_ulong_long)
+
+AC_LANG_POP
+fi
+# Using AC_SUBST eliminates the need to include config.h in a public .h file
+AC_SUBST(pcre_have_type_traits)
+AC_SUBST(pcre_have_bits_type_traits)
+
+# Conditional compilation
+AM_CONDITIONAL(WITH_PCRE8, test "x$enable_pcre8" = "xyes")
+AM_CONDITIONAL(WITH_PCRE16, test "x$enable_pcre16" = "xyes")
+AM_CONDITIONAL(WITH_PCRE32, test "x$enable_pcre32" = "xyes")
+AM_CONDITIONAL(WITH_PCRE_CPP, test "x$enable_cpp" = "xyes")
+AM_CONDITIONAL(WITH_REBUILD_CHARTABLES, test "x$enable_rebuild_chartables" = "xyes")
+AM_CONDITIONAL(WITH_JIT, test "x$enable_jit" = "xyes")
+AM_CONDITIONAL(WITH_UTF, test "x$enable_utf" = "xyes")
+AM_CONDITIONAL(WITH_VALGRIND, test "x$enable_valgrind" = "xyes")
+
+# Checks for typedefs, structures, and compiler characteristics.
+
+AC_C_CONST
+AC_TYPE_SIZE_T
+
+# Checks for library functions.
+
+AC_CHECK_FUNCS(bcopy memmove strerror)
+
+# Check for the availability of libz (aka zlib)
+
+AC_CHECK_HEADERS([zlib.h], [HAVE_ZLIB_H=1])
+AC_CHECK_LIB([z], [gzopen], [HAVE_LIBZ=1])
+
+# Check for the availability of libbz2. Originally we just used AC_CHECK_LIB,
+# as for libz. However, this had the following problem, diagnosed and fixed by
+# a user:
+#
+# - libbz2 uses the Pascal calling convention (WINAPI) for the functions
+# under Win32.
+# - The standard autoconf AC_CHECK_LIB fails to include "bzlib.h",
+# therefore missing the function definition.
+# - The compiler thus generates a "C" signature for the test function.
+# - The linker fails to find the "C" function.
+# - PCRE fails to configure if asked to do so against libbz2.
+#
+# Solution:
+#
+# - Replace the AC_CHECK_LIB test with a custom test.
+
+AC_CHECK_HEADERS([bzlib.h], [HAVE_BZLIB_H=1])
+# Original test
+# AC_CHECK_LIB([bz2], [BZ2_bzopen], [HAVE_LIBBZ2=1])
+#
+# Custom test follows
+
+AC_MSG_CHECKING([for libbz2])
+OLD_LIBS="$LIBS"
+LIBS="$LIBS -lbz2"
+AC_LINK_IFELSE([AC_LANG_PROGRAM([[
+#ifdef HAVE_BZLIB_H
+#include
+#endif]],
+[[return (int)BZ2_bzopen("conftest", "rb");]])],
+[AC_MSG_RESULT([yes]);HAVE_LIBBZ2=1; break;],
+AC_MSG_RESULT([no]))
+LIBS="$OLD_LIBS"
+
+# Check for the availabiity of libreadline
+
+if test "$enable_pcretest_libreadline" = "yes"; then
+ AC_CHECK_HEADERS([readline/readline.h], [HAVE_READLINE_H=1])
+ AC_CHECK_HEADERS([readline/history.h], [HAVE_HISTORY_H=1])
+ AC_CHECK_LIB([readline], [readline], [LIBREADLINE="-lreadline"],
+ [unset ac_cv_lib_readline_readline;
+ AC_CHECK_LIB([readline], [readline], [LIBREADLINE="-ltinfo"],
+ [unset ac_cv_lib_readline_readline;
+ AC_CHECK_LIB([readline], [readline], [LIBREADLINE="-lcurses"],
+ [unset ac_cv_lib_readline_readline;
+ AC_CHECK_LIB([readline], [readline], [LIBREADLINE="-lncurses"],
+ [unset ac_cv_lib_readline_readline;
+ AC_CHECK_LIB([readline], [readline], [LIBREADLINE="-lncursesw"],
+ [unset ac_cv_lib_readline_readline;
+ AC_CHECK_LIB([readline], [readline], [LIBREADLINE="-ltermcap"],
+ [LIBREADLINE=""],
+ [-ltermcap])],
+ [-lncursesw])],
+ [-lncurses])],
+ [-lcurses])],
+ [-ltinfo])])
+ AC_SUBST(LIBREADLINE)
+ if test -n "$LIBREADLINE"; then
+ if test "$LIBREADLINE" != "-lreadline"; then
+ echo "-lreadline needs $LIBREADLINE"
+ LIBREADLINE="-lreadline $LIBREADLINE"
+ fi
+ fi
+fi
+
+
+# Check for the availability of libedit. Different distributions put its
+# headers in different places. Try to cover the most common ones.
+
+if test "$enable_pcretest_libedit" = "yes"; then
+ AC_CHECK_HEADERS([editline/readline.h], [HAVE_EDITLINE_READLINE_H=1],
+ [AC_CHECK_HEADERS([edit/readline/readline.h], [HAVE_READLINE_READLINE_H=1],
+ [AC_CHECK_HEADERS([readline/readline.h], [HAVE_READLINE_READLINE_H=1])])])
+ AC_CHECK_LIB([edit], [readline], [LIBEDIT="-ledit"])
+fi
+
+# This facilitates -ansi builds under Linux
+dnl AC_DEFINE([_GNU_SOURCE], [], [Enable GNU extensions in glibc])
+
+PCRE_STATIC_CFLAG=""
+if test "x$enable_shared" = "xno" ; then
+ AC_DEFINE([PCRE_STATIC], [1], [
+ Define to any value if linking statically (TODO: make nice with Libtool)])
+ PCRE_STATIC_CFLAG="-DPCRE_STATIC"
+fi
+AC_SUBST(PCRE_STATIC_CFLAG)
+
+# Here is where pcre specific defines are handled
+
+if test "$enable_pcre8" = "yes"; then
+ AC_DEFINE([SUPPORT_PCRE8], [], [
+ Define to any value to enable the 8 bit PCRE library.])
+fi
+
+if test "$enable_pcre16" = "yes"; then
+ AC_DEFINE([SUPPORT_PCRE16], [], [
+ Define to any value to enable the 16 bit PCRE library.])
+fi
+
+if test "$enable_pcre32" = "yes"; then
+ AC_DEFINE([SUPPORT_PCRE32], [], [
+ Define to any value to enable the 32 bit PCRE library.])
+fi
+
+if test "$enable_jit" = "yes"; then
+ AX_PTHREAD([], [AC_MSG_ERROR([JIT support requires pthreads])])
+ CC="$PTHREAD_CC"
+ CFLAGS="$PTHREAD_CFLAGS $CFLAGS"
+ LIBS="$PTHREAD_LIBS $LIBS"
+ AC_DEFINE([SUPPORT_JIT], [], [
+ Define to any value to enable support for Just-In-Time compiling.])
+else
+ enable_pcregrep_jit="no"
+fi
+
+if test "$enable_pcregrep_jit" = "yes"; then
+ AC_DEFINE([SUPPORT_PCREGREP_JIT], [], [
+ Define to any value to enable JIT support in pcregrep.])
+fi
+
+if test "$enable_utf" = "yes"; then
+ AC_DEFINE([SUPPORT_UTF], [], [
+ Define to any value to enable support for the UTF-8/16/32 Unicode encoding.
+ This will work even in an EBCDIC environment, but it is incompatible
+ with the EBCDIC macro. That is, PCRE can support *either* EBCDIC
+ code *or* ASCII/UTF-8/16/32, but not both at once.])
+fi
+
+if test "$enable_unicode_properties" = "yes"; then
+ AC_DEFINE([SUPPORT_UCP], [], [
+ Define to any value to enable support for Unicode properties.])
+fi
+
+if test "$enable_stack_for_recursion" = "no"; then
+ AC_DEFINE([NO_RECURSE], [], [
+ PCRE uses recursive function calls to handle backtracking while
+ matching. This can sometimes be a problem on systems that have
+ stacks of limited size. Define NO_RECURSE to any value to get a
+ version that doesn't use recursion in the match() function; instead
+ it creates its own stack by steam using pcre_recurse_malloc() to obtain
+ memory from the heap. For more detail, see the comments and other stuff
+ just above the match() function.])
+fi
+
+if test "$enable_pcregrep_libz" = "yes"; then
+ AC_DEFINE([SUPPORT_LIBZ], [], [
+ Define to any value to allow pcregrep to be linked with libz, so that it is
+ able to handle .gz files.])
+fi
+
+if test "$enable_pcregrep_libbz2" = "yes"; then
+ AC_DEFINE([SUPPORT_LIBBZ2], [], [
+ Define to any value to allow pcregrep to be linked with libbz2, so that it
+ is able to handle .bz2 files.])
+fi
+
+if test $with_pcregrep_bufsize -lt 8192 ; then
+ with_pcregrep_bufsize="8192"
+fi
+
+AC_DEFINE_UNQUOTED([PCREGREP_BUFSIZE], [$with_pcregrep_bufsize], [
+ The value of PCREGREP_BUFSIZE determines the size of buffer used by pcregrep
+ to hold parts of the file it is searching. This is also the minimum value.
+ The actual amount of memory used by pcregrep is three times this number,
+ because it allows for the buffering of "before" and "after" lines.])
+
+if test "$enable_pcretest_libedit" = "yes"; then
+ AC_DEFINE([SUPPORT_LIBEDIT], [], [
+ Define to any value to allow pcretest to be linked with libedit.])
+ LIBREADLINE="$LIBEDIT"
+elif test "$enable_pcretest_libreadline" = "yes"; then
+ AC_DEFINE([SUPPORT_LIBREADLINE], [], [
+ Define to any value to allow pcretest to be linked with libreadline.])
+fi
+
+AC_DEFINE_UNQUOTED([NEWLINE], [$ac_pcre_newline_value], [
+ The value of NEWLINE determines the default newline character sequence. PCRE
+ client programs can override this by selecting other values at run time. In
+ ASCII environments, the value can be 10 (LF), 13 (CR), or 3338 (CRLF); in
+ EBCDIC environments the value can be 21 or 37 (LF), 13 (CR), or 3349 or 3365
+ (CRLF) because there are two alternative codepoints (0x15 and 0x25) that are
+ used as the NL line terminator that is equivalent to ASCII LF. In both ASCII
+ and EBCDIC environments the value can also be -1 (ANY), or -2 (ANYCRLF).])
+
+if test "$enable_bsr_anycrlf" = "yes"; then
+ AC_DEFINE([BSR_ANYCRLF], [], [
+ By default, the \R escape sequence matches any Unicode line ending
+ character or sequence of characters. If BSR_ANYCRLF is defined (to any
+ value), this is changed so that backslash-R matches only CR, LF, or CRLF.
+ The build-time default can be overridden by the user of PCRE at runtime.])
+fi
+
+AC_DEFINE_UNQUOTED([LINK_SIZE], [$with_link_size], [
+ The value of LINK_SIZE determines the number of bytes used to store
+ links as offsets within the compiled regex. The default is 2, which
+ allows for compiled patterns up to 64K long. This covers the vast
+ majority of cases. However, PCRE can also be compiled to use 3 or 4
+ bytes instead. This allows for longer patterns in extreme cases.])
+
+AC_DEFINE_UNQUOTED([POSIX_MALLOC_THRESHOLD], [$with_posix_malloc_threshold], [
+ When calling PCRE via the POSIX interface, additional working storage
+ is required for holding the pointers to capturing substrings because
+ PCRE requires three integers per substring, whereas the POSIX
+ interface provides only two. If the number of expected substrings is
+ small, the wrapper function uses space on the stack, because this is
+ faster than using malloc() for each call. The threshold above which
+ the stack is no longer used is defined by POSIX_MALLOC_THRESHOLD.])
+
+AC_DEFINE_UNQUOTED([MATCH_LIMIT], [$with_match_limit], [
+ The value of MATCH_LIMIT determines the default number of times the
+ internal match() function can be called during a single execution of
+ pcre_exec(). There is a runtime interface for setting a different
+ limit. The limit exists in order to catch runaway regular
+ expressions that take for ever to determine that they do not match.
+ The default is set very large so that it does not accidentally catch
+ legitimate cases.])
+
+AC_DEFINE_UNQUOTED([MATCH_LIMIT_RECURSION], [$with_match_limit_recursion], [
+ The above limit applies to all calls of match(), whether or not they
+ increase the recursion depth. In some environments it is desirable
+ to limit the depth of recursive calls of match() more strictly, in
+ order to restrict the maximum amount of stack (or heap, if
+ NO_RECURSE is defined) that is used. The value of
+ MATCH_LIMIT_RECURSION applies only to recursive calls of match(). To
+ have any useful effect, it must be less than the value of
+ MATCH_LIMIT. The default is to use the same value as MATCH_LIMIT.
+ There is a runtime method for setting a different limit.])
+
+AC_DEFINE([MAX_NAME_SIZE], [32], [
+ This limit is parameterized just in case anybody ever wants to
+ change it. Care must be taken if it is increased, because it guards
+ against integer overflow caused by enormously large patterns.])
+
+AC_DEFINE([MAX_NAME_COUNT], [10000], [
+ This limit is parameterized just in case anybody ever wants to
+ change it. Care must be taken if it is increased, because it guards
+ against integer overflow caused by enormously large patterns.])
+
+AH_VERBATIM([PCRE_EXP_DEFN], [
+/* If you are compiling for a system other than a Unix-like system or
+ Win32, and it needs some magic to be inserted before the definition
+ of a function that is exported by the library, define this macro to
+ contain the relevant magic. If you do not define this macro, a suitable
+ __declspec value is used for Windows systems; in other environments
+ "extern" is used for a C compiler and "extern C" for a C++ compiler.
+ This macro apears at the start of every exported function that is part
+ of the external API. It does not appear on functions that are "external"
+ in the C sense, but which are internal to the library. */
+#undef PCRE_EXP_DEFN])
+
+if test "$enable_ebcdic" = "yes"; then
+ AC_DEFINE_UNQUOTED([EBCDIC], [], [
+ If you are compiling for a system that uses EBCDIC instead of ASCII
+ character codes, define this macro to any value. You must also edit the
+ NEWLINE macro below to set a suitable EBCDIC newline, commonly 21 (0x15).
+ On systems that can use "configure" or CMake to set EBCDIC, NEWLINE is
+ automatically adjusted. When EBCDIC is set, PCRE assumes that all input
+ strings are in EBCDIC. If you do not define this macro, PCRE will assume
+ input strings are ASCII or UTF-8/16/32 Unicode. It is not possible to build
+ a version of PCRE that supports both EBCDIC and UTF-8/16/32.])
+fi
+
+if test "$enable_ebcdic_nl25" = "yes"; then
+ AC_DEFINE_UNQUOTED([EBCDIC_NL25], [], [
+ In an EBCDIC environment, define this macro to any value to arrange for
+ the NL character to be 0x25 instead of the default 0x15. NL plays the role
+ that LF does in an ASCII/Unicode environment. The value must also be set in
+ the NEWLINE macro below. On systems that can use "configure" or CMake to
+ set EBCDIC_NL25, the adjustment of NEWLINE is automatic.])
+fi
+
+if test "$enable_valgrind" = "yes"; then
+ AC_DEFINE_UNQUOTED([SUPPORT_VALGRIND], [], [
+ Define to any value for valgrind support to find invalid memory reads.])
+fi
+
+# Platform specific issues
+NO_UNDEFINED=
+EXPORT_ALL_SYMBOLS=
+case $host_os in
+ cygwin* | mingw* )
+ if test X"$enable_shared" = Xyes; then
+ NO_UNDEFINED="-no-undefined"
+ EXPORT_ALL_SYMBOLS="-Wl,--export-all-symbols"
+ fi
+ ;;
+esac
+
+# The extra LDFLAGS for each particular library
+# (Note: The libpcre*_version bits are m4 variables, assigned above)
+
+EXTRA_LIBPCRE_LDFLAGS="$EXTRA_LIBPCRE_LDFLAGS \
+ $NO_UNDEFINED -version-info libpcre_version"
+
+EXTRA_LIBPCRE16_LDFLAGS="$EXTRA_LIBPCRE16_LDFLAGS \
+ $NO_UNDEFINED -version-info libpcre16_version"
+
+EXTRA_LIBPCRE32_LDFLAGS="$EXTRA_LIBPCRE32_LDFLAGS \
+ $NO_UNDEFINED -version-info libpcre32_version"
+
+EXTRA_LIBPCREPOSIX_LDFLAGS="$EXTRA_LIBPCREPOSIX_LDFLAGS \
+ $NO_UNDEFINED -version-info libpcreposix_version"
+
+EXTRA_LIBPCRECPP_LDFLAGS="$EXTRA_LIBPCRECPP_LDFLAGS \
+ $NO_UNDEFINED -version-info libpcrecpp_version \
+ $EXPORT_ALL_SYMBOLS"
+
+AC_SUBST(EXTRA_LIBPCRE_LDFLAGS)
+AC_SUBST(EXTRA_LIBPCRE16_LDFLAGS)
+AC_SUBST(EXTRA_LIBPCRE32_LDFLAGS)
+AC_SUBST(EXTRA_LIBPCREPOSIX_LDFLAGS)
+AC_SUBST(EXTRA_LIBPCRECPP_LDFLAGS)
+
+# When we run 'make distcheck', use these arguments. Turning off compiler
+# optimization makes it run faster.
+DISTCHECK_CONFIGURE_FLAGS="CFLAGS='' CXXFLAGS='' --enable-pcre16 --enable-pcre32 --enable-jit --enable-cpp --enable-unicode-properties"
+AC_SUBST(DISTCHECK_CONFIGURE_FLAGS)
+
+# Check that, if --enable-pcregrep-libz or --enable-pcregrep-libbz2 is
+# specified, the relevant library is available.
+
+if test "$enable_pcregrep_libz" = "yes"; then
+ if test "$HAVE_ZLIB_H" != "1"; then
+ echo "** Cannot --enable-pcregrep-libz because zlib.h was not found"
+ exit 1
+ fi
+ if test "$HAVE_LIBZ" != "1"; then
+ echo "** Cannot --enable-pcregrep-libz because libz was not found"
+ exit 1
+ fi
+ LIBZ="-lz"
+fi
+AC_SUBST(LIBZ)
+
+if test "$enable_pcregrep_libbz2" = "yes"; then
+ if test "$HAVE_BZLIB_H" != "1"; then
+ echo "** Cannot --enable-pcregrep-libbz2 because bzlib.h was not found"
+ exit 1
+ fi
+ if test "$HAVE_LIBBZ2" != "1"; then
+ echo "** Cannot --enable-pcregrep-libbz2 because libbz2 was not found"
+ exit 1
+ fi
+ LIBBZ2="-lbz2"
+fi
+AC_SUBST(LIBBZ2)
+
+# Similarly for --enable-pcretest-readline
+
+if test "$enable_pcretest_libedit" = "yes"; then
+ if test "$enable_pcretest_libreadline" = "yes"; then
+ echo "** Cannot use both --enable-pcretest-libedit and --enable-pcretest-readline"
+ exit 1
+ fi
+ if test "$HAVE_EDITLINE_READLINE_H" != "1" -a \
+ "$HAVE_READLINE_READLINE_H" != "1"; then
+ echo "** Cannot --enable-pcretest-libedit because neither editline/readline.h"
+ echo "** nor readline/readline.h was found."
+ exit 1
+ fi
+ if test -z "$LIBEDIT"; then
+ echo "** Cannot --enable-pcretest-libedit because libedit library was not found."
+ exit 1
+ fi
+fi
+
+if test "$enable_pcretest_libreadline" = "yes"; then
+ if test "$HAVE_READLINE_H" != "1"; then
+ echo "** Cannot --enable-pcretest-readline because readline/readline.h was not found."
+ exit 1
+ fi
+ if test "$HAVE_HISTORY_H" != "1"; then
+ echo "** Cannot --enable-pcretest-readline because readline/history.h was not found."
+ exit 1
+ fi
+ if test -z "$LIBREADLINE"; then
+ echo "** Cannot --enable-pcretest-readline because readline library was not found."
+ exit 1
+ fi
+fi
+
+# Check for valgrind
+
+if test "$enable_valgrind" = "yes"; then
+ m4_ifdef([PKG_CHECK_MODULES],
+ [PKG_CHECK_MODULES([VALGRIND],[valgrind])],
+ [AC_MSG_ERROR([pkg-config not supported])])
+fi
+
+# test code coverage reporting
+if test "$enable_coverage" = "yes"; then
+ if test "x$GCC" != "xyes"; then
+ AC_MSG_ERROR([Code coverage reports can only be generated when using GCC])
+ fi
+
+ # ccache is incompatible with gcov
+ AC_PATH_PROG([SHTOOL],[shtool],[false])
+ case `$SHTOOL path $CC` in
+ *ccache*) cc_ccache=yes;;
+ *) cc_ccache=no;;
+ esac
+
+ if test "$cc_ccache" = "yes"; then
+ if test -z "$CCACHE_DISABLE" -o "$CCACHE_DISABLE" != "1"; then
+ AC_MSG_ERROR([must export CCACHE_DISABLE=1 to disable ccache for code coverage])
+ fi
+ fi
+
+ AC_ARG_VAR([LCOV],[the ltp lcov program])
+ AC_PATH_PROG([LCOV],[lcov],[false])
+ if test "x$LCOV" = "xfalse"; then
+ AC_MSG_ERROR([lcov not found])
+ fi
+
+ AC_ARG_VAR([GENHTML],[the ltp genhtml program])
+ AC_PATH_PROG([GENHTML],[genhtml],[false])
+ if test "x$GENHTML" = "xfalse"; then
+ AC_MSG_ERROR([genhtml not found])
+ fi
+
+ AC_DEFINE([SUPPORT_GCOV],[1], [
+ Define to allow pcretest and pcregrep to be linked with gcov, so that they
+ are able to generate code coverage reports.])
+
+ # And add flags needed for gcov
+ GCOV_CFLAGS="-O0 -ggdb3 -fprofile-arcs -ftest-coverage"
+ GCOV_CXXFLAGS="-O0 -ggdb3 -fprofile-arcs -ftest-coverage"
+ GCOV_LIBS="-lgcov"
+ AC_SUBST([GCOV_CFLAGS])
+ AC_SUBST([GCOV_CXXFLAGS])
+ AC_SUBST([GCOV_LIBS])
+fi # enable_coverage
+
+AM_CONDITIONAL([WITH_GCOV],[test "x$enable_coverage" = "xyes"])
+
+# Produce these files, in addition to config.h.
+AC_CONFIG_FILES(
+ Makefile
+ libpcre.pc
+ libpcre16.pc
+ libpcre32.pc
+ libpcreposix.pc
+ libpcrecpp.pc
+ pcre-config
+ pcre.h
+ pcre_stringpiece.h
+ pcrecpparg.h
+)
+
+# Make the generated script files executable.
+AC_CONFIG_COMMANDS([script-chmod], [chmod a+x pcre-config])
+
+# Make sure that pcre_chartables.c is removed in case the method for
+# creating it was changed by reconfiguration.
+AC_CONFIG_COMMANDS([delete-old-chartables], [rm -f pcre_chartables.c])
+
+AC_OUTPUT
+
+# Print out a nice little message after configure is run displaying the
+# chosen options.
+
+ebcdic_nl_code=n/a
+if test "$enable_ebcdic_nl25" = "yes"; then
+ ebcdic_nl_code=0x25
+elif test "$enable_ebcdic" = "yes"; then
+ ebcdic_nl_code=0x15
+fi
+
+cat < Delete Cache".
+
+1. Install the latest CMake version available from http://www.cmake.org/, and
+ ensure that cmake\bin is on your path.
+
+2. Unzip (retaining folder structure) the PCRE source tree into a source
+ directory such as C:\pcre. You should ensure your local date and time
+ is not earlier than the file dates in your source dir if the release is
+ very new.
+
+3. Create a new, empty build directory, preferably a subdirectory of the
+ source dir. For example, C:\pcre\pcre-xx\build.
+
+4. Run cmake-gui from the Shell envirornment of your build tool, for example,
+ Msys for Msys/MinGW or Visual Studio Command Prompt for VC/VC++. Do not try
+ to start Cmake from the Windows Start menu, as this can lead to errors.
+
+5. Enter C:\pcre\pcre-xx and C:\pcre\pcre-xx\build for the source and build
+ directories, respectively.
+
+6. Hit the "Configure" button.
+
+7. Select the particular IDE / build tool that you are using (Visual
+ Studio, MSYS makefiles, MinGW makefiles, etc.)
+
+8. The GUI will then list several configuration options. This is where
+ you can enable UTF-8 support or other PCRE optional features.
+
+9. Hit "Configure" again. The adjacent "Generate" button should now be
+ active.
+
+10. Hit "Generate".
+
+11. The build directory should now contain a usable build system, be it a
+ solution file for Visual Studio, makefiles for MinGW, etc. Exit from
+ cmake-gui and use the generated build system with your compiler or IDE.
+ E.g., for MinGW you can run "make", or for Visual Studio, open the PCRE
+ solution, select the desired configuration (Debug, or Release, etc.) and
+ build the ALL_BUILD project.
+
+12. If during configuration with cmake-gui you've elected to build the test
+ programs, you can execute them by building the test project. E.g., for
+ MinGW: "make test"; for Visual Studio build the RUN_TESTS project. The
+ most recent build configuration is targeted by the tests. A summary of
+ test results is presented. Complete test output is subsequently
+ available for review in Testing\Temporary under your build dir.
+
+
+USE OF RELATIVE PATHS WITH CMAKE ON WINDOWS
+
+A PCRE user comments as follows: I thought that others may want to know the
+current state of CMAKE_USE_RELATIVE_PATHS support on Windows. Here it is:
+
+-- AdditionalIncludeDirectories is only partially modified (only the
+ first path - see below)
+-- Only some of the contained file paths are modified - shown below for
+ pcre.vcproj
+-- It properly modifies
+
+I am sure CMake people can fix that if they want to. Until then one will
+need to replace existing absolute paths in project files with relative
+paths manually (e.g. from VS) - relative to project file location. I did
+just that before being told to try CMAKE_USE_RELATIVE_PATHS. Not a big
+deal.
+
+AdditionalIncludeDirectories="E:\builds\pcre\build;E:\builds\pcre\pcre-7.5;"
+AdditionalIncludeDirectories=".;E:\builds\pcre\pcre-7.5;"
+
+RelativePath="pcre.h"
+RelativePath="pcre_chartables.c"
+RelativePath="pcre_chartables.c.rule"
+
+
+TESTING WITH RUNTEST.BAT
+
+If configured with CMake, building the test project ("make test" or building
+ALL_TESTS in Visual Studio) creates (and runs) pcre_test.bat (and depending
+on your configuration options, possibly other test programs) in the build
+directory. Pcre_test.bat runs RunTest.Bat with correct source and exe paths.
+
+For manual testing with RunTest.bat, provided the build dir is a subdirectory
+of the source directory: Open command shell window. Chdir to the location
+of your pcretest.exe and pcregrep.exe programs. Call RunTest.bat with
+"..\RunTest.Bat" or "..\..\RunTest.bat" as appropriate.
+
+To run only a particular test with RunTest.Bat provide a test number argument.
+
+Otherwise:
+
+1. Copy RunTest.bat into the directory where pcretest.exe and pcregrep.exe
+ have been created.
+
+2. Edit RunTest.bat to indentify the full or relative location of
+ the pcre source (wherein which the testdata folder resides), e.g.:
+
+ set srcdir=C:\pcre\pcre-8.20
+
+3. In a Windows command environment, chdir to the location of your bat and
+ exe programs.
+
+4. Run RunTest.bat. Test outputs will automatically be compared to expected
+ results, and discrepancies will be identified in the console output.
+
+To independently test the just-in-time compiler, run pcre_jit_test.exe.
+To test pcrecpp, run pcrecpp_unittest.exe, pcre_stringpiece_unittest.exe and
+pcre_scanner_unittest.exe.
+
+
+BUILDING UNDER WINDOWS CE WITH VISUAL STUDIO 200x
+
+Vincent Richomme sent a zip archive of files to help with this process. They
+can be found in the file "pcre-vsbuild.zip" in the Contrib directory of the FTP
+site.
+
+
+BUILDING UNDER WINDOWS WITH BCC5.5
+
+Michael Roy sent these comments about building PCRE under Windows with BCC5.5:
+
+Some of the core BCC libraries have a version of PCRE from 1998 built in, which
+can lead to pcre_exec() giving an erroneous PCRE_ERROR_NULL from a version
+mismatch. I'm including an easy workaround below, if you'd like to include it
+in the non-unix instructions:
+
+When linking a project with BCC5.5, pcre.lib must be included before any of the
+libraries cw32.lib, cw32i.lib, cw32mt.lib, and cw32mti.lib on the command line.
+
+
+BUILDING USING BORLAND C++ BUILDER 2007 (CB2007) AND HIGHER
+
+A PCRE user sent these comments about this environment (see also the comment
+from another user that follows them):
+
+The XE versions of C++ Builder come with a RegularExpressionsCore class which
+contain a version of TPerlRegEx. However, direct use of the C PCRE library may
+be desirable.
+
+The default makevp.bat, however, supplied with PCRE builds a version of PCRE
+that is not usable with any version of C++ Builder because the compiler ships
+with an embedded version of PCRE, version 2.01 from 1998! [See also the note
+about BCC5.5 above.] If you want to use PCRE you'll need to rename the
+functions (pcre_compile to pcre_compile_bcc, etc) or do as I have done and just
+use the 16 bit versions. I'm using std::wstring everywhere anyway. Since the
+embedded version of PCRE does not have the 16 bit function names, there is no
+conflict.
+
+Building PCRE using a C++ Builder static library project file (recommended):
+
+1. Rename or remove pcre.h, pcreposi.h, and pcreposix.h from your C++ Builder
+original include path.
+
+2. Download PCRE from pcre.org and extract to a directory.
+
+3. Rename pcre_chartables.c.dist to pcre_chartables.c, pcre.h.generic to
+pcre.h, and config.h.generic to config.h.
+
+4. Edit pcre.h and pcre_config.c so that they include config.h.
+
+5. Edit config.h like so:
+
+Comment out the following lines:
+#define PACKAGE "pcre"
+#define PACKAGE_BUGREPORT ""
+#define PACKAGE_NAME "PCRE"
+#define PACKAGE_STRING "PCRE 8.32"
+#define PACKAGE_TARNAME "pcre"
+#define PACKAGE_URL ""
+#define PACKAGE_VERSION "8.32"
+
+Add the following lines:
+#ifndef SUPPORT_UTF
+#define SUPPORT_UTF 100 // any value is fine
+#endif
+
+#ifndef SUPPORT_UCP
+#define SUPPORT_UCP 101 // any value is fine
+#endif
+
+#ifndef SUPPORT_UCP
+#define SUPPORT_PCRE16 102 // any value is fine
+#endif
+
+#ifndef SUPPORT_UTF8
+#define SUPPORT_UTF8 103 // any value is fine
+#endif
+
+6. Build a C++ Builder project using the IDE. Go to File / New / Other and
+choose Static Library. You can name it pcre.cbproj or whatever. Now set your
+paths by going to Project / Options. Set the Include path. Do this from the
+"Base" option to apply to both Release and Debug builds. Now add the following
+files to the project:
+
+pcre.h
+pcre16_byte_order.c
+pcre16_chartables.c
+pcre16_compile.c
+pcre16_config.c
+pcre16_dfa_exec.c
+pcre16_exec.c
+pcre16_fullinfo.c
+pcre16_get.c
+pcre16_globals.c
+pcre16_maketables.c
+pcre16_newline.c
+pcre16_ord2utf16.c
+pcre16_printint.c
+pcre16_refcount.c
+pcre16_string_utils.c
+pcre16_study.c
+pcre16_tables.c
+pcre16_ucd.c
+pcre16_utf16_utils.c
+pcre16_valid_utf16.c
+pcre16_version.c
+pcre16_xclass.c
+
+//Optional
+pcre_version.c
+
+7. After compiling the .lib file, copy the .lib and header files to a project
+you want to use PCRE with. Enjoy.
+
+Optional ... Building PCRE using the makevp.bat file:
+
+1. Edit makevp_c.txt and makevp_l.txt and change all the names to the 16 bit
+versions.
+
+2. Edit makevp.bat and set the path to C++ Builder. Run makevp.bat.
+
+Another PCRE user added this comment:
+
+Another approach I successfully used for some years with BCB 5 and 6 was to
+make sure that include and library paths of PCRE are configured before the
+default paths of the IDE in the dialogs where one can manage those paths.
+Afterwards one can open the project files using a text editor and manually add
+the self created library for pcre itself, pcrecpp doesn't ship with the IDE, in
+the library nodes where the IDE manages its own libraries to link against in
+front of the IDE-own libraries. This way one can use the default PCRE function
+names without getting access violations on runtime.
+
+
+
+
+BUILDING PCRE ON OPENVMS
+
+Stephen Hoffman sent the following, in December 2012:
+
+"Here is a very short write-up on the
+OpenVMS port and here
+
+
+
+is a zip with the OpenVMS files, and with one modified testing-related PCRE
+file." This is a port of PCRE 8.32.
+
+Earlier, Dan Mooney sent the following comments about building PCRE on OpenVMS.
+They relate to an older version of PCRE that used fewer source files, so the
+exact commands will need changing. See the current list of source files above.
+
+"It was quite easy to compile and link the library. I don't have a formal
+make file but the attached file [reproduced below] contains the OpenVMS DCL
+commands I used to build the library. I had to add #define
+POSIX_MALLOC_THRESHOLD 10 to pcre.h since it was not defined anywhere.
+
+The library was built on:
+O/S: HP OpenVMS v7.3-1
+Compiler: Compaq C v6.5-001-48BCD
+Linker: vA13-01
+
+The test results did not match 100% due to the issues you mention in your
+documentation regarding isprint(), iscntrl(), isgraph() and ispunct(). I
+modified some of the character tables temporarily and was able to get the
+results to match. Tests using the fr locale did not match since I don't have
+that locale loaded. The study size was always reported to be 3 less than the
+value in the standard test output files."
+
+=========================
+$! This DCL procedure builds PCRE on OpenVMS
+$!
+$! I followed the instructions in the non-unix-use file in the distribution.
+$!
+$ COMPILE == "CC/LIST/NOMEMBER_ALIGNMENT/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES
+$ COMPILE DFTABLES.C
+$ LINK/EXE=DFTABLES.EXE DFTABLES.OBJ
+$ RUN DFTABLES.EXE/OUTPUT=CHARTABLES.C
+$ COMPILE MAKETABLES.C
+$ COMPILE GET.C
+$ COMPILE STUDY.C
+$! I had to set POSIX_MALLOC_THRESHOLD to 10 in PCRE.H since the symbol
+$! did not seem to be defined anywhere.
+$! I edited pcre.h and added #DEFINE SUPPORT_UTF8 to enable UTF8 support.
+$ COMPILE PCRE.C
+$ LIB/CREATE PCRE MAKETABLES.OBJ, GET.OBJ, STUDY.OBJ, PCRE.OBJ
+$! I had to set POSIX_MALLOC_THRESHOLD to 10 in PCRE.H since the symbol
+$! did not seem to be defined anywhere.
+$ COMPILE PCREPOSIX.C
+$ LIB/CREATE PCREPOSIX PCREPOSIX.OBJ
+$ COMPILE PCRETEST.C
+$ LINK/EXE=PCRETEST.EXE PCRETEST.OBJ, PCRE/LIB, PCREPOSIX/LIB
+$! C programs that want access to command line arguments must be
+$! defined as a symbol
+$ PCRETEST :== "$ SYS$ROADSUSERS:[DMOONEY.REGEXP]PCRETEST.EXE"
+$! Arguments must be enclosed in quotes.
+$ PCRETEST "-C"
+$! Test results:
+$!
+$! The test results did not match 100%. The functions isprint(), iscntrl(),
+$! isgraph() and ispunct() on OpenVMS must not produce the same results
+$! as the system that built the test output files provided with the
+$! distribution.
+$!
+$! The study size did not match and was always 3 less on OpenVMS.
+$!
+$! Locale could not be set to fr
+$!
+=========================
+
+
+BUILDING PCRE ON STRATUS OPENVOS
+
+These notes on the port of PCRE to VOS (lightly edited) were supplied by
+Ashutosh Warikoo, whose email address has the local part awarikoo and the
+domain nse.co.in. The port was for version 7.9 in August 2009.
+
+1. Building PCRE
+
+I built pcre on OpenVOS Release 17.0.1at using GNU Tools 3.4a without any
+problems. I used the following packages to build PCRE:
+
+ ftp://ftp.stratus.com/pub/vos/posix/ga/posix.save.evf.gz
+
+Please read and follow the instructions that come with these packages. To start
+the build of pcre, from the root of the package type:
+
+ ./build.sh
+
+2. Installing PCRE
+
+Once you have successfully built PCRE, login to the SysAdmin group, switch to
+the root user, and type
+
+ [ !create_dir (master_disk)>usr --if needed ]
+ [ !create_dir (master_disk)>usr>local --if needed ]
+ !gmake install
+
+This installs PCRE and its man pages into /usr/local. You can add
+(master_disk)>usr>local>bin to your command search paths, or if you are in
+BASH, add /usr/local/bin to the PATH environment variable.
+
+4. Restrictions
+
+This port requires readline library optionally. However during the build I
+faced some yet unexplored errors while linking with readline. As it was an
+optional component I chose to disable it.
+
+5. Known Problems
+
+I ran the test suite, but you will have to be your own judge of whether this
+command, and this port, suits your purposes. If you find any problems that
+appear to be related to the port itself, please let me know. Please see the
+build.log file in the root of the package also.
+
+
+BUILDING PCRE ON NATIVE Z/OS AND Z/VM
+
+z/OS and z/VM are operating systems for mainframe computers, produced by IBM.
+The character code used is EBCDIC, not ASCII or Unicode. In z/OS, UNIX APIs and
+applications can be supported through UNIX System Services, and in such an
+environment PCRE can be built in the same way as in other systems. However, in
+native z/OS (without UNIX System Services) and in z/VM, special ports are
+required. For details, please see this web site:
+
+ http://www.zaconsultants.net
+
+There is also a mirror here:
+
+ http://www.vsoft-software.com/downloads.html
+
+==========================
+Last Updated: 14 May 2013
diff --git a/pcre/doc/html/README.txt b/pcre/doc/html/README.txt
new file mode 100644
index 00000000000..e14935efeba
--- /dev/null
+++ b/pcre/doc/html/README.txt
@@ -0,0 +1,974 @@
+README file for PCRE (Perl-compatible regular expression library)
+-----------------------------------------------------------------
+
+The latest release of PCRE is always available in three alternative formats
+from:
+
+ ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre-xxx.tar.gz
+ ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre-xxx.tar.bz2
+ ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/pcre-xxx.zip
+
+There is a mailing list for discussion about the development of PCRE at
+
+ pcre-dev@exim.org
+
+Please read the NEWS file if you are upgrading from a previous release.
+The contents of this README file are:
+
+ The PCRE APIs
+ Documentation for PCRE
+ Contributions by users of PCRE
+ Building PCRE on non-Unix-like systems
+ Building PCRE without using autotools
+ Building PCRE using autotools
+ Retrieving configuration information
+ Shared libraries
+ Cross-compiling using autotools
+ Using HP's ANSI C++ compiler (aCC)
+ Compiling in Tru64 using native compilers
+ Using Sun's compilers for Solaris
+ Using PCRE from MySQL
+ Making new tarballs
+ Testing PCRE
+ Character tables
+ File manifest
+
+
+The PCRE APIs
+-------------
+
+PCRE is written in C, and it has its own API. There are three sets of
+functions, one for the 8-bit library, which processes strings of bytes, one for
+the 16-bit library, which processes strings of 16-bit values, and one for the
+32-bit library, which processes strings of 32-bit values. The distribution also
+includes a set of C++ wrapper functions (see the pcrecpp man page for details),
+courtesy of Google Inc., which can be used to call the 8-bit PCRE library from
+C++.
+
+In addition, there is a set of C wrapper functions (again, just for the 8-bit
+library) that are based on the POSIX regular expression API (see the pcreposix
+man page). These end up in the library called libpcreposix. Note that this just
+provides a POSIX calling interface to PCRE; the regular expressions themselves
+still follow Perl syntax and semantics. The POSIX API is restricted, and does
+not give full access to all of PCRE's facilities.
+
+The header file for the POSIX-style functions is called pcreposix.h. The
+official POSIX name is regex.h, but I did not want to risk possible problems
+with existing files of that name by distributing it that way. To use PCRE with
+an existing program that uses the POSIX API, pcreposix.h will have to be
+renamed or pointed at by a link.
+
+If you are using the POSIX interface to PCRE and there is already a POSIX regex
+library installed on your system, as well as worrying about the regex.h header
+file (as mentioned above), you must also take care when linking programs to
+ensure that they link with PCRE's libpcreposix library. Otherwise they may pick
+up the POSIX functions of the same name from the other library.
+
+One way of avoiding this confusion is to compile PCRE with the addition of
+-Dregcomp=PCREregcomp (and similarly for the other POSIX functions) to the
+compiler flags (CFLAGS if you are using "configure" -- see below). This has the
+effect of renaming the functions so that the names no longer clash. Of course,
+you have to do the same thing for your applications, or write them using the
+new names.
+
+
+Documentation for PCRE
+----------------------
+
+If you install PCRE in the normal way on a Unix-like system, you will end up
+with a set of man pages whose names all start with "pcre". The one that is just
+called "pcre" lists all the others. In addition to these man pages, the PCRE
+documentation is supplied in two other forms:
+
+ 1. There are files called doc/pcre.txt, doc/pcregrep.txt, and
+ doc/pcretest.txt in the source distribution. The first of these is a
+ concatenation of the text forms of all the section 3 man pages except
+ those that summarize individual functions. The other two are the text
+ forms of the section 1 man pages for the pcregrep and pcretest commands.
+ These text forms are provided for ease of scanning with text editors or
+ similar tools. They are installed in /share/doc/pcre, where
+ is the installation prefix (defaulting to /usr/local).
+
+ 2. A set of files containing all the documentation in HTML form, hyperlinked
+ in various ways, and rooted in a file called index.html, is distributed in
+ doc/html and installed in /share/doc/pcre/html.
+
+Users of PCRE have contributed files containing the documentation for various
+releases in CHM format. These can be found in the Contrib directory of the FTP
+site (see next section).
+
+
+Contributions by users of PCRE
+------------------------------
+
+You can find contributions from PCRE users in the directory
+
+ ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/Contrib
+
+There is a README file giving brief descriptions of what they are. Some are
+complete in themselves; others are pointers to URLs containing relevant files.
+Some of this material is likely to be well out-of-date. Several of the earlier
+contributions provided support for compiling PCRE on various flavours of
+Windows (I myself do not use Windows). Nowadays there is more Windows support
+in the standard distribution, so these contibutions have been archived.
+
+
+Building PCRE on non-Unix-like systems
+--------------------------------------
+
+For a non-Unix-like system, please read the comments in the file
+NON-AUTOTOOLS-BUILD, though if your system supports the use of "configure" and
+"make" you may be able to build PCRE using autotools in the same way as for
+many Unix-like systems.
+
+PCRE can also be configured using the GUI facility provided by CMake's
+cmake-gui command. This creates Makefiles, solution files, etc. The file
+NON-AUTOTOOLS-BUILD has information about CMake.
+
+PCRE has been compiled on many different operating systems. It should be
+straightforward to build PCRE on any system that has a Standard C compiler and
+library, because it uses only Standard C functions.
+
+
+Building PCRE without using autotools
+-------------------------------------
+
+The use of autotools (in particular, libtool) is problematic in some
+environments, even some that are Unix or Unix-like. See the NON-AUTOTOOLS-BUILD
+file for ways of building PCRE without using autotools.
+
+
+Building PCRE using autotools
+-----------------------------
+
+If you are using HP's ANSI C++ compiler (aCC), please see the special note
+in the section entitled "Using HP's ANSI C++ compiler (aCC)" below.
+
+The following instructions assume the use of the widely used "configure; make;
+make install" (autotools) process.
+
+To build PCRE on system that supports autotools, first run the "configure"
+command from the PCRE distribution directory, with your current directory set
+to the directory where you want the files to be created. This command is a
+standard GNU "autoconf" configuration script, for which generic instructions
+are supplied in the file INSTALL.
+
+Most commonly, people build PCRE within its own distribution directory, and in
+this case, on many systems, just running "./configure" is sufficient. However,
+the usual methods of changing standard defaults are available. For example:
+
+CFLAGS='-O2 -Wall' ./configure --prefix=/opt/local
+
+This command specifies that the C compiler should be run with the flags '-O2
+-Wall' instead of the default, and that "make install" should install PCRE
+under /opt/local instead of the default /usr/local.
+
+If you want to build in a different directory, just run "configure" with that
+directory as current. For example, suppose you have unpacked the PCRE source
+into /source/pcre/pcre-xxx, but you want to build it in /build/pcre/pcre-xxx:
+
+cd /build/pcre/pcre-xxx
+/source/pcre/pcre-xxx/configure
+
+PCRE is written in C and is normally compiled as a C library. However, it is
+possible to build it as a C++ library, though the provided building apparatus
+does not have any features to support this.
+
+There are some optional features that can be included or omitted from the PCRE
+library. They are also documented in the pcrebuild man page.
+
+. By default, both shared and static libraries are built. You can change this
+ by adding one of these options to the "configure" command:
+
+ --disable-shared
+ --disable-static
+
+ (See also "Shared libraries on Unix-like systems" below.)
+
+. By default, only the 8-bit library is built. If you add --enable-pcre16 to
+ the "configure" command, the 16-bit library is also built. If you add
+ --enable-pcre32 to the "configure" command, the 32-bit library is also built.
+ If you want only the 16-bit or 32-bit library, use --disable-pcre8 to disable
+ building the 8-bit library.
+
+. If you are building the 8-bit library and want to suppress the building of
+ the C++ wrapper library, you can add --disable-cpp to the "configure"
+ command. Otherwise, when "configure" is run without --disable-pcre8, it will
+ try to find a C++ compiler and C++ header files, and if it succeeds, it will
+ try to build the C++ wrapper.
+
+. If you want to include support for just-in-time compiling, which can give
+ large performance improvements on certain platforms, add --enable-jit to the
+ "configure" command. This support is available only for certain hardware
+ architectures. If you try to enable it on an unsupported architecture, there
+ will be a compile time error.
+
+. When JIT support is enabled, pcregrep automatically makes use of it, unless
+ you add --disable-pcregrep-jit to the "configure" command.
+
+. If you want to make use of the support for UTF-8 Unicode character strings in
+ the 8-bit library, or UTF-16 Unicode character strings in the 16-bit library,
+ or UTF-32 Unicode character strings in the 32-bit library, you must add
+ --enable-utf to the "configure" command. Without it, the code for handling
+ UTF-8, UTF-16 and UTF-8 is not included in the relevant library. Even
+ when --enable-utf is included, the use of a UTF encoding still has to be
+ enabled by an option at run time. When PCRE is compiled with this option, its
+ input can only either be ASCII or UTF-8/16/32, even when running on EBCDIC
+ platforms. It is not possible to use both --enable-utf and --enable-ebcdic at
+ the same time.
+
+. There are no separate options for enabling UTF-8, UTF-16 and UTF-32
+ independently because that would allow ridiculous settings such as requesting
+ UTF-16 support while building only the 8-bit library. However, the option
+ --enable-utf8 is retained for backwards compatibility with earlier releases
+ that did not support 16-bit or 32-bit character strings. It is synonymous with
+ --enable-utf. It is not possible to configure one library with UTF support
+ and the other without in the same configuration.
+
+. If, in addition to support for UTF-8/16/32 character strings, you want to
+ include support for the \P, \p, and \X sequences that recognize Unicode
+ character properties, you must add --enable-unicode-properties to the
+ "configure" command. This adds about 30K to the size of the library (in the
+ form of a property table); only the basic two-letter properties such as Lu
+ are supported.
+
+. You can build PCRE to recognize either CR or LF or the sequence CRLF or any
+ of the preceding, or any of the Unicode newline sequences as indicating the
+ end of a line. Whatever you specify at build time is the default; the caller
+ of PCRE can change the selection at run time. The default newline indicator
+ is a single LF character (the Unix standard). You can specify the default
+ newline indicator by adding --enable-newline-is-cr or --enable-newline-is-lf
+ or --enable-newline-is-crlf or --enable-newline-is-anycrlf or
+ --enable-newline-is-any to the "configure" command, respectively.
+
+ If you specify --enable-newline-is-cr or --enable-newline-is-crlf, some of
+ the standard tests will fail, because the lines in the test files end with
+ LF. Even if the files are edited to change the line endings, there are likely
+ to be some failures. With --enable-newline-is-anycrlf or
+ --enable-newline-is-any, many tests should succeed, but there may be some
+ failures.
+
+. By default, the sequence \R in a pattern matches any Unicode line ending
+ sequence. This is independent of the option specifying what PCRE considers to
+ be the end of a line (see above). However, the caller of PCRE can restrict \R
+ to match only CR, LF, or CRLF. You can make this the default by adding
+ --enable-bsr-anycrlf to the "configure" command (bsr = "backslash R").
+
+. When called via the POSIX interface, PCRE uses malloc() to get additional
+ storage for processing capturing parentheses if there are more than 10 of
+ them in a pattern. You can increase this threshold by setting, for example,
+
+ --with-posix-malloc-threshold=20
+
+ on the "configure" command.
+
+. PCRE has a counter that can be set to limit the amount of resources it uses.
+ If the limit is exceeded during a match, the match fails. The default is ten
+ million. You can change the default by setting, for example,
+
+ --with-match-limit=500000
+
+ on the "configure" command. This is just the default; individual calls to
+ pcre_exec() can supply their own value. There is more discussion on the
+ pcreapi man page.
+
+. There is a separate counter that limits the depth of recursive function calls
+ during a matching process. This also has a default of ten million, which is
+ essentially "unlimited". You can change the default by setting, for example,
+
+ --with-match-limit-recursion=500000
+
+ Recursive function calls use up the runtime stack; running out of stack can
+ cause programs to crash in strange ways. There is a discussion about stack
+ sizes in the pcrestack man page.
+
+. The default maximum compiled pattern size is around 64K. You can increase
+ this by adding --with-link-size=3 to the "configure" command. In the 8-bit
+ library, PCRE then uses three bytes instead of two for offsets to different
+ parts of the compiled pattern. In the 16-bit library, --with-link-size=3 is
+ the same as --with-link-size=4, which (in both libraries) uses four-byte
+ offsets. Increasing the internal link size reduces performance. In the 32-bit
+ library, the only supported link size is 4.
+
+. You can build PCRE so that its internal match() function that is called from
+ pcre_exec() does not call itself recursively. Instead, it uses memory blocks
+ obtained from the heap via the special functions pcre_stack_malloc() and
+ pcre_stack_free() to save data that would otherwise be saved on the stack. To
+ build PCRE like this, use
+
+ --disable-stack-for-recursion
+
+ on the "configure" command. PCRE runs more slowly in this mode, but it may be
+ necessary in environments with limited stack sizes. This applies only to the
+ normal execution of the pcre_exec() function; if JIT support is being
+ successfully used, it is not relevant. Equally, it does not apply to
+ pcre_dfa_exec(), which does not use deeply nested recursion. There is a
+ discussion about stack sizes in the pcrestack man page.
+
+. For speed, PCRE uses four tables for manipulating and identifying characters
+ whose code point values are less than 256. By default, it uses a set of
+ tables for ASCII encoding that is part of the distribution. If you specify
+
+ --enable-rebuild-chartables
+
+ a program called dftables is compiled and run in the default C locale when
+ you obey "make". It builds a source file called pcre_chartables.c. If you do
+ not specify this option, pcre_chartables.c is created as a copy of
+ pcre_chartables.c.dist. See "Character tables" below for further information.
+
+. It is possible to compile PCRE for use on systems that use EBCDIC as their
+ character code (as opposed to ASCII/Unicode) by specifying
+
+ --enable-ebcdic
+
+ This automatically implies --enable-rebuild-chartables (see above). However,
+ when PCRE is built this way, it always operates in EBCDIC. It cannot support
+ both EBCDIC and UTF-8/16/32. There is a second option, --enable-ebcdic-nl25,
+ which specifies that the code value for the EBCDIC NL character is 0x25
+ instead of the default 0x15.
+
+. In environments where valgrind is installed, if you specify
+
+ --enable-valgrind
+
+ PCRE will use valgrind annotations to mark certain memory regions as
+ unaddressable. This allows it to detect invalid memory accesses, and is
+ mostly useful for debugging PCRE itself.
+
+. In environments where the gcc compiler is used and lcov version 1.6 or above
+ is installed, if you specify
+
+ --enable-coverage
+
+ the build process implements a code coverage report for the test suite. The
+ report is generated by running "make coverage". If ccache is installed on
+ your system, it must be disabled when building PCRE for coverage reporting.
+ You can do this by setting the environment variable CCACHE_DISABLE=1 before
+ running "make" to build PCRE.
+
+. The pcregrep program currently supports only 8-bit data files, and so
+ requires the 8-bit PCRE library. It is possible to compile pcregrep to use
+ libz and/or libbz2, in order to read .gz and .bz2 files (respectively), by
+ specifying one or both of
+
+ --enable-pcregrep-libz
+ --enable-pcregrep-libbz2
+
+ Of course, the relevant libraries must be installed on your system.
+
+. The default size of internal buffer used by pcregrep can be set by, for
+ example:
+
+ --with-pcregrep-bufsize=50K
+
+ The default value is 20K.
+
+. It is possible to compile pcretest so that it links with the libreadline
+ or libedit libraries, by specifying, respectively,
+
+ --enable-pcretest-libreadline or --enable-pcretest-libedit
+
+ If this is done, when pcretest's input is from a terminal, it reads it using
+ the readline() function. This provides line-editing and history facilities.
+ Note that libreadline is GPL-licenced, so if you distribute a binary of
+ pcretest linked in this way, there may be licensing issues. These can be
+ avoided by linking with libedit (which has a BSD licence) instead.
+
+ Enabling libreadline causes the -lreadline option to be added to the pcretest
+ build. In many operating environments with a sytem-installed readline
+ library this is sufficient. However, in some environments (e.g. if an
+ unmodified distribution version of readline is in use), it may be necessary
+ to specify something like LIBS="-lncurses" as well. This is because, to quote
+ the readline INSTALL, "Readline uses the termcap functions, but does not link
+ with the termcap or curses library itself, allowing applications which link
+ with readline the to choose an appropriate library." If you get error
+ messages about missing functions tgetstr, tgetent, tputs, tgetflag, or tgoto,
+ this is the problem, and linking with the ncurses library should fix it.
+
+The "configure" script builds the following files for the basic C library:
+
+. Makefile the makefile that builds the library
+. config.h build-time configuration options for the library
+. pcre.h the public PCRE header file
+. pcre-config script that shows the building settings such as CFLAGS
+ that were set for "configure"
+. libpcre.pc ) data for the pkg-config command
+. libpcre16.pc )
+. libpcre32.pc )
+. libpcreposix.pc )
+. libtool script that builds shared and/or static libraries
+
+Versions of config.h and pcre.h are distributed in the PCRE tarballs under the
+names config.h.generic and pcre.h.generic. These are provided for those who
+have to built PCRE without using "configure" or CMake. If you use "configure"
+or CMake, the .generic versions are not used.
+
+When building the 8-bit library, if a C++ compiler is found, the following
+files are also built:
+
+. libpcrecpp.pc data for the pkg-config command
+. pcrecpparg.h header file for calling PCRE via the C++ wrapper
+. pcre_stringpiece.h header for the C++ "stringpiece" functions
+
+The "configure" script also creates config.status, which is an executable
+script that can be run to recreate the configuration, and config.log, which
+contains compiler output from tests that "configure" runs.
+
+Once "configure" has run, you can run "make". This builds the the libraries
+libpcre, libpcre16 and/or libpcre32, and a test program called pcretest. If you
+enabled JIT support with --enable-jit, a test program called pcre_jit_test is
+built as well.
+
+If the 8-bit library is built, libpcreposix and the pcregrep command are also
+built, and if a C++ compiler was found on your system, and you did not disable
+it with --disable-cpp, "make" builds the C++ wrapper library, which is called
+libpcrecpp, as well as some test programs called pcrecpp_unittest,
+pcre_scanner_unittest, and pcre_stringpiece_unittest.
+
+The command "make check" runs all the appropriate tests. Details of the PCRE
+tests are given below in a separate section of this document.
+
+You can use "make install" to install PCRE into live directories on your
+system. The following are installed (file names are all relative to the
+ that is set when "configure" is run):
+
+ Commands (bin):
+ pcretest
+ pcregrep (if 8-bit support is enabled)
+ pcre-config
+
+ Libraries (lib):
+ libpcre16 (if 16-bit support is enabled)
+ libpcre32 (if 32-bit support is enabled)
+ libpcre (if 8-bit support is enabled)
+ libpcreposix (if 8-bit support is enabled)
+ libpcrecpp (if 8-bit and C++ support is enabled)
+
+ Configuration information (lib/pkgconfig):
+ libpcre16.pc
+ libpcre32.pc
+ libpcre.pc
+ libpcreposix.pc
+ libpcrecpp.pc (if C++ support is enabled)
+
+ Header files (include):
+ pcre.h
+ pcreposix.h
+ pcre_scanner.h )
+ pcre_stringpiece.h ) if C++ support is enabled
+ pcrecpp.h )
+ pcrecpparg.h )
+
+ Man pages (share/man/man{1,3}):
+ pcregrep.1
+ pcretest.1
+ pcre-config.1
+ pcre.3
+ pcre*.3 (lots more pages, all starting "pcre")
+
+ HTML documentation (share/doc/pcre/html):
+ index.html
+ *.html (lots more pages, hyperlinked from index.html)
+
+ Text file documentation (share/doc/pcre):
+ AUTHORS
+ COPYING
+ ChangeLog
+ LICENCE
+ NEWS
+ README
+ pcre.txt (a concatenation of the man(3) pages)
+ pcretest.txt the pcretest man page
+ pcregrep.txt the pcregrep man page
+ pcre-config.txt the pcre-config man page
+
+If you want to remove PCRE from your system, you can run "make uninstall".
+This removes all the files that "make install" installed. However, it does not
+remove any directories, because these are often shared with other programs.
+
+
+Retrieving configuration information
+------------------------------------
+
+Running "make install" installs the command pcre-config, which can be used to
+recall information about the PCRE configuration and installation. For example:
+
+ pcre-config --version
+
+prints the version number, and
+
+ pcre-config --libs
+
+outputs information about where the library is installed. This command can be
+included in makefiles for programs that use PCRE, saving the programmer from
+having to remember too many details.
+
+The pkg-config command is another system for saving and retrieving information
+about installed libraries. Instead of separate commands for each library, a
+single command is used. For example:
+
+ pkg-config --cflags pcre
+
+The data is held in *.pc files that are installed in a directory called
+/lib/pkgconfig.
+
+
+Shared libraries
+----------------
+
+The default distribution builds PCRE as shared libraries and static libraries,
+as long as the operating system supports shared libraries. Shared library
+support relies on the "libtool" script which is built as part of the
+"configure" process.
+
+The libtool script is used to compile and link both shared and static
+libraries. They are placed in a subdirectory called .libs when they are newly
+built. The programs pcretest and pcregrep are built to use these uninstalled
+libraries (by means of wrapper scripts in the case of shared libraries). When
+you use "make install" to install shared libraries, pcregrep and pcretest are
+automatically re-built to use the newly installed shared libraries before being
+installed themselves. However, the versions left in the build directory still
+use the uninstalled libraries.
+
+To build PCRE using static libraries only you must use --disable-shared when
+configuring it. For example:
+
+./configure --prefix=/usr/gnu --disable-shared
+
+Then run "make" in the usual way. Similarly, you can use --disable-static to
+build only shared libraries.
+
+
+Cross-compiling using autotools
+-------------------------------
+
+You can specify CC and CFLAGS in the normal way to the "configure" command, in
+order to cross-compile PCRE for some other host. However, you should NOT
+specify --enable-rebuild-chartables, because if you do, the dftables.c source
+file is compiled and run on the local host, in order to generate the inbuilt
+character tables (the pcre_chartables.c file). This will probably not work,
+because dftables.c needs to be compiled with the local compiler, not the cross
+compiler.
+
+When --enable-rebuild-chartables is not specified, pcre_chartables.c is created
+by making a copy of pcre_chartables.c.dist, which is a default set of tables
+that assumes ASCII code. Cross-compiling with the default tables should not be
+a problem.
+
+If you need to modify the character tables when cross-compiling, you should
+move pcre_chartables.c.dist out of the way, then compile dftables.c by hand and
+run it on the local host to make a new version of pcre_chartables.c.dist.
+Then when you cross-compile PCRE this new version of the tables will be used.
+
+
+Using HP's ANSI C++ compiler (aCC)
+----------------------------------
+
+Unless C++ support is disabled by specifying the "--disable-cpp" option of the
+"configure" script, you must include the "-AA" option in the CXXFLAGS
+environment variable in order for the C++ components to compile correctly.
+
+Also, note that the aCC compiler on PA-RISC platforms may have a defect whereby
+needed libraries fail to get included when specifying the "-AA" compiler
+option. If you experience unresolved symbols when linking the C++ programs,
+use the workaround of specifying the following environment variable prior to
+running the "configure" script:
+
+ CXXLDFLAGS="-lstd_v2 -lCsup_v2"
+
+
+Compiling in Tru64 using native compilers
+-----------------------------------------
+
+The following error may occur when compiling with native compilers in the Tru64
+operating system:
+
+ CXX libpcrecpp_la-pcrecpp.lo
+cxx: Error: /usr/lib/cmplrs/cxx/V7.1-006/include/cxx/iosfwd, line 58: #error
+ directive: "cannot include iosfwd -- define __USE_STD_IOSTREAM to
+ override default - see section 7.1.2 of the C++ Using Guide"
+#error "cannot include iosfwd -- define __USE_STD_IOSTREAM to override default
+- see section 7.1.2 of the C++ Using Guide"
+
+This may be followed by other errors, complaining that 'namespace "std" has no
+member'. The solution to this is to add the line
+
+#define __USE_STD_IOSTREAM 1
+
+to the config.h file.
+
+
+Using Sun's compilers for Solaris
+---------------------------------
+
+A user reports that the following configurations work on Solaris 9 sparcv9 and
+Solaris 9 x86 (32-bit):
+
+ Solaris 9 sparcv9: ./configure --disable-cpp CC=/bin/cc CFLAGS="-m64 -g"
+ Solaris 9 x86: ./configure --disable-cpp CC=/bin/cc CFLAGS="-g"
+
+
+Using PCRE from MySQL
+---------------------
+
+On systems where both PCRE and MySQL are installed, it is possible to make use
+of PCRE from within MySQL, as an alternative to the built-in pattern matching.
+There is a web page that tells you how to do this:
+
+ http://www.mysqludf.org/lib_mysqludf_preg/index.php
+
+
+Making new tarballs
+-------------------
+
+The command "make dist" creates three PCRE tarballs, in tar.gz, tar.bz2, and
+zip formats. The command "make distcheck" does the same, but then does a trial
+build of the new distribution to ensure that it works.
+
+If you have modified any of the man page sources in the doc directory, you
+should first run the PrepareRelease script before making a distribution. This
+script creates the .txt and HTML forms of the documentation from the man pages.
+
+
+Testing PCRE
+------------
+
+To test the basic PCRE library on a Unix-like system, run the RunTest script.
+There is another script called RunGrepTest that tests the options of the
+pcregrep command. If the C++ wrapper library is built, three test programs
+called pcrecpp_unittest, pcre_scanner_unittest, and pcre_stringpiece_unittest
+are also built. When JIT support is enabled, another test program called
+pcre_jit_test is built.
+
+Both the scripts and all the program tests are run if you obey "make check" or
+"make test". For other environments, see the instructions in
+NON-AUTOTOOLS-BUILD.
+
+The RunTest script runs the pcretest test program (which is documented in its
+own man page) on each of the relevant testinput files in the testdata
+directory, and compares the output with the contents of the corresponding
+testoutput files. RunTest uses a file called testtry to hold the main output
+from pcretest. Other files whose names begin with "test" are used as working
+files in some tests.
+
+Some tests are relevant only when certain build-time options were selected. For
+example, the tests for UTF-8/16/32 support are run only if --enable-utf was
+used. RunTest outputs a comment when it skips a test.
+
+Many of the tests that are not skipped are run up to three times. The second
+run forces pcre_study() to be called for all patterns except for a few in some
+tests that are marked "never study" (see the pcretest program for how this is
+done). If JIT support is available, the non-DFA tests are run a third time,
+this time with a forced pcre_study() with the PCRE_STUDY_JIT_COMPILE option.
+This testing can be suppressed by putting "nojit" on the RunTest command line.
+
+The entire set of tests is run once for each of the 8-bit, 16-bit and 32-bit
+libraries that are enabled. If you want to run just one set of tests, call
+RunTest with either the -8, -16 or -32 option.
+
+If valgrind is installed, you can run the tests under it by putting "valgrind"
+on the RunTest command line. To run pcretest on just one or more specific test
+files, give their numbers as arguments to RunTest, for example:
+
+ RunTest 2 7 11
+
+You can also specify ranges of tests such as 3-6 or 3- (meaning 3 to the
+end), or a number preceded by ~ to exclude a test. For example:
+
+ Runtest 3-15 ~10
+
+This runs tests 3 to 15, excluding test 10, and just ~13 runs all the tests
+except test 13. Whatever order the arguments are in, the tests are always run
+in numerical order.
+
+You can also call RunTest with the single argument "list" to cause it to output
+a list of tests.
+
+The first test file can be fed directly into the perltest.pl script to check
+that Perl gives the same results. The only difference you should see is in the
+first few lines, where the Perl version is given instead of the PCRE version.
+
+The second set of tests check pcre_fullinfo(), pcre_study(),
+pcre_copy_substring(), pcre_get_substring(), pcre_get_substring_list(), error
+detection, and run-time flags that are specific to PCRE, as well as the POSIX
+wrapper API. It also uses the debugging flags to check some of the internals of
+pcre_compile().
+
+If you build PCRE with a locale setting that is not the standard C locale, the
+character tables may be different (see next paragraph). In some cases, this may
+cause failures in the second set of tests. For example, in a locale where the
+isprint() function yields TRUE for characters in the range 128-255, the use of
+[:isascii:] inside a character class defines a different set of characters, and
+this shows up in this test as a difference in the compiled code, which is being
+listed for checking. Where the comparison test output contains [\x00-\x7f] the
+test will contain [\x00-\xff], and similarly in some other cases. This is not a
+bug in PCRE.
+
+The third set of tests checks pcre_maketables(), the facility for building a
+set of character tables for a specific locale and using them instead of the
+default tables. The tests make use of the "fr_FR" (French) locale. Before
+running the test, the script checks for the presence of this locale by running
+the "locale" command. If that command fails, or if it doesn't include "fr_FR"
+in the list of available locales, the third test cannot be run, and a comment
+is output to say why. If running this test produces instances of the error
+
+ ** Failed to set locale "fr_FR"
+
+in the comparison output, it means that locale is not available on your system,
+despite being listed by "locale". This does not mean that PCRE is broken.
+
+[If you are trying to run this test on Windows, you may be able to get it to
+work by changing "fr_FR" to "french" everywhere it occurs. Alternatively, use
+RunTest.bat. The version of RunTest.bat included with PCRE 7.4 and above uses
+Windows versions of test 2. More info on using RunTest.bat is included in the
+document entitled NON-UNIX-USE.]
+
+The fourth and fifth tests check the UTF-8/16/32 support and error handling and
+internal UTF features of PCRE that are not relevant to Perl, respectively. The
+sixth and seventh tests do the same for Unicode character properties support.
+
+The eighth, ninth, and tenth tests check the pcre_dfa_exec() alternative
+matching function, in non-UTF-8/16/32 mode, UTF-8/16/32 mode, and UTF-8/16/32
+mode with Unicode property support, respectively.
+
+The eleventh test checks some internal offsets and code size features; it is
+run only when the default "link size" of 2 is set (in other cases the sizes
+change) and when Unicode property support is enabled.
+
+The twelfth test is run only when JIT support is available, and the thirteenth
+test is run only when JIT support is not available. They test some JIT-specific
+features such as information output from pcretest about JIT compilation.
+
+The fourteenth, fifteenth, and sixteenth tests are run only in 8-bit mode, and
+the seventeenth, eighteenth, and nineteenth tests are run only in 16/32-bit
+mode. These are tests that generate different output in the two modes. They are
+for general cases, UTF-8/16/32 support, and Unicode property support,
+respectively.
+
+The twentieth test is run only in 16/32-bit mode. It tests some specific
+16/32-bit features of the DFA matching engine.
+
+The twenty-first and twenty-second tests are run only in 16/32-bit mode, when
+the link size is set to 2 for the 16-bit library. They test reloading
+pre-compiled patterns.
+
+The twenty-third and twenty-fourth tests are run only in 16-bit mode. They are
+for general cases, and UTF-16 support, respectively.
+
+The twenty-fifth and twenty-sixth tests are run only in 32-bit mode. They are
+for general cases, and UTF-32 support, respectively.
+
+
+Character tables
+----------------
+
+For speed, PCRE uses four tables for manipulating and identifying characters
+whose code point values are less than 256. The final argument of the
+pcre_compile() function is a pointer to a block of memory containing the
+concatenated tables. A call to pcre_maketables() can be used to generate a set
+of tables in the current locale. If the final argument for pcre_compile() is
+passed as NULL, a set of default tables that is built into the binary is used.
+
+The source file called pcre_chartables.c contains the default set of tables. By
+default, this is created as a copy of pcre_chartables.c.dist, which contains
+tables for ASCII coding. However, if --enable-rebuild-chartables is specified
+for ./configure, a different version of pcre_chartables.c is built by the
+program dftables (compiled from dftables.c), which uses the ANSI C character
+handling functions such as isalnum(), isalpha(), isupper(), islower(), etc. to
+build the table sources. This means that the default C locale which is set for
+your system will control the contents of these default tables. You can change
+the default tables by editing pcre_chartables.c and then re-building PCRE. If
+you do this, you should take care to ensure that the file does not get
+automatically re-generated. The best way to do this is to move
+pcre_chartables.c.dist out of the way and replace it with your customized
+tables.
+
+When the dftables program is run as a result of --enable-rebuild-chartables,
+it uses the default C locale that is set on your system. It does not pay
+attention to the LC_xxx environment variables. In other words, it uses the
+system's default locale rather than whatever the compiling user happens to have
+set. If you really do want to build a source set of character tables in a
+locale that is specified by the LC_xxx variables, you can run the dftables
+program by hand with the -L option. For example:
+
+ ./dftables -L pcre_chartables.c.special
+
+The first two 256-byte tables provide lower casing and case flipping functions,
+respectively. The next table consists of three 32-byte bit maps which identify
+digits, "word" characters, and white space, respectively. These are used when
+building 32-byte bit maps that represent character classes for code points less
+than 256.
+
+The final 256-byte table has bits indicating various character types, as
+follows:
+
+ 1 white space character
+ 2 letter
+ 4 decimal digit
+ 8 hexadecimal digit
+ 16 alphanumeric or '_'
+ 128 regular expression metacharacter or binary zero
+
+You should not alter the set of characters that contain the 128 bit, as that
+will cause PCRE to malfunction.
+
+
+File manifest
+-------------
+
+The distribution should contain the files listed below. Where a file name is
+given as pcre[16|32]_xxx it means that there are three files, one with the name
+pcre_xxx, one with the name pcre16_xx, and a third with the name pcre32_xxx.
+
+(A) Source files of the PCRE library functions and their headers:
+
+ dftables.c auxiliary program for building pcre_chartables.c
+ when --enable-rebuild-chartables is specified
+
+ pcre_chartables.c.dist a default set of character tables that assume ASCII
+ coding; used, unless --enable-rebuild-chartables is
+ specified, by copying to pcre[16]_chartables.c
+
+ pcreposix.c )
+ pcre[16|32]_byte_order.c )
+ pcre[16|32]_compile.c )
+ pcre[16|32]_config.c )
+ pcre[16|32]_dfa_exec.c )
+ pcre[16|32]_exec.c )
+ pcre[16|32]_fullinfo.c )
+ pcre[16|32]_get.c ) sources for the functions in the library,
+ pcre[16|32]_globals.c ) and some internal functions that they use
+ pcre[16|32]_jit_compile.c )
+ pcre[16|32]_maketables.c )
+ pcre[16|32]_newline.c )
+ pcre[16|32]_refcount.c )
+ pcre[16|32]_string_utils.c )
+ pcre[16|32]_study.c )
+ pcre[16|32]_tables.c )
+ pcre[16|32]_ucd.c )
+ pcre[16|32]_version.c )
+ pcre[16|32]_xclass.c )
+ pcre_ord2utf8.c )
+ pcre_valid_utf8.c )
+ pcre16_ord2utf16.c )
+ pcre16_utf16_utils.c )
+ pcre16_valid_utf16.c )
+ pcre32_utf32_utils.c )
+ pcre32_valid_utf32.c )
+
+ pcre[16|32]_printint.c ) debugging function that is used by pcretest,
+ ) and can also be #included in pcre_compile()
+
+ pcre.h.in template for pcre.h when built by "configure"
+ pcreposix.h header for the external POSIX wrapper API
+ pcre_internal.h header for internal use
+ sljit/* 16 files that make up the JIT compiler
+ ucp.h header for Unicode property handling
+
+ config.h.in template for config.h, which is built by "configure"
+
+ pcrecpp.h public header file for the C++ wrapper
+ pcrecpparg.h.in template for another C++ header file
+ pcre_scanner.h public header file for C++ scanner functions
+ pcrecpp.cc )
+ pcre_scanner.cc ) source for the C++ wrapper library
+
+ pcre_stringpiece.h.in template for pcre_stringpiece.h, the header for the
+ C++ stringpiece functions
+ pcre_stringpiece.cc source for the C++ stringpiece functions
+
+(B) Source files for programs that use PCRE:
+
+ pcredemo.c simple demonstration of coding calls to PCRE
+ pcregrep.c source of a grep utility that uses PCRE
+ pcretest.c comprehensive test program
+
+(C) Auxiliary files:
+
+ 132html script to turn "man" pages into HTML
+ AUTHORS information about the author of PCRE
+ ChangeLog log of changes to the code
+ CleanTxt script to clean nroff output for txt man pages
+ Detrail script to remove trailing spaces
+ HACKING some notes about the internals of PCRE
+ INSTALL generic installation instructions
+ LICENCE conditions for the use of PCRE
+ COPYING the same, using GNU's standard name
+ Makefile.in ) template for Unix Makefile, which is built by
+ ) "configure"
+ Makefile.am ) the automake input that was used to create
+ ) Makefile.in
+ NEWS important changes in this release
+ NON-UNIX-USE the previous name for NON-AUTOTOOLS-BUILD
+ NON-AUTOTOOLS-BUILD notes on building PCRE without using autotools
+ PrepareRelease script to make preparations for "make dist"
+ README this file
+ RunTest a Unix shell script for running tests
+ RunGrepTest a Unix shell script for pcregrep tests
+ aclocal.m4 m4 macros (generated by "aclocal")
+ config.guess ) files used by libtool,
+ config.sub ) used only when building a shared library
+ configure a configuring shell script (built by autoconf)
+ configure.ac ) the autoconf input that was used to build
+ ) "configure" and config.h
+ depcomp ) script to find program dependencies, generated by
+ ) automake
+ doc/*.3 man page sources for PCRE
+ doc/*.1 man page sources for pcregrep and pcretest
+ doc/index.html.src the base HTML page
+ doc/html/* HTML documentation
+ doc/pcre.txt plain text version of the man pages
+ doc/pcretest.txt plain text documentation of test program
+ doc/perltest.txt plain text documentation of Perl test program
+ install-sh a shell script for installing files
+ libpcre16.pc.in template for libpcre16.pc for pkg-config
+ libpcre32.pc.in template for libpcre32.pc for pkg-config
+ libpcre.pc.in template for libpcre.pc for pkg-config
+ libpcreposix.pc.in template for libpcreposix.pc for pkg-config
+ libpcrecpp.pc.in template for libpcrecpp.pc for pkg-config
+ ltmain.sh file used to build a libtool script
+ missing ) common stub for a few missing GNU programs while
+ ) installing, generated by automake
+ mkinstalldirs script for making install directories
+ perltest.pl Perl test program
+ pcre-config.in source of script which retains PCRE information
+ pcre_jit_test.c test program for the JIT compiler
+ pcrecpp_unittest.cc )
+ pcre_scanner_unittest.cc ) test programs for the C++ wrapper
+ pcre_stringpiece_unittest.cc )
+ testdata/testinput* test data for main library tests
+ testdata/testoutput* expected test results
+ testdata/grep* input and output for pcregrep tests
+ testdata/* other supporting test files
+
+(D) Auxiliary files for cmake support
+
+ cmake/COPYING-CMAKE-SCRIPTS
+ cmake/FindPackageHandleStandardArgs.cmake
+ cmake/FindEditline.cmake
+ cmake/FindReadline.cmake
+ CMakeLists.txt
+ config-cmake.h.in
+
+(E) Auxiliary files for VPASCAL
+
+ makevp.bat
+ makevp_c.txt
+ makevp_l.txt
+ pcregexp.pas
+
+(F) Auxiliary files for building PCRE "by hand"
+
+ pcre.h.generic ) a version of the public PCRE header file
+ ) for use in non-"configure" environments
+ config.h.generic ) a version of config.h for use in non-"configure"
+ ) environments
+
+(F) Miscellaneous
+
+ RunTest.bat a script for running tests under Windows
+
+Philip Hazel
+Email local part: ph10
+Email domain: cam.ac.uk
+Last updated: 28 April 2013
diff --git a/pcre/doc/html/index.html b/pcre/doc/html/index.html
new file mode 100644
index 00000000000..352c55df2f1
--- /dev/null
+++ b/pcre/doc/html/index.html
@@ -0,0 +1,185 @@
+
+
+
+PCRE specification
+
+
+Perl-compatible Regular Expressions (PCRE)
+
+The HTML documentation for PCRE consists of a number of pages that are listed
+below in alphabetical order. If you are new to PCRE, please read the first one
+first.
+
+
+
+pcre |
+ Introductory page |
+
+pcre-config |
+ Information about the installation configuration |
+
+pcre16 |
+ Discussion of the 16-bit PCRE library |
+
+pcre32 |
+ Discussion of the 32-bit PCRE library |
+
+pcreapi |
+ PCRE's native API |
+
+pcrebuild |
+ Building PCRE |
+
+pcrecallout |
+ The callout facility |
+
+pcrecompat |
+ Compability with Perl |
+
+pcrecpp |
+ The C++ wrapper for the PCRE library |
+
+pcredemo |
+ A demonstration C program that uses the PCRE library |
+
+pcregrep |
+ The pcregrep command |
+
+pcrejit |
+ Discussion of the just-in-time optimization support |
+
+pcrelimits |
+ Details of size and other limits |
+
+pcrematching |
+ Discussion of the two matching algorithms |
+
+pcrepartial |
+ Using PCRE for partial matching |
+
+pcrepattern |
+ Specification of the regular expressions supported by PCRE |
+
+pcreperform |
+ Some comments on performance |
+
+pcreposix |
+ The POSIX API to the PCRE 8-bit library |
+
+pcreprecompile |
+ How to save and re-use compiled patterns |
+
+pcresample |
+ Discussion of the pcredemo program |
+
+pcrestack |
+ Discussion of PCRE's stack usage |
+
+pcresyntax |
+ Syntax quick-reference summary |
+
+pcretest |
+ The pcretest command for testing PCRE |
+
+pcreunicode |
+ Discussion of Unicode and UTF-8/UTF-16/UTF-32 support |
+
+
+
+There are also individual pages that summarize the interface for each function
+in the library. There is a single page for each triple of 8-bit/16-bit/32-bit
+functions.
+
+
+
+
+
diff --git a/pcre/doc/html/pcre-config.html b/pcre/doc/html/pcre-config.html
new file mode 100644
index 00000000000..c2e3ba28ab6
--- /dev/null
+++ b/pcre/doc/html/pcre-config.html
@@ -0,0 +1,109 @@
+
+
+pcre-config specification
+
+
+pcre-config man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
SYNOPSIS
+
+pcre-config [--prefix] [--exec-prefix] [--version] [--libs]
+[--libs16] [--libs32] [--libs-cpp] [--libs-posix]
+[--cflags] [--cflags-posix]
+
+
DESCRIPTION
+
+pcre-config returns the configuration of the installed PCRE
+libraries and the options required to compile a program to use them. Some of
+the options apply only to the 8-bit, or 16-bit, or 32-bit libraries,
+respectively, and are
+not available if only one of those libraries has been built. If an unavailable
+option is encountered, the "usage" information is output.
+
+
OPTIONS
+
+--prefix
+Writes the directory prefix used in the PCRE installation for architecture
+independent files (/usr on many systems, /usr/local on some
+systems) to the standard output.
+
+
+--exec-prefix
+Writes the directory prefix used in the PCRE installation for architecture
+dependent files (normally the same as --prefix) to the standard output.
+
+
+--version
+Writes the version number of the installed PCRE libraries to the standard
+output.
+
+
+--libs
+Writes to the standard output the command line options required to link
+with the 8-bit PCRE library (-lpcre on many systems).
+
+
+--libs16
+Writes to the standard output the command line options required to link
+with the 16-bit PCRE library (-lpcre16 on many systems).
+
+
+--libs32
+Writes to the standard output the command line options required to link
+with the 32-bit PCRE library (-lpcre32 on many systems).
+
+
+--libs-cpp
+Writes to the standard output the command line options required to link with
+PCRE's C++ wrapper library (-lpcrecpp -lpcre on many
+systems).
+
+
+--libs-posix
+Writes to the standard output the command line options required to link with
+PCRE's POSIX API wrapper library (-lpcreposix -lpcre on many
+systems).
+
+
+--cflags
+Writes to the standard output the command line options required to compile
+files that use PCRE (this may include some -I options, but is blank on
+many systems).
+
+
+--cflags-posix
+Writes to the standard output the command line options required to compile
+files that use PCRE's POSIX API wrapper library (this may include some -I
+options, but is blank on many systems).
+
+
SEE ALSO
+
+pcre(3)
+
+
AUTHOR
+
+This manual page was originally written by Mark Baker for the Debian GNU/Linux
+system. It has been subsequently revised as a generic PCRE man page.
+
+
REVISION
+
+Last updated: 24 June 2012
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre.html b/pcre/doc/html/pcre.html
new file mode 100644
index 00000000000..692f651b257
--- /dev/null
+++ b/pcre/doc/html/pcre.html
@@ -0,0 +1,210 @@
+
+
+pcre specification
+
+
+pcre man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
INTRODUCTION
+
+The PCRE library is a set of functions that implement regular expression
+pattern matching using the same syntax and semantics as Perl, with just a few
+differences. Some features that appeared in Python and PCRE before they
+appeared in Perl are also available using the Python syntax, there is some
+support for one or two .NET and Oniguruma syntax items, and there is an option
+for requesting some minor changes that give better JavaScript compatibility.
+
+
+Starting with release 8.30, it is possible to compile two separate PCRE
+libraries: the original, which supports 8-bit character strings (including
+UTF-8 strings), and a second library that supports 16-bit character strings
+(including UTF-16 strings). The build process allows either one or both to be
+built. The majority of the work to make this possible was done by Zoltan
+Herczeg.
+
+
+Starting with release 8.32 it is possible to compile a third separate PCRE
+library that supports 32-bit character strings (including UTF-32 strings). The
+build process allows any combination of the 8-, 16- and 32-bit libraries. The
+work to make this possible was done by Christian Persch.
+
+
+The three libraries contain identical sets of functions, except that the names
+in the 16-bit library start with pcre16_ instead of pcre_, and the
+names in the 32-bit library start with pcre32_ instead of pcre_. To
+avoid over-complication and reduce the documentation maintenance load, most of
+the documentation describes the 8-bit library, with the differences for the
+16-bit and 32-bit libraries described separately in the
+pcre16
+and
+pcre32
+pages. References to functions or structures of the form pcre[16|32]_xxx
+should be read as meaning "pcre_xxx when using the 8-bit library,
+pcre16_xxx when using the 16-bit library, or pcre32_xxx when using
+the 32-bit library".
+
+
+The current implementation of PCRE corresponds approximately with Perl 5.12,
+including support for UTF-8/16/32 encoded strings and Unicode general category
+properties. However, UTF-8/16/32 and Unicode support has to be explicitly
+enabled; it is not the default. The Unicode tables correspond to Unicode
+release 6.2.0.
+
+
+In addition to the Perl-compatible matching function, PCRE contains an
+alternative function that matches the same compiled patterns in a different
+way. In certain circumstances, the alternative function has some advantages.
+For a discussion of the two matching algorithms, see the
+pcrematching
+page.
+
+
+PCRE is written in C and released as a C library. A number of people have
+written wrappers and interfaces of various kinds. In particular, Google Inc.
+have provided a comprehensive C++ wrapper for the 8-bit library. This is now
+included as part of the PCRE distribution. The
+pcrecpp
+page has details of this interface. Other people's contributions can be found
+in the Contrib directory at the primary FTP site, which is:
+ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre
+
+
+Details of exactly which Perl regular expression features are and are not
+supported by PCRE are given in separate documents. See the
+pcrepattern
+and
+pcrecompat
+pages. There is a syntax summary in the
+pcresyntax
+page.
+
+
+Some features of PCRE can be included, excluded, or changed when the library is
+built. The
+pcre_config()
+function makes it possible for a client to discover which features are
+available. The features themselves are described in the
+pcrebuild
+page. Documentation about building PCRE for various operating systems can be
+found in the
+README
+and
+NON-AUTOTOOLS_BUILD
+files in the source distribution.
+
+
+The libraries contains a number of undocumented internal functions and data
+tables that are used by more than one of the exported external functions, but
+which are not intended for use by external callers. Their names all begin with
+"_pcre_" or "_pcre16_" or "_pcre32_", which hopefully will not provoke any name
+clashes. In some environments, it is possible to control which external symbols
+are exported when a shared library is built, and in these cases the
+undocumented symbols are not exported.
+
+
SECURITY CONSIDERATIONS
+
+If you are using PCRE in a non-UTF application that permits users to supply
+arbitrary patterns for compilation, you should be aware of a feature that
+allows users to turn on UTF support from within a pattern, provided that PCRE
+was built with UTF support. For example, an 8-bit pattern that begins with
+"(*UTF8)" or "(*UTF)" turns on UTF-8 mode, which interprets patterns and
+subjects as strings of UTF-8 characters instead of individual 8-bit characters.
+This causes both the pattern and any data against which it is matched to be
+checked for UTF-8 validity. If the data string is very long, such a check might
+use sufficiently many resources as to cause your application to lose
+performance.
+
+
+One way of guarding against this possibility is to use the
+pcre_fullinfo() function to check the compiled pattern's options for UTF.
+Alternatively, from release 8.33, you can set the PCRE_NEVER_UTF option at
+compile time. This causes an compile time error if a pattern contains a
+UTF-setting sequence.
+
+
+If your application is one that supports UTF, be aware that validity checking
+can take time. If the same data string is to be matched many times, you can use
+the PCRE_NO_UTF[8|16|32]_CHECK option for the second and subsequent matches to
+save redundant checks.
+
+
+Another way that performance can be hit is by running a pattern that has a very
+large search tree against a string that will never match. Nested unlimited
+repeats in a pattern are a common example. PCRE provides some protection
+against this: see the PCRE_EXTRA_MATCH_LIMIT feature in the
+pcreapi
+page.
+
+
USER DOCUMENTATION
+
+The user documentation for PCRE comprises a number of different sections. In
+the "man" format, each of these is a separate "man page". In the HTML format,
+each is a separate page, linked from the index page. In the plain text format,
+all the sections, except the pcredemo section, are concatenated, for ease
+of searching. The sections are as follows:
+
+ pcre this document
+ pcre-config show PCRE installation configuration information
+ pcre16 details of the 16-bit library
+ pcre32 details of the 32-bit library
+ pcreapi details of PCRE's native C API
+ pcrebuild building PCRE
+ pcrecallout details of the callout feature
+ pcrecompat discussion of Perl compatibility
+ pcrecpp details of the C++ wrapper for the 8-bit library
+ pcredemo a demonstration C program that uses PCRE
+ pcregrep description of the pcregrep command (8-bit only)
+ pcrejit discussion of the just-in-time optimization support
+ pcrelimits details of size and other limits
+ pcrematching discussion of the two matching algorithms
+ pcrepartial details of the partial matching facility
+ pcrepattern syntax and semantics of supported regular expressions
+ pcreperform discussion of performance issues
+ pcreposix the POSIX-compatible C API for the 8-bit library
+ pcreprecompile details of saving and re-using precompiled patterns
+ pcresample discussion of the pcredemo program
+ pcrestack discussion of stack usage
+ pcresyntax quick syntax reference
+ pcretest description of the pcretest testing command
+ pcreunicode discussion of Unicode and UTF-8/16/32 support
+
+In addition, in the "man" and HTML formats, there is a short page for each
+C library function, listing its arguments and results.
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
+Putting an actual email address here seems to have been a spam magnet, so I've
+taken it away. If you want to email me, use my two initials, followed by the
+two digits 10, at the domain cam.ac.uk.
+
+
REVISION
+
+Last updated: 13 May 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre16.html b/pcre/doc/html/pcre16.html
new file mode 100644
index 00000000000..3ade219092c
--- /dev/null
+++ b/pcre/doc/html/pcre16.html
@@ -0,0 +1,384 @@
+
+
+pcre16 specification
+
+
+pcre16 man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
+#include <pcre.h>
+
+
PCRE 16-BIT API BASIC FUNCTIONS
+
+pcre16 *pcre16_compile(PCRE_SPTR16 pattern, int options,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+pcre16 *pcre16_compile2(PCRE_SPTR16 pattern, int options,
+int *errorcodeptr,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+pcre16_extra *pcre16_study(const pcre16 *code, int options,
+const char **errptr);
+
+
+void pcre16_free_study(pcre16_extra *extra);
+
+
+int pcre16_exec(const pcre16 *code, const pcre16_extra *extra,
+PCRE_SPTR16 subject, int length, int startoffset,
+int options, int *ovector, int ovecsize);
+
+
+int pcre16_dfa_exec(const pcre16 *code, const pcre16_extra *extra,
+PCRE_SPTR16 subject, int length, int startoffset,
+int options, int *ovector, int ovecsize,
+int *workspace, int wscount);
+
+
PCRE 16-BIT API STRING EXTRACTION FUNCTIONS
+
+int pcre16_copy_named_substring(const pcre16 *code,
+PCRE_SPTR16 subject, int *ovector,
+int stringcount, PCRE_SPTR16 stringname,
+PCRE_UCHAR16 *buffer, int buffersize);
+
+
+int pcre16_copy_substring(PCRE_SPTR16 subject, int *ovector,
+int stringcount, int stringnumber, PCRE_UCHAR16 *buffer,
+int buffersize);
+
+
+int pcre16_get_named_substring(const pcre16 *code,
+PCRE_SPTR16 subject, int *ovector,
+int stringcount, PCRE_SPTR16 stringname,
+PCRE_SPTR16 *stringptr);
+
+
+int pcre16_get_stringnumber(const pcre16 *code,
+PCRE_SPTR16 name);
+
+
+int pcre16_get_stringtable_entries(const pcre16 *code,
+PCRE_SPTR16 name, PCRE_UCHAR16 **first, PCRE_UCHAR16 **last);
+
+
+int pcre16_get_substring(PCRE_SPTR16 subject, int *ovector,
+int stringcount, int stringnumber,
+PCRE_SPTR16 *stringptr);
+
+
+int pcre16_get_substring_list(PCRE_SPTR16 subject,
+int *ovector, int stringcount, PCRE_SPTR16 **listptr);
+
+
+void pcre16_free_substring(PCRE_SPTR16 stringptr);
+
+
+void pcre16_free_substring_list(PCRE_SPTR16 *stringptr);
+
+
PCRE 16-BIT API AUXILIARY FUNCTIONS
+
+pcre16_jit_stack *pcre16_jit_stack_alloc(int startsize, int maxsize);
+
+
+void pcre16_jit_stack_free(pcre16_jit_stack *stack);
+
+
+void pcre16_assign_jit_stack(pcre16_extra *extra,
+pcre16_jit_callback callback, void *data);
+
+
+const unsigned char *pcre16_maketables(void);
+
+
+int pcre16_fullinfo(const pcre16 *code, const pcre16_extra *extra,
+int what, void *where);
+
+
+int pcre16_refcount(pcre16 *code, int adjust);
+
+
+int pcre16_config(int what, void *where);
+
+
+const char *pcre16_version(void);
+
+
+int pcre16_pattern_to_host_byte_order(pcre16 *code,
+pcre16_extra *extra, const unsigned char *tables);
+
+
PCRE 16-BIT API INDIRECTED FUNCTIONS
+
+void *(*pcre16_malloc)(size_t);
+
+
+void (*pcre16_free)(void *);
+
+
+void *(*pcre16_stack_malloc)(size_t);
+
+
+void (*pcre16_stack_free)(void *);
+
+
+int (*pcre16_callout)(pcre16_callout_block *);
+
+
PCRE 16-BIT API 16-BIT-ONLY FUNCTION
+
+int pcre16_utf16_to_host_byte_order(PCRE_UCHAR16 *output,
+PCRE_SPTR16 input, int length, int *byte_order,
+int keep_boms);
+
+
THE PCRE 16-BIT LIBRARY
+
+Starting with release 8.30, it is possible to compile a PCRE library that
+supports 16-bit character strings, including UTF-16 strings, as well as or
+instead of the original 8-bit library. The majority of the work to make this
+possible was done by Zoltan Herczeg. The two libraries contain identical sets
+of functions, used in exactly the same way. Only the names of the functions and
+the data types of their arguments and results are different. To avoid
+over-complication and reduce the documentation maintenance load, most of the
+PCRE documentation describes the 8-bit library, with only occasional references
+to the 16-bit library. This page describes what is different when you use the
+16-bit library.
+
+
+WARNING: A single application can be linked with both libraries, but you must
+take care when processing any particular pattern to use functions from just one
+library. For example, if you want to study a pattern that was compiled with
+pcre16_compile(), you must do so with pcre16_study(), not
+pcre_study(), and you must free the study data with
+pcre16_free_study().
+
+
THE HEADER FILE
+
+There is only one header file, pcre.h. It contains prototypes for all the
+functions in all libraries, as well as definitions of flags, structures, error
+codes, etc.
+
+
THE LIBRARY NAME
+
+In Unix-like systems, the 16-bit library is called libpcre16, and can
+normally be accesss by adding -lpcre16 to the command for linking an
+application that uses PCRE.
+
+
STRING TYPES
+
+In the 8-bit library, strings are passed to PCRE library functions as vectors
+of bytes with the C type "char *". In the 16-bit library, strings are passed as
+vectors of unsigned 16-bit quantities. The macro PCRE_UCHAR16 specifies an
+appropriate data type, and PCRE_SPTR16 is defined as "const PCRE_UCHAR16 *". In
+very many environments, "short int" is a 16-bit data type. When PCRE is built,
+it defines PCRE_UCHAR16 as "unsigned short int", but checks that it really is a
+16-bit data type. If it is not, the build fails with an error message telling
+the maintainer to modify the definition appropriately.
+
+
STRUCTURE TYPES
+
+The types of the opaque structures that are used for compiled 16-bit patterns
+and JIT stacks are pcre16 and pcre16_jit_stack respectively. The
+type of the user-accessible structure that is returned by pcre16_study()
+is pcre16_extra, and the type of the structure that is used for passing
+data to a callout function is pcre16_callout_block. These structures
+contain the same fields, with the same names, as their 8-bit counterparts. The
+only difference is that pointers to character strings are 16-bit instead of
+8-bit types.
+
+
16-BIT FUNCTIONS
+
+For every function in the 8-bit library there is a corresponding function in
+the 16-bit library with a name that starts with pcre16_ instead of
+pcre_. The prototypes are listed above. In addition, there is one extra
+function, pcre16_utf16_to_host_byte_order(). This is a utility function
+that converts a UTF-16 character string to host byte order if necessary. The
+other 16-bit functions expect the strings they are passed to be in host byte
+order.
+
+
+The input and output arguments of
+pcre16_utf16_to_host_byte_order() may point to the same address, that is,
+conversion in place is supported. The output buffer must be at least as long as
+the input.
+
+
+The length argument specifies the number of 16-bit data units in the
+input string; a negative value specifies a zero-terminated string.
+
+
+If byte_order is NULL, it is assumed that the string starts off in host
+byte order. This may be changed by byte-order marks (BOMs) anywhere in the
+string (commonly as the first character).
+
+
+If byte_order is not NULL, a non-zero value of the integer to which it
+points means that the input starts off in host byte order, otherwise the
+opposite order is assumed. Again, BOMs in the string can change this. The final
+byte order is passed back at the end of processing.
+
+
+If keep_boms is not zero, byte-order mark characters (0xfeff) are copied
+into the output string. Otherwise they are discarded.
+
+
+The result of the function is the number of 16-bit units placed into the output
+buffer, including the zero terminator if the string was zero-terminated.
+
+
SUBJECT STRING OFFSETS
+
+The lengths and starting offsets of subject strings must be specified in 16-bit
+data units, and the offsets within subject strings that are returned by the
+matching functions are in also 16-bit units rather than bytes.
+
+
NAMED SUBPATTERNS
+
+The name-to-number translation table that is maintained for named subpatterns
+uses 16-bit characters. The pcre16_get_stringtable_entries() function
+returns the length of each entry in the table as the number of 16-bit data
+units.
+
+
OPTION NAMES
+
+There are two new general option names, PCRE_UTF16 and PCRE_NO_UTF16_CHECK,
+which correspond to PCRE_UTF8 and PCRE_NO_UTF8_CHECK in the 8-bit library. In
+fact, these new options define the same bits in the options word. There is a
+discussion about the
+validity of UTF-16 strings
+in the
+pcreunicode
+page.
+
+
+For the pcre16_config() function there is an option PCRE_CONFIG_UTF16
+that returns 1 if UTF-16 support is configured, otherwise 0. If this option is
+given to pcre_config() or pcre32_config(), or if the
+PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF32 option is given to pcre16_config(),
+the result is the PCRE_ERROR_BADOPTION error.
+
+
CHARACTER CODES
+
+In 16-bit mode, when PCRE_UTF16 is not set, character values are treated in the
+same way as in 8-bit, non UTF-8 mode, except, of course, that they can range
+from 0 to 0xffff instead of 0 to 0xff. Character types for characters less than
+0xff can therefore be influenced by the locale in the same way as before.
+Characters greater than 0xff have only one case, and no "type" (such as letter
+or digit).
+
+
+In UTF-16 mode, the character code is Unicode, in the range 0 to 0x10ffff, with
+the exception of values in the range 0xd800 to 0xdfff because those are
+"surrogate" values that are used in pairs to encode values greater than 0xffff.
+
+
+A UTF-16 string can indicate its endianness by special code knows as a
+byte-order mark (BOM). The PCRE functions do not handle this, expecting strings
+to be in host byte order. A utility function called
+pcre16_utf16_to_host_byte_order() is provided to help with this (see
+above).
+
+
ERROR NAMES
+
+The errors PCRE_ERROR_BADUTF16_OFFSET and PCRE_ERROR_SHORTUTF16 correspond to
+their 8-bit counterparts. The error PCRE_ERROR_BADMODE is given when a compiled
+pattern is passed to a function that processes patterns in the other
+mode, for example, if a pattern compiled with pcre_compile() is passed to
+pcre16_exec().
+
+
+There are new error codes whose names begin with PCRE_UTF16_ERR for invalid
+UTF-16 strings, corresponding to the PCRE_UTF8_ERR codes for UTF-8 strings that
+are described in the section entitled
+"Reason codes for invalid UTF-8 strings"
+in the main
+pcreapi
+page. The UTF-16 errors are:
+
+ PCRE_UTF16_ERR1 Missing low surrogate at end of string
+ PCRE_UTF16_ERR2 Invalid low surrogate follows high surrogate
+ PCRE_UTF16_ERR3 Isolated low surrogate
+ PCRE_UTF16_ERR4 Non-character
+
+
+
ERROR TEXTS
+
+If there is an error while compiling a pattern, the error text that is passed
+back by pcre16_compile() or pcre16_compile2() is still an 8-bit
+character string, zero-terminated.
+
+
CALLOUTS
+
+The subject and mark fields in the callout block that is passed to
+a callout function point to 16-bit vectors.
+
+
TESTING
+
+The pcretest program continues to operate with 8-bit input and output
+files, but it can be used for testing the 16-bit library. If it is run with the
+command line option -16, patterns and subject strings are converted from
+8-bit to 16-bit before being passed to PCRE, and the 16-bit library functions
+are used instead of the 8-bit ones. Returned 16-bit strings are converted to
+8-bit for output. If both the 8-bit and the 32-bit libraries were not compiled,
+pcretest defaults to 16-bit and the -16 option is ignored.
+
+
+When PCRE is being built, the RunTest script that is called by "make
+check" uses the pcretest -C option to discover which of the 8-bit,
+16-bit and 32-bit libraries has been built, and runs the tests appropriately.
+
+
NOT SUPPORTED IN 16-BIT MODE
+
+Not all the features of the 8-bit library are available with the 16-bit
+library. The C++ and POSIX wrapper functions support only the 8-bit library,
+and the pcregrep program is at present 8-bit only.
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 12 May 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre32.html b/pcre/doc/html/pcre32.html
new file mode 100644
index 00000000000..2155ee88173
--- /dev/null
+++ b/pcre/doc/html/pcre32.html
@@ -0,0 +1,383 @@
+
+
+pcre32 specification
+
+
+pcre32 man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
+#include <pcre.h>
+
+
PCRE 32-BIT API BASIC FUNCTIONS
+
+pcre32 *pcre32_compile(PCRE_SPTR32 pattern, int options,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+pcre32 *pcre32_compile2(PCRE_SPTR32 pattern, int options,
+int *errorcodeptr,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+pcre32_extra *pcre32_study(const pcre32 *code, int options,
+const char **errptr);
+
+
+void pcre32_free_study(pcre32_extra *extra);
+
+
+int pcre32_exec(const pcre32 *code, const pcre32_extra *extra,
+PCRE_SPTR32 subject, int length, int startoffset,
+int options, int *ovector, int ovecsize);
+
+
+int pcre32_dfa_exec(const pcre32 *code, const pcre32_extra *extra,
+PCRE_SPTR32 subject, int length, int startoffset,
+int options, int *ovector, int ovecsize,
+int *workspace, int wscount);
+
+
PCRE 32-BIT API STRING EXTRACTION FUNCTIONS
+
+int pcre32_copy_named_substring(const pcre32 *code,
+PCRE_SPTR32 subject, int *ovector,
+int stringcount, PCRE_SPTR32 stringname,
+PCRE_UCHAR32 *buffer, int buffersize);
+
+
+int pcre32_copy_substring(PCRE_SPTR32 subject, int *ovector,
+int stringcount, int stringnumber, PCRE_UCHAR32 *buffer,
+int buffersize);
+
+
+int pcre32_get_named_substring(const pcre32 *code,
+PCRE_SPTR32 subject, int *ovector,
+int stringcount, PCRE_SPTR32 stringname,
+PCRE_SPTR32 *stringptr);
+
+
+int pcre32_get_stringnumber(const pcre32 *code,
+PCRE_SPTR32 name);
+
+
+int pcre32_get_stringtable_entries(const pcre32 *code,
+PCRE_SPTR32 name, PCRE_UCHAR32 **first, PCRE_UCHAR32 **last);
+
+
+int pcre32_get_substring(PCRE_SPTR32 subject, int *ovector,
+int stringcount, int stringnumber,
+PCRE_SPTR32 *stringptr);
+
+
+int pcre32_get_substring_list(PCRE_SPTR32 subject,
+int *ovector, int stringcount, PCRE_SPTR32 **listptr);
+
+
+void pcre32_free_substring(PCRE_SPTR32 stringptr);
+
+
+void pcre32_free_substring_list(PCRE_SPTR32 *stringptr);
+
+
PCRE 32-BIT API AUXILIARY FUNCTIONS
+
+pcre32_jit_stack *pcre32_jit_stack_alloc(int startsize, int maxsize);
+
+
+void pcre32_jit_stack_free(pcre32_jit_stack *stack);
+
+
+void pcre32_assign_jit_stack(pcre32_extra *extra,
+pcre32_jit_callback callback, void *data);
+
+
+const unsigned char *pcre32_maketables(void);
+
+
+int pcre32_fullinfo(const pcre32 *code, const pcre32_extra *extra,
+int what, void *where);
+
+
+int pcre32_refcount(pcre32 *code, int adjust);
+
+
+int pcre32_config(int what, void *where);
+
+
+const char *pcre32_version(void);
+
+
+int pcre32_pattern_to_host_byte_order(pcre32 *code,
+pcre32_extra *extra, const unsigned char *tables);
+
+
PCRE 32-BIT API INDIRECTED FUNCTIONS
+
+void *(*pcre32_malloc)(size_t);
+
+
+void (*pcre32_free)(void *);
+
+
+void *(*pcre32_stack_malloc)(size_t);
+
+
+void (*pcre32_stack_free)(void *);
+
+
+int (*pcre32_callout)(pcre32_callout_block *);
+
+
PCRE 32-BIT API 32-BIT-ONLY FUNCTION
+
+int pcre32_utf32_to_host_byte_order(PCRE_UCHAR32 *output,
+PCRE_SPTR32 input, int length, int *byte_order,
+int keep_boms);
+
+
THE PCRE 32-BIT LIBRARY
+
+Starting with release 8.32, it is possible to compile a PCRE library that
+supports 32-bit character strings, including UTF-32 strings, as well as or
+instead of the original 8-bit library. This work was done by Christian Persch,
+based on the work done by Zoltan Herczeg for the 16-bit library. All three
+libraries contain identical sets of functions, used in exactly the same way.
+Only the names of the functions and the data types of their arguments and
+results are different. To avoid over-complication and reduce the documentation
+maintenance load, most of the PCRE documentation describes the 8-bit library,
+with only occasional references to the 16-bit and 32-bit libraries. This page
+describes what is different when you use the 32-bit library.
+
+
+WARNING: A single application can be linked with all or any of the three
+libraries, but you must take care when processing any particular pattern
+to use functions from just one library. For example, if you want to study
+a pattern that was compiled with pcre32_compile(), you must do so
+with pcre32_study(), not pcre_study(), and you must free the
+study data with pcre32_free_study().
+
+
THE HEADER FILE
+
+There is only one header file, pcre.h. It contains prototypes for all the
+functions in all libraries, as well as definitions of flags, structures, error
+codes, etc.
+
+
THE LIBRARY NAME
+
+In Unix-like systems, the 32-bit library is called libpcre32, and can
+normally be accesss by adding -lpcre32 to the command for linking an
+application that uses PCRE.
+
+
STRING TYPES
+
+In the 8-bit library, strings are passed to PCRE library functions as vectors
+of bytes with the C type "char *". In the 32-bit library, strings are passed as
+vectors of unsigned 32-bit quantities. The macro PCRE_UCHAR32 specifies an
+appropriate data type, and PCRE_SPTR32 is defined as "const PCRE_UCHAR32 *". In
+very many environments, "unsigned int" is a 32-bit data type. When PCRE is
+built, it defines PCRE_UCHAR32 as "unsigned int", but checks that it really is
+a 32-bit data type. If it is not, the build fails with an error message telling
+the maintainer to modify the definition appropriately.
+
+
STRUCTURE TYPES
+
+The types of the opaque structures that are used for compiled 32-bit patterns
+and JIT stacks are pcre32 and pcre32_jit_stack respectively. The
+type of the user-accessible structure that is returned by pcre32_study()
+is pcre32_extra, and the type of the structure that is used for passing
+data to a callout function is pcre32_callout_block. These structures
+contain the same fields, with the same names, as their 8-bit counterparts. The
+only difference is that pointers to character strings are 32-bit instead of
+8-bit types.
+
+
32-BIT FUNCTIONS
+
+For every function in the 8-bit library there is a corresponding function in
+the 32-bit library with a name that starts with pcre32_ instead of
+pcre_. The prototypes are listed above. In addition, there is one extra
+function, pcre32_utf32_to_host_byte_order(). This is a utility function
+that converts a UTF-32 character string to host byte order if necessary. The
+other 32-bit functions expect the strings they are passed to be in host byte
+order.
+
+
+The input and output arguments of
+pcre32_utf32_to_host_byte_order() may point to the same address, that is,
+conversion in place is supported. The output buffer must be at least as long as
+the input.
+
+
+The length argument specifies the number of 32-bit data units in the
+input string; a negative value specifies a zero-terminated string.
+
+
+If byte_order is NULL, it is assumed that the string starts off in host
+byte order. This may be changed by byte-order marks (BOMs) anywhere in the
+string (commonly as the first character).
+
+
+If byte_order is not NULL, a non-zero value of the integer to which it
+points means that the input starts off in host byte order, otherwise the
+opposite order is assumed. Again, BOMs in the string can change this. The final
+byte order is passed back at the end of processing.
+
+
+If keep_boms is not zero, byte-order mark characters (0xfeff) are copied
+into the output string. Otherwise they are discarded.
+
+
+The result of the function is the number of 32-bit units placed into the output
+buffer, including the zero terminator if the string was zero-terminated.
+
+
SUBJECT STRING OFFSETS
+
+The lengths and starting offsets of subject strings must be specified in 32-bit
+data units, and the offsets within subject strings that are returned by the
+matching functions are in also 32-bit units rather than bytes.
+
+
NAMED SUBPATTERNS
+
+The name-to-number translation table that is maintained for named subpatterns
+uses 32-bit characters. The pcre32_get_stringtable_entries() function
+returns the length of each entry in the table as the number of 32-bit data
+units.
+
+
OPTION NAMES
+
+There are two new general option names, PCRE_UTF32 and PCRE_NO_UTF32_CHECK,
+which correspond to PCRE_UTF8 and PCRE_NO_UTF8_CHECK in the 8-bit library. In
+fact, these new options define the same bits in the options word. There is a
+discussion about the
+validity of UTF-32 strings
+in the
+pcreunicode
+page.
+
+
+For the pcre32_config() function there is an option PCRE_CONFIG_UTF32
+that returns 1 if UTF-32 support is configured, otherwise 0. If this option is
+given to pcre_config() or pcre16_config(), or if the
+PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF16 option is given to pcre32_config(),
+the result is the PCRE_ERROR_BADOPTION error.
+
+
CHARACTER CODES
+
+In 32-bit mode, when PCRE_UTF32 is not set, character values are treated in the
+same way as in 8-bit, non UTF-8 mode, except, of course, that they can range
+from 0 to 0x7fffffff instead of 0 to 0xff. Character types for characters less
+than 0xff can therefore be influenced by the locale in the same way as before.
+Characters greater than 0xff have only one case, and no "type" (such as letter
+or digit).
+
+
+In UTF-32 mode, the character code is Unicode, in the range 0 to 0x10ffff, with
+the exception of values in the range 0xd800 to 0xdfff because those are
+"surrogate" values that are ill-formed in UTF-32.
+
+
+A UTF-32 string can indicate its endianness by special code knows as a
+byte-order mark (BOM). The PCRE functions do not handle this, expecting strings
+to be in host byte order. A utility function called
+pcre32_utf32_to_host_byte_order() is provided to help with this (see
+above).
+
+
ERROR NAMES
+
+The error PCRE_ERROR_BADUTF32 corresponds to its 8-bit counterpart.
+The error PCRE_ERROR_BADMODE is given when a compiled
+pattern is passed to a function that processes patterns in the other
+mode, for example, if a pattern compiled with pcre_compile() is passed to
+pcre32_exec().
+
+
+There are new error codes whose names begin with PCRE_UTF32_ERR for invalid
+UTF-32 strings, corresponding to the PCRE_UTF8_ERR codes for UTF-8 strings that
+are described in the section entitled
+"Reason codes for invalid UTF-8 strings"
+in the main
+pcreapi
+page. The UTF-32 errors are:
+
+ PCRE_UTF32_ERR1 Surrogate character (range from 0xd800 to 0xdfff)
+ PCRE_UTF32_ERR2 Non-character
+ PCRE_UTF32_ERR3 Character > 0x10ffff
+
+
+
ERROR TEXTS
+
+If there is an error while compiling a pattern, the error text that is passed
+back by pcre32_compile() or pcre32_compile2() is still an 8-bit
+character string, zero-terminated.
+
+
CALLOUTS
+
+The subject and mark fields in the callout block that is passed to
+a callout function point to 32-bit vectors.
+
+
TESTING
+
+The pcretest program continues to operate with 8-bit input and output
+files, but it can be used for testing the 32-bit library. If it is run with the
+command line option -32, patterns and subject strings are converted from
+8-bit to 32-bit before being passed to PCRE, and the 32-bit library functions
+are used instead of the 8-bit ones. Returned 32-bit strings are converted to
+8-bit for output. If both the 8-bit and the 16-bit libraries were not compiled,
+pcretest defaults to 32-bit and the -32 option is ignored.
+
+
+When PCRE is being built, the RunTest script that is called by "make
+check" uses the pcretest -C option to discover which of the 8-bit,
+16-bit and 32-bit libraries has been built, and runs the tests appropriately.
+
+
NOT SUPPORTED IN 32-BIT MODE
+
+Not all the features of the 8-bit library are available with the 32-bit
+library. The C++ and POSIX wrapper functions support only the 8-bit library,
+and the pcregrep program is at present 8-bit only.
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 12 May 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_assign_jit_stack.html b/pcre/doc/html/pcre_assign_jit_stack.html
new file mode 100644
index 00000000000..d77d4e1c9b4
--- /dev/null
+++ b/pcre/doc/html/pcre_assign_jit_stack.html
@@ -0,0 +1,76 @@
+
+
+pcre_assign_jit_stack specification
+
+
+pcre_assign_jit_stack man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+void pcre_assign_jit_stack(pcre_extra *extra,
+pcre_jit_callback callback, void *data);
+
+
+void pcre16_assign_jit_stack(pcre16_extra *extra,
+pcre16_jit_callback callback, void *data);
+
+
+void pcre32_assign_jit_stack(pcre32_extra *extra,
+pcre32_jit_callback callback, void *data);
+
+
+DESCRIPTION
+
+
+This function provides control over the memory used as a stack at run-time by a
+call to pcre[16|32]_exec() with a pattern that has been successfully
+compiled with JIT optimization. The arguments are:
+
+ extra the data pointer returned by pcre[16|32]_study()
+ callback a callback function
+ data a JIT stack or a value to be passed to the callback
+ function
+
+
+
+If callback is NULL and data is NULL, an internal 32K block on
+the machine stack is used.
+
+
+If callback is NULL and data is not NULL, data must
+be a valid JIT stack, the result of calling pcre[16|32]_jit_stack_alloc().
+
+
+If callback not NULL, it is called with data as an argument at
+the start of matching, in order to set up a JIT stack. If the result is NULL,
+the internal 32K stack is used; otherwise the return value must be a valid JIT
+stack, the result of calling pcre[16|32]_jit_stack_alloc().
+
+
+You may safely assign the same JIT stack to multiple patterns, as long as they
+are all matched in the same thread. In a multithread application, each thread
+must use its own JIT stack. For more details, see the
+pcrejit
+page.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_compile.html b/pcre/doc/html/pcre_compile.html
new file mode 100644
index 00000000000..012147516cf
--- /dev/null
+++ b/pcre/doc/html/pcre_compile.html
@@ -0,0 +1,108 @@
+
+
+pcre_compile specification
+
+
+pcre_compile man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+pcre *pcre_compile(const char *pattern, int options,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+pcre16 *pcre16_compile(PCRE_SPTR16 pattern, int options,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+pcre32 *pcre32_compile(PCRE_SPTR32 pattern, int options,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+DESCRIPTION
+
+
+This function compiles a regular expression into an internal form. It is the
+same as pcre[16|32]_compile2(), except for the absence of the
+errorcodeptr argument. Its arguments are:
+
+ pattern A zero-terminated string containing the
+ regular expression to be compiled
+ options Zero or more option bits
+ errptr Where to put an error message
+ erroffset Offset in pattern where error was found
+ tableptr Pointer to character tables, or NULL to
+ use the built-in default
+
+The option bits are:
+
+ PCRE_ANCHORED Force pattern anchoring
+ PCRE_AUTO_CALLOUT Compile automatic callouts
+ PCRE_BSR_ANYCRLF \R matches only CR, LF, or CRLF
+ PCRE_BSR_UNICODE \R matches all Unicode line endings
+ PCRE_CASELESS Do caseless matching
+ PCRE_DOLLAR_ENDONLY $ not to match newline at end
+ PCRE_DOTALL . matches anything including NL
+ PCRE_DUPNAMES Allow duplicate names for subpatterns
+ PCRE_EXTENDED Ignore white space and # comments
+ PCRE_EXTRA PCRE extra features
+ (not much use currently)
+ PCRE_FIRSTLINE Force matching to be before newline
+ PCRE_JAVASCRIPT_COMPAT JavaScript compatibility
+ PCRE_MULTILINE ^ and $ match newlines within data
+ PCRE_NEWLINE_ANY Recognize any Unicode newline sequence
+ PCRE_NEWLINE_ANYCRLF Recognize CR, LF, and CRLF as newline
+ sequences
+ PCRE_NEWLINE_CR Set CR as the newline sequence
+ PCRE_NEWLINE_CRLF Set CRLF as the newline sequence
+ PCRE_NEWLINE_LF Set LF as the newline sequence
+ PCRE_NO_AUTO_CAPTURE Disable numbered capturing paren-
+ theses (named ones available)
+ PCRE_NO_UTF16_CHECK Do not check the pattern for UTF-16
+ validity (only relevant if
+ PCRE_UTF16 is set)
+ PCRE_NO_UTF32_CHECK Do not check the pattern for UTF-32
+ validity (only relevant if
+ PCRE_UTF32 is set)
+ PCRE_NO_UTF8_CHECK Do not check the pattern for UTF-8
+ validity (only relevant if
+ PCRE_UTF8 is set)
+ PCRE_UCP Use Unicode properties for \d, \w, etc.
+ PCRE_UNGREEDY Invert greediness of quantifiers
+ PCRE_UTF16 Run in pcre16_compile() UTF-16 mode
+ PCRE_UTF32 Run in pcre32_compile() UTF-32 mode
+ PCRE_UTF8 Run in pcre_compile() UTF-8 mode
+
+PCRE must be built with UTF support in order to use PCRE_UTF8/16/32 and
+PCRE_NO_UTF8/16/32_CHECK, and with UCP support if PCRE_UCP is used.
+
+
+The yield of the function is a pointer to a private data structure that
+contains the compiled pattern, or NULL if an error was detected. Note that
+compiling regular expressions with one version of PCRE for use with a different
+version is not guaranteed to work and may cause crashes.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_compile2.html b/pcre/doc/html/pcre_compile2.html
new file mode 100644
index 00000000000..7d76bd9cae0
--- /dev/null
+++ b/pcre/doc/html/pcre_compile2.html
@@ -0,0 +1,112 @@
+
+
+pcre_compile2 specification
+
+
+pcre_compile2 man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+pcre *pcre_compile2(const char *pattern, int options,
+int *errorcodeptr,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+pcre16 *pcre16_compile2(PCRE_SPTR16 pattern, int options,
+int *errorcodeptr,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+pcre32 *pcre32_compile2(PCRE_SPTR32 pattern, int options,
+int *errorcodeptr,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+DESCRIPTION
+
+
+This function compiles a regular expression into an internal form. It is the
+same as pcre[16|32]_compile(), except for the addition of the
+errorcodeptr argument. The arguments are:
+
+ pattern A zero-terminated string containing the
+ regular expression to be compiled
+ options Zero or more option bits
+ errorcodeptr Where to put an error code
+ errptr Where to put an error message
+ erroffset Offset in pattern where error was found
+ tableptr Pointer to character tables, or NULL to
+ use the built-in default
+
+The option bits are:
+
+ PCRE_ANCHORED Force pattern anchoring
+ PCRE_AUTO_CALLOUT Compile automatic callouts
+ PCRE_BSR_ANYCRLF \R matches only CR, LF, or CRLF
+ PCRE_BSR_UNICODE \R matches all Unicode line endings
+ PCRE_CASELESS Do caseless matching
+ PCRE_DOLLAR_ENDONLY $ not to match newline at end
+ PCRE_DOTALL . matches anything including NL
+ PCRE_DUPNAMES Allow duplicate names for subpatterns
+ PCRE_EXTENDED Ignore white space and # comments
+ PCRE_EXTRA PCRE extra features
+ (not much use currently)
+ PCRE_FIRSTLINE Force matching to be before newline
+ PCRE_JAVASCRIPT_COMPAT JavaScript compatibility
+ PCRE_MULTILINE ^ and $ match newlines within data
+ PCRE_NEWLINE_ANY Recognize any Unicode newline sequence
+ PCRE_NEWLINE_ANYCRLF Recognize CR, LF, and CRLF as newline
+ sequences
+ PCRE_NEWLINE_CR Set CR as the newline sequence
+ PCRE_NEWLINE_CRLF Set CRLF as the newline sequence
+ PCRE_NEWLINE_LF Set LF as the newline sequence
+ PCRE_NO_AUTO_CAPTURE Disable numbered capturing paren-
+ theses (named ones available)
+ PCRE_NO_UTF16_CHECK Do not check the pattern for UTF-16
+ validity (only relevant if
+ PCRE_UTF16 is set)
+ PCRE_NO_UTF32_CHECK Do not check the pattern for UTF-32
+ validity (only relevant if
+ PCRE_UTF32 is set)
+ PCRE_NO_UTF8_CHECK Do not check the pattern for UTF-8
+ validity (only relevant if
+ PCRE_UTF8 is set)
+ PCRE_UCP Use Unicode properties for \d, \w, etc.
+ PCRE_UNGREEDY Invert greediness of quantifiers
+ PCRE_UTF16 Run pcre16_compile() in UTF-16 mode
+ PCRE_UTF32 Run pcre32_compile() in UTF-32 mode
+ PCRE_UTF8 Run pcre_compile() in UTF-8 mode
+
+PCRE must be built with UTF support in order to use PCRE_UTF8/16/32 and
+PCRE_NO_UTF8/16/32_CHECK, and with UCP support if PCRE_UCP is used.
+
+
+The yield of the function is a pointer to a private data structure that
+contains the compiled pattern, or NULL if an error was detected. Note that
+compiling regular expressions with one version of PCRE for use with a different
+version is not guaranteed to work and may cause crashes.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_config.html b/pcre/doc/html/pcre_config.html
new file mode 100644
index 00000000000..fc10d183933
--- /dev/null
+++ b/pcre/doc/html/pcre_config.html
@@ -0,0 +1,91 @@
+
+
+pcre_config specification
+
+
+pcre_config man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_config(int what, void *where);
+
+
+int pcre16_config(int what, void *where);
+
+
+int pcre32_config(int what, void *where);
+
+
+DESCRIPTION
+
+
+This function makes it possible for a client program to find out which optional
+features are available in the version of the PCRE library it is using. The
+arguments are as follows:
+
+ what A code specifying what information is required
+ where Points to where to put the data
+
+The where argument must point to an integer variable, except for
+PCRE_CONFIG_MATCH_LIMIT and PCRE_CONFIG_MATCH_LIMIT_RECURSION, when it must
+point to an unsigned long integer. The available codes are:
+
+ PCRE_CONFIG_JIT Availability of just-in-time compiler
+ support (1=yes 0=no)
+ PCRE_CONFIG_JITTARGET String containing information about the
+ target architecture for the JIT compiler,
+ or NULL if there is no JIT support
+ PCRE_CONFIG_LINK_SIZE Internal link size: 2, 3, or 4
+ PCRE_CONFIG_MATCH_LIMIT Internal resource limit
+ PCRE_CONFIG_MATCH_LIMIT_RECURSION
+ Internal recursion depth limit
+ PCRE_CONFIG_NEWLINE Value of the default newline sequence:
+ 13 (0x000d) for CR
+ 10 (0x000a) for LF
+ 3338 (0x0d0a) for CRLF
+ -2 for ANYCRLF
+ -1 for ANY
+ PCRE_CONFIG_BSR Indicates what \R matches by default:
+ 0 all Unicode line endings
+ 1 CR, LF, or CRLF only
+ PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
+ Threshold of return slots, above which
+ malloc() is used by the POSIX API
+ PCRE_CONFIG_STACKRECURSE Recursion implementation (1=stack 0=heap)
+ PCRE_CONFIG_UTF16 Availability of UTF-16 support (1=yes
+ 0=no); option for pcre16_config()
+ PCRE_CONFIG_UTF32 Availability of UTF-32 support (1=yes
+ 0=no); option for pcre32_config()
+ PCRE_CONFIG_UTF8 Availability of UTF-8 support (1=yes 0=no);
+ option for pcre_config()
+ PCRE_CONFIG_UNICODE_PROPERTIES
+ Availability of Unicode property support
+ (1=yes 0=no)
+
+The function yields 0 on success or PCRE_ERROR_BADOPTION otherwise. That error
+is also given if PCRE_CONFIG_UTF16 or PCRE_CONFIG_UTF32 is passed to
+pcre_config(), if PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF32 is passed to
+pcre16_config(), or if PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF16 is passed to
+pcre32_config().
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_copy_named_substring.html b/pcre/doc/html/pcre_copy_named_substring.html
new file mode 100644
index 00000000000..ae4f6905ccc
--- /dev/null
+++ b/pcre/doc/html/pcre_copy_named_substring.html
@@ -0,0 +1,65 @@
+
+
+pcre_copy_named_substring specification
+
+
+pcre_copy_named_substring man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_copy_named_substring(const pcre *code,
+const char *subject, int *ovector,
+int stringcount, const char *stringname,
+char *buffer, int buffersize);
+
+
+int pcre16_copy_named_substring(const pcre16 *code,
+PCRE_SPTR16 subject, int *ovector,
+int stringcount, PCRE_SPTR16 stringname,
+PCRE_UCHAR16 *buffer, int buffersize);
+
+
+int pcre32_copy_named_substring(const pcre32 *code,
+PCRE_SPTR32 subject, int *ovector,
+int stringcount, PCRE_SPTR32 stringname,
+PCRE_UCHAR32 *buffer, int buffersize);
+
+
+DESCRIPTION
+
+
+This is a convenience function for extracting a captured substring, identified
+by name, into a given buffer. The arguments are:
+
+ code Pattern that was successfully matched
+ subject Subject that has been successfully matched
+ ovector Offset vector that pcre[16|32]_exec() used
+ stringcount Value returned by pcre[16|32]_exec()
+ stringname Name of the required substring
+ buffer Buffer to receive the string
+ buffersize Size of buffer
+
+The yield is the length of the substring, PCRE_ERROR_NOMEMORY if the buffer was
+too small, or PCRE_ERROR_NOSUBSTRING if the string name is invalid.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_copy_substring.html b/pcre/doc/html/pcre_copy_substring.html
new file mode 100644
index 00000000000..12bfb636a77
--- /dev/null
+++ b/pcre/doc/html/pcre_copy_substring.html
@@ -0,0 +1,61 @@
+
+
+pcre_copy_substring specification
+
+
+pcre_copy_substring man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_copy_substring(const char *subject, int *ovector,
+int stringcount, int stringnumber, char *buffer,
+int buffersize);
+
+
+int pcre16_copy_substring(PCRE_SPTR16 subject, int *ovector,
+int stringcount, int stringnumber, PCRE_UCHAR16 *buffer,
+int buffersize);
+
+
+int pcre32_copy_substring(PCRE_SPTR32 subject, int *ovector,
+int stringcount, int stringnumber, PCRE_UCHAR32 *buffer,
+int buffersize);
+
+
+DESCRIPTION
+
+
+This is a convenience function for extracting a captured substring into a given
+buffer. The arguments are:
+
+ subject Subject that has been successfully matched
+ ovector Offset vector that pcre[16|32]_exec() used
+ stringcount Value returned by pcre[16|32]_exec()
+ stringnumber Number of the required substring
+ buffer Buffer to receive the string
+ buffersize Size of buffer
+
+The yield is the length of the string, PCRE_ERROR_NOMEMORY if the buffer was
+too small, or PCRE_ERROR_NOSUBSTRING if the string number is invalid.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_dfa_exec.html b/pcre/doc/html/pcre_dfa_exec.html
new file mode 100644
index 00000000000..e91b670eac6
--- /dev/null
+++ b/pcre/doc/html/pcre_dfa_exec.html
@@ -0,0 +1,129 @@
+
+
+pcre_dfa_exec specification
+
+
+pcre_dfa_exec man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
+const char *subject, int length, int startoffset,
+int options, int *ovector, int ovecsize,
+int *workspace, int wscount);
+
+
+int pcre16_dfa_exec(const pcre16 *code, const pcre16_extra *extra,
+PCRE_SPTR16 subject, int length, int startoffset,
+int options, int *ovector, int ovecsize,
+int *workspace, int wscount);
+
+
+int pcre32_dfa_exec(const pcre32 *code, const pcre32_extra *extra,
+PCRE_SPTR32 subject, int length, int startoffset,
+int options, int *ovector, int ovecsize,
+int *workspace, int wscount);
+
+
+DESCRIPTION
+
+
+This function matches a compiled regular expression against a given subject
+string, using an alternative matching algorithm that scans the subject string
+just once (not Perl-compatible). Note that the main, Perl-compatible,
+matching function is pcre[16|32]_exec(). The arguments for this function
+are:
+
+ code Points to the compiled pattern
+ extra Points to an associated pcre[16|32]_extra structure,
+ or is NULL
+ subject Points to the subject string
+ length Length of the subject string
+ startoffset Offset in the subject at which to start matching
+ options Option bits
+ ovector Points to a vector of ints for result offsets
+ ovecsize Number of elements in the vector
+ workspace Points to a vector of ints used as working space
+ wscount Number of elements in the vector
+
+The units for length and startoffset are bytes for
+pcre_exec(), 16-bit data items for pcre16_exec(), and 32-bit items
+for pcre32_exec(). The options are:
+
+ PCRE_ANCHORED Match only at the first position
+ PCRE_BSR_ANYCRLF \R matches only CR, LF, or CRLF
+ PCRE_BSR_UNICODE \R matches all Unicode line endings
+ PCRE_NEWLINE_ANY Recognize any Unicode newline sequence
+ PCRE_NEWLINE_ANYCRLF Recognize CR, LF, & CRLF as newline sequences
+ PCRE_NEWLINE_CR Recognize CR as the only newline sequence
+ PCRE_NEWLINE_CRLF Recognize CRLF as the only newline sequence
+ PCRE_NEWLINE_LF Recognize LF as the only newline sequence
+ PCRE_NOTBOL Subject is not the beginning of a line
+ PCRE_NOTEOL Subject is not the end of a line
+ PCRE_NOTEMPTY An empty string is not a valid match
+ PCRE_NOTEMPTY_ATSTART An empty string at the start of the subject
+ is not a valid match
+ PCRE_NO_START_OPTIMIZE Do not do "start-match" optimizations
+ PCRE_NO_UTF16_CHECK Do not check the subject for UTF-16
+ validity (only relevant if PCRE_UTF16
+ was set at compile time)
+ PCRE_NO_UTF32_CHECK Do not check the subject for UTF-32
+ validity (only relevant if PCRE_UTF32
+ was set at compile time)
+ PCRE_NO_UTF8_CHECK Do not check the subject for UTF-8
+ validity (only relevant if PCRE_UTF8
+ was set at compile time)
+ PCRE_PARTIAL ) Return PCRE_ERROR_PARTIAL for a partial
+ PCRE_PARTIAL_SOFT ) match if no full matches are found
+ PCRE_PARTIAL_HARD Return PCRE_ERROR_PARTIAL for a partial match
+ even if there is a full match as well
+ PCRE_DFA_SHORTEST Return only the shortest match
+ PCRE_DFA_RESTART Restart after a partial match
+
+There are restrictions on what may appear in a pattern when using this matching
+function. Details are given in the
+pcrematching
+documentation. For details of partial matching, see the
+pcrepartial
+page.
+
+
+A pcre[16|32]_extra structure contains the following fields:
+
+ flags Bits indicating which fields are set
+ study_data Opaque data from pcre[16|32]_study()
+ match_limit Limit on internal resource use
+ match_limit_recursion Limit on internal recursion depth
+ callout_data Opaque data passed back to callouts
+ tables Points to character tables or is NULL
+ mark For passing back a *MARK pointer
+ executable_jit Opaque data from JIT compilation
+
+The flag bits are PCRE_EXTRA_STUDY_DATA, PCRE_EXTRA_MATCH_LIMIT,
+PCRE_EXTRA_MATCH_LIMIT_RECURSION, PCRE_EXTRA_CALLOUT_DATA,
+PCRE_EXTRA_TABLES, PCRE_EXTRA_MARK and PCRE_EXTRA_EXECUTABLE_JIT. For this
+matching function, the match_limit and match_limit_recursion fields
+are not used, and must not be set. The PCRE_EXTRA_EXECUTABLE_JIT flag and
+the corresponding variable are ignored.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_exec.html b/pcre/doc/html/pcre_exec.html
new file mode 100644
index 00000000000..0cc3bb7bb8b
--- /dev/null
+++ b/pcre/doc/html/pcre_exec.html
@@ -0,0 +1,111 @@
+
+
+pcre_exec specification
+
+
+pcre_exec man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_exec(const pcre *code, const pcre_extra *extra,
+const char *subject, int length, int startoffset,
+int options, int *ovector, int ovecsize);
+
+
+int pcre16_exec(const pcre16 *code, const pcre16_extra *extra,
+PCRE_SPTR16 subject, int length, int startoffset,
+int options, int *ovector, int ovecsize);
+
+
+int pcre32_exec(const pcre32 *code, const pcre32_extra *extra,
+PCRE_SPTR32 subject, int length, int startoffset,
+int options, int *ovector, int ovecsize);
+
+
+DESCRIPTION
+
+
+This function matches a compiled regular expression against a given subject
+string, using a matching algorithm that is similar to Perl's. It returns
+offsets to captured substrings. Its arguments are:
+
+ code Points to the compiled pattern
+ extra Points to an associated pcre[16|32]_extra structure,
+ or is NULL
+ subject Points to the subject string
+ length Length of the subject string
+ startoffset Offset in the subject at which to start matching
+ options Option bits
+ ovector Points to a vector of ints for result offsets
+ ovecsize Number of elements in the vector (a multiple of 3)
+
+The units for length and startoffset are bytes for
+pcre_exec(), 16-bit data items for pcre16_exec(), and 32-bit items
+for pcre32_exec(). The options are:
+
+ PCRE_ANCHORED Match only at the first position
+ PCRE_BSR_ANYCRLF \R matches only CR, LF, or CRLF
+ PCRE_BSR_UNICODE \R matches all Unicode line endings
+ PCRE_NEWLINE_ANY Recognize any Unicode newline sequence
+ PCRE_NEWLINE_ANYCRLF Recognize CR, LF, & CRLF as newline sequences
+ PCRE_NEWLINE_CR Recognize CR as the only newline sequence
+ PCRE_NEWLINE_CRLF Recognize CRLF as the only newline sequence
+ PCRE_NEWLINE_LF Recognize LF as the only newline sequence
+ PCRE_NOTBOL Subject string is not the beginning of a line
+ PCRE_NOTEOL Subject string is not the end of a line
+ PCRE_NOTEMPTY An empty string is not a valid match
+ PCRE_NOTEMPTY_ATSTART An empty string at the start of the subject
+ is not a valid match
+ PCRE_NO_START_OPTIMIZE Do not do "start-match" optimizations
+ PCRE_NO_UTF16_CHECK Do not check the subject for UTF-16
+ validity (only relevant if PCRE_UTF16
+ was set at compile time)
+ PCRE_NO_UTF32_CHECK Do not check the subject for UTF-32
+ validity (only relevant if PCRE_UTF32
+ was set at compile time)
+ PCRE_NO_UTF8_CHECK Do not check the subject for UTF-8
+ validity (only relevant if PCRE_UTF8
+ was set at compile time)
+ PCRE_PARTIAL ) Return PCRE_ERROR_PARTIAL for a partial
+ PCRE_PARTIAL_SOFT ) match if no full matches are found
+ PCRE_PARTIAL_HARD Return PCRE_ERROR_PARTIAL for a partial match
+ if that is found before a full match
+
+For details of partial matching, see the
+pcrepartial
+page. A pcre_extra structure contains the following fields:
+
+ flags Bits indicating which fields are set
+ study_data Opaque data from pcre[16|32]_study()
+ match_limit Limit on internal resource use
+ match_limit_recursion Limit on internal recursion depth
+ callout_data Opaque data passed back to callouts
+ tables Points to character tables or is NULL
+ mark For passing back a *MARK pointer
+ executable_jit Opaque data from JIT compilation
+
+The flag bits are PCRE_EXTRA_STUDY_DATA, PCRE_EXTRA_MATCH_LIMIT,
+PCRE_EXTRA_MATCH_LIMIT_RECURSION, PCRE_EXTRA_CALLOUT_DATA,
+PCRE_EXTRA_TABLES, PCRE_EXTRA_MARK and PCRE_EXTRA_EXECUTABLE_JIT.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_free_study.html b/pcre/doc/html/pcre_free_study.html
new file mode 100644
index 00000000000..7f9e10e8632
--- /dev/null
+++ b/pcre/doc/html/pcre_free_study.html
@@ -0,0 +1,46 @@
+
+
+pcre_free_study specification
+
+
+pcre_free_study man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+void pcre_free_study(pcre_extra *extra);
+
+
+void pcre16_free_study(pcre16_extra *extra);
+
+
+void pcre32_free_study(pcre32_extra *extra);
+
+
+DESCRIPTION
+
+
+This function is used to free the memory used for the data generated by a call
+to pcre[16|32]_study() when it is no longer needed. The argument must be the
+result of such a call.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_free_substring.html b/pcre/doc/html/pcre_free_substring.html
new file mode 100644
index 00000000000..1fe66107463
--- /dev/null
+++ b/pcre/doc/html/pcre_free_substring.html
@@ -0,0 +1,46 @@
+
+
+pcre_free_substring specification
+
+
+pcre_free_substring man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+void pcre_free_substring(const char *stringptr);
+
+
+void pcre16_free_substring(PCRE_SPTR16 stringptr);
+
+
+void pcre32_free_substring(PCRE_SPTR32 stringptr);
+
+
+DESCRIPTION
+
+
+This is a convenience function for freeing the store obtained by a previous
+call to pcre[16|32]_get_substring() or pcre[16|32]_get_named_substring().
+Its only argument is a pointer to the string.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_free_substring_list.html b/pcre/doc/html/pcre_free_substring_list.html
new file mode 100644
index 00000000000..c0861780b42
--- /dev/null
+++ b/pcre/doc/html/pcre_free_substring_list.html
@@ -0,0 +1,46 @@
+
+
+pcre_free_substring_list specification
+
+
+pcre_free_substring_list man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+void pcre_free_substring_list(const char **stringptr);
+
+
+void pcre16_free_substring_list(PCRE_SPTR16 *stringptr);
+
+
+void pcre32_free_substring_list(PCRE_SPTR32 *stringptr);
+
+
+DESCRIPTION
+
+
+This is a convenience function for freeing the store obtained by a previous
+call to pcre[16|32]_get_substring_list(). Its only argument is a pointer to
+the list of string pointers.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_fullinfo.html b/pcre/doc/html/pcre_fullinfo.html
new file mode 100644
index 00000000000..d353432bc52
--- /dev/null
+++ b/pcre/doc/html/pcre_fullinfo.html
@@ -0,0 +1,108 @@
+
+
+pcre_fullinfo specification
+
+
+pcre_fullinfo man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
+int what, void *where);
+
+
+int pcre16_fullinfo(const pcre16 *code, const pcre16_extra *extra,
+int what, void *where);
+
+
+int pcre32_fullinfo(const pcre32 *code, const pcre32_extra *extra,
+int what, void *where);
+
+
+DESCRIPTION
+
+
+This function returns information about a compiled pattern. Its arguments are:
+
+ code Compiled regular expression
+ extra Result of pcre[16|32]_study() or NULL
+ what What information is required
+ where Where to put the information
+
+The following information is available:
+
+ PCRE_INFO_BACKREFMAX Number of highest back reference
+ PCRE_INFO_CAPTURECOUNT Number of capturing subpatterns
+ PCRE_INFO_DEFAULT_TABLES Pointer to default tables
+ PCRE_INFO_FIRSTBYTE Fixed first data unit for a match, or
+ -1 for start of string
+ or after newline, or
+ -2 otherwise
+ PCRE_INFO_FIRSTTABLE Table of first data units (after studying)
+ PCRE_INFO_HASCRORLF Return 1 if explicit CR or LF matches exist
+ PCRE_INFO_JCHANGED Return 1 if (?J) or (?-J) was used
+ PCRE_INFO_JIT Return 1 after successful JIT compilation
+ PCRE_INFO_JITSIZE Size of JIT compiled code
+ PCRE_INFO_LASTLITERAL Literal last data unit required
+ PCRE_INFO_MINLENGTH Lower bound length of matching strings
+ PCRE_INFO_NAMECOUNT Number of named subpatterns
+ PCRE_INFO_NAMEENTRYSIZE Size of name table entry
+ PCRE_INFO_NAMETABLE Pointer to name table
+ PCRE_INFO_OKPARTIAL Return 1 if partial matching can be tried
+ (always returns 1 after release 8.00)
+ PCRE_INFO_OPTIONS Option bits used for compilation
+ PCRE_INFO_SIZE Size of compiled pattern
+ PCRE_INFO_STUDYSIZE Size of study data
+ PCRE_INFO_FIRSTCHARACTER Fixed first data unit for a match
+ PCRE_INFO_FIRSTCHARACTERFLAGS Returns
+ 1 if there is a first data character set, which can
+ then be retrieved using PCRE_INFO_FIRSTCHARACTER,
+ 2 if the first character is at the start of the data
+ string or after a newline, and
+ 0 otherwise
+ PCRE_INFO_REQUIREDCHAR Literal last data unit required
+ PCRE_INFO_REQUIREDCHARFLAGS Returns 1 if the last data character is set (which can then
+ be retrieved using PCRE_INFO_REQUIREDCHAR); 0 otherwise
+
+The where argument must point to an integer variable, except for the
+following what values:
+
+ PCRE_INFO_DEFAULT_TABLES const unsigned char *
+ PCRE_INFO_FIRSTTABLE const unsigned char *
+ PCRE_INFO_NAMETABLE PCRE_SPTR16 (16-bit library)
+ PCRE_INFO_NAMETABLE PCRE_SPTR32 (32-bit library)
+ PCRE_INFO_NAMETABLE const unsigned char * (8-bit library)
+ PCRE_INFO_OPTIONS unsigned long int
+ PCRE_INFO_SIZE size_t
+ PCRE_INFO_FIRSTCHARACTER uint32_t
+ PCRE_INFO_REQUIREDCHAR uint32_t
+
+The yield of the function is zero on success or:
+
+ PCRE_ERROR_NULL the argument code was NULL
+ the argument where was NULL
+ PCRE_ERROR_BADMAGIC the "magic number" was not found
+ PCRE_ERROR_BADOPTION the value of what was invalid
+
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_get_named_substring.html b/pcre/doc/html/pcre_get_named_substring.html
new file mode 100644
index 00000000000..6150ad71424
--- /dev/null
+++ b/pcre/doc/html/pcre_get_named_substring.html
@@ -0,0 +1,68 @@
+
+
+pcre_get_named_substring specification
+
+
+pcre_get_named_substring man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_get_named_substring(const pcre *code,
+const char *subject, int *ovector,
+int stringcount, const char *stringname,
+const char **stringptr);
+
+
+int pcre16_get_named_substring(const pcre16 *code,
+PCRE_SPTR16 subject, int *ovector,
+int stringcount, PCRE_SPTR16 stringname,
+PCRE_SPTR16 *stringptr);
+
+
+int pcre32_get_named_substring(const pcre32 *code,
+PCRE_SPTR32 subject, int *ovector,
+int stringcount, PCRE_SPTR32 stringname,
+PCRE_SPTR32 *stringptr);
+
+
+DESCRIPTION
+
+
+This is a convenience function for extracting a captured substring by name. The
+arguments are:
+
+ code Compiled pattern
+ subject Subject that has been successfully matched
+ ovector Offset vector that pcre[16|32]_exec() used
+ stringcount Value returned by pcre[16|32]_exec()
+ stringname Name of the required substring
+ stringptr Where to put the string pointer
+
+The memory in which the substring is placed is obtained by calling
+pcre[16|32]_malloc(). The convenience function
+pcre[16|32]_free_substring() can be used to free it when it is no longer
+needed. The yield of the function is the length of the extracted substring,
+PCRE_ERROR_NOMEMORY if sufficient memory could not be obtained, or
+PCRE_ERROR_NOSUBSTRING if the string name is invalid.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_get_stringnumber.html b/pcre/doc/html/pcre_get_stringnumber.html
new file mode 100644
index 00000000000..08967de3f7d
--- /dev/null
+++ b/pcre/doc/html/pcre_get_stringnumber.html
@@ -0,0 +1,57 @@
+
+
+pcre_get_stringnumber specification
+
+
+pcre_get_stringnumber man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_get_stringnumber(const pcre *code,
+const char *name);
+
+
+int pcre16_get_stringnumber(const pcre16 *code,
+PCRE_SPTR16 name);
+
+
+int pcre32_get_stringnumber(const pcre32 *code,
+PCRE_SPTR32 name);
+
+
+DESCRIPTION
+
+
+This convenience function finds the number of a named substring capturing
+parenthesis in a compiled pattern. Its arguments are:
+
+ code Compiled regular expression
+ name Name whose number is required
+
+The yield of the function is the number of the parenthesis if the name is
+found, or PCRE_ERROR_NOSUBSTRING otherwise. When duplicate names are allowed
+(PCRE_DUPNAMES is set), it is not defined which of the numbers is returned by
+pcre[16|32]_get_stringnumber(). You can obtain the complete list by calling
+pcre[16|32]_get_stringtable_entries().
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_get_stringtable_entries.html b/pcre/doc/html/pcre_get_stringtable_entries.html
new file mode 100644
index 00000000000..38f9c0c902f
--- /dev/null
+++ b/pcre/doc/html/pcre_get_stringtable_entries.html
@@ -0,0 +1,60 @@
+
+
+pcre_get_stringtable_entries specification
+
+
+pcre_get_stringtable_entries man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_get_stringtable_entries(const pcre *code,
+const char *name, char **first, char **last);
+
+
+int pcre16_get_stringtable_entries(const pcre16 *code,
+PCRE_SPTR16 name, PCRE_UCHAR16 **first, PCRE_UCHAR16 **last);
+
+
+int pcre32_get_stringtable_entries(const pcre32 *code,
+PCRE_SPTR32 name, PCRE_UCHAR32 **first, PCRE_UCHAR32 **last);
+
+
+DESCRIPTION
+
+
+This convenience function finds, for a compiled pattern, the first and last
+entries for a given name in the table that translates capturing parenthesis
+names into numbers. When names are required to be unique (PCRE_DUPNAMES is
+not set), it is usually easier to use pcre[16|32]_get_stringnumber()
+instead.
+
+ code Compiled regular expression
+ name Name whose entries required
+ first Where to return a pointer to the first entry
+ last Where to return a pointer to the last entry
+
+The yield of the function is the length of each entry, or
+PCRE_ERROR_NOSUBSTRING if none are found.
+
+
+There is a complete description of the PCRE native API, including the format of
+the table entries, in the
+pcreapi
+page, and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_get_substring.html b/pcre/doc/html/pcre_get_substring.html
new file mode 100644
index 00000000000..2a5a610f971
--- /dev/null
+++ b/pcre/doc/html/pcre_get_substring.html
@@ -0,0 +1,64 @@
+
+
+pcre_get_substring specification
+
+
+pcre_get_substring man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_get_substring(const char *subject, int *ovector,
+int stringcount, int stringnumber,
+const char **stringptr);
+
+
+int pcre16_get_substring(PCRE_SPTR16 subject, int *ovector,
+int stringcount, int stringnumber,
+PCRE_SPTR16 *stringptr);
+
+
+int pcre32_get_substring(PCRE_SPTR32 subject, int *ovector,
+int stringcount, int stringnumber,
+PCRE_SPTR32 *stringptr);
+
+
+DESCRIPTION
+
+
+This is a convenience function for extracting a captured substring. The
+arguments are:
+
+ subject Subject that has been successfully matched
+ ovector Offset vector that pcre[16|32]_exec() used
+ stringcount Value returned by pcre[16|32]_exec()
+ stringnumber Number of the required substring
+ stringptr Where to put the string pointer
+
+The memory in which the substring is placed is obtained by calling
+pcre[16|32]_malloc(). The convenience function
+pcre[16|32]_free_substring() can be used to free it when it is no longer
+needed. The yield of the function is the length of the substring,
+PCRE_ERROR_NOMEMORY if sufficient memory could not be obtained, or
+PCRE_ERROR_NOSUBSTRING if the string number is invalid.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_get_substring_list.html b/pcre/doc/html/pcre_get_substring_list.html
new file mode 100644
index 00000000000..85edef4b9f4
--- /dev/null
+++ b/pcre/doc/html/pcre_get_substring_list.html
@@ -0,0 +1,61 @@
+
+
+pcre_get_substring_list specification
+
+
+pcre_get_substring_list man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_get_substring_list(const char *subject,
+int *ovector, int stringcount, const char ***listptr);
+
+
+int pcre16_get_substring_list(PCRE_SPTR16 subject,
+int *ovector, int stringcount, PCRE_SPTR16 **listptr);
+
+
+int pcre32_get_substring_list(PCRE_SPTR32 subject,
+int *ovector, int stringcount, PCRE_SPTR32 **listptr);
+
+
+DESCRIPTION
+
+
+This is a convenience function for extracting a list of all the captured
+substrings. The arguments are:
+
+ subject Subject that has been successfully matched
+ ovector Offset vector that pcre[16|32]_exec used
+ stringcount Value returned by pcre[16|32]_exec
+ listptr Where to put a pointer to the list
+
+The memory in which the substrings and the list are placed is obtained by
+calling pcre[16|32]_malloc(). The convenience function
+pcre[16|32]_free_substring_list() can be used to free it when it is no
+longer needed. A pointer to a list of pointers is put in the variable whose
+address is in listptr. The list is terminated by a NULL pointer. The
+yield of the function is zero on success or PCRE_ERROR_NOMEMORY if sufficient
+memory could not be obtained.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_jit_exec.html b/pcre/doc/html/pcre_jit_exec.html
new file mode 100644
index 00000000000..0c63503a997
--- /dev/null
+++ b/pcre/doc/html/pcre_jit_exec.html
@@ -0,0 +1,108 @@
+
+
+pcre_jit_exec specification
+
+
+pcre_jit_exec man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_jit_exec(const pcre *code, const pcre_extra *extra,
+const char *subject, int length, int startoffset,
+int options, int *ovector, int ovecsize,
+pcre_jit_stack *jstack);
+
+
+int pcre16_jit_exec(const pcre16 *code, const pcre16_extra *extra,
+PCRE_SPTR16 subject, int length, int startoffset,
+int options, int *ovector, int ovecsize,
+pcre_jit_stack *jstack);
+
+
+int pcre32_jit_exec(const pcre32 *code, const pcre32_extra *extra,
+PCRE_SPTR32 subject, int length, int startoffset,
+int options, int *ovector, int ovecsize,
+pcre_jit_stack *jstack);
+
+
+DESCRIPTION
+
+
+This function matches a compiled regular expression that has been successfully
+studied with one of the JIT options against a given subject string, using a
+matching algorithm that is similar to Perl's. It is a "fast path" interface to
+JIT, and it bypasses some of the sanity checks that pcre_exec() applies.
+It returns offsets to captured substrings. Its arguments are:
+
+ code Points to the compiled pattern
+ extra Points to an associated pcre[16|32]_extra structure,
+ or is NULL
+ subject Points to the subject string
+ length Length of the subject string, in bytes
+ startoffset Offset in bytes in the subject at which to
+ start matching
+ options Option bits
+ ovector Points to a vector of ints for result offsets
+ ovecsize Number of elements in the vector (a multiple of 3)
+ jstack Pointer to a JIT stack
+
+The allowed options are:
+
+ PCRE_NOTBOL Subject string is not the beginning of a line
+ PCRE_NOTEOL Subject string is not the end of a line
+ PCRE_NOTEMPTY An empty string is not a valid match
+ PCRE_NOTEMPTY_ATSTART An empty string at the start of the subject
+ is not a valid match
+ PCRE_NO_UTF16_CHECK Do not check the subject for UTF-16
+ validity (only relevant if PCRE_UTF16
+ was set at compile time)
+ PCRE_NO_UTF32_CHECK Do not check the subject for UTF-32
+ validity (only relevant if PCRE_UTF32
+ was set at compile time)
+ PCRE_NO_UTF8_CHECK Do not check the subject for UTF-8
+ validity (only relevant if PCRE_UTF8
+ was set at compile time)
+ PCRE_PARTIAL ) Return PCRE_ERROR_PARTIAL for a partial
+ PCRE_PARTIAL_SOFT ) match if no full matches are found
+ PCRE_PARTIAL_HARD Return PCRE_ERROR_PARTIAL for a partial match
+ if that is found before a full match
+
+However, the PCRE_NO_UTF[8|16|32]_CHECK options have no effect, as this check
+is never applied. For details of partial matching, see the
+pcrepartial
+page. A pcre_extra structure contains the following fields:
+
+ flags Bits indicating which fields are set
+ study_data Opaque data from pcre[16|32]_study()
+ match_limit Limit on internal resource use
+ match_limit_recursion Limit on internal recursion depth
+ callout_data Opaque data passed back to callouts
+ tables Points to character tables or is NULL
+ mark For passing back a *MARK pointer
+ executable_jit Opaque data from JIT compilation
+
+The flag bits are PCRE_EXTRA_STUDY_DATA, PCRE_EXTRA_MATCH_LIMIT,
+PCRE_EXTRA_MATCH_LIMIT_RECURSION, PCRE_EXTRA_CALLOUT_DATA,
+PCRE_EXTRA_TABLES, PCRE_EXTRA_MARK and PCRE_EXTRA_EXECUTABLE_JIT.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the JIT API in the
+pcrejit
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_jit_stack_alloc.html b/pcre/doc/html/pcre_jit_stack_alloc.html
new file mode 100644
index 00000000000..4153ee594ff
--- /dev/null
+++ b/pcre/doc/html/pcre_jit_stack_alloc.html
@@ -0,0 +1,55 @@
+
+
+pcre_jit_stack_alloc specification
+
+
+pcre_jit_stack_alloc man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+pcre_jit_stack *pcre_jit_stack_alloc(int startsize,
+int maxsize);
+
+
+pcre16_jit_stack *pcre16_jit_stack_alloc(int startsize,
+int maxsize);
+
+
+pcre32_jit_stack *pcre32_jit_stack_alloc(int startsize,
+int maxsize);
+
+
+DESCRIPTION
+
+
+This function is used to create a stack for use by the code compiled by the JIT
+optimization of pcre[16|32]_study(). The arguments are a starting size for
+the stack, and a maximum size to which it is allowed to grow. The result can be
+passed to the JIT run-time code by pcre[16|32]_assign_jit_stack(), or that
+function can set up a callback for obtaining a stack. A maximum stack size of
+512K to 1M should be more than enough for any pattern. For more details, see
+the
+pcrejit
+page.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_jit_stack_free.html b/pcre/doc/html/pcre_jit_stack_free.html
new file mode 100644
index 00000000000..8bd06e4655a
--- /dev/null
+++ b/pcre/doc/html/pcre_jit_stack_free.html
@@ -0,0 +1,48 @@
+
+
+pcre_jit_stack_free specification
+
+
+pcre_jit_stack_free man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+void pcre_jit_stack_free(pcre_jit_stack *stack);
+
+
+void pcre16_jit_stack_free(pcre16_jit_stack *stack);
+
+
+void pcre32_jit_stack_free(pcre32_jit_stack *stack);
+
+
+DESCRIPTION
+
+
+This function is used to free a JIT stack that was created by
+pcre[16|32]_jit_stack_alloc() when it is no longer needed. For more details,
+see the
+pcrejit
+page.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_maketables.html b/pcre/doc/html/pcre_maketables.html
new file mode 100644
index 00000000000..3a7b5ebc4a9
--- /dev/null
+++ b/pcre/doc/html/pcre_maketables.html
@@ -0,0 +1,48 @@
+
+
+pcre_maketables specification
+
+
+pcre_maketables man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+const unsigned char *pcre_maketables(void);
+
+
+const unsigned char *pcre16_maketables(void);
+
+
+const unsigned char *pcre32_maketables(void);
+
+
+DESCRIPTION
+
+
+This function builds a set of character tables for character values less than
+256. These can be passed to pcre[16|32]_compile() to override PCRE's
+internal, built-in tables (which were made by pcre[16|32]_maketables() when
+PCRE was compiled). You might want to do this if you are using a non-standard
+locale. The function yields a pointer to the tables.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_pattern_to_host_byte_order.html b/pcre/doc/html/pcre_pattern_to_host_byte_order.html
new file mode 100644
index 00000000000..68d6f5a10a3
--- /dev/null
+++ b/pcre/doc/html/pcre_pattern_to_host_byte_order.html
@@ -0,0 +1,58 @@
+
+
+pcre_pattern_to_host_byte_order specification
+
+
+pcre_pattern_to_host_byte_order man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_pattern_to_host_byte_order(pcre *code,
+pcre_extra *extra, const unsigned char *tables);
+
+
+int pcre16_pattern_to_host_byte_order(pcre16 *code,
+pcre16_extra *extra, const unsigned char *tables);
+
+
+int pcre32_pattern_to_host_byte_order(pcre32 *code,
+pcre32_extra *extra, const unsigned char *tables);
+
+
+DESCRIPTION
+
+
+This function ensures that the bytes in 2-byte and 4-byte values in a compiled
+pattern are in the correct order for the current host. It is useful when a
+pattern that has been compiled on one host is transferred to another that might
+have different endianness. The arguments are:
+
+ code A compiled regular expression
+ extra Points to an associated pcre[16|32]_extra structure,
+ or is NULL
+ tables Pointer to character tables, or NULL to
+ set the built-in default
+
+The result is 0 for success, a negative PCRE_ERROR_xxx value otherwise.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_refcount.html b/pcre/doc/html/pcre_refcount.html
new file mode 100644
index 00000000000..bfb92e6d8a9
--- /dev/null
+++ b/pcre/doc/html/pcre_refcount.html
@@ -0,0 +1,51 @@
+
+
+pcre_refcount specification
+
+
+pcre_refcount man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre_refcount(pcre *code, int adjust);
+
+
+int pcre16_refcount(pcre16 *code, int adjust);
+
+
+int pcre32_refcount(pcre32 *code, int adjust);
+
+
+DESCRIPTION
+
+
+This function is used to maintain a reference count inside a data block that
+contains a compiled pattern. Its arguments are:
+
+ code Compiled regular expression
+ adjust Adjustment to reference value
+
+The yield of the function is the adjusted reference value, which is constrained
+to lie between 0 and 65535.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_study.html b/pcre/doc/html/pcre_study.html
new file mode 100644
index 00000000000..2baf54c4689
--- /dev/null
+++ b/pcre/doc/html/pcre_study.html
@@ -0,0 +1,68 @@
+
+
+pcre_study specification
+
+
+pcre_study man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+pcre_extra *pcre_study(const pcre *code, int options,
+const char **errptr);
+
+
+pcre16_extra *pcre16_study(const pcre16 *code, int options,
+const char **errptr);
+
+
+pcre32_extra *pcre32_study(const pcre32 *code, int options,
+const char **errptr);
+
+
+DESCRIPTION
+
+
+This function studies a compiled pattern, to see if additional information can
+be extracted that might speed up matching. Its arguments are:
+
+ code A compiled regular expression
+ options Options for pcre[16|32]_study()
+ errptr Where to put an error message
+
+If the function succeeds, it returns a value that can be passed to
+pcre[16|32]_exec() or pcre[16|32]_dfa_exec() via their extra
+arguments.
+
+
+If the function returns NULL, either it could not find any additional
+information, or there was an error. You can tell the difference by looking at
+the error value. It is NULL in first case.
+
+
+The only option is PCRE_STUDY_JIT_COMPILE. It requests just-in-time compilation
+if possible. If PCRE has been compiled without JIT support, this option is
+ignored. See the
+pcrejit
+page for further details.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_utf16_to_host_byte_order.html b/pcre/doc/html/pcre_utf16_to_host_byte_order.html
new file mode 100644
index 00000000000..164e2365a15
--- /dev/null
+++ b/pcre/doc/html/pcre_utf16_to_host_byte_order.html
@@ -0,0 +1,57 @@
+
+
+pcre_utf16_to_host_byte_order specification
+
+
+pcre_utf16_to_host_byte_order man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre16_utf16_to_host_byte_order(PCRE_UCHAR16 *output,
+PCRE_SPTR16 input, int length, int *host_byte_order,
+int keep_boms);
+
+
+DESCRIPTION
+
+
+This function, which exists only in the 16-bit library, converts a UTF-16
+string to the correct order for the current host, taking account of any byte
+order marks (BOMs) within the string. Its arguments are:
+
+ output pointer to output buffer, may be the same as input
+ input pointer to input buffer
+ length number of 16-bit units in the input, or negative for
+ a zero-terminated string
+ host_byte_order a NULL value or a non-zero value pointed to means
+ start in host byte order
+ keep_boms if non-zero, BOMs are copied to the output string
+
+The result of the function is the number of 16-bit units placed into the output
+buffer, including the zero terminator if the string was zero-terminated.
+
+
+If host_byte_order is not NULL, it is set to indicate the byte order that
+is current at the end of the string.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_utf32_to_host_byte_order.html b/pcre/doc/html/pcre_utf32_to_host_byte_order.html
new file mode 100644
index 00000000000..967c00db802
--- /dev/null
+++ b/pcre/doc/html/pcre_utf32_to_host_byte_order.html
@@ -0,0 +1,57 @@
+
+
+pcre_utf32_to_host_byte_order specification
+
+
+pcre_utf32_to_host_byte_order man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+int pcre32_utf32_to_host_byte_order(PCRE_UCHAR32 *output,
+PCRE_SPTR32 input, int length, int *host_byte_order,
+int keep_boms);
+
+
+DESCRIPTION
+
+
+This function, which exists only in the 32-bit library, converts a UTF-32
+string to the correct order for the current host, taking account of any byte
+order marks (BOMs) within the string. Its arguments are:
+
+ output pointer to output buffer, may be the same as input
+ input pointer to input buffer
+ length number of 32-bit units in the input, or negative for
+ a zero-terminated string
+ host_byte_order a NULL value or a non-zero value pointed to means
+ start in host byte order
+ keep_boms if non-zero, BOMs are copied to the output string
+
+The result of the function is the number of 32-bit units placed into the output
+buffer, including the zero terminator if the string was zero-terminated.
+
+
+If host_byte_order is not NULL, it is set to indicate the byte order that
+is current at the end of the string.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcre_version.html b/pcre/doc/html/pcre_version.html
new file mode 100644
index 00000000000..d33e7189559
--- /dev/null
+++ b/pcre/doc/html/pcre_version.html
@@ -0,0 +1,46 @@
+
+
+pcre_version specification
+
+
+pcre_version man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SYNOPSIS
+
+
+#include <pcre.h>
+
+
+const char *pcre_version(void);
+
+
+const char *pcre16_version(void);
+
+
+const char *pcre32_version(void);
+
+
+DESCRIPTION
+
+
+This function (even in the 16-bit and 32-bit libraries) returns a
+zero-terminated, 8-bit character string that gives the version number of the
+PCRE library and the date of its release.
+
+
+There is a complete description of the PCRE native API in the
+pcreapi
+page and a description of the POSIX API in the
+pcreposix
+page.
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcreapi.html b/pcre/doc/html/pcreapi.html
new file mode 100644
index 00000000000..2a00d9ba041
--- /dev/null
+++ b/pcre/doc/html/pcreapi.html
@@ -0,0 +1,2859 @@
+
+
+pcreapi specification
+
+
+pcreapi man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
+#include <pcre.h>
+
+
PCRE NATIVE API BASIC FUNCTIONS
+
+pcre *pcre_compile(const char *pattern, int options,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+pcre *pcre_compile2(const char *pattern, int options,
+int *errorcodeptr,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+pcre_extra *pcre_study(const pcre *code, int options,
+const char **errptr);
+
+
+void pcre_free_study(pcre_extra *extra);
+
+
+int pcre_exec(const pcre *code, const pcre_extra *extra,
+const char *subject, int length, int startoffset,
+int options, int *ovector, int ovecsize);
+
+
+int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
+const char *subject, int length, int startoffset,
+int options, int *ovector, int ovecsize,
+int *workspace, int wscount);
+
+
PCRE NATIVE API STRING EXTRACTION FUNCTIONS
+
+int pcre_copy_named_substring(const pcre *code,
+const char *subject, int *ovector,
+int stringcount, const char *stringname,
+char *buffer, int buffersize);
+
+
+int pcre_copy_substring(const char *subject, int *ovector,
+int stringcount, int stringnumber, char *buffer,
+int buffersize);
+
+
+int pcre_get_named_substring(const pcre *code,
+const char *subject, int *ovector,
+int stringcount, const char *stringname,
+const char **stringptr);
+
+
+int pcre_get_stringnumber(const pcre *code,
+const char *name);
+
+
+int pcre_get_stringtable_entries(const pcre *code,
+const char *name, char **first, char **last);
+
+
+int pcre_get_substring(const char *subject, int *ovector,
+int stringcount, int stringnumber,
+const char **stringptr);
+
+
+int pcre_get_substring_list(const char *subject,
+int *ovector, int stringcount, const char ***listptr);
+
+
+void pcre_free_substring(const char *stringptr);
+
+
+void pcre_free_substring_list(const char **stringptr);
+
+
PCRE NATIVE API AUXILIARY FUNCTIONS
+
+int pcre_jit_exec(const pcre *code, const pcre_extra *extra,
+const char *subject, int length, int startoffset,
+int options, int *ovector, int ovecsize,
+pcre_jit_stack *jstack);
+
+
+pcre_jit_stack *pcre_jit_stack_alloc(int startsize, int maxsize);
+
+
+void pcre_jit_stack_free(pcre_jit_stack *stack);
+
+
+void pcre_assign_jit_stack(pcre_extra *extra,
+pcre_jit_callback callback, void *data);
+
+
+const unsigned char *pcre_maketables(void);
+
+
+int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
+int what, void *where);
+
+
+int pcre_refcount(pcre *code, int adjust);
+
+
+int pcre_config(int what, void *where);
+
+
+const char *pcre_version(void);
+
+
+int pcre_pattern_to_host_byte_order(pcre *code,
+pcre_extra *extra, const unsigned char *tables);
+
+
PCRE NATIVE API INDIRECTED FUNCTIONS
+
+void *(*pcre_malloc)(size_t);
+
+
+void (*pcre_free)(void *);
+
+
+void *(*pcre_stack_malloc)(size_t);
+
+
+void (*pcre_stack_free)(void *);
+
+
+int (*pcre_callout)(pcre_callout_block *);
+
+
PCRE 8-BIT, 16-BIT, AND 32-BIT LIBRARIES
+
+As well as support for 8-bit character strings, PCRE also supports 16-bit
+strings (from release 8.30) and 32-bit strings (from release 8.32), by means of
+two additional libraries. They can be built as well as, or instead of, the
+8-bit library. To avoid too much complication, this document describes the
+8-bit versions of the functions, with only occasional references to the 16-bit
+and 32-bit libraries.
+
+
+The 16-bit and 32-bit functions operate in the same way as their 8-bit
+counterparts; they just use different data types for their arguments and
+results, and their names start with pcre16_ or pcre32_ instead of
+pcre_. For every option that has UTF8 in its name (for example,
+PCRE_UTF8), there are corresponding 16-bit and 32-bit names with UTF8 replaced
+by UTF16 or UTF32, respectively. This facility is in fact just cosmetic; the
+16-bit and 32-bit option names define the same bit values.
+
+
+References to bytes and UTF-8 in this document should be read as references to
+16-bit data units and UTF-16 when using the 16-bit library, or 32-bit data
+units and UTF-32 when using the 32-bit library, unless specified otherwise.
+More details of the specific differences for the 16-bit and 32-bit libraries
+are given in the
+pcre16
+and
+pcre32
+pages.
+
+
PCRE API OVERVIEW
+
+PCRE has its own native API, which is described in this document. There are
+also some wrapper functions (for the 8-bit library only) that correspond to the
+POSIX regular expression API, but they do not give access to all the
+functionality. They are described in the
+pcreposix
+documentation. Both of these APIs define a set of C function calls. A C++
+wrapper (again for the 8-bit library only) is also distributed with PCRE. It is
+documented in the
+pcrecpp
+page.
+
+
+The native API C function prototypes are defined in the header file
+pcre.h, and on Unix-like systems the (8-bit) library itself is called
+libpcre. It can normally be accessed by adding -lpcre to the
+command for linking an application that uses PCRE. The header file defines the
+macros PCRE_MAJOR and PCRE_MINOR to contain the major and minor release numbers
+for the library. Applications can use these to include support for different
+releases of PCRE.
+
+
+In a Windows environment, if you want to statically link an application program
+against a non-dll pcre.a file, you must define PCRE_STATIC before
+including pcre.h or pcrecpp.h, because otherwise the
+pcre_malloc() and pcre_free() exported functions will be declared
+__declspec(dllimport), with unwanted results.
+
+
+The functions pcre_compile(), pcre_compile2(), pcre_study(),
+and pcre_exec() are used for compiling and matching regular expressions
+in a Perl-compatible manner. A sample program that demonstrates the simplest
+way of using them is provided in the file called pcredemo.c in the PCRE
+source distribution. A listing of this program is given in the
+pcredemo
+documentation, and the
+pcresample
+documentation describes how to compile and run it.
+
+
+Just-in-time compiler support is an optional feature of PCRE that can be built
+in appropriate hardware environments. It greatly speeds up the matching
+performance of many patterns. Simple programs can easily request that it be
+used if available, by setting an option that is ignored when it is not
+relevant. More complicated programs might need to make use of the functions
+pcre_jit_stack_alloc(), pcre_jit_stack_free(), and
+pcre_assign_jit_stack() in order to control the JIT code's memory usage.
+
+
+From release 8.32 there is also a direct interface for JIT execution, which
+gives improved performance. The JIT-specific functions are discussed in the
+pcrejit
+documentation.
+
+
+A second matching function, pcre_dfa_exec(), which is not
+Perl-compatible, is also provided. This uses a different algorithm for the
+matching. The alternative algorithm finds all possible matches (at a given
+point in the subject), and scans the subject just once (unless there are
+lookbehind assertions). However, this algorithm does not return captured
+substrings. A description of the two matching algorithms and their advantages
+and disadvantages is given in the
+pcrematching
+documentation.
+
+
+In addition to the main compiling and matching functions, there are convenience
+functions for extracting captured substrings from a subject string that is
+matched by pcre_exec(). They are:
+
+ pcre_copy_substring()
+ pcre_copy_named_substring()
+ pcre_get_substring()
+ pcre_get_named_substring()
+ pcre_get_substring_list()
+ pcre_get_stringnumber()
+ pcre_get_stringtable_entries()
+
+pcre_free_substring() and pcre_free_substring_list() are also
+provided, to free the memory used for extracted strings.
+
+
+The function pcre_maketables() is used to build a set of character tables
+in the current locale for passing to pcre_compile(), pcre_exec(),
+or pcre_dfa_exec(). This is an optional facility that is provided for
+specialist use. Most commonly, no special tables are passed, in which case
+internal tables that are generated when PCRE is built are used.
+
+
+The function pcre_fullinfo() is used to find out information about a
+compiled pattern. The function pcre_version() returns a pointer to a
+string containing the version of PCRE and its date of release.
+
+
+The function pcre_refcount() maintains a reference count in a data block
+containing a compiled pattern. This is provided for the benefit of
+object-oriented applications.
+
+
+The global variables pcre_malloc and pcre_free initially contain
+the entry points of the standard malloc() and free() functions,
+respectively. PCRE calls the memory management functions via these variables,
+so a calling program can replace them if it wishes to intercept the calls. This
+should be done before calling any PCRE functions.
+
+
+The global variables pcre_stack_malloc and pcre_stack_free are also
+indirections to memory management functions. These special functions are used
+only when PCRE is compiled to use the heap for remembering data, instead of
+recursive function calls, when running the pcre_exec() function. See the
+pcrebuild
+documentation for details of how to do this. It is a non-standard way of
+building PCRE, for use in environments that have limited stacks. Because of the
+greater use of memory management, it runs more slowly. Separate functions are
+provided so that special-purpose external code can be used for this case. When
+used, these functions are always called in a stack-like manner (last obtained,
+first freed), and always for memory blocks of the same size. There is a
+discussion about PCRE's stack usage in the
+pcrestack
+documentation.
+
+
+The global variable pcre_callout initially contains NULL. It can be set
+by the caller to a "callout" function, which PCRE will then call at specified
+points during a matching operation. Details are given in the
+pcrecallout
+documentation.
+
+
NEWLINES
+
+PCRE supports five different conventions for indicating line breaks in
+strings: a single CR (carriage return) character, a single LF (linefeed)
+character, the two-character sequence CRLF, any of the three preceding, or any
+Unicode newline sequence. The Unicode newline sequences are the three just
+mentioned, plus the single characters VT (vertical tab, U+000B), FF (form feed,
+U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS
+(paragraph separator, U+2029).
+
+
+Each of the first three conventions is used by at least one operating system as
+its standard newline sequence. When PCRE is built, a default can be specified.
+The default default is LF, which is the Unix standard. When PCRE is run, the
+default can be overridden, either when a pattern is compiled, or when it is
+matched.
+
+
+At compile time, the newline convention can be specified by the options
+argument of pcre_compile(), or it can be specified by special text at the
+start of the pattern itself; this overrides any other settings. See the
+pcrepattern
+page for details of the special character sequences.
+
+
+In the PCRE documentation the word "newline" is used to mean "the character or
+pair of characters that indicate a line break". The choice of newline
+convention affects the handling of the dot, circumflex, and dollar
+metacharacters, the handling of #-comments in /x mode, and, when CRLF is a
+recognized line ending sequence, the match position advancement for a
+non-anchored pattern. There is more detail about this in the
+section on pcre_exec() options
+below.
+
+
+The choice of newline convention does not affect the interpretation of
+the \n or \r escape sequences, nor does it affect what \R matches, which is
+controlled in a similar way, but by separate options.
+
+
MULTITHREADING
+
+The PCRE functions can be used in multi-threading applications, with the
+proviso that the memory management functions pointed to by pcre_malloc,
+pcre_free, pcre_stack_malloc, and pcre_stack_free, and the
+callout function pointed to by pcre_callout, are shared by all threads.
+
+
+The compiled form of a regular expression is not altered during matching, so
+the same compiled pattern can safely be used by several threads at once.
+
+
+If the just-in-time optimization feature is being used, it needs separate
+memory stack areas for each thread. See the
+pcrejit
+documentation for more details.
+
+
SAVING PRECOMPILED PATTERNS FOR LATER USE
+
+The compiled form of a regular expression can be saved and re-used at a later
+time, possibly by a different program, and even on a host other than the one on
+which it was compiled. Details are given in the
+pcreprecompile
+documentation, which includes a description of the
+pcre_pattern_to_host_byte_order() function. However, compiling a regular
+expression with one version of PCRE for use with a different version is not
+guaranteed to work and may cause crashes.
+
+
CHECKING BUILD-TIME OPTIONS
+
+int pcre_config(int what, void *where);
+
+
+The function pcre_config() makes it possible for a PCRE client to
+discover which optional features have been compiled into the PCRE library. The
+pcrebuild
+documentation has more details about these optional features.
+
+
+The first argument for pcre_config() is an integer, specifying which
+information is required; the second argument is a pointer to a variable into
+which the information is placed. The returned value is zero on success, or the
+negative error code PCRE_ERROR_BADOPTION if the value in the first argument is
+not recognized. The following information is available:
+
+ PCRE_CONFIG_UTF8
+
+The output is an integer that is set to one if UTF-8 support is available;
+otherwise it is set to zero. This value should normally be given to the 8-bit
+version of this function, pcre_config(). If it is given to the 16-bit
+or 32-bit version of this function, the result is PCRE_ERROR_BADOPTION.
+
+ PCRE_CONFIG_UTF16
+
+The output is an integer that is set to one if UTF-16 support is available;
+otherwise it is set to zero. This value should normally be given to the 16-bit
+version of this function, pcre16_config(). If it is given to the 8-bit
+or 32-bit version of this function, the result is PCRE_ERROR_BADOPTION.
+
+ PCRE_CONFIG_UTF32
+
+The output is an integer that is set to one if UTF-32 support is available;
+otherwise it is set to zero. This value should normally be given to the 32-bit
+version of this function, pcre32_config(). If it is given to the 8-bit
+or 16-bit version of this function, the result is PCRE_ERROR_BADOPTION.
+
+ PCRE_CONFIG_UNICODE_PROPERTIES
+
+The output is an integer that is set to one if support for Unicode character
+properties is available; otherwise it is set to zero.
+
+ PCRE_CONFIG_JIT
+
+The output is an integer that is set to one if support for just-in-time
+compiling is available; otherwise it is set to zero.
+
+ PCRE_CONFIG_JITTARGET
+
+The output is a pointer to a zero-terminated "const char *" string. If JIT
+support is available, the string contains the name of the architecture for
+which the JIT compiler is configured, for example "x86 32bit (little endian +
+unaligned)". If JIT support is not available, the result is NULL.
+
+ PCRE_CONFIG_NEWLINE
+
+The output is an integer whose value specifies the default character sequence
+that is recognized as meaning "newline". The values that are supported in
+ASCII/Unicode environments are: 10 for LF, 13 for CR, 3338 for CRLF, -2 for
+ANYCRLF, and -1 for ANY. In EBCDIC environments, CR, ANYCRLF, and ANY yield the
+same values. However, the value for LF is normally 21, though some EBCDIC
+environments use 37. The corresponding values for CRLF are 3349 and 3365. The
+default should normally correspond to the standard sequence for your operating
+system.
+
+ PCRE_CONFIG_BSR
+
+The output is an integer whose value indicates what character sequences the \R
+escape sequence matches by default. A value of 0 means that \R matches any
+Unicode line ending sequence; a value of 1 means that \R matches only CR, LF,
+or CRLF. The default can be overridden when a pattern is compiled or matched.
+
+ PCRE_CONFIG_LINK_SIZE
+
+The output is an integer that contains the number of bytes used for internal
+linkage in compiled regular expressions. For the 8-bit library, the value can
+be 2, 3, or 4. For the 16-bit library, the value is either 2 or 4 and is still
+a number of bytes. For the 32-bit library, the value is either 2 or 4 and is
+still a number of bytes. The default value of 2 is sufficient for all but the
+most massive patterns, since it allows the compiled pattern to be up to 64K in
+size. Larger values allow larger regular expressions to be compiled, at the
+expense of slower matching.
+
+ PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
+
+The output is an integer that contains the threshold above which the POSIX
+interface uses malloc() for output vectors. Further details are given in
+the
+pcreposix
+documentation.
+
+ PCRE_CONFIG_MATCH_LIMIT
+
+The output is a long integer that gives the default limit for the number of
+internal matching function calls in a pcre_exec() execution. Further
+details are given with pcre_exec() below.
+
+ PCRE_CONFIG_MATCH_LIMIT_RECURSION
+
+The output is a long integer that gives the default limit for the depth of
+recursion when calling the internal matching function in a pcre_exec()
+execution. Further details are given with pcre_exec() below.
+
+ PCRE_CONFIG_STACKRECURSE
+
+The output is an integer that is set to one if internal recursion when running
+pcre_exec() is implemented by recursive function calls that use the stack
+to remember their state. This is the usual way that PCRE is compiled. The
+output is zero if PCRE was compiled to use blocks of data on the heap instead
+of recursive function calls. In this case, pcre_stack_malloc and
+pcre_stack_free are called to manage memory blocks on the heap, thus
+avoiding the use of the stack.
+
+
COMPILING A PATTERN
+
+pcre *pcre_compile(const char *pattern, int options,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+pcre *pcre_compile2(const char *pattern, int options,
+int *errorcodeptr,
+const char **errptr, int *erroffset,
+const unsigned char *tableptr);
+
+
+Either of the functions pcre_compile() or pcre_compile2() can be
+called to compile a pattern into an internal form. The only difference between
+the two interfaces is that pcre_compile2() has an additional argument,
+errorcodeptr, via which a numerical error code can be returned. To avoid
+too much repetition, we refer just to pcre_compile() below, but the
+information applies equally to pcre_compile2().
+
+
+The pattern is a C string terminated by a binary zero, and is passed in the
+pattern argument. A pointer to a single block of memory that is obtained
+via pcre_malloc is returned. This contains the compiled code and related
+data. The pcre type is defined for the returned block; this is a typedef
+for a structure whose contents are not externally defined. It is up to the
+caller to free the memory (via pcre_free) when it is no longer required.
+
+
+Although the compiled code of a PCRE regex is relocatable, that is, it does not
+depend on memory location, the complete pcre data block is not
+fully relocatable, because it may contain a copy of the tableptr
+argument, which is an address (see below).
+
+
+The options argument contains various bit settings that affect the
+compilation. It should be zero if no options are required. The available
+options are described below. Some of them (in particular, those that are
+compatible with Perl, but some others as well) can also be set and unset from
+within the pattern (see the detailed description in the
+pcrepattern
+documentation). For those options that can be different in different parts of
+the pattern, the contents of the options argument specifies their
+settings at the start of compilation and execution. The PCRE_ANCHORED,
+PCRE_BSR_xxx, PCRE_NEWLINE_xxx, PCRE_NO_UTF8_CHECK, and
+PCRE_NO_START_OPTIMIZE options can be set at the time of matching as well as at
+compile time.
+
+
+If errptr is NULL, pcre_compile() returns NULL immediately.
+Otherwise, if compilation of a pattern fails, pcre_compile() returns
+NULL, and sets the variable pointed to by errptr to point to a textual
+error message. This is a static string that is part of the library. You must
+not try to free it. Normally, the offset from the start of the pattern to the
+data unit that was being processed when the error was discovered is placed in
+the variable pointed to by erroffset, which must not be NULL (if it is,
+an immediate error is given). However, for an invalid UTF-8 or UTF-16 string,
+the offset is that of the first data unit of the failing character.
+
+
+Some errors are not detected until the whole pattern has been scanned; in these
+cases, the offset passed back is the length of the pattern. Note that the
+offset is in data units, not characters, even in a UTF mode. It may sometimes
+point into the middle of a UTF-8 or UTF-16 character.
+
+
+If pcre_compile2() is used instead of pcre_compile(), and the
+errorcodeptr argument is not NULL, a non-zero error code number is
+returned via this argument in the event of an error. This is in addition to the
+textual error message. Error codes and messages are listed below.
+
+
+If the final argument, tableptr, is NULL, PCRE uses a default set of
+character tables that are built when PCRE is compiled, using the default C
+locale. Otherwise, tableptr must be an address that is the result of a
+call to pcre_maketables(). This value is stored with the compiled
+pattern, and used again by pcre_exec(), unless another table pointer is
+passed to it. For more discussion, see the section on locale support below.
+
+
+This code fragment shows a typical straightforward call to pcre_compile():
+
+ pcre *re;
+ const char *error;
+ int erroffset;
+ re = pcre_compile(
+ "^A.*Z", /* the pattern */
+ 0, /* default options */
+ &error, /* for error message */
+ &erroffset, /* for error offset */
+ NULL); /* use default character tables */
+
+The following names for option bits are defined in the pcre.h header
+file:
+
+ PCRE_ANCHORED
+
+If this bit is set, the pattern is forced to be "anchored", that is, it is
+constrained to match only at the first matching point in the string that is
+being searched (the "subject string"). This effect can also be achieved by
+appropriate constructs in the pattern itself, which is the only way to do it in
+Perl.
+
+ PCRE_AUTO_CALLOUT
+
+If this bit is set, pcre_compile() automatically inserts callout items,
+all with number 255, before each pattern item. For discussion of the callout
+facility, see the
+pcrecallout
+documentation.
+
+ PCRE_BSR_ANYCRLF
+ PCRE_BSR_UNICODE
+
+These options (which are mutually exclusive) control what the \R escape
+sequence matches. The choice is either to match only CR, LF, or CRLF, or to
+match any Unicode newline sequence. The default is specified when PCRE is
+built. It can be overridden from within the pattern, or by setting an option
+when a compiled pattern is matched.
+
+ PCRE_CASELESS
+
+If this bit is set, letters in the pattern match both upper and lower case
+letters. It is equivalent to Perl's /i option, and it can be changed within a
+pattern by a (?i) option setting. In UTF-8 mode, PCRE always understands the
+concept of case for characters whose values are less than 128, so caseless
+matching is always possible. For characters with higher values, the concept of
+case is supported if PCRE is compiled with Unicode property support, but not
+otherwise. If you want to use caseless matching for characters 128 and above,
+you must ensure that PCRE is compiled with Unicode property support as well as
+with UTF-8 support.
+
+ PCRE_DOLLAR_ENDONLY
+
+If this bit is set, a dollar metacharacter in the pattern matches only at the
+end of the subject string. Without this option, a dollar also matches
+immediately before a newline at the end of the string (but not before any other
+newlines). The PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is set.
+There is no equivalent to this option in Perl, and no way to set it within a
+pattern.
+
+ PCRE_DOTALL
+
+If this bit is set, a dot metacharacter in the pattern matches a character of
+any value, including one that indicates a newline. However, it only ever
+matches one character, even if newlines are coded as CRLF. Without this option,
+a dot does not match when the current position is at a newline. This option is
+equivalent to Perl's /s option, and it can be changed within a pattern by a
+(?s) option setting. A negative class such as [^a] always matches newline
+characters, independent of the setting of this option.
+
+ PCRE_DUPNAMES
+
+If this bit is set, names used to identify capturing subpatterns need not be
+unique. This can be helpful for certain types of pattern when it is known that
+only one instance of the named subpattern can ever be matched. There are more
+details of named subpatterns below; see also the
+pcrepattern
+documentation.
+
+ PCRE_EXTENDED
+
+If this bit is set, white space data characters in the pattern are totally
+ignored except when escaped or inside a character class. White space does not
+include the VT character (code 11). In addition, characters between an
+unescaped # outside a character class and the next newline, inclusive, are also
+ignored. This is equivalent to Perl's /x option, and it can be changed within a
+pattern by a (?x) option setting.
+
+
+Which characters are interpreted as newlines is controlled by the options
+passed to pcre_compile() or by a special sequence at the start of the
+pattern, as described in the section entitled
+"Newline conventions"
+in the pcrepattern documentation. Note that the end of this type of
+comment is a literal newline sequence in the pattern; escape sequences that
+happen to represent a newline do not count.
+
+
+This option makes it possible to include comments inside complicated patterns.
+Note, however, that this applies only to data characters. White space characters
+may never appear within special character sequences in a pattern, for example
+within the sequence (?( that introduces a conditional subpattern.
+
+ PCRE_EXTRA
+
+This option was invented in order to turn on additional functionality of PCRE
+that is incompatible with Perl, but it is currently of very little use. When
+set, any backslash in a pattern that is followed by a letter that has no
+special meaning causes an error, thus reserving these combinations for future
+expansion. By default, as in Perl, a backslash followed by a letter with no
+special meaning is treated as a literal. (Perl can, however, be persuaded to
+give an error for this, by running it with the -w option.) There are at present
+no other features controlled by this option. It can also be set by a (?X)
+option setting within a pattern.
+
+ PCRE_FIRSTLINE
+
+If this option is set, an unanchored pattern is required to match before or at
+the first newline in the subject string, though the matched text may continue
+over the newline.
+
+ PCRE_JAVASCRIPT_COMPAT
+
+If this option is set, PCRE's behaviour is changed in some ways so that it is
+compatible with JavaScript rather than Perl. The changes are as follows:
+
+
+(1) A lone closing square bracket in a pattern causes a compile-time error,
+because this is illegal in JavaScript (by default it is treated as a data
+character). Thus, the pattern AB]CD becomes illegal when this option is set.
+
+
+(2) At run time, a back reference to an unset subpattern group matches an empty
+string (by default this causes the current matching alternative to fail). A
+pattern such as (\1)(a) succeeds when this option is set (assuming it can find
+an "a" in the subject), whereas it fails by default, for Perl compatibility.
+
+
+(3) \U matches an upper case "U" character; by default \U causes a compile
+time error (Perl uses \U to upper case subsequent characters).
+
+
+(4) \u matches a lower case "u" character unless it is followed by four
+hexadecimal digits, in which case the hexadecimal number defines the code point
+to match. By default, \u causes a compile time error (Perl uses it to upper
+case the following character).
+
+
+(5) \x matches a lower case "x" character unless it is followed by two
+hexadecimal digits, in which case the hexadecimal number defines the code point
+to match. By default, as in Perl, a hexadecimal number is always expected after
+\x, but it may have zero, one, or two digits (so, for example, \xz matches a
+binary zero character followed by z).
+
+ PCRE_MULTILINE
+
+By default, for the purposes of matching "start of line" and "end of line",
+PCRE treats the subject string as consisting of a single line of characters,
+even if it actually contains newlines. The "start of line" metacharacter (^)
+matches only at the start of the string, and the "end of line" metacharacter
+($) matches only at the end of the string, or before a terminating newline
+(except when PCRE_DOLLAR_ENDONLY is set). Note, however, that unless
+PCRE_DOTALL is set, the "any character" metacharacter (.) does not match at a
+newline. This behaviour (for ^, $, and dot) is the same as Perl.
+
+
+When PCRE_MULTILINE it is set, the "start of line" and "end of line" constructs
+match immediately following or immediately before internal newlines in the
+subject string, respectively, as well as at the very start and end. This is
+equivalent to Perl's /m option, and it can be changed within a pattern by a
+(?m) option setting. If there are no newlines in a subject string, or no
+occurrences of ^ or $ in a pattern, setting PCRE_MULTILINE has no effect.
+
+ PCRE_NEVER_UTF
+
+This option locks out interpretation of the pattern as UTF-8 (or UTF-16 or
+UTF-32 in the 16-bit and 32-bit libraries). In particular, it prevents the
+creator of the pattern from switching to UTF interpretation by starting the
+pattern with (*UTF). This may be useful in applications that process patterns
+from external sources. The combination of PCRE_UTF8 and PCRE_NEVER_UTF also
+causes an error.
+
+ PCRE_NEWLINE_CR
+ PCRE_NEWLINE_LF
+ PCRE_NEWLINE_CRLF
+ PCRE_NEWLINE_ANYCRLF
+ PCRE_NEWLINE_ANY
+
+These options override the default newline definition that was chosen when PCRE
+was built. Setting the first or the second specifies that a newline is
+indicated by a single character (CR or LF, respectively). Setting
+PCRE_NEWLINE_CRLF specifies that a newline is indicated by the two-character
+CRLF sequence. Setting PCRE_NEWLINE_ANYCRLF specifies that any of the three
+preceding sequences should be recognized. Setting PCRE_NEWLINE_ANY specifies
+that any Unicode newline sequence should be recognized.
+
+
+In an ASCII/Unicode environment, the Unicode newline sequences are the three
+just mentioned, plus the single characters VT (vertical tab, U+000B), FF (form
+feed, U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS
+(paragraph separator, U+2029). For the 8-bit library, the last two are
+recognized only in UTF-8 mode.
+
+
+When PCRE is compiled to run in an EBCDIC (mainframe) environment, the code for
+CR is 0x0d, the same as ASCII. However, the character code for LF is normally
+0x15, though in some EBCDIC environments 0x25 is used. Whichever of these is
+not LF is made to correspond to Unicode's NEL character. EBCDIC codes are all
+less than 256. For more details, see the
+pcrebuild
+documentation.
+
+
+The newline setting in the options word uses three bits that are treated
+as a number, giving eight possibilities. Currently only six are used (default
+plus the five values above). This means that if you set more than one newline
+option, the combination may or may not be sensible. For example,
+PCRE_NEWLINE_CR with PCRE_NEWLINE_LF is equivalent to PCRE_NEWLINE_CRLF, but
+other combinations may yield unused numbers and cause an error.
+
+
+The only time that a line break in a pattern is specially recognized when
+compiling is when PCRE_EXTENDED is set. CR and LF are white space characters,
+and so are ignored in this mode. Also, an unescaped # outside a character class
+indicates a comment that lasts until after the next line break sequence. In
+other circumstances, line break sequences in patterns are treated as literal
+data.
+
+
+The newline option that is set at compile time becomes the default that is used
+for pcre_exec() and pcre_dfa_exec(), but it can be overridden.
+
+ PCRE_NO_AUTO_CAPTURE
+
+If this option is set, it disables the use of numbered capturing parentheses in
+the pattern. Any opening parenthesis that is not followed by ? behaves as if it
+were followed by ?: but named parentheses can still be used for capturing (and
+they acquire numbers in the usual way). There is no equivalent of this option
+in Perl.
+
+ PCRE_NO_START_OPTIMIZE
+
+This is an option that acts at matching time; that is, it is really an option
+for pcre_exec() or pcre_dfa_exec(). If it is set at compile time,
+it is remembered with the compiled pattern and assumed at matching time. This
+is necessary if you want to use JIT execution, because the JIT compiler needs
+to know whether or not this option is set. For details see the discussion of
+PCRE_NO_START_OPTIMIZE
+below.
+
+ PCRE_UCP
+
+This option changes the way PCRE processes \B, \b, \D, \d, \S, \s, \W,
+\w, and some of the POSIX character classes. By default, only ASCII characters
+are recognized, but if PCRE_UCP is set, Unicode properties are used instead to
+classify characters. More details are given in the section on
+generic character types
+in the
+pcrepattern
+page. If you set PCRE_UCP, matching one of the items it affects takes much
+longer. The option is available only if PCRE has been compiled with Unicode
+property support.
+
+ PCRE_UNGREEDY
+
+This option inverts the "greediness" of the quantifiers so that they are not
+greedy by default, but become greedy if followed by "?". It is not compatible
+with Perl. It can also be set by a (?U) option setting within the pattern.
+
+ PCRE_UTF8
+
+This option causes PCRE to regard both the pattern and the subject as strings
+of UTF-8 characters instead of single-byte strings. However, it is available
+only when PCRE is built to include UTF support. If not, the use of this option
+provokes an error. Details of how this option changes the behaviour of PCRE are
+given in the
+pcreunicode
+page.
+
+ PCRE_NO_UTF8_CHECK
+
+When PCRE_UTF8 is set, the validity of the pattern as a UTF-8 string is
+automatically checked. There is a discussion about the
+validity of UTF-8 strings
+in the
+pcreunicode
+page. If an invalid UTF-8 sequence is found, pcre_compile() returns an
+error. If you already know that your pattern is valid, and you want to skip
+this check for performance reasons, you can set the PCRE_NO_UTF8_CHECK option.
+When it is set, the effect of passing an invalid UTF-8 string as a pattern is
+undefined. It may cause your program to crash. Note that this option can also
+be passed to pcre_exec() and pcre_dfa_exec(), to suppress the
+validity checking of subject strings only. If the same string is being matched
+many times, the option can be safely set for the second and subsequent
+matchings to improve performance.
+
+
COMPILATION ERROR CODES
+
+The following table lists the error codes than may be returned by
+pcre_compile2(), along with the error messages that may be returned by
+both compiling functions. Note that error messages are always 8-bit ASCII
+strings, even in 16-bit or 32-bit mode. As PCRE has developed, some error codes
+have fallen out of use. To avoid confusion, they have not been re-used.
+
+ 0 no error
+ 1 \ at end of pattern
+ 2 \c at end of pattern
+ 3 unrecognized character follows \
+ 4 numbers out of order in {} quantifier
+ 5 number too big in {} quantifier
+ 6 missing terminating ] for character class
+ 7 invalid escape sequence in character class
+ 8 range out of order in character class
+ 9 nothing to repeat
+ 10 [this code is not in use]
+ 11 internal error: unexpected repeat
+ 12 unrecognized character after (? or (?-
+ 13 POSIX named classes are supported only within a class
+ 14 missing )
+ 15 reference to non-existent subpattern
+ 16 erroffset passed as NULL
+ 17 unknown option bit(s) set
+ 18 missing ) after comment
+ 19 [this code is not in use]
+ 20 regular expression is too large
+ 21 failed to get memory
+ 22 unmatched parentheses
+ 23 internal error: code overflow
+ 24 unrecognized character after (?<
+ 25 lookbehind assertion is not fixed length
+ 26 malformed number or name after (?(
+ 27 conditional group contains more than two branches
+ 28 assertion expected after (?(
+ 29 (?R or (?[+-]digits must be followed by )
+ 30 unknown POSIX class name
+ 31 POSIX collating elements are not supported
+ 32 this version of PCRE is compiled without UTF support
+ 33 [this code is not in use]
+ 34 character value in \x{...} sequence is too large
+ 35 invalid condition (?(0)
+ 36 \C not allowed in lookbehind assertion
+ 37 PCRE does not support \L, \l, \N{name}, \U, or \u
+ 38 number after (?C is > 255
+ 39 closing ) for (?C expected
+ 40 recursive call could loop indefinitely
+ 41 unrecognized character after (?P
+ 42 syntax error in subpattern name (missing terminator)
+ 43 two named subpatterns have the same name
+ 44 invalid UTF-8 string (specifically UTF-8)
+ 45 support for \P, \p, and \X has not been compiled
+ 46 malformed \P or \p sequence
+ 47 unknown property name after \P or \p
+ 48 subpattern name is too long (maximum 32 characters)
+ 49 too many named subpatterns (maximum 10000)
+ 50 [this code is not in use]
+ 51 octal value is greater than \377 in 8-bit non-UTF-8 mode
+ 52 internal error: overran compiling workspace
+ 53 internal error: previously-checked referenced subpattern
+ not found
+ 54 DEFINE group contains more than one branch
+ 55 repeating a DEFINE group is not allowed
+ 56 inconsistent NEWLINE options
+ 57 \g is not followed by a braced, angle-bracketed, or quoted
+ name/number or by a plain number
+ 58 a numbered reference must not be zero
+ 59 an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)
+ 60 (*VERB) not recognized or malformed
+ 61 number is too big
+ 62 subpattern name expected
+ 63 digit expected after (?+
+ 64 ] is an invalid data character in JavaScript compatibility mode
+ 65 different names for subpatterns of the same number are
+ not allowed
+ 66 (*MARK) must have an argument
+ 67 this version of PCRE is not compiled with Unicode property
+ support
+ 68 \c must be followed by an ASCII character
+ 69 \k is not followed by a braced, angle-bracketed, or quoted name
+ 70 internal error: unknown opcode in find_fixedlength()
+ 71 \N is not supported in a class
+ 72 too many forward references
+ 73 disallowed Unicode code point (>= 0xd800 && <= 0xdfff)
+ 74 invalid UTF-16 string (specifically UTF-16)
+ 75 name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)
+ 76 character value in \u.... sequence is too large
+ 77 invalid UTF-32 string (specifically UTF-32)
+
+The numbers 32 and 10000 in errors 48 and 49 are defaults; different values may
+be used if the limits were changed when PCRE was built.
+
+
STUDYING A PATTERN
+
+pcre_extra *pcre_study(const pcre *code, int options
+const char **errptr);
+
+
+If a compiled pattern is going to be used several times, it is worth spending
+more time analyzing it in order to speed up the time taken for matching. The
+function pcre_study() takes a pointer to a compiled pattern as its first
+argument. If studying the pattern produces additional information that will
+help speed up matching, pcre_study() returns a pointer to a
+pcre_extra block, in which the study_data field points to the
+results of the study.
+
+
+The returned value from pcre_study() can be passed directly to
+pcre_exec() or pcre_dfa_exec(). However, a pcre_extra block
+also contains other fields that can be set by the caller before the block is
+passed; these are described
+below
+in the section on matching a pattern.
+
+
+If studying the pattern does not produce any useful information,
+pcre_study() returns NULL by default. In that circumstance, if the
+calling program wants to pass any of the other fields to pcre_exec() or
+pcre_dfa_exec(), it must set up its own pcre_extra block. However,
+if pcre_study() is called with the PCRE_STUDY_EXTRA_NEEDED option, it
+returns a pcre_extra block even if studying did not find any additional
+information. It may still return NULL, however, if an error occurs in
+pcre_study().
+
+
+The second argument of pcre_study() contains option bits. There are three
+further options in addition to PCRE_STUDY_EXTRA_NEEDED:
+
+ PCRE_STUDY_JIT_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
+
+If any of these are set, and the just-in-time compiler is available, the
+pattern is further compiled into machine code that executes much faster than
+the pcre_exec() interpretive matching function. If the just-in-time
+compiler is not available, these options are ignored. All undefined bits in the
+options argument must be zero.
+
+
+JIT compilation is a heavyweight optimization. It can take some time for
+patterns to be analyzed, and for one-off matches and simple patterns the
+benefit of faster execution might be offset by a much slower study time.
+Not all patterns can be optimized by the JIT compiler. For those that cannot be
+handled, matching automatically falls back to the pcre_exec()
+interpreter. For more details, see the
+pcrejit
+documentation.
+
+
+The third argument for pcre_study() is a pointer for an error message. If
+studying succeeds (even if no data is returned), the variable it points to is
+set to NULL. Otherwise it is set to point to a textual error message. This is a
+static string that is part of the library. You must not try to free it. You
+should test the error pointer for NULL after calling pcre_study(), to be
+sure that it has run successfully.
+
+
+When you are finished with a pattern, you can free the memory used for the
+study data by calling pcre_free_study(). This function was added to the
+API for release 8.20. For earlier versions, the memory could be freed with
+pcre_free(), just like the pattern itself. This will still work in cases
+where JIT optimization is not used, but it is advisable to change to the new
+function when convenient.
+
+
+This is a typical way in which pcre_study() is used (except that in a
+real application there should be tests for errors):
+
+ int rc;
+ pcre *re;
+ pcre_extra *sd;
+ re = pcre_compile("pattern", 0, &error, &erroroffset, NULL);
+ sd = pcre_study(
+ re, /* result of pcre_compile() */
+ 0, /* no options */
+ &error); /* set to NULL or points to a message */
+ rc = pcre_exec( /* see below for details of pcre_exec() options */
+ re, sd, "subject", 7, 0, 0, ovector, 30);
+ ...
+ pcre_free_study(sd);
+ pcre_free(re);
+
+Studying a pattern does two things: first, a lower bound for the length of
+subject string that is needed to match the pattern is computed. This does not
+mean that there are any strings of that length that match, but it does
+guarantee that no shorter strings match. The value is used to avoid wasting
+time by trying to match strings that are shorter than the lower bound. You can
+find out the value in a calling program via the pcre_fullinfo() function.
+
+
+Studying a pattern is also useful for non-anchored patterns that do not have a
+single fixed starting character. A bitmap of possible starting bytes is
+created. This speeds up finding a position in the subject at which to start
+matching. (In 16-bit mode, the bitmap is used for 16-bit values less than 256.
+In 32-bit mode, the bitmap is used for 32-bit values less than 256.)
+
+
+These two optimizations apply to both pcre_exec() and
+pcre_dfa_exec(), and the information is also used by the JIT compiler.
+The optimizations can be disabled by setting the PCRE_NO_START_OPTIMIZE option.
+You might want to do this if your pattern contains callouts or (*MARK) and you
+want to make use of these facilities in cases where matching fails.
+
+
+PCRE_NO_START_OPTIMIZE can be specified at either compile time or execution
+time. However, if PCRE_NO_START_OPTIMIZE is passed to pcre_exec(), (that
+is, after any JIT compilation has happened) JIT execution is disabled. For JIT
+execution to work with PCRE_NO_START_OPTIMIZE, the option must be set at
+compile time.
+
+
+There is a longer discussion of PCRE_NO_START_OPTIMIZE
+below.
+
+
LOCALE SUPPORT
+
+PCRE handles caseless matching, and determines whether characters are letters,
+digits, or whatever, by reference to a set of tables, indexed by character
+value. When running in UTF-8 mode, this applies only to characters
+with codes less than 128. By default, higher-valued codes never match escapes
+such as \w or \d, but they can be tested with \p if PCRE is built with
+Unicode character property support. Alternatively, the PCRE_UCP option can be
+set at compile time; this causes \w and friends to use Unicode property
+support instead of built-in tables. The use of locales with Unicode is
+discouraged. If you are handling characters with codes greater than 128, you
+should either use UTF-8 and Unicode, or use locales, but not try to mix the
+two.
+
+
+PCRE contains an internal set of tables that are used when the final argument
+of pcre_compile() is NULL. These are sufficient for many applications.
+Normally, the internal tables recognize only ASCII characters. However, when
+PCRE is built, it is possible to cause the internal tables to be rebuilt in the
+default "C" locale of the local system, which may cause them to be different.
+
+
+The internal tables can always be overridden by tables supplied by the
+application that calls PCRE. These may be created in a different locale from
+the default. As more and more applications change to using Unicode, the need
+for this locale support is expected to die away.
+
+
+External tables are built by calling the pcre_maketables() function,
+which has no arguments, in the relevant locale. The result can then be passed
+to pcre_compile() or pcre_exec() as often as necessary. For
+example, to build and use tables that are appropriate for the French locale
+(where accented characters with values greater than 128 are treated as letters),
+the following code could be used:
+
+ setlocale(LC_CTYPE, "fr_FR");
+ tables = pcre_maketables();
+ re = pcre_compile(..., tables);
+
+The locale name "fr_FR" is used on Linux and other Unix-like systems; if you
+are using Windows, the name for the French locale is "french".
+
+
+When pcre_maketables() runs, the tables are built in memory that is
+obtained via pcre_malloc. It is the caller's responsibility to ensure
+that the memory containing the tables remains available for as long as it is
+needed.
+
+
+The pointer that is passed to pcre_compile() is saved with the compiled
+pattern, and the same tables are used via this pointer by pcre_study()
+and normally also by pcre_exec(). Thus, by default, for any single
+pattern, compilation, studying and matching all happen in the same locale, but
+different patterns can be compiled in different locales.
+
+
+It is possible to pass a table pointer or NULL (indicating the use of the
+internal tables) to pcre_exec(). Although not intended for this purpose,
+this facility could be used to match a pattern in a different locale from the
+one in which it was compiled. Passing table pointers at run time is discussed
+below in the section on matching a pattern.
+
+
INFORMATION ABOUT A PATTERN
+
+int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
+int what, void *where);
+
+
+The pcre_fullinfo() function returns information about a compiled
+pattern. It replaces the pcre_info() function, which was removed from the
+library at version 8.30, after more than 10 years of obsolescence.
+
+
+The first argument for pcre_fullinfo() is a pointer to the compiled
+pattern. The second argument is the result of pcre_study(), or NULL if
+the pattern was not studied. The third argument specifies which piece of
+information is required, and the fourth argument is a pointer to a variable
+to receive the data. The yield of the function is zero for success, or one of
+the following negative numbers:
+
+ PCRE_ERROR_NULL the argument code was NULL
+ the argument where was NULL
+ PCRE_ERROR_BADMAGIC the "magic number" was not found
+ PCRE_ERROR_BADENDIANNESS the pattern was compiled with different
+ endianness
+ PCRE_ERROR_BADOPTION the value of what was invalid
+ PCRE_ERROR_UNSET the requested field is not set
+
+The "magic number" is placed at the start of each compiled pattern as an simple
+check against passing an arbitrary memory pointer. The endianness error can
+occur if a compiled pattern is saved and reloaded on a different host. Here is
+a typical call of pcre_fullinfo(), to obtain the length of the compiled
+pattern:
+
+ int rc;
+ size_t length;
+ rc = pcre_fullinfo(
+ re, /* result of pcre_compile() */
+ sd, /* result of pcre_study(), or NULL */
+ PCRE_INFO_SIZE, /* what is required */
+ &length); /* where to put the data */
+
+The possible values for the third argument are defined in pcre.h, and are
+as follows:
+
+ PCRE_INFO_BACKREFMAX
+
+Return the number of the highest back reference in the pattern. The fourth
+argument should point to an int variable. Zero is returned if there are
+no back references.
+
+ PCRE_INFO_CAPTURECOUNT
+
+Return the number of capturing subpatterns in the pattern. The fourth argument
+should point to an int variable.
+
+ PCRE_INFO_DEFAULT_TABLES
+
+Return a pointer to the internal default character tables within PCRE. The
+fourth argument should point to an unsigned char * variable. This
+information call is provided for internal use by the pcre_study()
+function. External callers can cause PCRE to use its internal tables by passing
+a NULL table pointer.
+
+ PCRE_INFO_FIRSTBYTE
+
+Return information about the first data unit of any matched string, for a
+non-anchored pattern. (The name of this option refers to the 8-bit library,
+where data units are bytes.) The fourth argument should point to an int
+variable.
+
+
+If there is a fixed first value, for example, the letter "c" from a pattern
+such as (cat|cow|coyote), its value is returned. In the 8-bit library, the
+value is always less than 256. In the 16-bit library the value can be up to
+0xffff. In the 32-bit library the value can be up to 0x10ffff.
+
+
+If there is no fixed first value, and if either
+
+
+(a) the pattern was compiled with the PCRE_MULTILINE option, and every branch
+starts with "^", or
+
+
+(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not set
+(if it were set, the pattern would be anchored),
+
+
+-1 is returned, indicating that the pattern matches only at the start of a
+subject string or after any newline within the string. Otherwise -2 is
+returned. For anchored patterns, -2 is returned.
+
+
+Since for the 32-bit library using the non-UTF-32 mode, this function is unable
+to return the full 32-bit range of the character, this value is deprecated;
+instead the PCRE_INFO_FIRSTCHARACTERFLAGS and PCRE_INFO_FIRSTCHARACTER values
+should be used.
+
+ PCRE_INFO_FIRSTTABLE
+
+If the pattern was studied, and this resulted in the construction of a 256-bit
+table indicating a fixed set of values for the first data unit in any matching
+string, a pointer to the table is returned. Otherwise NULL is returned. The
+fourth argument should point to an unsigned char * variable.
+
+ PCRE_INFO_HASCRORLF
+
+Return 1 if the pattern contains any explicit matches for CR or LF characters,
+otherwise 0. The fourth argument should point to an int variable. An
+explicit match is either a literal CR or LF character, or \r or \n.
+
+ PCRE_INFO_JCHANGED
+
+Return 1 if the (?J) or (?-J) option setting is used in the pattern, otherwise
+0. The fourth argument should point to an int variable. (?J) and
+(?-J) set and unset the local PCRE_DUPNAMES option, respectively.
+
+ PCRE_INFO_JIT
+
+Return 1 if the pattern was studied with one of the JIT options, and
+just-in-time compiling was successful. The fourth argument should point to an
+int variable. A return value of 0 means that JIT support is not available
+in this version of PCRE, or that the pattern was not studied with a JIT option,
+or that the JIT compiler could not handle this particular pattern. See the
+pcrejit
+documentation for details of what can and cannot be handled.
+
+ PCRE_INFO_JITSIZE
+
+If the pattern was successfully studied with a JIT option, return the size of
+the JIT compiled code, otherwise return zero. The fourth argument should point
+to a size_t variable.
+
+ PCRE_INFO_LASTLITERAL
+
+Return the value of the rightmost literal data unit that must exist in any
+matched string, other than at its start, if such a value has been recorded. The
+fourth argument should point to an int variable. If there is no such
+value, -1 is returned. For anchored patterns, a last literal value is recorded
+only if it follows something of variable length. For example, for the pattern
+/^a\d+z\d+/ the returned value is "z", but for /^a\dz\d/ the returned value
+is -1.
+
+
+Since for the 32-bit library using the non-UTF-32 mode, this function is unable
+to return the full 32-bit range of the character, this value is deprecated;
+instead the PCRE_INFO_REQUIREDCHARFLAGS and PCRE_INFO_REQUIREDCHAR values should
+be used.
+
+ PCRE_INFO_MATCHLIMIT
+
+If the pattern set a match limit by including an item of the form
+(*LIMIT_MATCH=nnnn) at the start, the value is returned. The fourth argument
+should point to an unsigned 32-bit integer. If no such value has been set, the
+call to pcre_fullinfo() returns the error PCRE_ERROR_UNSET.
+
+ PCRE_INFO_MAXLOOKBEHIND
+
+Return the number of characters (NB not data units) in the longest lookbehind
+assertion in the pattern. This information is useful when doing multi-segment
+matching using the partial matching facilities. Note that the simple assertions
+\b and \B require a one-character lookbehind. \A also registers a
+one-character lookbehind, though it does not actually inspect the previous
+character. This is to ensure that at least one character from the old segment
+is retained when a new segment is processed. Otherwise, if there are no
+lookbehinds in the pattern, \A might match incorrectly at the start of a new
+segment.
+
+ PCRE_INFO_MINLENGTH
+
+If the pattern was studied and a minimum length for matching subject strings
+was computed, its value is returned. Otherwise the returned value is -1. The
+value is a number of characters, which in UTF mode may be different from the
+number of data units. The fourth argument should point to an int
+variable. A non-negative value is a lower bound to the length of any matching
+string. There may not be any strings of that length that do actually match, but
+every string that does match is at least that long.
+
+ PCRE_INFO_NAMECOUNT
+ PCRE_INFO_NAMEENTRYSIZE
+ PCRE_INFO_NAMETABLE
+
+PCRE supports the use of named as well as numbered capturing parentheses. The
+names are just an additional way of identifying the parentheses, which still
+acquire numbers. Several convenience functions such as
+pcre_get_named_substring() are provided for extracting captured
+substrings by name. It is also possible to extract the data directly, by first
+converting the name to a number in order to access the correct pointers in the
+output vector (described with pcre_exec() below). To do the conversion,
+you need to use the name-to-number map, which is described by these three
+values.
+
+
+The map consists of a number of fixed-size entries. PCRE_INFO_NAMECOUNT gives
+the number of entries, and PCRE_INFO_NAMEENTRYSIZE gives the size of each
+entry; both of these return an int value. The entry size depends on the
+length of the longest name. PCRE_INFO_NAMETABLE returns a pointer to the first
+entry of the table. This is a pointer to char in the 8-bit library, where
+the first two bytes of each entry are the number of the capturing parenthesis,
+most significant byte first. In the 16-bit library, the pointer points to
+16-bit data units, the first of which contains the parenthesis number. In the
+32-bit library, the pointer points to 32-bit data units, the first of which
+contains the parenthesis number. The rest of the entry is the corresponding
+name, zero terminated.
+
+
+The names are in alphabetical order. Duplicate names may appear if (?| is used
+to create multiple groups with the same number, as described in the
+section on duplicate subpattern numbers
+in the
+pcrepattern
+page. Duplicate names for subpatterns with different numbers are permitted only
+if PCRE_DUPNAMES is set. In all cases of duplicate names, they appear in the
+table in the order in which they were found in the pattern. In the absence of
+(?| this is the order of increasing number; when (?| is used this is not
+necessarily the case because later subpatterns may have lower numbers.
+
+
+As a simple example of the name/number table, consider the following pattern
+after compilation by the 8-bit library (assume PCRE_EXTENDED is set, so white
+space - including newlines - is ignored):
+
+ (?<date> (?<year>(\d\d)?\d\d) - (?<month>\d\d) - (?<day>\d\d) )
+
+There are four named subpatterns, so the table has four entries, and each entry
+in the table is eight bytes long. The table is as follows, with non-printing
+bytes shows in hexadecimal, and undefined bytes shown as ??:
+
+ 00 01 d a t e 00 ??
+ 00 05 d a y 00 ?? ??
+ 00 04 m o n t h 00
+ 00 02 y e a r 00 ??
+
+When writing code to extract data from named subpatterns using the
+name-to-number map, remember that the length of the entries is likely to be
+different for each compiled pattern.
+
+ PCRE_INFO_OKPARTIAL
+
+Return 1 if the pattern can be used for partial matching with
+pcre_exec(), otherwise 0. The fourth argument should point to an
+int variable. From release 8.00, this always returns 1, because the
+restrictions that previously applied to partial matching have been lifted. The
+pcrepartial
+documentation gives details of partial matching.
+
+ PCRE_INFO_OPTIONS
+
+Return a copy of the options with which the pattern was compiled. The fourth
+argument should point to an unsigned long int variable. These option bits
+are those specified in the call to pcre_compile(), modified by any
+top-level option settings at the start of the pattern itself. In other words,
+they are the options that will be in force when matching starts. For example,
+if the pattern /(?im)abc(?-i)d/ is compiled with the PCRE_EXTENDED option, the
+result is PCRE_CASELESS, PCRE_MULTILINE, and PCRE_EXTENDED.
+
+
+A pattern is automatically anchored by PCRE if all of its top-level
+alternatives begin with one of the following:
+
+ ^ unless PCRE_MULTILINE is set
+ \A always
+ \G always
+ .* if PCRE_DOTALL is set and there are no back references to the subpattern in which .* appears
+
+For such patterns, the PCRE_ANCHORED bit is set in the options returned by
+pcre_fullinfo().
+
+ PCRE_INFO_RECURSIONLIMIT
+
+If the pattern set a recursion limit by including an item of the form
+(*LIMIT_RECURSION=nnnn) at the start, the value is returned. The fourth
+argument should point to an unsigned 32-bit integer. If no such value has been
+set, the call to pcre_fullinfo() returns the error PCRE_ERROR_UNSET.
+
+ PCRE_INFO_SIZE
+
+Return the size of the compiled pattern in bytes (for all three libraries). The
+fourth argument should point to a size_t variable. This value does not
+include the size of the pcre structure that is returned by
+pcre_compile(). The value that is passed as the argument to
+pcre_malloc() when pcre_compile() is getting memory in which to
+place the compiled data is the value returned by this option plus the size of
+the pcre structure. Studying a compiled pattern, with or without JIT,
+does not alter the value returned by this option.
+
+ PCRE_INFO_STUDYSIZE
+
+Return the size in bytes (for all three libraries) of the data block pointed to
+by the study_data field in a pcre_extra block. If pcre_extra
+is NULL, or there is no study data, zero is returned. The fourth argument
+should point to a size_t variable. The study_data field is set by
+pcre_study() to record information that will speed up matching (see the
+section entitled
+"Studying a pattern"
+above). The format of the study_data block is private, but its length
+is made available via this option so that it can be saved and restored (see the
+pcreprecompile
+documentation for details).
+
+ PCRE_INFO_FIRSTCHARACTERFLAGS
+
+Return information about the first data unit of any matched string, for a
+non-anchored pattern. The fourth argument should point to an int
+variable.
+
+
+If there is a fixed first value, for example, the letter "c" from a pattern
+such as (cat|cow|coyote), 1 is returned, and the character value can be
+retrieved using PCRE_INFO_FIRSTCHARACTER.
+
+
+If there is no fixed first value, and if either
+
+
+(a) the pattern was compiled with the PCRE_MULTILINE option, and every branch
+starts with "^", or
+
+
+(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not set
+(if it were set, the pattern would be anchored),
+
+
+2 is returned, indicating that the pattern matches only at the start of a
+subject string or after any newline within the string. Otherwise 0 is
+returned. For anchored patterns, 0 is returned.
+
+ PCRE_INFO_FIRSTCHARACTER
+
+Return the fixed first character value, if PCRE_INFO_FIRSTCHARACTERFLAGS
+returned 1; otherwise returns 0. The fourth argument should point to an
+uint_t variable.
+
+
+In the 8-bit library, the value is always less than 256. In the 16-bit library
+the value can be up to 0xffff. In the 32-bit library in UTF-32 mode the value
+can be up to 0x10ffff, and up to 0xffffffff when not using UTF-32 mode.
+
+
+If there is no fixed first value, and if either
+
+
+(a) the pattern was compiled with the PCRE_MULTILINE option, and every branch
+starts with "^", or
+
+
+(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not set
+(if it were set, the pattern would be anchored),
+
+
+-1 is returned, indicating that the pattern matches only at the start of a
+subject string or after any newline within the string. Otherwise -2 is
+returned. For anchored patterns, -2 is returned.
+
+ PCRE_INFO_REQUIREDCHARFLAGS
+
+Returns 1 if there is a rightmost literal data unit that must exist in any
+matched string, other than at its start. The fourth argument should point to
+an int variable. If there is no such value, 0 is returned. If returning
+1, the character value itself can be retrieved using PCRE_INFO_REQUIREDCHAR.
+
+
+For anchored patterns, a last literal value is recorded only if it follows
+something of variable length. For example, for the pattern /^a\d+z\d+/ the
+returned value 1 (with "z" returned from PCRE_INFO_REQUIREDCHAR), but for
+/^a\dz\d/ the returned value is 0.
+
+ PCRE_INFO_REQUIREDCHAR
+
+Return the value of the rightmost literal data unit that must exist in any
+matched string, other than at its start, if such a value has been recorded. The
+fourth argument should point to an uint32_t variable. If there is no such
+value, 0 is returned.
+
+
REFERENCE COUNTS
+
+int pcre_refcount(pcre *code, int adjust);
+
+
+The pcre_refcount() function is used to maintain a reference count in the
+data block that contains a compiled pattern. It is provided for the benefit of
+applications that operate in an object-oriented manner, where different parts
+of the application may be using the same compiled pattern, but you want to free
+the block when they are all done.
+
+
+When a pattern is compiled, the reference count field is initialized to zero.
+It is changed only by calling this function, whose action is to add the
+adjust value (which may be positive or negative) to it. The yield of the
+function is the new value. However, the value of the count is constrained to
+lie between 0 and 65535, inclusive. If the new value is outside these limits,
+it is forced to the appropriate limit value.
+
+
+Except when it is zero, the reference count is not correctly preserved if a
+pattern is compiled on one host and then transferred to a host whose byte-order
+is different. (This seems a highly unlikely scenario.)
+
+
MATCHING A PATTERN: THE TRADITIONAL FUNCTION
+
+int pcre_exec(const pcre *code, const pcre_extra *extra,
+const char *subject, int length, int startoffset,
+int options, int *ovector, int ovecsize);
+
+
+The function pcre_exec() is called to match a subject string against a
+compiled pattern, which is passed in the code argument. If the
+pattern was studied, the result of the study should be passed in the
+extra argument. You can call pcre_exec() with the same code
+and extra arguments as many times as you like, in order to match
+different subject strings with the same pattern.
+
+
+This function is the main matching facility of the library, and it operates in
+a Perl-like manner. For specialist use there is also an alternative matching
+function, which is described
+below
+in the section about the pcre_dfa_exec() function.
+
+
+In most applications, the pattern will have been compiled (and optionally
+studied) in the same process that calls pcre_exec(). However, it is
+possible to save compiled patterns and study data, and then use them later
+in different processes, possibly even on different hosts. For a discussion
+about this, see the
+pcreprecompile
+documentation.
+
+
+Here is an example of a simple call to pcre_exec():
+
+ int rc;
+ int ovector[30];
+ rc = pcre_exec(
+ re, /* result of pcre_compile() */
+ NULL, /* we didn't study the pattern */
+ "some string", /* the subject string */
+ 11, /* the length of the subject string */
+ 0, /* start at offset 0 in the subject */
+ 0, /* default options */
+ ovector, /* vector of integers for substring information */
+ 30); /* number of elements (NOT size in bytes) */
+
+
+
+Extra data for pcre_exec()
+
+
+If the extra argument is not NULL, it must point to a pcre_extra
+data block. The pcre_study() function returns such a block (when it
+doesn't return NULL), but you can also create one for yourself, and pass
+additional information in it. The pcre_extra block contains the following
+fields (not necessarily in this order):
+
+ unsigned long int flags;
+ void *study_data;
+ void *executable_jit;
+ unsigned long int match_limit;
+ unsigned long int match_limit_recursion;
+ void *callout_data;
+ const unsigned char *tables;
+ unsigned char **mark;
+
+In the 16-bit version of this structure, the mark field has type
+"PCRE_UCHAR16 **".
+
+
+In the 32-bit version of this structure, the mark field has type
+"PCRE_UCHAR32 **".
+
+
+The flags field is used to specify which of the other fields are set. The
+flag bits are:
+
+ PCRE_EXTRA_CALLOUT_DATA
+ PCRE_EXTRA_EXECUTABLE_JIT
+ PCRE_EXTRA_MARK
+ PCRE_EXTRA_MATCH_LIMIT
+ PCRE_EXTRA_MATCH_LIMIT_RECURSION
+ PCRE_EXTRA_STUDY_DATA
+ PCRE_EXTRA_TABLES
+
+Other flag bits should be set to zero. The study_data field and sometimes
+the executable_jit field are set in the pcre_extra block that is
+returned by pcre_study(), together with the appropriate flag bits. You
+should not set these yourself, but you may add to the block by setting other
+fields and their corresponding flag bits.
+
+
+The match_limit field provides a means of preventing PCRE from using up a
+vast amount of resources when running patterns that are not going to match,
+but which have a very large number of possibilities in their search trees. The
+classic example is a pattern that uses nested unlimited repeats.
+
+
+Internally, pcre_exec() uses a function called match(), which it
+calls repeatedly (sometimes recursively). The limit set by match_limit is
+imposed on the number of times this function is called during a match, which
+has the effect of limiting the amount of backtracking that can take place. For
+patterns that are not anchored, the count restarts from zero for each position
+in the subject string.
+
+
+When pcre_exec() is called with a pattern that was successfully studied
+with a JIT option, the way that the matching is executed is entirely different.
+However, there is still the possibility of runaway matching that goes on for a
+very long time, and so the match_limit value is also used in this case
+(but in a different way) to limit how long the matching can continue.
+
+
+The default value for the limit can be set when PCRE is built; the default
+default is 10 million, which handles all but the most extreme cases. You can
+override the default by suppling pcre_exec() with a pcre_extra
+block in which match_limit is set, and PCRE_EXTRA_MATCH_LIMIT is set in
+the flags field. If the limit is exceeded, pcre_exec() returns
+PCRE_ERROR_MATCHLIMIT.
+
+
+A value for the match limit may also be supplied by an item at the start of a
+pattern of the form
+
+ (*LIMIT_MATCH=d)
+
+where d is a decimal number. However, such a setting is ignored unless d is
+less than the limit set by the caller of pcre_exec() or, if no such limit
+is set, less than the default.
+
+
+The match_limit_recursion field is similar to match_limit, but
+instead of limiting the total number of times that match() is called, it
+limits the depth of recursion. The recursion depth is a smaller number than the
+total number of calls, because not all calls to match() are recursive.
+This limit is of use only if it is set smaller than match_limit.
+
+
+Limiting the recursion depth limits the amount of machine stack that can be
+used, or, when PCRE has been compiled to use memory on the heap instead of the
+stack, the amount of heap memory that can be used. This limit is not relevant,
+and is ignored, when matching is done using JIT compiled code.
+
+
+The default value for match_limit_recursion can be set when PCRE is
+built; the default default is the same value as the default for
+match_limit. You can override the default by suppling pcre_exec()
+with a pcre_extra block in which match_limit_recursion is set, and
+PCRE_EXTRA_MATCH_LIMIT_RECURSION is set in the flags field. If the limit
+is exceeded, pcre_exec() returns PCRE_ERROR_RECURSIONLIMIT.
+
+
+A value for the recursion limit may also be supplied by an item at the start of
+a pattern of the form
+
+ (*LIMIT_RECURSION=d)
+
+where d is a decimal number. However, such a setting is ignored unless d is
+less than the limit set by the caller of pcre_exec() or, if no such limit
+is set, less than the default.
+
+
+The callout_data field is used in conjunction with the "callout" feature,
+and is described in the
+pcrecallout
+documentation.
+
+
+The tables field is used to pass a character tables pointer to
+pcre_exec(); this overrides the value that is stored with the compiled
+pattern. A non-NULL value is stored with the compiled pattern only if custom
+tables were supplied to pcre_compile() via its tableptr argument.
+If NULL is passed to pcre_exec() using this mechanism, it forces PCRE's
+internal tables to be used. This facility is helpful when re-using patterns
+that have been saved after compiling with an external set of tables, because
+the external tables might be at a different address when pcre_exec() is
+called. See the
+pcreprecompile
+documentation for a discussion of saving compiled patterns for later use.
+
+
+If PCRE_EXTRA_MARK is set in the flags field, the mark field must
+be set to point to a suitable variable. If the pattern contains any
+backtracking control verbs such as (*MARK:NAME), and the execution ends up with
+a name to pass back, a pointer to the name string (zero terminated) is placed
+in the variable pointed to by the mark field. The names are within the
+compiled pattern; if you wish to retain such a name you must copy it before
+freeing the memory of a compiled pattern. If there is no name to pass back, the
+variable pointed to by the mark field is set to NULL. For details of the
+backtracking control verbs, see the section entitled
+"Backtracking control"
+in the
+pcrepattern
+documentation.
+
+
+Option bits for pcre_exec()
+
+
+The unused bits of the options argument for pcre_exec() must be
+zero. The only bits that may be set are PCRE_ANCHORED, PCRE_NEWLINE_xxx,
+PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART,
+PCRE_NO_START_OPTIMIZE, PCRE_NO_UTF8_CHECK, PCRE_PARTIAL_HARD, and
+PCRE_PARTIAL_SOFT.
+
+
+If the pattern was successfully studied with one of the just-in-time (JIT)
+compile options, the only supported options for JIT execution are
+PCRE_NO_UTF8_CHECK, PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY,
+PCRE_NOTEMPTY_ATSTART, PCRE_PARTIAL_HARD, and PCRE_PARTIAL_SOFT. If an
+unsupported option is used, JIT execution is disabled and the normal
+interpretive code in pcre_exec() is run.
+
+ PCRE_ANCHORED
+
+The PCRE_ANCHORED option limits pcre_exec() to matching at the first
+matching position. If a pattern was compiled with PCRE_ANCHORED, or turned out
+to be anchored by virtue of its contents, it cannot be made unachored at
+matching time.
+
+ PCRE_BSR_ANYCRLF
+ PCRE_BSR_UNICODE
+
+These options (which are mutually exclusive) control what the \R escape
+sequence matches. The choice is either to match only CR, LF, or CRLF, or to
+match any Unicode newline sequence. These options override the choice that was
+made or defaulted when the pattern was compiled.
+
+ PCRE_NEWLINE_CR
+ PCRE_NEWLINE_LF
+ PCRE_NEWLINE_CRLF
+ PCRE_NEWLINE_ANYCRLF
+ PCRE_NEWLINE_ANY
+
+These options override the newline definition that was chosen or defaulted when
+the pattern was compiled. For details, see the description of
+pcre_compile() above. During matching, the newline choice affects the
+behaviour of the dot, circumflex, and dollar metacharacters. It may also alter
+the way the match position is advanced after a match failure for an unanchored
+pattern.
+
+
+When PCRE_NEWLINE_CRLF, PCRE_NEWLINE_ANYCRLF, or PCRE_NEWLINE_ANY is set, and a
+match attempt for an unanchored pattern fails when the current position is at a
+CRLF sequence, and the pattern contains no explicit matches for CR or LF
+characters, the match position is advanced by two characters instead of one, in
+other words, to after the CRLF.
+
+
+The above rule is a compromise that makes the most common cases work as
+expected. For example, if the pattern is .+A (and the PCRE_DOTALL option is not
+set), it does not match the string "\r\nA" because, after failing at the
+start, it skips both the CR and the LF before retrying. However, the pattern
+[\r\n]A does match that string, because it contains an explicit CR or LF
+reference, and so advances only by one character after the first failure.
+
+
+An explicit match for CR of LF is either a literal appearance of one of those
+characters, or one of the \r or \n escape sequences. Implicit matches such as
+[^X] do not count, nor does \s (which includes CR and LF in the characters
+that it matches).
+
+
+Notwithstanding the above, anomalous effects may still occur when CRLF is a
+valid newline sequence and explicit \r or \n escapes appear in the pattern.
+
+ PCRE_NOTBOL
+
+This option specifies that first character of the subject string is not the
+beginning of a line, so the circumflex metacharacter should not match before
+it. Setting this without PCRE_MULTILINE (at compile time) causes circumflex
+never to match. This option affects only the behaviour of the circumflex
+metacharacter. It does not affect \A.
+
+ PCRE_NOTEOL
+
+This option specifies that the end of the subject string is not the end of a
+line, so the dollar metacharacter should not match it nor (except in multiline
+mode) a newline immediately before it. Setting this without PCRE_MULTILINE (at
+compile time) causes dollar never to match. This option affects only the
+behaviour of the dollar metacharacter. It does not affect \Z or \z.
+
+ PCRE_NOTEMPTY
+
+An empty string is not considered to be a valid match if this option is set. If
+there are alternatives in the pattern, they are tried. If all the alternatives
+match the empty string, the entire match fails. For example, if the pattern
+
+ a?b?
+
+is applied to a string not beginning with "a" or "b", it matches an empty
+string at the start of the subject. With PCRE_NOTEMPTY set, this match is not
+valid, so PCRE searches further into the string for occurrences of "a" or "b".
+
+ PCRE_NOTEMPTY_ATSTART
+
+This is like PCRE_NOTEMPTY, except that an empty string match that is not at
+the start of the subject is permitted. If the pattern is anchored, such a match
+can occur only if the pattern contains \K.
+
+
+Perl has no direct equivalent of PCRE_NOTEMPTY or PCRE_NOTEMPTY_ATSTART, but it
+does make a special case of a pattern match of the empty string within its
+split() function, and when using the /g modifier. It is possible to
+emulate Perl's behaviour after matching a null string by first trying the match
+again at the same offset with PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED, and then
+if that fails, by advancing the starting offset (see below) and trying an
+ordinary match again. There is some code that demonstrates how to do this in
+the
+pcredemo
+sample program. In the most general case, you have to check to see if the
+newline convention recognizes CRLF as a newline, and if so, and the current
+character is CR followed by LF, advance the starting offset by two characters
+instead of one.
+
+ PCRE_NO_START_OPTIMIZE
+
+There are a number of optimizations that pcre_exec() uses at the start of
+a match, in order to speed up the process. For example, if it is known that an
+unanchored match must start with a specific character, it searches the subject
+for that character, and fails immediately if it cannot find it, without
+actually running the main matching function. This means that a special item
+such as (*COMMIT) at the start of a pattern is not considered until after a
+suitable starting point for the match has been found. Also, when callouts or
+(*MARK) items are in use, these "start-up" optimizations can cause them to be
+skipped if the pattern is never actually used. The start-up optimizations are
+in effect a pre-scan of the subject that takes place before the pattern is run.
+
+
+The PCRE_NO_START_OPTIMIZE option disables the start-up optimizations, possibly
+causing performance to suffer, but ensuring that in cases where the result is
+"no match", the callouts do occur, and that items such as (*COMMIT) and (*MARK)
+are considered at every possible starting position in the subject string. If
+PCRE_NO_START_OPTIMIZE is set at compile time, it cannot be unset at matching
+time. The use of PCRE_NO_START_OPTIMIZE at matching time (that is, passing it
+to pcre_exec()) disables JIT execution; in this situation, matching is
+always done using interpretively.
+
+
+Setting PCRE_NO_START_OPTIMIZE can change the outcome of a matching operation.
+Consider the pattern
+
+ (*COMMIT)ABC
+
+When this is compiled, PCRE records the fact that a match must start with the
+character "A". Suppose the subject string is "DEFABC". The start-up
+optimization scans along the subject, finds "A" and runs the first match
+attempt from there. The (*COMMIT) item means that the pattern must match the
+current starting position, which in this case, it does. However, if the same
+match is run with PCRE_NO_START_OPTIMIZE set, the initial scan along the
+subject string does not happen. The first match attempt is run starting from
+"D" and when this fails, (*COMMIT) prevents any further matches being tried, so
+the overall result is "no match". If the pattern is studied, more start-up
+optimizations may be used. For example, a minimum length for the subject may be
+recorded. Consider the pattern
+
+ (*MARK:A)(X|Y)
+
+The minimum length for a match is one character. If the subject is "ABC", there
+will be attempts to match "ABC", "BC", "C", and then finally an empty string.
+If the pattern is studied, the final attempt does not take place, because PCRE
+knows that the subject is too short, and so the (*MARK) is never encountered.
+In this case, studying the pattern does not affect the overall match result,
+which is still "no match", but it does affect the auxiliary information that is
+returned.
+
+ PCRE_NO_UTF8_CHECK
+
+When PCRE_UTF8 is set at compile time, the validity of the subject as a UTF-8
+string is automatically checked when pcre_exec() is subsequently called.
+The entire string is checked before any other processing takes place. The value
+of startoffset is also checked to ensure that it points to the start of a
+UTF-8 character. There is a discussion about the
+validity of UTF-8 strings
+in the
+pcreunicode
+page. If an invalid sequence of bytes is found, pcre_exec() returns the
+error PCRE_ERROR_BADUTF8 or, if PCRE_PARTIAL_HARD is set and the problem is a
+truncated character at the end of the subject, PCRE_ERROR_SHORTUTF8. In both
+cases, information about the precise nature of the error may also be returned
+(see the descriptions of these errors in the section entitled \fIError return
+values from\fP pcre_exec()
+below).
+If startoffset contains a value that does not point to the start of a
+UTF-8 character (or to the end of the subject), PCRE_ERROR_BADUTF8_OFFSET is
+returned.
+
+
+If you already know that your subject is valid, and you want to skip these
+checks for performance reasons, you can set the PCRE_NO_UTF8_CHECK option when
+calling pcre_exec(). You might want to do this for the second and
+subsequent calls to pcre_exec() if you are making repeated calls to find
+all the matches in a single subject string. However, you should be sure that
+the value of startoffset points to the start of a character (or the end
+of the subject). When PCRE_NO_UTF8_CHECK is set, the effect of passing an
+invalid string as a subject or an invalid value of startoffset is
+undefined. Your program may crash.
+
+ PCRE_PARTIAL_HARD
+ PCRE_PARTIAL_SOFT
+
+These options turn on the partial matching feature. For backwards
+compatibility, PCRE_PARTIAL is a synonym for PCRE_PARTIAL_SOFT. A partial match
+occurs if the end of the subject string is reached successfully, but there are
+not enough subject characters to complete the match. If this happens when
+PCRE_PARTIAL_SOFT (but not PCRE_PARTIAL_HARD) is set, matching continues by
+testing any remaining alternatives. Only if no complete match can be found is
+PCRE_ERROR_PARTIAL returned instead of PCRE_ERROR_NOMATCH. In other words,
+PCRE_PARTIAL_SOFT says that the caller is prepared to handle a partial match,
+but only if no complete match can be found.
+
+
+If PCRE_PARTIAL_HARD is set, it overrides PCRE_PARTIAL_SOFT. In this case, if a
+partial match is found, pcre_exec() immediately returns
+PCRE_ERROR_PARTIAL, without considering any other alternatives. In other words,
+when PCRE_PARTIAL_HARD is set, a partial match is considered to be more
+important that an alternative complete match.
+
+
+In both cases, the portion of the string that was inspected when the partial
+match was found is set as the first matching string. There is a more detailed
+discussion of partial and multi-segment matching, with examples, in the
+pcrepartial
+documentation.
+
+
+The string to be matched by pcre_exec()
+
+
+The subject string is passed to pcre_exec() as a pointer in
+subject, a length in length, and a starting offset in
+startoffset. The units for length and startoffset are bytes
+for the 8-bit library, 16-bit data items for the 16-bit library, and 32-bit
+data items for the 32-bit library.
+
+
+If startoffset is negative or greater than the length of the subject,
+pcre_exec() returns PCRE_ERROR_BADOFFSET. When the starting offset is
+zero, the search for a match starts at the beginning of the subject, and this
+is by far the most common case. In UTF-8 or UTF-16 mode, the offset must point
+to the start of a character, or the end of the subject (in UTF-32 mode, one
+data unit equals one character, so all offsets are valid). Unlike the pattern
+string, the subject may contain binary zeroes.
+
+
+A non-zero starting offset is useful when searching for another match in the
+same subject by calling pcre_exec() again after a previous success.
+Setting startoffset differs from just passing over a shortened string and
+setting PCRE_NOTBOL in the case of a pattern that begins with any kind of
+lookbehind. For example, consider the pattern
+
+ \Biss\B
+
+which finds occurrences of "iss" in the middle of words. (\B matches only if
+the current position in the subject is not a word boundary.) When applied to
+the string "Mississipi" the first call to pcre_exec() finds the first
+occurrence. If pcre_exec() is called again with just the remainder of the
+subject, namely "issipi", it does not match, because \B is always false at the
+start of the subject, which is deemed to be a word boundary. However, if
+pcre_exec() is passed the entire string again, but with startoffset
+set to 4, it finds the second occurrence of "iss" because it is able to look
+behind the starting point to discover that it is preceded by a letter.
+
+
+Finding all the matches in a subject is tricky when the pattern can match an
+empty string. It is possible to emulate Perl's /g behaviour by first trying the
+match again at the same offset, with the PCRE_NOTEMPTY_ATSTART and
+PCRE_ANCHORED options, and then if that fails, advancing the starting offset
+and trying an ordinary match again. There is some code that demonstrates how to
+do this in the
+pcredemo
+sample program. In the most general case, you have to check to see if the
+newline convention recognizes CRLF as a newline, and if so, and the current
+character is CR followed by LF, advance the starting offset by two characters
+instead of one.
+
+
+If a non-zero starting offset is passed when the pattern is anchored, one
+attempt to match at the given offset is made. This can only succeed if the
+pattern does not require the match to be at the start of the subject.
+
+
+How pcre_exec() returns captured substrings
+
+
+In general, a pattern matches a certain portion of the subject, and in
+addition, further substrings from the subject may be picked out by parts of the
+pattern. Following the usage in Jeffrey Friedl's book, this is called
+"capturing" in what follows, and the phrase "capturing subpattern" is used for
+a fragment of a pattern that picks out a substring. PCRE supports several other
+kinds of parenthesized subpattern that do not cause substrings to be captured.
+
+
+Captured substrings are returned to the caller via a vector of integers whose
+address is passed in ovector. The number of elements in the vector is
+passed in ovecsize, which must be a non-negative number. Note: this
+argument is NOT the size of ovector in bytes.
+
+
+The first two-thirds of the vector is used to pass back captured substrings,
+each substring using a pair of integers. The remaining third of the vector is
+used as workspace by pcre_exec() while matching capturing subpatterns,
+and is not available for passing back information. The number passed in
+ovecsize should always be a multiple of three. If it is not, it is
+rounded down.
+
+
+When a match is successful, information about captured substrings is returned
+in pairs of integers, starting at the beginning of ovector, and
+continuing up to two-thirds of its length at the most. The first element of
+each pair is set to the offset of the first character in a substring, and the
+second is set to the offset of the first character after the end of a
+substring. These values are always data unit offsets, even in UTF mode. They
+are byte offsets in the 8-bit library, 16-bit data item offsets in the 16-bit
+library, and 32-bit data item offsets in the 32-bit library. Note: they
+are not character counts.
+
+
+The first pair of integers, ovector[0] and ovector[1], identify the
+portion of the subject string matched by the entire pattern. The next pair is
+used for the first capturing subpattern, and so on. The value returned by
+pcre_exec() is one more than the highest numbered pair that has been set.
+For example, if two substrings have been captured, the returned value is 3. If
+there are no capturing subpatterns, the return value from a successful match is
+1, indicating that just the first pair of offsets has been set.
+
+
+If a capturing subpattern is matched repeatedly, it is the last portion of the
+string that it matched that is returned.
+
+
+If the vector is too small to hold all the captured substring offsets, it is
+used as far as possible (up to two-thirds of its length), and the function
+returns a value of zero. If neither the actual string matched nor any captured
+substrings are of interest, pcre_exec() may be called with ovector
+passed as NULL and ovecsize as zero. However, if the pattern contains
+back references and the ovector is not big enough to remember the related
+substrings, PCRE has to get additional memory for use during matching. Thus it
+is usually advisable to supply an ovector of reasonable size.
+
+
+There are some cases where zero is returned (indicating vector overflow) when
+in fact the vector is exactly the right size for the final match. For example,
+consider the pattern
+
+ (a)(?:(b)c|bd)
+
+If a vector of 6 elements (allowing for only 1 captured substring) is given
+with subject string "abd", pcre_exec() will try to set the second
+captured string, thereby recording a vector overflow, before failing to match
+"c" and backing up to try the second alternative. The zero return, however,
+does correctly indicate that the maximum number of slots (namely 2) have been
+filled. In similar cases where there is temporary overflow, but the final
+number of used slots is actually less than the maximum, a non-zero value is
+returned.
+
+
+The pcre_fullinfo() function can be used to find out how many capturing
+subpatterns there are in a compiled pattern. The smallest size for
+ovector that will allow for n captured substrings, in addition to
+the offsets of the substring matched by the whole pattern, is (n+1)*3.
+
+
+It is possible for capturing subpattern number n+1 to match some part of
+the subject when subpattern n has not been used at all. For example, if
+the string "abc" is matched against the pattern (a|(z))(bc) the return from the
+function is 4, and subpatterns 1 and 3 are matched, but 2 is not. When this
+happens, both values in the offset pairs corresponding to unused subpatterns
+are set to -1.
+
+
+Offset values that correspond to unused subpatterns at the end of the
+expression are also set to -1. For example, if the string "abc" is matched
+against the pattern (abc)(x(yz)?)? subpatterns 2 and 3 are not matched. The
+return from the function is 2, because the highest used capturing subpattern
+number is 1, and the offsets for for the second and third capturing subpatterns
+(assuming the vector is large enough, of course) are set to -1.
+
+
+Note: Elements in the first two-thirds of ovector that do not
+correspond to capturing parentheses in the pattern are never changed. That is,
+if a pattern contains n capturing parentheses, no more than
+ovector[0] to ovector[2n+1] are set by pcre_exec(). The other
+elements (in the first two-thirds) retain whatever values they previously had.
+
+
+Some convenience functions are provided for extracting the captured substrings
+as separate strings. These are described below.
+
+
+Error return values from pcre_exec()
+
+
+If pcre_exec() fails, it returns a negative number. The following are
+defined in the header file:
+
+ PCRE_ERROR_NOMATCH (-1)
+
+The subject string did not match the pattern.
+
+ PCRE_ERROR_NULL (-2)
+
+Either code or subject was passed as NULL, or ovector was
+NULL and ovecsize was not zero.
+
+ PCRE_ERROR_BADOPTION (-3)
+
+An unrecognized bit was set in the options argument.
+
+ PCRE_ERROR_BADMAGIC (-4)
+
+PCRE stores a 4-byte "magic number" at the start of the compiled code, to catch
+the case when it is passed a junk pointer and to detect when a pattern that was
+compiled in an environment of one endianness is run in an environment with the
+other endianness. This is the error that PCRE gives when the magic number is
+not present.
+
+ PCRE_ERROR_UNKNOWN_OPCODE (-5)
+
+While running the pattern match, an unknown item was encountered in the
+compiled pattern. This error could be caused by a bug in PCRE or by overwriting
+of the compiled pattern.
+
+ PCRE_ERROR_NOMEMORY (-6)
+
+If a pattern contains back references, but the ovector that is passed to
+pcre_exec() is not big enough to remember the referenced substrings, PCRE
+gets a block of memory at the start of matching to use for this purpose. If the
+call via pcre_malloc() fails, this error is given. The memory is
+automatically freed at the end of matching.
+
+
+This error is also given if pcre_stack_malloc() fails in
+pcre_exec(). This can happen only when PCRE has been compiled with
+--disable-stack-for-recursion.
+
+ PCRE_ERROR_NOSUBSTRING (-7)
+
+This error is used by the pcre_copy_substring(),
+pcre_get_substring(), and pcre_get_substring_list() functions (see
+below). It is never returned by pcre_exec().
+
+ PCRE_ERROR_MATCHLIMIT (-8)
+
+The backtracking limit, as specified by the match_limit field in a
+pcre_extra structure (or defaulted) was reached. See the description
+above.
+
+ PCRE_ERROR_CALLOUT (-9)
+
+This error is never generated by pcre_exec() itself. It is provided for
+use by callout functions that want to yield a distinctive error code. See the
+pcrecallout
+documentation for details.
+
+ PCRE_ERROR_BADUTF8 (-10)
+
+A string that contains an invalid UTF-8 byte sequence was passed as a subject,
+and the PCRE_NO_UTF8_CHECK option was not set. If the size of the output vector
+(ovecsize) is at least 2, the byte offset to the start of the the invalid
+UTF-8 character is placed in the first element, and a reason code is placed in
+the second element. The reason codes are listed in the
+following section.
+For backward compatibility, if PCRE_PARTIAL_HARD is set and the problem is a
+truncated UTF-8 character at the end of the subject (reason codes 1 to 5),
+PCRE_ERROR_SHORTUTF8 is returned instead of PCRE_ERROR_BADUTF8.
+
+ PCRE_ERROR_BADUTF8_OFFSET (-11)
+
+The UTF-8 byte sequence that was passed as a subject was checked and found to
+be valid (the PCRE_NO_UTF8_CHECK option was not set), but the value of
+startoffset did not point to the beginning of a UTF-8 character or the
+end of the subject.
+
+ PCRE_ERROR_PARTIAL (-12)
+
+The subject string did not match, but it did match partially. See the
+pcrepartial
+documentation for details of partial matching.
+
+ PCRE_ERROR_BADPARTIAL (-13)
+
+This code is no longer in use. It was formerly returned when the PCRE_PARTIAL
+option was used with a compiled pattern containing items that were not
+supported for partial matching. From release 8.00 onwards, there are no
+restrictions on partial matching.
+
+ PCRE_ERROR_INTERNAL (-14)
+
+An unexpected internal error has occurred. This error could be caused by a bug
+in PCRE or by overwriting of the compiled pattern.
+
+ PCRE_ERROR_BADCOUNT (-15)
+
+This error is given if the value of the ovecsize argument is negative.
+
+ PCRE_ERROR_RECURSIONLIMIT (-21)
+
+The internal recursion limit, as specified by the match_limit_recursion
+field in a pcre_extra structure (or defaulted) was reached. See the
+description above.
+
+ PCRE_ERROR_BADNEWLINE (-23)
+
+An invalid combination of PCRE_NEWLINE_xxx options was given.
+
+ PCRE_ERROR_BADOFFSET (-24)
+
+The value of startoffset was negative or greater than the length of the
+subject, that is, the value in length.
+
+ PCRE_ERROR_SHORTUTF8 (-25)
+
+This error is returned instead of PCRE_ERROR_BADUTF8 when the subject string
+ends with a truncated UTF-8 character and the PCRE_PARTIAL_HARD option is set.
+Information about the failure is returned as for PCRE_ERROR_BADUTF8. It is in
+fact sufficient to detect this case, but this special error code for
+PCRE_PARTIAL_HARD precedes the implementation of returned information; it is
+retained for backwards compatibility.
+
+ PCRE_ERROR_RECURSELOOP (-26)
+
+This error is returned when pcre_exec() detects a recursion loop within
+the pattern. Specifically, it means that either the whole pattern or a
+subpattern has been called recursively for the second time at the same position
+in the subject string. Some simple patterns that might do this are detected and
+faulted at compile time, but more complicated cases, in particular mutual
+recursions between two different subpatterns, cannot be detected until run
+time.
+
+ PCRE_ERROR_JIT_STACKLIMIT (-27)
+
+This error is returned when a pattern that was successfully studied using a
+JIT compile option is being matched, but the memory available for the
+just-in-time processing stack is not large enough. See the
+pcrejit
+documentation for more details.
+
+ PCRE_ERROR_BADMODE (-28)
+
+This error is given if a pattern that was compiled by the 8-bit library is
+passed to a 16-bit or 32-bit library function, or vice versa.
+
+ PCRE_ERROR_BADENDIANNESS (-29)
+
+This error is given if a pattern that was compiled and saved is reloaded on a
+host with different endianness. The utility function
+pcre_pattern_to_host_byte_order() can be used to convert such a pattern
+so that it runs on the new host.
+
+ PCRE_ERROR_JIT_BADOPTION
+
+This error is returned when a pattern that was successfully studied using a JIT
+compile option is being matched, but the matching mode (partial or complete
+match) does not correspond to any JIT compilation mode. When the JIT fast path
+function is used, this error may be also given for invalid options. See the
+pcrejit
+documentation for more details.
+
+ PCRE_ERROR_BADLENGTH (-32)
+
+This error is given if pcre_exec() is called with a negative value for
+the length argument.
+
+
+Error numbers -16 to -20, -22, and 30 are not used by pcre_exec().
+
+
+Reason codes for invalid UTF-8 strings
+
+
+This section applies only to the 8-bit library. The corresponding information
+for the 16-bit and 32-bit libraries is given in the
+pcre16
+and
+pcre32
+pages.
+
+
+When pcre_exec() returns either PCRE_ERROR_BADUTF8 or
+PCRE_ERROR_SHORTUTF8, and the size of the output vector (ovecsize) is at
+least 2, the offset of the start of the invalid UTF-8 character is placed in
+the first output vector element (ovector[0]) and a reason code is placed
+in the second element (ovector[1]). The reason codes are given names in
+the pcre.h header file:
+
+ PCRE_UTF8_ERR1
+ PCRE_UTF8_ERR2
+ PCRE_UTF8_ERR3
+ PCRE_UTF8_ERR4
+ PCRE_UTF8_ERR5
+
+The string ends with a truncated UTF-8 character; the code specifies how many
+bytes are missing (1 to 5). Although RFC 3629 restricts UTF-8 characters to be
+no longer than 4 bytes, the encoding scheme (originally defined by RFC 2279)
+allows for up to 6 bytes, and this is checked first; hence the possibility of
+4 or 5 missing bytes.
+
+ PCRE_UTF8_ERR6
+ PCRE_UTF8_ERR7
+ PCRE_UTF8_ERR8
+ PCRE_UTF8_ERR9
+ PCRE_UTF8_ERR10
+
+The two most significant bits of the 2nd, 3rd, 4th, 5th, or 6th byte of the
+character do not have the binary value 0b10 (that is, either the most
+significant bit is 0, or the next bit is 1).
+
+ PCRE_UTF8_ERR11
+ PCRE_UTF8_ERR12
+
+A character that is valid by the RFC 2279 rules is either 5 or 6 bytes long;
+these code points are excluded by RFC 3629.
+
+ PCRE_UTF8_ERR13
+
+A 4-byte character has a value greater than 0x10fff; these code points are
+excluded by RFC 3629.
+
+ PCRE_UTF8_ERR14
+
+A 3-byte character has a value in the range 0xd800 to 0xdfff; this range of
+code points are reserved by RFC 3629 for use with UTF-16, and so are excluded
+from UTF-8.
+
+ PCRE_UTF8_ERR15
+ PCRE_UTF8_ERR16
+ PCRE_UTF8_ERR17
+ PCRE_UTF8_ERR18
+ PCRE_UTF8_ERR19
+
+A 2-, 3-, 4-, 5-, or 6-byte character is "overlong", that is, it codes for a
+value that can be represented by fewer bytes, which is invalid. For example,
+the two bytes 0xc0, 0xae give the value 0x2e, whose correct coding uses just
+one byte.
+
+ PCRE_UTF8_ERR20
+
+The two most significant bits of the first byte of a character have the binary
+value 0b10 (that is, the most significant bit is 1 and the second is 0). Such a
+byte can only validly occur as the second or subsequent byte of a multi-byte
+character.
+
+ PCRE_UTF8_ERR21
+
+The first byte of a character has the value 0xfe or 0xff. These values can
+never occur in a valid UTF-8 string.
+
+ PCRE_UTF8_ERR22
+
+This error code was formerly used when the presence of a so-called
+"non-character" caused an error. Unicode corrigendum #9 makes it clear that
+such characters should not cause a string to be rejected, and so this code is
+no longer in use and is never returned.
+
+
EXTRACTING CAPTURED SUBSTRINGS BY NUMBER
+
+int pcre_copy_substring(const char *subject, int *ovector,
+int stringcount, int stringnumber, char *buffer,
+int buffersize);
+
+
+int pcre_get_substring(const char *subject, int *ovector,
+int stringcount, int stringnumber,
+const char **stringptr);
+
+
+int pcre_get_substring_list(const char *subject,
+int *ovector, int stringcount, const char ***listptr);
+
+
+Captured substrings can be accessed directly by using the offsets returned by
+pcre_exec() in ovector. For convenience, the functions
+pcre_copy_substring(), pcre_get_substring(), and
+pcre_get_substring_list() are provided for extracting captured substrings
+as new, separate, zero-terminated strings. These functions identify substrings
+by number. The next section describes functions for extracting named
+substrings.
+
+
+A substring that contains a binary zero is correctly extracted and has a
+further zero added on the end, but the result is not, of course, a C string.
+However, you can process such a string by referring to the length that is
+returned by pcre_copy_substring() and pcre_get_substring().
+Unfortunately, the interface to pcre_get_substring_list() is not adequate
+for handling strings containing binary zeros, because the end of the final
+string is not independently indicated.
+
+
+The first three arguments are the same for all three of these functions:
+subject is the subject string that has just been successfully matched,
+ovector is a pointer to the vector of integer offsets that was passed to
+pcre_exec(), and stringcount is the number of substrings that were
+captured by the match, including the substring that matched the entire regular
+expression. This is the value returned by pcre_exec() if it is greater
+than zero. If pcre_exec() returned zero, indicating that it ran out of
+space in ovector, the value passed as stringcount should be the
+number of elements in the vector divided by three.
+
+
+The functions pcre_copy_substring() and pcre_get_substring()
+extract a single substring, whose number is given as stringnumber. A
+value of zero extracts the substring that matched the entire pattern, whereas
+higher values extract the captured substrings. For pcre_copy_substring(),
+the string is placed in buffer, whose length is given by
+buffersize, while for pcre_get_substring() a new block of memory is
+obtained via pcre_malloc, and its address is returned via
+stringptr. The yield of the function is the length of the string, not
+including the terminating zero, or one of these error codes:
+
+ PCRE_ERROR_NOMEMORY (-6)
+
+The buffer was too small for pcre_copy_substring(), or the attempt to get
+memory failed for pcre_get_substring().
+
+ PCRE_ERROR_NOSUBSTRING (-7)
+
+There is no substring whose number is stringnumber.
+
+
+The pcre_get_substring_list() function extracts all available substrings
+and builds a list of pointers to them. All this is done in a single block of
+memory that is obtained via pcre_malloc. The address of the memory block
+is returned via listptr, which is also the start of the list of string
+pointers. The end of the list is marked by a NULL pointer. The yield of the
+function is zero if all went well, or the error code
+
+ PCRE_ERROR_NOMEMORY (-6)
+
+if the attempt to get the memory block failed.
+
+
+When any of these functions encounter a substring that is unset, which can
+happen when capturing subpattern number n+1 matches some part of the
+subject, but subpattern n has not been used at all, they return an empty
+string. This can be distinguished from a genuine zero-length substring by
+inspecting the appropriate offset in ovector, which is negative for unset
+substrings.
+
+
+The two convenience functions pcre_free_substring() and
+pcre_free_substring_list() can be used to free the memory returned by
+a previous call of pcre_get_substring() or
+pcre_get_substring_list(), respectively. They do nothing more than call
+the function pointed to by pcre_free, which of course could be called
+directly from a C program. However, PCRE is used in some situations where it is
+linked via a special interface to another programming language that cannot use
+pcre_free directly; it is for these cases that the functions are
+provided.
+
+
EXTRACTING CAPTURED SUBSTRINGS BY NAME
+
+int pcre_get_stringnumber(const pcre *code,
+const char *name);
+
+
+int pcre_copy_named_substring(const pcre *code,
+const char *subject, int *ovector,
+int stringcount, const char *stringname,
+char *buffer, int buffersize);
+
+
+int pcre_get_named_substring(const pcre *code,
+const char *subject, int *ovector,
+int stringcount, const char *stringname,
+const char **stringptr);
+
+
+To extract a substring by name, you first have to find associated number.
+For example, for this pattern
+
+ (a+)b(?<xxx>\d+)...
+
+the number of the subpattern called "xxx" is 2. If the name is known to be
+unique (PCRE_DUPNAMES was not set), you can find the number from the name by
+calling pcre_get_stringnumber(). The first argument is the compiled
+pattern, and the second is the name. The yield of the function is the
+subpattern number, or PCRE_ERROR_NOSUBSTRING (-7) if there is no subpattern of
+that name.
+
+
+Given the number, you can extract the substring directly, or use one of the
+functions described in the previous section. For convenience, there are also
+two functions that do the whole job.
+
+
+Most of the arguments of pcre_copy_named_substring() and
+pcre_get_named_substring() are the same as those for the similarly named
+functions that extract by number. As these are described in the previous
+section, they are not re-described here. There are just two differences:
+
+
+First, instead of a substring number, a substring name is given. Second, there
+is an extra argument, given at the start, which is a pointer to the compiled
+pattern. This is needed in order to gain access to the name-to-number
+translation table.
+
+
+These functions call pcre_get_stringnumber(), and if it succeeds, they
+then call pcre_copy_substring() or pcre_get_substring(), as
+appropriate. NOTE: If PCRE_DUPNAMES is set and there are duplicate names,
+the behaviour may not be what you want (see the next section).
+
+
+Warning: If the pattern uses the (?| feature to set up multiple
+subpatterns with the same number, as described in the
+section on duplicate subpattern numbers
+in the
+pcrepattern
+page, you cannot use names to distinguish the different subpatterns, because
+names are not included in the compiled code. The matching process uses only
+numbers. For this reason, the use of different names for subpatterns of the
+same number causes an error at compile time.
+
+
DUPLICATE SUBPATTERN NAMES
+
+int pcre_get_stringtable_entries(const pcre *code,
+const char *name, char **first, char **last);
+
+
+When a pattern is compiled with the PCRE_DUPNAMES option, names for subpatterns
+are not required to be unique. (Duplicate names are always allowed for
+subpatterns with the same number, created by using the (?| feature. Indeed, if
+such subpatterns are named, they are required to use the same names.)
+
+
+Normally, patterns with duplicate names are such that in any one match, only
+one of the named subpatterns participates. An example is shown in the
+pcrepattern
+documentation.
+
+
+When duplicates are present, pcre_copy_named_substring() and
+pcre_get_named_substring() return the first substring corresponding to
+the given name that is set. If none are set, PCRE_ERROR_NOSUBSTRING (-7) is
+returned; no data is returned. The pcre_get_stringnumber() function
+returns one of the numbers that are associated with the name, but it is not
+defined which it is.
+
+
+If you want to get full details of all captured substrings for a given name,
+you must use the pcre_get_stringtable_entries() function. The first
+argument is the compiled pattern, and the second is the name. The third and
+fourth are pointers to variables which are updated by the function. After it
+has run, they point to the first and last entries in the name-to-number table
+for the given name. The function itself returns the length of each entry, or
+PCRE_ERROR_NOSUBSTRING (-7) if there are none. The format of the table is
+described above in the section entitled Information about a pattern
+above.
+Given all the relevant entries for the name, you can extract each of their
+numbers, and hence the captured data, if any.
+
+
FINDING ALL POSSIBLE MATCHES
+
+The traditional matching function uses a similar algorithm to Perl, which stops
+when it finds the first match, starting at a given point in the subject. If you
+want to find all possible matches, or the longest possible match, consider
+using the alternative matching function (see below) instead. If you cannot use
+the alternative function, but still need to find all possible matches, you
+can kludge it up by making use of the callout facility, which is described in
+the
+pcrecallout
+documentation.
+
+
+What you have to do is to insert a callout right at the end of the pattern.
+When your callout function is called, extract and save the current matched
+substring. Then return 1, which forces pcre_exec() to backtrack and try
+other alternatives. Ultimately, when it runs out of matches, pcre_exec()
+will yield PCRE_ERROR_NOMATCH.
+
+
OBTAINING AN ESTIMATE OF STACK USAGE
+
+Matching certain patterns using pcre_exec() can use a lot of process
+stack, which in certain environments can be rather limited in size. Some users
+find it helpful to have an estimate of the amount of stack that is used by
+pcre_exec(), to help them set recursion limits, as described in the
+pcrestack
+documentation. The estimate that is output by pcretest when called with
+the -m and -C options is obtained by calling pcre_exec with
+the values NULL, NULL, NULL, -999, and -999 for its first five arguments.
+
+
+Normally, if its first argument is NULL, pcre_exec() immediately returns
+the negative error code PCRE_ERROR_NULL, but with this special combination of
+arguments, it returns instead a negative number whose absolute value is the
+approximate stack frame size in bytes. (A negative number is used so that it is
+clear that no match has happened.) The value is approximate because in some
+cases, recursive calls to pcre_exec() occur when there are one or two
+additional variables on the stack.
+
+
+If PCRE has been compiled to use the heap instead of the stack for recursion,
+the value returned is the size of each block that is obtained from the heap.
+
+
MATCHING A PATTERN: THE ALTERNATIVE FUNCTION
+
+int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
+const char *subject, int length, int startoffset,
+int options, int *ovector, int ovecsize,
+int *workspace, int wscount);
+
+
+The function pcre_dfa_exec() is called to match a subject string against
+a compiled pattern, using a matching algorithm that scans the subject string
+just once, and does not backtrack. This has different characteristics to the
+normal algorithm, and is not compatible with Perl. Some of the features of PCRE
+patterns are not supported. Nevertheless, there are times when this kind of
+matching can be useful. For a discussion of the two matching algorithms, and a
+list of features that pcre_dfa_exec() does not support, see the
+pcrematching
+documentation.
+
+
+The arguments for the pcre_dfa_exec() function are the same as for
+pcre_exec(), plus two extras. The ovector argument is used in a
+different way, and this is described below. The other common arguments are used
+in the same way as for pcre_exec(), so their description is not repeated
+here.
+
+
+The two additional arguments provide workspace for the function. The workspace
+vector should contain at least 20 elements. It is used for keeping track of
+multiple paths through the pattern tree. More workspace will be needed for
+patterns and subjects where there are a lot of potential matches.
+
+
+Here is an example of a simple call to pcre_dfa_exec():
+
+ int rc;
+ int ovector[10];
+ int wspace[20];
+ rc = pcre_dfa_exec(
+ re, /* result of pcre_compile() */
+ NULL, /* we didn't study the pattern */
+ "some string", /* the subject string */
+ 11, /* the length of the subject string */
+ 0, /* start at offset 0 in the subject */
+ 0, /* default options */
+ ovector, /* vector of integers for substring information */
+ 10, /* number of elements (NOT size in bytes) */
+ wspace, /* working space vector */
+ 20); /* number of elements (NOT size in bytes) */
+
+
+
+Option bits for pcre_dfa_exec()
+
+
+The unused bits of the options argument for pcre_dfa_exec() must be
+zero. The only bits that may be set are PCRE_ANCHORED, PCRE_NEWLINE_xxx,
+PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART,
+PCRE_NO_UTF8_CHECK, PCRE_BSR_ANYCRLF, PCRE_BSR_UNICODE, PCRE_NO_START_OPTIMIZE,
+PCRE_PARTIAL_HARD, PCRE_PARTIAL_SOFT, PCRE_DFA_SHORTEST, and PCRE_DFA_RESTART.
+All but the last four of these are exactly the same as for pcre_exec(),
+so their description is not repeated here.
+
+ PCRE_PARTIAL_HARD
+ PCRE_PARTIAL_SOFT
+
+These have the same general effect as they do for pcre_exec(), but the
+details are slightly different. When PCRE_PARTIAL_HARD is set for
+pcre_dfa_exec(), it returns PCRE_ERROR_PARTIAL if the end of the subject
+is reached and there is still at least one matching possibility that requires
+additional characters. This happens even if some complete matches have also
+been found. When PCRE_PARTIAL_SOFT is set, the return code PCRE_ERROR_NOMATCH
+is converted into PCRE_ERROR_PARTIAL if the end of the subject is reached,
+there have been no complete matches, but there is still at least one matching
+possibility. The portion of the string that was inspected when the longest
+partial match was found is set as the first matching string in both cases.
+There is a more detailed discussion of partial and multi-segment matching, with
+examples, in the
+pcrepartial
+documentation.
+
+ PCRE_DFA_SHORTEST
+
+Setting the PCRE_DFA_SHORTEST option causes the matching algorithm to stop as
+soon as it has found one match. Because of the way the alternative algorithm
+works, this is necessarily the shortest possible match at the first possible
+matching point in the subject string.
+
+ PCRE_DFA_RESTART
+
+When pcre_dfa_exec() returns a partial match, it is possible to call it
+again, with additional subject characters, and have it continue with the same
+match. The PCRE_DFA_RESTART option requests this action; when it is set, the
+workspace and wscount options must reference the same vector as
+before because data about the match so far is left in them after a partial
+match. There is more discussion of this facility in the
+pcrepartial
+documentation.
+
+
+Successful returns from pcre_dfa_exec()
+
+
+When pcre_dfa_exec() succeeds, it may have matched more than one
+substring in the subject. Note, however, that all the matches from one run of
+the function start at the same point in the subject. The shorter matches are
+all initial substrings of the longer matches. For example, if the pattern
+
+ <.*>
+
+is matched against the string
+
+ This is <something> <something else> <something further> no more
+
+the three matched strings are
+
+ <something>
+ <something> <something else>
+ <something> <something else> <something further>
+
+On success, the yield of the function is a number greater than zero, which is
+the number of matched substrings. The substrings themselves are returned in
+ovector. Each string uses two elements; the first is the offset to the
+start, and the second is the offset to the end. In fact, all the strings have
+the same start offset. (Space could have been saved by giving this only once,
+but it was decided to retain some compatibility with the way pcre_exec()
+returns data, even though the meaning of the strings is different.)
+
+
+The strings are returned in reverse order of length; that is, the longest
+matching string is given first. If there were too many matches to fit into
+ovector, the yield of the function is zero, and the vector is filled with
+the longest matches. Unlike pcre_exec(), pcre_dfa_exec() can use
+the entire ovector for returning matched strings.
+
+
+Error returns from pcre_dfa_exec()
+
+
+The pcre_dfa_exec() function returns a negative number when it fails.
+Many of the errors are the same as for pcre_exec(), and these are
+described
+above.
+There are in addition the following errors that are specific to
+pcre_dfa_exec():
+
+ PCRE_ERROR_DFA_UITEM (-16)
+
+This return is given if pcre_dfa_exec() encounters an item in the pattern
+that it does not support, for instance, the use of \C or a back reference.
+
+ PCRE_ERROR_DFA_UCOND (-17)
+
+This return is given if pcre_dfa_exec() encounters a condition item that
+uses a back reference for the condition, or a test for recursion in a specific
+group. These are not supported.
+
+ PCRE_ERROR_DFA_UMLIMIT (-18)
+
+This return is given if pcre_dfa_exec() is called with an extra
+block that contains a setting of the match_limit or
+match_limit_recursion fields. This is not supported (these fields are
+meaningless for DFA matching).
+
+ PCRE_ERROR_DFA_WSSIZE (-19)
+
+This return is given if pcre_dfa_exec() runs out of space in the
+workspace vector.
+
+ PCRE_ERROR_DFA_RECURSE (-20)
+
+When a recursive subpattern is processed, the matching function calls itself
+recursively, using private vectors for ovector and workspace. This
+error is given if the output vector is not large enough. This should be
+extremely rare, as a vector of size 1000 is used.
+
+ PCRE_ERROR_DFA_BADRESTART (-30)
+
+When pcre_dfa_exec() is called with the PCRE_DFA_RESTART option,
+some plausibility checks are made on the contents of the workspace, which
+should contain data about the previous partial match. If any of these checks
+fail, this error is given.
+
+
SEE ALSO
+
+pcre16(3), pcre32(3), pcrebuild(3), pcrecallout(3),
+pcrecpp(3)(3), pcrematching(3), pcrepartial(3),
+pcreposix(3), pcreprecompile(3), pcresample(3),
+pcrestack(3).
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 12 May 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcrebuild.html b/pcre/doc/html/pcrebuild.html
new file mode 100644
index 00000000000..03c8cbe0b21
--- /dev/null
+++ b/pcre/doc/html/pcrebuild.html
@@ -0,0 +1,534 @@
+
+
+pcrebuild specification
+
+
+pcrebuild man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
BUILDING PCRE
+
+PCRE is distributed with a configure script that can be used to build the
+library in Unix-like environments using the applications known as Autotools.
+Also in the distribution are files to support building using CMake
+instead of configure. The text file
+README
+contains general information about building with Autotools (some of which is
+repeated below), and also has some comments about building on various operating
+systems. There is a lot more information about building PCRE without using
+Autotools (including information about using CMake and building "by
+hand") in the text file called
+NON-AUTOTOOLS-BUILD.
+You should consult this file as well as the
+README
+file if you are building in a non-Unix-like environment.
+
+
PCRE BUILD-TIME OPTIONS
+
+The rest of this document describes the optional features of PCRE that can be
+selected when the library is compiled. It assumes use of the configure
+script, where the optional features are selected or deselected by providing
+options to configure before running the make command. However, the
+same options can be selected in both Unix-like and non-Unix-like environments
+using the GUI facility of cmake-gui if you are using CMake instead
+of configure to build PCRE.
+
+
+If you are not using Autotools or CMake, option selection can be done by
+editing the config.h file, or by passing parameter settings to the
+compiler, as described in
+NON-AUTOTOOLS-BUILD.
+
+
+The complete list of options for configure (which includes the standard
+ones such as the selection of the installation directory) can be obtained by
+running
+
+ ./configure --help
+
+The following sections include descriptions of options whose names begin with
+--enable or --disable. These settings specify changes to the defaults for the
+configure command. Because of the way that configure works,
+--enable and --disable always come in pairs, so the complementary option always
+exists as well, but as it specifies the default, it is not described.
+
+
BUILDING 8-BIT, 16-BIT AND 32-BIT LIBRARIES
+
+By default, a library called libpcre is built, containing functions that
+take string arguments contained in vectors of bytes, either as single-byte
+characters, or interpreted as UTF-8 strings. You can also build a separate
+library, called libpcre16, in which strings are contained in vectors of
+16-bit data units and interpreted either as single-unit characters or UTF-16
+strings, by adding
+
+ --enable-pcre16
+
+to the configure command. You can also build yet another separate
+library, called libpcre32, in which strings are contained in vectors of
+32-bit data units and interpreted either as single-unit characters or UTF-32
+strings, by adding
+
+ --enable-pcre32
+
+to the configure command. If you do not want the 8-bit library, add
+
+ --disable-pcre8
+
+as well. At least one of the three libraries must be built. Note that the C++
+and POSIX wrappers are for the 8-bit library only, and that pcregrep is
+an 8-bit program. None of these are built if you select only the 16-bit or
+32-bit libraries.
+
+
BUILDING SHARED AND STATIC LIBRARIES
+
+The Autotools PCRE building process uses libtool to build both shared and
+static libraries by default. You can suppress one of these by adding one of
+
+ --disable-shared
+ --disable-static
+
+to the configure command, as required.
+
+
C++ SUPPORT
+
+By default, if the 8-bit library is being built, the configure script
+will search for a C++ compiler and C++ header files. If it finds them, it
+automatically builds the C++ wrapper library (which supports only 8-bit
+strings). You can disable this by adding
+
+ --disable-cpp
+
+to the configure command.
+
+
UTF-8, UTF-16 AND UTF-32 SUPPORT
+
+To build PCRE with support for UTF Unicode character strings, add
+
+ --enable-utf
+
+to the configure command. This setting applies to all three libraries,
+adding support for UTF-8 to the 8-bit library, support for UTF-16 to the 16-bit
+library, and support for UTF-32 to the to the 32-bit library. There are no
+separate options for enabling UTF-8, UTF-16 and UTF-32 independently because
+that would allow ridiculous settings such as requesting UTF-16 support while
+building only the 8-bit library. It is not possible to build one library with
+UTF support and another without in the same configuration. (For backwards
+compatibility, --enable-utf8 is a synonym of --enable-utf.)
+
+
+Of itself, this setting does not make PCRE treat strings as UTF-8, UTF-16 or
+UTF-32. As well as compiling PCRE with this option, you also have have to set
+the PCRE_UTF8, PCRE_UTF16 or PCRE_UTF32 option (as appropriate) when you call
+one of the pattern compiling functions.
+
+
+If you set --enable-utf when compiling in an EBCDIC environment, PCRE expects
+its input to be either ASCII or UTF-8 (depending on the run-time option). It is
+not possible to support both EBCDIC and UTF-8 codes in the same version of the
+library. Consequently, --enable-utf and --enable-ebcdic are mutually
+exclusive.
+
+
UNICODE CHARACTER PROPERTY SUPPORT
+
+UTF support allows the libraries to process character codepoints up to 0x10ffff
+in the strings that they handle. On its own, however, it does not provide any
+facilities for accessing the properties of such characters. If you want to be
+able to use the pattern escapes \P, \p, and \X, which refer to Unicode
+character properties, you must add
+
+ --enable-unicode-properties
+
+to the configure command. This implies UTF support, even if you have
+not explicitly requested it.
+
+
+Including Unicode property support adds around 30K of tables to the PCRE
+library. Only the general category properties such as Lu and Nd are
+supported. Details are given in the
+pcrepattern
+documentation.
+
+
JUST-IN-TIME COMPILER SUPPORT
+
+Just-in-time compiler support is included in the build by specifying
+
+ --enable-jit
+
+This support is available only for certain hardware architectures. If this
+option is set for an unsupported architecture, a compile time error occurs.
+See the
+pcrejit
+documentation for a discussion of JIT usage. When JIT support is enabled,
+pcregrep automatically makes use of it, unless you add
+
+ --disable-pcregrep-jit
+
+to the "configure" command.
+
+
CODE VALUE OF NEWLINE
+
+By default, PCRE interprets the linefeed (LF) character as indicating the end
+of a line. This is the normal newline character on Unix-like systems. You can
+compile PCRE to use carriage return (CR) instead, by adding
+
+ --enable-newline-is-cr
+
+to the configure command. There is also a --enable-newline-is-lf option,
+which explicitly specifies linefeed as the newline character.
+
+
+Alternatively, you can specify that line endings are to be indicated by the two
+character sequence CRLF. If you want this, add
+
+ --enable-newline-is-crlf
+
+to the configure command. There is a fourth option, specified by
+
+ --enable-newline-is-anycrlf
+
+which causes PCRE to recognize any of the three sequences CR, LF, or CRLF as
+indicating a line ending. Finally, a fifth option, specified by
+
+ --enable-newline-is-any
+
+causes PCRE to recognize any Unicode newline sequence.
+
+
+Whatever line ending convention is selected when PCRE is built can be
+overridden when the library functions are called. At build time it is
+conventional to use the standard for your operating system.
+
+
WHAT \R MATCHES
+
+By default, the sequence \R in a pattern matches any Unicode newline sequence,
+whatever has been selected as the line ending sequence. If you specify
+
+ --enable-bsr-anycrlf
+
+the default is changed so that \R matches only CR, LF, or CRLF. Whatever is
+selected when PCRE is built can be overridden when the library functions are
+called.
+
+
POSIX MALLOC USAGE
+
+When the 8-bit library is called through the POSIX interface (see the
+pcreposix
+documentation), additional working storage is required for holding the pointers
+to capturing substrings, because PCRE requires three integers per substring,
+whereas the POSIX interface provides only two. If the number of expected
+substrings is small, the wrapper function uses space on the stack, because this
+is faster than using malloc() for each call. The default threshold above
+which the stack is no longer used is 10; it can be changed by adding a setting
+such as
+
+ --with-posix-malloc-threshold=20
+
+to the configure command.
+
+
HANDLING VERY LARGE PATTERNS
+
+Within a compiled pattern, offset values are used to point from one part to
+another (for example, from an opening parenthesis to an alternation
+metacharacter). By default, in the 8-bit and 16-bit libraries, two-byte values
+are used for these offsets, leading to a maximum size for a compiled pattern of
+around 64K. This is sufficient to handle all but the most gigantic patterns.
+Nevertheless, some people do want to process truly enormous patterns, so it is
+possible to compile PCRE to use three-byte or four-byte offsets by adding a
+setting such as
+
+ --with-link-size=3
+
+to the configure command. The value given must be 2, 3, or 4. For the
+16-bit library, a value of 3 is rounded up to 4. In these libraries, using
+longer offsets slows down the operation of PCRE because it has to load
+additional data when handling them. For the 32-bit library the value is always
+4 and cannot be overridden; the value of --with-link-size is ignored.
+
+
AVOIDING EXCESSIVE STACK USAGE
+
+When matching with the pcre_exec() function, PCRE implements backtracking
+by making recursive calls to an internal function called match(). In
+environments where the size of the stack is limited, this can severely limit
+PCRE's operation. (The Unix environment does not usually suffer from this
+problem, but it may sometimes be necessary to increase the maximum stack size.
+There is a discussion in the
+pcrestack
+documentation.) An alternative approach to recursion that uses memory from the
+heap to remember data, instead of using recursive function calls, has been
+implemented to work round the problem of limited stack size. If you want to
+build a version of PCRE that works this way, add
+
+ --disable-stack-for-recursion
+
+to the configure command. With this configuration, PCRE will use the
+pcre_stack_malloc and pcre_stack_free variables to call memory
+management functions. By default these point to malloc() and
+free(), but you can replace the pointers so that your own functions are
+used instead.
+
+
+Separate functions are provided rather than using pcre_malloc and
+pcre_free because the usage is very predictable: the block sizes
+requested are always the same, and the blocks are always freed in reverse
+order. A calling program might be able to implement optimized functions that
+perform better than malloc() and free(). PCRE runs noticeably more
+slowly when built in this way. This option affects only the pcre_exec()
+function; it is not relevant for pcre_dfa_exec().
+
+
LIMITING PCRE RESOURCE USAGE
+
+Internally, PCRE has a function called match(), which it calls repeatedly
+(sometimes recursively) when matching a pattern with the pcre_exec()
+function. By controlling the maximum number of times this function may be
+called during a single matching operation, a limit can be placed on the
+resources used by a single call to pcre_exec(). The limit can be changed
+at run time, as described in the
+pcreapi
+documentation. The default is 10 million, but this can be changed by adding a
+setting such as
+
+ --with-match-limit=500000
+
+to the configure command. This setting has no effect on the
+pcre_dfa_exec() matching function.
+
+
+In some environments it is desirable to limit the depth of recursive calls of
+match() more strictly than the total number of calls, in order to
+restrict the maximum amount of stack (or heap, if --disable-stack-for-recursion
+is specified) that is used. A second limit controls this; it defaults to the
+value that is set for --with-match-limit, which imposes no additional
+constraints. However, you can set a lower limit by adding, for example,
+
+ --with-match-limit-recursion=10000
+
+to the configure command. This value can also be overridden at run time.
+
+
CREATING CHARACTER TABLES AT BUILD TIME
+
+PCRE uses fixed tables for processing characters whose code values are less
+than 256. By default, PCRE is built with a set of tables that are distributed
+in the file pcre_chartables.c.dist. These tables are for ASCII codes
+only. If you add
+
+ --enable-rebuild-chartables
+
+to the configure command, the distributed tables are no longer used.
+Instead, a program called dftables is compiled and run. This outputs the
+source for new set of tables, created in the default locale of your C run-time
+system. (This method of replacing the tables does not work if you are cross
+compiling, because dftables is run on the local host. If you need to
+create alternative tables when cross compiling, you will have to do so "by
+hand".)
+
+
USING EBCDIC CODE
+
+PCRE assumes by default that it will run in an environment where the character
+code is ASCII (or Unicode, which is a superset of ASCII). This is the case for
+most computer operating systems. PCRE can, however, be compiled to run in an
+EBCDIC environment by adding
+
+ --enable-ebcdic
+
+to the configure command. This setting implies
+--enable-rebuild-chartables. You should only use it if you know that you are in
+an EBCDIC environment (for example, an IBM mainframe operating system). The
+--enable-ebcdic option is incompatible with --enable-utf.
+
+
+The EBCDIC character that corresponds to an ASCII LF is assumed to have the
+value 0x15 by default. However, in some EBCDIC environments, 0x25 is used. In
+such an environment you should use
+
+ --enable-ebcdic-nl25
+
+as well as, or instead of, --enable-ebcdic. The EBCDIC character for CR has the
+same value as in ASCII, namely, 0x0d. Whichever of 0x15 and 0x25 is not
+chosen as LF is made to correspond to the Unicode NEL character (which, in
+Unicode, is 0x85).
+
+
+The options that select newline behaviour, such as --enable-newline-is-cr,
+and equivalent run-time options, refer to these character values in an EBCDIC
+environment.
+
+
PCREGREP OPTIONS FOR COMPRESSED FILE SUPPORT
+
+By default, pcregrep reads all files as plain text. You can build it so
+that it recognizes files whose names end in .gz or .bz2, and reads
+them with libz or libbz2, respectively, by adding one or both of
+
+ --enable-pcregrep-libz
+ --enable-pcregrep-libbz2
+
+to the configure command. These options naturally require that the
+relevant libraries are installed on your system. Configuration will fail if
+they are not.
+
+
PCREGREP BUFFER SIZE
+
+pcregrep uses an internal buffer to hold a "window" on the file it is
+scanning, in order to be able to output "before" and "after" lines when it
+finds a match. The size of the buffer is controlled by a parameter whose
+default value is 20K. The buffer itself is three times this size, but because
+of the way it is used for holding "before" lines, the longest line that is
+guaranteed to be processable is the parameter size. You can change the default
+parameter value by adding, for example,
+
+ --with-pcregrep-bufsize=50K
+
+to the configure command. The caller of \fPpcregrep\fP can, however,
+override this value by specifying a run-time option.
+
+
PCRETEST OPTION FOR LIBREADLINE SUPPORT
+
+If you add
+
+ --enable-pcretest-libreadline
+
+to the configure command, pcretest is linked with the
+libreadline library, and when its input is from a terminal, it reads it
+using the readline() function. This provides line-editing and history
+facilities. Note that libreadline is GPL-licensed, so if you distribute a
+binary of pcretest linked in this way, there may be licensing issues.
+
+
+Setting this option causes the -lreadline option to be added to the
+pcretest build. In many operating environments with a sytem-installed
+libreadline this is sufficient. However, in some environments (e.g.
+if an unmodified distribution version of readline is in use), some extra
+configuration may be necessary. The INSTALL file for libreadline says
+this:
+
+ "Readline uses the termcap functions, but does not link with the
+ termcap or curses library itself, allowing applications which link
+ with readline the to choose an appropriate library."
+
+If your environment has not been set up so that an appropriate library is
+automatically included, you may need to add something like
+
+ LIBS="-ncurses"
+
+immediately before the configure command.
+
+
DEBUGGING WITH VALGRIND SUPPORT
+
+By adding the
+
+ --enable-valgrind
+
+option to to the configure command, PCRE will use valgrind annotations
+to mark certain memory regions as unaddressable. This allows it to detect
+invalid memory accesses, and is mostly useful for debugging PCRE itself.
+
+
CODE COVERAGE REPORTING
+
+If your C compiler is gcc, you can build a version of PCRE that can generate a
+code coverage report for its test suite. To enable this, you must install
+lcov version 1.6 or above. Then specify
+
+ --enable-coverage
+
+to the configure command and build PCRE in the usual way.
+
+
+Note that using ccache (a caching C compiler) is incompatible with code
+coverage reporting. If you have configured ccache to run automatically
+on your system, you must set the environment variable
+
+ CCACHE_DISABLE=1
+
+before running make to build PCRE, so that ccache is not used.
+
+
+When --enable-coverage is used, the following addition targets are added to the
+Makefile:
+
+ make coverage
+
+This creates a fresh coverage report for the PCRE test suite. It is equivalent
+to running "make coverage-reset", "make coverage-baseline", "make check", and
+then "make coverage-report".
+
+ make coverage-reset
+
+This zeroes the coverage counters, but does nothing else.
+
+ make coverage-baseline
+
+This captures baseline coverage information.
+
+ make coverage-report
+
+This creates the coverage report.
+
+ make coverage-clean-report
+
+This removes the generated coverage report without cleaning the coverage data
+itself.
+
+ make coverage-clean-data
+
+This removes the captured coverage data without removing the coverage files
+created at compile time (*.gcno).
+
+ make coverage-clean
+
+This cleans all coverage data including the generated coverage report. For more
+information about code coverage, see the gcov and lcov
+documentation.
+
+
SEE ALSO
+
+pcreapi(3), pcre16, pcre32, pcre_config(3).
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 12 May 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcrecallout.html b/pcre/doc/html/pcrecallout.html
new file mode 100644
index 00000000000..7233bb671e7
--- /dev/null
+++ b/pcre/doc/html/pcrecallout.html
@@ -0,0 +1,251 @@
+
+
+pcrecallout specification
+
+
+pcrecallout man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
SYNOPSIS
+
+#include <pcre.h>
+
+
+int (*pcre_callout)(pcre_callout_block *);
+
+
+int (*pcre16_callout)(pcre16_callout_block *);
+
+
+int (*pcre32_callout)(pcre32_callout_block *);
+
+
DESCRIPTION
+
+PCRE provides a feature called "callout", which is a means of temporarily
+passing control to the caller of PCRE in the middle of pattern matching. The
+caller of PCRE provides an external function by putting its entry point in the
+global variable pcre_callout (pcre16_callout for the 16-bit
+library, pcre32_callout for the 32-bit library). By default, this
+variable contains NULL, which disables all calling out.
+
+
+Within a regular expression, (?C) indicates the points at which the external
+function is to be called. Different callout points can be identified by putting
+a number less than 256 after the letter C. The default value is zero.
+For example, this pattern has two callout points:
+
+ (?C1)abc(?C2)def
+
+If the PCRE_AUTO_CALLOUT option bit is set when a pattern is compiled, PCRE
+automatically inserts callouts, all with number 255, before each item in the
+pattern. For example, if PCRE_AUTO_CALLOUT is used with the pattern
+
+ A(\d{2}|--)
+
+it is processed as if it were
+
+
+(?C255)A(?C255)((?C255)\d{2}(?C255)|(?C255)-(?C255)-(?C255))(?C255)
+
+
+Notice that there is a callout before and after each parenthesis and
+alternation bar. If the pattern contains a conditional group whose condition is
+an assertion, an automatic callout is inserted immediately before the
+condition. Such a callout may also be inserted explicitly, for example:
+
+ (?(?C9)(?=a)ab|de)
+
+This applies only to assertion conditions (because they are themselves
+independent groups).
+
+
+Automatic callouts can be used for tracking the progress of pattern matching.
+The
+pcretest
+command has an option that sets automatic callouts; when it is used, the output
+indicates how the pattern is matched. This is useful information when you are
+trying to optimize the performance of a particular pattern.
+
+
MISSING CALLOUTS
+
+You should be aware that, because of optimizations in the way PCRE matches
+patterns by default, callouts sometimes do not happen. For example, if the
+pattern is
+
+ ab(?C4)cd
+
+PCRE knows that any matching string must contain the letter "d". If the subject
+string is "abyz", the lack of "d" means that matching doesn't ever start, and
+the callout is never reached. However, with "abyd", though the result is still
+no match, the callout is obeyed.
+
+
+If the pattern is studied, PCRE knows the minimum length of a matching string,
+and will immediately give a "no match" return without actually running a match
+if the subject is not long enough, or, for unanchored patterns, if it has
+been scanned far enough.
+
+
+You can disable these optimizations by passing the PCRE_NO_START_OPTIMIZE
+option to the matching function, or by starting the pattern with
+(*NO_START_OPT). This slows down the matching process, but does ensure that
+callouts such as the example above are obeyed.
+
+
THE CALLOUT INTERFACE
+
+During matching, when PCRE reaches a callout point, the external function
+defined by pcre_callout or pcre[16|32]_callout is called
+(if it is set). This applies to both normal and DFA matching. The only
+argument to the callout function is a pointer to a pcre_callout
+or pcre[16|32]_callout block.
+These structures contains the following fields:
+
+ int version;
+ int callout_number;
+ int *offset_vector;
+ const char *subject; (8-bit version)
+ PCRE_SPTR16 subject; (16-bit version)
+ PCRE_SPTR32 subject; (32-bit version)
+ int subject_length;
+ int start_match;
+ int current_position;
+ int capture_top;
+ int capture_last;
+ void *callout_data;
+ int pattern_position;
+ int next_item_length;
+ const unsigned char *mark; (8-bit version)
+ const PCRE_UCHAR16 *mark; (16-bit version)
+ const PCRE_UCHAR32 *mark; (32-bit version)
+
+The version field is an integer containing the version number of the
+block format. The initial version was 0; the current version is 2. The version
+number will change again in future if additional fields are added, but the
+intention is never to remove any of the existing fields.
+
+
+The callout_number field contains the number of the callout, as compiled
+into the pattern (that is, the number after ?C for manual callouts, and 255 for
+automatically generated callouts).
+
+
+The offset_vector field is a pointer to the vector of offsets that was
+passed by the caller to the matching function. When pcre_exec() or
+pcre[16|32]_exec() is used, the contents can be inspected, in order to
+extract substrings that have been matched so far, in the same way as for
+extracting substrings after a match has completed. For the DFA matching
+functions, this field is not useful.
+
+
+The subject and subject_length fields contain copies of the values
+that were passed to the matching function.
+
+
+The start_match field normally contains the offset within the subject at
+which the current match attempt started. However, if the escape sequence \K
+has been encountered, this value is changed to reflect the modified starting
+point. If the pattern is not anchored, the callout function may be called
+several times from the same point in the pattern for different starting points
+in the subject.
+
+
+The current_position field contains the offset within the subject of the
+current match pointer.
+
+
+When the pcre_exec() or pcre[16|32]_exec() is used, the
+capture_top field contains one more than the number of the highest
+numbered captured substring so far. If no substrings have been captured, the
+value of capture_top is one. This is always the case when the DFA
+functions are used, because they do not support captured substrings.
+
+
+The capture_last field contains the number of the most recently captured
+substring. However, when a recursion exits, the value reverts to what it was
+outside the recursion, as do the values of all captured substrings. If no
+substrings have been captured, the value of capture_last is -1. This is
+always the case for the DFA matching functions.
+
+
+The callout_data field contains a value that is passed to a matching
+function specifically so that it can be passed back in callouts. It is passed
+in the callout_data field of a pcre_extra or pcre[16|32]_extra
+data structure. If no such data was passed, the value of callout_data in
+a callout block is NULL. There is a description of the pcre_extra
+structure in the
+pcreapi
+documentation.
+
+
+The pattern_position field is present from version 1 of the callout
+structure. It contains the offset to the next item to be matched in the pattern
+string.
+
+
+The next_item_length field is present from version 1 of the callout
+structure. It contains the length of the next item to be matched in the pattern
+string. When the callout immediately precedes an alternation bar, a closing
+parenthesis, or the end of the pattern, the length is zero. When the callout
+precedes an opening parenthesis, the length is that of the entire subpattern.
+
+
+The pattern_position and next_item_length fields are intended to
+help in distinguishing between different automatic callouts, which all have the
+same callout number. However, they are set for all callouts.
+
+
+The mark field is present from version 2 of the callout structure. In
+callouts from pcre_exec() or pcre[16|32]_exec() it contains a
+pointer to the zero-terminated name of the most recently passed (*MARK),
+(*PRUNE), or (*THEN) item in the match, or NULL if no such items have been
+passed. Instances of (*PRUNE) or (*THEN) without a name do not obliterate a
+previous (*MARK). In callouts from the DFA matching functions this field always
+contains NULL.
+
+
RETURN VALUES
+
+The external callout function returns an integer to PCRE. If the value is zero,
+matching proceeds as normal. If the value is greater than zero, matching fails
+at the current point, but the testing of other matching possibilities goes
+ahead, just as if a lookahead assertion had failed. If the value is less than
+zero, the match is abandoned, the matching function returns the negative value.
+
+
+Negative values should normally be chosen from the set of PCRE_ERROR_xxx
+values. In particular, PCRE_ERROR_NOMATCH forces a standard "no match" failure.
+The error number PCRE_ERROR_CALLOUT is reserved for use by callout functions;
+it will never be used by PCRE itself.
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 03 March 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcrecompat.html b/pcre/doc/html/pcrecompat.html
new file mode 100644
index 00000000000..14e20c5f4b4
--- /dev/null
+++ b/pcre/doc/html/pcrecompat.html
@@ -0,0 +1,229 @@
+
+
+pcrecompat specification
+
+
+pcrecompat man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+DIFFERENCES BETWEEN PCRE AND PERL
+
+
+This document describes the differences in the ways that PCRE and Perl handle
+regular expressions. The differences described here are with respect to Perl
+versions 5.10 and above.
+
+
+1. PCRE has only a subset of Perl's Unicode support. Details of what it does
+have are given in the
+pcreunicode
+page.
+
+
+2. PCRE allows repeat quantifiers only on parenthesized assertions, but they do
+not mean what you might think. For example, (?!a){3} does not assert that the
+next three characters are not "a". It just asserts that the next character is
+not "a" three times (in principle: PCRE optimizes this to run the assertion
+just once). Perl allows repeat quantifiers on other assertions such as \b, but
+these do not seem to have any use.
+
+
+3. Capturing subpatterns that occur inside negative lookahead assertions are
+counted, but their entries in the offsets vector are never set. Perl sometimes
+(but not always) sets its numerical variables from inside negative assertions.
+
+
+4. Though binary zero characters are supported in the subject string, they are
+not allowed in a pattern string because it is passed as a normal C string,
+terminated by zero. The escape sequence \0 can be used in the pattern to
+represent a binary zero.
+
+
+5. The following Perl escape sequences are not supported: \l, \u, \L,
+\U, and \N when followed by a character name or Unicode value. (\N on its
+own, matching a non-newline character, is supported.) In fact these are
+implemented by Perl's general string-handling and are not part of its pattern
+matching engine. If any of these are encountered by PCRE, an error is
+generated by default. However, if the PCRE_JAVASCRIPT_COMPAT option is set,
+\U and \u are interpreted as JavaScript interprets them.
+
+
+6. The Perl escape sequences \p, \P, and \X are supported only if PCRE is
+built with Unicode character property support. The properties that can be
+tested with \p and \P are limited to the general category properties such as
+Lu and Nd, script names such as Greek or Han, and the derived properties Any
+and L&. PCRE does support the Cs (surrogate) property, which Perl does not; the
+Perl documentation says "Because Perl hides the need for the user to understand
+the internal representation of Unicode characters, there is no need to
+implement the somewhat messy concept of surrogates."
+
+
+7. PCRE does support the \Q...\E escape for quoting substrings. Characters in
+between are treated as literals. This is slightly different from Perl in that $
+and @ are also handled as literals inside the quotes. In Perl, they cause
+variable interpolation (but of course PCRE does not have variables). Note the
+following examples:
+
+ Pattern PCRE matches Perl matches
+
+ \Qabc$xyz\E abc$xyz abc followed by the contents of $xyz
+ \Qabc\$xyz\E abc\$xyz abc\$xyz
+ \Qabc\E\$\Qxyz\E abc$xyz abc$xyz
+
+The \Q...\E sequence is recognized both inside and outside character classes.
+
+
+8. Fairly obviously, PCRE does not support the (?{code}) and (??{code})
+constructions. However, there is support for recursive patterns. This is not
+available in Perl 5.8, but it is in Perl 5.10. Also, the PCRE "callout"
+feature allows an external function to be called during pattern matching. See
+the
+pcrecallout
+documentation for details.
+
+
+9. Subpatterns that are called as subroutines (whether or not recursively) are
+always treated as atomic groups in PCRE. This is like Python, but unlike Perl.
+Captured values that are set outside a subroutine call can be reference from
+inside in PCRE, but not in Perl. There is a discussion that explains these
+differences in more detail in the
+section on recursion differences from Perl
+in the
+pcrepattern
+page.
+
+
+10. If any of the backtracking control verbs are used in a subpattern that is
+called as a subroutine (whether or not recursively), their effect is confined
+to that subpattern; it does not extend to the surrounding pattern. This is not
+always the case in Perl. In particular, if (*THEN) is present in a group that
+is called as a subroutine, its action is limited to that group, even if the
+group does not contain any | characters. Note that such subpatterns are
+processed as anchored at the point where they are tested.
+
+
+11. If a pattern contains more than one backtracking control verb, the first
+one that is backtracked onto acts. For example, in the pattern
+A(*COMMIT)B(*PRUNE)C a failure in B triggers (*COMMIT), but a failure in C
+triggers (*PRUNE). Perl's behaviour is more complex; in many cases it is the
+same as PCRE, but there are examples where it differs.
+
+
+12. Most backtracking verbs in assertions have their normal actions. They are
+not confined to the assertion.
+
+
+13. There are some differences that are concerned with the settings of captured
+strings when part of a pattern is repeated. For example, matching "aba" against
+the pattern /^(a(b)?)+$/ in Perl leaves $2 unset, but in PCRE it is set to "b".
+
+
+14. PCRE's handling of duplicate subpattern numbers and duplicate subpattern
+names is not as general as Perl's. This is a consequence of the fact the PCRE
+works internally just with numbers, using an external table to translate
+between numbers and names. In particular, a pattern such as (?|(?<a>A)|(?<b)B),
+where the two capturing parentheses have the same number but different names,
+is not supported, and causes an error at compile time. If it were allowed, it
+would not be possible to distinguish which parentheses matched, because both
+names map to capturing subpattern number 1. To avoid this confusing situation,
+an error is given at compile time.
+
+
+15. Perl recognizes comments in some places that PCRE does not, for example,
+between the ( and ? at the start of a subpattern. If the /x modifier is set,
+Perl allows white space between ( and ? but PCRE never does, even if the
+PCRE_EXTENDED option is set.
+
+
+16. In PCRE, the upper/lower case character properties Lu and Ll are not
+affected when case-independent matching is specified. For example, \p{Lu}
+always matches an upper case letter. I think Perl has changed in this respect;
+in the release at the time of writing (5.16), \p{Lu} and \p{Ll} match all
+letters, regardless of case, when case independence is specified.
+
+
+17. PCRE provides some extensions to the Perl regular expression facilities.
+Perl 5.10 includes new features that are not in earlier versions of Perl, some
+of which (such as named parentheses) have been in PCRE for some time. This list
+is with respect to Perl 5.10:
+
+
+(a) Although lookbehind assertions in PCRE must match fixed length strings,
+each alternative branch of a lookbehind assertion can match a different length
+of string. Perl requires them all to have the same length.
+
+
+(b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $
+meta-character matches only at the very end of the string.
+
+
+(c) If PCRE_EXTRA is set, a backslash followed by a letter with no special
+meaning is faulted. Otherwise, like Perl, the backslash is quietly ignored.
+(Perl can be made to issue a warning.)
+
+
+(d) If PCRE_UNGREEDY is set, the greediness of the repetition quantifiers is
+inverted, that is, by default they are not greedy, but if followed by a
+question mark they are.
+
+
+(e) PCRE_ANCHORED can be used at matching time to force a pattern to be tried
+only at the first matching position in the subject string.
+
+
+(f) The PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART, and
+PCRE_NO_AUTO_CAPTURE options for pcre_exec() have no Perl equivalents.
+
+
+(g) The \R escape sequence can be restricted to match only CR, LF, or CRLF
+by the PCRE_BSR_ANYCRLF option.
+
+
+(h) The callout facility is PCRE-specific.
+
+
+(i) The partial matching facility is PCRE-specific.
+
+
+(j) Patterns compiled by PCRE can be saved and re-used at a later time, even on
+different hosts that have the other endianness. However, this does not apply to
+optimized data created by the just-in-time compiler.
+
+
+(k) The alternative matching functions (pcre_dfa_exec(),
+pcre16_dfa_exec() and pcre32_dfa_exec(),) match in a different way
+and are not Perl-compatible.
+
+
+(l) PCRE recognizes some special sequences such as (*CR) at the start of
+a pattern that set overall options that cannot be changed within the pattern.
+
+
+AUTHOR
+
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
+REVISION
+
+
+Last updated: 19 March 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcrecpp.html b/pcre/doc/html/pcrecpp.html
new file mode 100644
index 00000000000..b7eac3a3d7a
--- /dev/null
+++ b/pcre/doc/html/pcrecpp.html
@@ -0,0 +1,368 @@
+
+
+pcrecpp specification
+
+
+pcrecpp man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
SYNOPSIS OF C++ WRAPPER
+
+#include <pcrecpp.h>
+
+
DESCRIPTION
+
+The C++ wrapper for PCRE was provided by Google Inc. Some additional
+functionality was added by Giuseppe Maxia. This brief man page was constructed
+from the notes in the pcrecpp.h file, which should be consulted for
+further details. Note that the C++ wrapper supports only the original 8-bit
+PCRE library. There is no 16-bit or 32-bit support at present.
+
+
MATCHING INTERFACE
+
+The "FullMatch" operation checks that supplied text matches a supplied pattern
+exactly. If pointer arguments are supplied, it copies matched sub-strings that
+match sub-patterns into them.
+
+ Example: successful match
+ pcrecpp::RE re("h.*o");
+ re.FullMatch("hello");
+
+ Example: unsuccessful match (requires full match):
+ pcrecpp::RE re("e");
+ !re.FullMatch("hello");
+
+ Example: creating a temporary RE object:
+ pcrecpp::RE("h.*o").FullMatch("hello");
+
+You can pass in a "const char*" or a "string" for "text". The examples below
+tend to use a const char*. You can, as in the different examples above, store
+the RE object explicitly in a variable or use a temporary RE object. The
+examples below use one mode or the other arbitrarily. Either could correctly be
+used for any of these examples.
+
+
+You must supply extra pointer arguments to extract matched subpieces.
+
+ Example: extracts "ruby" into "s" and 1234 into "i"
+ int i;
+ string s;
+ pcrecpp::RE re("(\\w+):(\\d+)");
+ re.FullMatch("ruby:1234", &s, &i);
+
+ Example: does not try to extract any extra sub-patterns
+ re.FullMatch("ruby:1234", &s);
+
+ Example: does not try to extract into NULL
+ re.FullMatch("ruby:1234", NULL, &i);
+
+ Example: integer overflow causes failure
+ !re.FullMatch("ruby:1234567891234", NULL, &i);
+
+ Example: fails because there aren't enough sub-patterns:
+ !pcrecpp::RE("\\w+:\\d+").FullMatch("ruby:1234", &s);
+
+ Example: fails because string cannot be stored in integer
+ !pcrecpp::RE("(.*)").FullMatch("ruby", &i);
+
+The provided pointer arguments can be pointers to any scalar numeric
+type, or one of:
+
+ string (matched piece is copied to string)
+ StringPiece (StringPiece is mutated to point to matched piece)
+ T (where "bool T::ParseFrom(const char*, int)" exists)
+ NULL (the corresponding matched sub-pattern is not copied)
+
+The function returns true iff all of the following conditions are satisfied:
+
+ a. "text" matches "pattern" exactly;
+
+ b. The number of matched sub-patterns is >= number of supplied
+ pointers;
+
+ c. The "i"th argument has a suitable type for holding the
+ string captured as the "i"th sub-pattern. If you pass in
+ void * NULL for the "i"th argument, or a non-void * NULL
+ of the correct type, or pass fewer arguments than the
+ number of sub-patterns, "i"th captured sub-pattern is
+ ignored.
+
+CAVEAT: An optional sub-pattern that does not exist in the matched
+string is assigned the empty string. Therefore, the following will
+return false (because the empty string is not a valid number):
+
+ int number;
+ pcrecpp::RE::FullMatch("abc", "[a-z]+(\\d+)?", &number);
+
+The matching interface supports at most 16 arguments per call.
+If you need more, consider using the more general interface
+pcrecpp::RE::DoMatch. See pcrecpp.h for the signature for
+DoMatch.
+
+
+NOTE: Do not use no_arg, which is used internally to mark the end of a
+list of optional arguments, as a placeholder for missing arguments, as this can
+lead to segfaults.
+
+
QUOTING METACHARACTERS
+
+You can use the "QuoteMeta" operation to insert backslashes before all
+potentially meaningful characters in a string. The returned string, used as a
+regular expression, will exactly match the original string.
+
+ Example:
+ string quoted = RE::QuoteMeta(unquoted);
+
+Note that it's legal to escape a character even if it has no special meaning in
+a regular expression -- so this function does that. (This also makes it
+identical to the perl function of the same name; see "perldoc -f quotemeta".)
+For example, "1.5-2.0?" becomes "1\.5\-2\.0\?".
+
+
PARTIAL MATCHES
+
+You can use the "PartialMatch" operation when you want the pattern
+to match any substring of the text.
+
+ Example: simple search for a string:
+ pcrecpp::RE("ell").PartialMatch("hello");
+
+ Example: find first number in a string:
+ int number;
+ pcrecpp::RE re("(\\d+)");
+ re.PartialMatch("x*100 + 20", &number);
+ assert(number == 100);
+
+
+
UTF-8 AND THE MATCHING INTERFACE
+
+By default, pattern and text are plain text, one byte per character. The UTF8
+flag, passed to the constructor, causes both pattern and string to be treated
+as UTF-8 text, still a byte stream but potentially multiple bytes per
+character. In practice, the text is likelier to be UTF-8 than the pattern, but
+the match returned may depend on the UTF8 flag, so always use it when matching
+UTF8 text. For example, "." will match one byte normally but with UTF8 set may
+match up to three bytes of a multi-byte character.
+
+ Example:
+ pcrecpp::RE_Options options;
+ options.set_utf8();
+ pcrecpp::RE re(utf8_pattern, options);
+ re.FullMatch(utf8_string);
+
+ Example: using the convenience function UTF8():
+ pcrecpp::RE re(utf8_pattern, pcrecpp::UTF8());
+ re.FullMatch(utf8_string);
+
+NOTE: The UTF8 flag is ignored if pcre was not configured with the
+
+ --enable-utf8 flag.
+
+
+
PASSING MODIFIERS TO THE REGULAR EXPRESSION ENGINE
+
+PCRE defines some modifiers to change the behavior of the regular expression
+engine. The C++ wrapper defines an auxiliary class, RE_Options, as a vehicle to
+pass such modifiers to a RE class. Currently, the following modifiers are
+supported:
+
+ modifier description Perl corresponding
+
+ PCRE_CASELESS case insensitive match /i
+ PCRE_MULTILINE multiple lines match /m
+ PCRE_DOTALL dot matches newlines /s
+ PCRE_DOLLAR_ENDONLY $ matches only at end N/A
+ PCRE_EXTRA strict escape parsing N/A
+ PCRE_EXTENDED ignore white spaces /x
+ PCRE_UTF8 handles UTF8 chars built-in
+ PCRE_UNGREEDY reverses * and *? N/A
+ PCRE_NO_AUTO_CAPTURE disables capturing parens N/A (*)
+
+(*) Both Perl and PCRE allow non capturing parentheses by means of the
+"?:" modifier within the pattern itself. e.g. (?:ab|cd) does not
+capture, while (ab|cd) does.
+
+
+For a full account on how each modifier works, please check the
+PCRE API reference page.
+
+
+For each modifier, there are two member functions whose name is made
+out of the modifier in lowercase, without the "PCRE_" prefix. For
+instance, PCRE_CASELESS is handled by
+
+ bool caseless()
+
+which returns true if the modifier is set, and
+
+ RE_Options & set_caseless(bool)
+
+which sets or unsets the modifier. Moreover, PCRE_EXTRA_MATCH_LIMIT can be
+accessed through the set_match_limit() and match_limit() member
+functions. Setting match_limit to a non-zero value will limit the
+execution of pcre to keep it from doing bad things like blowing the stack or
+taking an eternity to return a result. A value of 5000 is good enough to stop
+stack blowup in a 2MB thread stack. Setting match_limit to zero disables
+match limiting. Alternatively, you can call match_limit_recursion()
+which uses PCRE_EXTRA_MATCH_LIMIT_RECURSION to limit how much PCRE
+recurses. match_limit() limits the number of matches PCRE does;
+match_limit_recursion() limits the depth of internal recursion, and
+therefore the amount of stack that is used.
+
+
+Normally, to pass one or more modifiers to a RE class, you declare
+a RE_Options object, set the appropriate options, and pass this
+object to a RE constructor. Example:
+
+ RE_Options opt;
+ opt.set_caseless(true);
+ if (RE("HELLO", opt).PartialMatch("hello world")) ...
+
+RE_options has two constructors. The default constructor takes no arguments and
+creates a set of flags that are off by default. The optional parameter
+option_flags is to facilitate transfer of legacy code from C programs.
+This lets you do
+
+ RE(pattern,
+ RE_Options(PCRE_CASELESS|PCRE_MULTILINE)).PartialMatch(str);
+
+However, new code is better off doing
+
+ RE(pattern,
+ RE_Options().set_caseless(true).set_multiline(true))
+ .PartialMatch(str);
+
+If you are going to pass one of the most used modifiers, there are some
+convenience functions that return a RE_Options class with the
+appropriate modifier already set: CASELESS(), UTF8(),
+MULTILINE(), DOTALL(), and EXTENDED().
+
+
+If you need to set several options at once, and you don't want to go through
+the pains of declaring a RE_Options object and setting several options, there
+is a parallel method that give you such ability on the fly. You can concatenate
+several set_xxxxx() member functions, since each of them returns a
+reference to its class object. For example, to pass PCRE_CASELESS,
+PCRE_EXTENDED, and PCRE_MULTILINE to a RE with one statement, you may write:
+
+ RE(" ^ xyz \\s+ .* blah$",
+ RE_Options()
+ .set_caseless(true)
+ .set_extended(true)
+ .set_multiline(true)).PartialMatch(sometext);
+
+
+
+
SCANNING TEXT INCREMENTALLY
+
+The "Consume" operation may be useful if you want to repeatedly
+match regular expressions at the front of a string and skip over
+them as they match. This requires use of the "StringPiece" type,
+which represents a sub-range of a real string. Like RE, StringPiece
+is defined in the pcrecpp namespace.
+
+ Example: read lines of the form "var = value" from a string.
+ string contents = ...; // Fill string somehow
+ pcrecpp::StringPiece input(contents); // Wrap in a StringPiece
+
+ string var;
+ int value;
+ pcrecpp::RE re("(\\w+) = (\\d+)\n");
+ while (re.Consume(&input, &var, &value)) {
+ ...;
+ }
+
+Each successful call to "Consume" will set "var/value", and also
+advance "input" so it points past the matched text.
+
+
+The "FindAndConsume" operation is similar to "Consume" but does not
+anchor your match at the beginning of the string. For example, you
+could extract all words from a string by repeatedly calling
+
+ pcrecpp::RE("(\\w+)").FindAndConsume(&input, &word)
+
+
+
PARSING HEX/OCTAL/C-RADIX NUMBERS
+
+By default, if you pass a pointer to a numeric value, the
+corresponding text is interpreted as a base-10 number. You can
+instead wrap the pointer with a call to one of the operators Hex(),
+Octal(), or CRadix() to interpret the text in another base. The
+CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
+prefixes, but defaults to base-10.
+
+ Example:
+ int a, b, c, d;
+ pcrecpp::RE re("(.*) (.*) (.*) (.*)");
+ re.FullMatch("100 40 0100 0x40",
+ pcrecpp::Octal(&a), pcrecpp::Hex(&b),
+ pcrecpp::CRadix(&c), pcrecpp::CRadix(&d));
+
+will leave 64 in a, b, c, and d.
+
+
REPLACING PARTS OF STRINGS
+
+You can replace the first match of "pattern" in "str" with "rewrite".
+Within "rewrite", backslash-escaped digits (\1 to \9) can be
+used to insert text matching corresponding parenthesized group
+from the pattern. \0 in "rewrite" refers to the entire matching
+text. For example:
+
+ string s = "yabba dabba doo";
+ pcrecpp::RE("b+").Replace("d", &s);
+
+will leave "s" containing "yada dabba doo". The result is true if the pattern
+matches and a replacement occurs, false otherwise.
+
+
+GlobalReplace is like Replace except that it replaces all
+occurrences of the pattern in the string with the rewrite. Replacements are
+not subject to re-matching. For example:
+
+ string s = "yabba dabba doo";
+ pcrecpp::RE("b+").GlobalReplace("d", &s);
+
+will leave "s" containing "yada dada doo". It returns the number of
+replacements made.
+
+
+Extract is like Replace, except that if the pattern matches,
+"rewrite" is copied into "out" (an additional argument) with substitutions.
+The non-matching portions of "text" are ignored. Returns true iff a match
+occurred and the extraction happened successfully; if no match occurs, the
+string is left unaffected.
+
+
AUTHOR
+
+The C++ wrapper was contributed by Google Inc.
+
+Copyright © 2007 Google Inc.
+
+
+
REVISION
+
+Last updated: 08 January 2012
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcredemo.html b/pcre/doc/html/pcredemo.html
new file mode 100644
index 00000000000..894a9308261
--- /dev/null
+++ b/pcre/doc/html/pcredemo.html
@@ -0,0 +1,426 @@
+
+
+pcredemo specification
+
+
+pcredemo man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
+/*************************************************
+* PCRE DEMONSTRATION PROGRAM *
+*************************************************/
+
+/* This is a demonstration program to illustrate the most straightforward ways
+of calling the PCRE regular expression library from a C program. See the
+pcresample documentation for a short discussion ("man pcresample" if you have
+the PCRE man pages installed).
+
+In Unix-like environments, if PCRE is installed in your standard system
+libraries, you should be able to compile this program using this command:
+
+gcc -Wall pcredemo.c -lpcre -o pcredemo
+
+If PCRE is not installed in a standard place, it is likely to be installed with
+support for the pkg-config mechanism. If you have pkg-config, you can compile
+this program using this command:
+
+gcc -Wall pcredemo.c `pkg-config --cflags --libs libpcre` -o pcredemo
+
+If you do not have pkg-config, you may have to use this:
+
+gcc -Wall pcredemo.c -I/usr/local/include -L/usr/local/lib \
+ -R/usr/local/lib -lpcre -o pcredemo
+
+Replace "/usr/local/include" and "/usr/local/lib" with wherever the include and
+library files for PCRE are installed on your system. Only some operating
+systems (e.g. Solaris) use the -R option.
+
+Building under Windows:
+
+If you want to statically link this program against a non-dll .a file, you must
+define PCRE_STATIC before including pcre.h, otherwise the pcre_malloc() and
+pcre_free() exported functions will be declared __declspec(dllimport), with
+unwanted results. So in this environment, uncomment the following line. */
+
+/* #define PCRE_STATIC */
+
+#include <stdio.h>
+#include <string.h>
+#include <pcre.h>
+
+#define OVECCOUNT 30 /* should be a multiple of 3 */
+
+
+int main(int argc, char **argv)
+{
+pcre *re;
+const char *error;
+char *pattern;
+char *subject;
+unsigned char *name_table;
+unsigned int option_bits;
+int erroffset;
+int find_all;
+int crlf_is_newline;
+int namecount;
+int name_entry_size;
+int ovector[OVECCOUNT];
+int subject_length;
+int rc, i;
+int utf8;
+
+
+/**************************************************************************
+* First, sort out the command line. There is only one possible option at *
+* the moment, "-g" to request repeated matching to find all occurrences, *
+* like Perl's /g option. We set the variable find_all to a non-zero value *
+* if the -g option is present. Apart from that, there must be exactly two *
+* arguments. *
+**************************************************************************/
+
+find_all = 0;
+for (i = 1; i < argc; i++)
+ {
+ if (strcmp(argv[i], "-g") == 0) find_all = 1;
+ else break;
+ }
+
+/* After the options, we require exactly two arguments, which are the pattern,
+and the subject string. */
+
+if (argc - i != 2)
+ {
+ printf("Two arguments required: a regex and a subject string\n");
+ return 1;
+ }
+
+pattern = argv[i];
+subject = argv[i+1];
+subject_length = (int)strlen(subject);
+
+
+/*************************************************************************
+* Now we are going to compile the regular expression pattern, and handle *
+* and errors that are detected. *
+*************************************************************************/
+
+re = pcre_compile(
+ pattern, /* the pattern */
+ 0, /* default options */
+ &error, /* for error message */
+ &erroffset, /* for error offset */
+ NULL); /* use default character tables */
+
+/* Compilation failed: print the error message and exit */
+
+if (re == NULL)
+ {
+ printf("PCRE compilation failed at offset %d: %s\n", erroffset, error);
+ return 1;
+ }
+
+
+/*************************************************************************
+* If the compilation succeeded, we call PCRE again, in order to do a *
+* pattern match against the subject string. This does just ONE match. If *
+* further matching is needed, it will be done below. *
+*************************************************************************/
+
+rc = pcre_exec(
+ re, /* the compiled pattern */
+ NULL, /* no extra data - we didn't study the pattern */
+ subject, /* the subject string */
+ subject_length, /* the length of the subject */
+ 0, /* start at offset 0 in the subject */
+ 0, /* default options */
+ ovector, /* output vector for substring information */
+ OVECCOUNT); /* number of elements in the output vector */
+
+/* Matching failed: handle error cases */
+
+if (rc < 0)
+ {
+ switch(rc)
+ {
+ case PCRE_ERROR_NOMATCH: printf("No match\n"); break;
+ /*
+ Handle other special cases if you like
+ */
+ default: printf("Matching error %d\n", rc); break;
+ }
+ pcre_free(re); /* Release memory used for the compiled pattern */
+ return 1;
+ }
+
+/* Match succeded */
+
+printf("\nMatch succeeded at offset %d\n", ovector[0]);
+
+
+/*************************************************************************
+* We have found the first match within the subject string. If the output *
+* vector wasn't big enough, say so. Then output any substrings that were *
+* captured. *
+*************************************************************************/
+
+/* The output vector wasn't big enough */
+
+if (rc == 0)
+ {
+ rc = OVECCOUNT/3;
+ printf("ovector only has room for %d captured substrings\n", rc - 1);
+ }
+
+/* Show substrings stored in the output vector by number. Obviously, in a real
+application you might want to do things other than print them. */
+
+for (i = 0; i < rc; i++)
+ {
+ char *substring_start = subject + ovector[2*i];
+ int substring_length = ovector[2*i+1] - ovector[2*i];
+ printf("%2d: %.*s\n", i, substring_length, substring_start);
+ }
+
+
+/**************************************************************************
+* That concludes the basic part of this demonstration program. We have *
+* compiled a pattern, and performed a single match. The code that follows *
+* shows first how to access named substrings, and then how to code for *
+* repeated matches on the same subject. *
+**************************************************************************/
+
+/* See if there are any named substrings, and if so, show them by name. First
+we have to extract the count of named parentheses from the pattern. */
+
+(void)pcre_fullinfo(
+ re, /* the compiled pattern */
+ NULL, /* no extra data - we didn't study the pattern */
+ PCRE_INFO_NAMECOUNT, /* number of named substrings */
+ &namecount); /* where to put the answer */
+
+if (namecount <= 0) printf("No named substrings\n"); else
+ {
+ unsigned char *tabptr;
+ printf("Named substrings\n");
+
+ /* Before we can access the substrings, we must extract the table for
+ translating names to numbers, and the size of each entry in the table. */
+
+ (void)pcre_fullinfo(
+ re, /* the compiled pattern */
+ NULL, /* no extra data - we didn't study the pattern */
+ PCRE_INFO_NAMETABLE, /* address of the table */
+ &name_table); /* where to put the answer */
+
+ (void)pcre_fullinfo(
+ re, /* the compiled pattern */
+ NULL, /* no extra data - we didn't study the pattern */
+ PCRE_INFO_NAMEENTRYSIZE, /* size of each entry in the table */
+ &name_entry_size); /* where to put the answer */
+
+ /* Now we can scan the table and, for each entry, print the number, the name,
+ and the substring itself. */
+
+ tabptr = name_table;
+ for (i = 0; i < namecount; i++)
+ {
+ int n = (tabptr[0] << 8) | tabptr[1];
+ printf("(%d) %*s: %.*s\n", n, name_entry_size - 3, tabptr + 2,
+ ovector[2*n+1] - ovector[2*n], subject + ovector[2*n]);
+ tabptr += name_entry_size;
+ }
+ }
+
+
+/*************************************************************************
+* If the "-g" option was given on the command line, we want to continue *
+* to search for additional matches in the subject string, in a similar *
+* way to the /g option in Perl. This turns out to be trickier than you *
+* might think because of the possibility of matching an empty string. *
+* What happens is as follows: *
+* *
+* If the previous match was NOT for an empty string, we can just start *
+* the next match at the end of the previous one. *
+* *
+* If the previous match WAS for an empty string, we can't do that, as it *
+* would lead to an infinite loop. Instead, a special call of pcre_exec() *
+* is made with the PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED flags set. *
+* The first of these tells PCRE that an empty string at the start of the *
+* subject is not a valid match; other possibilities must be tried. The *
+* second flag restricts PCRE to one match attempt at the initial string *
+* position. If this match succeeds, an alternative to the empty string *
+* match has been found, and we can print it and proceed round the loop, *
+* advancing by the length of whatever was found. If this match does not *
+* succeed, we still stay in the loop, advancing by just one character. *
+* In UTF-8 mode, which can be set by (*UTF8) in the pattern, this may be *
+* more than one byte. *
+* *
+* However, there is a complication concerned with newlines. When the *
+* newline convention is such that CRLF is a valid newline, we must *
+* advance by two characters rather than one. The newline convention can *
+* be set in the regex by (*CR), etc.; if not, we must find the default. *
+*************************************************************************/
+
+if (!find_all) /* Check for -g */
+ {
+ pcre_free(re); /* Release the memory used for the compiled pattern */
+ return 0; /* Finish unless -g was given */
+ }
+
+/* Before running the loop, check for UTF-8 and whether CRLF is a valid newline
+sequence. First, find the options with which the regex was compiled; extract
+the UTF-8 state, and mask off all but the newline options. */
+
+(void)pcre_fullinfo(re, NULL, PCRE_INFO_OPTIONS, &option_bits);
+utf8 = option_bits & PCRE_UTF8;
+option_bits &= PCRE_NEWLINE_CR|PCRE_NEWLINE_LF|PCRE_NEWLINE_CRLF|
+ PCRE_NEWLINE_ANY|PCRE_NEWLINE_ANYCRLF;
+
+/* If no newline options were set, find the default newline convention from the
+build configuration. */
+
+if (option_bits == 0)
+ {
+ int d;
+ (void)pcre_config(PCRE_CONFIG_NEWLINE, &d);
+ /* Note that these values are always the ASCII ones, even in
+ EBCDIC environments. CR = 13, NL = 10. */
+ option_bits = (d == 13)? PCRE_NEWLINE_CR :
+ (d == 10)? PCRE_NEWLINE_LF :
+ (d == (13<<8 | 10))? PCRE_NEWLINE_CRLF :
+ (d == -2)? PCRE_NEWLINE_ANYCRLF :
+ (d == -1)? PCRE_NEWLINE_ANY : 0;
+ }
+
+/* See if CRLF is a valid newline sequence. */
+
+crlf_is_newline =
+ option_bits == PCRE_NEWLINE_ANY ||
+ option_bits == PCRE_NEWLINE_CRLF ||
+ option_bits == PCRE_NEWLINE_ANYCRLF;
+
+/* Loop for second and subsequent matches */
+
+for (;;)
+ {
+ int options = 0; /* Normally no options */
+ int start_offset = ovector[1]; /* Start at end of previous match */
+
+ /* If the previous match was for an empty string, we are finished if we are
+ at the end of the subject. Otherwise, arrange to run another match at the
+ same point to see if a non-empty match can be found. */
+
+ if (ovector[0] == ovector[1])
+ {
+ if (ovector[0] == subject_length) break;
+ options = PCRE_NOTEMPTY_ATSTART | PCRE_ANCHORED;
+ }
+
+ /* Run the next matching operation */
+
+ rc = pcre_exec(
+ re, /* the compiled pattern */
+ NULL, /* no extra data - we didn't study the pattern */
+ subject, /* the subject string */
+ subject_length, /* the length of the subject */
+ start_offset, /* starting offset in the subject */
+ options, /* options */
+ ovector, /* output vector for substring information */
+ OVECCOUNT); /* number of elements in the output vector */
+
+ /* This time, a result of NOMATCH isn't an error. If the value in "options"
+ is zero, it just means we have found all possible matches, so the loop ends.
+ Otherwise, it means we have failed to find a non-empty-string match at a
+ point where there was a previous empty-string match. In this case, we do what
+ Perl does: advance the matching position by one character, and continue. We
+ do this by setting the "end of previous match" offset, because that is picked
+ up at the top of the loop as the point at which to start again.
+
+ There are two complications: (a) When CRLF is a valid newline sequence, and
+ the current position is just before it, advance by an extra byte. (b)
+ Otherwise we must ensure that we skip an entire UTF-8 character if we are in
+ UTF-8 mode. */
+
+ if (rc == PCRE_ERROR_NOMATCH)
+ {
+ if (options == 0) break; /* All matches found */
+ ovector[1] = start_offset + 1; /* Advance one byte */
+ if (crlf_is_newline && /* If CRLF is newline & */
+ start_offset < subject_length - 1 && /* we are at CRLF, */
+ subject[start_offset] == '\r' &&
+ subject[start_offset + 1] == '\n')
+ ovector[1] += 1; /* Advance by one more. */
+ else if (utf8) /* Otherwise, ensure we */
+ { /* advance a whole UTF-8 */
+ while (ovector[1] < subject_length) /* character. */
+ {
+ if ((subject[ovector[1]] & 0xc0) != 0x80) break;
+ ovector[1] += 1;
+ }
+ }
+ continue; /* Go round the loop again */
+ }
+
+ /* Other matching errors are not recoverable. */
+
+ if (rc < 0)
+ {
+ printf("Matching error %d\n", rc);
+ pcre_free(re); /* Release memory used for the compiled pattern */
+ return 1;
+ }
+
+ /* Match succeded */
+
+ printf("\nMatch succeeded again at offset %d\n", ovector[0]);
+
+ /* The match succeeded, but the output vector wasn't big enough. */
+
+ if (rc == 0)
+ {
+ rc = OVECCOUNT/3;
+ printf("ovector only has room for %d captured substrings\n", rc - 1);
+ }
+
+ /* As before, show substrings stored in the output vector by number, and then
+ also any named substrings. */
+
+ for (i = 0; i < rc; i++)
+ {
+ char *substring_start = subject + ovector[2*i];
+ int substring_length = ovector[2*i+1] - ovector[2*i];
+ printf("%2d: %.*s\n", i, substring_length, substring_start);
+ }
+
+ if (namecount <= 0) printf("No named substrings\n"); else
+ {
+ unsigned char *tabptr = name_table;
+ printf("Named substrings\n");
+ for (i = 0; i < namecount; i++)
+ {
+ int n = (tabptr[0] << 8) | tabptr[1];
+ printf("(%d) %*s: %.*s\n", n, name_entry_size - 3, tabptr + 2,
+ ovector[2*n+1] - ovector[2*n], subject + ovector[2*n]);
+ tabptr += name_entry_size;
+ }
+ }
+ } /* End of loop to find second and subsequent matches */
+
+printf("\n");
+pcre_free(re); /* Release memory used for the compiled pattern */
+return 0;
+}
+
+/* End of pcredemo.c */
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcregrep.html b/pcre/doc/html/pcregrep.html
new file mode 100644
index 00000000000..bac8f9a43fd
--- /dev/null
+++ b/pcre/doc/html/pcregrep.html
@@ -0,0 +1,757 @@
+
+
+pcregrep specification
+
+
+pcregrep man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
SYNOPSIS
+
+pcregrep [options] [long options] [pattern] [path1 path2 ...]
+
+
DESCRIPTION
+
+pcregrep searches files for character patterns, in the same way as other
+grep commands do, but it uses the PCRE regular expression library to support
+patterns that are compatible with the regular expressions of Perl 5. See
+pcrepattern(3)
+for a full description of syntax and semantics of the regular expressions
+that PCRE supports.
+
+
+Patterns, whether supplied on the command line or in a separate file, are given
+without delimiters. For example:
+
+ pcregrep Thursday /etc/motd
+
+If you attempt to use delimiters (for example, by surrounding a pattern with
+slashes, as is common in Perl scripts), they are interpreted as part of the
+pattern. Quotes can of course be used to delimit patterns on the command line
+because they are interpreted by the shell, and indeed quotes are required if a
+pattern contains white space or shell metacharacters.
+
+
+The first argument that follows any option settings is treated as the single
+pattern to be matched when neither -e nor -f is present.
+Conversely, when one or both of these options are used to specify patterns, all
+arguments are treated as path names. At least one of -e, -f, or an
+argument pattern must be provided.
+
+
+If no files are specified, pcregrep reads the standard input. The
+standard input can also be referenced by a name consisting of a single hyphen.
+For example:
+
+ pcregrep some-pattern /file1 - /file3
+
+By default, each line that matches a pattern is copied to the standard
+output, and if there is more than one file, the file name is output at the
+start of each line, followed by a colon. However, there are options that can
+change how pcregrep behaves. In particular, the -M option makes it
+possible to search for patterns that span line boundaries. What defines a line
+boundary is controlled by the -N (--newline) option.
+
+
+The amount of memory used for buffering files that are being scanned is
+controlled by a parameter that can be set by the --buffer-size option.
+The default value for this parameter is specified when pcregrep is built,
+with the default default being 20K. A block of memory three times this size is
+used (to allow for buffering "before" and "after" lines). An error occurs if a
+line overflows the buffer.
+
+
+Patterns can be no longer than 8K or BUFSIZ bytes, whichever is the greater.
+BUFSIZ is defined in <stdio.h>. When there is more than one pattern
+(specified by the use of -e and/or -f), each pattern is applied to
+each line in the order in which they are defined, except that all the -e
+patterns are tried before the -f patterns.
+
+
+By default, as soon as one pattern matches a line, no further patterns are
+considered. However, if --colour (or --color) is used to colour the
+matching substrings, or if --only-matching, --file-offsets, or
+--line-offsets is used to output only the part of the line that matched
+(either shown literally, or as an offset), scanning resumes immediately
+following the match, so that further matches on the same line can be found. If
+there are multiple patterns, they are all tried on the remainder of the line,
+but patterns that follow the one that matched are not tried on the earlier part
+of the line.
+
+
+This behaviour means that the order in which multiple patterns are specified
+can affect the output when one of the above options is used. This is no longer
+the same behaviour as GNU grep, which now manages to display earlier matches
+for later patterns (as long as there is no overlap).
+
+
+Patterns that can match an empty string are accepted, but empty string
+matches are never recognized. An example is the pattern "(super)?(man)?", in
+which all components are optional. This pattern finds all occurrences of both
+"super" and "man"; the output differs from matching with "super|man" when only
+the matching substrings are being shown.
+
+
+If the LC_ALL or LC_CTYPE environment variable is set,
+pcregrep uses the value to set a locale when calling the PCRE library.
+The --locale option can be used to override this.
+
+
SUPPORT FOR COMPRESSED FILES
+
+It is possible to compile pcregrep so that it uses libz or
+libbz2 to read files whose names end in .gz or .bz2,
+respectively. You can find out whether your binary has support for one or both
+of these file types by running it with the --help option. If the
+appropriate support is not present, files are treated as plain text. The
+standard input is always so treated.
+
+
BINARY FILES
+
+By default, a file that contains a binary zero byte within the first 1024 bytes
+is identified as a binary file, and is processed specially. (GNU grep also
+identifies binary files in this manner.) See the --binary-files option
+for a means of changing the way binary files are handled.
+
+
OPTIONS
+
+The order in which some of the options appear can affect the output. For
+example, both the -h and -l options affect the printing of file
+names. Whichever comes later in the command line will be the one that takes
+effect. Similarly, except where noted below, if an option is given twice, the
+later setting is used. Numerical values for options may be followed by K or M,
+to signify multiplication by 1024 or 1024*1024 respectively.
+
+
+--
+This terminates the list of options. It is useful if the next item on the
+command line starts with a hyphen but is not an option. This allows for the
+processing of patterns and filenames that start with hyphens.
+
+
+-A number, --after-context=number
+Output number lines of context after each matching line. If filenames
+and/or line numbers are being output, a hyphen separator is used instead of a
+colon for the context lines. A line containing "--" is output between each
+group of lines, unless they are in fact contiguous in the input file. The value
+of number is expected to be relatively small. However, pcregrep
+guarantees to have up to 8K of following text available for context output.
+
+
+-a, --text
+Treat binary files as text. This is equivalent to
+--binary-files=text.
+
+
+-B number, --before-context=number
+Output number lines of context before each matching line. If filenames
+and/or line numbers are being output, a hyphen separator is used instead of a
+colon for the context lines. A line containing "--" is output between each
+group of lines, unless they are in fact contiguous in the input file. The value
+of number is expected to be relatively small. However, pcregrep
+guarantees to have up to 8K of preceding text available for context output.
+
+
+--binary-files=word
+Specify how binary files are to be processed. If the word is "binary" (the
+default), pattern matching is performed on binary files, but the only output is
+"Binary file <name> matches" when a match succeeds. If the word is "text",
+which is equivalent to the -a or --text option, binary files are
+processed in the same way as any other file. In this case, when a match
+succeeds, the output may be binary garbage, which can have nasty effects if
+sent to a terminal. If the word is "without-match", which is equivalent to the
+-I option, binary files are not processed at all; they are assumed not to
+be of interest.
+
+
+--buffer-size=number
+Set the parameter that controls how much memory is used for buffering files
+that are being scanned.
+
+
+-C number, --context=number
+Output number lines of context both before and after each matching line.
+This is equivalent to setting both -A and -B to the same value.
+
+
+-c, --count
+Do not output individual lines from the files that are being scanned; instead
+output the number of lines that would otherwise have been shown. If no lines
+are selected, the number zero is output. If several files are are being
+scanned, a count is output for each of them. However, if the
+--files-with-matches option is also used, only those files whose counts
+are greater than zero are listed. When -c is used, the -A,
+-B, and -C options are ignored.
+
+
+--colour, --color
+If this option is given without any data, it is equivalent to "--colour=auto".
+If data is required, it must be given in the same shell item, separated by an
+equals sign.
+
+
+--colour=value, --color=value
+This option specifies under what circumstances the parts of a line that matched
+a pattern should be coloured in the output. By default, the output is not
+coloured. The value (which is optional, see above) may be "never", "always", or
+"auto". In the latter case, colouring happens only if the standard output is
+connected to a terminal. More resources are used when colouring is enabled,
+because pcregrep has to search for all possible matches in a line, not
+just one, in order to colour them all.
+
+
+The colour that is used can be specified by setting the environment variable
+PCREGREP_COLOUR or PCREGREP_COLOR. The value of this variable should be a
+string of two numbers, separated by a semicolon. They are copied directly into
+the control string for setting colour on a terminal, so it is your
+responsibility to ensure that they make sense. If neither of the environment
+variables is set, the default is "1;31", which gives red.
+
+
+-D action, --devices=action
+If an input path is not a regular file or a directory, "action" specifies how
+it is to be processed. Valid values are "read" (the default) or "skip"
+(silently skip the path).
+
+
+-d action, --directories=action
+If an input path is a directory, "action" specifies how it is to be processed.
+Valid values are "read" (the default in non-Windows environments, for
+compatibility with GNU grep), "recurse" (equivalent to the -r option), or
+"skip" (silently skip the path, the default in Windows environments). In the
+"read" case, directories are read as if they were ordinary files. In some
+operating systems the effect of reading a directory like this is an immediate
+end-of-file; in others it may provoke an error.
+
+
+-e pattern, --regex=pattern, --regexp=pattern
+Specify a pattern to be matched. This option can be used multiple times in
+order to specify several patterns. It can also be used as a way of specifying a
+single pattern that starts with a hyphen. When -e is used, no argument
+pattern is taken from the command line; all arguments are treated as file
+names. There is no limit to the number of patterns. They are applied to each
+line in the order in which they are defined until one matches.
+
+
+If -f is used with -e, the command line patterns are matched first,
+followed by the patterns from the file(s), independent of the order in which
+these options are specified. Note that multiple use of -e is not the same
+as a single pattern with alternatives. For example, X|Y finds the first
+character in a line that is X or Y, whereas if the two patterns are given
+separately, with X first, pcregrep finds X if it is present, even if it
+follows Y in the line. It finds Y only if there is no X in the line. This
+matters only if you are using -o or --colo(u)r to show the part(s)
+of the line that matched.
+
+
+--exclude=pattern
+Files (but not directories) whose names match the pattern are skipped without
+being processed. This applies to all files, whether listed on the command line,
+obtained from --file-list, or by scanning a directory. The pattern is a
+PCRE regular expression, and is matched against the final component of the file
+name, not the entire path. The -F, -w, and -x options do not
+apply to this pattern. The option may be given any number of times in order to
+specify multiple patterns. If a file name matches both an --include
+and an --exclude pattern, it is excluded. There is no short form for this
+option.
+
+
+--exclude-from=filename
+Treat each non-empty line of the file as the data for an --exclude
+option. What constitutes a newline when reading the file is the operating
+system's default. The --newline option has no effect on this option. This
+option may be given more than once in order to specify a number of files to
+read.
+
+
+--exclude-dir=pattern
+Directories whose names match the pattern are skipped without being processed,
+whatever the setting of the --recursive option. This applies to all
+directories, whether listed on the command line, obtained from
+--file-list, or by scanning a parent directory. The pattern is a PCRE
+regular expression, and is matched against the final component of the directory
+name, not the entire path. The -F, -w, and -x options do not
+apply to this pattern. The option may be given any number of times in order to
+specify more than one pattern. If a directory matches both --include-dir
+and --exclude-dir, it is excluded. There is no short form for this
+option.
+
+
+-F, --fixed-strings
+Interpret each data-matching pattern as a list of fixed strings, separated by
+newlines, instead of as a regular expression. What constitutes a newline for
+this purpose is controlled by the --newline option. The -w (match
+as a word) and -x (match whole line) options can be used with -F.
+They apply to each of the fixed strings. A line is selected if any of the fixed
+strings are found in it (subject to -w or -x, if present). This
+option applies only to the patterns that are matched against the contents of
+files; it does not apply to patterns specified by any of the --include or
+--exclude options.
+
+
+-f filename, --file=filename
+Read patterns from the file, one per line, and match them against
+each line of input. What constitutes a newline when reading the file is the
+operating system's default. The --newline option has no effect on this
+option. Trailing white space is removed from each line, and blank lines are
+ignored. An empty file contains no patterns and therefore matches nothing. See
+also the comments about multiple patterns versus a single pattern with
+alternatives in the description of -e above.
+
+
+If this option is given more than once, all the specified files are
+read. A data line is output if any of the patterns match it. A filename can
+be given as "-" to refer to the standard input. When -f is used, patterns
+specified on the command line using -e may also be present; they are
+tested before the file's patterns. However, no other pattern is taken from the
+command line; all arguments are treated as the names of paths to be searched.
+
+
+--file-list=filename
+Read a list of files and/or directories that are to be scanned from the given
+file, one per line. Trailing white space is removed from each line, and blank
+lines are ignored. These paths are processed before any that are listed on the
+command line. The filename can be given as "-" to refer to the standard input.
+If --file and --file-list are both specified as "-", patterns are
+read first. This is useful only when the standard input is a terminal, from
+which further lines (the list of files) can be read after an end-of-file
+indication. If this option is given more than once, all the specified files are
+read.
+
+
+--file-offsets
+Instead of showing lines or parts of lines that match, show each match as an
+offset from the start of the file and a length, separated by a comma. In this
+mode, no context is shown. That is, the -A, -B, and -C
+options are ignored. If there is more than one match in a line, each of them is
+shown separately. This option is mutually exclusive with --line-offsets
+and --only-matching.
+
+
+-H, --with-filename
+Force the inclusion of the filename at the start of output lines when searching
+a single file. By default, the filename is not shown in this case. For matching
+lines, the filename is followed by a colon; for context lines, a hyphen
+separator is used. If a line number is also being output, it follows the file
+name.
+
+
+-h, --no-filename
+Suppress the output filenames when searching multiple files. By default,
+filenames are shown when multiple files are searched. For matching lines, the
+filename is followed by a colon; for context lines, a hyphen separator is used.
+If a line number is also being output, it follows the file name.
+
+
+--help
+Output a help message, giving brief details of the command options and file
+type support, and then exit. Anything else on the command line is
+ignored.
+
+
+-I
+Treat binary files as never matching. This is equivalent to
+--binary-files=without-match.
+
+
+-i, --ignore-case
+Ignore upper/lower case distinctions during comparisons.
+
+
+--include=pattern
+If any --include patterns are specified, the only files that are
+processed are those that match one of the patterns (and do not match an
+--exclude pattern). This option does not affect directories, but it
+applies to all files, whether listed on the command line, obtained from
+--file-list, or by scanning a directory. The pattern is a PCRE regular
+expression, and is matched against the final component of the file name, not
+the entire path. The -F, -w, and -x options do not apply to
+this pattern. The option may be given any number of times. If a file name
+matches both an --include and an --exclude pattern, it is excluded.
+There is no short form for this option.
+
+
+--include-from=filename
+Treat each non-empty line of the file as the data for an --include
+option. What constitutes a newline for this purpose is the operating system's
+default. The --newline option has no effect on this option. This option
+may be given any number of times; all the files are read.
+
+
+--include-dir=pattern
+If any --include-dir patterns are specified, the only directories that
+are processed are those that match one of the patterns (and do not match an
+--exclude-dir pattern). This applies to all directories, whether listed
+on the command line, obtained from --file-list, or by scanning a parent
+directory. The pattern is a PCRE regular expression, and is matched against the
+final component of the directory name, not the entire path. The -F,
+-w, and -x options do not apply to this pattern. The option may be
+given any number of times. If a directory matches both --include-dir and
+--exclude-dir, it is excluded. There is no short form for this option.
+
+
+-L, --files-without-match
+Instead of outputting lines from the files, just output the names of the files
+that do not contain any lines that would have been output. Each file name is
+output once, on a separate line.
+
+
+-l, --files-with-matches
+Instead of outputting lines from the files, just output the names of the files
+containing lines that would have been output. Each file name is output
+once, on a separate line. Searching normally stops as soon as a matching line
+is found in a file. However, if the -c (count) option is also used,
+matching continues in order to obtain the correct count, and those files that
+have at least one match are listed along with their counts. Using this option
+with -c is a way of suppressing the listing of files with no matches.
+
+
+--label=name
+This option supplies a name to be used for the standard input when file names
+are being output. If not supplied, "(standard input)" is used. There is no
+short form for this option.
+
+
+--line-buffered
+When this option is given, input is read and processed line by line, and the
+output is flushed after each write. By default, input is read in large chunks,
+unless pcregrep can determine that it is reading from a terminal (which
+is currently possible only in Unix-like environments). Output to terminal is
+normally automatically flushed by the operating system. This option can be
+useful when the input or output is attached to a pipe and you do not want
+pcregrep to buffer up large amounts of data. However, its use will affect
+performance, and the -M (multiline) option ceases to work.
+
+
+--line-offsets
+Instead of showing lines or parts of lines that match, show each match as a
+line number, the offset from the start of the line, and a length. The line
+number is terminated by a colon (as usual; see the -n option), and the
+offset and length are separated by a comma. In this mode, no context is shown.
+That is, the -A, -B, and -C options are ignored. If there is
+more than one match in a line, each of them is shown separately. This option is
+mutually exclusive with --file-offsets and --only-matching.
+
+
+--locale=locale-name
+This option specifies a locale to be used for pattern matching. It overrides
+the value in the LC_ALL or LC_CTYPE environment variables. If no
+locale is specified, the PCRE library's default (usually the "C" locale) is
+used. There is no short form for this option.
+
+
+--match-limit=number
+Processing some regular expression patterns can require a very large amount of
+memory, leading in some cases to a program crash if not enough is available.
+Other patterns may take a very long time to search for all possible matching
+strings. The pcre_exec() function that is called by pcregrep to do
+the matching has two parameters that can limit the resources that it uses.
+
+
+The --match-limit option provides a means of limiting resource usage
+when processing patterns that are not going to match, but which have a very
+large number of possibilities in their search trees. The classic example is a
+pattern that uses nested unlimited repeats. Internally, PCRE uses a function
+called match() which it calls repeatedly (sometimes recursively). The
+limit set by --match-limit is imposed on the number of times this
+function is called during a match, which has the effect of limiting the amount
+of backtracking that can take place.
+
+
+The --recursion-limit option is similar to --match-limit, but
+instead of limiting the total number of times that match() is called, it
+limits the depth of recursive calls, which in turn limits the amount of memory
+that can be used. The recursion depth is a smaller number than the total number
+of calls, because not all calls to match() are recursive. This limit is
+of use only if it is set smaller than --match-limit.
+
+
+There are no short forms for these options. The default settings are specified
+when the PCRE library is compiled, with the default default being 10 million.
+
+
+-M, --multiline
+Allow patterns to match more than one line. When this option is given, patterns
+may usefully contain literal newline characters and internal occurrences of ^
+and $ characters. The output for a successful match may consist of more than
+one line, the last of which is the one in which the match ended. If the matched
+string ends with a newline sequence the output ends at the end of that line.
+
+
+When this option is set, the PCRE library is called in "multiline" mode.
+There is a limit to the number of lines that can be matched, imposed by the way
+that pcregrep buffers the input file as it scans it. However,
+pcregrep ensures that at least 8K characters or the rest of the document
+(whichever is the shorter) are available for forward matching, and similarly
+the previous 8K characters (or all the previous characters, if fewer than 8K)
+are guaranteed to be available for lookbehind assertions. This option does not
+work when input is read line by line (see \fP--line-buffered\fP.)
+
+
+-N newline-type, --newline=newline-type
+The PCRE library supports five different conventions for indicating
+the ends of lines. They are the single-character sequences CR (carriage return)
+and LF (linefeed), the two-character sequence CRLF, an "anycrlf" convention,
+which recognizes any of the preceding three types, and an "any" convention, in
+which any Unicode line ending sequence is assumed to end a line. The Unicode
+sequences are the three just mentioned, plus VT (vertical tab, U+000B), FF
+(form feed, U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and
+PS (paragraph separator, U+2029).
+
+
+When the PCRE library is built, a default line-ending sequence is specified.
+This is normally the standard sequence for the operating system. Unless
+otherwise specified by this option, pcregrep uses the library's default.
+The possible values for this option are CR, LF, CRLF, ANYCRLF, or ANY. This
+makes it possible to use pcregrep to scan files that have come from other
+environments without having to modify their line endings. If the data that is
+being scanned does not agree with the convention set by this option,
+pcregrep may behave in strange ways. Note that this option does not
+apply to files specified by the -f, --exclude-from, or
+--include-from options, which are expected to use the operating system's
+standard newline sequence.
+
+
+-n, --line-number
+Precede each output line by its line number in the file, followed by a colon
+for matching lines or a hyphen for context lines. If the filename is also being
+output, it precedes the line number. This option is forced if
+--line-offsets is used.
+
+
+--no-jit
+If the PCRE library is built with support for just-in-time compiling (which
+speeds up matching), pcregrep automatically makes use of this, unless it
+was explicitly disabled at build time. This option can be used to disable the
+use of JIT at run time. It is provided for testing and working round problems.
+It should never be needed in normal use.
+
+
+-o, --only-matching
+Show only the part of the line that matched a pattern instead of the whole
+line. In this mode, no context is shown. That is, the -A, -B, and
+-C options are ignored. If there is more than one match in a line, each
+of them is shown separately. If -o is combined with -v (invert the
+sense of the match to find non-matching lines), no output is generated, but the
+return code is set appropriately. If the matched portion of the line is empty,
+nothing is output unless the file name or line number are being printed, in
+which case they are shown on an otherwise empty line. This option is mutually
+exclusive with --file-offsets and --line-offsets.
+
+
+-onumber, --only-matching=number
+Show only the part of the line that matched the capturing parentheses of the
+given number. Up to 32 capturing parentheses are supported, and -o0 is
+equivalent to -o without a number. Because these options can be given
+without an argument (see above), if an argument is present, it must be given in
+the same shell item, for example, -o3 or --only-matching=2. The comments given
+for the non-argument case above also apply to this case. If the specified
+capturing parentheses do not exist in the pattern, or were not set in the
+match, nothing is output unless the file name or line number are being printed.
+
+
+If this option is given multiple times, multiple substrings are output, in the
+order the options are given. For example, -o3 -o1 -o3 causes the substrings
+matched by capturing parentheses 3 and 1 and then 3 again to be output. By
+default, there is no separator (but see the next option).
+
+
+--om-separator=text
+Specify a separating string for multiple occurrences of -o. The default
+is an empty string. Separating strings are never coloured.
+
+
+-q, --quiet
+Work quietly, that is, display nothing except error messages. The exit
+status indicates whether or not any matches were found.
+
+
+-r, --recursive
+If any given path is a directory, recursively scan the files it contains,
+taking note of any --include and --exclude settings. By default, a
+directory is read as a normal file; in some operating systems this gives an
+immediate end-of-file. This option is a shorthand for setting the -d
+option to "recurse".
+
+
+--recursion-limit=number
+See --match-limit above.
+
+
+-s, --no-messages
+Suppress error messages about non-existent or unreadable files. Such files are
+quietly skipped. However, the return code is still 2, even if matches were
+found in other files.
+
+
+-u, --utf-8
+Operate in UTF-8 mode. This option is available only if PCRE has been compiled
+with UTF-8 support. All patterns (including those for any --exclude and
+--include options) and all subject lines that are scanned must be valid
+strings of UTF-8 characters.
+
+
+-V, --version
+Write the version numbers of pcregrep and the PCRE library to the
+standard output and then exit. Anything else on the command line is
+ignored.
+
+
+-v, --invert-match
+Invert the sense of the match, so that lines which do not match any of
+the patterns are the ones that are found.
+
+
+-w, --word-regex, --word-regexp
+Force the patterns to match only whole words. This is equivalent to having \b
+at the start and end of the pattern. This option applies only to the patterns
+that are matched against the contents of files; it does not apply to patterns
+specified by any of the --include or --exclude options.
+
+
+-x, --line-regex, --line-regexp
+Force the patterns to be anchored (each must start matching at the beginning of
+a line) and in addition, require them to match entire lines. This is equivalent
+to having ^ and $ characters at the start and end of each alternative branch in
+every pattern. This option applies only to the patterns that are matched
+against the contents of files; it does not apply to patterns specified by any
+of the --include or --exclude options.
+
+
ENVIRONMENT VARIABLES
+
+The environment variables LC_ALL and LC_CTYPE are examined, in that
+order, for a locale. The first one that is set is used. This can be overridden
+by the --locale option. If no locale is set, the PCRE library's default
+(usually the "C" locale) is used.
+
+
NEWLINES
+
+The -N (--newline) option allows pcregrep to scan files with
+different newline conventions from the default. Any parts of the input files
+that are written to the standard output are copied identically, with whatever
+newline sequences they have in the input. However, the setting of this option
+does not affect the interpretation of files specified by the -f,
+--exclude-from, or --include-from options, which are assumed to use
+the operating system's standard newline sequence, nor does it affect the way in
+which pcregrep writes informational messages to the standard error and
+output streams. For these it uses the string "\n" to indicate newlines,
+relying on the C I/O library to convert this to an appropriate sequence.
+
+
OPTIONS COMPATIBILITY
+
+Many of the short and long forms of pcregrep's options are the same
+as in the GNU grep program. Any long option of the form
+--xxx-regexp (GNU terminology) is also available as --xxx-regex
+(PCRE terminology). However, the --file-list, --file-offsets,
+--include-dir, --line-offsets, --locale, --match-limit,
+-M, --multiline, -N, --newline, --om-separator,
+--recursion-limit, -u, and --utf-8 options are specific to
+pcregrep, as is the use of the --only-matching option with a
+capturing parentheses number.
+
+
+Although most of the common options work the same way, a few are different in
+pcregrep. For example, the --include option's argument is a glob
+for GNU grep, but a regular expression for pcregrep. If both the
+-c and -l options are given, GNU grep lists only file names,
+without counts, but pcregrep gives the counts.
+
+
OPTIONS WITH DATA
+
+There are four different ways in which an option with data can be specified.
+If a short form option is used, the data may follow immediately, or (with one
+exception) in the next command line item. For example:
+
+ -f/some/file
+ -f /some/file
+
+The exception is the -o option, which may appear with or without data.
+Because of this, if data is present, it must follow immediately in the same
+item, for example -o3.
+
+
+If a long form option is used, the data may appear in the same command line
+item, separated by an equals character, or (with two exceptions) it may appear
+in the next command line item. For example:
+
+ --file=/some/file
+ --file /some/file
+
+Note, however, that if you want to supply a file name beginning with ~ as data
+in a shell command, and have the shell expand ~ to a home directory, you must
+separate the file name from the option, because the shell does not treat ~
+specially unless it is at the start of an item.
+
+
+The exceptions to the above are the --colour (or --color) and
+--only-matching options, for which the data is optional. If one of these
+options does have data, it must be given in the first form, using an equals
+character. Otherwise pcregrep will assume that it has no data.
+
+
MATCHING ERRORS
+
+It is possible to supply a regular expression that takes a very long time to
+fail to match certain lines. Such patterns normally involve nested indefinite
+repeats, for example: (a+)*\d when matched against a line of a's with no final
+digit. The PCRE matching function has a resource limit that causes it to abort
+in these circumstances. If this happens, pcregrep outputs an error
+message and the line that caused the problem to the standard error stream. If
+there are more than 20 such errors, pcregrep gives up.
+
+
+The --match-limit option of pcregrep can be used to set the overall
+resource limit; there is a second option called --recursion-limit that
+sets a limit on the amount of memory (usually stack) that is used (see the
+discussion of these options above).
+
+
DIAGNOSTICS
+
+Exit status is 0 if any matches were found, 1 if no matches were found, and 2
+for syntax errors, overlong lines, non-existent or inaccessible files (even if
+matches were found in other files) or too many matching errors. Using the
+-s option to suppress error messages about inaccessible files does not
+affect the return code.
+
+
SEE ALSO
+
+pcrepattern(3), pcresyntax(3), pcretest(1).
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 13 September 2012
+
+Copyright © 1997-2012 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcrejit.html b/pcre/doc/html/pcrejit.html
new file mode 100644
index 00000000000..210f1da0262
--- /dev/null
+++ b/pcre/doc/html/pcrejit.html
@@ -0,0 +1,452 @@
+
+
+pcrejit specification
+
+
+pcrejit man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
PCRE JUST-IN-TIME COMPILER SUPPORT
+
+Just-in-time compiling is a heavyweight optimization that can greatly speed up
+pattern matching. However, it comes at the cost of extra processing before the
+match is performed. Therefore, it is of most benefit when the same pattern is
+going to be matched many times. This does not necessarily mean many calls of a
+matching function; if the pattern is not anchored, matching attempts may take
+place many times at various positions in the subject, even for a single call.
+Therefore, if the subject string is very long, it may still pay to use JIT for
+one-off matches.
+
+
+JIT support applies only to the traditional Perl-compatible matching function.
+It does not apply when the DFA matching function is being used. The code for
+this support was written by Zoltan Herczeg.
+
+
8-BIT, 16-BIT AND 32-BIT SUPPORT
+
+JIT support is available for all of the 8-bit, 16-bit and 32-bit PCRE
+libraries. To keep this documentation simple, only the 8-bit interface is
+described in what follows. If you are using the 16-bit library, substitute the
+16-bit functions and 16-bit structures (for example, pcre16_jit_stack
+instead of pcre_jit_stack). If you are using the 32-bit library,
+substitute the 32-bit functions and 32-bit structures (for example,
+pcre32_jit_stack instead of pcre_jit_stack).
+
+
AVAILABILITY OF JIT SUPPORT
+
+JIT support is an optional feature of PCRE. The "configure" option --enable-jit
+(or equivalent CMake option) must be set when PCRE is built if you want to use
+JIT. The support is limited to the following hardware platforms:
+
+ ARM v5, v7, and Thumb2
+ Intel x86 32-bit and 64-bit
+ MIPS 32-bit
+ Power PC 32-bit and 64-bit
+ SPARC 32-bit (experimental)
+
+If --enable-jit is set on an unsupported platform, compilation fails.
+
+
+A program that is linked with PCRE 8.20 or later can tell if JIT support is
+available by calling pcre_config() with the PCRE_CONFIG_JIT option. The
+result is 1 when JIT is available, and 0 otherwise. However, a simple program
+does not need to check this in order to use JIT. The normal API is implemented
+in a way that falls back to the interpretive code if JIT is not available. For
+programs that need the best possible performance, there is also a "fast path"
+API that is JIT-specific.
+
+
+If your program may sometimes be linked with versions of PCRE that are older
+than 8.20, but you want to use JIT when it is available, you can test
+the values of PCRE_MAJOR and PCRE_MINOR, or the existence of a JIT macro such
+as PCRE_CONFIG_JIT, for compile-time control of your code.
+
+
SIMPLE USE OF JIT
+
+You have to do two things to make use of the JIT support in the simplest way:
+
+ (1) Call pcre_study() with the PCRE_STUDY_JIT_COMPILE option for
+ each compiled pattern, and pass the resulting pcre_extra block to
+ pcre_exec().
+
+ (2) Use pcre_free_study() to free the pcre_extra block when it is
+ no longer needed, instead of just freeing it yourself. This ensures that
+ any JIT data is also freed.
+
+For a program that may be linked with pre-8.20 versions of PCRE, you can insert
+
+ #ifndef PCRE_STUDY_JIT_COMPILE
+ #define PCRE_STUDY_JIT_COMPILE 0
+ #endif
+
+so that no option is passed to pcre_study(), and then use something like
+this to free the study data:
+
+ #ifdef PCRE_CONFIG_JIT
+ pcre_free_study(study_ptr);
+ #else
+ pcre_free(study_ptr);
+ #endif
+
+PCRE_STUDY_JIT_COMPILE requests the JIT compiler to generate code for complete
+matches. If you want to run partial matches using the PCRE_PARTIAL_HARD or
+PCRE_PARTIAL_SOFT options of pcre_exec(), you should set one or both of
+the following options in addition to, or instead of, PCRE_STUDY_JIT_COMPILE
+when you call pcre_study():
+
+ PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
+
+The JIT compiler generates different optimized code for each of the three
+modes (normal, soft partial, hard partial). When pcre_exec() is called,
+the appropriate code is run if it is available. Otherwise, the pattern is
+matched using interpretive code.
+
+
+In some circumstances you may need to call additional functions. These are
+described in the section entitled
+"Controlling the JIT stack"
+below.
+
+
+If JIT support is not available, PCRE_STUDY_JIT_COMPILE etc. are ignored, and
+no JIT data is created. Otherwise, the compiled pattern is passed to the JIT
+compiler, which turns it into machine code that executes much faster than the
+normal interpretive code. When pcre_exec() is passed a pcre_extra
+block containing a pointer to JIT code of the appropriate mode (normal or
+hard/soft partial), it obeys that code instead of running the interpreter. The
+result is identical, but the compiled JIT code runs much faster.
+
+
+There are some pcre_exec() options that are not supported for JIT
+execution. There are also some pattern items that JIT cannot handle. Details
+are given below. In both cases, execution automatically falls back to the
+interpretive code. If you want to know whether JIT was actually used for a
+particular match, you should arrange for a JIT callback function to be set up
+as described in the section entitled
+"Controlling the JIT stack"
+below, even if you do not need to supply a non-default JIT stack. Such a
+callback function is called whenever JIT code is about to be obeyed. If the
+execution options are not right for JIT execution, the callback function is not
+obeyed.
+
+
+If the JIT compiler finds an unsupported item, no JIT data is generated. You
+can find out if JIT execution is available after studying a pattern by calling
+pcre_fullinfo() with the PCRE_INFO_JIT option. A result of 1 means that
+JIT compilation was successful. A result of 0 means that JIT support is not
+available, or the pattern was not studied with PCRE_STUDY_JIT_COMPILE etc., or
+the JIT compiler was not able to handle the pattern.
+
+
+Once a pattern has been studied, with or without JIT, it can be used as many
+times as you like for matching different subject strings.
+
+
UNSUPPORTED OPTIONS AND PATTERN ITEMS
+
+The only pcre_exec() options that are supported for JIT execution are
+PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK, PCRE_NO_UTF32_CHECK, PCRE_NOTBOL,
+PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART, PCRE_PARTIAL_HARD, and
+PCRE_PARTIAL_SOFT.
+
+
+The only unsupported pattern items are \C (match a single data unit) when
+running in a UTF mode, and a callout immediately before an assertion condition
+in a conditional group.
+
+
RETURN VALUES FROM JIT EXECUTION
+
+When a pattern is matched using JIT execution, the return values are the same
+as those given by the interpretive pcre_exec() code, with the addition of
+one new error code: PCRE_ERROR_JIT_STACKLIMIT. This means that the memory used
+for the JIT stack was insufficient. See
+"Controlling the JIT stack"
+below for a discussion of JIT stack usage. For compatibility with the
+interpretive pcre_exec() code, no more than two-thirds of the
+ovector argument is used for passing back captured substrings.
+
+
+The error code PCRE_ERROR_MATCHLIMIT is returned by the JIT code if searching a
+very large pattern tree goes on for too long, as it is in the same circumstance
+when JIT is not used, but the details of exactly what is counted are not the
+same. The PCRE_ERROR_RECURSIONLIMIT error code is never returned by JIT
+execution.
+
+
SAVING AND RESTORING COMPILED PATTERNS
+
+The code that is generated by the JIT compiler is architecture-specific, and is
+also position dependent. For those reasons it cannot be saved (in a file or
+database) and restored later like the bytecode and other data of a compiled
+pattern. Saving and restoring compiled patterns is not something many people
+do. More detail about this facility is given in the
+pcreprecompile
+documentation. It should be possible to run pcre_study() on a saved and
+restored pattern, and thereby recreate the JIT data, but because JIT
+compilation uses significant resources, it is probably not worth doing this;
+you might as well recompile the original pattern.
+
+
CONTROLLING THE JIT STACK
+
+When the compiled JIT code runs, it needs a block of memory to use as a stack.
+By default, it uses 32K on the machine stack. However, some large or
+complicated patterns need more than this. The error PCRE_ERROR_JIT_STACKLIMIT
+is given when there is not enough stack. Three functions are provided for
+managing blocks of memory for use as JIT stacks. There is further discussion
+about the use of JIT stacks in the section entitled
+"JIT stack FAQ"
+below.
+
+
+The pcre_jit_stack_alloc() function creates a JIT stack. Its arguments
+are a starting size and a maximum size, and it returns a pointer to an opaque
+structure of type pcre_jit_stack, or NULL if there is an error. The
+pcre_jit_stack_free() function can be used to free a stack that is no
+longer needed. (For the technically minded: the address space is allocated by
+mmap or VirtualAlloc.)
+
+
+JIT uses far less memory for recursion than the interpretive code,
+and a maximum stack size of 512K to 1M should be more than enough for any
+pattern.
+
+
+The pcre_assign_jit_stack() function specifies which stack JIT code
+should use. Its arguments are as follows:
+
+ pcre_extra *extra
+ pcre_jit_callback callback
+ void *data
+
+The extra argument must be the result of studying a pattern with
+PCRE_STUDY_JIT_COMPILE etc. There are three cases for the values of the other
+two options:
+
+ (1) If callback is NULL and data is NULL, an internal 32K block
+ on the machine stack is used.
+
+ (2) If callback is NULL and data is not NULL, data must be
+ a valid JIT stack, the result of calling pcre_jit_stack_alloc().
+
+ (3) If callback is not NULL, it must point to a function that is
+ called with data as an argument at the start of matching, in
+ order to set up a JIT stack. If the return from the callback
+ function is NULL, the internal 32K stack is used; otherwise the
+ return value must be a valid JIT stack, the result of calling
+ pcre_jit_stack_alloc().
+
+A callback function is obeyed whenever JIT code is about to be run; it is not
+obeyed when pcre_exec() is called with options that are incompatible for
+JIT execution. A callback function can therefore be used to determine whether a
+match operation was executed by JIT or by the interpreter.
+
+
+You may safely use the same JIT stack for more than one pattern (either by
+assigning directly or by callback), as long as the patterns are all matched
+sequentially in the same thread. In a multithread application, if you do not
+specify a JIT stack, or if you assign or pass back NULL from a callback, that
+is thread-safe, because each thread has its own machine stack. However, if you
+assign or pass back a non-NULL JIT stack, this must be a different stack for
+each thread so that the application is thread-safe.
+
+
+Strictly speaking, even more is allowed. You can assign the same non-NULL stack
+to any number of patterns as long as they are not used for matching by multiple
+threads at the same time. For example, you can assign the same stack to all
+compiled patterns, and use a global mutex in the callback to wait until the
+stack is available for use. However, this is an inefficient solution, and not
+recommended.
+
+
+This is a suggestion for how a multithreaded program that needs to set up
+non-default JIT stacks might operate:
+
+ During thread initalization
+ thread_local_var = pcre_jit_stack_alloc(...)
+
+ During thread exit
+ pcre_jit_stack_free(thread_local_var)
+
+ Use a one-line callback function
+ return thread_local_var
+
+All the functions described in this section do nothing if JIT is not available,
+and pcre_assign_jit_stack() does nothing unless the extra argument
+is non-NULL and points to a pcre_extra block that is the result of a
+successful study with PCRE_STUDY_JIT_COMPILE etc.
+
+
JIT STACK FAQ
+
+(1) Why do we need JIT stacks?
+
+
+PCRE (and JIT) is a recursive, depth-first engine, so it needs a stack where
+the local data of the current node is pushed before checking its child nodes.
+Allocating real machine stack on some platforms is difficult. For example, the
+stack chain needs to be updated every time if we extend the stack on PowerPC.
+Although it is possible, its updating time overhead decreases performance. So
+we do the recursion in memory.
+
+
+(2) Why don't we simply allocate blocks of memory with malloc()?
+
+
+Modern operating systems have a nice feature: they can reserve an address space
+instead of allocating memory. We can safely allocate memory pages inside this
+address space, so the stack could grow without moving memory data (this is
+important because of pointers). Thus we can allocate 1M address space, and use
+only a single memory page (usually 4K) if that is enough. However, we can still
+grow up to 1M anytime if needed.
+
+
+(3) Who "owns" a JIT stack?
+
+
+The owner of the stack is the user program, not the JIT studied pattern or
+anything else. The user program must ensure that if a stack is used by
+pcre_exec(), (that is, it is assigned to the pattern currently running),
+that stack must not be used by any other threads (to avoid overwriting the same
+memory area). The best practice for multithreaded programs is to allocate a
+stack for each thread, and return this stack through the JIT callback function.
+
+
+(4) When should a JIT stack be freed?
+
+
+You can free a JIT stack at any time, as long as it will not be used by
+pcre_exec() again. When you assign the stack to a pattern, only a pointer
+is set. There is no reference counting or any other magic. You can free the
+patterns and stacks in any order, anytime. Just do not call
+pcre_exec() with a pattern pointing to an already freed stack, as that
+will cause SEGFAULT. (Also, do not free a stack currently used by
+pcre_exec() in another thread). You can also replace the stack for a
+pattern at any time. You can even free the previous stack before assigning a
+replacement.
+
+
+(5) Should I allocate/free a stack every time before/after calling
+pcre_exec()?
+
+
+No, because this is too costly in terms of resources. However, you could
+implement some clever idea which release the stack if it is not used in let's
+say two minutes. The JIT callback can help to achieve this without keeping a
+list of the currently JIT studied patterns.
+
+
+(6) OK, the stack is for long term memory allocation. But what happens if a
+pattern causes stack overflow with a stack of 1M? Is that 1M kept until the
+stack is freed?
+
+
+Especially on embedded sytems, it might be a good idea to release memory
+sometimes without freeing the stack. There is no API for this at the moment.
+Probably a function call which returns with the currently allocated memory for
+any stack and another which allows releasing memory (shrinking the stack) would
+be a good idea if someone needs this.
+
+
+(7) This is too much of a headache. Isn't there any better solution for JIT
+stack handling?
+
+
+No, thanks to Windows. If POSIX threads were used everywhere, we could throw
+out this complicated API.
+
+
EXAMPLE CODE
+
+This is a single-threaded example that specifies a JIT stack without using a
+callback.
+
+ int rc;
+ int ovector[30];
+ pcre *re;
+ pcre_extra *extra;
+ pcre_jit_stack *jit_stack;
+
+ re = pcre_compile(pattern, 0, &error, &erroffset, NULL);
+ /* Check for errors */
+ extra = pcre_study(re, PCRE_STUDY_JIT_COMPILE, &error);
+ jit_stack = pcre_jit_stack_alloc(32*1024, 512*1024);
+ /* Check for error (NULL) */
+ pcre_assign_jit_stack(extra, NULL, jit_stack);
+ rc = pcre_exec(re, extra, subject, length, 0, 0, ovector, 30);
+ /* Check results */
+ pcre_free(re);
+ pcre_free_study(extra);
+ pcre_jit_stack_free(jit_stack);
+
+
+
+
JIT FAST PATH API
+
+Because the API described above falls back to interpreted execution when JIT is
+not available, it is convenient for programs that are written for general use
+in many environments. However, calling JIT via pcre_exec() does have a
+performance impact. Programs that are written for use where JIT is known to be
+available, and which need the best possible performance, can instead use a
+"fast path" API to call JIT execution directly instead of calling
+pcre_exec() (obviously only for patterns that have been successfully
+studied by JIT).
+
+
+The fast path function is called pcre_jit_exec(), and it takes exactly
+the same arguments as pcre_exec(), plus one additional argument that
+must point to a JIT stack. The JIT stack arrangements described above do not
+apply. The return values are the same as for pcre_exec().
+
+
+When you call pcre_exec(), as well as testing for invalid options, a
+number of other sanity checks are performed on the arguments. For example, if
+the subject pointer is NULL, or its length is negative, an immediate error is
+given. Also, unless PCRE_NO_UTF[8|16|32] is set, a UTF subject string is tested
+for validity. In the interests of speed, these checks do not happen on the JIT
+fast path, and if invalid data is passed, the result is undefined.
+
+
+Bypassing the sanity checks and the pcre_exec() wrapping can give
+speedups of more than 10%.
+
+
SEE ALSO
+
+pcreapi(3)
+
+
AUTHOR
+
+Philip Hazel (FAQ by Zoltan Herczeg)
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 17 March 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcrelimits.html b/pcre/doc/html/pcrelimits.html
new file mode 100644
index 00000000000..b83a801040a
--- /dev/null
+++ b/pcre/doc/html/pcrelimits.html
@@ -0,0 +1,86 @@
+
+
+pcrelimits specification
+
+
+pcrelimits man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+SIZE AND OTHER LIMITATIONS
+
+
+There are some size limitations in PCRE but it is hoped that they will never in
+practice be relevant.
+
+
+The maximum length of a compiled pattern is approximately 64K data units (bytes
+for the 8-bit library, 32-bit units for the 32-bit library, and 32-bit units for
+the 32-bit library) if PCRE is compiled with the default internal linkage size
+of 2 bytes. If you want to process regular expressions that are truly enormous,
+you can compile PCRE with an internal linkage size of 3 or 4 (when building the
+16-bit or 32-bit library, 3 is rounded up to 4). See the README file in
+the source distribution and the
+pcrebuild
+documentation for details. In these cases the limit is substantially larger.
+However, the speed of execution is slower.
+
+
+All values in repeating quantifiers must be less than 65536.
+
+
+There is no limit to the number of parenthesized subpatterns, but there can be
+no more than 65535 capturing subpatterns.
+
+
+There is a limit to the number of forward references to subsequent subpatterns
+of around 200,000. Repeated forward references with fixed upper limits, for
+example, (?2){0,100} when subpattern number 2 is to the right, are included in
+the count. There is no limit to the number of backward references.
+
+
+The maximum length of name for a named subpattern is 32 characters, and the
+maximum number of named subpatterns is 10000.
+
+
+The maximum length of a name in a (*MARK), (*PRUNE), (*SKIP), or (*THEN) verb
+is 255 for the 8-bit library and 65535 for the 16-bit and 32-bit library.
+
+
+The maximum length of a subject string is the largest positive number that an
+integer variable can hold. However, when using the traditional matching
+function, PCRE uses recursion to handle subpatterns and indefinite repetition.
+This means that the available stack space may limit the size of a subject
+string that can be processed by certain patterns. For a discussion of stack
+issues, see the
+pcrestack
+documentation.
+
+
+AUTHOR
+
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
+REVISION
+
+
+Last updated: 04 May 2012
+
+Copyright © 1997-2012 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcrematching.html b/pcre/doc/html/pcrematching.html
new file mode 100644
index 00000000000..f1854314594
--- /dev/null
+++ b/pcre/doc/html/pcrematching.html
@@ -0,0 +1,233 @@
+
+
+pcrematching specification
+
+
+pcrematching man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
PCRE MATCHING ALGORITHMS
+
+This document describes the two different algorithms that are available in PCRE
+for matching a compiled regular expression against a given subject string. The
+"standard" algorithm is the one provided by the pcre_exec(),
+pcre16_exec() and pcre32_exec() functions. These work in the same
+as as Perl's matching function, and provide a Perl-compatible matching operation.
+The just-in-time (JIT) optimization that is described in the
+pcrejit
+documentation is compatible with these functions.
+
+
+An alternative algorithm is provided by the pcre_dfa_exec(),
+pcre16_dfa_exec() and pcre32_dfa_exec() functions; they operate in
+a different way, and are not Perl-compatible. This alternative has advantages
+and disadvantages compared with the standard algorithm, and these are described
+below.
+
+
+When there is only one possible way in which a given subject string can match a
+pattern, the two algorithms give the same answer. A difference arises, however,
+when there are multiple possibilities. For example, if the pattern
+
+ ^<.*>
+
+is matched against the string
+
+ <something> <something else> <something further>
+
+there are three possible answers. The standard algorithm finds only one of
+them, whereas the alternative algorithm finds all three.
+
+
REGULAR EXPRESSIONS AS TREES
+
+The set of strings that are matched by a regular expression can be represented
+as a tree structure. An unlimited repetition in the pattern makes the tree of
+infinite size, but it is still a tree. Matching the pattern to a given subject
+string (from a given starting point) can be thought of as a search of the tree.
+There are two ways to search a tree: depth-first and breadth-first, and these
+correspond to the two matching algorithms provided by PCRE.
+
+
THE STANDARD MATCHING ALGORITHM
+
+In the terminology of Jeffrey Friedl's book "Mastering Regular
+Expressions", the standard algorithm is an "NFA algorithm". It conducts a
+depth-first search of the pattern tree. That is, it proceeds along a single
+path through the tree, checking that the subject matches what is required. When
+there is a mismatch, the algorithm tries any alternatives at the current point,
+and if they all fail, it backs up to the previous branch point in the tree, and
+tries the next alternative branch at that level. This often involves backing up
+(moving to the left) in the subject string as well. The order in which
+repetition branches are tried is controlled by the greedy or ungreedy nature of
+the quantifier.
+
+
+If a leaf node is reached, a matching string has been found, and at that point
+the algorithm stops. Thus, if there is more than one possible match, this
+algorithm returns the first one that it finds. Whether this is the shortest,
+the longest, or some intermediate length depends on the way the greedy and
+ungreedy repetition quantifiers are specified in the pattern.
+
+
+Because it ends up with a single path through the tree, it is relatively
+straightforward for this algorithm to keep track of the substrings that are
+matched by portions of the pattern in parentheses. This provides support for
+capturing parentheses and back references.
+
+
THE ALTERNATIVE MATCHING ALGORITHM
+
+This algorithm conducts a breadth-first search of the tree. Starting from the
+first matching point in the subject, it scans the subject string from left to
+right, once, character by character, and as it does this, it remembers all the
+paths through the tree that represent valid matches. In Friedl's terminology,
+this is a kind of "DFA algorithm", though it is not implemented as a
+traditional finite state machine (it keeps multiple states active
+simultaneously).
+
+
+Although the general principle of this matching algorithm is that it scans the
+subject string only once, without backtracking, there is one exception: when a
+lookaround assertion is encountered, the characters following or preceding the
+current point have to be independently inspected.
+
+
+The scan continues until either the end of the subject is reached, or there are
+no more unterminated paths. At this point, terminated paths represent the
+different matching possibilities (if there are none, the match has failed).
+Thus, if there is more than one possible match, this algorithm finds all of
+them, and in particular, it finds the longest. The matches are returned in
+decreasing order of length. There is an option to stop the algorithm after the
+first match (which is necessarily the shortest) is found.
+
+
+Note that all the matches that are found start at the same point in the
+subject. If the pattern
+
+ cat(er(pillar)?)?
+
+is matched against the string "the caterpillar catchment", the result will be
+the three strings "caterpillar", "cater", and "cat" that start at the fifth
+character of the subject. The algorithm does not automatically move on to find
+matches that start at later positions.
+
+
+There are a number of features of PCRE regular expressions that are not
+supported by the alternative matching algorithm. They are as follows:
+
+
+1. Because the algorithm finds all possible matches, the greedy or ungreedy
+nature of repetition quantifiers is not relevant. Greedy and ungreedy
+quantifiers are treated in exactly the same way. However, possessive
+quantifiers can make a difference when what follows could also match what is
+quantified, for example in a pattern like this:
+
+ ^a++\w!
+
+This pattern matches "aaab!" but not "aaa!", which would be matched by a
+non-possessive quantifier. Similarly, if an atomic group is present, it is
+matched as if it were a standalone pattern at the current point, and the
+longest match is then "locked in" for the rest of the overall pattern.
+
+
+2. When dealing with multiple paths through the tree simultaneously, it is not
+straightforward to keep track of captured substrings for the different matching
+possibilities, and PCRE's implementation of this algorithm does not attempt to
+do this. This means that no captured substrings are available.
+
+
+3. Because no substrings are captured, back references within the pattern are
+not supported, and cause errors if encountered.
+
+
+4. For the same reason, conditional expressions that use a backreference as the
+condition or test for a specific group recursion are not supported.
+
+
+5. Because many paths through the tree may be active, the \K escape sequence,
+which resets the start of the match when encountered (but may be on some paths
+and not on others), is not supported. It causes an error if encountered.
+
+
+6. Callouts are supported, but the value of the capture_top field is
+always 1, and the value of the capture_last field is always -1.
+
+
+7. The \C escape sequence, which (in the standard algorithm) always matches a
+single data unit, even in UTF-8, UTF-16 or UTF-32 modes, is not supported in
+these modes, because the alternative algorithm moves through the subject string
+one character (not data unit) at a time, for all active paths through the tree.
+
+
+8. Except for (*FAIL), the backtracking control verbs such as (*PRUNE) are not
+supported. (*FAIL) is supported, and behaves like a failing negative assertion.
+
+
ADVANTAGES OF THE ALTERNATIVE ALGORITHM
+
+Using the alternative matching algorithm provides the following advantages:
+
+
+1. All possible matches (at a single point in the subject) are automatically
+found, and in particular, the longest match is found. To find more than one
+match using the standard algorithm, you have to do kludgy things with
+callouts.
+
+
+2. Because the alternative algorithm scans the subject string just once, and
+never needs to backtrack (except for lookbehinds), it is possible to pass very
+long subject strings to the matching function in several pieces, checking for
+partial matching each time. Although it is possible to do multi-segment
+matching using the standard algorithm by retaining partially matched
+substrings, it is more complicated. The
+pcrepartial
+documentation gives details of partial matching and discusses multi-segment
+matching.
+
+
DISADVANTAGES OF THE ALTERNATIVE ALGORITHM
+
+The alternative algorithm suffers from a number of disadvantages:
+
+
+1. It is substantially slower than the standard algorithm. This is partly
+because it has to search for all possible matches, but is also because it is
+less susceptible to optimization.
+
+
+2. Capturing parentheses and back references are not supported.
+
+
+3. Although atomic groups are supported, their use does not provide the
+performance advantage that it does for the standard algorithm.
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 08 January 2012
+
+Copyright © 1997-2012 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcrepartial.html b/pcre/doc/html/pcrepartial.html
new file mode 100644
index 00000000000..98d34f0bcc2
--- /dev/null
+++ b/pcre/doc/html/pcrepartial.html
@@ -0,0 +1,499 @@
+
+
+pcrepartial specification
+
+
+pcrepartial man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
PARTIAL MATCHING IN PCRE
+
+In normal use of PCRE, if the subject string that is passed to a matching
+function matches as far as it goes, but is too short to match the entire
+pattern, PCRE_ERROR_NOMATCH is returned. There are circumstances where it might
+be helpful to distinguish this case from other cases in which there is no
+match.
+
+
+Consider, for example, an application where a human is required to type in data
+for a field with specific formatting requirements. An example might be a date
+in the form ddmmmyy, defined by this pattern:
+
+ ^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$
+
+If the application sees the user's keystrokes one by one, and can check that
+what has been typed so far is potentially valid, it is able to raise an error
+as soon as a mistake is made, by beeping and not reflecting the character that
+has been typed, for example. This immediate feedback is likely to be a better
+user interface than a check that is delayed until the entire string has been
+entered. Partial matching can also be useful when the subject string is very
+long and is not all available at once.
+
+
+PCRE supports partial matching by means of the PCRE_PARTIAL_SOFT and
+PCRE_PARTIAL_HARD options, which can be set when calling any of the matching
+functions. For backwards compatibility, PCRE_PARTIAL is a synonym for
+PCRE_PARTIAL_SOFT. The essential difference between the two options is whether
+or not a partial match is preferred to an alternative complete match, though
+the details differ between the two types of matching function. If both options
+are set, PCRE_PARTIAL_HARD takes precedence.
+
+
+If you want to use partial matching with just-in-time optimized code, you must
+call pcre_study(), pcre16_study() or pcre32_study() with one
+or both of these options:
+
+ PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
+
+PCRE_STUDY_JIT_COMPILE should also be set if you are going to run non-partial
+matches on the same pattern. If the appropriate JIT study mode has not been set
+for a match, the interpretive matching code is used.
+
+
+Setting a partial matching option disables two of PCRE's standard
+optimizations. PCRE remembers the last literal data unit in a pattern, and
+abandons matching immediately if it is not present in the subject string. This
+optimization cannot be used for a subject string that might match only
+partially. If the pattern was studied, PCRE knows the minimum length of a
+matching string, and does not bother to run the matching function on shorter
+strings. This optimization is also disabled for partial matching.
+
+
PARTIAL MATCHING USING pcre_exec() OR pcre[16|32]_exec()
+
+A partial match occurs during a call to pcre_exec() or
+pcre[16|32]_exec() when the end of the subject string is reached
+successfully, but matching cannot continue because more characters are needed.
+However, at least one character in the subject must have been inspected. This
+character need not form part of the final matched string; lookbehind assertions
+and the \K escape sequence provide ways of inspecting characters before the
+start of a matched substring. The requirement for inspecting at least one
+character exists because an empty string can always be matched; without such a
+restriction there would always be a partial match of an empty string at the end
+of the subject.
+
+
+If there are at least two slots in the offsets vector when a partial match is
+returned, the first slot is set to the offset of the earliest character that
+was inspected. For convenience, the second offset points to the end of the
+subject so that a substring can easily be identified. If there are at least
+three slots in the offsets vector, the third slot is set to the offset of the
+character where matching started.
+
+
+For the majority of patterns, the contents of the first and third slots will be
+the same. However, for patterns that contain lookbehind assertions, or begin
+with \b or \B, characters before the one where matching started may have been
+inspected while carrying out the match. For example, consider this pattern:
+
+ /(?<=abc)123/
+
+This pattern matches "123", but only if it is preceded by "abc". If the subject
+string is "xyzabc12", the first two offsets after a partial match are for the
+substring "abc12", because all these characters were inspected. However, the
+third offset is set to 6, because that is the offset where matching began.
+
+
+What happens when a partial match is identified depends on which of the two
+partial matching options are set.
+
+
+PCRE_PARTIAL_SOFT WITH pcre_exec() OR pcre[16|32]_exec()
+
+
+If PCRE_PARTIAL_SOFT is set when pcre_exec() or pcre[16|32]_exec()
+identifies a partial match, the partial match is remembered, but matching
+continues as normal, and other alternatives in the pattern are tried. If no
+complete match can be found, PCRE_ERROR_PARTIAL is returned instead of
+PCRE_ERROR_NOMATCH.
+
+
+This option is "soft" because it prefers a complete match over a partial match.
+All the various matching items in a pattern behave as if the subject string is
+potentially complete. For example, \z, \Z, and $ match at the end of the
+subject, as normal, and for \b and \B the end of the subject is treated as a
+non-alphanumeric.
+
+
+If there is more than one partial match, the first one that was found provides
+the data that is returned. Consider this pattern:
+
+ /123\w+X|dogY/
+
+If this is matched against the subject string "abc123dog", both
+alternatives fail to match, but the end of the subject is reached during
+matching, so PCRE_ERROR_PARTIAL is returned. The offsets are set to 3 and 9,
+identifying "123dog" as the first partial match that was found. (In this
+example, there are two partial matches, because "dog" on its own partially
+matches the second alternative.)
+
+
+PCRE_PARTIAL_HARD WITH pcre_exec() OR pcre[16|32]_exec()
+
+
+If PCRE_PARTIAL_HARD is set for pcre_exec() or pcre[16|32]_exec(),
+PCRE_ERROR_PARTIAL is returned as soon as a partial match is found, without
+continuing to search for possible complete matches. This option is "hard"
+because it prefers an earlier partial match over a later complete match. For
+this reason, the assumption is made that the end of the supplied subject string
+may not be the true end of the available data, and so, if \z, \Z, \b, \B,
+or $ are encountered at the end of the subject, the result is
+PCRE_ERROR_PARTIAL, provided that at least one character in the subject has
+been inspected.
+
+
+Setting PCRE_PARTIAL_HARD also affects the way UTF-8 and UTF-16
+subject strings are checked for validity. Normally, an invalid sequence
+causes the error PCRE_ERROR_BADUTF8 or PCRE_ERROR_BADUTF16. However, in the
+special case of a truncated character at the end of the subject,
+PCRE_ERROR_SHORTUTF8 or PCRE_ERROR_SHORTUTF16 is returned when
+PCRE_PARTIAL_HARD is set.
+
+
+Comparing hard and soft partial matching
+
+
+The difference between the two partial matching options can be illustrated by a
+pattern such as:
+
+ /dog(sbody)?/
+
+This matches either "dog" or "dogsbody", greedily (that is, it prefers the
+longer string if possible). If it is matched against the string "dog" with
+PCRE_PARTIAL_SOFT, it yields a complete match for "dog". However, if
+PCRE_PARTIAL_HARD is set, the result is PCRE_ERROR_PARTIAL. On the other hand,
+if the pattern is made ungreedy the result is different:
+
+ /dog(sbody)??/
+
+In this case the result is always a complete match because that is found first,
+and matching never continues after finding a complete match. It might be easier
+to follow this explanation by thinking of the two patterns like this:
+
+ /dog(sbody)?/ is the same as /dogsbody|dog/
+ /dog(sbody)??/ is the same as /dog|dogsbody/
+
+The second pattern will never match "dogsbody", because it will always find the
+shorter match first.
+
+
PARTIAL MATCHING USING pcre_dfa_exec() OR pcre[16|32]_dfa_exec()
+
+The DFA functions move along the subject string character by character, without
+backtracking, searching for all possible matches simultaneously. If the end of
+the subject is reached before the end of the pattern, there is the possibility
+of a partial match, again provided that at least one character has been
+inspected.
+
+
+When PCRE_PARTIAL_SOFT is set, PCRE_ERROR_PARTIAL is returned only if there
+have been no complete matches. Otherwise, the complete matches are returned.
+However, if PCRE_PARTIAL_HARD is set, a partial match takes precedence over any
+complete matches. The portion of the string that was inspected when the longest
+partial match was found is set as the first matching string, provided there are
+at least two slots in the offsets vector.
+
+
+Because the DFA functions always search for all possible matches, and there is
+no difference between greedy and ungreedy repetition, their behaviour is
+different from the standard functions when PCRE_PARTIAL_HARD is set. Consider
+the string "dog" matched against the ungreedy pattern shown above:
+
+ /dog(sbody)??/
+
+Whereas the standard functions stop as soon as they find the complete match for
+"dog", the DFA functions also find the partial match for "dogsbody", and so
+return that when PCRE_PARTIAL_HARD is set.
+
+
PARTIAL MATCHING AND WORD BOUNDARIES
+
+If a pattern ends with one of sequences \b or \B, which test for word
+boundaries, partial matching with PCRE_PARTIAL_SOFT can give counter-intuitive
+results. Consider this pattern:
+
+ /\bcat\b/
+
+This matches "cat", provided there is a word boundary at either end. If the
+subject string is "the cat", the comparison of the final "t" with a following
+character cannot take place, so a partial match is found. However, normal
+matching carries on, and \b matches at the end of the subject when the last
+character is a letter, so a complete match is found. The result, therefore, is
+not PCRE_ERROR_PARTIAL. Using PCRE_PARTIAL_HARD in this case does yield
+PCRE_ERROR_PARTIAL, because then the partial match takes precedence.
+
+
FORMERLY RESTRICTED PATTERNS
+
+For releases of PCRE prior to 8.00, because of the way certain internal
+optimizations were implemented in the pcre_exec() function, the
+PCRE_PARTIAL option (predecessor of PCRE_PARTIAL_SOFT) could not be used with
+all patterns. From release 8.00 onwards, the restrictions no longer apply, and
+partial matching with can be requested for any pattern.
+
+
+Items that were formerly restricted were repeated single characters and
+repeated metasequences. If PCRE_PARTIAL was set for a pattern that did not
+conform to the restrictions, pcre_exec() returned the error code
+PCRE_ERROR_BADPARTIAL (-13). This error code is no longer in use. The
+PCRE_INFO_OKPARTIAL call to pcre_fullinfo() to find out if a compiled
+pattern can be used for partial matching now always returns 1.
+
+
EXAMPLE OF PARTIAL MATCHING USING PCRETEST
+
+If the escape sequence \P is present in a pcretest data line, the
+PCRE_PARTIAL_SOFT option is used for the match. Here is a run of pcretest
+that uses the date example quoted above:
+
+ re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
+ data> 25jun04\P
+ 0: 25jun04
+ 1: jun
+ data> 25dec3\P
+ Partial match: 23dec3
+ data> 3ju\P
+ Partial match: 3ju
+ data> 3juj\P
+ No match
+ data> j\P
+ No match
+
+The first data string is matched completely, so pcretest shows the
+matched substrings. The remaining four strings do not match the complete
+pattern, but the first two are partial matches. Similar output is obtained
+if DFA matching is used.
+
+
+If the escape sequence \P is present more than once in a pcretest data
+line, the PCRE_PARTIAL_HARD option is set for the match.
+
+
MULTI-SEGMENT MATCHING WITH pcre_dfa_exec() OR pcre[16|32]_dfa_exec()
+
+When a partial match has been found using a DFA matching function, it is
+possible to continue the match by providing additional subject data and calling
+the function again with the same compiled regular expression, this time setting
+the PCRE_DFA_RESTART option. You must pass the same working space as before,
+because this is where details of the previous partial match are stored. Here is
+an example using pcretest, using the \R escape sequence to set the
+PCRE_DFA_RESTART option (\D specifies the use of the DFA matching function):
+
+ re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
+ data> 23ja\P\D
+ Partial match: 23ja
+ data> n05\R\D
+ 0: n05
+
+The first call has "23ja" as the subject, and requests partial matching; the
+second call has "n05" as the subject for the continued (restarted) match.
+Notice that when the match is complete, only the last part is shown; PCRE does
+not retain the previously partially-matched string. It is up to the calling
+program to do that if it needs to.
+
+
+You can set the PCRE_PARTIAL_SOFT or PCRE_PARTIAL_HARD options with
+PCRE_DFA_RESTART to continue partial matching over multiple segments. This
+facility can be used to pass very long subject strings to the DFA matching
+functions.
+
+
MULTI-SEGMENT MATCHING WITH pcre_exec() OR pcre[16|32]_exec()
+
+From release 8.00, the standard matching functions can also be used to do
+multi-segment matching. Unlike the DFA functions, it is not possible to
+restart the previous match with a new segment of data. Instead, new data must
+be added to the previous subject string, and the entire match re-run, starting
+from the point where the partial match occurred. Earlier data can be discarded.
+
+
+It is best to use PCRE_PARTIAL_HARD in this situation, because it does not
+treat the end of a segment as the end of the subject when matching \z, \Z,
+\b, \B, and $. Consider an unanchored pattern that matches dates:
+
+ re> /\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d/
+ data> The date is 23ja\P\P
+ Partial match: 23ja
+
+At this stage, an application could discard the text preceding "23ja", add on
+text from the next segment, and call the matching function again. Unlike the
+DFA matching functions, the entire matching string must always be available,
+and the complete matching process occurs for each call, so more memory and more
+processing time is needed.
+
+
+Note: If the pattern contains lookbehind assertions, or \K, or starts
+with \b or \B, the string that is returned for a partial match includes
+characters that precede the start of what would be returned for a complete
+match, because it contains all the characters that were inspected during the
+partial match.
+
+
ISSUES WITH MULTI-SEGMENT MATCHING
+
+Certain types of pattern may give problems with multi-segment matching,
+whichever matching function is used.
+
+
+1. If the pattern contains a test for the beginning of a line, you need to pass
+the PCRE_NOTBOL option when the subject string for any call does start at the
+beginning of a line. There is also a PCRE_NOTEOL option, but in practice when
+doing multi-segment matching you should be using PCRE_PARTIAL_HARD, which
+includes the effect of PCRE_NOTEOL.
+
+
+2. Lookbehind assertions that have already been obeyed are catered for in the
+offsets that are returned for a partial match. However a lookbehind assertion
+later in the pattern could require even earlier characters to be inspected. You
+can handle this case by using the PCRE_INFO_MAXLOOKBEHIND option of the
+pcre_fullinfo() or pcre[16|32]_fullinfo() functions to obtain the
+length of the longest lookbehind in the pattern. This length is given in
+characters, not bytes. If you always retain at least that many characters
+before the partially matched string, all should be well. (Of course, near the
+start of the subject, fewer characters may be present; in that case all
+characters should be retained.)
+
+
+From release 8.33, there is a more accurate way of deciding which characters to
+retain. Instead of subtracting the length of the longest lookbehind from the
+earliest inspected character (offsets[0]), the match start position
+(offsets[2]) should be used, and the next match attempt started at the
+offsets[2] character by setting the startoffset argument of
+pcre_exec() or pcre_dfa_exec().
+
+
+For example, if the pattern "(?<=123)abc" is partially
+matched against the string "xx123a", the three offset values returned are 2, 6,
+and 5. This indicates that the matching process that gave a partial match
+started at offset 5, but the characters "123a" were all inspected. The maximum
+lookbehind for that pattern is 3, so taking that away from 5 shows that we need
+only keep "123a", and the next match attempt can be started at offset 3 (that
+is, at "a") when further characters have been added. When the match start is
+not the earliest inspected character, pcretest shows it explicitly:
+
+ re> "(?<=123)abc"
+ data> xx123a\P\P
+ Partial match at offset 5: 123a
+
+
+
+3. Because a partial match must always contain at least one character, what
+might be considered a partial match of an empty string actually gives a "no
+match" result. For example:
+
+ re> /c(?<=abc)x/
+ data> ab\P
+ No match
+
+If the next segment begins "cx", a match should be found, but this will only
+happen if characters from the previous segment are retained. For this reason, a
+"no match" result should be interpreted as "partial match of an empty string"
+when the pattern contains lookbehinds.
+
+
+4. Matching a subject string that is split into multiple segments may not
+always produce exactly the same result as matching over one single long string,
+especially when PCRE_PARTIAL_SOFT is used. The section "Partial Matching and
+Word Boundaries" above describes an issue that arises if the pattern ends with
+\b or \B. Another kind of difference may occur when there are multiple
+matching possibilities, because (for PCRE_PARTIAL_SOFT) a partial match result
+is given only when there are no completed matches. This means that as soon as
+the shortest match has been found, continuation to a new subject segment is no
+longer possible. Consider again this pcretest example:
+
+ re> /dog(sbody)?/
+ data> dogsb\P
+ 0: dog
+ data> do\P\D
+ Partial match: do
+ data> gsb\R\P\D
+ 0: g
+ data> dogsbody\D
+ 0: dogsbody
+ 1: dog
+
+The first data line passes the string "dogsb" to a standard matching function,
+setting the PCRE_PARTIAL_SOFT option. Although the string is a partial match
+for "dogsbody", the result is not PCRE_ERROR_PARTIAL, because the shorter
+string "dog" is a complete match. Similarly, when the subject is presented to
+a DFA matching function in several parts ("do" and "gsb" being the first two)
+the match stops when "dog" has been found, and it is not possible to continue.
+On the other hand, if "dogsbody" is presented as a single string, a DFA
+matching function finds both matches.
+
+
+Because of these problems, it is best to use PCRE_PARTIAL_HARD when matching
+multi-segment data. The example above then behaves differently:
+
+ re> /dog(sbody)?/
+ data> dogsb\P\P
+ Partial match: dogsb
+ data> do\P\D
+ Partial match: do
+ data> gsb\R\P\P\D
+ Partial match: gsb
+
+5. Patterns that contain alternatives at the top level which do not all start
+with the same pattern item may not work as expected when PCRE_DFA_RESTART is
+used. For example, consider this pattern:
+
+ 1234|3789
+
+If the first part of the subject is "ABC123", a partial match of the first
+alternative is found at offset 3. There is no partial match for the second
+alternative, because such a match does not start at the same point in the
+subject string. Attempting to continue with the string "7890" does not yield a
+match because only those alternatives that match at one point in the subject
+are remembered. The problem arises because the start of the second alternative
+matches within the first alternative. There is no problem with anchored
+patterns or patterns such as:
+
+ 1234|ABCD
+
+where no string can be a partial match for both alternatives. This is not a
+problem if a standard matching function is used, because the entire match has
+to be rerun each time:
+
+ re> /1234|3789/
+ data> ABC123\P\P
+ Partial match: 123
+ data> 1237890
+ 0: 3789
+
+Of course, instead of using PCRE_DFA_RESTART, the same technique of re-running
+the entire match can also be used with the DFA matching functions. Another
+possibility is to work with two buffers. If a partial match at offset n
+in the first buffer is followed by "no match" when PCRE_DFA_RESTART is used on
+the second buffer, you can then try a new match starting at offset n+1 in
+the first buffer.
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 20 February 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcrepattern.html b/pcre/doc/html/pcrepattern.html
new file mode 100644
index 00000000000..7e837e5a87e
--- /dev/null
+++ b/pcre/doc/html/pcrepattern.html
@@ -0,0 +1,3118 @@
+
+
+pcrepattern specification
+
+
+pcrepattern man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
PCRE REGULAR EXPRESSION DETAILS
+
+The syntax and semantics of the regular expressions that are supported by PCRE
+are described in detail below. There is a quick-reference syntax summary in the
+pcresyntax
+page. PCRE tries to match Perl syntax and semantics as closely as it can. PCRE
+also supports some alternative regular expression syntax (which does not
+conflict with the Perl syntax) in order to provide some compatibility with
+regular expressions in Python, .NET, and Oniguruma.
+
+
+Perl's regular expressions are described in its own documentation, and
+regular expressions in general are covered in a number of books, some of which
+have copious examples. Jeffrey Friedl's "Mastering Regular Expressions",
+published by O'Reilly, covers regular expressions in great detail. This
+description of PCRE's regular expressions is intended as reference material.
+
+
+This document discusses the patterns that are supported by PCRE when one its
+main matching functions, pcre_exec() (8-bit) or pcre[16|32]_exec()
+(16- or 32-bit), is used. PCRE also has alternative matching functions,
+pcre_dfa_exec() and pcre[16|32_dfa_exec(), which match using a
+different algorithm that is not Perl-compatible. Some of the features discussed
+below are not available when DFA matching is used. The advantages and
+disadvantages of the alternative functions, and how they differ from the normal
+functions, are discussed in the
+pcrematching
+page.
+
+
SPECIAL START-OF-PATTERN ITEMS
+
+A number of options that can be passed to pcre_compile() can also be set
+by special items at the start of a pattern. These are not Perl-compatible, but
+are provided to make these options accessible to pattern writers who are not
+able to change the program that processes the pattern. Any number of these
+items may appear, but they must all be together right at the start of the
+pattern string, and the letters must be in upper case.
+
+
+UTF support
+
+
+The original operation of PCRE was on strings of one-byte characters. However,
+there is now also support for UTF-8 strings in the original library, an
+extra library that supports 16-bit and UTF-16 character strings, and a
+third library that supports 32-bit and UTF-32 character strings. To use these
+features, PCRE must be built to include appropriate support. When using UTF
+strings you must either call the compiling function with the PCRE_UTF8,
+PCRE_UTF16, or PCRE_UTF32 option, or the pattern must start with one of
+these special sequences:
+
+ (*UTF8)
+ (*UTF16)
+ (*UTF32)
+ (*UTF)
+
+(*UTF) is a generic sequence that can be used with any of the libraries.
+Starting a pattern with such a sequence is equivalent to setting the relevant
+option. How setting a UTF mode affects pattern matching is mentioned in several
+places below. There is also a summary of features in the
+pcreunicode
+page.
+
+
+Some applications that allow their users to supply patterns may wish to
+restrict them to non-UTF data for security reasons. If the PCRE_NEVER_UTF
+option is set at compile time, (*UTF) etc. are not allowed, and their
+appearance causes an error.
+
+
+Unicode property support
+
+
+Another special sequence that may appear at the start of a pattern is
+
+ (*UCP)
+
+This has the same effect as setting the PCRE_UCP option: it causes sequences
+such as \d and \w to use Unicode properties to determine character types,
+instead of recognizing only characters with codes less than 128 via a lookup
+table.
+
+
+Disabling start-up optimizations
+
+
+If a pattern starts with (*NO_START_OPT), it has the same effect as setting the
+PCRE_NO_START_OPTIMIZE option either at compile or matching time.
+
+
+Newline conventions
+
+
+PCRE supports five different conventions for indicating line breaks in
+strings: a single CR (carriage return) character, a single LF (linefeed)
+character, the two-character sequence CRLF, any of the three preceding, or any
+Unicode newline sequence. The
+pcreapi
+page has
+further discussion
+about newlines, and shows how to set the newline convention in the
+options arguments for the compiling and matching functions.
+
+
+It is also possible to specify a newline convention by starting a pattern
+string with one of the following five sequences:
+
+ (*CR) carriage return
+ (*LF) linefeed
+ (*CRLF) carriage return, followed by linefeed
+ (*ANYCRLF) any of the three above
+ (*ANY) all Unicode newline sequences
+
+These override the default and the options given to the compiling function. For
+example, on a Unix system where LF is the default newline sequence, the pattern
+
+ (*CR)a.b
+
+changes the convention to CR. That pattern matches "a\nb" because LF is no
+longer a newline. If more than one of these settings is present, the last one
+is used.
+
+
+The newline convention affects where the circumflex and dollar assertions are
+true. It also affects the interpretation of the dot metacharacter when
+PCRE_DOTALL is not set, and the behaviour of \N. However, it does not affect
+what the \R escape sequence matches. By default, this is any Unicode newline
+sequence, for Perl compatibility. However, this can be changed; see the
+description of \R in the section entitled
+"Newline sequences"
+below. A change of \R setting can be combined with a change of newline
+convention.
+
+
+Setting match and recursion limits
+
+
+The caller of pcre_exec() can set a limit on the number of times the
+internal match() function is called and on the maximum depth of
+recursive calls. These facilities are provided to catch runaway matches that
+are provoked by patterns with huge matching trees (a typical example is a
+pattern with nested unlimited repeats) and to avoid running out of system stack
+by too much recursion. When one of these limits is reached, pcre_exec()
+gives an error return. The limits can also be set by items at the start of the
+pattern of the form
+
+ (*LIMIT_MATCH=d)
+ (*LIMIT_RECURSION=d)
+
+where d is any number of decimal digits. However, the value of the setting must
+be less than the value set by the caller of pcre_exec() for it to have
+any effect. In other words, the pattern writer can lower the limit set by the
+programmer, but not raise it. If there is more than one setting of one of these
+limits, the lower value is used.
+
+
EBCDIC CHARACTER CODES
+
+PCRE can be compiled to run in an environment that uses EBCDIC as its character
+code rather than ASCII or Unicode (typically a mainframe system). In the
+sections below, character code values are ASCII or Unicode; in an EBCDIC
+environment these characters may have different code values, and there are no
+code points greater than 255.
+
+
CHARACTERS AND METACHARACTERS
+
+A regular expression is a pattern that is matched against a subject string from
+left to right. Most characters stand for themselves in a pattern, and match the
+corresponding characters in the subject. As a trivial example, the pattern
+
+ The quick brown fox
+
+matches a portion of a subject string that is identical to itself. When
+caseless matching is specified (the PCRE_CASELESS option), letters are matched
+independently of case. In a UTF mode, PCRE always understands the concept of
+case for characters whose values are less than 128, so caseless matching is
+always possible. For characters with higher values, the concept of case is
+supported if PCRE is compiled with Unicode property support, but not otherwise.
+If you want to use caseless matching for characters 128 and above, you must
+ensure that PCRE is compiled with Unicode property support as well as with
+UTF support.
+
+
+The power of regular expressions comes from the ability to include alternatives
+and repetitions in the pattern. These are encoded in the pattern by the use of
+metacharacters, which do not stand for themselves but instead are
+interpreted in some special way.
+
+
+There are two different sets of metacharacters: those that are recognized
+anywhere in the pattern except within square brackets, and those that are
+recognized within square brackets. Outside square brackets, the metacharacters
+are as follows:
+
+ \ general escape character with several uses
+ ^ assert start of string (or line, in multiline mode)
+ $ assert end of string (or line, in multiline mode)
+ . match any character except newline (by default)
+ [ start character class definition
+ | start of alternative branch
+ ( start subpattern
+ ) end subpattern
+ ? extends the meaning of (
+ also 0 or 1 quantifier
+ also quantifier minimizer
+ * 0 or more quantifier
+ + 1 or more quantifier
+ also "possessive quantifier"
+ { start min/max quantifier
+
+Part of a pattern that is in square brackets is called a "character class". In
+a character class the only metacharacters are:
+
+ \ general escape character
+ ^ negate the class, but only if the first character
+ - indicates character range
+ [ POSIX character class (only if followed by POSIX syntax)
+ ] terminates the character class
+
+The following sections describe the use of each of the metacharacters.
+
+
BACKSLASH
+
+The backslash character has several uses. Firstly, if it is followed by a
+character that is not a number or a letter, it takes away any special meaning
+that character may have. This use of backslash as an escape character applies
+both inside and outside character classes.
+
+
+For example, if you want to match a * character, you write \* in the pattern.
+This escaping action applies whether or not the following character would
+otherwise be interpreted as a metacharacter, so it is always safe to precede a
+non-alphanumeric with backslash to specify that it stands for itself. In
+particular, if you want to match a backslash, you write \\.
+
+
+In a UTF mode, only ASCII numbers and letters have any special meaning after a
+backslash. All other characters (in particular, those whose codepoints are
+greater than 127) are treated as literals.
+
+
+If a pattern is compiled with the PCRE_EXTENDED option, white space in the
+pattern (other than in a character class) and characters between a # outside
+a character class and the next newline are ignored. An escaping backslash can
+be used to include a white space or # character as part of the pattern.
+
+
+If you want to remove the special meaning from a sequence of characters, you
+can do so by putting them between \Q and \E. This is different from Perl in
+that $ and @ are handled as literals in \Q...\E sequences in PCRE, whereas in
+Perl, $ and @ cause variable interpolation. Note the following examples:
+
+ Pattern PCRE matches Perl matches
+
+ \Qabc$xyz\E abc$xyz abc followed by the contents of $xyz
+ \Qabc\$xyz\E abc\$xyz abc\$xyz
+ \Qabc\E\$\Qxyz\E abc$xyz abc$xyz
+
+The \Q...\E sequence is recognized both inside and outside character classes.
+An isolated \E that is not preceded by \Q is ignored. If \Q is not followed
+by \E later in the pattern, the literal interpretation continues to the end of
+the pattern (that is, \E is assumed at the end). If the isolated \Q is inside
+a character class, this causes an error, because the character class is not
+terminated.
+
+
+Non-printing characters
+
+
+A second use of backslash provides a way of encoding non-printing characters
+in patterns in a visible manner. There is no restriction on the appearance of
+non-printing characters, apart from the binary zero that terminates a pattern,
+but when a pattern is being prepared by text editing, it is often easier to use
+one of the following escape sequences than the binary character it represents:
+
+ \a alarm, that is, the BEL character (hex 07)
+ \cx "control-x", where x is any ASCII character
+ \e escape (hex 1B)
+ \f form feed (hex 0C)
+ \n linefeed (hex 0A)
+ \r carriage return (hex 0D)
+ \t tab (hex 09)
+ \ddd character with octal code ddd, or back reference
+ \xhh character with hex code hh
+ \x{hhh..} character with hex code hhh.. (non-JavaScript mode)
+ \uhhhh character with hex code hhhh (JavaScript mode only)
+
+The precise effect of \cx on ASCII characters is as follows: if x is a lower
+case letter, it is converted to upper case. Then bit 6 of the character (hex
+40) is inverted. Thus \cA to \cZ become hex 01 to hex 1A (A is 41, Z is 5A),
+but \c{ becomes hex 3B ({ is 7B), and \c; becomes hex 7B (; is 3B). If the
+data item (byte or 16-bit value) following \c has a value greater than 127, a
+compile-time error occurs. This locks out non-ASCII characters in all modes.
+
+
+The \c facility was designed for use with ASCII characters, but with the
+extension to Unicode it is even less useful than it once was. It is, however,
+recognized when PCRE is compiled in EBCDIC mode, where data items are always
+bytes. In this mode, all values are valid after \c. If the next character is a
+lower case letter, it is converted to upper case. Then the 0xc0 bits of the
+byte are inverted. Thus \cA becomes hex 01, as in ASCII (A is C1), but because
+the EBCDIC letters are disjoint, \cZ becomes hex 29 (Z is E9), and other
+characters also generate different values.
+
+
+By default, after \x, from zero to two hexadecimal digits are read (letters
+can be in upper or lower case). Any number of hexadecimal digits may appear
+between \x{ and }, but the character code is constrained as follows:
+
+ 8-bit non-UTF mode less than 0x100
+ 8-bit UTF-8 mode less than 0x10ffff and a valid codepoint
+ 16-bit non-UTF mode less than 0x10000
+ 16-bit UTF-16 mode less than 0x10ffff and a valid codepoint
+ 32-bit non-UTF mode less than 0x80000000
+ 32-bit UTF-32 mode less than 0x10ffff and a valid codepoint
+
+Invalid Unicode codepoints are the range 0xd800 to 0xdfff (the so-called
+"surrogate" codepoints), and 0xffef.
+
+
+If characters other than hexadecimal digits appear between \x{ and }, or if
+there is no terminating }, this form of escape is not recognized. Instead, the
+initial \x will be interpreted as a basic hexadecimal escape, with no
+following digits, giving a character whose value is zero.
+
+
+If the PCRE_JAVASCRIPT_COMPAT option is set, the interpretation of \x is
+as just described only when it is followed by two hexadecimal digits.
+Otherwise, it matches a literal "x" character. In JavaScript mode, support for
+code points greater than 256 is provided by \u, which must be followed by
+four hexadecimal digits; otherwise it matches a literal "u" character.
+Character codes specified by \u in JavaScript mode are constrained in the same
+was as those specified by \x in non-JavaScript mode.
+
+
+Characters whose value is less than 256 can be defined by either of the two
+syntaxes for \x (or by \u in JavaScript mode). There is no difference in the
+way they are handled. For example, \xdc is exactly the same as \x{dc} (or
+\u00dc in JavaScript mode).
+
+
+After \0 up to two further octal digits are read. If there are fewer than two
+digits, just those that are present are used. Thus the sequence \0\x\07
+specifies two binary zeros followed by a BEL character (code value 7). Make
+sure you supply two digits after the initial zero if the pattern character that
+follows is itself an octal digit.
+
+
+The handling of a backslash followed by a digit other than 0 is complicated.
+Outside a character class, PCRE reads it and any following digits as a decimal
+number. If the number is less than 10, or if there have been at least that many
+previous capturing left parentheses in the expression, the entire sequence is
+taken as a back reference. A description of how this works is given
+later,
+following the discussion of
+parenthesized subpatterns.
+
+
+Inside a character class, or if the decimal number is greater than 9 and there
+have not been that many capturing subpatterns, PCRE re-reads up to three octal
+digits following the backslash, and uses them to generate a data character. Any
+subsequent digits stand for themselves. The value of the character is
+constrained in the same way as characters specified in hexadecimal.
+For example:
+
+ \040 is another way of writing an ASCII space
+ \40 is the same, provided there are fewer than 40 previous capturing subpatterns
+ \7 is always a back reference
+ \11 might be a back reference, or another way of writing a tab
+ \011 is always a tab
+ \0113 is a tab followed by the character "3"
+ \113 might be a back reference, otherwise the character with octal code 113
+ \377 might be a back reference, otherwise the value 255 (decimal)
+ \81 is either a back reference, or a binary zero followed by the two characters "8" and "1"
+
+Note that octal values of 100 or greater must not be introduced by a leading
+zero, because no more than three octal digits are ever read.
+
+
+All the sequences that define a single character value can be used both inside
+and outside character classes. In addition, inside a character class, \b is
+interpreted as the backspace character (hex 08).
+
+
+\N is not allowed in a character class. \B, \R, and \X are not special
+inside a character class. Like other unrecognized escape sequences, they are
+treated as the literal characters "B", "R", and "X" by default, but cause an
+error if the PCRE_EXTRA option is set. Outside a character class, these
+sequences have different meanings.
+
+
+Unsupported escape sequences
+
+
+In Perl, the sequences \l, \L, \u, and \U are recognized by its string
+handler and used to modify the case of following characters. By default, PCRE
+does not support these escape sequences. However, if the PCRE_JAVASCRIPT_COMPAT
+option is set, \U matches a "U" character, and \u can be used to define a
+character by code point, as described in the previous section.
+
+
+Absolute and relative back references
+
+
+The sequence \g followed by an unsigned or a negative number, optionally
+enclosed in braces, is an absolute or relative back reference. A named back
+reference can be coded as \g{name}. Back references are discussed
+later,
+following the discussion of
+parenthesized subpatterns.
+
+
+Absolute and relative subroutine calls
+
+
+For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or
+a number enclosed either in angle brackets or single quotes, is an alternative
+syntax for referencing a subpattern as a "subroutine". Details are discussed
+later.
+Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not
+synonymous. The former is a back reference; the latter is a
+subroutine
+call.
+
+
+Generic character types
+
+
+Another use of backslash is for specifying generic character types:
+
+ \d any decimal digit
+ \D any character that is not a decimal digit
+ \h any horizontal white space character
+ \H any character that is not a horizontal white space character
+ \s any white space character
+ \S any character that is not a white space character
+ \v any vertical white space character
+ \V any character that is not a vertical white space character
+ \w any "word" character
+ \W any "non-word" character
+
+There is also the single sequence \N, which matches a non-newline character.
+This is the same as
+the "." metacharacter
+when PCRE_DOTALL is not set. Perl also uses \N to match characters by name;
+PCRE does not support this.
+
+
+Each pair of lower and upper case escape sequences partitions the complete set
+of characters into two disjoint sets. Any given character matches one, and only
+one, of each pair. The sequences can appear both inside and outside character
+classes. They each match one character of the appropriate type. If the current
+matching point is at the end of the subject string, all of them fail, because
+there is no character to match.
+
+
+For compatibility with Perl, \s does not match the VT character (code 11).
+This makes it different from the the POSIX "space" class. The \s characters
+are HT (9), LF (10), FF (12), CR (13), and space (32). If "use locale;" is
+included in a Perl script, \s may match the VT character. In PCRE, it never
+does.
+
+
+A "word" character is an underscore or any character that is a letter or digit.
+By default, the definition of letters and digits is controlled by PCRE's
+low-valued character tables, and may vary if locale-specific matching is taking
+place (see
+"Locale support"
+in the
+pcreapi
+page). For example, in a French locale such as "fr_FR" in Unix-like systems,
+or "french" in Windows, some character codes greater than 128 are used for
+accented letters, and these are then matched by \w. The use of locales with
+Unicode is discouraged.
+
+
+By default, in a UTF mode, characters with values greater than 128 never match
+\d, \s, or \w, and always match \D, \S, and \W. These sequences retain
+their original meanings from before UTF support was available, mainly for
+efficiency reasons. However, if PCRE is compiled with Unicode property support,
+and the PCRE_UCP option is set, the behaviour is changed so that Unicode
+properties are used to determine character types, as follows:
+
+ \d any character that \p{Nd} matches (decimal digit)
+ \s any character that \p{Z} matches, plus HT, LF, FF, CR
+ \w any character that \p{L} or \p{N} matches, plus underscore
+
+The upper case escapes match the inverse sets of characters. Note that \d
+matches only decimal digits, whereas \w matches any Unicode digit, as well as
+any Unicode letter, and underscore. Note also that PCRE_UCP affects \b, and
+\B because they are defined in terms of \w and \W. Matching these sequences
+is noticeably slower when PCRE_UCP is set.
+
+
+The sequences \h, \H, \v, and \V are features that were added to Perl at
+release 5.10. In contrast to the other sequences, which match only ASCII
+characters by default, these always match certain high-valued codepoints,
+whether or not PCRE_UCP is set. The horizontal space characters are:
+
+ U+0009 Horizontal tab (HT)
+ U+0020 Space
+ U+00A0 Non-break space
+ U+1680 Ogham space mark
+ U+180E Mongolian vowel separator
+ U+2000 En quad
+ U+2001 Em quad
+ U+2002 En space
+ U+2003 Em space
+ U+2004 Three-per-em space
+ U+2005 Four-per-em space
+ U+2006 Six-per-em space
+ U+2007 Figure space
+ U+2008 Punctuation space
+ U+2009 Thin space
+ U+200A Hair space
+ U+202F Narrow no-break space
+ U+205F Medium mathematical space
+ U+3000 Ideographic space
+
+The vertical space characters are:
+
+ U+000A Linefeed (LF)
+ U+000B Vertical tab (VT)
+ U+000C Form feed (FF)
+ U+000D Carriage return (CR)
+ U+0085 Next line (NEL)
+ U+2028 Line separator
+ U+2029 Paragraph separator
+
+In 8-bit, non-UTF-8 mode, only the characters with codepoints less than 256 are
+relevant.
+
+
+Newline sequences
+
+
+Outside a character class, by default, the escape sequence \R matches any
+Unicode newline sequence. In 8-bit non-UTF-8 mode \R is equivalent to the
+following:
+
+ (?>\r\n|\n|\x0b|\f|\r|\x85)
+
+This is an example of an "atomic group", details of which are given
+below.
+This particular group matches either the two-character sequence CR followed by
+LF, or one of the single characters LF (linefeed, U+000A), VT (vertical tab,
+U+000B), FF (form feed, U+000C), CR (carriage return, U+000D), or NEL (next
+line, U+0085). The two-character sequence is treated as a single unit that
+cannot be split.
+
+
+In other modes, two additional characters whose codepoints are greater than 255
+are added: LS (line separator, U+2028) and PS (paragraph separator, U+2029).
+Unicode character property support is not needed for these characters to be
+recognized.
+
+
+It is possible to restrict \R to match only CR, LF, or CRLF (instead of the
+complete set of Unicode line endings) by setting the option PCRE_BSR_ANYCRLF
+either at compile time or when the pattern is matched. (BSR is an abbrevation
+for "backslash R".) This can be made the default when PCRE is built; if this is
+the case, the other behaviour can be requested via the PCRE_BSR_UNICODE option.
+It is also possible to specify these settings by starting a pattern string with
+one of the following sequences:
+
+ (*BSR_ANYCRLF) CR, LF, or CRLF only
+ (*BSR_UNICODE) any Unicode newline sequence
+
+These override the default and the options given to the compiling function, but
+they can themselves be overridden by options given to a matching function. Note
+that these special settings, which are not Perl-compatible, are recognized only
+at the very start of a pattern, and that they must be in upper case. If more
+than one of them is present, the last one is used. They can be combined with a
+change of newline convention; for example, a pattern can start with:
+
+ (*ANY)(*BSR_ANYCRLF)
+
+They can also be combined with the (*UTF8), (*UTF16), (*UTF32), (*UTF) or
+(*UCP) special sequences. Inside a character class, \R is treated as an
+unrecognized escape sequence, and so matches the letter "R" by default, but
+causes an error if PCRE_EXTRA is set.
+
+
+Unicode character properties
+
+
+When PCRE is built with Unicode character property support, three additional
+escape sequences that match characters with specific properties are available.
+When in 8-bit non-UTF-8 mode, these sequences are of course limited to testing
+characters whose codepoints are less than 256, but they do work in this mode.
+The extra escape sequences are:
+
+ \p{xx} a character with the xx property
+ \P{xx} a character without the xx property
+ \X a Unicode extended grapheme cluster
+
+The property names represented by xx above are limited to the Unicode
+script names, the general category properties, "Any", which matches any
+character (including newline), and some special PCRE properties (described
+in the
+next section).
+Other Perl properties such as "InMusicalSymbols" are not currently supported by
+PCRE. Note that \P{Any} does not match any characters, so always causes a
+match failure.
+
+
+Sets of Unicode characters are defined as belonging to certain scripts. A
+character from one of these sets can be matched using a script name. For
+example:
+
+ \p{Greek}
+ \P{Han}
+
+Those that are not part of an identified script are lumped together as
+"Common". The current list of scripts is:
+
+
+Arabic,
+Armenian,
+Avestan,
+Balinese,
+Bamum,
+Batak,
+Bengali,
+Bopomofo,
+Brahmi,
+Braille,
+Buginese,
+Buhid,
+Canadian_Aboriginal,
+Carian,
+Chakma,
+Cham,
+Cherokee,
+Common,
+Coptic,
+Cuneiform,
+Cypriot,
+Cyrillic,
+Deseret,
+Devanagari,
+Egyptian_Hieroglyphs,
+Ethiopic,
+Georgian,
+Glagolitic,
+Gothic,
+Greek,
+Gujarati,
+Gurmukhi,
+Han,
+Hangul,
+Hanunoo,
+Hebrew,
+Hiragana,
+Imperial_Aramaic,
+Inherited,
+Inscriptional_Pahlavi,
+Inscriptional_Parthian,
+Javanese,
+Kaithi,
+Kannada,
+Katakana,
+Kayah_Li,
+Kharoshthi,
+Khmer,
+Lao,
+Latin,
+Lepcha,
+Limbu,
+Linear_B,
+Lisu,
+Lycian,
+Lydian,
+Malayalam,
+Mandaic,
+Meetei_Mayek,
+Meroitic_Cursive,
+Meroitic_Hieroglyphs,
+Miao,
+Mongolian,
+Myanmar,
+New_Tai_Lue,
+Nko,
+Ogham,
+Old_Italic,
+Old_Persian,
+Old_South_Arabian,
+Old_Turkic,
+Ol_Chiki,
+Oriya,
+Osmanya,
+Phags_Pa,
+Phoenician,
+Rejang,
+Runic,
+Samaritan,
+Saurashtra,
+Sharada,
+Shavian,
+Sinhala,
+Sora_Sompeng,
+Sundanese,
+Syloti_Nagri,
+Syriac,
+Tagalog,
+Tagbanwa,
+Tai_Le,
+Tai_Tham,
+Tai_Viet,
+Takri,
+Tamil,
+Telugu,
+Thaana,
+Thai,
+Tibetan,
+Tifinagh,
+Ugaritic,
+Vai,
+Yi.
+
+
+Each character has exactly one Unicode general category property, specified by
+a two-letter abbreviation. For compatibility with Perl, negation can be
+specified by including a circumflex between the opening brace and the property
+name. For example, \p{^Lu} is the same as \P{Lu}.
+
+
+If only one letter is specified with \p or \P, it includes all the general
+category properties that start with that letter. In this case, in the absence
+of negation, the curly brackets in the escape sequence are optional; these two
+examples have the same effect:
+
+ \p{L}
+ \pL
+
+The following general category property codes are supported:
+
+ C Other
+ Cc Control
+ Cf Format
+ Cn Unassigned
+ Co Private use
+ Cs Surrogate
+
+ L Letter
+ Ll Lower case letter
+ Lm Modifier letter
+ Lo Other letter
+ Lt Title case letter
+ Lu Upper case letter
+
+ M Mark
+ Mc Spacing mark
+ Me Enclosing mark
+ Mn Non-spacing mark
+
+ N Number
+ Nd Decimal number
+ Nl Letter number
+ No Other number
+
+ P Punctuation
+ Pc Connector punctuation
+ Pd Dash punctuation
+ Pe Close punctuation
+ Pf Final punctuation
+ Pi Initial punctuation
+ Po Other punctuation
+ Ps Open punctuation
+
+ S Symbol
+ Sc Currency symbol
+ Sk Modifier symbol
+ Sm Mathematical symbol
+ So Other symbol
+
+ Z Separator
+ Zl Line separator
+ Zp Paragraph separator
+ Zs Space separator
+
+The special property L& is also supported: it matches a character that has
+the Lu, Ll, or Lt property, in other words, a letter that is not classified as
+a modifier or "other".
+
+
+The Cs (Surrogate) property applies only to characters in the range U+D800 to
+U+DFFF. Such characters are not valid in Unicode strings and so
+cannot be tested by PCRE, unless UTF validity checking has been turned off
+(see the discussion of PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK and
+PCRE_NO_UTF32_CHECK in the
+pcreapi
+page). Perl does not support the Cs property.
+
+
+The long synonyms for property names that Perl supports (such as \p{Letter})
+are not supported by PCRE, nor is it permitted to prefix any of these
+properties with "Is".
+
+
+No character that is in the Unicode table has the Cn (unassigned) property.
+Instead, this property is assumed for any code point that is not in the
+Unicode table.
+
+
+Specifying caseless matching does not affect these escape sequences. For
+example, \p{Lu} always matches only upper case letters. This is different from
+the behaviour of current versions of Perl.
+
+
+Matching characters by Unicode property is not fast, because PCRE has to do a
+multistage table lookup in order to find a character's property. That is why
+the traditional escape sequences such as \d and \w do not use Unicode
+properties in PCRE by default, though you can make them do so by setting the
+PCRE_UCP option or by starting the pattern with (*UCP).
+
+
+Extended grapheme clusters
+
+
+The \X escape matches any number of Unicode characters that form an "extended
+grapheme cluster", and treats the sequence as an atomic group
+(see below).
+Up to and including release 8.31, PCRE matched an earlier, simpler definition
+that was equivalent to
+
+ (?>\PM\pM*)
+
+That is, it matched a character without the "mark" property, followed by zero
+or more characters with the "mark" property. Characters with the "mark"
+property are typically non-spacing accents that affect the preceding character.
+
+
+This simple definition was extended in Unicode to include more complicated
+kinds of composite character by giving each character a grapheme breaking
+property, and creating rules that use these properties to define the boundaries
+of extended grapheme clusters. In releases of PCRE later than 8.31, \X matches
+one of these clusters.
+
+
+\X always matches at least one character. Then it decides whether to add
+additional characters according to the following rules for ending a cluster:
+
+
+1. End at the end of the subject string.
+
+
+2. Do not end between CR and LF; otherwise end after any control character.
+
+
+3. Do not break Hangul (a Korean script) syllable sequences. Hangul characters
+are of five types: L, V, T, LV, and LVT. An L character may be followed by an
+L, V, LV, or LVT character; an LV or V character may be followed by a V or T
+character; an LVT or T character may be follwed only by a T character.
+
+
+4. Do not end before extending characters or spacing marks. Characters with
+the "mark" property always have the "extend" grapheme breaking property.
+
+
+5. Do not end after prepend characters.
+
+
+6. Otherwise, end the cluster.
+
+
+PCRE's additional properties
+
+
+As well as the standard Unicode properties described above, PCRE supports four
+more that make it possible to convert traditional escape sequences such as \w
+and \s and POSIX character classes to use Unicode properties. PCRE uses these
+non-standard, non-Perl properties internally when PCRE_UCP is set. However,
+they may also be used explicitly. These properties are:
+
+ Xan Any alphanumeric character
+ Xps Any POSIX space character
+ Xsp Any Perl space character
+ Xwd Any Perl "word" character
+
+Xan matches characters that have either the L (letter) or the N (number)
+property. Xps matches the characters tab, linefeed, vertical tab, form feed, or
+carriage return, and any other character that has the Z (separator) property.
+Xsp is the same as Xps, except that vertical tab is excluded. Xwd matches the
+same characters as Xan, plus underscore.
+
+
+There is another non-standard property, Xuc, which matches any character that
+can be represented by a Universal Character Name in C++ and other programming
+languages. These are the characters $, @, ` (grave accent), and all characters
+with Unicode code points greater than or equal to U+00A0, except for the
+surrogates U+D800 to U+DFFF. Note that most base (ASCII) characters are
+excluded. (Universal Character Names are of the form \uHHHH or \UHHHHHHHH
+where H is a hexadecimal digit. Note that the Xuc property does not match these
+sequences but the characters that they represent.)
+
+
+Resetting the match start
+
+
+The escape sequence \K causes any previously matched characters not to be
+included in the final matched sequence. For example, the pattern:
+
+ foo\Kbar
+
+matches "foobar", but reports that it has matched "bar". This feature is
+similar to a lookbehind assertion
+(described below).
+However, in this case, the part of the subject before the real match does not
+have to be of fixed length, as lookbehind assertions do. The use of \K does
+not interfere with the setting of
+captured substrings.
+For example, when the pattern
+
+ (foo)\Kbar
+
+matches "foobar", the first substring is still set to "foo".
+
+
+Perl documents that the use of \K within assertions is "not well defined". In
+PCRE, \K is acted upon when it occurs inside positive assertions, but is
+ignored in negative assertions.
+
+
+Simple assertions
+
+
+The final use of backslash is for certain simple assertions. An assertion
+specifies a condition that has to be met at a particular point in a match,
+without consuming any characters from the subject string. The use of
+subpatterns for more complicated assertions is described
+below.
+The backslashed assertions are:
+
+ \b matches at a word boundary
+ \B matches when not at a word boundary
+ \A matches at the start of the subject
+ \Z matches at the end of the subject
+ also matches before a newline at the end of the subject
+ \z matches only at the end of the subject
+ \G matches at the first matching position in the subject
+
+Inside a character class, \b has a different meaning; it matches the backspace
+character. If any other of these assertions appears in a character class, by
+default it matches the corresponding literal character (for example, \B
+matches the letter B). However, if the PCRE_EXTRA option is set, an "invalid
+escape sequence" error is generated instead.
+
+
+A word boundary is a position in the subject string where the current character
+and the previous character do not both match \w or \W (i.e. one matches
+\w and the other matches \W), or the start or end of the string if the
+first or last character matches \w, respectively. In a UTF mode, the meanings
+of \w and \W can be changed by setting the PCRE_UCP option. When this is
+done, it also affects \b and \B. Neither PCRE nor Perl has a separate "start
+of word" or "end of word" metasequence. However, whatever follows \b normally
+determines which it is. For example, the fragment \ba matches "a" at the start
+of a word.
+
+
+The \A, \Z, and \z assertions differ from the traditional circumflex and
+dollar (described in the next section) in that they only ever match at the very
+start and end of the subject string, whatever options are set. Thus, they are
+independent of multiline mode. These three assertions are not affected by the
+PCRE_NOTBOL or PCRE_NOTEOL options, which affect only the behaviour of the
+circumflex and dollar metacharacters. However, if the startoffset
+argument of pcre_exec() is non-zero, indicating that matching is to start
+at a point other than the beginning of the subject, \A can never match. The
+difference between \Z and \z is that \Z matches before a newline at the end
+of the string as well as at the very end, whereas \z matches only at the end.
+
+
+The \G assertion is true only when the current matching position is at the
+start point of the match, as specified by the startoffset argument of
+pcre_exec(). It differs from \A when the value of startoffset is
+non-zero. By calling pcre_exec() multiple times with appropriate
+arguments, you can mimic Perl's /g option, and it is in this kind of
+implementation where \G can be useful.
+
+
+Note, however, that PCRE's interpretation of \G, as the start of the current
+match, is subtly different from Perl's, which defines it as the end of the
+previous match. In Perl, these can be different when the previously matched
+string was empty. Because PCRE does just one match at a time, it cannot
+reproduce this behaviour.
+
+
+If all the alternatives of a pattern begin with \G, the expression is anchored
+to the starting match position, and the "anchored" flag is set in the compiled
+regular expression.
+
+
CIRCUMFLEX AND DOLLAR
+
+The circumflex and dollar metacharacters are zero-width assertions. That is,
+they test for a particular condition being true without consuming any
+characters from the subject string.
+
+
+Outside a character class, in the default matching mode, the circumflex
+character is an assertion that is true only if the current matching point is at
+the start of the subject string. If the startoffset argument of
+pcre_exec() is non-zero, circumflex can never match if the PCRE_MULTILINE
+option is unset. Inside a character class, circumflex has an entirely different
+meaning
+(see below).
+
+
+Circumflex need not be the first character of the pattern if a number of
+alternatives are involved, but it should be the first thing in each alternative
+in which it appears if the pattern is ever to match that branch. If all
+possible alternatives start with a circumflex, that is, if the pattern is
+constrained to match only at the start of the subject, it is said to be an
+"anchored" pattern. (There are also other constructs that can cause a pattern
+to be anchored.)
+
+
+The dollar character is an assertion that is true only if the current matching
+point is at the end of the subject string, or immediately before a newline at
+the end of the string (by default). Note, however, that it does not actually
+match the newline. Dollar need not be the last character of the pattern if a
+number of alternatives are involved, but it should be the last item in any
+branch in which it appears. Dollar has no special meaning in a character class.
+
+
+The meaning of dollar can be changed so that it matches only at the very end of
+the string, by setting the PCRE_DOLLAR_ENDONLY option at compile time. This
+does not affect the \Z assertion.
+
+
+The meanings of the circumflex and dollar characters are changed if the
+PCRE_MULTILINE option is set. When this is the case, a circumflex matches
+immediately after internal newlines as well as at the start of the subject
+string. It does not match after a newline that ends the string. A dollar
+matches before any newlines in the string, as well as at the very end, when
+PCRE_MULTILINE is set. When newline is specified as the two-character
+sequence CRLF, isolated CR and LF characters do not indicate newlines.
+
+
+For example, the pattern /^abc$/ matches the subject string "def\nabc" (where
+\n represents a newline) in multiline mode, but not otherwise. Consequently,
+patterns that are anchored in single line mode because all branches start with
+^ are not anchored in multiline mode, and a match for circumflex is possible
+when the startoffset argument of pcre_exec() is non-zero. The
+PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is set.
+
+
+Note that the sequences \A, \Z, and \z can be used to match the start and
+end of the subject in both modes, and if all branches of a pattern start with
+\A it is always anchored, whether or not PCRE_MULTILINE is set.
+
+
FULL STOP (PERIOD, DOT) AND \N
+
+Outside a character class, a dot in the pattern matches any one character in
+the subject string except (by default) a character that signifies the end of a
+line.
+
+
+When a line ending is defined as a single character, dot never matches that
+character; when the two-character sequence CRLF is used, dot does not match CR
+if it is immediately followed by LF, but otherwise it matches all characters
+(including isolated CRs and LFs). When any Unicode line endings are being
+recognized, dot does not match CR or LF or any of the other line ending
+characters.
+
+
+The behaviour of dot with regard to newlines can be changed. If the PCRE_DOTALL
+option is set, a dot matches any one character, without exception. If the
+two-character sequence CRLF is present in the subject string, it takes two dots
+to match it.
+
+
+The handling of dot is entirely independent of the handling of circumflex and
+dollar, the only relationship being that they both involve newlines. Dot has no
+special meaning in a character class.
+
+
+The escape sequence \N behaves like a dot, except that it is not affected by
+the PCRE_DOTALL option. In other words, it matches any character except one
+that signifies the end of a line. Perl also uses \N to match characters by
+name; PCRE does not support this.
+
+
MATCHING A SINGLE DATA UNIT
+
+Outside a character class, the escape sequence \C matches any one data unit,
+whether or not a UTF mode is set. In the 8-bit library, one data unit is one
+byte; in the 16-bit library it is a 16-bit unit; in the 32-bit library it is
+a 32-bit unit. Unlike a dot, \C always
+matches line-ending characters. The feature is provided in Perl in order to
+match individual bytes in UTF-8 mode, but it is unclear how it can usefully be
+used. Because \C breaks up characters into individual data units, matching one
+unit with \C in a UTF mode means that the rest of the string may start with a
+malformed UTF character. This has undefined results, because PCRE assumes that
+it is dealing with valid UTF strings (and by default it checks this at the
+start of processing unless the PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK or
+PCRE_NO_UTF32_CHECK option is used).
+
+
+PCRE does not allow \C to appear in lookbehind assertions
+(described below)
+in a UTF mode, because this would make it impossible to calculate the length of
+the lookbehind.
+
+
+In general, the \C escape sequence is best avoided. However, one
+way of using it that avoids the problem of malformed UTF characters is to use a
+lookahead to check the length of the next character, as in this pattern, which
+could be used with a UTF-8 string (ignore white space and line breaks):
+
+ (?| (?=[\x00-\x7f])(\C) |
+ (?=[\x80-\x{7ff}])(\C)(\C) |
+ (?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |
+ (?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))
+
+A group that starts with (?| resets the capturing parentheses numbers in each
+alternative (see
+"Duplicate Subpattern Numbers"
+below). The assertions at the start of each branch check the next UTF-8
+character for values whose encoding uses 1, 2, 3, or 4 bytes, respectively. The
+character's individual bytes are then captured by the appropriate number of
+groups.
+
+
SQUARE BRACKETS AND CHARACTER CLASSES
+
+An opening square bracket introduces a character class, terminated by a closing
+square bracket. A closing square bracket on its own is not special by default.
+However, if the PCRE_JAVASCRIPT_COMPAT option is set, a lone closing square
+bracket causes a compile-time error. If a closing square bracket is required as
+a member of the class, it should be the first data character in the class
+(after an initial circumflex, if present) or escaped with a backslash.
+
+
+A character class matches a single character in the subject. In a UTF mode, the
+character may be more than one data unit long. A matched character must be in
+the set of characters defined by the class, unless the first character in the
+class definition is a circumflex, in which case the subject character must not
+be in the set defined by the class. If a circumflex is actually required as a
+member of the class, ensure it is not the first character, or escape it with a
+backslash.
+
+
+For example, the character class [aeiou] matches any lower case vowel, while
+[^aeiou] matches any character that is not a lower case vowel. Note that a
+circumflex is just a convenient notation for specifying the characters that
+are in the class by enumerating those that are not. A class that starts with a
+circumflex is not an assertion; it still consumes a character from the subject
+string, and therefore it fails if the current pointer is at the end of the
+string.
+
+
+In UTF-8 (UTF-16, UTF-32) mode, characters with values greater than 255 (0xffff)
+can be included in a class as a literal string of data units, or by using the
+\x{ escaping mechanism.
+
+
+When caseless matching is set, any letters in a class represent both their
+upper case and lower case versions, so for example, a caseless [aeiou] matches
+"A" as well as "a", and a caseless [^aeiou] does not match "A", whereas a
+caseful version would. In a UTF mode, PCRE always understands the concept of
+case for characters whose values are less than 128, so caseless matching is
+always possible. For characters with higher values, the concept of case is
+supported if PCRE is compiled with Unicode property support, but not otherwise.
+If you want to use caseless matching in a UTF mode for characters 128 and
+above, you must ensure that PCRE is compiled with Unicode property support as
+well as with UTF support.
+
+
+Characters that might indicate line breaks are never treated in any special way
+when matching character classes, whatever line-ending sequence is in use, and
+whatever setting of the PCRE_DOTALL and PCRE_MULTILINE options is used. A class
+such as [^a] always matches one of these characters.
+
+
+The minus (hyphen) character can be used to specify a range of characters in a
+character class. For example, [d-m] matches any letter between d and m,
+inclusive. If a minus character is required in a class, it must be escaped with
+a backslash or appear in a position where it cannot be interpreted as
+indicating a range, typically as the first or last character in the class.
+
+
+It is not possible to have the literal character "]" as the end character of a
+range. A pattern such as [W-]46] is interpreted as a class of two characters
+("W" and "-") followed by a literal string "46]", so it would match "W46]" or
+"-46]". However, if the "]" is escaped with a backslash it is interpreted as
+the end of range, so [W-\]46] is interpreted as a class containing a range
+followed by two other characters. The octal or hexadecimal representation of
+"]" can also be used to end a range.
+
+
+Ranges operate in the collating sequence of character values. They can also be
+used for characters specified numerically, for example [\000-\037]. Ranges
+can include any characters that are valid for the current mode.
+
+
+If a range that includes letters is used when caseless matching is set, it
+matches the letters in either case. For example, [W-c] is equivalent to
+[][\\^_`wxyzabc], matched caselessly, and in a non-UTF mode, if character
+tables for a French locale are in use, [\xc8-\xcb] matches accented E
+characters in both cases. In UTF modes, PCRE supports the concept of case for
+characters with values greater than 128 only when it is compiled with Unicode
+property support.
+
+
+The character escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v,
+\V, \w, and \W may appear in a character class, and add the characters that
+they match to the class. For example, [\dABCDEF] matches any hexadecimal
+digit. In UTF modes, the PCRE_UCP option affects the meanings of \d, \s, \w
+and their upper case partners, just as it does when they appear outside a
+character class, as described in the section entitled
+"Generic character types"
+above. The escape sequence \b has a different meaning inside a character
+class; it matches the backspace character. The sequences \B, \N, \R, and \X
+are not special inside a character class. Like any other unrecognized escape
+sequences, they are treated as the literal characters "B", "N", "R", and "X" by
+default, but cause an error if the PCRE_EXTRA option is set.
+
+
+A circumflex can conveniently be used with the upper case character types to
+specify a more restricted set of characters than the matching lower case type.
+For example, the class [^\W_] matches any letter or digit, but not underscore,
+whereas [\w] includes underscore. A positive character class should be read as
+"something OR something OR ..." and a negative class as "NOT something AND NOT
+something AND NOT ...".
+
+
+The only metacharacters that are recognized in character classes are backslash,
+hyphen (only where it can be interpreted as specifying a range), circumflex
+(only at the start), opening square bracket (only when it can be interpreted as
+introducing a POSIX class name - see the next section), and the terminating
+closing square bracket. However, escaping other non-alphanumeric characters
+does no harm.
+
+
POSIX CHARACTER CLASSES
+
+Perl supports the POSIX notation for character classes. This uses names
+enclosed by [: and :] within the enclosing square brackets. PCRE also supports
+this notation. For example,
+
+ [01[:alpha:]%]
+
+matches "0", "1", any alphabetic character, or "%". The supported class names
+are:
+
+ alnum letters and digits
+ alpha letters
+ ascii character codes 0 - 127
+ blank space or tab only
+ cntrl control characters
+ digit decimal digits (same as \d)
+ graph printing characters, excluding space
+ lower lower case letters
+ print printing characters, including space
+ punct printing characters, excluding letters and digits and space
+ space white space (not quite the same as \s)
+ upper upper case letters
+ word "word" characters (same as \w)
+ xdigit hexadecimal digits
+
+The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13), and
+space (32). Notice that this list includes the VT character (code 11). This
+makes "space" different to \s, which does not include VT (for Perl
+compatibility).
+
+
+The name "word" is a Perl extension, and "blank" is a GNU extension from Perl
+5.8. Another Perl extension is negation, which is indicated by a ^ character
+after the colon. For example,
+
+ [12[:^digit:]]
+
+matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the POSIX
+syntax [.ch.] and [=ch=] where "ch" is a "collating element", but these are not
+supported, and an error is given if they are encountered.
+
+
+By default, in UTF modes, characters with values greater than 128 do not match
+any of the POSIX character classes. However, if the PCRE_UCP option is passed
+to pcre_compile(), some of the classes are changed so that Unicode
+character properties are used. This is achieved by replacing the POSIX classes
+by other sequences, as follows:
+
+ [:alnum:] becomes \p{Xan}
+ [:alpha:] becomes \p{L}
+ [:blank:] becomes \h
+ [:digit:] becomes \p{Nd}
+ [:lower:] becomes \p{Ll}
+ [:space:] becomes \p{Xps}
+ [:upper:] becomes \p{Lu}
+ [:word:] becomes \p{Xwd}
+
+Negated versions, such as [:^alpha:] use \P instead of \p. The other POSIX
+classes are unchanged, and match only characters with code points less than
+128.
+
+
VERTICAL BAR
+
+Vertical bar characters are used to separate alternative patterns. For example,
+the pattern
+
+ gilbert|sullivan
+
+matches either "gilbert" or "sullivan". Any number of alternatives may appear,
+and an empty alternative is permitted (matching the empty string). The matching
+process tries each alternative in turn, from left to right, and the first one
+that succeeds is used. If the alternatives are within a subpattern
+(defined below),
+"succeeds" means matching the rest of the main pattern as well as the
+alternative in the subpattern.
+
+
INTERNAL OPTION SETTING
+
+The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
+PCRE_EXTENDED options (which are Perl-compatible) can be changed from within
+the pattern by a sequence of Perl option letters enclosed between "(?" and ")".
+The option letters are
+
+ i for PCRE_CASELESS
+ m for PCRE_MULTILINE
+ s for PCRE_DOTALL
+ x for PCRE_EXTENDED
+
+For example, (?im) sets caseless, multiline matching. It is also possible to
+unset these options by preceding the letter with a hyphen, and a combined
+setting and unsetting such as (?im-sx), which sets PCRE_CASELESS and
+PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED, is also
+permitted. If a letter appears both before and after the hyphen, the option is
+unset.
+
+
+The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA can be
+changed in the same way as the Perl-compatible options by using the characters
+J, U and X respectively.
+
+
+When one of these option changes occurs at top level (that is, not inside
+subpattern parentheses), the change applies to the remainder of the pattern
+that follows. If the change is placed right at the start of a pattern, PCRE
+extracts it into the global options (and it will therefore show up in data
+extracted by the pcre_fullinfo() function).
+
+
+An option change within a subpattern (see below for a description of
+subpatterns) affects only that part of the subpattern that follows it, so
+
+ (a(?i)b)c
+
+matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used).
+By this means, options can be made to have different settings in different
+parts of the pattern. Any changes made in one alternative do carry on
+into subsequent branches within the same subpattern. For example,
+
+ (a(?i)b|c)
+
+matches "ab", "aB", "c", and "C", even though when matching "C" the first
+branch is abandoned before the option setting. This is because the effects of
+option settings happen at compile time. There would be some very weird
+behaviour otherwise.
+
+
+Note: There are other PCRE-specific options that can be set by the
+application when the compiling or matching functions are called. In some cases
+the pattern can contain special leading sequences such as (*CRLF) to override
+what the application has set or what has been defaulted. Details are given in
+the section entitled
+"Newline sequences"
+above. There are also the (*UTF8), (*UTF16),(*UTF32), and (*UCP) leading
+sequences that can be used to set UTF and Unicode property modes; they are
+equivalent to setting the PCRE_UTF8, PCRE_UTF16, PCRE_UTF32 and the PCRE_UCP
+options, respectively. The (*UTF) sequence is a generic version that can be
+used with any of the libraries. However, the application can set the
+PCRE_NEVER_UTF option, which locks out the use of the (*UTF) sequences.
+
+
SUBPATTERNS
+
+Subpatterns are delimited by parentheses (round brackets), which can be nested.
+Turning part of a pattern into a subpattern does two things:
+
+
+1. It localizes a set of alternatives. For example, the pattern
+
+ cat(aract|erpillar|)
+
+matches "cataract", "caterpillar", or "cat". Without the parentheses, it would
+match "cataract", "erpillar" or an empty string.
+
+
+2. It sets up the subpattern as a capturing subpattern. This means that, when
+the whole pattern matches, that portion of the subject string that matched the
+subpattern is passed back to the caller via the ovector argument of the
+matching function. (This applies only to the traditional matching functions;
+the DFA matching functions do not support capturing.)
+
+
+Opening parentheses are counted from left to right (starting from 1) to obtain
+numbers for the capturing subpatterns. For example, if the string "the red
+king" is matched against the pattern
+
+ the ((red|white) (king|queen))
+
+the captured substrings are "red king", "red", and "king", and are numbered 1,
+2, and 3, respectively.
+
+
+The fact that plain parentheses fulfil two functions is not always helpful.
+There are often times when a grouping subpattern is required without a
+capturing requirement. If an opening parenthesis is followed by a question mark
+and a colon, the subpattern does not do any capturing, and is not counted when
+computing the number of any subsequent capturing subpatterns. For example, if
+the string "the white queen" is matched against the pattern
+
+ the ((?:red|white) (king|queen))
+
+the captured substrings are "white queen" and "queen", and are numbered 1 and
+2. The maximum number of capturing subpatterns is 65535.
+
+
+As a convenient shorthand, if any option settings are required at the start of
+a non-capturing subpattern, the option letters may appear between the "?" and
+the ":". Thus the two patterns
+
+ (?i:saturday|sunday)
+ (?:(?i)saturday|sunday)
+
+match exactly the same set of strings. Because alternative branches are tried
+from left to right, and options are not reset until the end of the subpattern
+is reached, an option setting in one branch does affect subsequent branches, so
+the above patterns match "SUNDAY" as well as "Saturday".
+
+
DUPLICATE SUBPATTERN NUMBERS
+
+Perl 5.10 introduced a feature whereby each alternative in a subpattern uses
+the same numbers for its capturing parentheses. Such a subpattern starts with
+(?| and is itself a non-capturing subpattern. For example, consider this
+pattern:
+
+ (?|(Sat)ur|(Sun))day
+
+Because the two alternatives are inside a (?| group, both sets of capturing
+parentheses are numbered one. Thus, when the pattern matches, you can look
+at captured substring number one, whichever alternative matched. This construct
+is useful when you want to capture part, but not all, of one of a number of
+alternatives. Inside a (?| group, parentheses are numbered as usual, but the
+number is reset at the start of each branch. The numbers of any capturing
+parentheses that follow the subpattern start after the highest number used in
+any branch. The following example is taken from the Perl documentation. The
+numbers underneath show in which buffer the captured content will be stored.
+
+ # before ---------------branch-reset----------- after
+ / ( a ) (?| x ( y ) z | (p (q) r) | (t) u (v) ) ( z ) /x
+ # 1 2 2 3 2 3 4
+
+A back reference to a numbered subpattern uses the most recent value that is
+set for that number by any subpattern. The following pattern matches "abcabc"
+or "defdef":
+
+ /(?|(abc)|(def))\1/
+
+In contrast, a subroutine call to a numbered subpattern always refers to the
+first one in the pattern with the given number. The following pattern matches
+"abcabc" or "defabc":
+
+ /(?|(abc)|(def))(?1)/
+
+If a
+condition test
+for a subpattern's having matched refers to a non-unique number, the test is
+true if any of the subpatterns of that number have matched.
+
+
+An alternative approach to using this "branch reset" feature is to use
+duplicate named subpatterns, as described in the next section.
+
+
NAMED SUBPATTERNS
+
+Identifying capturing parentheses by number is simple, but it can be very hard
+to keep track of the numbers in complicated regular expressions. Furthermore,
+if an expression is modified, the numbers may change. To help with this
+difficulty, PCRE supports the naming of subpatterns. This feature was not
+added to Perl until release 5.10. Python had the feature earlier, and PCRE
+introduced it at release 4.0, using the Python syntax. PCRE now supports both
+the Perl and the Python syntax. Perl allows identically numbered subpatterns to
+have different names, but PCRE does not.
+
+
+In PCRE, a subpattern can be named in one of three ways: (?<name>...) or
+(?'name'...) as in Perl, or (?P<name>...) as in Python. References to capturing
+parentheses from other parts of the pattern, such as
+back references,
+recursion,
+and
+conditions,
+can be made by name as well as by number.
+
+
+Names consist of up to 32 alphanumeric characters and underscores. Named
+capturing parentheses are still allocated numbers as well as names, exactly as
+if the names were not present. The PCRE API provides function calls for
+extracting the name-to-number translation table from a compiled pattern. There
+is also a convenience function for extracting a captured substring by name.
+
+
+By default, a name must be unique within a pattern, but it is possible to relax
+this constraint by setting the PCRE_DUPNAMES option at compile time. (Duplicate
+names are also always permitted for subpatterns with the same number, set up as
+described in the previous section.) Duplicate names can be useful for patterns
+where only one instance of the named parentheses can match. Suppose you want to
+match the name of a weekday, either as a 3-letter abbreviation or as the full
+name, and in both cases you want to extract the abbreviation. This pattern
+(ignoring the line breaks) does the job:
+
+ (?<DN>Mon|Fri|Sun)(?:day)?|
+ (?<DN>Tue)(?:sday)?|
+ (?<DN>Wed)(?:nesday)?|
+ (?<DN>Thu)(?:rsday)?|
+ (?<DN>Sat)(?:urday)?
+
+There are five capturing substrings, but only one is ever set after a match.
+(An alternative way of solving this problem is to use a "branch reset"
+subpattern, as described in the previous section.)
+
+
+The convenience function for extracting the data by name returns the substring
+for the first (and in this example, the only) subpattern of that name that
+matched. This saves searching to find which numbered subpattern it was.
+
+
+If you make a back reference to a non-unique named subpattern from elsewhere in
+the pattern, the one that corresponds to the first occurrence of the name is
+used. In the absence of duplicate numbers (see the previous section) this is
+the one with the lowest number. If you use a named reference in a condition
+test (see the
+section about conditions
+below), either to check whether a subpattern has matched, or to check for
+recursion, all subpatterns with the same name are tested. If the condition is
+true for any one of them, the overall condition is true. This is the same
+behaviour as testing by number. For further details of the interfaces for
+handling named subpatterns, see the
+pcreapi
+documentation.
+
+
+Warning: You cannot use different names to distinguish between two
+subpatterns with the same number because PCRE uses only the numbers when
+matching. For this reason, an error is given at compile time if different names
+are given to subpatterns with the same number. However, you can give the same
+name to subpatterns with the same number, even when PCRE_DUPNAMES is not set.
+
+
REPETITION
+
+Repetition is specified by quantifiers, which can follow any of the following
+items:
+
+ a literal data character
+ the dot metacharacter
+ the \C escape sequence
+ the \X escape sequence
+ the \R escape sequence
+ an escape such as \d or \pL that matches a single character
+ a character class
+ a back reference (see next section)
+ a parenthesized subpattern (including assertions)
+ a subroutine call to a subpattern (recursive or otherwise)
+
+The general repetition quantifier specifies a minimum and maximum number of
+permitted matches, by giving the two numbers in curly brackets (braces),
+separated by a comma. The numbers must be less than 65536, and the first must
+be less than or equal to the second. For example:
+
+ z{2,4}
+
+matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special
+character. If the second number is omitted, but the comma is present, there is
+no upper limit; if the second number and the comma are both omitted, the
+quantifier specifies an exact number of required matches. Thus
+
+ [aeiou]{3,}
+
+matches at least 3 successive vowels, but may match many more, while
+
+ \d{8}
+
+matches exactly 8 digits. An opening curly bracket that appears in a position
+where a quantifier is not allowed, or one that does not match the syntax of a
+quantifier, is taken as a literal character. For example, {,6} is not a
+quantifier, but a literal string of four characters.
+
+
+In UTF modes, quantifiers apply to characters rather than to individual data
+units. Thus, for example, \x{100}{2} matches two characters, each of
+which is represented by a two-byte sequence in a UTF-8 string. Similarly,
+\X{3} matches three Unicode extended grapheme clusters, each of which may be
+several data units long (and they may be of different lengths).
+
+
+The quantifier {0} is permitted, causing the expression to behave as if the
+previous item and the quantifier were not present. This may be useful for
+subpatterns that are referenced as
+subroutines
+from elsewhere in the pattern (but see also the section entitled
+"Defining subpatterns for use by reference only"
+below). Items other than subpatterns that have a {0} quantifier are omitted
+from the compiled pattern.
+
+
+For convenience, the three most common quantifiers have single-character
+abbreviations:
+
+ * is equivalent to {0,}
+ + is equivalent to {1,}
+ ? is equivalent to {0,1}
+
+It is possible to construct infinite loops by following a subpattern that can
+match no characters with a quantifier that has no upper limit, for example:
+
+ (a?)*
+
+Earlier versions of Perl and PCRE used to give an error at compile time for
+such patterns. However, because there are cases where this can be useful, such
+patterns are now accepted, but if any repetition of the subpattern does in fact
+match no characters, the loop is forcibly broken.
+
+
+By default, the quantifiers are "greedy", that is, they match as much as
+possible (up to the maximum number of permitted times), without causing the
+rest of the pattern to fail. The classic example of where this gives problems
+is in trying to match comments in C programs. These appear between /* and */
+and within the comment, individual * and / characters may appear. An attempt to
+match C comments by applying the pattern
+
+ /\*.*\*/
+
+to the string
+
+ /* first comment */ not comment /* second comment */
+
+fails, because it matches the entire string owing to the greediness of the .*
+item.
+
+
+However, if a quantifier is followed by a question mark, it ceases to be
+greedy, and instead matches the minimum number of times possible, so the
+pattern
+
+ /\*.*?\*/
+
+does the right thing with the C comments. The meaning of the various
+quantifiers is not otherwise changed, just the preferred number of matches.
+Do not confuse this use of question mark with its use as a quantifier in its
+own right. Because it has two uses, it can sometimes appear doubled, as in
+
+ \d??\d
+
+which matches one digit by preference, but can match two if that is the only
+way the rest of the pattern matches.
+
+
+If the PCRE_UNGREEDY option is set (an option that is not available in Perl),
+the quantifiers are not greedy by default, but individual ones can be made
+greedy by following them with a question mark. In other words, it inverts the
+default behaviour.
+
+
+When a parenthesized subpattern is quantified with a minimum repeat count that
+is greater than 1 or with a limited maximum, more memory is required for the
+compiled pattern, in proportion to the size of the minimum or maximum.
+
+
+If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent
+to Perl's /s) is set, thus allowing the dot to match newlines, the pattern is
+implicitly anchored, because whatever follows will be tried against every
+character position in the subject string, so there is no point in retrying the
+overall match at any position after the first. PCRE normally treats such a
+pattern as though it were preceded by \A.
+
+
+In cases where it is known that the subject string contains no newlines, it is
+worth setting PCRE_DOTALL in order to obtain this optimization, or
+alternatively using ^ to indicate anchoring explicitly.
+
+
+However, there are some cases where the optimization cannot be used. When .*
+is inside capturing parentheses that are the subject of a back reference
+elsewhere in the pattern, a match at the start may fail where a later one
+succeeds. Consider, for example:
+
+ (.*)abc\1
+
+If the subject is "xyz123abc123" the match point is the fourth character. For
+this reason, such a pattern is not implicitly anchored.
+
+
+Another case where implicit anchoring is not applied is when the leading .* is
+inside an atomic group. Once again, a match at the start may fail where a later
+one succeeds. Consider this pattern:
+
+ (?>.*?a)b
+
+It matches "ab" in the subject "aab". The use of the backtracking control verbs
+(*PRUNE) and (*SKIP) also disable this optimization.
+
+
+When a capturing subpattern is repeated, the value captured is the substring
+that matched the final iteration. For example, after
+
+ (tweedle[dume]{3}\s*)+
+
+has matched "tweedledum tweedledee" the value of the captured substring is
+"tweedledee". However, if there are nested capturing subpatterns, the
+corresponding captured values may have been set in previous iterations. For
+example, after
+
+ /(a|(b))+/
+
+matches "aba" the value of the second captured substring is "b".
+
+
ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS
+
+With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
+repetition, failure of what follows normally causes the repeated item to be
+re-evaluated to see if a different number of repeats allows the rest of the
+pattern to match. Sometimes it is useful to prevent this, either to change the
+nature of the match, or to cause it fail earlier than it otherwise might, when
+the author of the pattern knows there is no point in carrying on.
+
+
+Consider, for example, the pattern \d+foo when applied to the subject line
+
+ 123456bar
+
+After matching all 6 digits and then failing to match "foo", the normal
+action of the matcher is to try again with only 5 digits matching the \d+
+item, and then with 4, and so on, before ultimately failing. "Atomic grouping"
+(a term taken from Jeffrey Friedl's book) provides the means for specifying
+that once a subpattern has matched, it is not to be re-evaluated in this way.
+
+
+If we use atomic grouping for the previous example, the matcher gives up
+immediately on failing to match "foo" the first time. The notation is a kind of
+special parenthesis, starting with (?> as in this example:
+
+ (?>\d+)foo
+
+This kind of parenthesis "locks up" the part of the pattern it contains once
+it has matched, and a failure further into the pattern is prevented from
+backtracking into it. Backtracking past it to previous items, however, works as
+normal.
+
+
+An alternative description is that a subpattern of this type matches the string
+of characters that an identical standalone pattern would match, if anchored at
+the current point in the subject string.
+
+
+Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as
+the above example can be thought of as a maximizing repeat that must swallow
+everything it can. So, while both \d+ and \d+? are prepared to adjust the
+number of digits they match in order to make the rest of the pattern match,
+(?>\d+) can only match an entire sequence of digits.
+
+
+Atomic groups in general can of course contain arbitrarily complicated
+subpatterns, and can be nested. However, when the subpattern for an atomic
+group is just a single repeated item, as in the example above, a simpler
+notation, called a "possessive quantifier" can be used. This consists of an
+additional + character following a quantifier. Using this notation, the
+previous example can be rewritten as
+
+ \d++foo
+
+Note that a possessive quantifier can be used with an entire group, for
+example:
+
+ (abc|xyz){2,3}+
+
+Possessive quantifiers are always greedy; the setting of the PCRE_UNGREEDY
+option is ignored. They are a convenient notation for the simpler forms of
+atomic group. However, there is no difference in the meaning of a possessive
+quantifier and the equivalent atomic group, though there may be a performance
+difference; possessive quantifiers should be slightly faster.
+
+
+The possessive quantifier syntax is an extension to the Perl 5.8 syntax.
+Jeffrey Friedl originated the idea (and the name) in the first edition of his
+book. Mike McCloskey liked it, so implemented it when he built Sun's Java
+package, and PCRE copied it from there. It ultimately found its way into Perl
+at release 5.10.
+
+
+PCRE has an optimization that automatically "possessifies" certain simple
+pattern constructs. For example, the sequence A+B is treated as A++B because
+there is no point in backtracking into a sequence of A's when B must follow.
+
+
+When a pattern contains an unlimited repeat inside a subpattern that can itself
+be repeated an unlimited number of times, the use of an atomic group is the
+only way to avoid some failing matches taking a very long time indeed. The
+pattern
+
+ (\D+|<\d+>)*[!?]
+
+matches an unlimited number of substrings that either consist of non-digits, or
+digits enclosed in <>, followed by either ! or ?. When it matches, it runs
+quickly. However, if it is applied to
+
+ aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
+
+it takes a long time before reporting failure. This is because the string can
+be divided between the internal \D+ repeat and the external * repeat in a
+large number of ways, and all have to be tried. (The example uses [!?] rather
+than a single character at the end, because both PCRE and Perl have an
+optimization that allows for fast failure when a single character is used. They
+remember the last single character that is required for a match, and fail early
+if it is not present in the string.) If the pattern is changed so that it uses
+an atomic group, like this:
+
+ ((?>\D+)|<\d+>)*[!?]
+
+sequences of non-digits cannot be broken, and failure happens quickly.
+
+
BACK REFERENCES
+
+Outside a character class, a backslash followed by a digit greater than 0 (and
+possibly further digits) is a back reference to a capturing subpattern earlier
+(that is, to its left) in the pattern, provided there have been that many
+previous capturing left parentheses.
+
+
+However, if the decimal number following the backslash is less than 10, it is
+always taken as a back reference, and causes an error only if there are not
+that many capturing left parentheses in the entire pattern. In other words, the
+parentheses that are referenced need not be to the left of the reference for
+numbers less than 10. A "forward back reference" of this type can make sense
+when a repetition is involved and the subpattern to the right has participated
+in an earlier iteration.
+
+
+It is not possible to have a numerical "forward back reference" to a subpattern
+whose number is 10 or more using this syntax because a sequence such as \50 is
+interpreted as a character defined in octal. See the subsection entitled
+"Non-printing characters"
+above
+for further details of the handling of digits following a backslash. There is
+no such problem when named parentheses are used. A back reference to any
+subpattern is possible using named parentheses (see below).
+
+
+Another way of avoiding the ambiguity inherent in the use of digits following a
+backslash is to use the \g escape sequence. This escape must be followed by an
+unsigned number or a negative number, optionally enclosed in braces. These
+examples are all identical:
+
+ (ring), \1
+ (ring), \g1
+ (ring), \g{1}
+
+An unsigned number specifies an absolute reference without the ambiguity that
+is present in the older syntax. It is also useful when literal digits follow
+the reference. A negative number is a relative reference. Consider this
+example:
+
+ (abc(def)ghi)\g{-1}
+
+The sequence \g{-1} is a reference to the most recently started capturing
+subpattern before \g, that is, is it equivalent to \2 in this example.
+Similarly, \g{-2} would be equivalent to \1. The use of relative references
+can be helpful in long patterns, and also in patterns that are created by
+joining together fragments that contain references within themselves.
+
+
+A back reference matches whatever actually matched the capturing subpattern in
+the current subject string, rather than anything matching the subpattern
+itself (see
+"Subpatterns as subroutines"
+below for a way of doing that). So the pattern
+
+ (sens|respons)e and \1ibility
+
+matches "sense and sensibility" and "response and responsibility", but not
+"sense and responsibility". If caseful matching is in force at the time of the
+back reference, the case of letters is relevant. For example,
+
+ ((?i)rah)\s+\1
+
+matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original
+capturing subpattern is matched caselessly.
+
+
+There are several different ways of writing back references to named
+subpatterns. The .NET syntax \k{name} and the Perl syntax \k<name> or
+\k'name' are supported, as is the Python syntax (?P=name). Perl 5.10's unified
+back reference syntax, in which \g can be used for both numeric and named
+references, is also supported. We could rewrite the above example in any of
+the following ways:
+
+ (?<p1>(?i)rah)\s+\k<p1>
+ (?'p1'(?i)rah)\s+\k{p1}
+ (?P<p1>(?i)rah)\s+(?P=p1)
+ (?<p1>(?i)rah)\s+\g{p1}
+
+A subpattern that is referenced by name may appear in the pattern before or
+after the reference.
+
+
+There may be more than one back reference to the same subpattern. If a
+subpattern has not actually been used in a particular match, any back
+references to it always fail by default. For example, the pattern
+
+ (a|(bc))\2
+
+always fails if it starts to match "a" rather than "bc". However, if the
+PCRE_JAVASCRIPT_COMPAT option is set at compile time, a back reference to an
+unset value matches an empty string.
+
+
+Because there may be many capturing parentheses in a pattern, all digits
+following a backslash are taken as part of a potential back reference number.
+If the pattern continues with a digit character, some delimiter must be used to
+terminate the back reference. If the PCRE_EXTENDED option is set, this can be
+white space. Otherwise, the \g{ syntax or an empty comment (see
+"Comments"
+below) can be used.
+
+
+Recursive back references
+
+
+A back reference that occurs inside the parentheses to which it refers fails
+when the subpattern is first used, so, for example, (a\1) never matches.
+However, such references can be useful inside repeated subpatterns. For
+example, the pattern
+
+ (a|b\1)+
+
+matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of
+the subpattern, the back reference matches the character string corresponding
+to the previous iteration. In order for this to work, the pattern must be such
+that the first iteration does not need to match the back reference. This can be
+done using alternation, as in the example above, or by a quantifier with a
+minimum of zero.
+
+
+Back references of this type cause the group that they reference to be treated
+as an
+atomic group.
+Once the whole group has been matched, a subsequent matching failure cannot
+cause backtracking into the middle of the group.
+
+
ASSERTIONS
+
+An assertion is a test on the characters following or preceding the current
+matching point that does not actually consume any characters. The simple
+assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are described
+above.
+
+
+More complicated assertions are coded as subpatterns. There are two kinds:
+those that look ahead of the current position in the subject string, and those
+that look behind it. An assertion subpattern is matched in the normal way,
+except that it does not cause the current matching position to be changed.
+
+
+Assertion subpatterns are not capturing subpatterns. If such an assertion
+contains capturing subpatterns within it, these are counted for the purposes of
+numbering the capturing subpatterns in the whole pattern. However, substring
+capturing is carried out only for positive assertions. (Perl sometimes, but not
+always, does do capturing in negative assertions.)
+
+
+For compatibility with Perl, assertion subpatterns may be repeated; though
+it makes no sense to assert the same thing several times, the side effect of
+capturing parentheses may occasionally be useful. In practice, there only three
+cases:
+
+
+(1) If the quantifier is {0}, the assertion is never obeyed during matching.
+However, it may contain internal capturing parenthesized groups that are called
+from elsewhere via the
+subroutine mechanism.
+
+
+(2) If quantifier is {0,n} where n is greater than zero, it is treated as if it
+were {0,1}. At run time, the rest of the pattern match is tried with and
+without the assertion, the order depending on the greediness of the quantifier.
+
+
+(3) If the minimum repetition is greater than zero, the quantifier is ignored.
+The assertion is obeyed just once when encountered during matching.
+
+
+Lookahead assertions
+
+
+Lookahead assertions start with (?= for positive assertions and (?! for
+negative assertions. For example,
+
+ \w+(?=;)
+
+matches a word followed by a semicolon, but does not include the semicolon in
+the match, and
+
+ foo(?!bar)
+
+matches any occurrence of "foo" that is not followed by "bar". Note that the
+apparently similar pattern
+
+ (?!foo)bar
+
+does not find an occurrence of "bar" that is preceded by something other than
+"foo"; it finds any occurrence of "bar" whatsoever, because the assertion
+(?!foo) is always true when the next three characters are "bar". A
+lookbehind assertion is needed to achieve the other effect.
+
+
+If you want to force a matching failure at some point in a pattern, the most
+convenient way to do it is with (?!) because an empty string always matches, so
+an assertion that requires there not to be an empty string must always fail.
+The backtracking control verb (*FAIL) or (*F) is a synonym for (?!).
+
+
+Lookbehind assertions
+
+
+Lookbehind assertions start with (?<= for positive assertions and (?<! for
+negative assertions. For example,
+
+ (?<!foo)bar
+
+does find an occurrence of "bar" that is not preceded by "foo". The contents of
+a lookbehind assertion are restricted such that all the strings it matches must
+have a fixed length. However, if there are several top-level alternatives, they
+do not all have to have the same fixed length. Thus
+
+ (?<=bullock|donkey)
+
+is permitted, but
+
+ (?<!dogs?|cats?)
+
+causes an error at compile time. Branches that match different length strings
+are permitted only at the top level of a lookbehind assertion. This is an
+extension compared with Perl, which requires all branches to match the same
+length of string. An assertion such as
+
+ (?<=ab(c|de))
+
+is not permitted, because its single top-level branch can match two different
+lengths, but it is acceptable to PCRE if rewritten to use two top-level
+branches:
+
+ (?<=abc|abde)
+
+In some cases, the escape sequence \K
+(see above)
+can be used instead of a lookbehind assertion to get round the fixed-length
+restriction.
+
+
+The implementation of lookbehind assertions is, for each alternative, to
+temporarily move the current position back by the fixed length and then try to
+match. If there are insufficient characters before the current position, the
+assertion fails.
+
+
+In a UTF mode, PCRE does not allow the \C escape (which matches a single data
+unit even in a UTF mode) to appear in lookbehind assertions, because it makes
+it impossible to calculate the length of the lookbehind. The \X and \R
+escapes, which can match different numbers of data units, are also not
+permitted.
+
+
+"Subroutine"
+calls (see below) such as (?2) or (?&X) are permitted in lookbehinds, as long
+as the subpattern matches a fixed-length string.
+Recursion,
+however, is not supported.
+
+
+Possessive quantifiers can be used in conjunction with lookbehind assertions to
+specify efficient matching of fixed-length strings at the end of subject
+strings. Consider a simple pattern such as
+
+ abcd$
+
+when applied to a long string that does not match. Because matching proceeds
+from left to right, PCRE will look for each "a" in the subject and then see if
+what follows matches the rest of the pattern. If the pattern is specified as
+
+ ^.*abcd$
+
+the initial .* matches the entire string at first, but when this fails (because
+there is no following "a"), it backtracks to match all but the last character,
+then all but the last two characters, and so on. Once again the search for "a"
+covers the entire string, from right to left, so we are no better off. However,
+if the pattern is written as
+
+ ^.*+(?<=abcd)
+
+there can be no backtracking for the .*+ item; it can match only the entire
+string. The subsequent lookbehind assertion does a single test on the last four
+characters. If it fails, the match fails immediately. For long strings, this
+approach makes a significant difference to the processing time.
+
+
+Using multiple assertions
+
+
+Several assertions (of any sort) may occur in succession. For example,
+
+ (?<=\d{3})(?<!999)foo
+
+matches "foo" preceded by three digits that are not "999". Notice that each of
+the assertions is applied independently at the same point in the subject
+string. First there is a check that the previous three characters are all
+digits, and then there is a check that the same three characters are not "999".
+This pattern does not match "foo" preceded by six characters, the first
+of which are digits and the last three of which are not "999". For example, it
+doesn't match "123abcfoo". A pattern to do that is
+
+ (?<=\d{3}...)(?<!999)foo
+
+This time the first assertion looks at the preceding six characters, checking
+that the first three are digits, and then the second assertion checks that the
+preceding three characters are not "999".
+
+
+Assertions can be nested in any combination. For example,
+
+ (?<=(?<!foo)bar)baz
+
+matches an occurrence of "baz" that is preceded by "bar" which in turn is not
+preceded by "foo", while
+
+ (?<=\d{3}(?!999)...)foo
+
+is another pattern that matches "foo" preceded by three digits and any three
+characters that are not "999".
+
+
CONDITIONAL SUBPATTERNS
+
+It is possible to cause the matching process to obey a subpattern
+conditionally or to choose between two alternative subpatterns, depending on
+the result of an assertion, or whether a specific capturing subpattern has
+already been matched. The two possible forms of conditional subpattern are:
+
+ (?(condition)yes-pattern)
+ (?(condition)yes-pattern|no-pattern)
+
+If the condition is satisfied, the yes-pattern is used; otherwise the
+no-pattern (if present) is used. If there are more than two alternatives in the
+subpattern, a compile-time error occurs. Each of the two alternatives may
+itself contain nested subpatterns of any form, including conditional
+subpatterns; the restriction to two alternatives applies only at the level of
+the condition. This pattern fragment is an example where the alternatives are
+complex:
+
+ (?(1) (A|B|C) | (D | (?(2)E|F) | E) )
+
+
+
+
+There are four kinds of condition: references to subpatterns, references to
+recursion, a pseudo-condition called DEFINE, and assertions.
+
+
+Checking for a used subpattern by number
+
+
+If the text between the parentheses consists of a sequence of digits, the
+condition is true if a capturing subpattern of that number has previously
+matched. If there is more than one capturing subpattern with the same number
+(see the earlier
+section about duplicate subpattern numbers),
+the condition is true if any of them have matched. An alternative notation is
+to precede the digits with a plus or minus sign. In this case, the subpattern
+number is relative rather than absolute. The most recently opened parentheses
+can be referenced by (?(-1), the next most recent by (?(-2), and so on. Inside
+loops it can also make sense to refer to subsequent groups. The next
+parentheses to be opened can be referenced as (?(+1), and so on. (The value
+zero in any of these forms is not used; it provokes a compile-time error.)
+
+
+Consider the following pattern, which contains non-significant white space to
+make it more readable (assume the PCRE_EXTENDED option) and to divide it into
+three parts for ease of discussion:
+
+ ( \( )? [^()]+ (?(1) \) )
+
+The first part matches an optional opening parenthesis, and if that
+character is present, sets it as the first captured substring. The second part
+matches one or more characters that are not parentheses. The third part is a
+conditional subpattern that tests whether or not the first set of parentheses
+matched. If they did, that is, if subject started with an opening parenthesis,
+the condition is true, and so the yes-pattern is executed and a closing
+parenthesis is required. Otherwise, since no-pattern is not present, the
+subpattern matches nothing. In other words, this pattern matches a sequence of
+non-parentheses, optionally enclosed in parentheses.
+
+
+If you were embedding this pattern in a larger one, you could use a relative
+reference:
+
+ ...other stuff... ( \( )? [^()]+ (?(-1) \) ) ...
+
+This makes the fragment independent of the parentheses in the larger pattern.
+
+
+Checking for a used subpattern by name
+
+
+Perl uses the syntax (?(<name>)...) or (?('name')...) to test for a used
+subpattern by name. For compatibility with earlier versions of PCRE, which had
+this facility before Perl, the syntax (?(name)...) is also recognized. However,
+there is a possible ambiguity with this syntax, because subpattern names may
+consist entirely of digits. PCRE looks first for a named subpattern; if it
+cannot find one and the name consists entirely of digits, PCRE looks for a
+subpattern of that number, which must be greater than zero. Using subpattern
+names that consist entirely of digits is not recommended.
+
+
+Rewriting the above example to use a named subpattern gives this:
+
+ (?<OPEN> \( )? [^()]+ (?(<OPEN>) \) )
+
+If the name used in a condition of this kind is a duplicate, the test is
+applied to all subpatterns of the same name, and is true if any one of them has
+matched.
+
+
+Checking for pattern recursion
+
+
+If the condition is the string (R), and there is no subpattern with the name R,
+the condition is true if a recursive call to the whole pattern or any
+subpattern has been made. If digits or a name preceded by ampersand follow the
+letter R, for example:
+
+ (?(R3)...) or (?(R&name)...)
+
+the condition is true if the most recent recursion is into a subpattern whose
+number or name is given. This condition does not check the entire recursion
+stack. If the name used in a condition of this kind is a duplicate, the test is
+applied to all subpatterns of the same name, and is true if any one of them is
+the most recent recursion.
+
+
+At "top level", all these recursion test conditions are false.
+The syntax for recursive patterns
+is described below.
+
+
+Defining subpatterns for use by reference only
+
+
+If the condition is the string (DEFINE), and there is no subpattern with the
+name DEFINE, the condition is always false. In this case, there may be only one
+alternative in the subpattern. It is always skipped if control reaches this
+point in the pattern; the idea of DEFINE is that it can be used to define
+subroutines that can be referenced from elsewhere. (The use of
+subroutines
+is described below.) For example, a pattern to match an IPv4 address such as
+"192.168.23.245" could be written like this (ignore white space and line
+breaks):
+
+ (?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d) )
+ \b (?&byte) (\.(?&byte)){3} \b
+
+The first part of the pattern is a DEFINE group inside which a another group
+named "byte" is defined. This matches an individual component of an IPv4
+address (a number less than 256). When matching takes place, this part of the
+pattern is skipped because DEFINE acts like a false condition. The rest of the
+pattern uses references to the named group to match the four dot-separated
+components of an IPv4 address, insisting on a word boundary at each end.
+
+
+Assertion conditions
+
+
+If the condition is not in any of the above formats, it must be an assertion.
+This may be a positive or negative lookahead or lookbehind assertion. Consider
+this pattern, again containing non-significant white space, and with the two
+alternatives on the second line:
+
+ (?(?=[^a-z]*[a-z])
+ \d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2} )
+
+The condition is a positive lookahead assertion that matches an optional
+sequence of non-letters followed by a letter. In other words, it tests for the
+presence of at least one letter in the subject. If a letter is found, the
+subject is matched against the first alternative; otherwise it is matched
+against the second. This pattern matches strings in one of the two forms
+dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.
+
+
COMMENTS
+
+There are two ways of including comments in patterns that are processed by
+PCRE. In both cases, the start of the comment must not be in a character class,
+nor in the middle of any other sequence of related characters such as (?: or a
+subpattern name or number. The characters that make up a comment play no part
+in the pattern matching.
+
+
+The sequence (?# marks the start of a comment that continues up to the next
+closing parenthesis. Nested parentheses are not permitted. If the PCRE_EXTENDED
+option is set, an unescaped # character also introduces a comment, which in
+this case continues to immediately after the next newline character or
+character sequence in the pattern. Which characters are interpreted as newlines
+is controlled by the options passed to a compiling function or by a special
+sequence at the start of the pattern, as described in the section entitled
+"Newline conventions"
+above. Note that the end of this type of comment is a literal newline sequence
+in the pattern; escape sequences that happen to represent a newline do not
+count. For example, consider this pattern when PCRE_EXTENDED is set, and the
+default newline convention is in force:
+
+ abc #comment \n still comment
+
+On encountering the # character, pcre_compile() skips along, looking for
+a newline in the pattern. The sequence \n is still literal at this stage, so
+it does not terminate the comment. Only an actual character with the code value
+0x0a (the default newline) does so.
+
+
RECURSIVE PATTERNS
+
+Consider the problem of matching a string in parentheses, allowing for
+unlimited nested parentheses. Without the use of recursion, the best that can
+be done is to use a pattern that matches up to some fixed depth of nesting. It
+is not possible to handle an arbitrary nesting depth.
+
+
+For some time, Perl has provided a facility that allows regular expressions to
+recurse (amongst other things). It does this by interpolating Perl code in the
+expression at run time, and the code can refer to the expression itself. A Perl
+pattern using code interpolation to solve the parentheses problem can be
+created like this:
+
+ $re = qr{\( (?: (?>[^()]+) | (?p{$re}) )* \)}x;
+
+The (?p{...}) item interpolates Perl code at run time, and in this case refers
+recursively to the pattern in which it appears.
+
+
+Obviously, PCRE cannot support the interpolation of Perl code. Instead, it
+supports special syntax for recursion of the entire pattern, and also for
+individual subpattern recursion. After its introduction in PCRE and Python,
+this kind of recursion was subsequently introduced into Perl at release 5.10.
+
+
+A special item that consists of (? followed by a number greater than zero and a
+closing parenthesis is a recursive subroutine call of the subpattern of the
+given number, provided that it occurs inside that subpattern. (If not, it is a
+non-recursive subroutine
+call, which is described in the next section.) The special item (?R) or (?0) is
+a recursive call of the entire regular expression.
+
+
+This PCRE pattern solves the nested parentheses problem (assume the
+PCRE_EXTENDED option is set so that white space is ignored):
+
+ \( ( [^()]++ | (?R) )* \)
+
+First it matches an opening parenthesis. Then it matches any number of
+substrings which can either be a sequence of non-parentheses, or a recursive
+match of the pattern itself (that is, a correctly parenthesized substring).
+Finally there is a closing parenthesis. Note the use of a possessive quantifier
+to avoid backtracking into sequences of non-parentheses.
+
+
+If this were part of a larger pattern, you would not want to recurse the entire
+pattern, so instead you could use this:
+
+ ( \( ( [^()]++ | (?1) )* \) )
+
+We have put the pattern into parentheses, and caused the recursion to refer to
+them instead of the whole pattern.
+
+
+In a larger pattern, keeping track of parenthesis numbers can be tricky. This
+is made easier by the use of relative references. Instead of (?1) in the
+pattern above you can write (?-2) to refer to the second most recently opened
+parentheses preceding the recursion. In other words, a negative number counts
+capturing parentheses leftwards from the point at which it is encountered.
+
+
+It is also possible to refer to subsequently opened parentheses, by writing
+references such as (?+2). However, these cannot be recursive because the
+reference is not inside the parentheses that are referenced. They are always
+non-recursive subroutine
+calls, as described in the next section.
+
+
+An alternative approach is to use named parentheses instead. The Perl syntax
+for this is (?&name); PCRE's earlier syntax (?P>name) is also supported. We
+could rewrite the above example as follows:
+
+ (?<pn> \( ( [^()]++ | (?&pn) )* \) )
+
+If there is more than one subpattern with the same name, the earliest one is
+used.
+
+
+This particular example pattern that we have been looking at contains nested
+unlimited repeats, and so the use of a possessive quantifier for matching
+strings of non-parentheses is important when applying the pattern to strings
+that do not match. For example, when this pattern is applied to
+
+ (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()
+
+it yields "no match" quickly. However, if a possessive quantifier is not used,
+the match runs for a very long time indeed because there are so many different
+ways the + and * repeats can carve up the subject, and all have to be tested
+before failure can be reported.
+
+
+At the end of a match, the values of capturing parentheses are those from
+the outermost level. If you want to obtain intermediate values, a callout
+function can be used (see below and the
+pcrecallout
+documentation). If the pattern above is matched against
+
+ (ab(cd)ef)
+
+the value for the inner capturing parentheses (numbered 2) is "ef", which is
+the last value taken on at the top level. If a capturing subpattern is not
+matched at the top level, its final captured value is unset, even if it was
+(temporarily) set at a deeper level during the matching process.
+
+
+If there are more than 15 capturing parentheses in a pattern, PCRE has to
+obtain extra memory to store data during a recursion, which it does by using
+pcre_malloc, freeing it via pcre_free afterwards. If no memory can
+be obtained, the match fails with the PCRE_ERROR_NOMEMORY error.
+
+
+Do not confuse the (?R) item with the condition (R), which tests for recursion.
+Consider this pattern, which matches text in angle brackets, allowing for
+arbitrary nesting. Only digits are allowed in nested brackets (that is, when
+recursing), whereas any characters are permitted at the outer level.
+
+ < (?: (?(R) \d++ | [^<>]*+) | (?R)) * >
+
+In this pattern, (?(R) is the start of a conditional subpattern, with two
+different alternatives for the recursive and non-recursive cases. The (?R) item
+is the actual recursive call.
+
+
+Differences in recursion processing between PCRE and Perl
+
+
+Recursion processing in PCRE differs from Perl in two important ways. In PCRE
+(like Python, but unlike Perl), a recursive subpattern call is always treated
+as an atomic group. That is, once it has matched some of the subject string, it
+is never re-entered, even if it contains untried alternatives and there is a
+subsequent matching failure. This can be illustrated by the following pattern,
+which purports to match a palindromic string that contains an odd number of
+characters (for example, "a", "aba", "abcba", "abcdcba"):
+
+ ^(.|(.)(?1)\2)$
+
+The idea is that it either matches a single character, or two identical
+characters surrounding a sub-palindrome. In Perl, this pattern works; in PCRE
+it does not if the pattern is longer than three characters. Consider the
+subject string "abcba":
+
+
+At the top level, the first character is matched, but as it is not at the end
+of the string, the first alternative fails; the second alternative is taken
+and the recursion kicks in. The recursive call to subpattern 1 successfully
+matches the next character ("b"). (Note that the beginning and end of line
+tests are not part of the recursion).
+
+
+Back at the top level, the next character ("c") is compared with what
+subpattern 2 matched, which was "a". This fails. Because the recursion is
+treated as an atomic group, there are now no backtracking points, and so the
+entire match fails. (Perl is able, at this point, to re-enter the recursion and
+try the second alternative.) However, if the pattern is written with the
+alternatives in the other order, things are different:
+
+ ^((.)(?1)\2|.)$
+
+This time, the recursing alternative is tried first, and continues to recurse
+until it runs out of characters, at which point the recursion fails. But this
+time we do have another alternative to try at the higher level. That is the big
+difference: in the previous case the remaining alternative is at a deeper
+recursion level, which PCRE cannot use.
+
+
+To change the pattern so that it matches all palindromic strings, not just
+those with an odd number of characters, it is tempting to change the pattern to
+this:
+
+ ^((.)(?1)\2|.?)$
+
+Again, this works in Perl, but not in PCRE, and for the same reason. When a
+deeper recursion has matched a single character, it cannot be entered again in
+order to match an empty string. The solution is to separate the two cases, and
+write out the odd and even cases as alternatives at the higher level:
+
+ ^(?:((.)(?1)\2|)|((.)(?3)\4|.))
+
+If you want to match typical palindromic phrases, the pattern has to ignore all
+non-word characters, which can be done like this:
+
+ ^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$
+
+If run with the PCRE_CASELESS option, this pattern matches phrases such as "A
+man, a plan, a canal: Panama!" and it works well in both PCRE and Perl. Note
+the use of the possessive quantifier *+ to avoid backtracking into sequences of
+non-word characters. Without this, PCRE takes a great deal longer (ten times or
+more) to match typical phrases, and Perl takes so long that you think it has
+gone into a loop.
+
+
+WARNING: The palindrome-matching patterns above work only if the subject
+string does not start with a palindrome that is shorter than the entire string.
+For example, although "abcba" is correctly matched, if the subject is "ababa",
+PCRE finds the palindrome "aba" at the start, then fails at top level because
+the end of the string does not follow. Once again, it cannot jump back into the
+recursion to try other alternatives, so the entire match fails.
+
+
+The second way in which PCRE and Perl differ in their recursion processing is
+in the handling of captured values. In Perl, when a subpattern is called
+recursively or as a subpattern (see the next section), it has no access to any
+values that were captured outside the recursion, whereas in PCRE these values
+can be referenced. Consider this pattern:
+
+ ^(.)(\1|a(?2))
+
+In PCRE, this pattern matches "bab". The first capturing parentheses match "b",
+then in the second group, when the back reference \1 fails to match "b", the
+second alternative matches "a" and then recurses. In the recursion, \1 does
+now match "b" and so the whole match succeeds. In Perl, the pattern fails to
+match because inside the recursive call \1 cannot access the externally set
+value.
+
+
SUBPATTERNS AS SUBROUTINES
+
+If the syntax for a recursive subpattern call (either by number or by
+name) is used outside the parentheses to which it refers, it operates like a
+subroutine in a programming language. The called subpattern may be defined
+before or after the reference. A numbered reference can be absolute or
+relative, as in these examples:
+
+ (...(absolute)...)...(?2)...
+ (...(relative)...)...(?-1)...
+ (...(?+1)...(relative)...
+
+An earlier example pointed out that the pattern
+
+ (sens|respons)e and \1ibility
+
+matches "sense and sensibility" and "response and responsibility", but not
+"sense and responsibility". If instead the pattern
+
+ (sens|respons)e and (?1)ibility
+
+is used, it does match "sense and responsibility" as well as the other two
+strings. Another example is given in the discussion of DEFINE above.
+
+
+All subroutine calls, whether recursive or not, are always treated as atomic
+groups. That is, once a subroutine has matched some of the subject string, it
+is never re-entered, even if it contains untried alternatives and there is a
+subsequent matching failure. Any capturing parentheses that are set during the
+subroutine call revert to their previous values afterwards.
+
+
+Processing options such as case-independence are fixed when a subpattern is
+defined, so if it is used as a subroutine, such options cannot be changed for
+different calls. For example, consider this pattern:
+
+ (abc)(?i:(?-1))
+
+It matches "abcabc". It does not match "abcABC" because the change of
+processing option does not affect the called subpattern.
+
+
ONIGURUMA SUBROUTINE SYNTAX
+
+For compatibility with Oniguruma, the non-Perl syntax \g followed by a name or
+a number enclosed either in angle brackets or single quotes, is an alternative
+syntax for referencing a subpattern as a subroutine, possibly recursively. Here
+are two of the examples used above, rewritten using this syntax:
+
+ (?<pn> \( ( (?>[^()]+) | \g<pn> )* \) )
+ (sens|respons)e and \g'1'ibility
+
+PCRE supports an extension to Oniguruma: if a number is preceded by a
+plus or a minus sign it is taken as a relative reference. For example:
+
+ (abc)(?i:\g<-1>)
+
+Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not
+synonymous. The former is a back reference; the latter is a subroutine call.
+
+
CALLOUTS
+
+Perl has a feature whereby using the sequence (?{...}) causes arbitrary Perl
+code to be obeyed in the middle of matching a regular expression. This makes it
+possible, amongst other things, to extract different substrings that match the
+same pair of parentheses when there is a repetition.
+
+
+PCRE provides a similar feature, but of course it cannot obey arbitrary Perl
+code. The feature is called "callout". The caller of PCRE provides an external
+function by putting its entry point in the global variable pcre_callout
+(8-bit library) or pcre[16|32]_callout (16-bit or 32-bit library).
+By default, this variable contains NULL, which disables all calling out.
+
+
+Within a regular expression, (?C) indicates the points at which the external
+function is to be called. If you want to identify different callout points, you
+can put a number less than 256 after the letter C. The default value is zero.
+For example, this pattern has two callout points:
+
+ (?C1)abc(?C2)def
+
+If the PCRE_AUTO_CALLOUT flag is passed to a compiling function, callouts are
+automatically installed before each item in the pattern. They are all numbered
+255. If there is a conditional group in the pattern whose condition is an
+assertion, an additional callout is inserted just before the condition. An
+explicit callout may also be set at this position, as in this example:
+
+ (?(?C9)(?=a)abc|def)
+
+Note that this applies only to assertion conditions, not to other types of
+condition.
+
+
+During matching, when PCRE reaches a callout point, the external function is
+called. It is provided with the number of the callout, the position in the
+pattern, and, optionally, one item of data originally supplied by the caller of
+the matching function. The callout function may cause matching to proceed, to
+backtrack, or to fail altogether. A complete description of the interface to
+the callout function is given in the
+pcrecallout
+documentation.
+
+
BACKTRACKING CONTROL
+
+Perl 5.10 introduced a number of "Special Backtracking Control Verbs", which
+are still described in the Perl documentation as "experimental and subject to
+change or removal in a future version of Perl". It goes on to say: "Their usage
+in production code should be noted to avoid problems during upgrades." The same
+remarks apply to the PCRE features described in this section.
+
+
+The new verbs make use of what was previously invalid syntax: an opening
+parenthesis followed by an asterisk. They are generally of the form
+(*VERB) or (*VERB:NAME). Some may take either form, possibly behaving
+differently depending on whether or not a name is present. A name is any
+sequence of characters that does not include a closing parenthesis. The maximum
+length of name is 255 in the 8-bit library and 65535 in the 16-bit and 32-bit
+libraries. If the name is empty, that is, if the closing parenthesis
+immediately follows the colon, the effect is as if the colon were not there.
+Any number of these verbs may occur in a pattern.
+
+
+Since these verbs are specifically related to backtracking, most of them can be
+used only when the pattern is to be matched using one of the traditional
+matching functions, because these use a backtracking algorithm. With the
+exception of (*FAIL), which behaves like a failing negative assertion, the
+backtracking control verbs cause an error if encountered by a DFA matching
+function.
+
+
+The behaviour of these verbs in
+repeated groups,
+assertions,
+and in
+subpatterns called as subroutines
+(whether or not recursively) is documented below.
+
+
+Optimizations that affect backtracking verbs
+
+
+PCRE contains some optimizations that are used to speed up matching by running
+some checks at the start of each match attempt. For example, it may know the
+minimum length of matching subject, or that a particular character must be
+present. When one of these optimizations bypasses the running of a match, any
+included backtracking verbs will not, of course, be processed. You can suppress
+the start-of-match optimizations by setting the PCRE_NO_START_OPTIMIZE option
+when calling pcre_compile() or pcre_exec(), or by starting the
+pattern with (*NO_START_OPT). There is more discussion of this option in the
+section entitled
+"Option bits for pcre_exec()"
+in the
+pcreapi
+documentation.
+
+
+Experiments with Perl suggest that it too has similar optimizations, sometimes
+leading to anomalous results.
+
+
+Verbs that act immediately
+
+
+The following verbs act as soon as they are encountered. They may not be
+followed by a name.
+
+ (*ACCEPT)
+
+This verb causes the match to end successfully, skipping the remainder of the
+pattern. However, when it is inside a subpattern that is called as a
+subroutine, only that subpattern is ended successfully. Matching then continues
+at the outer level. If (*ACCEPT) in triggered in a positive assertion, the
+assertion succeeds; in a negative assertion, the assertion fails.
+
+
+If (*ACCEPT) is inside capturing parentheses, the data so far is captured. For
+example:
+
+ A((?:A|B(*ACCEPT)|C)D)
+
+This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" is captured by
+the outer parentheses.
+
+ (*FAIL) or (*F)
+
+This verb causes a matching failure, forcing backtracking to occur. It is
+equivalent to (?!) but easier to read. The Perl documentation notes that it is
+probably useful only when combined with (?{}) or (??{}). Those are, of course,
+Perl features that are not present in PCRE. The nearest equivalent is the
+callout feature, as for example in this pattern:
+
+ a+(?C)(*FAIL)
+
+A match with the string "aaaa" always fails, but the callout is taken before
+each backtrack happens (in this example, 10 times).
+
+
+Recording which path was taken
+
+
+There is one verb whose main purpose is to track how a match was arrived at,
+though it also has a secondary use in conjunction with advancing the match
+starting point (see (*SKIP) below).
+
+ (*MARK:NAME) or (*:NAME)
+
+A name is always required with this verb. There may be as many instances of
+(*MARK) as you like in a pattern, and their names do not have to be unique.
+
+
+When a match succeeds, the name of the last-encountered (*MARK:NAME),
+(*PRUNE:NAME), or (*THEN:NAME) on the matching path is passed back to the
+caller as described in the section entitled
+"Extra data for pcre_exec()"
+in the
+pcreapi
+documentation. Here is an example of pcretest output, where the /K
+modifier requests the retrieval and outputting of (*MARK) data:
+
+ re> /X(*MARK:A)Y|X(*MARK:B)Z/K
+ data> XY
+ 0: XY
+ MK: A
+ XZ
+ 0: XZ
+ MK: B
+
+The (*MARK) name is tagged with "MK:" in this output, and in this example it
+indicates which of the two alternatives matched. This is a more efficient way
+of obtaining this information than putting each alternative in its own
+capturing parentheses.
+
+
+If a verb with a name is encountered in a positive assertion that is true, the
+name is recorded and passed back if it is the last-encountered. This does not
+happen for negative assertions or failing positive assertions.
+
+
+After a partial match or a failed match, the last encountered name in the
+entire match process is returned. For example:
+
+ re> /X(*MARK:A)Y|X(*MARK:B)Z/K
+ data> XP
+ No match, mark = B
+
+Note that in this unanchored example the mark is retained from the match
+attempt that started at the letter "X" in the subject. Subsequent match
+attempts starting at "P" and then with an empty string do not get as far as the
+(*MARK) item, but nevertheless do not reset it.
+
+
+If you are interested in (*MARK) values after failed matches, you should
+probably set the PCRE_NO_START_OPTIMIZE option
+(see above)
+to ensure that the match is always attempted.
+
+
+Verbs that act after backtracking
+
+
+The following verbs do nothing when they are encountered. Matching continues
+with what follows, but if there is no subsequent match, causing a backtrack to
+the verb, a failure is forced. That is, backtracking cannot pass to the left of
+the verb. However, when one of these verbs appears inside an atomic group or an
+assertion that is true, its effect is confined to that group, because once the
+group has been matched, there is never any backtracking into it. In this
+situation, backtracking can "jump back" to the left of the entire atomic group
+or assertion. (Remember also, as stated above, that this localization also
+applies in subroutine calls.)
+
+
+These verbs differ in exactly what kind of failure occurs when backtracking
+reaches them. The behaviour described below is what happens when the verb is
+not in a subroutine or an assertion. Subsequent sections cover these special
+cases.
+
+ (*COMMIT)
+
+This verb, which may not be followed by a name, causes the whole match to fail
+outright if there is a later matching failure that causes backtracking to reach
+it. Even if the pattern is unanchored, no further attempts to find a match by
+advancing the starting point take place. If (*COMMIT) is the only backtracking
+verb that is encountered, once it has been passed pcre_exec() is
+committed to finding a match at the current starting point, or not at all. For
+example:
+
+ a+(*COMMIT)b
+
+This matches "xxaab" but not "aacaab". It can be thought of as a kind of
+dynamic anchor, or "I've started, so I must finish." The name of the most
+recently passed (*MARK) in the path is passed back when (*COMMIT) forces a
+match failure.
+
+
+If there is more than one backtracking verb in a pattern, a different one that
+follows (*COMMIT) may be triggered first, so merely passing (*COMMIT) during a
+match does not always guarantee that a match must be at this starting point.
+
+
+Note that (*COMMIT) at the start of a pattern is not the same as an anchor,
+unless PCRE's start-of-match optimizations are turned off, as shown in this
+pcretest example:
+
+ re> /(*COMMIT)abc/
+ data> xyzabc
+ 0: abc
+ xyzabc\Y
+ No match
+
+PCRE knows that any match must start with "a", so the optimization skips along
+the subject to "a" before running the first match attempt, which succeeds. When
+the optimization is disabled by the \Y escape in the second subject, the match
+starts at "x" and so the (*COMMIT) causes it to fail without trying any other
+starting points.
+
+ (*PRUNE) or (*PRUNE:NAME)
+
+This verb causes the match to fail at the current starting position in the
+subject if there is a later matching failure that causes backtracking to reach
+it. If the pattern is unanchored, the normal "bumpalong" advance to the next
+starting character then happens. Backtracking can occur as usual to the left of
+(*PRUNE), before it is reached, or when matching to the right of (*PRUNE), but
+if there is no match to the right, backtracking cannot cross (*PRUNE). In
+simple cases, the use of (*PRUNE) is just an alternative to an atomic group or
+possessive quantifier, but there are some uses of (*PRUNE) that cannot be
+expressed in any other way. In an anchored pattern (*PRUNE) has the same effect
+as (*COMMIT).
+
+
+The behaviour of (*PRUNE:NAME) is the not the same as (*MARK:NAME)(*PRUNE).
+It is like (*MARK:NAME) in that the name is remembered for passing back to the
+caller. However, (*SKIP:NAME) searches only for names set with (*MARK).
+
+ (*SKIP)
+
+This verb, when given without a name, is like (*PRUNE), except that if the
+pattern is unanchored, the "bumpalong" advance is not to the next character,
+but to the position in the subject where (*SKIP) was encountered. (*SKIP)
+signifies that whatever text was matched leading up to it cannot be part of a
+successful match. Consider:
+
+ a+(*SKIP)b
+
+If the subject is "aaaac...", after the first match attempt fails (starting at
+the first character in the string), the starting point skips on to start the
+next attempt at "c". Note that a possessive quantifer does not have the same
+effect as this example; although it would suppress backtracking during the
+first match attempt, the second attempt would start at the second character
+instead of skipping on to "c".
+
+ (*SKIP:NAME)
+
+When (*SKIP) has an associated name, its behaviour is modified. When it is
+triggered, the previous path through the pattern is searched for the most
+recent (*MARK) that has the same name. If one is found, the "bumpalong" advance
+is to the subject position that corresponds to that (*MARK) instead of to where
+(*SKIP) was encountered. If no (*MARK) with a matching name is found, the
+(*SKIP) is ignored.
+
+
+Note that (*SKIP:NAME) searches only for names set by (*MARK:NAME). It ignores
+names that are set by (*PRUNE:NAME) or (*THEN:NAME).
+
+ (*THEN) or (*THEN:NAME)
+
+This verb causes a skip to the next innermost alternative when backtracking
+reaches it. That is, it cancels any further backtracking within the current
+alternative. Its name comes from the observation that it can be used for a
+pattern-based if-then-else block:
+
+ ( COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ ) ...
+
+If the COND1 pattern matches, FOO is tried (and possibly further items after
+the end of the group if FOO succeeds); on failure, the matcher skips to the
+second alternative and tries COND2, without backtracking into COND1. If that
+succeeds and BAR fails, COND3 is tried. If subsequently BAZ fails, there are no
+more alternatives, so there is a backtrack to whatever came before the entire
+group. If (*THEN) is not inside an alternation, it acts like (*PRUNE).
+
+
+The behaviour of (*THEN:NAME) is the not the same as (*MARK:NAME)(*THEN).
+It is like (*MARK:NAME) in that the name is remembered for passing back to the
+caller. However, (*SKIP:NAME) searches only for names set with (*MARK).
+
+
+A subpattern that does not contain a | character is just a part of the
+enclosing alternative; it is not a nested alternation with only one
+alternative. The effect of (*THEN) extends beyond such a subpattern to the
+enclosing alternative. Consider this pattern, where A, B, etc. are complex
+pattern fragments that do not contain any | characters at this level:
+
+ A (B(*THEN)C) | D
+
+If A and B are matched, but there is a failure in C, matching does not
+backtrack into A; instead it moves to the next alternative, that is, D.
+However, if the subpattern containing (*THEN) is given an alternative, it
+behaves differently:
+
+ A (B(*THEN)C | (*FAIL)) | D
+
+The effect of (*THEN) is now confined to the inner subpattern. After a failure
+in C, matching moves to (*FAIL), which causes the whole subpattern to fail
+because there are no more alternatives to try. In this case, matching does now
+backtrack into A.
+
+
+Note that a conditional subpattern is not considered as having two
+alternatives, because only one is ever used. In other words, the | character in
+a conditional subpattern has a different meaning. Ignoring white space,
+consider:
+
+ ^.*? (?(?=a) a | b(*THEN)c )
+
+If the subject is "ba", this pattern does not match. Because .*? is ungreedy,
+it initially matches zero characters. The condition (?=a) then fails, the
+character "b" is matched, but "c" is not. At this point, matching does not
+backtrack to .*? as might perhaps be expected from the presence of the |
+character. The conditional subpattern is part of the single alternative that
+comprises the whole pattern, and so the match fails. (If there was a backtrack
+into .*?, allowing it to match "b", the match would succeed.)
+
+
+The verbs just described provide four different "strengths" of control when
+subsequent matching fails. (*THEN) is the weakest, carrying on the match at the
+next alternative. (*PRUNE) comes next, failing the match at the current
+starting position, but allowing an advance to the next character (for an
+unanchored pattern). (*SKIP) is similar, except that the advance may be more
+than one character. (*COMMIT) is the strongest, causing the entire match to
+fail.
+
+
+More than one backtracking verb
+
+
+If more than one backtracking verb is present in a pattern, the one that is
+backtracked onto first acts. For example, consider this pattern, where A, B,
+etc. are complex pattern fragments:
+
+ (A(*COMMIT)B(*THEN)C|ABD)
+
+If A matches but B fails, the backtrack to (*COMMIT) causes the entire match to
+fail. However, if A and B match, but C fails, the backtrack to (*THEN) causes
+the next alternative (ABD) to be tried. This behaviour is consistent, but is
+not always the same as Perl's. It means that if two or more backtracking verbs
+appear in succession, all the the last of them has no effect. Consider this
+example:
+
+ ...(*COMMIT)(*PRUNE)...
+
+If there is a matching failure to the right, backtracking onto (*PRUNE) cases
+it to be triggered, and its action is taken. There can never be a backtrack
+onto (*COMMIT).
+
+
+Backtracking verbs in repeated groups
+
+
+PCRE differs from Perl in its handling of backtracking verbs in repeated
+groups. For example, consider:
+
+ /(a(*COMMIT)b)+ac/
+
+If the subject is "abac", Perl matches, but PCRE fails because the (*COMMIT) in
+the second repeat of the group acts.
+
+
+Backtracking verbs in assertions
+
+
+(*FAIL) in an assertion has its normal effect: it forces an immediate backtrack.
+
+
+(*ACCEPT) in a positive assertion causes the assertion to succeed without any
+further processing. In a negative assertion, (*ACCEPT) causes the assertion to
+fail without any further processing.
+
+
+The other backtracking verbs are not treated specially if they appear in a
+positive assertion. In particular, (*THEN) skips to the next alternative in the
+innermost enclosing group that has alternations, whether or not this is within
+the assertion.
+
+
+Negative assertions are, however, different, in order to ensure that changing a
+positive assertion into a negative assertion changes its result. Backtracking
+into (*COMMIT), (*SKIP), or (*PRUNE) causes a negative assertion to be true,
+without considering any further alternative branches in the assertion.
+Backtracking into (*THEN) causes it to skip to the next enclosing alternative
+within the assertion (the normal behaviour), but if the assertion does not have
+such an alternative, (*THEN) behaves like (*PRUNE).
+
+
+Backtracking verbs in subroutines
+
+
+These behaviours occur whether or not the subpattern is called recursively.
+Perl's treatment of subroutines is different in some cases.
+
+
+(*FAIL) in a subpattern called as a subroutine has its normal effect: it forces
+an immediate backtrack.
+
+
+(*ACCEPT) in a subpattern called as a subroutine causes the subroutine match to
+succeed without any further processing. Matching then continues after the
+subroutine call.
+
+
+(*COMMIT), (*SKIP), and (*PRUNE) in a subpattern called as a subroutine cause
+the subroutine match to fail.
+
+
+(*THEN) skips to the next alternative in the innermost enclosing group within
+the subpattern that has alternatives. If there is no such group within the
+subpattern, (*THEN) causes the subroutine match to fail.
+
+
SEE ALSO
+
+pcreapi(3), pcrecallout(3), pcrematching(3),
+pcresyntax(3), pcre(3), pcre16(3), pcre32(3).
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 26 April 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcreperform.html b/pcre/doc/html/pcreperform.html
new file mode 100644
index 00000000000..dda207f9018
--- /dev/null
+++ b/pcre/doc/html/pcreperform.html
@@ -0,0 +1,195 @@
+
+
+pcreperform specification
+
+
+pcreperform man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+PCRE PERFORMANCE
+
+
+Two aspects of performance are discussed below: memory usage and processing
+time. The way you express your pattern as a regular expression can affect both
+of them.
+
+
+COMPILED PATTERN MEMORY USAGE
+
+
+Patterns are compiled by PCRE into a reasonably efficient interpretive code, so
+that most simple patterns do not use much memory. However, there is one case
+where the memory usage of a compiled pattern can be unexpectedly large. If a
+parenthesized subpattern has a quantifier with a minimum greater than 1 and/or
+a limited maximum, the whole subpattern is repeated in the compiled code. For
+example, the pattern
+
+ (abc|def){2,4}
+
+is compiled as if it were
+
+ (abc|def)(abc|def)((abc|def)(abc|def)?)?
+
+(Technical aside: It is done this way so that backtrack points within each of
+the repetitions can be independently maintained.)
+
+
+For regular expressions whose quantifiers use only small numbers, this is not
+usually a problem. However, if the numbers are large, and particularly if such
+repetitions are nested, the memory usage can become an embarrassment. For
+example, the very simple pattern
+
+ ((ab){1,1000}c){1,3}
+
+uses 51K bytes when compiled using the 8-bit library. When PCRE is compiled
+with its default internal pointer size of two bytes, the size limit on a
+compiled pattern is 64K data units, and this is reached with the above pattern
+if the outer repetition is increased from 3 to 4. PCRE can be compiled to use
+larger internal pointers and thus handle larger compiled patterns, but it is
+better to try to rewrite your pattern to use less memory if you can.
+
+
+One way of reducing the memory usage for such patterns is to make use of PCRE's
+"subroutine"
+facility. Re-writing the above pattern as
+
+ ((ab)(?2){0,999}c)(?1){0,2}
+
+reduces the memory requirements to 18K, and indeed it remains under 20K even
+with the outer repetition increased to 100. However, this pattern is not
+exactly equivalent, because the "subroutine" calls are treated as
+atomic groups
+into which there can be no backtracking if there is a subsequent matching
+failure. Therefore, PCRE cannot do this kind of rewriting automatically.
+Furthermore, there is a noticeable loss of speed when executing the modified
+pattern. Nevertheless, if the atomic grouping is not a problem and the loss of
+speed is acceptable, this kind of rewriting will allow you to process patterns
+that PCRE cannot otherwise handle.
+
+
+STACK USAGE AT RUN TIME
+
+
+When pcre_exec() or pcre[16|32]_exec() is used for matching, certain
+kinds of pattern can cause it to use large amounts of the process stack. In
+some environments the default process stack is quite small, and if it runs out
+the result is often SIGSEGV. This issue is probably the most frequently raised
+problem with PCRE. Rewriting your pattern can often help. The
+pcrestack
+documentation discusses this issue in detail.
+
+
+PROCESSING TIME
+
+
+Certain items in regular expression patterns are processed more efficiently
+than others. It is more efficient to use a character class like [aeiou] than a
+set of single-character alternatives such as (a|e|i|o|u). In general, the
+simplest construction that provides the required behaviour is usually the most
+efficient. Jeffrey Friedl's book contains a lot of useful general discussion
+about optimizing regular expressions for efficient performance. This document
+contains a few observations about PCRE.
+
+
+Using Unicode character properties (the \p, \P, and \X escapes) is slow,
+because PCRE has to use a multi-stage table lookup whenever it needs a
+character's property. If you can find an alternative pattern that does not use
+character properties, it will probably be faster.
+
+
+By default, the escape sequences \b, \d, \s, and \w, and the POSIX
+character classes such as [:alpha:] do not use Unicode properties, partly for
+backwards compatibility, and partly for performance reasons. However, you can
+set PCRE_UCP if you want Unicode character properties to be used. This can
+double the matching time for items such as \d, when matched with
+a traditional matching function; the performance loss is less with
+a DFA matching function, and in both cases there is not much difference for
+\b.
+
+
+When a pattern begins with .* not in parentheses, or in parentheses that are
+not the subject of a backreference, and the PCRE_DOTALL option is set, the
+pattern is implicitly anchored by PCRE, since it can match only at the start of
+a subject string. However, if PCRE_DOTALL is not set, PCRE cannot make this
+optimization, because the . metacharacter does not then match a newline, and if
+the subject string contains newlines, the pattern may match from the character
+immediately following one of them instead of from the very start. For example,
+the pattern
+
+ .*second
+
+matches the subject "first\nand second" (where \n stands for a newline
+character), with the match starting at the seventh character. In order to do
+this, PCRE has to retry the match starting after every newline in the subject.
+
+
+If you are using such a pattern with subject strings that do not contain
+newlines, the best performance is obtained by setting PCRE_DOTALL, or starting
+the pattern with ^.* or ^.*? to indicate explicit anchoring. That saves PCRE
+from having to scan along the subject looking for a newline to restart at.
+
+
+Beware of patterns that contain nested indefinite repeats. These can take a
+long time to run when applied to a string that does not match. Consider the
+pattern fragment
+
+ ^(a+)*
+
+This can match "aaaa" in 16 different ways, and this number increases very
+rapidly as the string gets longer. (The * repeat can match 0, 1, 2, 3, or 4
+times, and for each of those cases other than 0 or 4, the + repeats can match
+different numbers of times.) When the remainder of the pattern is such that the
+entire match is going to fail, PCRE has in principle to try every possible
+variation, and this can take an extremely long time, even for relatively short
+strings.
+
+
+An optimization catches some of the more simple cases such as
+
+ (a+)*b
+
+where a literal character follows. Before embarking on the standard matching
+procedure, PCRE checks that there is a "b" later in the subject string, and if
+there is not, it fails the match immediately. However, when there is no
+following literal this optimization cannot be used. You can see the difference
+by comparing the behaviour of
+
+ (a+)*\d
+
+with the pattern above. The former gives a failure almost instantly when
+applied to a whole line of "a" characters, whereas the latter takes an
+appreciable time with strings longer than about 20 characters.
+
+
+In many cases, the solution to this kind of performance issue is to use an
+atomic group or a possessive quantifier.
+
+
+AUTHOR
+
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
+REVISION
+
+
+Last updated: 25 August 2012
+
+Copyright © 1997-2012 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcreposix.html b/pcre/doc/html/pcreposix.html
new file mode 100644
index 00000000000..0e5b296a086
--- /dev/null
+++ b/pcre/doc/html/pcreposix.html
@@ -0,0 +1,292 @@
+
+
+pcreposix specification
+
+
+pcreposix man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
SYNOPSIS OF POSIX API
+
+#include <pcreposix.h>
+
+
+int regcomp(regex_t *preg, const char *pattern,
+int cflags);
+
+
+int regexec(regex_t *preg, const char *string,
+size_t nmatch, regmatch_t pmatch[], int eflags);
+
+
+size_t regerror(int errcode, const regex_t *preg,
+char *errbuf, size_t errbuf_size);
+
+
+void regfree(regex_t *preg);
+
+
DESCRIPTION
+
+This set of functions provides a POSIX-style API for the PCRE regular
+expression 8-bit library. See the
+pcreapi
+documentation for a description of PCRE's native API, which contains much
+additional functionality. There is no POSIX-style wrapper for PCRE's 16-bit
+and 32-bit library.
+
+
+The functions described here are just wrapper functions that ultimately call
+the PCRE native API. Their prototypes are defined in the pcreposix.h
+header file, and on Unix systems the library itself is called
+pcreposix.a, so can be accessed by adding -lpcreposix to the
+command for linking an application that uses them. Because the POSIX functions
+call the native ones, it is also necessary to add -lpcre.
+
+
+I have implemented only those POSIX option bits that can be reasonably mapped
+to PCRE native options. In addition, the option REG_EXTENDED is defined with
+the value zero. This has no effect, but since programs that are written to the
+POSIX interface often use it, this makes it easier to slot in PCRE as a
+replacement library. Other POSIX options are not even defined.
+
+
+There are also some other options that are not defined by POSIX. These have
+been added at the request of users who want to make use of certain
+PCRE-specific features via the POSIX calling interface.
+
+
+When PCRE is called via these functions, it is only the API that is POSIX-like
+in style. The syntax and semantics of the regular expressions themselves are
+still those of Perl, subject to the setting of various PCRE options, as
+described below. "POSIX-like in style" means that the API approximates to the
+POSIX definition; it is not fully POSIX-compatible, and in multi-byte encoding
+domains it is probably even less compatible.
+
+
+The header for these functions is supplied as pcreposix.h to avoid any
+potential clash with other POSIX libraries. It can, of course, be renamed or
+aliased as regex.h, which is the "correct" name. It provides two
+structure types, regex_t for compiled internal forms, and
+regmatch_t for returning captured substrings. It also defines some
+constants whose names start with "REG_"; these are used for setting options and
+identifying error codes.
+
+
COMPILING A PATTERN
+
+The function regcomp() is called to compile a pattern into an
+internal form. The pattern is a C string terminated by a binary zero, and
+is passed in the argument pattern. The preg argument is a pointer
+to a regex_t structure that is used as a base for storing information
+about the compiled regular expression.
+
+
+The argument cflags is either zero, or contains one or more of the bits
+defined by the following macros:
+
+ REG_DOTALL
+
+The PCRE_DOTALL option is set when the regular expression is passed for
+compilation to the native function. Note that REG_DOTALL is not part of the
+POSIX standard.
+
+ REG_ICASE
+
+The PCRE_CASELESS option is set when the regular expression is passed for
+compilation to the native function.
+
+ REG_NEWLINE
+
+The PCRE_MULTILINE option is set when the regular expression is passed for
+compilation to the native function. Note that this does not mimic the
+defined POSIX behaviour for REG_NEWLINE (see the following section).
+
+ REG_NOSUB
+
+The PCRE_NO_AUTO_CAPTURE option is set when the regular expression is passed
+for compilation to the native function. In addition, when a pattern that is
+compiled with this flag is passed to regexec() for matching, the
+nmatch and pmatch arguments are ignored, and no captured strings
+are returned.
+
+ REG_UCP
+
+The PCRE_UCP option is set when the regular expression is passed for
+compilation to the native function. This causes PCRE to use Unicode properties
+when matchine \d, \w, etc., instead of just recognizing ASCII values. Note
+that REG_UTF8 is not part of the POSIX standard.
+
+ REG_UNGREEDY
+
+The PCRE_UNGREEDY option is set when the regular expression is passed for
+compilation to the native function. Note that REG_UNGREEDY is not part of the
+POSIX standard.
+
+ REG_UTF8
+
+The PCRE_UTF8 option is set when the regular expression is passed for
+compilation to the native function. This causes the pattern itself and all data
+strings used for matching it to be treated as UTF-8 strings. Note that REG_UTF8
+is not part of the POSIX standard.
+
+
+In the absence of these flags, no options are passed to the native function.
+This means the the regex is compiled with PCRE default semantics. In
+particular, the way it handles newline characters in the subject string is the
+Perl way, not the POSIX way. Note that setting PCRE_MULTILINE has only
+some of the effects specified for REG_NEWLINE. It does not affect the way
+newlines are matched by . (they are not) or by a negative class such as [^a]
+(they are).
+
+
+The yield of regcomp() is zero on success, and non-zero otherwise. The
+preg structure is filled in on success, and one member of the structure
+is public: re_nsub contains the number of capturing subpatterns in
+the regular expression. Various error codes are defined in the header file.
+
+
+NOTE: If the yield of regcomp() is non-zero, you must not attempt to
+use the contents of the preg structure. If, for example, you pass it to
+regexec(), the result is undefined and your program is likely to crash.
+
+
MATCHING NEWLINE CHARACTERS
+
+This area is not simple, because POSIX and Perl take different views of things.
+It is not possible to get PCRE to obey POSIX semantics, but then PCRE was never
+intended to be a POSIX engine. The following table lists the different
+possibilities for matching newline characters in PCRE:
+
+ Default Change with
+
+ . matches newline no PCRE_DOTALL
+ newline matches [^a] yes not changeable
+ $ matches \n at end yes PCRE_DOLLARENDONLY
+ $ matches \n in middle no PCRE_MULTILINE
+ ^ matches \n in middle no PCRE_MULTILINE
+
+This is the equivalent table for POSIX:
+
+ Default Change with
+
+ . matches newline yes REG_NEWLINE
+ newline matches [^a] yes REG_NEWLINE
+ $ matches \n at end no REG_NEWLINE
+ $ matches \n in middle no REG_NEWLINE
+ ^ matches \n in middle no REG_NEWLINE
+
+PCRE's behaviour is the same as Perl's, except that there is no equivalent for
+PCRE_DOLLAR_ENDONLY in Perl. In both PCRE and Perl, there is no way to stop
+newline from matching [^a].
+
+
+The default POSIX newline handling can be obtained by setting PCRE_DOTALL and
+PCRE_DOLLAR_ENDONLY, but there is no way to make PCRE behave exactly as for the
+REG_NEWLINE action.
+
+
MATCHING A PATTERN
+
+The function regexec() is called to match a compiled pattern preg
+against a given string, which is by default terminated by a zero byte
+(but see REG_STARTEND below), subject to the options in eflags. These can
+be:
+
+ REG_NOTBOL
+
+The PCRE_NOTBOL option is set when calling the underlying PCRE matching
+function.
+
+ REG_NOTEMPTY
+
+The PCRE_NOTEMPTY option is set when calling the underlying PCRE matching
+function. Note that REG_NOTEMPTY is not part of the POSIX standard. However,
+setting this option can give more POSIX-like behaviour in some situations.
+
+ REG_NOTEOL
+
+The PCRE_NOTEOL option is set when calling the underlying PCRE matching
+function.
+
+ REG_STARTEND
+
+The string is considered to start at string + pmatch[0].rm_so and
+to have a terminating NUL located at string + pmatch[0].rm_eo
+(there need not actually be a NUL at that location), regardless of the value of
+nmatch. This is a BSD extension, compatible with but not specified by
+IEEE Standard 1003.2 (POSIX.2), and should be used with caution in software
+intended to be portable to other systems. Note that a non-zero rm_so does
+not imply REG_NOTBOL; REG_STARTEND affects only the location of the string, not
+how it is matched.
+
+
+If the pattern was compiled with the REG_NOSUB flag, no data about any matched
+strings is returned. The nmatch and pmatch arguments of
+regexec() are ignored.
+
+
+If the value of nmatch is zero, or if the value pmatch is NULL,
+no data about any matched strings is returned.
+
+
+Otherwise,the portion of the string that was matched, and also any captured
+substrings, are returned via the pmatch argument, which points to an
+array of nmatch structures of type regmatch_t, containing the
+members rm_so and rm_eo. These contain the offset to the first
+character of each substring and the offset to the first character after the end
+of each substring, respectively. The 0th element of the vector relates to the
+entire portion of string that was matched; subsequent elements relate to
+the capturing subpatterns of the regular expression. Unused entries in the
+array have both structure members set to -1.
+
+
+A successful match yields a zero return; various error codes are defined in the
+header file, of which REG_NOMATCH is the "expected" failure code.
+
+
ERROR MESSAGES
+
+The regerror() function maps a non-zero errorcode from either
+regcomp() or regexec() to a printable message. If preg is not
+NULL, the error should have arisen from the use of that structure. A message
+terminated by a binary zero is placed in errbuf. The length of the
+message, including the zero, is limited to errbuf_size. The yield of the
+function is the size of buffer needed to hold the whole message.
+
+
MEMORY USAGE
+
+Compiling a regular expression causes memory to be allocated and associated
+with the preg structure. The function regfree() frees all such
+memory, after which preg may no longer be used as a compiled expression.
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 09 January 2012
+
+Copyright © 1997-2012 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcreprecompile.html b/pcre/doc/html/pcreprecompile.html
new file mode 100644
index 00000000000..beb9e242451
--- /dev/null
+++ b/pcre/doc/html/pcreprecompile.html
@@ -0,0 +1,158 @@
+
+
+pcreprecompile specification
+
+
+pcreprecompile man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
SAVING AND RE-USING PRECOMPILED PCRE PATTERNS
+
+If you are running an application that uses a large number of regular
+expression patterns, it may be useful to store them in a precompiled form
+instead of having to compile them every time the application is run.
+If you are not using any private character tables (see the
+pcre_maketables()
+documentation), this is relatively straightforward. If you are using private
+tables, it is a little bit more complicated. However, if you are using the
+just-in-time optimization feature, it is not possible to save and reload the
+JIT data.
+
+
+If you save compiled patterns to a file, you can copy them to a different host
+and run them there. If the two hosts have different endianness (byte order),
+you should run the pcre[16|32]_pattern_to_host_byte_order() function on the
+new host before trying to match the pattern. The matching functions return
+PCRE_ERROR_BADENDIANNESS if they detect a pattern with the wrong endianness.
+
+
+Compiling regular expressions with one version of PCRE for use with a different
+version is not guaranteed to work and may cause crashes, and saving and
+restoring a compiled pattern loses any JIT optimization data.
+
+
SAVING A COMPILED PATTERN
+
+The value returned by pcre[16|32]_compile() points to a single block of
+memory that holds the compiled pattern and associated data. You can find the
+length of this block in bytes by calling pcre[16|32]_fullinfo() with an
+argument of PCRE_INFO_SIZE. You can then save the data in any appropriate
+manner. Here is sample code for the 8-bit library that compiles a pattern and
+writes it to a file. It assumes that the variable fd refers to a file
+that is open for output:
+
+ int erroroffset, rc, size;
+ char *error;
+ pcre *re;
+
+ re = pcre_compile("my pattern", 0, &error, &erroroffset, NULL);
+ if (re == NULL) { ... handle errors ... }
+ rc = pcre_fullinfo(re, NULL, PCRE_INFO_SIZE, &size);
+ if (rc < 0) { ... handle errors ... }
+ rc = fwrite(re, 1, size, fd);
+ if (rc != size) { ... handle errors ... }
+
+In this example, the bytes that comprise the compiled pattern are copied
+exactly. Note that this is binary data that may contain any of the 256 possible
+byte values. On systems that make a distinction between binary and non-binary
+data, be sure that the file is opened for binary output.
+
+
+If you want to write more than one pattern to a file, you will have to devise a
+way of separating them. For binary data, preceding each pattern with its length
+is probably the most straightforward approach. Another possibility is to write
+out the data in hexadecimal instead of binary, one pattern to a line.
+
+
+Saving compiled patterns in a file is only one possible way of storing them for
+later use. They could equally well be saved in a database, or in the memory of
+some daemon process that passes them via sockets to the processes that want
+them.
+
+
+If the pattern has been studied, it is also possible to save the normal study
+data in a similar way to the compiled pattern itself. However, if the
+PCRE_STUDY_JIT_COMPILE was used, the just-in-time data that is created cannot
+be saved because it is too dependent on the current environment. When studying
+generates additional information, pcre[16|32]_study() returns a pointer to a
+pcre[16|32]_extra data block. Its format is defined in the
+section on matching a pattern
+in the
+pcreapi
+documentation. The study_data field points to the binary study data, and
+this is what you must save (not the pcre[16|32]_extra block itself). The
+length of the study data can be obtained by calling pcre[16|32]_fullinfo()
+with an argument of PCRE_INFO_STUDYSIZE. Remember to check that
+pcre[16|32]_study() did return a non-NULL value before trying to save the
+study data.
+
+
RE-USING A PRECOMPILED PATTERN
+
+Re-using a precompiled pattern is straightforward. Having reloaded it into main
+memory, called pcre[16|32]_pattern_to_host_byte_order() if necessary,
+you pass its pointer to pcre[16|32]_exec() or pcre[16|32]_dfa_exec() in
+the usual way.
+
+
+However, if you passed a pointer to custom character tables when the pattern
+was compiled (the tableptr argument of pcre[16|32]_compile()), you
+must now pass a similar pointer to pcre[16|32]_exec() or
+pcre[16|32]_dfa_exec(), because the value saved with the compiled pattern
+will obviously be nonsense. A field in a pcre[16|32]_extra() block is used
+to pass this data, as described in the
+section on matching a pattern
+in the
+pcreapi
+documentation.
+
+
+If you did not provide custom character tables when the pattern was compiled,
+the pointer in the compiled pattern is NULL, which causes the matching
+functions to use PCRE's internal tables. Thus, you do not need to take any
+special action at run time in this case.
+
+
+If you saved study data with the compiled pattern, you need to create your own
+pcre[16|32]_extra data block and set the study_data field to point to the
+reloaded study data. You must also set the PCRE_EXTRA_STUDY_DATA bit in the
+flags field to indicate that study data is present. Then pass the
+pcre[16|32]_extra block to the matching function in the usual way. If the
+pattern was studied for just-in-time optimization, that data cannot be saved,
+and so is lost by a save/restore cycle.
+
+
COMPATIBILITY WITH DIFFERENT PCRE RELEASES
+
+In general, it is safest to recompile all saved patterns when you update to a
+new PCRE release, though not all updates actually require this.
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 24 June 2012
+
+Copyright © 1997-2012 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcresample.html b/pcre/doc/html/pcresample.html
new file mode 100644
index 00000000000..aca9184e00e
--- /dev/null
+++ b/pcre/doc/html/pcresample.html
@@ -0,0 +1,110 @@
+
+
+pcresample specification
+
+
+pcresample man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+PCRE SAMPLE PROGRAM
+
+
+A simple, complete demonstration program, to get you started with using PCRE,
+is supplied in the file pcredemo.c in the PCRE distribution. A listing of
+this program is given in the
+pcredemo
+documentation. If you do not have a copy of the PCRE distribution, you can save
+this listing to re-create pcredemo.c.
+
+
+The demonstration program, which uses the original PCRE 8-bit library, compiles
+the regular expression that is its first argument, and matches it against the
+subject string in its second argument. No PCRE options are set, and default
+character tables are used. If matching succeeds, the program outputs the
+portion of the subject that matched, together with the contents of any captured
+substrings.
+
+
+If the -g option is given on the command line, the program then goes on to
+check for further matches of the same regular expression in the same subject
+string. The logic is a little bit tricky because of the possibility of matching
+an empty string. Comments in the code explain what is going on.
+
+
+If PCRE is installed in the standard include and library directories for your
+operating system, you should be able to compile the demonstration program using
+this command:
+
+ gcc -o pcredemo pcredemo.c -lpcre
+
+If PCRE is installed elsewhere, you may need to add additional options to the
+command line. For example, on a Unix-like system that has PCRE installed in
+/usr/local, you can compile the demonstration program using a command
+like this:
+
+ gcc -o pcredemo -I/usr/local/include pcredemo.c -L/usr/local/lib -lpcre
+
+In a Windows environment, if you want to statically link the program against a
+non-dll pcre.a file, you must uncomment the line that defines PCRE_STATIC
+before including pcre.h, because otherwise the pcre_malloc() and
+pcre_free() exported functions will be declared
+__declspec(dllimport), with unwanted results.
+
+
+Once you have compiled and linked the demonstration program, you can run simple
+tests like this:
+
+ ./pcredemo 'cat|dog' 'the cat sat on the mat'
+ ./pcredemo -g 'cat|dog' 'the dog sat on the cat'
+
+Note that there is a much more comprehensive test program, called
+pcretest,
+which supports many more facilities for testing regular expressions and both
+PCRE libraries. The
+pcredemo
+program is provided as a simple coding example.
+
+
+If you try to run
+pcredemo
+when PCRE is not installed in the standard library directory, you may get an
+error like this on some operating systems (e.g. Solaris):
+
+ ld.so.1: a.out: fatal: libpcre.so.0: open failed: No such file or directory
+
+This is caused by the way shared library support works on those systems. You
+need to add
+
+ -R/usr/local/lib
+
+(for example) to the compile command to get round this problem.
+
+
+AUTHOR
+
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
+REVISION
+
+
+Last updated: 10 January 2012
+
+Copyright © 1997-2012 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcrestack.html b/pcre/doc/html/pcrestack.html
new file mode 100644
index 00000000000..af6406d0708
--- /dev/null
+++ b/pcre/doc/html/pcrestack.html
@@ -0,0 +1,225 @@
+
+
+pcrestack specification
+
+
+pcrestack man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+PCRE DISCUSSION OF STACK USAGE
+
+
+When you call pcre[16|32]_exec(), it makes use of an internal function
+called match(). This calls itself recursively at branch points in the
+pattern, in order to remember the state of the match so that it can back up and
+try a different alternative if the first one fails. As matching proceeds deeper
+and deeper into the tree of possibilities, the recursion depth increases. The
+match() function is also called in other circumstances, for example,
+whenever a parenthesized sub-pattern is entered, and in certain cases of
+repetition.
+
+
+Not all calls of match() increase the recursion depth; for an item such
+as a* it may be called several times at the same level, after matching
+different numbers of a's. Furthermore, in a number of cases where the result of
+the recursive call would immediately be passed back as the result of the
+current call (a "tail recursion"), the function is just restarted instead.
+
+
+The above comments apply when pcre[16|32]_exec() is run in its normal
+interpretive manner. If the pattern was studied with the
+PCRE_STUDY_JIT_COMPILE option, and just-in-time compiling was successful, and
+the options passed to pcre[16|32]_exec() were not incompatible, the matching
+process uses the JIT-compiled code instead of the match() function. In
+this case, the memory requirements are handled entirely differently. See the
+pcrejit
+documentation for details.
+
+
+The pcre[16|32]_dfa_exec() function operates in an entirely different way,
+and uses recursion only when there is a regular expression recursion or
+subroutine call in the pattern. This includes the processing of assertion and
+"once-only" subpatterns, which are handled like subroutine calls. Normally,
+these are never very deep, and the limit on the complexity of
+pcre[16|32]_dfa_exec() is controlled by the amount of workspace it is given.
+However, it is possible to write patterns with runaway infinite recursions;
+such patterns will cause pcre[16|32]_dfa_exec() to run out of stack. At
+present, there is no protection against this.
+
+
+The comments that follow do NOT apply to pcre[16|32]_dfa_exec(); they are
+relevant only for pcre[16|32]_exec() without the JIT optimization.
+
+
+Reducing pcre[16|32]_exec()'s stack usage
+
+
+Each time that match() is actually called recursively, it uses memory
+from the process stack. For certain kinds of pattern and data, very large
+amounts of stack may be needed, despite the recognition of "tail recursion".
+You can often reduce the amount of recursion, and therefore the amount of stack
+used, by modifying the pattern that is being matched. Consider, for example,
+this pattern:
+
+ ([^<]|<(?!inet))+
+
+It matches from wherever it starts until it encounters "<inet" or the end of
+the data, and is the kind of pattern that might be used when processing an XML
+file. Each iteration of the outer parentheses matches either one character that
+is not "<" or a "<" that is not followed by "inet". However, each time a
+parenthesis is processed, a recursion occurs, so this formulation uses a stack
+frame for each matched character. For a long string, a lot of stack is
+required. Consider now this rewritten pattern, which matches exactly the same
+strings:
+
+ ([^<]++|<(?!inet))+
+
+This uses very much less stack, because runs of characters that do not contain
+"<" are "swallowed" in one item inside the parentheses. Recursion happens only
+when a "<" character that is not followed by "inet" is encountered (and we
+assume this is relatively rare). A possessive quantifier is used to stop any
+backtracking into the runs of non-"<" characters, but that is not related to
+stack usage.
+
+
+This example shows that one way of avoiding stack problems when matching long
+subject strings is to write repeated parenthesized subpatterns to match more
+than one character whenever possible.
+
+
+Compiling PCRE to use heap instead of stack for pcre[16|32]_exec()
+
+
+In environments where stack memory is constrained, you might want to compile
+PCRE to use heap memory instead of stack for remembering back-up points when
+pcre[16|32]_exec() is running. This makes it run a lot more slowly, however.
+Details of how to do this are given in the
+pcrebuild
+documentation. When built in this way, instead of using the stack, PCRE obtains
+and frees memory by calling the functions that are pointed to by the
+pcre[16|32]_stack_malloc and pcre[16|32]_stack_free variables. By
+default, these point to malloc() and free(), but you can replace
+the pointers to cause PCRE to use your own functions. Since the block sizes are
+always the same, and are always freed in reverse order, it may be possible to
+implement customized memory handlers that are more efficient than the standard
+functions.
+
+
+Limiting pcre[16|32]_exec()'s stack usage
+
+
+You can set limits on the number of times that match() is called, both in
+total and recursively. If a limit is exceeded, pcre[16|32]_exec() returns an
+error code. Setting suitable limits should prevent it from running out of
+stack. The default values of the limits are very large, and unlikely ever to
+operate. They can be changed when PCRE is built, and they can also be set when
+pcre[16|32]_exec() is called. For details of these interfaces, see the
+pcrebuild
+documentation and the
+section on extra data for pcre[16|32]_exec()
+in the
+pcreapi
+documentation.
+
+
+As a very rough rule of thumb, you should reckon on about 500 bytes per
+recursion. Thus, if you want to limit your stack usage to 8Mb, you should set
+the limit at 16000 recursions. A 64Mb stack, on the other hand, can support
+around 128000 recursions.
+
+
+In Unix-like environments, the pcretest test program has a command line
+option (-S) that can be used to increase the size of its stack. As long
+as the stack is large enough, another option (-M) can be used to find the
+smallest limits that allow a particular pattern to match a given subject
+string. This is done by calling pcre[16|32]_exec() repeatedly with different
+limits.
+
+
+Obtaining an estimate of stack usage
+
+
+The actual amount of stack used per recursion can vary quite a lot, depending
+on the compiler that was used to build PCRE and the optimization or debugging
+options that were set for it. The rule of thumb value of 500 bytes mentioned
+above may be larger or smaller than what is actually needed. A better
+approximation can be obtained by running this command:
+
+ pcretest -m -C
+
+The -C option causes pcretest to output information about the
+options with which PCRE was compiled. When -m is also given (before
+-C), information about stack use is given in a line like this:
+
+ Match recursion uses stack: approximate frame size = 640 bytes
+
+The value is approximate because some recursions need a bit more (up to perhaps
+16 more bytes).
+
+
+If the above command is given when PCRE is compiled to use the heap instead of
+the stack for recursion, the value that is output is the size of each block
+that is obtained from the heap.
+
+
+Changing stack size in Unix-like systems
+
+
+In Unix-like environments, there is not often a problem with the stack unless
+very long strings are involved, though the default limit on stack size varies
+from system to system. Values from 8Mb to 64Mb are common. You can find your
+default limit by running the command:
+
+ ulimit -s
+
+Unfortunately, the effect of running out of stack is often SIGSEGV, though
+sometimes a more explicit error message is given. You can normally increase the
+limit on stack size by code such as this:
+
+ struct rlimit rlim;
+ getrlimit(RLIMIT_STACK, &rlim);
+ rlim.rlim_cur = 100*1024*1024;
+ setrlimit(RLIMIT_STACK, &rlim);
+
+This reads the current limits (soft and hard) using getrlimit(), then
+attempts to increase the soft limit to 100Mb using setrlimit(). You must
+do this before calling pcre[16|32]_exec().
+
+
+Changing stack size in Mac OS X
+
+
+Using setrlimit(), as described above, should also work on Mac OS X. It
+is also possible to set a stack size when linking a program. There is a
+discussion about stack sizes in Mac OS X at this web site:
+http://developer.apple.com/qa/qa2005/qa1419.html.
+
+
+AUTHOR
+
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
+REVISION
+
+
+Last updated: 24 June 2012
+
+Copyright © 1997-2012 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcresyntax.html b/pcre/doc/html/pcresyntax.html
new file mode 100644
index 00000000000..b32e8b1689f
--- /dev/null
+++ b/pcre/doc/html/pcresyntax.html
@@ -0,0 +1,525 @@
+
+
+pcresyntax specification
+
+
+pcresyntax man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
PCRE REGULAR EXPRESSION SYNTAX SUMMARY
+
+The full syntax and semantics of the regular expressions that are supported by
+PCRE are described in the
+pcrepattern
+documentation. This document contains a quick-reference summary of the syntax.
+
+
QUOTING
+
+
+ \x where x is non-alphanumeric is a literal x
+ \Q...\E treat enclosed characters as literal
+
+
+
CHARACTERS
+
+
+ \a alarm, that is, the BEL character (hex 07)
+ \cx "control-x", where x is any ASCII character
+ \e escape (hex 1B)
+ \f form feed (hex 0C)
+ \n newline (hex 0A)
+ \r carriage return (hex 0D)
+ \t tab (hex 09)
+ \ddd character with octal code ddd, or backreference
+ \xhh character with hex code hh
+ \x{hhh..} character with hex code hhh..
+
+
+
CHARACTER TYPES
+
+
+ . any character except newline;
+ in dotall mode, any character whatsoever
+ \C one data unit, even in UTF mode (best avoided)
+ \d a decimal digit
+ \D a character that is not a decimal digit
+ \h a horizontal white space character
+ \H a character that is not a horizontal white space character
+ \N a character that is not a newline
+ \p{xx} a character with the xx property
+ \P{xx} a character without the xx property
+ \R a newline sequence
+ \s a white space character
+ \S a character that is not a white space character
+ \v a vertical white space character
+ \V a character that is not a vertical white space character
+ \w a "word" character
+ \W a "non-word" character
+ \X a Unicode extended grapheme cluster
+
+In PCRE, by default, \d, \D, \s, \S, \w, and \W recognize only ASCII
+characters, even in a UTF mode. However, this can be changed by setting the
+PCRE_UCP option.
+
+
GENERAL CATEGORY PROPERTIES FOR \p and \P
+
+
+ C Other
+ Cc Control
+ Cf Format
+ Cn Unassigned
+ Co Private use
+ Cs Surrogate
+
+ L Letter
+ Ll Lower case letter
+ Lm Modifier letter
+ Lo Other letter
+ Lt Title case letter
+ Lu Upper case letter
+ L& Ll, Lu, or Lt
+
+ M Mark
+ Mc Spacing mark
+ Me Enclosing mark
+ Mn Non-spacing mark
+
+ N Number
+ Nd Decimal number
+ Nl Letter number
+ No Other number
+
+ P Punctuation
+ Pc Connector punctuation
+ Pd Dash punctuation
+ Pe Close punctuation
+ Pf Final punctuation
+ Pi Initial punctuation
+ Po Other punctuation
+ Ps Open punctuation
+
+ S Symbol
+ Sc Currency symbol
+ Sk Modifier symbol
+ Sm Mathematical symbol
+ So Other symbol
+
+ Z Separator
+ Zl Line separator
+ Zp Paragraph separator
+ Zs Space separator
+
+
+
PCRE SPECIAL CATEGORY PROPERTIES FOR \p and \P
+
+
+ Xan Alphanumeric: union of properties L and N
+ Xps POSIX space: property Z or tab, NL, VT, FF, CR
+ Xsp Perl space: property Z or tab, NL, FF, CR
+ Xuc Univerally-named character: one that can be
+ represented by a Universal Character Name
+ Xwd Perl word: property Xan or underscore
+
+
+
SCRIPT NAMES FOR \p AND \P
+
+Arabic,
+Armenian,
+Avestan,
+Balinese,
+Bamum,
+Batak,
+Bengali,
+Bopomofo,
+Brahmi,
+Braille,
+Buginese,
+Buhid,
+Canadian_Aboriginal,
+Carian,
+Chakma,
+Cham,
+Cherokee,
+Common,
+Coptic,
+Cuneiform,
+Cypriot,
+Cyrillic,
+Deseret,
+Devanagari,
+Egyptian_Hieroglyphs,
+Ethiopic,
+Georgian,
+Glagolitic,
+Gothic,
+Greek,
+Gujarati,
+Gurmukhi,
+Han,
+Hangul,
+Hanunoo,
+Hebrew,
+Hiragana,
+Imperial_Aramaic,
+Inherited,
+Inscriptional_Pahlavi,
+Inscriptional_Parthian,
+Javanese,
+Kaithi,
+Kannada,
+Katakana,
+Kayah_Li,
+Kharoshthi,
+Khmer,
+Lao,
+Latin,
+Lepcha,
+Limbu,
+Linear_B,
+Lisu,
+Lycian,
+Lydian,
+Malayalam,
+Mandaic,
+Meetei_Mayek,
+Meroitic_Cursive,
+Meroitic_Hieroglyphs,
+Miao,
+Mongolian,
+Myanmar,
+New_Tai_Lue,
+Nko,
+Ogham,
+Old_Italic,
+Old_Persian,
+Old_South_Arabian,
+Old_Turkic,
+Ol_Chiki,
+Oriya,
+Osmanya,
+Phags_Pa,
+Phoenician,
+Rejang,
+Runic,
+Samaritan,
+Saurashtra,
+Sharada,
+Shavian,
+Sinhala,
+Sora_Sompeng,
+Sundanese,
+Syloti_Nagri,
+Syriac,
+Tagalog,
+Tagbanwa,
+Tai_Le,
+Tai_Tham,
+Tai_Viet,
+Takri,
+Tamil,
+Telugu,
+Thaana,
+Thai,
+Tibetan,
+Tifinagh,
+Ugaritic,
+Vai,
+Yi.
+
+
CHARACTER CLASSES
+
+
+ [...] positive character class
+ [^...] negative character class
+ [x-y] range (can be used for hex characters)
+ [[:xxx:]] positive POSIX named set
+ [[:^xxx:]] negative POSIX named set
+
+ alnum alphanumeric
+ alpha alphabetic
+ ascii 0-127
+ blank space or tab
+ cntrl control character
+ digit decimal digit
+ graph printing, excluding space
+ lower lower case letter
+ print printing, including space
+ punct printing, excluding alphanumeric
+ space white space
+ upper upper case letter
+ word same as \w
+ xdigit hexadecimal digit
+
+In PCRE, POSIX character set names recognize only ASCII characters by default,
+but some of them use Unicode properties if PCRE_UCP is set. You can use
+\Q...\E inside a character class.
+
+
QUANTIFIERS
+
+
+ ? 0 or 1, greedy
+ ?+ 0 or 1, possessive
+ ?? 0 or 1, lazy
+ * 0 or more, greedy
+ *+ 0 or more, possessive
+ *? 0 or more, lazy
+ + 1 or more, greedy
+ ++ 1 or more, possessive
+ +? 1 or more, lazy
+ {n} exactly n
+ {n,m} at least n, no more than m, greedy
+ {n,m}+ at least n, no more than m, possessive
+ {n,m}? at least n, no more than m, lazy
+ {n,} n or more, greedy
+ {n,}+ n or more, possessive
+ {n,}? n or more, lazy
+
+
+
ANCHORS AND SIMPLE ASSERTIONS
+
+
+ \b word boundary
+ \B not a word boundary
+ ^ start of subject
+ also after internal newline in multiline mode
+ \A start of subject
+ $ end of subject
+ also before newline at end of subject
+ also before internal newline in multiline mode
+ \Z end of subject
+ also before newline at end of subject
+ \z end of subject
+ \G first matching position in subject
+
+
+
MATCH POINT RESET
+
+
+ \K reset start of match
+
+
+
ALTERNATION
+
+
+ expr|expr|expr...
+
+
+
CAPTURING
+
+
+ (...) capturing group
+ (?<name>...) named capturing group (Perl)
+ (?'name'...) named capturing group (Perl)
+ (?P<name>...) named capturing group (Python)
+ (?:...) non-capturing group
+ (?|...) non-capturing group; reset group numbers for
+ capturing groups in each alternative
+
+
+
ATOMIC GROUPS
+
+
+ (?>...) atomic, non-capturing group
+
+
+
COMMENT
+
+
+ (?#....) comment (not nestable)
+
+
+
OPTION SETTING
+
+
+ (?i) caseless
+ (?J) allow duplicate names
+ (?m) multiline
+ (?s) single line (dotall)
+ (?U) default ungreedy (lazy)
+ (?x) extended (ignore white space)
+ (?-...) unset option(s)
+
+The following are recognized only at the start of a pattern or after one of the
+newline-setting options with similar syntax:
+
+ (*LIMIT_MATCH=d) set the match limit to d (decimal number)
+ (*LIMIT_RECURSION=d) set the recursion limit to d (decimal number)
+ (*NO_START_OPT) no start-match optimization (PCRE_NO_START_OPTIMIZE)
+ (*UTF8) set UTF-8 mode: 8-bit library (PCRE_UTF8)
+ (*UTF16) set UTF-16 mode: 16-bit library (PCRE_UTF16)
+ (*UTF32) set UTF-32 mode: 32-bit library (PCRE_UTF32)
+ (*UTF) set appropriate UTF mode for the library in use
+ (*UCP) set PCRE_UCP (use Unicode properties for \d etc)
+
+
+
LOOKAHEAD AND LOOKBEHIND ASSERTIONS
+
+
+ (?=...) positive look ahead
+ (?!...) negative look ahead
+ (?<=...) positive look behind
+ (?<!...) negative look behind
+
+Each top-level branch of a look behind must be of a fixed length.
+
+
BACKREFERENCES
+
+
+ \n reference by number (can be ambiguous)
+ \gn reference by number
+ \g{n} reference by number
+ \g{-n} relative reference by number
+ \k<name> reference by name (Perl)
+ \k'name' reference by name (Perl)
+ \g{name} reference by name (Perl)
+ \k{name} reference by name (.NET)
+ (?P=name) reference by name (Python)
+
+
+
SUBROUTINE REFERENCES (POSSIBLY RECURSIVE)
+
+
+ (?R) recurse whole pattern
+ (?n) call subpattern by absolute number
+ (?+n) call subpattern by relative number
+ (?-n) call subpattern by relative number
+ (?&name) call subpattern by name (Perl)
+ (?P>name) call subpattern by name (Python)
+ \g<name> call subpattern by name (Oniguruma)
+ \g'name' call subpattern by name (Oniguruma)
+ \g<n> call subpattern by absolute number (Oniguruma)
+ \g'n' call subpattern by absolute number (Oniguruma)
+ \g<+n> call subpattern by relative number (PCRE extension)
+ \g'+n' call subpattern by relative number (PCRE extension)
+ \g<-n> call subpattern by relative number (PCRE extension)
+ \g'-n' call subpattern by relative number (PCRE extension)
+
+
+
CONDITIONAL PATTERNS
+
+
+ (?(condition)yes-pattern)
+ (?(condition)yes-pattern|no-pattern)
+
+ (?(n)... absolute reference condition
+ (?(+n)... relative reference condition
+ (?(-n)... relative reference condition
+ (?(<name>)... named reference condition (Perl)
+ (?('name')... named reference condition (Perl)
+ (?(name)... named reference condition (PCRE)
+ (?(R)... overall recursion condition
+ (?(Rn)... specific group recursion condition
+ (?(R&name)... specific recursion condition
+ (?(DEFINE)... define subpattern for reference
+ (?(assert)... assertion condition
+
+
+
BACKTRACKING CONTROL
+
+The following act immediately they are reached:
+
+ (*ACCEPT) force successful match
+ (*FAIL) force backtrack; synonym (*F)
+ (*MARK:NAME) set name to be passed back; synonym (*:NAME)
+
+The following act only when a subsequent match failure causes a backtrack to
+reach them. They all force a match failure, but they differ in what happens
+afterwards. Those that advance the start-of-match point do so only if the
+pattern is not anchored.
+
+ (*COMMIT) overall failure, no advance of starting point
+ (*PRUNE) advance to next starting character
+ (*PRUNE:NAME) equivalent to (*MARK:NAME)(*PRUNE)
+ (*SKIP) advance to current matching position
+ (*SKIP:NAME) advance to position corresponding to an earlier
+ (*MARK:NAME); if not found, the (*SKIP) is ignored
+ (*THEN) local failure, backtrack to next alternation
+ (*THEN:NAME) equivalent to (*MARK:NAME)(*THEN)
+
+
+
NEWLINE CONVENTIONS
+
+These are recognized only at the very start of the pattern or after a
+(*BSR_...), (*UTF8), (*UTF16), (*UTF32) or (*UCP) option.
+
+ (*CR) carriage return only
+ (*LF) linefeed only
+ (*CRLF) carriage return followed by linefeed
+ (*ANYCRLF) all three of the above
+ (*ANY) any Unicode newline sequence
+
+
+
WHAT \R MATCHES
+
+These are recognized only at the very start of the pattern or after a
+(*...) option that sets the newline convention or a UTF or UCP mode.
+
+ (*BSR_ANYCRLF) CR, LF, or CRLF
+ (*BSR_UNICODE) any Unicode newline sequence
+
+
+
CALLOUTS
+
+
+ (?C) callout
+ (?Cn) callout with data n
+
+
+
SEE ALSO
+
+pcrepattern(3), pcreapi(3), pcrecallout(3),
+pcrematching(3), pcre(3).
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 26 April 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcretest.html b/pcre/doc/html/pcretest.html
new file mode 100644
index 00000000000..17d1ade6246
--- /dev/null
+++ b/pcre/doc/html/pcretest.html
@@ -0,0 +1,1100 @@
+
+
+pcretest specification
+
+
+pcretest man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+
SYNOPSIS
+
+pcretest [options] [input file [output file]]
+
+
+pcretest was written as a test program for the PCRE regular expression
+library itself, but it can also be used for experimenting with regular
+expressions. This document describes the features of the test program; for
+details of the regular expressions themselves, see the
+pcrepattern
+documentation. For details of the PCRE library function calls and their
+options, see the
+pcreapi
+,
+pcre16
+and
+pcre32
+documentation.
+
+
+The input for pcretest is a sequence of regular expression patterns and
+strings to be matched, as described below. The output shows the result of each
+match. Options on the command line and the patterns control PCRE options and
+exactly what is output.
+
+
+As PCRE has evolved, it has acquired many different features, and as a result,
+pcretest now has rather a lot of obscure options for testing every
+possible feature. Some of these options are specifically designed for use in
+conjunction with the test script and data files that are distributed as part of
+PCRE, and are unlikely to be of use otherwise. They are all documented here,
+but without much justification.
+
+
INPUT DATA FORMAT
+
+Input to pcretest is processed line by line, either by calling the C
+library's fgets() function, or via the libreadline library (see
+below). In Unix-like environments, fgets() treats any bytes other than
+newline as data characters. However, in some Windows environments character 26
+(hex 1A) causes an immediate end of file, and no further data is read. For
+maximum portability, therefore, it is safest to use only ASCII characters in
+pcretest input files.
+
+
PCRE's 8-BIT, 16-BIT AND 32-BIT LIBRARIES
+
+From release 8.30, two separate PCRE libraries can be built. The original one
+supports 8-bit character strings, whereas the newer 16-bit library supports
+character strings encoded in 16-bit units. From release 8.32, a third library
+can be built, supporting character strings encoded in 32-bit units. The
+pcretest program can be used to test all three libraries. However, it is
+itself still an 8-bit program, reading 8-bit input and writing 8-bit output.
+When testing the 16-bit or 32-bit library, the patterns and data strings are
+converted to 16- or 32-bit format before being passed to the PCRE library
+functions. Results are converted to 8-bit for output.
+
+
+References to functions and structures of the form pcre[16|32]_xx below
+mean "pcre_xx when using the 8-bit library, pcre16_xx when using
+the 16-bit library, or pcre32_xx when using the 32-bit library".
+
+
COMMAND LINE OPTIONS
+
+-8
+If both the 8-bit library has been built, this option causes the 8-bit library
+to be used (which is the default); if the 8-bit library has not been built,
+this option causes an error.
+
+
+-16
+If both the 8-bit or the 32-bit, and the 16-bit libraries have been built, this
+option causes the 16-bit library to be used. If only the 16-bit library has been
+built, this is the default (so has no effect). If only the 8-bit or the 32-bit
+library has been built, this option causes an error.
+
+
+-32
+If both the 8-bit or the 16-bit, and the 32-bit libraries have been built, this
+option causes the 32-bit library to be used. If only the 32-bit library has been
+built, this is the default (so has no effect). If only the 8-bit or the 16-bit
+library has been built, this option causes an error.
+
+
+-b
+Behave as if each pattern has the /B (show byte code) modifier; the
+internal form is output after compilation.
+
+
+-C
+Output the version number of the PCRE library, and all available information
+about the optional features that are included, and then exit with zero exit
+code. All other options are ignored.
+
+
+-C option
+Output information about a specific build-time option, then exit. This
+functionality is intended for use in scripts such as RunTest. The
+following options output the value and set the exit code as indicated:
+
+ ebcdic-nl the code for LF (= NL) in an EBCDIC environment:
+ 0x15 or 0x25
+ 0 if used in an ASCII environment
+ exit code is always 0
+ linksize the configured internal link size (2, 3, or 4)
+ exit code is set to the link size
+ newline the default newline setting:
+ CR, LF, CRLF, ANYCRLF, or ANY
+ exit code is always 0
+
+The following options output 1 for true or 0 for false, and set the exit code
+to the same value:
+
+ ebcdic compiled for an EBCDIC environment
+ jit just-in-time support is available
+ pcre16 the 16-bit library was built
+ pcre32 the 32-bit library was built
+ pcre8 the 8-bit library was built
+ ucp Unicode property support is available
+ utf UTF-8 and/or UTF-16 and/or UTF-32 support
+ is available
+
+If an unknown option is given, an error message is output; the exit code is 0.
+
+
+-d
+Behave as if each pattern has the /D (debug) modifier; the internal
+form and information about the compiled pattern is output after compilation;
+-d is equivalent to -b -i.
+
+
+-dfa
+Behave as if each data line contains the \D escape sequence; this causes the
+alternative matching function, pcre[16|32]_dfa_exec(), to be used instead
+of the standard pcre[16|32]_exec() function (more detail is given below).
+
+
+-help
+Output a brief summary these options and then exit.
+
+
+-i
+Behave as if each pattern has the /I modifier; information about the
+compiled pattern is given after compilation.
+
+
+-M
+Behave as if each data line contains the \M escape sequence; this causes
+PCRE to discover the minimum MATCH_LIMIT and MATCH_LIMIT_RECURSION settings by
+calling pcre[16|32]_exec() repeatedly with different limits.
+
+
+-m
+Output the size of each compiled pattern after it has been compiled. This is
+equivalent to adding /M to each regular expression. The size is given in
+bytes for both libraries.
+
+
+-o osize
+Set the number of elements in the output vector that is used when calling
+pcre[16|32]_exec() or pcre[16|32]_dfa_exec() to be osize. The
+default value is 45, which is enough for 14 capturing subexpressions for
+pcre[16|32]_exec() or 22 different matches for
+pcre[16|32]_dfa_exec().
+The vector size can be changed for individual matching calls by including \O
+in the data line (see below).
+
+
+-p
+Behave as if each pattern has the /P modifier; the POSIX wrapper API is
+used to call PCRE. None of the other options has any effect when -p is
+set. This option can be used only with the 8-bit library.
+
+
+-q
+Do not output the version number of pcretest at the start of execution.
+
+
+-S size
+On Unix-like systems, set the size of the run-time stack to size
+megabytes.
+
+
+-s or -s+
+Behave as if each pattern has the /S modifier; in other words, force each
+pattern to be studied. If -s+ is used, all the JIT compile options are
+passed to pcre[16|32]_study(), causing just-in-time optimization to be set
+up if it is available, for both full and partial matching. Specific JIT compile
+options can be selected by following -s+ with a digit in the range 1 to
+7, which selects the JIT compile modes as follows:
+
+ 1 normal match only
+ 2 soft partial match only
+ 3 normal match and soft partial match
+ 4 hard partial match only
+ 6 soft and hard partial match
+ 7 all three modes (default)
+
+If -s++ is used instead of -s+ (with or without a following digit),
+the text "(JIT)" is added to the first output line after a match or no match
+when JIT-compiled code was actually used.
+
+
+Note that there are pattern options that can override -s, either
+specifying no studying at all, or suppressing JIT compilation.
+
+
+If the /I or /D option is present on a pattern (requesting output
+about the compiled pattern), information about the result of studying is not
+included when studying is caused only by -s and neither -i nor
+-d is present on the command line. This behaviour means that the output
+from tests that are run with and without -s should be identical, except
+when options that output information about the actual running of a match are
+set.
+
+
+The -M, -t, and -tm options, which give information about
+resources used, are likely to produce different output with and without
+-s. Output may also differ if the /C option is present on an
+individual pattern. This uses callouts to trace the the matching process, and
+this may be different between studied and non-studied patterns. If the pattern
+contains (*MARK) items there may also be differences, for the same reason. The
+-s command line option can be overridden for specific patterns that
+should never be studied (see the /S pattern modifier below).
+
+
+-t
+Run each compile, study, and match many times with a timer, and output
+resulting time per compile or match (in milliseconds). Do not set -m with
+-t, because you will then get the size output a zillion times, and the
+timing will be distorted. You can control the number of iterations that are
+used for timing by following -t with a number (as a separate item on the
+command line). For example, "-t 1000" would iterate 1000 times. The default is
+to iterate 500000 times.
+
+
+-tm
+This is like -t except that it times only the matching phase, not the
+compile or study phases.
+
+
DESCRIPTION
+
+If pcretest is given two filename arguments, it reads from the first and
+writes to the second. If it is given only one filename argument, it reads from
+that file and writes to stdout. Otherwise, it reads from stdin and writes to
+stdout, and prompts for each line of input, using "re>" to prompt for regular
+expressions, and "data>" to prompt for data lines.
+
+
+When pcretest is built, a configuration option can specify that it should
+be linked with the libreadline library. When this is done, if the input
+is from a terminal, it is read using the readline() function. This
+provides line-editing and history facilities. The output from the -help
+option states whether or not readline() will be used.
+
+
+The program handles any number of sets of input on a single input file. Each
+set starts with a regular expression, and continues with any number of data
+lines to be matched against the pattern.
+
+
+Each data line is matched separately and independently. If you want to do
+multi-line matches, you have to use the \n escape sequence (or \r or \r\n,
+etc., depending on the newline setting) in a single line of input to encode the
+newline sequences. There is no limit on the length of data lines; the input
+buffer is automatically extended if it is too small.
+
+
+An empty line signals the end of the data lines, at which point a new regular
+expression is read. The regular expressions are given enclosed in any
+non-alphanumeric delimiters other than backslash, for example:
+
+ /(a|bc)x+yz/
+
+White space before the initial delimiter is ignored. A regular expression may
+be continued over several input lines, in which case the newline characters are
+included within it. It is possible to include the delimiter within the pattern
+by escaping it, for example
+
+ /abc\/def/
+
+If you do so, the escape and the delimiter form part of the pattern, but since
+delimiters are always non-alphanumeric, this does not affect its interpretation.
+If the terminating delimiter is immediately followed by a backslash, for
+example,
+
+ /abc/\
+
+then a backslash is added to the end of the pattern. This is done to provide a
+way of testing the error condition that arises if a pattern finishes with a
+backslash, because
+
+ /abc\/
+
+is interpreted as the first line of a pattern that starts with "abc/", causing
+pcretest to read the next line as a continuation of the regular expression.
+
+
PATTERN MODIFIERS
+
+A pattern may be followed by any number of modifiers, which are mostly single
+characters, though some of these can be qualified by further characters.
+Following Perl usage, these are referred to below as, for example, "the
+/i modifier", even though the delimiter of the pattern need not always be
+a slash, and no slash is used when writing modifiers. White space may appear
+between the final pattern delimiter and the first modifier, and between the
+modifiers themselves. For reference, here is a complete list of modifiers. They
+fall into several groups that are described in detail in the following
+sections.
+
+ /8 set UTF mode
+ /9 set PCRE_NEVER_UTF (locks out UTF mode)
+ /? disable UTF validity check
+ /+ show remainder of subject after match
+ /= show all captures (not just those that are set)
+
+ /A set PCRE_ANCHORED
+ /B show compiled code
+ /C set PCRE_AUTO_CALLOUT
+ /D same as /B plus /I
+ /E set PCRE_DOLLAR_ENDONLY
+ /F flip byte order in compiled pattern
+ /f set PCRE_FIRSTLINE
+ /G find all matches (shorten string)
+ /g find all matches (use startoffset)
+ /I show information about pattern
+ /i set PCRE_CASELESS
+ /J set PCRE_DUPNAMES
+ /K show backtracking control names
+ /L set locale
+ /M show compiled memory size
+ /m set PCRE_MULTILINE
+ /N set PCRE_NO_AUTO_CAPTURE
+ /P use the POSIX wrapper
+ /S study the pattern after compilation
+ /s set PCRE_DOTALL
+ /T select character tables
+ /U set PCRE_UNGREEDY
+ /W set PCRE_UCP
+ /X set PCRE_EXTRA
+ /x set PCRE_EXTENDED
+ /Y set PCRE_NO_START_OPTIMIZE
+ /Z don't show lengths in /B output
+
+ /<any> set PCRE_NEWLINE_ANY
+ /<anycrlf> set PCRE_NEWLINE_ANYCRLF
+ /<cr> set PCRE_NEWLINE_CR
+ /<crlf> set PCRE_NEWLINE_CRLF
+ /<lf> set PCRE_NEWLINE_LF
+ /<bsr_anycrlf> set PCRE_BSR_ANYCRLF
+ /<bsr_unicode> set PCRE_BSR_UNICODE
+ /<JS> set PCRE_JAVASCRIPT_COMPAT
+
+
+
+
+Perl-compatible modifiers
+
+
+The /i, /m, /s, and /x modifiers set the PCRE_CASELESS,
+PCRE_MULTILINE, PCRE_DOTALL, or PCRE_EXTENDED options, respectively, when
+pcre[16|32]_compile() is called. These four modifier letters have the same
+effect as they do in Perl. For example:
+
+ /caseless/i
+
+
+
+
+Modifiers for other PCRE options
+
+
+The following table shows additional modifiers for setting PCRE compile-time
+options that do not correspond to anything in Perl:
+
+ /8 PCRE_UTF8 ) when using the 8-bit
+ /? PCRE_NO_UTF8_CHECK ) library
+
+ /8 PCRE_UTF16 ) when using the 16-bit
+ /? PCRE_NO_UTF16_CHECK ) library
+
+ /8 PCRE_UTF32 ) when using the 32-bit
+ /? PCRE_NO_UTF32_CHECK ) library
+
+ /9 PCRE_NEVER_UTF
+ /A PCRE_ANCHORED
+ /C PCRE_AUTO_CALLOUT
+ /E PCRE_DOLLAR_ENDONLY
+ /f PCRE_FIRSTLINE
+ /J PCRE_DUPNAMES
+ /N PCRE_NO_AUTO_CAPTURE
+ /U PCRE_UNGREEDY
+ /W PCRE_UCP
+ /X PCRE_EXTRA
+ /Y PCRE_NO_START_OPTIMIZE
+ /<any> PCRE_NEWLINE_ANY
+ /<anycrlf> PCRE_NEWLINE_ANYCRLF
+ /<cr> PCRE_NEWLINE_CR
+ /<crlf> PCRE_NEWLINE_CRLF
+ /<lf> PCRE_NEWLINE_LF
+ /<bsr_anycrlf> PCRE_BSR_ANYCRLF
+ /<bsr_unicode> PCRE_BSR_UNICODE
+ /<JS> PCRE_JAVASCRIPT_COMPAT
+
+The modifiers that are enclosed in angle brackets are literal strings as shown,
+including the angle brackets, but the letters within can be in either case.
+This example sets multiline matching with CRLF as the line ending sequence:
+
+ /^abc/m<CRLF>
+
+As well as turning on the PCRE_UTF8/16/32 option, the /8 modifier causes
+all non-printing characters in output strings to be printed using the
+\x{hh...} notation. Otherwise, those less than 0x100 are output in hex without
+the curly brackets.
+
+
+Full details of the PCRE options are given in the
+pcreapi
+documentation.
+
+
+Finding all matches in a string
+
+
+Searching for all possible matches within each subject string can be requested
+by the /g or /G modifier. After finding a match, PCRE is called
+again to search the remainder of the subject string. The difference between
+/g and /G is that the former uses the startoffset argument to
+pcre[16|32]_exec() to start searching at a new point within the entire
+string (which is in effect what Perl does), whereas the latter passes over a
+shortened substring. This makes a difference to the matching process if the
+pattern begins with a lookbehind assertion (including \b or \B).
+
+
+If any call to pcre[16|32]_exec() in a /g or /G sequence matches
+an empty string, the next call is done with the PCRE_NOTEMPTY_ATSTART and
+PCRE_ANCHORED flags set in order to search for another, non-empty, match at the
+same point. If this second match fails, the start offset is advanced, and the
+normal match is retried. This imitates the way Perl handles such cases when
+using the /g modifier or the split() function. Normally, the start
+offset is advanced by one character, but if the newline convention recognizes
+CRLF as a newline, and the current character is CR followed by LF, an advance
+of two is used.
+
+
+Other modifiers
+
+
+There are yet more modifiers for controlling the way pcretest
+operates.
+
+
+The /+ modifier requests that as well as outputting the substring that
+matched the entire pattern, pcretest should in addition output the
+remainder of the subject string. This is useful for tests where the subject
+contains multiple copies of the same substring. If the + modifier appears
+twice, the same action is taken for captured substrings. In each case the
+remainder is output on the following line with a plus character following the
+capture number. Note that this modifier must not immediately follow the /S
+modifier because /S+ and /S++ have other meanings.
+
+
+The /= modifier requests that the values of all potential captured
+parentheses be output after a match. By default, only those up to the highest
+one actually used in the match are output (corresponding to the return code
+from pcre[16|32]_exec()). Values in the offsets vector corresponding to
+higher numbers should be set to -1, and these are output as "<unset>". This
+modifier gives a way of checking that this is happening.
+
+
+The /B modifier is a debugging feature. It requests that pcretest
+output a representation of the compiled code after compilation. Normally this
+information contains length and offset values; however, if /Z is also
+present, this data is replaced by spaces. This is a special feature for use in
+the automatic test scripts; it ensures that the same output is generated for
+different internal link sizes.
+
+
+The /D modifier is a PCRE debugging feature, and is equivalent to
+/BI, that is, both the /B and the /I modifiers.
+
+
+The /F modifier causes pcretest to flip the byte order of the
+2-byte and 4-byte fields in the compiled pattern. This facility is for testing
+the feature in PCRE that allows it to execute patterns that were compiled on a
+host with a different endianness. This feature is not available when the POSIX
+interface to PCRE is being used, that is, when the /P pattern modifier is
+specified. See also the section about saving and reloading compiled patterns
+below.
+
+
+The /I modifier requests that pcretest output information about the
+compiled pattern (whether it is anchored, has a fixed first character, and
+so on). It does this by calling pcre[16|32]_fullinfo() after compiling a
+pattern. If the pattern is studied, the results of that are also output.
+
+
+The /K modifier requests pcretest to show names from backtracking
+control verbs that are returned from calls to pcre[16|32]_exec(). It causes
+pcretest to create a pcre[16|32]_extra block if one has not already
+been created by a call to pcre[16|32]_study(), and to set the
+PCRE_EXTRA_MARK flag and the mark field within it, every time that
+pcre[16|32]_exec() is called. If the variable that the mark field
+points to is non-NULL for a match, non-match, or partial match, pcretest
+prints the string to which it points. For a match, this is shown on a line by
+itself, tagged with "MK:". For a non-match it is added to the message.
+
+
+The /L modifier must be followed directly by the name of a locale, for
+example,
+
+ /pattern/Lfr_FR
+
+For this reason, it must be the last modifier. The given locale is set,
+pcre[16|32]_maketables() is called to build a set of character tables for
+the locale, and this is then passed to pcre[16|32]_compile() when compiling
+the regular expression. Without an /L (or /T) modifier, NULL is
+passed as the tables pointer; that is, /L applies only to the expression
+on which it appears.
+
+
+The /M modifier causes the size in bytes of the memory block used to hold
+the compiled pattern to be output. This does not include the size of the
+pcre[16|32] block; it is just the actual compiled data. If the pattern is
+successfully studied with the PCRE_STUDY_JIT_COMPILE option, the size of the
+JIT compiled code is also output.
+
+
+The /S modifier causes pcre[16|32]_study() to be called after the
+expression has been compiled, and the results used when the expression is
+matched. There are a number of qualifying characters that may follow /S.
+They may appear in any order.
+
+
+If S is followed by an exclamation mark, pcre[16|32]_study() is called
+with the PCRE_STUDY_EXTRA_NEEDED option, causing it always to return a
+pcre_extra block, even when studying discovers no useful information.
+
+
+If /S is followed by a second S character, it suppresses studying, even
+if it was requested externally by the -s command line option. This makes
+it possible to specify that certain patterns are always studied, and others are
+never studied, independently of -s. This feature is used in the test
+files in a few cases where the output is different when the pattern is studied.
+
+
+If the /S modifier is followed by a + character, the call to
+pcre[16|32]_study() is made with all the JIT study options, requesting
+just-in-time optimization support if it is available, for both normal and
+partial matching. If you want to restrict the JIT compiling modes, you can
+follow /S+ with a digit in the range 1 to 7:
+
+ 1 normal match only
+ 2 soft partial match only
+ 3 normal match and soft partial match
+ 4 hard partial match only
+ 6 soft and hard partial match
+ 7 all three modes (default)
+
+If /S++ is used instead of /S+ (with or without a following digit),
+the text "(JIT)" is added to the first output line after a match or no match
+when JIT-compiled code was actually used.
+
+
+Note that there is also an independent /+ modifier; it must not be given
+immediately after /S or /S+ because this will be misinterpreted.
+
+
+If JIT studying is successful, the compiled JIT code will automatically be used
+when pcre[16|32]_exec() is run, except when incompatible run-time options
+are specified. For more details, see the
+pcrejit
+documentation. See also the \J escape sequence below for a way of
+setting the size of the JIT stack.
+
+
+Finally, if /S is followed by a minus character, JIT compilation is
+suppressed, even if it was requested externally by the -s command line
+option. This makes it possible to specify that JIT is never to be used for
+certain patterns.
+
+
+The /T modifier must be followed by a single digit. It causes a specific
+set of built-in character tables to be passed to pcre[16|32]_compile(). It
+is used in the standard PCRE tests to check behaviour with different character
+tables. The digit specifies the tables as follows:
+
+ 0 the default ASCII tables, as distributed in
+ pcre_chartables.c.dist
+ 1 a set of tables defining ISO 8859 characters
+
+In table 1, some characters whose codes are greater than 128 are identified as
+letters, digits, spaces, etc.
+
+
+Using the POSIX wrapper API
+
+
+The /P modifier causes pcretest to call PCRE via the POSIX wrapper
+API rather than its native API. This supports only the 8-bit library. When
+/P is set, the following modifiers set options for the regcomp()
+function:
+
+ /i REG_ICASE
+ /m REG_NEWLINE
+ /N REG_NOSUB
+ /s REG_DOTALL )
+ /U REG_UNGREEDY ) These options are not part of
+ /W REG_UCP ) the POSIX standard
+ /8 REG_UTF8 )
+
+The /+ modifier works as described above. All other modifiers are
+ignored.
+
+
DATA LINES
+
+Before each data line is passed to pcre[16|32]_exec(), leading and trailing
+white space is removed, and it is then scanned for \ escapes. Some of these
+are pretty esoteric features, intended for checking out some of the more
+complicated features of PCRE. If you are just testing "ordinary" regular
+expressions, you probably don't need any of these. The following escapes are
+recognized:
+
+ \a alarm (BEL, \x07)
+ \b backspace (\x08)
+ \e escape (\x27)
+ \f form feed (\x0c)
+ \n newline (\x0a)
+ \qdd set the PCRE_MATCH_LIMIT limit to dd (any number of digits)
+ \r carriage return (\x0d)
+ \t tab (\x09)
+ \v vertical tab (\x0b)
+ \nnn octal character (up to 3 octal digits); always
+ a byte unless > 255 in UTF-8 or 16-bit or 32-bit mode
+ \xhh hexadecimal byte (up to 2 hex digits)
+ \x{hh...} hexadecimal character (any number of hex digits)
+ \A pass the PCRE_ANCHORED option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+ \B pass the PCRE_NOTBOL option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+ \Cdd call pcre[16|32]_copy_substring() for substring dd after a successful match (number less than 32)
+ \Cname call pcre[16|32]_copy_named_substring() for substring "name" after a successful match (name termin-
+ ated by next non alphanumeric character)
+ \C+ show the current captured substrings at callout time
+ \C- do not supply a callout function
+ \C!n return 1 instead of 0 when callout number n is reached
+ \C!n!m return 1 instead of 0 when callout number n is reached for the nth time
+ \C*n pass the number n (may be negative) as callout data; this is used as the callout return value
+ \D use the pcre[16|32]_dfa_exec() match function
+ \F only shortest match for pcre[16|32]_dfa_exec()
+ \Gdd call pcre[16|32]_get_substring() for substring dd after a successful match (number less than 32)
+ \Gname call pcre[16|32]_get_named_substring() for substring "name" after a successful match (name termin-
+ ated by next non-alphanumeric character)
+ \Jdd set up a JIT stack of dd kilobytes maximum (any number of digits)
+ \L call pcre[16|32]_get_substringlist() after a successful match
+ \M discover the minimum MATCH_LIMIT and MATCH_LIMIT_RECURSION settings
+ \N pass the PCRE_NOTEMPTY option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec(); if used twice, pass the
+ PCRE_NOTEMPTY_ATSTART option
+ \Odd set the size of the output vector passed to pcre[16|32]_exec() to dd (any number of digits)
+ \P pass the PCRE_PARTIAL_SOFT option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec(); if used twice, pass the
+ PCRE_PARTIAL_HARD option
+ \Qdd set the PCRE_MATCH_LIMIT_RECURSION limit to dd (any number of digits)
+ \R pass the PCRE_DFA_RESTART option to pcre[16|32]_dfa_exec()
+ \S output details of memory get/free calls during matching
+ \Y pass the PCRE_NO_START_OPTIMIZE option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+ \Z pass the PCRE_NOTEOL option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+ \? pass the PCRE_NO_UTF[8|16|32]_CHECK option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+ \>dd start the match at offset dd (optional "-"; then any number of digits); this sets the startoffset
+ argument for pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+ \<cr> pass the PCRE_NEWLINE_CR option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+ \<lf> pass the PCRE_NEWLINE_LF option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+ \<crlf> pass the PCRE_NEWLINE_CRLF option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+ \<anycrlf> pass the PCRE_NEWLINE_ANYCRLF option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+ \<any> pass the PCRE_NEWLINE_ANY option to pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+
+The use of \x{hh...} is not dependent on the use of the /8 modifier on
+the pattern. It is recognized always. There may be any number of hexadecimal
+digits inside the braces; invalid values provoke error messages.
+
+
+Note that \xhh specifies one byte rather than one character in UTF-8 mode;
+this makes it possible to construct invalid UTF-8 sequences for testing
+purposes. On the other hand, \x{hh} is interpreted as a UTF-8 character in
+UTF-8 mode, generating more than one byte if the value is greater than 127.
+When testing the 8-bit library not in UTF-8 mode, \x{hh} generates one byte
+for values less than 256, and causes an error for greater values.
+
+
+In UTF-16 mode, all 4-digit \x{hhhh} values are accepted. This makes it
+possible to construct invalid UTF-16 sequences for testing purposes.
+
+
+In UTF-32 mode, all 4- to 8-digit \x{...} values are accepted. This makes it
+possible to construct invalid UTF-32 sequences for testing purposes.
+
+
+The escapes that specify line ending sequences are literal strings, exactly as
+shown. No more than one newline setting should be present in any data line.
+
+
+A backslash followed by anything else just escapes the anything else. If
+the very last character is a backslash, it is ignored. This gives a way of
+passing an empty line as data, since a real empty line terminates the data
+input.
+
+
+The \J escape provides a way of setting the maximum stack size that is
+used by the just-in-time optimization code. It is ignored if JIT optimization
+is not being used. Providing a stack that is larger than the default 32K is
+necessary only for very complicated patterns.
+
+
+If \M is present, pcretest calls pcre[16|32]_exec() several times,
+with different values in the match_limit and match_limit_recursion
+fields of the pcre[16|32]_extra data structure, until it finds the minimum
+numbers for each parameter that allow pcre[16|32]_exec() to complete without
+error. Because this is testing a specific feature of the normal interpretive
+pcre[16|32]_exec() execution, the use of any JIT optimization that might
+have been set up by the /S+ qualifier of -s+ option is disabled.
+
+
+The match_limit number is a measure of the amount of backtracking
+that takes place, and checking it out can be instructive. For most simple
+matches, the number is quite small, but for patterns with very large numbers of
+matching possibilities, it can become large very quickly with increasing length
+of subject string. The match_limit_recursion number is a measure of how
+much stack (or, if PCRE is compiled with NO_RECURSE, how much heap) memory is
+needed to complete the match attempt.
+
+
+When \O is used, the value specified may be higher or lower than the size set
+by the -O command line option (or defaulted to 45); \O applies only to
+the call of pcre[16|32]_exec() for the line in which it appears.
+
+
+If the /P modifier was present on the pattern, causing the POSIX wrapper
+API to be used, the only option-setting sequences that have any effect are \B,
+\N, and \Z, causing REG_NOTBOL, REG_NOTEMPTY, and REG_NOTEOL, respectively,
+to be passed to regexec().
+
+
THE ALTERNATIVE MATCHING FUNCTION
+
+By default, pcretest uses the standard PCRE matching function,
+pcre[16|32]_exec() to match each data line. PCRE also supports an
+alternative matching function, pcre[16|32]_dfa_test(), which operates in a
+different way, and has some restrictions. The differences between the two
+functions are described in the
+pcrematching
+documentation.
+
+
+If a data line contains the \D escape sequence, or if the command line
+contains the -dfa option, the alternative matching function is used.
+This function finds all possible matches at a given point. If, however, the \F
+escape sequence is present in the data line, it stops after the first match is
+found. This is always the shortest possible match.
+
+
DEFAULT OUTPUT FROM PCRETEST
+
+This section describes the output when the normal matching function,
+pcre[16|32]_exec(), is being used.
+
+
+When a match succeeds, pcretest outputs the list of captured substrings
+that pcre[16|32]_exec() returns, starting with number 0 for the string that
+matched the whole pattern. Otherwise, it outputs "No match" when the return is
+PCRE_ERROR_NOMATCH, and "Partial match:" followed by the partially matching
+substring when pcre[16|32]_exec() returns PCRE_ERROR_PARTIAL. (Note that
+this is the entire substring that was inspected during the partial match; it
+may include characters before the actual match start if a lookbehind assertion,
+\K, \b, or \B was involved.) For any other return, pcretest outputs
+the PCRE negative error number and a short descriptive phrase. If the error is
+a failed UTF string check, the offset of the start of the failing character and
+the reason code are also output, provided that the size of the output vector is
+at least two. Here is an example of an interactive pcretest run.
+
+ $ pcretest
+ PCRE version 8.13 2011-04-30
+
+ re> /^abc(\d+)/
+ data> abc123
+ 0: abc123
+ 1: 123
+ data> xyz
+ No match
+
+Unset capturing substrings that are not followed by one that is set are not
+returned by pcre[16|32]_exec(), and are not shown by pcretest. In the
+following example, there are two capturing substrings, but when the first data
+line is matched, the second, unset substring is not shown. An "internal" unset
+substring is shown as "<unset>", as for the second data line.
+
+ re> /(a)|(b)/
+ data> a
+ 0: a
+ 1: a
+ data> b
+ 0: b
+ 1: <unset>
+ 2: b
+
+If the strings contain any non-printing characters, they are output as \xhh
+escapes if the value is less than 256 and UTF mode is not set. Otherwise they
+are output as \x{hh...} escapes. See below for the definition of non-printing
+characters. If the pattern has the /+ modifier, the output for substring
+0 is followed by the the rest of the subject string, identified by "0+" like
+this:
+
+ re> /cat/+
+ data> cataract
+ 0: cat
+ 0+ aract
+
+If the pattern has the /g or /G modifier, the results of successive
+matching attempts are output in sequence, like this:
+
+ re> /\Bi(\w\w)/g
+ data> Mississippi
+ 0: iss
+ 1: ss
+ 0: iss
+ 1: ss
+ 0: ipp
+ 1: pp
+
+"No match" is output only if the first match attempt fails. Here is an example
+of a failure message (the offset 4 that is specified by \>4 is past the end of
+the subject string):
+
+ re> /xyz/
+ data> xyz\>4
+ Error -24 (bad offset value)
+
+
+
+If any of the sequences \C, \G, or \L are present in a
+data line that is successfully matched, the substrings extracted by the
+convenience functions are output with C, G, or L after the string number
+instead of a colon. This is in addition to the normal full list. The string
+length (that is, the return from the extraction function) is given in
+parentheses after each string for \C and \G.
+
+
+Note that whereas patterns can be continued over several lines (a plain ">"
+prompt is used for continuations), data lines may not. However newlines can be
+included in data by means of the \n escape (or \r, \r\n, etc., depending on
+the newline sequence setting).
+
+
OUTPUT FROM THE ALTERNATIVE MATCHING FUNCTION
+
+When the alternative matching function, pcre[16|32]_dfa_exec(), is used (by
+means of the \D escape sequence or the -dfa command line option), the
+output consists of a list of all the matches that start at the first point in
+the subject where there is at least one match. For example:
+
+ re> /(tang|tangerine|tan)/
+ data> yellow tangerine\D
+ 0: tangerine
+ 1: tang
+ 2: tan
+
+(Using the normal matching function on this data finds only "tang".) The
+longest matching string is always given first (and numbered zero). After a
+PCRE_ERROR_PARTIAL return, the output is "Partial match:", followed by the
+partially matching substring. (Note that this is the entire substring that was
+inspected during the partial match; it may include characters before the actual
+match start if a lookbehind assertion, \K, \b, or \B was involved.)
+
+
+If /g is present on the pattern, the search for further matches resumes
+at the end of the longest match. For example:
+
+ re> /(tang|tangerine|tan)/g
+ data> yellow tangerine and tangy sultana\D
+ 0: tangerine
+ 1: tang
+ 2: tan
+ 0: tang
+ 1: tan
+ 0: tan
+
+Since the matching function does not support substring capture, the escape
+sequences that are concerned with captured substrings are not relevant.
+
+
RESTARTING AFTER A PARTIAL MATCH
+
+When the alternative matching function has given the PCRE_ERROR_PARTIAL return,
+indicating that the subject partially matched the pattern, you can restart the
+match with additional subject data by means of the \R escape sequence. For
+example:
+
+ re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
+ data> 23ja\P\D
+ Partial match: 23ja
+ data> n05\R\D
+ 0: n05
+
+For further information about partial matching, see the
+pcrepartial
+documentation.
+
+
CALLOUTS
+
+If the pattern contains any callout requests, pcretest's callout function
+is called during matching. This works with both matching functions. By default,
+the called function displays the callout number, the start and current
+positions in the text at the callout time, and the next pattern item to be
+tested. For example:
+
+ --->pqrabcdef
+ 0 ^ ^ \d
+
+This output indicates that callout number 0 occurred for a match attempt
+starting at the fourth character of the subject string, when the pointer was at
+the seventh character of the data, and when the next pattern item was \d. Just
+one circumflex is output if the start and current positions are the same.
+
+
+Callouts numbered 255 are assumed to be automatic callouts, inserted as a
+result of the /C pattern modifier. In this case, instead of showing the
+callout number, the offset in the pattern, preceded by a plus, is output. For
+example:
+
+ re> /\d?[A-E]\*/C
+ data> E*
+ --->E*
+ +0 ^ \d?
+ +3 ^ [A-E]
+ +8 ^^ \*
+ +10 ^ ^
+ 0: E*
+
+If a pattern contains (*MARK) items, an additional line is output whenever
+a change of latest mark is passed to the callout function. For example:
+
+ re> /a(*MARK:X)bc/C
+ data> abc
+ --->abc
+ +0 ^ a
+ +1 ^^ (*MARK:X)
+ +10 ^^ b
+ Latest Mark: X
+ +11 ^ ^ c
+ +12 ^ ^
+ 0: abc
+
+The mark changes between matching "a" and "b", but stays the same for the rest
+of the match, so nothing more is output. If, as a result of backtracking, the
+mark reverts to being unset, the text "<unset>" is output.
+
+
+The callout function in pcretest returns zero (carry on matching) by
+default, but you can use a \C item in a data line (as described above) to
+change this and other parameters of the callout.
+
+
+Inserting callouts can be helpful when using pcretest to check
+complicated regular expressions. For further information about callouts, see
+the
+pcrecallout
+documentation.
+
+
NON-PRINTING CHARACTERS
+
+When pcretest is outputting text in the compiled version of a pattern,
+bytes other than 32-126 are always treated as non-printing characters are are
+therefore shown as hex escapes.
+
+
+When pcretest is outputting text that is a matched part of a subject
+string, it behaves in the same way, unless a different locale has been set for
+the pattern (using the /L modifier). In this case, the isprint()
+function to distinguish printing and non-printing characters.
+
+
SAVING AND RELOADING COMPILED PATTERNS
+
+The facilities described in this section are not available when the POSIX
+interface to PCRE is being used, that is, when the /P pattern modifier is
+specified.
+
+
+When the POSIX interface is not in use, you can cause pcretest to write a
+compiled pattern to a file, by following the modifiers with > and a file name.
+For example:
+
+ /pattern/im >/some/file
+
+See the
+pcreprecompile
+documentation for a discussion about saving and re-using compiled patterns.
+Note that if the pattern was successfully studied with JIT optimization, the
+JIT data cannot be saved.
+
+
+The data that is written is binary. The first eight bytes are the length of the
+compiled pattern data followed by the length of the optional study data, each
+written as four bytes in big-endian order (most significant byte first). If
+there is no study data (either the pattern was not studied, or studying did not
+return any data), the second length is zero. The lengths are followed by an
+exact copy of the compiled pattern. If there is additional study data, this
+(excluding any JIT data) follows immediately after the compiled pattern. After
+writing the file, pcretest expects to read a new pattern.
+
+
+A saved pattern can be reloaded into pcretest by specifying < and a file
+name instead of a pattern. The name of the file must not contain a < character,
+as otherwise pcretest will interpret the line as a pattern delimited by <
+characters.
+For example:
+
+ re> </some/file
+ Compiled pattern loaded from /some/file
+ No study data
+
+If the pattern was previously studied with the JIT optimization, the JIT
+information cannot be saved and restored, and so is lost. When the pattern has
+been loaded, pcretest proceeds to read data lines in the usual way.
+
+
+You can copy a file written by pcretest to a different host and reload it
+there, even if the new host has opposite endianness to the one on which the
+pattern was compiled. For example, you can compile on an i86 machine and run on
+a SPARC machine. When a pattern is reloaded on a host with different
+endianness, the confirmation message is changed to:
+
+ Compiled pattern (byte-inverted) loaded from /some/file
+
+The test suite contains some saved pre-compiled patterns with different
+endianness. These are reloaded using "<!" instead of just "<". This suppresses
+the "(byte-inverted)" text so that the output is the same on all hosts. It also
+forces debugging output once the pattern has been reloaded.
+
+
+File names for saving and reloading can be absolute or relative, but note that
+the shell facility of expanding a file name that starts with a tilde (~) is not
+available.
+
+
+The ability to save and reload files in pcretest is intended for testing
+and experimentation. It is not intended for production use because only a
+single pattern can be written to a file. Furthermore, there is no facility for
+supplying custom character tables for use with a reloaded pattern. If the
+original pattern was compiled with custom tables, an attempt to match a subject
+string using a reloaded pattern is likely to cause pcretest to crash.
+Finally, if you attempt to load a file that is not in the correct format, the
+result is undefined.
+
+
SEE ALSO
+
+pcre(3), pcre16(3), pcre32(3), pcreapi(3),
+pcrecallout(3),
+pcrejit, pcrematching(3), pcrepartial(d),
+pcrepattern(3), pcreprecompile(3).
+
+
AUTHOR
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
REVISION
+
+Last updated: 26 April 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/html/pcreunicode.html b/pcre/doc/html/pcreunicode.html
new file mode 100644
index 00000000000..ab36bc61e37
--- /dev/null
+++ b/pcre/doc/html/pcreunicode.html
@@ -0,0 +1,262 @@
+
+
+pcreunicode specification
+
+
+pcreunicode man page
+
+Return to the PCRE index page.
+
+
+This page is part of the PCRE HTML documentation. It was generated automatically
+from the original man page. If there is any nonsense in it, please consult the
+man page, in case the conversion went wrong.
+
+
+UTF-8, UTF-16, UTF-32, AND UNICODE PROPERTY SUPPORT
+
+
+As well as UTF-8 support, PCRE also supports UTF-16 (from release 8.30) and
+UTF-32 (from release 8.32), by means of two additional libraries. They can be
+built as well as, or instead of, the 8-bit library.
+
+
+UTF-8 SUPPORT
+
+
+In order process UTF-8 strings, you must build PCRE's 8-bit library with UTF
+support, and, in addition, you must call
+pcre_compile()
+with the PCRE_UTF8 option flag, or the pattern must start with the sequence
+(*UTF8) or (*UTF). When either of these is the case, both the pattern and any
+subject strings that are matched against it are treated as UTF-8 strings
+instead of strings of individual 1-byte characters.
+
+
+UTF-16 AND UTF-32 SUPPORT
+
+
+In order process UTF-16 or UTF-32 strings, you must build PCRE's 16-bit or
+32-bit library with UTF support, and, in addition, you must call
+pcre16_compile()
+or
+pcre32_compile()
+with the PCRE_UTF16 or PCRE_UTF32 option flag, as appropriate. Alternatively,
+the pattern must start with the sequence (*UTF16), (*UTF32), as appropriate, or
+(*UTF), which can be used with either library. When UTF mode is set, both the
+pattern and any subject strings that are matched against it are treated as
+UTF-16 or UTF-32 strings instead of strings of individual 16-bit or 32-bit
+characters.
+
+
+UTF SUPPORT OVERHEAD
+
+
+If you compile PCRE with UTF support, but do not use it at run time, the
+library will be a bit bigger, but the additional run time overhead is limited
+to testing the PCRE_UTF[8|16|32] flag occasionally, so should not be very big.
+
+
+UNICODE PROPERTY SUPPORT
+
+
+If PCRE is built with Unicode character property support (which implies UTF
+support), the escape sequences \p{..}, \P{..}, and \X can be used.
+The available properties that can be tested are limited to the general
+category properties such as Lu for an upper case letter or Nd for a decimal
+number, the Unicode script names such as Arabic or Han, and the derived
+properties Any and L&. Full lists is given in the
+pcrepattern
+and
+pcresyntax
+documentation. Only the short names for properties are supported. For example,
+\p{L} matches a letter. Its Perl synonym, \p{Letter}, is not supported.
+Furthermore, in Perl, many properties may optionally be prefixed by "Is", for
+compatibility with Perl 5.6. PCRE does not support this.
+
+
+Validity of UTF-8 strings
+
+
+When you set the PCRE_UTF8 flag, the byte strings passed as patterns and
+subjects are (by default) checked for validity on entry to the relevant
+functions. The entire string is checked before any other processing takes
+place. From release 7.3 of PCRE, the check is according the rules of RFC 3629,
+which are themselves derived from the Unicode specification. Earlier releases
+of PCRE followed the rules of RFC 2279, which allows the full range of 31-bit
+values (0 to 0x7FFFFFFF). The current check allows only values in the range U+0
+to U+10FFFF, excluding the surrogate area. (From release 8.33 the so-called
+"non-character" code points are no longer excluded because Unicode corrigendum
+#9 makes it clear that they should not be.)
+
+
+Characters in the "Surrogate Area" of Unicode are reserved for use by UTF-16,
+where they are used in pairs to encode codepoints with values greater than
+0xFFFF. The code points that are encoded by UTF-16 pairs are available
+independently in the UTF-8 and UTF-32 encodings. (In other words, the whole
+surrogate thing is a fudge for UTF-16 which unfortunately messes up UTF-8 and
+UTF-32.)
+
+
+If an invalid UTF-8 string is passed to PCRE, an error return is given. At
+compile time, the only additional information is the offset to the first byte
+of the failing character. The run-time functions pcre_exec() and
+pcre_dfa_exec() also pass back this information, as well as a more
+detailed reason code if the caller has provided memory in which to do this.
+
+
+In some situations, you may already know that your strings are valid, and
+therefore want to skip these checks in order to improve performance, for
+example in the case of a long subject string that is being scanned repeatedly.
+If you set the PCRE_NO_UTF8_CHECK flag at compile time or at run time, PCRE
+assumes that the pattern or subject it is given (respectively) contains only
+valid UTF-8 codes. In this case, it does not diagnose an invalid UTF-8 string.
+
+
+Note that passing PCRE_NO_UTF8_CHECK to pcre_compile() just disables the
+check for the pattern; it does not also apply to subject strings. If you want
+to disable the check for a subject string you must pass this option to
+pcre_exec() or pcre_dfa_exec().
+
+
+If you pass an invalid UTF-8 string when PCRE_NO_UTF8_CHECK is set, the result
+is undefined and your program may crash.
+
+
+Validity of UTF-16 strings
+
+
+When you set the PCRE_UTF16 flag, the strings of 16-bit data units that are
+passed as patterns and subjects are (by default) checked for validity on entry
+to the relevant functions. Values other than those in the surrogate range
+U+D800 to U+DFFF are independent code points. Values in the surrogate range
+must be used in pairs in the correct manner.
+
+
+If an invalid UTF-16 string is passed to PCRE, an error return is given. At
+compile time, the only additional information is the offset to the first data
+unit of the failing character. The run-time functions pcre16_exec() and
+pcre16_dfa_exec() also pass back this information, as well as a more
+detailed reason code if the caller has provided memory in which to do this.
+
+
+In some situations, you may already know that your strings are valid, and
+therefore want to skip these checks in order to improve performance. If you set
+the PCRE_NO_UTF16_CHECK flag at compile time or at run time, PCRE assumes that
+the pattern or subject it is given (respectively) contains only valid UTF-16
+sequences. In this case, it does not diagnose an invalid UTF-16 string.
+However, if an invalid string is passed, the result is undefined.
+
+
+Validity of UTF-32 strings
+
+
+When you set the PCRE_UTF32 flag, the strings of 32-bit data units that are
+passed as patterns and subjects are (by default) checked for validity on entry
+to the relevant functions. This check allows only values in the range U+0
+to U+10FFFF, excluding the surrogate area U+D800 to U+DFFF.
+
+
+If an invalid UTF-32 string is passed to PCRE, an error return is given. At
+compile time, the only additional information is the offset to the first data
+unit of the failing character. The run-time functions pcre32_exec() and
+pcre32_dfa_exec() also pass back this information, as well as a more
+detailed reason code if the caller has provided memory in which to do this.
+
+
+In some situations, you may already know that your strings are valid, and
+therefore want to skip these checks in order to improve performance. If you set
+the PCRE_NO_UTF32_CHECK flag at compile time or at run time, PCRE assumes that
+the pattern or subject it is given (respectively) contains only valid UTF-32
+sequences. In this case, it does not diagnose an invalid UTF-32 string.
+However, if an invalid string is passed, the result is undefined.
+
+
+General comments about UTF modes
+
+
+1. Codepoints less than 256 can be specified in patterns by either braced or
+unbraced hexadecimal escape sequences (for example, \x{b3} or \xb3). Larger
+values have to use braced sequences.
+
+
+2. Octal numbers up to \777 are recognized, and in UTF-8 mode they match
+two-byte characters for values greater than \177.
+
+
+3. Repeat quantifiers apply to complete UTF characters, not to individual
+data units, for example: \x{100}{3}.
+
+
+4. The dot metacharacter matches one UTF character instead of a single data
+unit.
+
+
+5. The escape sequence \C can be used to match a single byte in UTF-8 mode, or
+a single 16-bit data unit in UTF-16 mode, or a single 32-bit data unit in
+UTF-32 mode, but its use can lead to some strange effects because it breaks up
+multi-unit characters (see the description of \C in the
+pcrepattern
+documentation). The use of \C is not supported in the alternative matching
+function pcre[16|32]_dfa_exec(), nor is it supported in UTF mode by the
+JIT optimization of pcre[16|32]_exec(). If JIT optimization is requested
+for a UTF pattern that contains \C, it will not succeed, and so the matching
+will be carried out by the normal interpretive function.
+
+
+6. The character escapes \b, \B, \d, \D, \s, \S, \w, and \W correctly
+test characters of any code value, but, by default, the characters that PCRE
+recognizes as digits, spaces, or word characters remain the same set as in
+non-UTF mode, all with values less than 256. This remains true even when PCRE
+is built to include Unicode property support, because to do otherwise would
+slow down PCRE in many common cases. Note in particular that this applies to
+\b and \B, because they are defined in terms of \w and \W. If you really
+want to test for a wider sense of, say, "digit", you can use explicit Unicode
+property tests such as \p{Nd}. Alternatively, if you set the PCRE_UCP option,
+the way that the character escapes work is changed so that Unicode properties
+are used to determine which characters match. There are more details in the
+section on
+generic character types
+in the
+pcrepattern
+documentation.
+
+
+7. Similarly, characters that match the POSIX named character classes are all
+low-valued characters, unless the PCRE_UCP option is set.
+
+
+8. However, the horizontal and vertical white space matching escapes (\h, \H,
+\v, and \V) do match all the appropriate Unicode characters, whether or not
+PCRE_UCP is set.
+
+
+9. Case-insensitive matching applies only to characters whose values are less
+than 128, unless PCRE is built with Unicode property support. A few Unicode
+characters such as Greek sigma have more than two codepoints that are
+case-equivalent. Up to and including PCRE release 8.31, only one-to-one case
+mappings were supported, but later releases (with Unicode property support) do
+treat as case-equivalent all versions of characters such as Greek sigma.
+
+
+AUTHOR
+
+
+Philip Hazel
+
+University Computing Service
+
+Cambridge CB2 3QH, England.
+
+
+
+REVISION
+
+
+Last updated: 27 February 2013
+
+Copyright © 1997-2013 University of Cambridge.
+
+
+Return to the PCRE index page.
+
diff --git a/pcre/doc/index.html.src b/pcre/doc/index.html.src
new file mode 100644
index 00000000000..887f4d75071
--- /dev/null
+++ b/pcre/doc/index.html.src
@@ -0,0 +1,185 @@
+
+
+
+PCRE specification
+
+
+Perl-compatible Regular Expressions (PCRE)
+
+The HTML documentation for PCRE consists of a number of pages that are listed
+below in alphabetical order. If you are new to PCRE, please read the first one
+first.
+
+
+
+pcre |
+ Introductory page |
+
+pcre-config |
+ Information about the installation configuration |
+
+pcre16 |
+ Discussion of the 16-bit PCRE library |
+
+pcre32 |
+ Discussion of the 32-bit PCRE library |
+
+pcreapi |
+ PCRE's native API |
+
+pcrebuild |
+ Building PCRE |
+
+pcrecallout |
+ The callout facility |
+
+pcrecompat |
+ Compability with Perl |
+
+pcrecpp |
+ The C++ wrapper for the PCRE library |
+
+pcredemo |
+ A demonstration C program that uses the PCRE library |
+
+pcregrep |
+ The pcregrep command |
+
+pcrejit |
+ Discussion of the just-in-time optimization support |
+
+pcrelimits |
+ Details of size and other limits |
+
+pcrematching |
+ Discussion of the two matching algorithms |
+
+pcrepartial |
+ Using PCRE for partial matching |
+
+pcrepattern |
+ Specification of the regular expressions supported by PCRE |
+
+pcreperform |
+ Some comments on performance |
+
+pcreposix |
+ The POSIX API to the PCRE 8-bit library |
+
+pcreprecompile |
+ How to save and re-use compiled patterns |
+
+pcresample |
+ Discussion of the pcredemo program |
+
+pcrestack |
+ Discussion of PCRE's stack usage |
+
+pcresyntax |
+ Syntax quick-reference summary |
+
+pcretest |
+ The pcretest command for testing PCRE |
+
+pcreunicode |
+ Discussion of Unicode and UTF-8/UTF-16/UTF-32 support |
+
+
+
+There are also individual pages that summarize the interface for each function
+in the library. There is a single page for each triple of 8-bit/16-bit/32-bit
+functions.
+
+
+
+
+
diff --git a/pcre/doc/pcre-config.1 b/pcre/doc/pcre-config.1
new file mode 100644
index 00000000000..92a4b58bc4a
--- /dev/null
+++ b/pcre/doc/pcre-config.1
@@ -0,0 +1,92 @@
+.TH PCRE-CONFIG 1 "01 January 2012" "PCRE 8.30"
+.SH NAME
+pcre-config - program to return PCRE configuration
+.SH SYNOPSIS
+.rs
+.sp
+.B pcre-config [--prefix] [--exec-prefix] [--version] [--libs]
+.ti +5n
+.B [--libs16] [--libs32] [--libs-cpp] [--libs-posix]
+.ti +5n
+.B [--cflags] [--cflags-posix]
+.
+.
+.SH DESCRIPTION
+.rs
+.sp
+\fBpcre-config\fP returns the configuration of the installed PCRE
+libraries and the options required to compile a program to use them. Some of
+the options apply only to the 8-bit, or 16-bit, or 32-bit libraries,
+respectively, and are
+not available if only one of those libraries has been built. If an unavailable
+option is encountered, the "usage" information is output.
+.
+.
+.SH OPTIONS
+.rs
+.TP 10
+\fB--prefix\fP
+Writes the directory prefix used in the PCRE installation for architecture
+independent files (\fI/usr\fP on many systems, \fI/usr/local\fP on some
+systems) to the standard output.
+.TP 10
+\fB--exec-prefix\fP
+Writes the directory prefix used in the PCRE installation for architecture
+dependent files (normally the same as \fB--prefix\fP) to the standard output.
+.TP 10
+\fB--version\fP
+Writes the version number of the installed PCRE libraries to the standard
+output.
+.TP 10
+\fB--libs\fP
+Writes to the standard output the command line options required to link
+with the 8-bit PCRE library (\fB-lpcre\fP on many systems).
+.TP 10
+\fB--libs16\fP
+Writes to the standard output the command line options required to link
+with the 16-bit PCRE library (\fB-lpcre16\fP on many systems).
+.TP 10
+\fB--libs32\fP
+Writes to the standard output the command line options required to link
+with the 32-bit PCRE library (\fB-lpcre32\fP on many systems).
+.TP 10
+\fB--libs-cpp\fP
+Writes to the standard output the command line options required to link with
+PCRE's C++ wrapper library (\fB-lpcrecpp\fP \fB-lpcre\fP on many
+systems).
+.TP 10
+\fB--libs-posix\fP
+Writes to the standard output the command line options required to link with
+PCRE's POSIX API wrapper library (\fB-lpcreposix\fP \fB-lpcre\fP on many
+systems).
+.TP 10
+\fB--cflags\fP
+Writes to the standard output the command line options required to compile
+files that use PCRE (this may include some \fB-I\fP options, but is blank on
+many systems).
+.TP 10
+\fB--cflags-posix\fP
+Writes to the standard output the command line options required to compile
+files that use PCRE's POSIX API wrapper library (this may include some \fB-I\fP
+options, but is blank on many systems).
+.
+.
+.SH "SEE ALSO"
+.rs
+.sp
+\fBpcre(3)\fP
+.
+.
+.SH AUTHOR
+.rs
+.sp
+This manual page was originally written by Mark Baker for the Debian GNU/Linux
+system. It has been subsequently revised as a generic PCRE man page.
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 24 June 2012
+.fi
diff --git a/pcre/doc/pcre-config.txt b/pcre/doc/pcre-config.txt
new file mode 100644
index 00000000000..97a6abed62c
--- /dev/null
+++ b/pcre/doc/pcre-config.txt
@@ -0,0 +1,86 @@
+PCRE-CONFIG(1) General Commands Manual PCRE-CONFIG(1)
+
+
+
+NAME
+ pcre-config - program to return PCRE configuration
+
+SYNOPSIS
+
+ pcre-config [--prefix] [--exec-prefix] [--version] [--libs]
+ [--libs16] [--libs32] [--libs-cpp] [--libs-posix]
+ [--cflags] [--cflags-posix]
+
+
+DESCRIPTION
+
+ pcre-config returns the configuration of the installed PCRE libraries
+ and the options required to compile a program to use them. Some of the
+ options apply only to the 8-bit, or 16-bit, or 32-bit libraries,
+ respectively, and are not available if only one of those libraries has
+ been built. If an unavailable option is encountered, the "usage" infor-
+ mation is output.
+
+
+OPTIONS
+
+ --prefix Writes the directory prefix used in the PCRE installation for
+ architecture independent files (/usr on many systems,
+ /usr/local on some systems) to the standard output.
+
+ --exec-prefix
+ Writes the directory prefix used in the PCRE installation for
+ architecture dependent files (normally the same as --prefix)
+ to the standard output.
+
+ --version Writes the version number of the installed PCRE libraries to
+ the standard output.
+
+ --libs Writes to the standard output the command line options
+ required to link with the 8-bit PCRE library (-lpcre on many
+ systems).
+
+ --libs16 Writes to the standard output the command line options
+ required to link with the 16-bit PCRE library (-lpcre16 on
+ many systems).
+
+ --libs32 Writes to the standard output the command line options
+ required to link with the 32-bit PCRE library (-lpcre32 on
+ many systems).
+
+ --libs-cpp
+ Writes to the standard output the command line options
+ required to link with PCRE's C++ wrapper library (-lpcrecpp
+ -lpcre on many systems).
+
+ --libs-posix
+ Writes to the standard output the command line options
+ required to link with PCRE's POSIX API wrapper library
+ (-lpcreposix -lpcre on many systems).
+
+ --cflags Writes to the standard output the command line options
+ required to compile files that use PCRE (this may include
+ some -I options, but is blank on many systems).
+
+ --cflags-posix
+ Writes to the standard output the command line options
+ required to compile files that use PCRE's POSIX API wrapper
+ library (this may include some -I options, but is blank on
+ many systems).
+
+
+SEE ALSO
+
+ pcre(3)
+
+
+AUTHOR
+
+ This manual page was originally written by Mark Baker for the Debian
+ GNU/Linux system. It has been subsequently revised as a generic PCRE
+ man page.
+
+
+REVISION
+
+ Last updated: 24 June 2012
diff --git a/pcre/doc/pcre.3 b/pcre/doc/pcre.3
new file mode 100644
index 00000000000..c2f9164052c
--- /dev/null
+++ b/pcre/doc/pcre.3
@@ -0,0 +1,215 @@
+.TH PCRE 3 "13 May 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH INTRODUCTION
+.rs
+.sp
+The PCRE library is a set of functions that implement regular expression
+pattern matching using the same syntax and semantics as Perl, with just a few
+differences. Some features that appeared in Python and PCRE before they
+appeared in Perl are also available using the Python syntax, there is some
+support for one or two .NET and Oniguruma syntax items, and there is an option
+for requesting some minor changes that give better JavaScript compatibility.
+.P
+Starting with release 8.30, it is possible to compile two separate PCRE
+libraries: the original, which supports 8-bit character strings (including
+UTF-8 strings), and a second library that supports 16-bit character strings
+(including UTF-16 strings). The build process allows either one or both to be
+built. The majority of the work to make this possible was done by Zoltan
+Herczeg.
+.P
+Starting with release 8.32 it is possible to compile a third separate PCRE
+library that supports 32-bit character strings (including UTF-32 strings). The
+build process allows any combination of the 8-, 16- and 32-bit libraries. The
+work to make this possible was done by Christian Persch.
+.P
+The three libraries contain identical sets of functions, except that the names
+in the 16-bit library start with \fBpcre16_\fP instead of \fBpcre_\fP, and the
+names in the 32-bit library start with \fBpcre32_\fP instead of \fBpcre_\fP. To
+avoid over-complication and reduce the documentation maintenance load, most of
+the documentation describes the 8-bit library, with the differences for the
+16-bit and 32-bit libraries described separately in the
+.\" HREF
+\fBpcre16\fP
+and
+.\" HREF
+\fBpcre32\fP
+.\"
+pages. References to functions or structures of the form \fIpcre[16|32]_xxx\fP
+should be read as meaning "\fIpcre_xxx\fP when using the 8-bit library,
+\fIpcre16_xxx\fP when using the 16-bit library, or \fIpcre32_xxx\fP when using
+the 32-bit library".
+.P
+The current implementation of PCRE corresponds approximately with Perl 5.12,
+including support for UTF-8/16/32 encoded strings and Unicode general category
+properties. However, UTF-8/16/32 and Unicode support has to be explicitly
+enabled; it is not the default. The Unicode tables correspond to Unicode
+release 6.2.0.
+.P
+In addition to the Perl-compatible matching function, PCRE contains an
+alternative function that matches the same compiled patterns in a different
+way. In certain circumstances, the alternative function has some advantages.
+For a discussion of the two matching algorithms, see the
+.\" HREF
+\fBpcrematching\fP
+.\"
+page.
+.P
+PCRE is written in C and released as a C library. A number of people have
+written wrappers and interfaces of various kinds. In particular, Google Inc.
+have provided a comprehensive C++ wrapper for the 8-bit library. This is now
+included as part of the PCRE distribution. The
+.\" HREF
+\fBpcrecpp\fP
+.\"
+page has details of this interface. Other people's contributions can be found
+in the \fIContrib\fP directory at the primary FTP site, which is:
+.sp
+.\" HTML
+.\"
+ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre
+.\"
+.P
+Details of exactly which Perl regular expression features are and are not
+supported by PCRE are given in separate documents. See the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+and
+.\" HREF
+\fBpcrecompat\fP
+.\"
+pages. There is a syntax summary in the
+.\" HREF
+\fBpcresyntax\fP
+.\"
+page.
+.P
+Some features of PCRE can be included, excluded, or changed when the library is
+built. The
+.\" HREF
+\fBpcre_config()\fP
+.\"
+function makes it possible for a client to discover which features are
+available. The features themselves are described in the
+.\" HREF
+\fBpcrebuild\fP
+.\"
+page. Documentation about building PCRE for various operating systems can be
+found in the
+.\" HTML
+.\"
+\fBREADME\fP
+.\"
+and
+.\" HTML
+.\"
+\fBNON-AUTOTOOLS_BUILD\fP
+.\"
+files in the source distribution.
+.P
+The libraries contains a number of undocumented internal functions and data
+tables that are used by more than one of the exported external functions, but
+which are not intended for use by external callers. Their names all begin with
+"_pcre_" or "_pcre16_" or "_pcre32_", which hopefully will not provoke any name
+clashes. In some environments, it is possible to control which external symbols
+are exported when a shared library is built, and in these cases the
+undocumented symbols are not exported.
+.
+.
+.SH "SECURITY CONSIDERATIONS"
+.rs
+.sp
+If you are using PCRE in a non-UTF application that permits users to supply
+arbitrary patterns for compilation, you should be aware of a feature that
+allows users to turn on UTF support from within a pattern, provided that PCRE
+was built with UTF support. For example, an 8-bit pattern that begins with
+"(*UTF8)" or "(*UTF)" turns on UTF-8 mode, which interprets patterns and
+subjects as strings of UTF-8 characters instead of individual 8-bit characters.
+This causes both the pattern and any data against which it is matched to be
+checked for UTF-8 validity. If the data string is very long, such a check might
+use sufficiently many resources as to cause your application to lose
+performance.
+.P
+One way of guarding against this possibility is to use the
+\fBpcre_fullinfo()\fP function to check the compiled pattern's options for UTF.
+Alternatively, from release 8.33, you can set the PCRE_NEVER_UTF option at
+compile time. This causes an compile time error if a pattern contains a
+UTF-setting sequence.
+.P
+If your application is one that supports UTF, be aware that validity checking
+can take time. If the same data string is to be matched many times, you can use
+the PCRE_NO_UTF[8|16|32]_CHECK option for the second and subsequent matches to
+save redundant checks.
+.P
+Another way that performance can be hit is by running a pattern that has a very
+large search tree against a string that will never match. Nested unlimited
+repeats in a pattern are a common example. PCRE provides some protection
+against this: see the PCRE_EXTRA_MATCH_LIMIT feature in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page.
+.
+.
+.SH "USER DOCUMENTATION"
+.rs
+.sp
+The user documentation for PCRE comprises a number of different sections. In
+the "man" format, each of these is a separate "man page". In the HTML format,
+each is a separate page, linked from the index page. In the plain text format,
+all the sections, except the \fBpcredemo\fP section, are concatenated, for ease
+of searching. The sections are as follows:
+.sp
+ pcre this document
+ pcre-config show PCRE installation configuration information
+ pcre16 details of the 16-bit library
+ pcre32 details of the 32-bit library
+ pcreapi details of PCRE's native C API
+ pcrebuild building PCRE
+ pcrecallout details of the callout feature
+ pcrecompat discussion of Perl compatibility
+ pcrecpp details of the C++ wrapper for the 8-bit library
+ pcredemo a demonstration C program that uses PCRE
+ pcregrep description of the \fBpcregrep\fP command (8-bit only)
+ pcrejit discussion of the just-in-time optimization support
+ pcrelimits details of size and other limits
+ pcrematching discussion of the two matching algorithms
+ pcrepartial details of the partial matching facility
+.\" JOIN
+ pcrepattern syntax and semantics of supported
+ regular expressions
+ pcreperform discussion of performance issues
+ pcreposix the POSIX-compatible C API for the 8-bit library
+ pcreprecompile details of saving and re-using precompiled patterns
+ pcresample discussion of the pcredemo program
+ pcrestack discussion of stack usage
+ pcresyntax quick syntax reference
+ pcretest description of the \fBpcretest\fP testing command
+ pcreunicode discussion of Unicode and UTF-8/16/32 support
+.sp
+In addition, in the "man" and HTML formats, there is a short page for each
+C library function, listing its arguments and results.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.P
+Putting an actual email address here seems to have been a spam magnet, so I've
+taken it away. If you want to email me, use my two initials, followed by the
+two digits 10, at the domain cam.ac.uk.
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 13 May 2013
+Copyright (c) 1997-2013 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcre.txt b/pcre/doc/pcre.txt
new file mode 100644
index 00000000000..193203e8a32
--- /dev/null
+++ b/pcre/doc/pcre.txt
@@ -0,0 +1,10181 @@
+-----------------------------------------------------------------------------
+This file contains a concatenation of the PCRE man pages, converted to plain
+text format for ease of searching with a text editor, or for use on systems
+that do not have a man page processor. The small individual files that give
+synopses of each function in the library have not been included. Neither has
+the pcredemo program. There are separate text files for the pcregrep and
+pcretest commands.
+-----------------------------------------------------------------------------
+
+
+PCRE(3) Library Functions Manual PCRE(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+INTRODUCTION
+
+ The PCRE library is a set of functions that implement regular expres-
+ sion pattern matching using the same syntax and semantics as Perl, with
+ just a few differences. Some features that appeared in Python and PCRE
+ before they appeared in Perl are also available using the Python syn-
+ tax, there is some support for one or two .NET and Oniguruma syntax
+ items, and there is an option for requesting some minor changes that
+ give better JavaScript compatibility.
+
+ Starting with release 8.30, it is possible to compile two separate PCRE
+ libraries: the original, which supports 8-bit character strings
+ (including UTF-8 strings), and a second library that supports 16-bit
+ character strings (including UTF-16 strings). The build process allows
+ either one or both to be built. The majority of the work to make this
+ possible was done by Zoltan Herczeg.
+
+ Starting with release 8.32 it is possible to compile a third separate
+ PCRE library that supports 32-bit character strings (including UTF-32
+ strings). The build process allows any combination of the 8-, 16- and
+ 32-bit libraries. The work to make this possible was done by Christian
+ Persch.
+
+ The three libraries contain identical sets of functions, except that
+ the names in the 16-bit library start with pcre16_ instead of pcre_,
+ and the names in the 32-bit library start with pcre32_ instead of
+ pcre_. To avoid over-complication and reduce the documentation mainte-
+ nance load, most of the documentation describes the 8-bit library, with
+ the differences for the 16-bit and 32-bit libraries described sepa-
+ rately in the pcre16 and pcre32 pages. References to functions or
+ structures of the form pcre[16|32]_xxx should be read as meaning
+ "pcre_xxx when using the 8-bit library, pcre16_xxx when using the
+ 16-bit library, or pcre32_xxx when using the 32-bit library".
+
+ The current implementation of PCRE corresponds approximately with Perl
+ 5.12, including support for UTF-8/16/32 encoded strings and Unicode
+ general category properties. However, UTF-8/16/32 and Unicode support
+ has to be explicitly enabled; it is not the default. The Unicode tables
+ correspond to Unicode release 6.2.0.
+
+ In addition to the Perl-compatible matching function, PCRE contains an
+ alternative function that matches the same compiled patterns in a dif-
+ ferent way. In certain circumstances, the alternative function has some
+ advantages. For a discussion of the two matching algorithms, see the
+ pcrematching page.
+
+ PCRE is written in C and released as a C library. A number of people
+ have written wrappers and interfaces of various kinds. In particular,
+ Google Inc. have provided a comprehensive C++ wrapper for the 8-bit
+ library. This is now included as part of the PCRE distribution. The
+ pcrecpp page has details of this interface. Other people's contribu-
+ tions can be found in the Contrib directory at the primary FTP site,
+ which is:
+
+ ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre
+
+ Details of exactly which Perl regular expression features are and are
+ not supported by PCRE are given in separate documents. See the pcrepat-
+ tern and pcrecompat pages. There is a syntax summary in the pcresyntax
+ page.
+
+ Some features of PCRE can be included, excluded, or changed when the
+ library is built. The pcre_config() function makes it possible for a
+ client to discover which features are available. The features them-
+ selves are described in the pcrebuild page. Documentation about build-
+ ing PCRE for various operating systems can be found in the README and
+ NON-AUTOTOOLS_BUILD files in the source distribution.
+
+ The libraries contains a number of undocumented internal functions and
+ data tables that are used by more than one of the exported external
+ functions, but which are not intended for use by external callers.
+ Their names all begin with "_pcre_" or "_pcre16_" or "_pcre32_", which
+ hopefully will not provoke any name clashes. In some environments, it
+ is possible to control which external symbols are exported when a
+ shared library is built, and in these cases the undocumented symbols
+ are not exported.
+
+
+SECURITY CONSIDERATIONS
+
+ If you are using PCRE in a non-UTF application that permits users to
+ supply arbitrary patterns for compilation, you should be aware of a
+ feature that allows users to turn on UTF support from within a pattern,
+ provided that PCRE was built with UTF support. For example, an 8-bit
+ pattern that begins with "(*UTF8)" or "(*UTF)" turns on UTF-8 mode,
+ which interprets patterns and subjects as strings of UTF-8 characters
+ instead of individual 8-bit characters. This causes both the pattern
+ and any data against which it is matched to be checked for UTF-8 valid-
+ ity. If the data string is very long, such a check might use suffi-
+ ciently many resources as to cause your application to lose perfor-
+ mance.
+
+ One way of guarding against this possibility is to use the
+ pcre_fullinfo() function to check the compiled pattern's options for
+ UTF. Alternatively, from release 8.33, you can set the PCRE_NEVER_UTF
+ option at compile time. This causes an compile time error if a pattern
+ contains a UTF-setting sequence.
+
+ If your application is one that supports UTF, be aware that validity
+ checking can take time. If the same data string is to be matched many
+ times, you can use the PCRE_NO_UTF[8|16|32]_CHECK option for the second
+ and subsequent matches to save redundant checks.
+
+ Another way that performance can be hit is by running a pattern that
+ has a very large search tree against a string that will never match.
+ Nested unlimited repeats in a pattern are a common example. PCRE pro-
+ vides some protection against this: see the PCRE_EXTRA_MATCH_LIMIT fea-
+ ture in the pcreapi page.
+
+
+USER DOCUMENTATION
+
+ The user documentation for PCRE comprises a number of different sec-
+ tions. In the "man" format, each of these is a separate "man page". In
+ the HTML format, each is a separate page, linked from the index page.
+ In the plain text format, all the sections, except the pcredemo sec-
+ tion, are concatenated, for ease of searching. The sections are as fol-
+ lows:
+
+ pcre this document
+ pcre-config show PCRE installation configuration information
+ pcre16 details of the 16-bit library
+ pcre32 details of the 32-bit library
+ pcreapi details of PCRE's native C API
+ pcrebuild building PCRE
+ pcrecallout details of the callout feature
+ pcrecompat discussion of Perl compatibility
+ pcrecpp details of the C++ wrapper for the 8-bit library
+ pcredemo a demonstration C program that uses PCRE
+ pcregrep description of the pcregrep command (8-bit only)
+ pcrejit discussion of the just-in-time optimization support
+ pcrelimits details of size and other limits
+ pcrematching discussion of the two matching algorithms
+ pcrepartial details of the partial matching facility
+ pcrepattern syntax and semantics of supported
+ regular expressions
+ pcreperform discussion of performance issues
+ pcreposix the POSIX-compatible C API for the 8-bit library
+ pcreprecompile details of saving and re-using precompiled patterns
+ pcresample discussion of the pcredemo program
+ pcrestack discussion of stack usage
+ pcresyntax quick syntax reference
+ pcretest description of the pcretest testing command
+ pcreunicode discussion of Unicode and UTF-8/16/32 support
+
+ In addition, in the "man" and HTML formats, there is a short page for
+ each C library function, listing its arguments and results.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+ Putting an actual email address here seems to have been a spam magnet,
+ so I've taken it away. If you want to email me, use my two initials,
+ followed by the two digits 10, at the domain cam.ac.uk.
+
+
+REVISION
+
+ Last updated: 13 May 2013
+ Copyright (c) 1997-2013 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCRE(3) Library Functions Manual PCRE(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+ #include
+
+
+PCRE 16-BIT API BASIC FUNCTIONS
+
+ pcre16 *pcre16_compile(PCRE_SPTR16 pattern, int options,
+ const char **errptr, int *erroffset,
+ const unsigned char *tableptr);
+
+ pcre16 *pcre16_compile2(PCRE_SPTR16 pattern, int options,
+ int *errorcodeptr,
+ const char **errptr, int *erroffset,
+ const unsigned char *tableptr);
+
+ pcre16_extra *pcre16_study(const pcre16 *code, int options,
+ const char **errptr);
+
+ void pcre16_free_study(pcre16_extra *extra);
+
+ int pcre16_exec(const pcre16 *code, const pcre16_extra *extra,
+ PCRE_SPTR16 subject, int length, int startoffset,
+ int options, int *ovector, int ovecsize);
+
+ int pcre16_dfa_exec(const pcre16 *code, const pcre16_extra *extra,
+ PCRE_SPTR16 subject, int length, int startoffset,
+ int options, int *ovector, int ovecsize,
+ int *workspace, int wscount);
+
+
+PCRE 16-BIT API STRING EXTRACTION FUNCTIONS
+
+ int pcre16_copy_named_substring(const pcre16 *code,
+ PCRE_SPTR16 subject, int *ovector,
+ int stringcount, PCRE_SPTR16 stringname,
+ PCRE_UCHAR16 *buffer, int buffersize);
+
+ int pcre16_copy_substring(PCRE_SPTR16 subject, int *ovector,
+ int stringcount, int stringnumber, PCRE_UCHAR16 *buffer,
+ int buffersize);
+
+ int pcre16_get_named_substring(const pcre16 *code,
+ PCRE_SPTR16 subject, int *ovector,
+ int stringcount, PCRE_SPTR16 stringname,
+ PCRE_SPTR16 *stringptr);
+
+ int pcre16_get_stringnumber(const pcre16 *code,
+ PCRE_SPTR16 name);
+
+ int pcre16_get_stringtable_entries(const pcre16 *code,
+ PCRE_SPTR16 name, PCRE_UCHAR16 **first, PCRE_UCHAR16 **last);
+
+ int pcre16_get_substring(PCRE_SPTR16 subject, int *ovector,
+ int stringcount, int stringnumber,
+ PCRE_SPTR16 *stringptr);
+
+ int pcre16_get_substring_list(PCRE_SPTR16 subject,
+ int *ovector, int stringcount, PCRE_SPTR16 **listptr);
+
+ void pcre16_free_substring(PCRE_SPTR16 stringptr);
+
+ void pcre16_free_substring_list(PCRE_SPTR16 *stringptr);
+
+
+PCRE 16-BIT API AUXILIARY FUNCTIONS
+
+ pcre16_jit_stack *pcre16_jit_stack_alloc(int startsize, int maxsize);
+
+ void pcre16_jit_stack_free(pcre16_jit_stack *stack);
+
+ void pcre16_assign_jit_stack(pcre16_extra *extra,
+ pcre16_jit_callback callback, void *data);
+
+ const unsigned char *pcre16_maketables(void);
+
+ int pcre16_fullinfo(const pcre16 *code, const pcre16_extra *extra,
+ int what, void *where);
+
+ int pcre16_refcount(pcre16 *code, int adjust);
+
+ int pcre16_config(int what, void *where);
+
+ const char *pcre16_version(void);
+
+ int pcre16_pattern_to_host_byte_order(pcre16 *code,
+ pcre16_extra *extra, const unsigned char *tables);
+
+
+PCRE 16-BIT API INDIRECTED FUNCTIONS
+
+ void *(*pcre16_malloc)(size_t);
+
+ void (*pcre16_free)(void *);
+
+ void *(*pcre16_stack_malloc)(size_t);
+
+ void (*pcre16_stack_free)(void *);
+
+ int (*pcre16_callout)(pcre16_callout_block *);
+
+
+PCRE 16-BIT API 16-BIT-ONLY FUNCTION
+
+ int pcre16_utf16_to_host_byte_order(PCRE_UCHAR16 *output,
+ PCRE_SPTR16 input, int length, int *byte_order,
+ int keep_boms);
+
+
+THE PCRE 16-BIT LIBRARY
+
+ Starting with release 8.30, it is possible to compile a PCRE library
+ that supports 16-bit character strings, including UTF-16 strings, as
+ well as or instead of the original 8-bit library. The majority of the
+ work to make this possible was done by Zoltan Herczeg. The two
+ libraries contain identical sets of functions, used in exactly the same
+ way. Only the names of the functions and the data types of their argu-
+ ments and results are different. To avoid over-complication and reduce
+ the documentation maintenance load, most of the PCRE documentation
+ describes the 8-bit library, with only occasional references to the
+ 16-bit library. This page describes what is different when you use the
+ 16-bit library.
+
+ WARNING: A single application can be linked with both libraries, but
+ you must take care when processing any particular pattern to use func-
+ tions from just one library. For example, if you want to study a pat-
+ tern that was compiled with pcre16_compile(), you must do so with
+ pcre16_study(), not pcre_study(), and you must free the study data with
+ pcre16_free_study().
+
+
+THE HEADER FILE
+
+ There is only one header file, pcre.h. It contains prototypes for all
+ the functions in all libraries, as well as definitions of flags, struc-
+ tures, error codes, etc.
+
+
+THE LIBRARY NAME
+
+ In Unix-like systems, the 16-bit library is called libpcre16, and can
+ normally be accesss by adding -lpcre16 to the command for linking an
+ application that uses PCRE.
+
+
+STRING TYPES
+
+ In the 8-bit library, strings are passed to PCRE library functions as
+ vectors of bytes with the C type "char *". In the 16-bit library,
+ strings are passed as vectors of unsigned 16-bit quantities. The macro
+ PCRE_UCHAR16 specifies an appropriate data type, and PCRE_SPTR16 is
+ defined as "const PCRE_UCHAR16 *". In very many environments, "short
+ int" is a 16-bit data type. When PCRE is built, it defines PCRE_UCHAR16
+ as "unsigned short int", but checks that it really is a 16-bit data
+ type. If it is not, the build fails with an error message telling the
+ maintainer to modify the definition appropriately.
+
+
+STRUCTURE TYPES
+
+ The types of the opaque structures that are used for compiled 16-bit
+ patterns and JIT stacks are pcre16 and pcre16_jit_stack respectively.
+ The type of the user-accessible structure that is returned by
+ pcre16_study() is pcre16_extra, and the type of the structure that is
+ used for passing data to a callout function is pcre16_callout_block.
+ These structures contain the same fields, with the same names, as their
+ 8-bit counterparts. The only difference is that pointers to character
+ strings are 16-bit instead of 8-bit types.
+
+
+16-BIT FUNCTIONS
+
+ For every function in the 8-bit library there is a corresponding func-
+ tion in the 16-bit library with a name that starts with pcre16_ instead
+ of pcre_. The prototypes are listed above. In addition, there is one
+ extra function, pcre16_utf16_to_host_byte_order(). This is a utility
+ function that converts a UTF-16 character string to host byte order if
+ necessary. The other 16-bit functions expect the strings they are
+ passed to be in host byte order.
+
+ The input and output arguments of pcre16_utf16_to_host_byte_order() may
+ point to the same address, that is, conversion in place is supported.
+ The output buffer must be at least as long as the input.
+
+ The length argument specifies the number of 16-bit data units in the
+ input string; a negative value specifies a zero-terminated string.
+
+ If byte_order is NULL, it is assumed that the string starts off in host
+ byte order. This may be changed by byte-order marks (BOMs) anywhere in
+ the string (commonly as the first character).
+
+ If byte_order is not NULL, a non-zero value of the integer to which it
+ points means that the input starts off in host byte order, otherwise
+ the opposite order is assumed. Again, BOMs in the string can change
+ this. The final byte order is passed back at the end of processing.
+
+ If keep_boms is not zero, byte-order mark characters (0xfeff) are
+ copied into the output string. Otherwise they are discarded.
+
+ The result of the function is the number of 16-bit units placed into
+ the output buffer, including the zero terminator if the string was
+ zero-terminated.
+
+
+SUBJECT STRING OFFSETS
+
+ The lengths and starting offsets of subject strings must be specified
+ in 16-bit data units, and the offsets within subject strings that are
+ returned by the matching functions are in also 16-bit units rather than
+ bytes.
+
+
+NAMED SUBPATTERNS
+
+ The name-to-number translation table that is maintained for named sub-
+ patterns uses 16-bit characters. The pcre16_get_stringtable_entries()
+ function returns the length of each entry in the table as the number of
+ 16-bit data units.
+
+
+OPTION NAMES
+
+ There are two new general option names, PCRE_UTF16 and
+ PCRE_NO_UTF16_CHECK, which correspond to PCRE_UTF8 and
+ PCRE_NO_UTF8_CHECK in the 8-bit library. In fact, these new options
+ define the same bits in the options word. There is a discussion about
+ the validity of UTF-16 strings in the pcreunicode page.
+
+ For the pcre16_config() function there is an option PCRE_CONFIG_UTF16
+ that returns 1 if UTF-16 support is configured, otherwise 0. If this
+ option is given to pcre_config() or pcre32_config(), or if the
+ PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF32 option is given to pcre16_con-
+ fig(), the result is the PCRE_ERROR_BADOPTION error.
+
+
+CHARACTER CODES
+
+ In 16-bit mode, when PCRE_UTF16 is not set, character values are
+ treated in the same way as in 8-bit, non UTF-8 mode, except, of course,
+ that they can range from 0 to 0xffff instead of 0 to 0xff. Character
+ types for characters less than 0xff can therefore be influenced by the
+ locale in the same way as before. Characters greater than 0xff have
+ only one case, and no "type" (such as letter or digit).
+
+ In UTF-16 mode, the character code is Unicode, in the range 0 to
+ 0x10ffff, with the exception of values in the range 0xd800 to 0xdfff
+ because those are "surrogate" values that are used in pairs to encode
+ values greater than 0xffff.
+
+ A UTF-16 string can indicate its endianness by special code knows as a
+ byte-order mark (BOM). The PCRE functions do not handle this, expecting
+ strings to be in host byte order. A utility function called
+ pcre16_utf16_to_host_byte_order() is provided to help with this (see
+ above).
+
+
+ERROR NAMES
+
+ The errors PCRE_ERROR_BADUTF16_OFFSET and PCRE_ERROR_SHORTUTF16 corre-
+ spond to their 8-bit counterparts. The error PCRE_ERROR_BADMODE is
+ given when a compiled pattern is passed to a function that processes
+ patterns in the other mode, for example, if a pattern compiled with
+ pcre_compile() is passed to pcre16_exec().
+
+ There are new error codes whose names begin with PCRE_UTF16_ERR for
+ invalid UTF-16 strings, corresponding to the PCRE_UTF8_ERR codes for
+ UTF-8 strings that are described in the section entitled "Reason codes
+ for invalid UTF-8 strings" in the main pcreapi page. The UTF-16 errors
+ are:
+
+ PCRE_UTF16_ERR1 Missing low surrogate at end of string
+ PCRE_UTF16_ERR2 Invalid low surrogate follows high surrogate
+ PCRE_UTF16_ERR3 Isolated low surrogate
+ PCRE_UTF16_ERR4 Non-character
+
+
+ERROR TEXTS
+
+ If there is an error while compiling a pattern, the error text that is
+ passed back by pcre16_compile() or pcre16_compile2() is still an 8-bit
+ character string, zero-terminated.
+
+
+CALLOUTS
+
+ The subject and mark fields in the callout block that is passed to a
+ callout function point to 16-bit vectors.
+
+
+TESTING
+
+ The pcretest program continues to operate with 8-bit input and output
+ files, but it can be used for testing the 16-bit library. If it is run
+ with the command line option -16, patterns and subject strings are con-
+ verted from 8-bit to 16-bit before being passed to PCRE, and the 16-bit
+ library functions are used instead of the 8-bit ones. Returned 16-bit
+ strings are converted to 8-bit for output. If both the 8-bit and the
+ 32-bit libraries were not compiled, pcretest defaults to 16-bit and the
+ -16 option is ignored.
+
+ When PCRE is being built, the RunTest script that is called by "make
+ check" uses the pcretest -C option to discover which of the 8-bit,
+ 16-bit and 32-bit libraries has been built, and runs the tests appro-
+ priately.
+
+
+NOT SUPPORTED IN 16-BIT MODE
+
+ Not all the features of the 8-bit library are available with the 16-bit
+ library. The C++ and POSIX wrapper functions support only the 8-bit
+ library, and the pcregrep program is at present 8-bit only.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 12 May 2013
+ Copyright (c) 1997-2013 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCRE(3) Library Functions Manual PCRE(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+ #include
+
+
+PCRE 32-BIT API BASIC FUNCTIONS
+
+ pcre32 *pcre32_compile(PCRE_SPTR32 pattern, int options,
+ const char **errptr, int *erroffset,
+ const unsigned char *tableptr);
+
+ pcre32 *pcre32_compile2(PCRE_SPTR32 pattern, int options,
+ int *errorcodeptr,
+ const char **errptr, int *erroffset,
+ const unsigned char *tableptr);
+
+ pcre32_extra *pcre32_study(const pcre32 *code, int options,
+ const char **errptr);
+
+ void pcre32_free_study(pcre32_extra *extra);
+
+ int pcre32_exec(const pcre32 *code, const pcre32_extra *extra,
+ PCRE_SPTR32 subject, int length, int startoffset,
+ int options, int *ovector, int ovecsize);
+
+ int pcre32_dfa_exec(const pcre32 *code, const pcre32_extra *extra,
+ PCRE_SPTR32 subject, int length, int startoffset,
+ int options, int *ovector, int ovecsize,
+ int *workspace, int wscount);
+
+
+PCRE 32-BIT API STRING EXTRACTION FUNCTIONS
+
+ int pcre32_copy_named_substring(const pcre32 *code,
+ PCRE_SPTR32 subject, int *ovector,
+ int stringcount, PCRE_SPTR32 stringname,
+ PCRE_UCHAR32 *buffer, int buffersize);
+
+ int pcre32_copy_substring(PCRE_SPTR32 subject, int *ovector,
+ int stringcount, int stringnumber, PCRE_UCHAR32 *buffer,
+ int buffersize);
+
+ int pcre32_get_named_substring(const pcre32 *code,
+ PCRE_SPTR32 subject, int *ovector,
+ int stringcount, PCRE_SPTR32 stringname,
+ PCRE_SPTR32 *stringptr);
+
+ int pcre32_get_stringnumber(const pcre32 *code,
+ PCRE_SPTR32 name);
+
+ int pcre32_get_stringtable_entries(const pcre32 *code,
+ PCRE_SPTR32 name, PCRE_UCHAR32 **first, PCRE_UCHAR32 **last);
+
+ int pcre32_get_substring(PCRE_SPTR32 subject, int *ovector,
+ int stringcount, int stringnumber,
+ PCRE_SPTR32 *stringptr);
+
+ int pcre32_get_substring_list(PCRE_SPTR32 subject,
+ int *ovector, int stringcount, PCRE_SPTR32 **listptr);
+
+ void pcre32_free_substring(PCRE_SPTR32 stringptr);
+
+ void pcre32_free_substring_list(PCRE_SPTR32 *stringptr);
+
+
+PCRE 32-BIT API AUXILIARY FUNCTIONS
+
+ pcre32_jit_stack *pcre32_jit_stack_alloc(int startsize, int maxsize);
+
+ void pcre32_jit_stack_free(pcre32_jit_stack *stack);
+
+ void pcre32_assign_jit_stack(pcre32_extra *extra,
+ pcre32_jit_callback callback, void *data);
+
+ const unsigned char *pcre32_maketables(void);
+
+ int pcre32_fullinfo(const pcre32 *code, const pcre32_extra *extra,
+ int what, void *where);
+
+ int pcre32_refcount(pcre32 *code, int adjust);
+
+ int pcre32_config(int what, void *where);
+
+ const char *pcre32_version(void);
+
+ int pcre32_pattern_to_host_byte_order(pcre32 *code,
+ pcre32_extra *extra, const unsigned char *tables);
+
+
+PCRE 32-BIT API INDIRECTED FUNCTIONS
+
+ void *(*pcre32_malloc)(size_t);
+
+ void (*pcre32_free)(void *);
+
+ void *(*pcre32_stack_malloc)(size_t);
+
+ void (*pcre32_stack_free)(void *);
+
+ int (*pcre32_callout)(pcre32_callout_block *);
+
+
+PCRE 32-BIT API 32-BIT-ONLY FUNCTION
+
+ int pcre32_utf32_to_host_byte_order(PCRE_UCHAR32 *output,
+ PCRE_SPTR32 input, int length, int *byte_order,
+ int keep_boms);
+
+
+THE PCRE 32-BIT LIBRARY
+
+ Starting with release 8.32, it is possible to compile a PCRE library
+ that supports 32-bit character strings, including UTF-32 strings, as
+ well as or instead of the original 8-bit library. This work was done by
+ Christian Persch, based on the work done by Zoltan Herczeg for the
+ 16-bit library. All three libraries contain identical sets of func-
+ tions, used in exactly the same way. Only the names of the functions
+ and the data types of their arguments and results are different. To
+ avoid over-complication and reduce the documentation maintenance load,
+ most of the PCRE documentation describes the 8-bit library, with only
+ occasional references to the 16-bit and 32-bit libraries. This page
+ describes what is different when you use the 32-bit library.
+
+ WARNING: A single application can be linked with all or any of the
+ three libraries, but you must take care when processing any particular
+ pattern to use functions from just one library. For example, if you
+ want to study a pattern that was compiled with pcre32_compile(), you
+ must do so with pcre32_study(), not pcre_study(), and you must free the
+ study data with pcre32_free_study().
+
+
+THE HEADER FILE
+
+ There is only one header file, pcre.h. It contains prototypes for all
+ the functions in all libraries, as well as definitions of flags, struc-
+ tures, error codes, etc.
+
+
+THE LIBRARY NAME
+
+ In Unix-like systems, the 32-bit library is called libpcre32, and can
+ normally be accesss by adding -lpcre32 to the command for linking an
+ application that uses PCRE.
+
+
+STRING TYPES
+
+ In the 8-bit library, strings are passed to PCRE library functions as
+ vectors of bytes with the C type "char *". In the 32-bit library,
+ strings are passed as vectors of unsigned 32-bit quantities. The macro
+ PCRE_UCHAR32 specifies an appropriate data type, and PCRE_SPTR32 is
+ defined as "const PCRE_UCHAR32 *". In very many environments, "unsigned
+ int" is a 32-bit data type. When PCRE is built, it defines PCRE_UCHAR32
+ as "unsigned int", but checks that it really is a 32-bit data type. If
+ it is not, the build fails with an error message telling the maintainer
+ to modify the definition appropriately.
+
+
+STRUCTURE TYPES
+
+ The types of the opaque structures that are used for compiled 32-bit
+ patterns and JIT stacks are pcre32 and pcre32_jit_stack respectively.
+ The type of the user-accessible structure that is returned by
+ pcre32_study() is pcre32_extra, and the type of the structure that is
+ used for passing data to a callout function is pcre32_callout_block.
+ These structures contain the same fields, with the same names, as their
+ 8-bit counterparts. The only difference is that pointers to character
+ strings are 32-bit instead of 8-bit types.
+
+
+32-BIT FUNCTIONS
+
+ For every function in the 8-bit library there is a corresponding func-
+ tion in the 32-bit library with a name that starts with pcre32_ instead
+ of pcre_. The prototypes are listed above. In addition, there is one
+ extra function, pcre32_utf32_to_host_byte_order(). This is a utility
+ function that converts a UTF-32 character string to host byte order if
+ necessary. The other 32-bit functions expect the strings they are
+ passed to be in host byte order.
+
+ The input and output arguments of pcre32_utf32_to_host_byte_order() may
+ point to the same address, that is, conversion in place is supported.
+ The output buffer must be at least as long as the input.
+
+ The length argument specifies the number of 32-bit data units in the
+ input string; a negative value specifies a zero-terminated string.
+
+ If byte_order is NULL, it is assumed that the string starts off in host
+ byte order. This may be changed by byte-order marks (BOMs) anywhere in
+ the string (commonly as the first character).
+
+ If byte_order is not NULL, a non-zero value of the integer to which it
+ points means that the input starts off in host byte order, otherwise
+ the opposite order is assumed. Again, BOMs in the string can change
+ this. The final byte order is passed back at the end of processing.
+
+ If keep_boms is not zero, byte-order mark characters (0xfeff) are
+ copied into the output string. Otherwise they are discarded.
+
+ The result of the function is the number of 32-bit units placed into
+ the output buffer, including the zero terminator if the string was
+ zero-terminated.
+
+
+SUBJECT STRING OFFSETS
+
+ The lengths and starting offsets of subject strings must be specified
+ in 32-bit data units, and the offsets within subject strings that are
+ returned by the matching functions are in also 32-bit units rather than
+ bytes.
+
+
+NAMED SUBPATTERNS
+
+ The name-to-number translation table that is maintained for named sub-
+ patterns uses 32-bit characters. The pcre32_get_stringtable_entries()
+ function returns the length of each entry in the table as the number of
+ 32-bit data units.
+
+
+OPTION NAMES
+
+ There are two new general option names, PCRE_UTF32 and
+ PCRE_NO_UTF32_CHECK, which correspond to PCRE_UTF8 and
+ PCRE_NO_UTF8_CHECK in the 8-bit library. In fact, these new options
+ define the same bits in the options word. There is a discussion about
+ the validity of UTF-32 strings in the pcreunicode page.
+
+ For the pcre32_config() function there is an option PCRE_CONFIG_UTF32
+ that returns 1 if UTF-32 support is configured, otherwise 0. If this
+ option is given to pcre_config() or pcre16_config(), or if the
+ PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF16 option is given to pcre32_con-
+ fig(), the result is the PCRE_ERROR_BADOPTION error.
+
+
+CHARACTER CODES
+
+ In 32-bit mode, when PCRE_UTF32 is not set, character values are
+ treated in the same way as in 8-bit, non UTF-8 mode, except, of course,
+ that they can range from 0 to 0x7fffffff instead of 0 to 0xff. Charac-
+ ter types for characters less than 0xff can therefore be influenced by
+ the locale in the same way as before. Characters greater than 0xff
+ have only one case, and no "type" (such as letter or digit).
+
+ In UTF-32 mode, the character code is Unicode, in the range 0 to
+ 0x10ffff, with the exception of values in the range 0xd800 to 0xdfff
+ because those are "surrogate" values that are ill-formed in UTF-32.
+
+ A UTF-32 string can indicate its endianness by special code knows as a
+ byte-order mark (BOM). The PCRE functions do not handle this, expecting
+ strings to be in host byte order. A utility function called
+ pcre32_utf32_to_host_byte_order() is provided to help with this (see
+ above).
+
+
+ERROR NAMES
+
+ The error PCRE_ERROR_BADUTF32 corresponds to its 8-bit counterpart.
+ The error PCRE_ERROR_BADMODE is given when a compiled pattern is passed
+ to a function that processes patterns in the other mode, for example,
+ if a pattern compiled with pcre_compile() is passed to pcre32_exec().
+
+ There are new error codes whose names begin with PCRE_UTF32_ERR for
+ invalid UTF-32 strings, corresponding to the PCRE_UTF8_ERR codes for
+ UTF-8 strings that are described in the section entitled "Reason codes
+ for invalid UTF-8 strings" in the main pcreapi page. The UTF-32 errors
+ are:
+
+ PCRE_UTF32_ERR1 Surrogate character (range from 0xd800 to 0xdfff)
+ PCRE_UTF32_ERR2 Non-character
+ PCRE_UTF32_ERR3 Character > 0x10ffff
+
+
+ERROR TEXTS
+
+ If there is an error while compiling a pattern, the error text that is
+ passed back by pcre32_compile() or pcre32_compile2() is still an 8-bit
+ character string, zero-terminated.
+
+
+CALLOUTS
+
+ The subject and mark fields in the callout block that is passed to a
+ callout function point to 32-bit vectors.
+
+
+TESTING
+
+ The pcretest program continues to operate with 8-bit input and output
+ files, but it can be used for testing the 32-bit library. If it is run
+ with the command line option -32, patterns and subject strings are con-
+ verted from 8-bit to 32-bit before being passed to PCRE, and the 32-bit
+ library functions are used instead of the 8-bit ones. Returned 32-bit
+ strings are converted to 8-bit for output. If both the 8-bit and the
+ 16-bit libraries were not compiled, pcretest defaults to 32-bit and the
+ -32 option is ignored.
+
+ When PCRE is being built, the RunTest script that is called by "make
+ check" uses the pcretest -C option to discover which of the 8-bit,
+ 16-bit and 32-bit libraries has been built, and runs the tests appro-
+ priately.
+
+
+NOT SUPPORTED IN 32-BIT MODE
+
+ Not all the features of the 8-bit library are available with the 32-bit
+ library. The C++ and POSIX wrapper functions support only the 8-bit
+ library, and the pcregrep program is at present 8-bit only.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 12 May 2013
+ Copyright (c) 1997-2013 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCREBUILD(3) Library Functions Manual PCREBUILD(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+BUILDING PCRE
+
+ PCRE is distributed with a configure script that can be used to build
+ the library in Unix-like environments using the applications known as
+ Autotools. Also in the distribution are files to support building
+ using CMake instead of configure. The text file README contains general
+ information about building with Autotools (some of which is repeated
+ below), and also has some comments about building on various operating
+ systems. There is a lot more information about building PCRE without
+ using Autotools (including information about using CMake and building
+ "by hand") in the text file called NON-AUTOTOOLS-BUILD. You should
+ consult this file as well as the README file if you are building in a
+ non-Unix-like environment.
+
+
+PCRE BUILD-TIME OPTIONS
+
+ The rest of this document describes the optional features of PCRE that
+ can be selected when the library is compiled. It assumes use of the
+ configure script, where the optional features are selected or dese-
+ lected by providing options to configure before running the make com-
+ mand. However, the same options can be selected in both Unix-like and
+ non-Unix-like environments using the GUI facility of cmake-gui if you
+ are using CMake instead of configure to build PCRE.
+
+ If you are not using Autotools or CMake, option selection can be done
+ by editing the config.h file, or by passing parameter settings to the
+ compiler, as described in NON-AUTOTOOLS-BUILD.
+
+ The complete list of options for configure (which includes the standard
+ ones such as the selection of the installation directory) can be
+ obtained by running
+
+ ./configure --help
+
+ The following sections include descriptions of options whose names
+ begin with --enable or --disable. These settings specify changes to the
+ defaults for the configure command. Because of the way that configure
+ works, --enable and --disable always come in pairs, so the complemen-
+ tary option always exists as well, but as it specifies the default, it
+ is not described.
+
+
+BUILDING 8-BIT, 16-BIT AND 32-BIT LIBRARIES
+
+ By default, a library called libpcre is built, containing functions
+ that take string arguments contained in vectors of bytes, either as
+ single-byte characters, or interpreted as UTF-8 strings. You can also
+ build a separate library, called libpcre16, in which strings are con-
+ tained in vectors of 16-bit data units and interpreted either as sin-
+ gle-unit characters or UTF-16 strings, by adding
+
+ --enable-pcre16
+
+ to the configure command. You can also build yet another separate
+ library, called libpcre32, in which strings are contained in vectors of
+ 32-bit data units and interpreted either as single-unit characters or
+ UTF-32 strings, by adding
+
+ --enable-pcre32
+
+ to the configure command. If you do not want the 8-bit library, add
+
+ --disable-pcre8
+
+ as well. At least one of the three libraries must be built. Note that
+ the C++ and POSIX wrappers are for the 8-bit library only, and that
+ pcregrep is an 8-bit program. None of these are built if you select
+ only the 16-bit or 32-bit libraries.
+
+
+BUILDING SHARED AND STATIC LIBRARIES
+
+ The Autotools PCRE building process uses libtool to build both shared
+ and static libraries by default. You can suppress one of these by
+ adding one of
+
+ --disable-shared
+ --disable-static
+
+ to the configure command, as required.
+
+
+C++ SUPPORT
+
+ By default, if the 8-bit library is being built, the configure script
+ will search for a C++ compiler and C++ header files. If it finds them,
+ it automatically builds the C++ wrapper library (which supports only
+ 8-bit strings). You can disable this by adding
+
+ --disable-cpp
+
+ to the configure command.
+
+
+UTF-8, UTF-16 AND UTF-32 SUPPORT
+
+ To build PCRE with support for UTF Unicode character strings, add
+
+ --enable-utf
+
+ to the configure command. This setting applies to all three libraries,
+ adding support for UTF-8 to the 8-bit library, support for UTF-16 to
+ the 16-bit library, and support for UTF-32 to the to the 32-bit
+ library. There are no separate options for enabling UTF-8, UTF-16 and
+ UTF-32 independently because that would allow ridiculous settings such
+ as requesting UTF-16 support while building only the 8-bit library. It
+ is not possible to build one library with UTF support and another with-
+ out in the same configuration. (For backwards compatibility, --enable-
+ utf8 is a synonym of --enable-utf.)
+
+ Of itself, this setting does not make PCRE treat strings as UTF-8,
+ UTF-16 or UTF-32. As well as compiling PCRE with this option, you also
+ have have to set the PCRE_UTF8, PCRE_UTF16 or PCRE_UTF32 option (as
+ appropriate) when you call one of the pattern compiling functions.
+
+ If you set --enable-utf when compiling in an EBCDIC environment, PCRE
+ expects its input to be either ASCII or UTF-8 (depending on the run-
+ time option). It is not possible to support both EBCDIC and UTF-8 codes
+ in the same version of the library. Consequently, --enable-utf and
+ --enable-ebcdic are mutually exclusive.
+
+
+UNICODE CHARACTER PROPERTY SUPPORT
+
+ UTF support allows the libraries to process character codepoints up to
+ 0x10ffff in the strings that they handle. On its own, however, it does
+ not provide any facilities for accessing the properties of such charac-
+ ters. If you want to be able to use the pattern escapes \P, \p, and \X,
+ which refer to Unicode character properties, you must add
+
+ --enable-unicode-properties
+
+ to the configure command. This implies UTF support, even if you have
+ not explicitly requested it.
+
+ Including Unicode property support adds around 30K of tables to the
+ PCRE library. Only the general category properties such as Lu and Nd
+ are supported. Details are given in the pcrepattern documentation.
+
+
+JUST-IN-TIME COMPILER SUPPORT
+
+ Just-in-time compiler support is included in the build by specifying
+
+ --enable-jit
+
+ This support is available only for certain hardware architectures. If
+ this option is set for an unsupported architecture, a compile time
+ error occurs. See the pcrejit documentation for a discussion of JIT
+ usage. When JIT support is enabled, pcregrep automatically makes use of
+ it, unless you add
+
+ --disable-pcregrep-jit
+
+ to the "configure" command.
+
+
+CODE VALUE OF NEWLINE
+
+ By default, PCRE interprets the linefeed (LF) character as indicating
+ the end of a line. This is the normal newline character on Unix-like
+ systems. You can compile PCRE to use carriage return (CR) instead, by
+ adding
+
+ --enable-newline-is-cr
+
+ to the configure command. There is also a --enable-newline-is-lf
+ option, which explicitly specifies linefeed as the newline character.
+
+ Alternatively, you can specify that line endings are to be indicated by
+ the two character sequence CRLF. If you want this, add
+
+ --enable-newline-is-crlf
+
+ to the configure command. There is a fourth option, specified by
+
+ --enable-newline-is-anycrlf
+
+ which causes PCRE to recognize any of the three sequences CR, LF, or
+ CRLF as indicating a line ending. Finally, a fifth option, specified by
+
+ --enable-newline-is-any
+
+ causes PCRE to recognize any Unicode newline sequence.
+
+ Whatever line ending convention is selected when PCRE is built can be
+ overridden when the library functions are called. At build time it is
+ conventional to use the standard for your operating system.
+
+
+WHAT \R MATCHES
+
+ By default, the sequence \R in a pattern matches any Unicode newline
+ sequence, whatever has been selected as the line ending sequence. If
+ you specify
+
+ --enable-bsr-anycrlf
+
+ the default is changed so that \R matches only CR, LF, or CRLF. What-
+ ever is selected when PCRE is built can be overridden when the library
+ functions are called.
+
+
+POSIX MALLOC USAGE
+
+ When the 8-bit library is called through the POSIX interface (see the
+ pcreposix documentation), additional working storage is required for
+ holding the pointers to capturing substrings, because PCRE requires
+ three integers per substring, whereas the POSIX interface provides only
+ two. If the number of expected substrings is small, the wrapper func-
+ tion uses space on the stack, because this is faster than using mal-
+ loc() for each call. The default threshold above which the stack is no
+ longer used is 10; it can be changed by adding a setting such as
+
+ --with-posix-malloc-threshold=20
+
+ to the configure command.
+
+
+HANDLING VERY LARGE PATTERNS
+
+ Within a compiled pattern, offset values are used to point from one
+ part to another (for example, from an opening parenthesis to an alter-
+ nation metacharacter). By default, in the 8-bit and 16-bit libraries,
+ two-byte values are used for these offsets, leading to a maximum size
+ for a compiled pattern of around 64K. This is sufficient to handle all
+ but the most gigantic patterns. Nevertheless, some people do want to
+ process truly enormous patterns, so it is possible to compile PCRE to
+ use three-byte or four-byte offsets by adding a setting such as
+
+ --with-link-size=3
+
+ to the configure command. The value given must be 2, 3, or 4. For the
+ 16-bit library, a value of 3 is rounded up to 4. In these libraries,
+ using longer offsets slows down the operation of PCRE because it has to
+ load additional data when handling them. For the 32-bit library the
+ value is always 4 and cannot be overridden; the value of --with-link-
+ size is ignored.
+
+
+AVOIDING EXCESSIVE STACK USAGE
+
+ When matching with the pcre_exec() function, PCRE implements backtrack-
+ ing by making recursive calls to an internal function called match().
+ In environments where the size of the stack is limited, this can se-
+ verely limit PCRE's operation. (The Unix environment does not usually
+ suffer from this problem, but it may sometimes be necessary to increase
+ the maximum stack size. There is a discussion in the pcrestack docu-
+ mentation.) An alternative approach to recursion that uses memory from
+ the heap to remember data, instead of using recursive function calls,
+ has been implemented to work round the problem of limited stack size.
+ If you want to build a version of PCRE that works this way, add
+
+ --disable-stack-for-recursion
+
+ to the configure command. With this configuration, PCRE will use the
+ pcre_stack_malloc and pcre_stack_free variables to call memory manage-
+ ment functions. By default these point to malloc() and free(), but you
+ can replace the pointers so that your own functions are used instead.
+
+ Separate functions are provided rather than using pcre_malloc and
+ pcre_free because the usage is very predictable: the block sizes
+ requested are always the same, and the blocks are always freed in
+ reverse order. A calling program might be able to implement optimized
+ functions that perform better than malloc() and free(). PCRE runs
+ noticeably more slowly when built in this way. This option affects only
+ the pcre_exec() function; it is not relevant for pcre_dfa_exec().
+
+
+LIMITING PCRE RESOURCE USAGE
+
+ Internally, PCRE has a function called match(), which it calls repeat-
+ edly (sometimes recursively) when matching a pattern with the
+ pcre_exec() function. By controlling the maximum number of times this
+ function may be called during a single matching operation, a limit can
+ be placed on the resources used by a single call to pcre_exec(). The
+ limit can be changed at run time, as described in the pcreapi documen-
+ tation. The default is 10 million, but this can be changed by adding a
+ setting such as
+
+ --with-match-limit=500000
+
+ to the configure command. This setting has no effect on the
+ pcre_dfa_exec() matching function.
+
+ In some environments it is desirable to limit the depth of recursive
+ calls of match() more strictly than the total number of calls, in order
+ to restrict the maximum amount of stack (or heap, if --disable-stack-
+ for-recursion is specified) that is used. A second limit controls this;
+ it defaults to the value that is set for --with-match-limit, which
+ imposes no additional constraints. However, you can set a lower limit
+ by adding, for example,
+
+ --with-match-limit-recursion=10000
+
+ to the configure command. This value can also be overridden at run
+ time.
+
+
+CREATING CHARACTER TABLES AT BUILD TIME
+
+ PCRE uses fixed tables for processing characters whose code values are
+ less than 256. By default, PCRE is built with a set of tables that are
+ distributed in the file pcre_chartables.c.dist. These tables are for
+ ASCII codes only. If you add
+
+ --enable-rebuild-chartables
+
+ to the configure command, the distributed tables are no longer used.
+ Instead, a program called dftables is compiled and run. This outputs
+ the source for new set of tables, created in the default locale of your
+ C run-time system. (This method of replacing the tables does not work
+ if you are cross compiling, because dftables is run on the local host.
+ If you need to create alternative tables when cross compiling, you will
+ have to do so "by hand".)
+
+
+USING EBCDIC CODE
+
+ PCRE assumes by default that it will run in an environment where the
+ character code is ASCII (or Unicode, which is a superset of ASCII).
+ This is the case for most computer operating systems. PCRE can, how-
+ ever, be compiled to run in an EBCDIC environment by adding
+
+ --enable-ebcdic
+
+ to the configure command. This setting implies --enable-rebuild-charta-
+ bles. You should only use it if you know that you are in an EBCDIC
+ environment (for example, an IBM mainframe operating system). The
+ --enable-ebcdic option is incompatible with --enable-utf.
+
+ The EBCDIC character that corresponds to an ASCII LF is assumed to have
+ the value 0x15 by default. However, in some EBCDIC environments, 0x25
+ is used. In such an environment you should use
+
+ --enable-ebcdic-nl25
+
+ as well as, or instead of, --enable-ebcdic. The EBCDIC character for CR
+ has the same value as in ASCII, namely, 0x0d. Whichever of 0x15 and
+ 0x25 is not chosen as LF is made to correspond to the Unicode NEL char-
+ acter (which, in Unicode, is 0x85).
+
+ The options that select newline behaviour, such as --enable-newline-is-
+ cr, and equivalent run-time options, refer to these character values in
+ an EBCDIC environment.
+
+
+PCREGREP OPTIONS FOR COMPRESSED FILE SUPPORT
+
+ By default, pcregrep reads all files as plain text. You can build it so
+ that it recognizes files whose names end in .gz or .bz2, and reads them
+ with libz or libbz2, respectively, by adding one or both of
+
+ --enable-pcregrep-libz
+ --enable-pcregrep-libbz2
+
+ to the configure command. These options naturally require that the rel-
+ evant libraries are installed on your system. Configuration will fail
+ if they are not.
+
+
+PCREGREP BUFFER SIZE
+
+ pcregrep uses an internal buffer to hold a "window" on the file it is
+ scanning, in order to be able to output "before" and "after" lines when
+ it finds a match. The size of the buffer is controlled by a parameter
+ whose default value is 20K. The buffer itself is three times this size,
+ but because of the way it is used for holding "before" lines, the long-
+ est line that is guaranteed to be processable is the parameter size.
+ You can change the default parameter value by adding, for example,
+
+ --with-pcregrep-bufsize=50K
+
+ to the configure command. The caller of pcregrep can, however, override
+ this value by specifying a run-time option.
+
+
+PCRETEST OPTION FOR LIBREADLINE SUPPORT
+
+ If you add
+
+ --enable-pcretest-libreadline
+
+ to the configure command, pcretest is linked with the libreadline
+ library, and when its input is from a terminal, it reads it using the
+ readline() function. This provides line-editing and history facilities.
+ Note that libreadline is GPL-licensed, so if you distribute a binary of
+ pcretest linked in this way, there may be licensing issues.
+
+ Setting this option causes the -lreadline option to be added to the
+ pcretest build. In many operating environments with a sytem-installed
+ libreadline this is sufficient. However, in some environments (e.g. if
+ an unmodified distribution version of readline is in use), some extra
+ configuration may be necessary. The INSTALL file for libreadline says
+ this:
+
+ "Readline uses the termcap functions, but does not link with the
+ termcap or curses library itself, allowing applications which link
+ with readline the to choose an appropriate library."
+
+ If your environment has not been set up so that an appropriate library
+ is automatically included, you may need to add something like
+
+ LIBS="-ncurses"
+
+ immediately before the configure command.
+
+
+DEBUGGING WITH VALGRIND SUPPORT
+
+ By adding the
+
+ --enable-valgrind
+
+ option to to the configure command, PCRE will use valgrind annotations
+ to mark certain memory regions as unaddressable. This allows it to
+ detect invalid memory accesses, and is mostly useful for debugging PCRE
+ itself.
+
+
+CODE COVERAGE REPORTING
+
+ If your C compiler is gcc, you can build a version of PCRE that can
+ generate a code coverage report for its test suite. To enable this, you
+ must install lcov version 1.6 or above. Then specify
+
+ --enable-coverage
+
+ to the configure command and build PCRE in the usual way.
+
+ Note that using ccache (a caching C compiler) is incompatible with code
+ coverage reporting. If you have configured ccache to run automatically
+ on your system, you must set the environment variable
+
+ CCACHE_DISABLE=1
+
+ before running make to build PCRE, so that ccache is not used.
+
+ When --enable-coverage is used, the following addition targets are
+ added to the Makefile:
+
+ make coverage
+
+ This creates a fresh coverage report for the PCRE test suite. It is
+ equivalent to running "make coverage-reset", "make coverage-baseline",
+ "make check", and then "make coverage-report".
+
+ make coverage-reset
+
+ This zeroes the coverage counters, but does nothing else.
+
+ make coverage-baseline
+
+ This captures baseline coverage information.
+
+ make coverage-report
+
+ This creates the coverage report.
+
+ make coverage-clean-report
+
+ This removes the generated coverage report without cleaning the cover-
+ age data itself.
+
+ make coverage-clean-data
+
+ This removes the captured coverage data without removing the coverage
+ files created at compile time (*.gcno).
+
+ make coverage-clean
+
+ This cleans all coverage data including the generated coverage report.
+ For more information about code coverage, see the gcov and lcov docu-
+ mentation.
+
+
+SEE ALSO
+
+ pcreapi(3), pcre16, pcre32, pcre_config(3).
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 12 May 2013
+ Copyright (c) 1997-2013 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCREMATCHING(3) Library Functions Manual PCREMATCHING(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+PCRE MATCHING ALGORITHMS
+
+ This document describes the two different algorithms that are available
+ in PCRE for matching a compiled regular expression against a given sub-
+ ject string. The "standard" algorithm is the one provided by the
+ pcre_exec(), pcre16_exec() and pcre32_exec() functions. These work in
+ the same as as Perl's matching function, and provide a Perl-compatible
+ matching operation. The just-in-time (JIT) optimization that is
+ described in the pcrejit documentation is compatible with these func-
+ tions.
+
+ An alternative algorithm is provided by the pcre_dfa_exec(),
+ pcre16_dfa_exec() and pcre32_dfa_exec() functions; they operate in a
+ different way, and are not Perl-compatible. This alternative has advan-
+ tages and disadvantages compared with the standard algorithm, and these
+ are described below.
+
+ When there is only one possible way in which a given subject string can
+ match a pattern, the two algorithms give the same answer. A difference
+ arises, however, when there are multiple possibilities. For example, if
+ the pattern
+
+ ^<.*>
+
+ is matched against the string
+
+
+
+ there are three possible answers. The standard algorithm finds only one
+ of them, whereas the alternative algorithm finds all three.
+
+
+REGULAR EXPRESSIONS AS TREES
+
+ The set of strings that are matched by a regular expression can be rep-
+ resented as a tree structure. An unlimited repetition in the pattern
+ makes the tree of infinite size, but it is still a tree. Matching the
+ pattern to a given subject string (from a given starting point) can be
+ thought of as a search of the tree. There are two ways to search a
+ tree: depth-first and breadth-first, and these correspond to the two
+ matching algorithms provided by PCRE.
+
+
+THE STANDARD MATCHING ALGORITHM
+
+ In the terminology of Jeffrey Friedl's book "Mastering Regular Expres-
+ sions", the standard algorithm is an "NFA algorithm". It conducts a
+ depth-first search of the pattern tree. That is, it proceeds along a
+ single path through the tree, checking that the subject matches what is
+ required. When there is a mismatch, the algorithm tries any alterna-
+ tives at the current point, and if they all fail, it backs up to the
+ previous branch point in the tree, and tries the next alternative
+ branch at that level. This often involves backing up (moving to the
+ left) in the subject string as well. The order in which repetition
+ branches are tried is controlled by the greedy or ungreedy nature of
+ the quantifier.
+
+ If a leaf node is reached, a matching string has been found, and at
+ that point the algorithm stops. Thus, if there is more than one possi-
+ ble match, this algorithm returns the first one that it finds. Whether
+ this is the shortest, the longest, or some intermediate length depends
+ on the way the greedy and ungreedy repetition quantifiers are specified
+ in the pattern.
+
+ Because it ends up with a single path through the tree, it is rela-
+ tively straightforward for this algorithm to keep track of the sub-
+ strings that are matched by portions of the pattern in parentheses.
+ This provides support for capturing parentheses and back references.
+
+
+THE ALTERNATIVE MATCHING ALGORITHM
+
+ This algorithm conducts a breadth-first search of the tree. Starting
+ from the first matching point in the subject, it scans the subject
+ string from left to right, once, character by character, and as it does
+ this, it remembers all the paths through the tree that represent valid
+ matches. In Friedl's terminology, this is a kind of "DFA algorithm",
+ though it is not implemented as a traditional finite state machine (it
+ keeps multiple states active simultaneously).
+
+ Although the general principle of this matching algorithm is that it
+ scans the subject string only once, without backtracking, there is one
+ exception: when a lookaround assertion is encountered, the characters
+ following or preceding the current point have to be independently
+ inspected.
+
+ The scan continues until either the end of the subject is reached, or
+ there are no more unterminated paths. At this point, terminated paths
+ represent the different matching possibilities (if there are none, the
+ match has failed). Thus, if there is more than one possible match,
+ this algorithm finds all of them, and in particular, it finds the long-
+ est. The matches are returned in decreasing order of length. There is
+ an option to stop the algorithm after the first match (which is neces-
+ sarily the shortest) is found.
+
+ Note that all the matches that are found start at the same point in the
+ subject. If the pattern
+
+ cat(er(pillar)?)?
+
+ is matched against the string "the caterpillar catchment", the result
+ will be the three strings "caterpillar", "cater", and "cat" that start
+ at the fifth character of the subject. The algorithm does not automati-
+ cally move on to find matches that start at later positions.
+
+ There are a number of features of PCRE regular expressions that are not
+ supported by the alternative matching algorithm. They are as follows:
+
+ 1. Because the algorithm finds all possible matches, the greedy or
+ ungreedy nature of repetition quantifiers is not relevant. Greedy and
+ ungreedy quantifiers are treated in exactly the same way. However, pos-
+ sessive quantifiers can make a difference when what follows could also
+ match what is quantified, for example in a pattern like this:
+
+ ^a++\w!
+
+ This pattern matches "aaab!" but not "aaa!", which would be matched by
+ a non-possessive quantifier. Similarly, if an atomic group is present,
+ it is matched as if it were a standalone pattern at the current point,
+ and the longest match is then "locked in" for the rest of the overall
+ pattern.
+
+ 2. When dealing with multiple paths through the tree simultaneously, it
+ is not straightforward to keep track of captured substrings for the
+ different matching possibilities, and PCRE's implementation of this
+ algorithm does not attempt to do this. This means that no captured sub-
+ strings are available.
+
+ 3. Because no substrings are captured, back references within the pat-
+ tern are not supported, and cause errors if encountered.
+
+ 4. For the same reason, conditional expressions that use a backrefer-
+ ence as the condition or test for a specific group recursion are not
+ supported.
+
+ 5. Because many paths through the tree may be active, the \K escape
+ sequence, which resets the start of the match when encountered (but may
+ be on some paths and not on others), is not supported. It causes an
+ error if encountered.
+
+ 6. Callouts are supported, but the value of the capture_top field is
+ always 1, and the value of the capture_last field is always -1.
+
+ 7. The \C escape sequence, which (in the standard algorithm) always
+ matches a single data unit, even in UTF-8, UTF-16 or UTF-32 modes, is
+ not supported in these modes, because the alternative algorithm moves
+ through the subject string one character (not data unit) at a time, for
+ all active paths through the tree.
+
+ 8. Except for (*FAIL), the backtracking control verbs such as (*PRUNE)
+ are not supported. (*FAIL) is supported, and behaves like a failing
+ negative assertion.
+
+
+ADVANTAGES OF THE ALTERNATIVE ALGORITHM
+
+ Using the alternative matching algorithm provides the following advan-
+ tages:
+
+ 1. All possible matches (at a single point in the subject) are automat-
+ ically found, and in particular, the longest match is found. To find
+ more than one match using the standard algorithm, you have to do kludgy
+ things with callouts.
+
+ 2. Because the alternative algorithm scans the subject string just
+ once, and never needs to backtrack (except for lookbehinds), it is pos-
+ sible to pass very long subject strings to the matching function in
+ several pieces, checking for partial matching each time. Although it is
+ possible to do multi-segment matching using the standard algorithm by
+ retaining partially matched substrings, it is more complicated. The
+ pcrepartial documentation gives details of partial matching and dis-
+ cusses multi-segment matching.
+
+
+DISADVANTAGES OF THE ALTERNATIVE ALGORITHM
+
+ The alternative algorithm suffers from a number of disadvantages:
+
+ 1. It is substantially slower than the standard algorithm. This is
+ partly because it has to search for all possible matches, but is also
+ because it is less susceptible to optimization.
+
+ 2. Capturing parentheses and back references are not supported.
+
+ 3. Although atomic groups are supported, their use does not provide the
+ performance advantage that it does for the standard algorithm.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 08 January 2012
+ Copyright (c) 1997-2012 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCREAPI(3) Library Functions Manual PCREAPI(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+ #include
+
+
+PCRE NATIVE API BASIC FUNCTIONS
+
+ pcre *pcre_compile(const char *pattern, int options,
+ const char **errptr, int *erroffset,
+ const unsigned char *tableptr);
+
+ pcre *pcre_compile2(const char *pattern, int options,
+ int *errorcodeptr,
+ const char **errptr, int *erroffset,
+ const unsigned char *tableptr);
+
+ pcre_extra *pcre_study(const pcre *code, int options,
+ const char **errptr);
+
+ void pcre_free_study(pcre_extra *extra);
+
+ int pcre_exec(const pcre *code, const pcre_extra *extra,
+ const char *subject, int length, int startoffset,
+ int options, int *ovector, int ovecsize);
+
+ int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
+ const char *subject, int length, int startoffset,
+ int options, int *ovector, int ovecsize,
+ int *workspace, int wscount);
+
+
+PCRE NATIVE API STRING EXTRACTION FUNCTIONS
+
+ int pcre_copy_named_substring(const pcre *code,
+ const char *subject, int *ovector,
+ int stringcount, const char *stringname,
+ char *buffer, int buffersize);
+
+ int pcre_copy_substring(const char *subject, int *ovector,
+ int stringcount, int stringnumber, char *buffer,
+ int buffersize);
+
+ int pcre_get_named_substring(const pcre *code,
+ const char *subject, int *ovector,
+ int stringcount, const char *stringname,
+ const char **stringptr);
+
+ int pcre_get_stringnumber(const pcre *code,
+ const char *name);
+
+ int pcre_get_stringtable_entries(const pcre *code,
+ const char *name, char **first, char **last);
+
+ int pcre_get_substring(const char *subject, int *ovector,
+ int stringcount, int stringnumber,
+ const char **stringptr);
+
+ int pcre_get_substring_list(const char *subject,
+ int *ovector, int stringcount, const char ***listptr);
+
+ void pcre_free_substring(const char *stringptr);
+
+ void pcre_free_substring_list(const char **stringptr);
+
+
+PCRE NATIVE API AUXILIARY FUNCTIONS
+
+ int pcre_jit_exec(const pcre *code, const pcre_extra *extra,
+ const char *subject, int length, int startoffset,
+ int options, int *ovector, int ovecsize,
+ pcre_jit_stack *jstack);
+
+ pcre_jit_stack *pcre_jit_stack_alloc(int startsize, int maxsize);
+
+ void pcre_jit_stack_free(pcre_jit_stack *stack);
+
+ void pcre_assign_jit_stack(pcre_extra *extra,
+ pcre_jit_callback callback, void *data);
+
+ const unsigned char *pcre_maketables(void);
+
+ int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
+ int what, void *where);
+
+ int pcre_refcount(pcre *code, int adjust);
+
+ int pcre_config(int what, void *where);
+
+ const char *pcre_version(void);
+
+ int pcre_pattern_to_host_byte_order(pcre *code,
+ pcre_extra *extra, const unsigned char *tables);
+
+
+PCRE NATIVE API INDIRECTED FUNCTIONS
+
+ void *(*pcre_malloc)(size_t);
+
+ void (*pcre_free)(void *);
+
+ void *(*pcre_stack_malloc)(size_t);
+
+ void (*pcre_stack_free)(void *);
+
+ int (*pcre_callout)(pcre_callout_block *);
+
+
+PCRE 8-BIT, 16-BIT, AND 32-BIT LIBRARIES
+
+ As well as support for 8-bit character strings, PCRE also supports
+ 16-bit strings (from release 8.30) and 32-bit strings (from release
+ 8.32), by means of two additional libraries. They can be built as well
+ as, or instead of, the 8-bit library. To avoid too much complication,
+ this document describes the 8-bit versions of the functions, with only
+ occasional references to the 16-bit and 32-bit libraries.
+
+ The 16-bit and 32-bit functions operate in the same way as their 8-bit
+ counterparts; they just use different data types for their arguments
+ and results, and their names start with pcre16_ or pcre32_ instead of
+ pcre_. For every option that has UTF8 in its name (for example,
+ PCRE_UTF8), there are corresponding 16-bit and 32-bit names with UTF8
+ replaced by UTF16 or UTF32, respectively. This facility is in fact just
+ cosmetic; the 16-bit and 32-bit option names define the same bit val-
+ ues.
+
+ References to bytes and UTF-8 in this document should be read as refer-
+ ences to 16-bit data units and UTF-16 when using the 16-bit library, or
+ 32-bit data units and UTF-32 when using the 32-bit library, unless
+ specified otherwise. More details of the specific differences for the
+ 16-bit and 32-bit libraries are given in the pcre16 and pcre32 pages.
+
+
+PCRE API OVERVIEW
+
+ PCRE has its own native API, which is described in this document. There
+ are also some wrapper functions (for the 8-bit library only) that cor-
+ respond to the POSIX regular expression API, but they do not give
+ access to all the functionality. They are described in the pcreposix
+ documentation. Both of these APIs define a set of C function calls. A
+ C++ wrapper (again for the 8-bit library only) is also distributed with
+ PCRE. It is documented in the pcrecpp page.
+
+ The native API C function prototypes are defined in the header file
+ pcre.h, and on Unix-like systems the (8-bit) library itself is called
+ libpcre. It can normally be accessed by adding -lpcre to the command
+ for linking an application that uses PCRE. The header file defines the
+ macros PCRE_MAJOR and PCRE_MINOR to contain the major and minor release
+ numbers for the library. Applications can use these to include support
+ for different releases of PCRE.
+
+ In a Windows environment, if you want to statically link an application
+ program against a non-dll pcre.a file, you must define PCRE_STATIC
+ before including pcre.h or pcrecpp.h, because otherwise the pcre_mal-
+ loc() and pcre_free() exported functions will be declared
+ __declspec(dllimport), with unwanted results.
+
+ The functions pcre_compile(), pcre_compile2(), pcre_study(), and
+ pcre_exec() are used for compiling and matching regular expressions in
+ a Perl-compatible manner. A sample program that demonstrates the sim-
+ plest way of using them is provided in the file called pcredemo.c in
+ the PCRE source distribution. A listing of this program is given in the
+ pcredemo documentation, and the pcresample documentation describes how
+ to compile and run it.
+
+ Just-in-time compiler support is an optional feature of PCRE that can
+ be built in appropriate hardware environments. It greatly speeds up the
+ matching performance of many patterns. Simple programs can easily
+ request that it be used if available, by setting an option that is
+ ignored when it is not relevant. More complicated programs might need
+ to make use of the functions pcre_jit_stack_alloc(),
+ pcre_jit_stack_free(), and pcre_assign_jit_stack() in order to control
+ the JIT code's memory usage.
+
+ From release 8.32 there is also a direct interface for JIT execution,
+ which gives improved performance. The JIT-specific functions are dis-
+ cussed in the pcrejit documentation.
+
+ A second matching function, pcre_dfa_exec(), which is not Perl-compati-
+ ble, is also provided. This uses a different algorithm for the match-
+ ing. The alternative algorithm finds all possible matches (at a given
+ point in the subject), and scans the subject just once (unless there
+ are lookbehind assertions). However, this algorithm does not return
+ captured substrings. A description of the two matching algorithms and
+ their advantages and disadvantages is given in the pcrematching docu-
+ mentation.
+
+ In addition to the main compiling and matching functions, there are
+ convenience functions for extracting captured substrings from a subject
+ string that is matched by pcre_exec(). They are:
+
+ pcre_copy_substring()
+ pcre_copy_named_substring()
+ pcre_get_substring()
+ pcre_get_named_substring()
+ pcre_get_substring_list()
+ pcre_get_stringnumber()
+ pcre_get_stringtable_entries()
+
+ pcre_free_substring() and pcre_free_substring_list() are also provided,
+ to free the memory used for extracted strings.
+
+ The function pcre_maketables() is used to build a set of character
+ tables in the current locale for passing to pcre_compile(),
+ pcre_exec(), or pcre_dfa_exec(). This is an optional facility that is
+ provided for specialist use. Most commonly, no special tables are
+ passed, in which case internal tables that are generated when PCRE is
+ built are used.
+
+ The function pcre_fullinfo() is used to find out information about a
+ compiled pattern. The function pcre_version() returns a pointer to a
+ string containing the version of PCRE and its date of release.
+
+ The function pcre_refcount() maintains a reference count in a data
+ block containing a compiled pattern. This is provided for the benefit
+ of object-oriented applications.
+
+ The global variables pcre_malloc and pcre_free initially contain the
+ entry points of the standard malloc() and free() functions, respec-
+ tively. PCRE calls the memory management functions via these variables,
+ so a calling program can replace them if it wishes to intercept the
+ calls. This should be done before calling any PCRE functions.
+
+ The global variables pcre_stack_malloc and pcre_stack_free are also
+ indirections to memory management functions. These special functions
+ are used only when PCRE is compiled to use the heap for remembering
+ data, instead of recursive function calls, when running the pcre_exec()
+ function. See the pcrebuild documentation for details of how to do
+ this. It is a non-standard way of building PCRE, for use in environ-
+ ments that have limited stacks. Because of the greater use of memory
+ management, it runs more slowly. Separate functions are provided so
+ that special-purpose external code can be used for this case. When
+ used, these functions are always called in a stack-like manner (last
+ obtained, first freed), and always for memory blocks of the same size.
+ There is a discussion about PCRE's stack usage in the pcrestack docu-
+ mentation.
+
+ The global variable pcre_callout initially contains NULL. It can be set
+ by the caller to a "callout" function, which PCRE will then call at
+ specified points during a matching operation. Details are given in the
+ pcrecallout documentation.
+
+
+NEWLINES
+
+ PCRE supports five different conventions for indicating line breaks in
+ strings: a single CR (carriage return) character, a single LF (line-
+ feed) character, the two-character sequence CRLF, any of the three pre-
+ ceding, or any Unicode newline sequence. The Unicode newline sequences
+ are the three just mentioned, plus the single characters VT (vertical
+ tab, U+000B), FF (form feed, U+000C), NEL (next line, U+0085), LS (line
+ separator, U+2028), and PS (paragraph separator, U+2029).
+
+ Each of the first three conventions is used by at least one operating
+ system as its standard newline sequence. When PCRE is built, a default
+ can be specified. The default default is LF, which is the Unix stan-
+ dard. When PCRE is run, the default can be overridden, either when a
+ pattern is compiled, or when it is matched.
+
+ At compile time, the newline convention can be specified by the options
+ argument of pcre_compile(), or it can be specified by special text at
+ the start of the pattern itself; this overrides any other settings. See
+ the pcrepattern page for details of the special character sequences.
+
+ In the PCRE documentation the word "newline" is used to mean "the char-
+ acter or pair of characters that indicate a line break". The choice of
+ newline convention affects the handling of the dot, circumflex, and
+ dollar metacharacters, the handling of #-comments in /x mode, and, when
+ CRLF is a recognized line ending sequence, the match position advance-
+ ment for a non-anchored pattern. There is more detail about this in the
+ section on pcre_exec() options below.
+
+ The choice of newline convention does not affect the interpretation of
+ the \n or \r escape sequences, nor does it affect what \R matches,
+ which is controlled in a similar way, but by separate options.
+
+
+MULTITHREADING
+
+ The PCRE functions can be used in multi-threading applications, with
+ the proviso that the memory management functions pointed to by
+ pcre_malloc, pcre_free, pcre_stack_malloc, and pcre_stack_free, and the
+ callout function pointed to by pcre_callout, are shared by all threads.
+
+ The compiled form of a regular expression is not altered during match-
+ ing, so the same compiled pattern can safely be used by several threads
+ at once.
+
+ If the just-in-time optimization feature is being used, it needs sepa-
+ rate memory stack areas for each thread. See the pcrejit documentation
+ for more details.
+
+
+SAVING PRECOMPILED PATTERNS FOR LATER USE
+
+ The compiled form of a regular expression can be saved and re-used at a
+ later time, possibly by a different program, and even on a host other
+ than the one on which it was compiled. Details are given in the
+ pcreprecompile documentation, which includes a description of the
+ pcre_pattern_to_host_byte_order() function. However, compiling a regu-
+ lar expression with one version of PCRE for use with a different ver-
+ sion is not guaranteed to work and may cause crashes.
+
+
+CHECKING BUILD-TIME OPTIONS
+
+ int pcre_config(int what, void *where);
+
+ The function pcre_config() makes it possible for a PCRE client to dis-
+ cover which optional features have been compiled into the PCRE library.
+ The pcrebuild documentation has more details about these optional fea-
+ tures.
+
+ The first argument for pcre_config() is an integer, specifying which
+ information is required; the second argument is a pointer to a variable
+ into which the information is placed. The returned value is zero on
+ success, or the negative error code PCRE_ERROR_BADOPTION if the value
+ in the first argument is not recognized. The following information is
+ available:
+
+ PCRE_CONFIG_UTF8
+
+ The output is an integer that is set to one if UTF-8 support is avail-
+ able; otherwise it is set to zero. This value should normally be given
+ to the 8-bit version of this function, pcre_config(). If it is given to
+ the 16-bit or 32-bit version of this function, the result is
+ PCRE_ERROR_BADOPTION.
+
+ PCRE_CONFIG_UTF16
+
+ The output is an integer that is set to one if UTF-16 support is avail-
+ able; otherwise it is set to zero. This value should normally be given
+ to the 16-bit version of this function, pcre16_config(). If it is given
+ to the 8-bit or 32-bit version of this function, the result is
+ PCRE_ERROR_BADOPTION.
+
+ PCRE_CONFIG_UTF32
+
+ The output is an integer that is set to one if UTF-32 support is avail-
+ able; otherwise it is set to zero. This value should normally be given
+ to the 32-bit version of this function, pcre32_config(). If it is given
+ to the 8-bit or 16-bit version of this function, the result is
+ PCRE_ERROR_BADOPTION.
+
+ PCRE_CONFIG_UNICODE_PROPERTIES
+
+ The output is an integer that is set to one if support for Unicode
+ character properties is available; otherwise it is set to zero.
+
+ PCRE_CONFIG_JIT
+
+ The output is an integer that is set to one if support for just-in-time
+ compiling is available; otherwise it is set to zero.
+
+ PCRE_CONFIG_JITTARGET
+
+ The output is a pointer to a zero-terminated "const char *" string. If
+ JIT support is available, the string contains the name of the architec-
+ ture for which the JIT compiler is configured, for example "x86 32bit
+ (little endian + unaligned)". If JIT support is not available, the
+ result is NULL.
+
+ PCRE_CONFIG_NEWLINE
+
+ The output is an integer whose value specifies the default character
+ sequence that is recognized as meaning "newline". The values that are
+ supported in ASCII/Unicode environments are: 10 for LF, 13 for CR, 3338
+ for CRLF, -2 for ANYCRLF, and -1 for ANY. In EBCDIC environments, CR,
+ ANYCRLF, and ANY yield the same values. However, the value for LF is
+ normally 21, though some EBCDIC environments use 37. The corresponding
+ values for CRLF are 3349 and 3365. The default should normally corre-
+ spond to the standard sequence for your operating system.
+
+ PCRE_CONFIG_BSR
+
+ The output is an integer whose value indicates what character sequences
+ the \R escape sequence matches by default. A value of 0 means that \R
+ matches any Unicode line ending sequence; a value of 1 means that \R
+ matches only CR, LF, or CRLF. The default can be overridden when a pat-
+ tern is compiled or matched.
+
+ PCRE_CONFIG_LINK_SIZE
+
+ The output is an integer that contains the number of bytes used for
+ internal linkage in compiled regular expressions. For the 8-bit
+ library, the value can be 2, 3, or 4. For the 16-bit library, the value
+ is either 2 or 4 and is still a number of bytes. For the 32-bit
+ library, the value is either 2 or 4 and is still a number of bytes. The
+ default value of 2 is sufficient for all but the most massive patterns,
+ since it allows the compiled pattern to be up to 64K in size. Larger
+ values allow larger regular expressions to be compiled, at the expense
+ of slower matching.
+
+ PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
+
+ The output is an integer that contains the threshold above which the
+ POSIX interface uses malloc() for output vectors. Further details are
+ given in the pcreposix documentation.
+
+ PCRE_CONFIG_MATCH_LIMIT
+
+ The output is a long integer that gives the default limit for the num-
+ ber of internal matching function calls in a pcre_exec() execution.
+ Further details are given with pcre_exec() below.
+
+ PCRE_CONFIG_MATCH_LIMIT_RECURSION
+
+ The output is a long integer that gives the default limit for the depth
+ of recursion when calling the internal matching function in a
+ pcre_exec() execution. Further details are given with pcre_exec()
+ below.
+
+ PCRE_CONFIG_STACKRECURSE
+
+ The output is an integer that is set to one if internal recursion when
+ running pcre_exec() is implemented by recursive function calls that use
+ the stack to remember their state. This is the usual way that PCRE is
+ compiled. The output is zero if PCRE was compiled to use blocks of data
+ on the heap instead of recursive function calls. In this case,
+ pcre_stack_malloc and pcre_stack_free are called to manage memory
+ blocks on the heap, thus avoiding the use of the stack.
+
+
+COMPILING A PATTERN
+
+ pcre *pcre_compile(const char *pattern, int options,
+ const char **errptr, int *erroffset,
+ const unsigned char *tableptr);
+
+ pcre *pcre_compile2(const char *pattern, int options,
+ int *errorcodeptr,
+ const char **errptr, int *erroffset,
+ const unsigned char *tableptr);
+
+ Either of the functions pcre_compile() or pcre_compile2() can be called
+ to compile a pattern into an internal form. The only difference between
+ the two interfaces is that pcre_compile2() has an additional argument,
+ errorcodeptr, via which a numerical error code can be returned. To
+ avoid too much repetition, we refer just to pcre_compile() below, but
+ the information applies equally to pcre_compile2().
+
+ The pattern is a C string terminated by a binary zero, and is passed in
+ the pattern argument. A pointer to a single block of memory that is
+ obtained via pcre_malloc is returned. This contains the compiled code
+ and related data. The pcre type is defined for the returned block; this
+ is a typedef for a structure whose contents are not externally defined.
+ It is up to the caller to free the memory (via pcre_free) when it is no
+ longer required.
+
+ Although the compiled code of a PCRE regex is relocatable, that is, it
+ does not depend on memory location, the complete pcre data block is not
+ fully relocatable, because it may contain a copy of the tableptr argu-
+ ment, which is an address (see below).
+
+ The options argument contains various bit settings that affect the com-
+ pilation. It should be zero if no options are required. The available
+ options are described below. Some of them (in particular, those that
+ are compatible with Perl, but some others as well) can also be set and
+ unset from within the pattern (see the detailed description in the
+ pcrepattern documentation). For those options that can be different in
+ different parts of the pattern, the contents of the options argument
+ specifies their settings at the start of compilation and execution. The
+ PCRE_ANCHORED, PCRE_BSR_xxx, PCRE_NEWLINE_xxx, PCRE_NO_UTF8_CHECK, and
+ PCRE_NO_START_OPTIMIZE options can be set at the time of matching as
+ well as at compile time.
+
+ If errptr is NULL, pcre_compile() returns NULL immediately. Otherwise,
+ if compilation of a pattern fails, pcre_compile() returns NULL, and
+ sets the variable pointed to by errptr to point to a textual error mes-
+ sage. This is a static string that is part of the library. You must not
+ try to free it. Normally, the offset from the start of the pattern to
+ the data unit that was being processed when the error was discovered is
+ placed in the variable pointed to by erroffset, which must not be NULL
+ (if it is, an immediate error is given). However, for an invalid UTF-8
+ or UTF-16 string, the offset is that of the first data unit of the
+ failing character.
+
+ Some errors are not detected until the whole pattern has been scanned;
+ in these cases, the offset passed back is the length of the pattern.
+ Note that the offset is in data units, not characters, even in a UTF
+ mode. It may sometimes point into the middle of a UTF-8 or UTF-16 char-
+ acter.
+
+ If pcre_compile2() is used instead of pcre_compile(), and the error-
+ codeptr argument is not NULL, a non-zero error code number is returned
+ via this argument in the event of an error. This is in addition to the
+ textual error message. Error codes and messages are listed below.
+
+ If the final argument, tableptr, is NULL, PCRE uses a default set of
+ character tables that are built when PCRE is compiled, using the
+ default C locale. Otherwise, tableptr must be an address that is the
+ result of a call to pcre_maketables(). This value is stored with the
+ compiled pattern, and used again by pcre_exec(), unless another table
+ pointer is passed to it. For more discussion, see the section on locale
+ support below.
+
+ This code fragment shows a typical straightforward call to pcre_com-
+ pile():
+
+ pcre *re;
+ const char *error;
+ int erroffset;
+ re = pcre_compile(
+ "^A.*Z", /* the pattern */
+ 0, /* default options */
+ &error, /* for error message */
+ &erroffset, /* for error offset */
+ NULL); /* use default character tables */
+
+ The following names for option bits are defined in the pcre.h header
+ file:
+
+ PCRE_ANCHORED
+
+ If this bit is set, the pattern is forced to be "anchored", that is, it
+ is constrained to match only at the first matching point in the string
+ that is being searched (the "subject string"). This effect can also be
+ achieved by appropriate constructs in the pattern itself, which is the
+ only way to do it in Perl.
+
+ PCRE_AUTO_CALLOUT
+
+ If this bit is set, pcre_compile() automatically inserts callout items,
+ all with number 255, before each pattern item. For discussion of the
+ callout facility, see the pcrecallout documentation.
+
+ PCRE_BSR_ANYCRLF
+ PCRE_BSR_UNICODE
+
+ These options (which are mutually exclusive) control what the \R escape
+ sequence matches. The choice is either to match only CR, LF, or CRLF,
+ or to match any Unicode newline sequence. The default is specified when
+ PCRE is built. It can be overridden from within the pattern, or by set-
+ ting an option when a compiled pattern is matched.
+
+ PCRE_CASELESS
+
+ If this bit is set, letters in the pattern match both upper and lower
+ case letters. It is equivalent to Perl's /i option, and it can be
+ changed within a pattern by a (?i) option setting. In UTF-8 mode, PCRE
+ always understands the concept of case for characters whose values are
+ less than 128, so caseless matching is always possible. For characters
+ with higher values, the concept of case is supported if PCRE is com-
+ piled with Unicode property support, but not otherwise. If you want to
+ use caseless matching for characters 128 and above, you must ensure
+ that PCRE is compiled with Unicode property support as well as with
+ UTF-8 support.
+
+ PCRE_DOLLAR_ENDONLY
+
+ If this bit is set, a dollar metacharacter in the pattern matches only
+ at the end of the subject string. Without this option, a dollar also
+ matches immediately before a newline at the end of the string (but not
+ before any other newlines). The PCRE_DOLLAR_ENDONLY option is ignored
+ if PCRE_MULTILINE is set. There is no equivalent to this option in
+ Perl, and no way to set it within a pattern.
+
+ PCRE_DOTALL
+
+ If this bit is set, a dot metacharacter in the pattern matches a char-
+ acter of any value, including one that indicates a newline. However, it
+ only ever matches one character, even if newlines are coded as CRLF.
+ Without this option, a dot does not match when the current position is
+ at a newline. This option is equivalent to Perl's /s option, and it can
+ be changed within a pattern by a (?s) option setting. A negative class
+ such as [^a] always matches newline characters, independent of the set-
+ ting of this option.
+
+ PCRE_DUPNAMES
+
+ If this bit is set, names used to identify capturing subpatterns need
+ not be unique. This can be helpful for certain types of pattern when it
+ is known that only one instance of the named subpattern can ever be
+ matched. There are more details of named subpatterns below; see also
+ the pcrepattern documentation.
+
+ PCRE_EXTENDED
+
+ If this bit is set, white space data characters in the pattern are
+ totally ignored except when escaped or inside a character class. White
+ space does not include the VT character (code 11). In addition, charac-
+ ters between an unescaped # outside a character class and the next new-
+ line, inclusive, are also ignored. This is equivalent to Perl's /x
+ option, and it can be changed within a pattern by a (?x) option set-
+ ting.
+
+ Which characters are interpreted as newlines is controlled by the
+ options passed to pcre_compile() or by a special sequence at the start
+ of the pattern, as described in the section entitled "Newline conven-
+ tions" in the pcrepattern documentation. Note that the end of this type
+ of comment is a literal newline sequence in the pattern; escape
+ sequences that happen to represent a newline do not count.
+
+ This option makes it possible to include comments inside complicated
+ patterns. Note, however, that this applies only to data characters.
+ White space characters may never appear within special character
+ sequences in a pattern, for example within the sequence (?( that intro-
+ duces a conditional subpattern.
+
+ PCRE_EXTRA
+
+ This option was invented in order to turn on additional functionality
+ of PCRE that is incompatible with Perl, but it is currently of very
+ little use. When set, any backslash in a pattern that is followed by a
+ letter that has no special meaning causes an error, thus reserving
+ these combinations for future expansion. By default, as in Perl, a
+ backslash followed by a letter with no special meaning is treated as a
+ literal. (Perl can, however, be persuaded to give an error for this, by
+ running it with the -w option.) There are at present no other features
+ controlled by this option. It can also be set by a (?X) option setting
+ within a pattern.
+
+ PCRE_FIRSTLINE
+
+ If this option is set, an unanchored pattern is required to match
+ before or at the first newline in the subject string, though the
+ matched text may continue over the newline.
+
+ PCRE_JAVASCRIPT_COMPAT
+
+ If this option is set, PCRE's behaviour is changed in some ways so that
+ it is compatible with JavaScript rather than Perl. The changes are as
+ follows:
+
+ (1) A lone closing square bracket in a pattern causes a compile-time
+ error, because this is illegal in JavaScript (by default it is treated
+ as a data character). Thus, the pattern AB]CD becomes illegal when this
+ option is set.
+
+ (2) At run time, a back reference to an unset subpattern group matches
+ an empty string (by default this causes the current matching alterna-
+ tive to fail). A pattern such as (\1)(a) succeeds when this option is
+ set (assuming it can find an "a" in the subject), whereas it fails by
+ default, for Perl compatibility.
+
+ (3) \U matches an upper case "U" character; by default \U causes a com-
+ pile time error (Perl uses \U to upper case subsequent characters).
+
+ (4) \u matches a lower case "u" character unless it is followed by four
+ hexadecimal digits, in which case the hexadecimal number defines the
+ code point to match. By default, \u causes a compile time error (Perl
+ uses it to upper case the following character).
+
+ (5) \x matches a lower case "x" character unless it is followed by two
+ hexadecimal digits, in which case the hexadecimal number defines the
+ code point to match. By default, as in Perl, a hexadecimal number is
+ always expected after \x, but it may have zero, one, or two digits (so,
+ for example, \xz matches a binary zero character followed by z).
+
+ PCRE_MULTILINE
+
+ By default, for the purposes of matching "start of line" and "end of
+ line", PCRE treats the subject string as consisting of a single line of
+ characters, even if it actually contains newlines. The "start of line"
+ metacharacter (^) matches only at the start of the string, and the "end
+ of line" metacharacter ($) matches only at the end of the string, or
+ before a terminating newline (except when PCRE_DOLLAR_ENDONLY is set).
+ Note, however, that unless PCRE_DOTALL is set, the "any character"
+ metacharacter (.) does not match at a newline. This behaviour (for ^,
+ $, and dot) is the same as Perl.
+
+ When PCRE_MULTILINE it is set, the "start of line" and "end of line"
+ constructs match immediately following or immediately before internal
+ newlines in the subject string, respectively, as well as at the very
+ start and end. This is equivalent to Perl's /m option, and it can be
+ changed within a pattern by a (?m) option setting. If there are no new-
+ lines in a subject string, or no occurrences of ^ or $ in a pattern,
+ setting PCRE_MULTILINE has no effect.
+
+ PCRE_NEVER_UTF
+
+ This option locks out interpretation of the pattern as UTF-8 (or UTF-16
+ or UTF-32 in the 16-bit and 32-bit libraries). In particular, it pre-
+ vents the creator of the pattern from switching to UTF interpretation
+ by starting the pattern with (*UTF). This may be useful in applications
+ that process patterns from external sources. The combination of
+ PCRE_UTF8 and PCRE_NEVER_UTF also causes an error.
+
+ PCRE_NEWLINE_CR
+ PCRE_NEWLINE_LF
+ PCRE_NEWLINE_CRLF
+ PCRE_NEWLINE_ANYCRLF
+ PCRE_NEWLINE_ANY
+
+ These options override the default newline definition that was chosen
+ when PCRE was built. Setting the first or the second specifies that a
+ newline is indicated by a single character (CR or LF, respectively).
+ Setting PCRE_NEWLINE_CRLF specifies that a newline is indicated by the
+ two-character CRLF sequence. Setting PCRE_NEWLINE_ANYCRLF specifies
+ that any of the three preceding sequences should be recognized. Setting
+ PCRE_NEWLINE_ANY specifies that any Unicode newline sequence should be
+ recognized.
+
+ In an ASCII/Unicode environment, the Unicode newline sequences are the
+ three just mentioned, plus the single characters VT (vertical tab,
+ U+000B), FF (form feed, U+000C), NEL (next line, U+0085), LS (line sep-
+ arator, U+2028), and PS (paragraph separator, U+2029). For the 8-bit
+ library, the last two are recognized only in UTF-8 mode.
+
+ When PCRE is compiled to run in an EBCDIC (mainframe) environment, the
+ code for CR is 0x0d, the same as ASCII. However, the character code for
+ LF is normally 0x15, though in some EBCDIC environments 0x25 is used.
+ Whichever of these is not LF is made to correspond to Unicode's NEL
+ character. EBCDIC codes are all less than 256. For more details, see
+ the pcrebuild documentation.
+
+ The newline setting in the options word uses three bits that are
+ treated as a number, giving eight possibilities. Currently only six are
+ used (default plus the five values above). This means that if you set
+ more than one newline option, the combination may or may not be sensi-
+ ble. For example, PCRE_NEWLINE_CR with PCRE_NEWLINE_LF is equivalent to
+ PCRE_NEWLINE_CRLF, but other combinations may yield unused numbers and
+ cause an error.
+
+ The only time that a line break in a pattern is specially recognized
+ when compiling is when PCRE_EXTENDED is set. CR and LF are white space
+ characters, and so are ignored in this mode. Also, an unescaped # out-
+ side a character class indicates a comment that lasts until after the
+ next line break sequence. In other circumstances, line break sequences
+ in patterns are treated as literal data.
+
+ The newline option that is set at compile time becomes the default that
+ is used for pcre_exec() and pcre_dfa_exec(), but it can be overridden.
+
+ PCRE_NO_AUTO_CAPTURE
+
+ If this option is set, it disables the use of numbered capturing paren-
+ theses in the pattern. Any opening parenthesis that is not followed by
+ ? behaves as if it were followed by ?: but named parentheses can still
+ be used for capturing (and they acquire numbers in the usual way).
+ There is no equivalent of this option in Perl.
+
+ PCRE_NO_START_OPTIMIZE
+
+ This is an option that acts at matching time; that is, it is really an
+ option for pcre_exec() or pcre_dfa_exec(). If it is set at compile
+ time, it is remembered with the compiled pattern and assumed at match-
+ ing time. This is necessary if you want to use JIT execution, because
+ the JIT compiler needs to know whether or not this option is set. For
+ details see the discussion of PCRE_NO_START_OPTIMIZE below.
+
+ PCRE_UCP
+
+ This option changes the way PCRE processes \B, \b, \D, \d, \S, \s, \W,
+ \w, and some of the POSIX character classes. By default, only ASCII
+ characters are recognized, but if PCRE_UCP is set, Unicode properties
+ are used instead to classify characters. More details are given in the
+ section on generic character types in the pcrepattern page. If you set
+ PCRE_UCP, matching one of the items it affects takes much longer. The
+ option is available only if PCRE has been compiled with Unicode prop-
+ erty support.
+
+ PCRE_UNGREEDY
+
+ This option inverts the "greediness" of the quantifiers so that they
+ are not greedy by default, but become greedy if followed by "?". It is
+ not compatible with Perl. It can also be set by a (?U) option setting
+ within the pattern.
+
+ PCRE_UTF8
+
+ This option causes PCRE to regard both the pattern and the subject as
+ strings of UTF-8 characters instead of single-byte strings. However, it
+ is available only when PCRE is built to include UTF support. If not,
+ the use of this option provokes an error. Details of how this option
+ changes the behaviour of PCRE are given in the pcreunicode page.
+
+ PCRE_NO_UTF8_CHECK
+
+ When PCRE_UTF8 is set, the validity of the pattern as a UTF-8 string is
+ automatically checked. There is a discussion about the validity of
+ UTF-8 strings in the pcreunicode page. If an invalid UTF-8 sequence is
+ found, pcre_compile() returns an error. If you already know that your
+ pattern is valid, and you want to skip this check for performance rea-
+ sons, you can set the PCRE_NO_UTF8_CHECK option. When it is set, the
+ effect of passing an invalid UTF-8 string as a pattern is undefined. It
+ may cause your program to crash. Note that this option can also be
+ passed to pcre_exec() and pcre_dfa_exec(), to suppress the validity
+ checking of subject strings only. If the same string is being matched
+ many times, the option can be safely set for the second and subsequent
+ matchings to improve performance.
+
+
+COMPILATION ERROR CODES
+
+ The following table lists the error codes than may be returned by
+ pcre_compile2(), along with the error messages that may be returned by
+ both compiling functions. Note that error messages are always 8-bit
+ ASCII strings, even in 16-bit or 32-bit mode. As PCRE has developed,
+ some error codes have fallen out of use. To avoid confusion, they have
+ not been re-used.
+
+ 0 no error
+ 1 \ at end of pattern
+ 2 \c at end of pattern
+ 3 unrecognized character follows \
+ 4 numbers out of order in {} quantifier
+ 5 number too big in {} quantifier
+ 6 missing terminating ] for character class
+ 7 invalid escape sequence in character class
+ 8 range out of order in character class
+ 9 nothing to repeat
+ 10 [this code is not in use]
+ 11 internal error: unexpected repeat
+ 12 unrecognized character after (? or (?-
+ 13 POSIX named classes are supported only within a class
+ 14 missing )
+ 15 reference to non-existent subpattern
+ 16 erroffset passed as NULL
+ 17 unknown option bit(s) set
+ 18 missing ) after comment
+ 19 [this code is not in use]
+ 20 regular expression is too large
+ 21 failed to get memory
+ 22 unmatched parentheses
+ 23 internal error: code overflow
+ 24 unrecognized character after (?<
+ 25 lookbehind assertion is not fixed length
+ 26 malformed number or name after (?(
+ 27 conditional group contains more than two branches
+ 28 assertion expected after (?(
+ 29 (?R or (?[+-]digits must be followed by )
+ 30 unknown POSIX class name
+ 31 POSIX collating elements are not supported
+ 32 this version of PCRE is compiled without UTF support
+ 33 [this code is not in use]
+ 34 character value in \x{...} sequence is too large
+ 35 invalid condition (?(0)
+ 36 \C not allowed in lookbehind assertion
+ 37 PCRE does not support \L, \l, \N{name}, \U, or \u
+ 38 number after (?C is > 255
+ 39 closing ) for (?C expected
+ 40 recursive call could loop indefinitely
+ 41 unrecognized character after (?P
+ 42 syntax error in subpattern name (missing terminator)
+ 43 two named subpatterns have the same name
+ 44 invalid UTF-8 string (specifically UTF-8)
+ 45 support for \P, \p, and \X has not been compiled
+ 46 malformed \P or \p sequence
+ 47 unknown property name after \P or \p
+ 48 subpattern name is too long (maximum 32 characters)
+ 49 too many named subpatterns (maximum 10000)
+ 50 [this code is not in use]
+ 51 octal value is greater than \377 in 8-bit non-UTF-8 mode
+ 52 internal error: overran compiling workspace
+ 53 internal error: previously-checked referenced subpattern
+ not found
+ 54 DEFINE group contains more than one branch
+ 55 repeating a DEFINE group is not allowed
+ 56 inconsistent NEWLINE options
+ 57 \g is not followed by a braced, angle-bracketed, or quoted
+ name/number or by a plain number
+ 58 a numbered reference must not be zero
+ 59 an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)
+ 60 (*VERB) not recognized or malformed
+ 61 number is too big
+ 62 subpattern name expected
+ 63 digit expected after (?+
+ 64 ] is an invalid data character in JavaScript compatibility mode
+ 65 different names for subpatterns of the same number are
+ not allowed
+ 66 (*MARK) must have an argument
+ 67 this version of PCRE is not compiled with Unicode property
+ support
+ 68 \c must be followed by an ASCII character
+ 69 \k is not followed by a braced, angle-bracketed, or quoted name
+ 70 internal error: unknown opcode in find_fixedlength()
+ 71 \N is not supported in a class
+ 72 too many forward references
+ 73 disallowed Unicode code point (>= 0xd800 && <= 0xdfff)
+ 74 invalid UTF-16 string (specifically UTF-16)
+ 75 name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)
+ 76 character value in \u.... sequence is too large
+ 77 invalid UTF-32 string (specifically UTF-32)
+
+ The numbers 32 and 10000 in errors 48 and 49 are defaults; different
+ values may be used if the limits were changed when PCRE was built.
+
+
+STUDYING A PATTERN
+
+ pcre_extra *pcre_study(const pcre *code, int options
+ const char **errptr);
+
+ If a compiled pattern is going to be used several times, it is worth
+ spending more time analyzing it in order to speed up the time taken for
+ matching. The function pcre_study() takes a pointer to a compiled pat-
+ tern as its first argument. If studying the pattern produces additional
+ information that will help speed up matching, pcre_study() returns a
+ pointer to a pcre_extra block, in which the study_data field points to
+ the results of the study.
+
+ The returned value from pcre_study() can be passed directly to
+ pcre_exec() or pcre_dfa_exec(). However, a pcre_extra block also con-
+ tains other fields that can be set by the caller before the block is
+ passed; these are described below in the section on matching a pattern.
+
+ If studying the pattern does not produce any useful information,
+ pcre_study() returns NULL by default. In that circumstance, if the
+ calling program wants to pass any of the other fields to pcre_exec() or
+ pcre_dfa_exec(), it must set up its own pcre_extra block. However, if
+ pcre_study() is called with the PCRE_STUDY_EXTRA_NEEDED option, it
+ returns a pcre_extra block even if studying did not find any additional
+ information. It may still return NULL, however, if an error occurs in
+ pcre_study().
+
+ The second argument of pcre_study() contains option bits. There are
+ three further options in addition to PCRE_STUDY_EXTRA_NEEDED:
+
+ PCRE_STUDY_JIT_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
+
+ If any of these are set, and the just-in-time compiler is available,
+ the pattern is further compiled into machine code that executes much
+ faster than the pcre_exec() interpretive matching function. If the
+ just-in-time compiler is not available, these options are ignored. All
+ undefined bits in the options argument must be zero.
+
+ JIT compilation is a heavyweight optimization. It can take some time
+ for patterns to be analyzed, and for one-off matches and simple pat-
+ terns the benefit of faster execution might be offset by a much slower
+ study time. Not all patterns can be optimized by the JIT compiler. For
+ those that cannot be handled, matching automatically falls back to the
+ pcre_exec() interpreter. For more details, see the pcrejit documenta-
+ tion.
+
+ The third argument for pcre_study() is a pointer for an error message.
+ If studying succeeds (even if no data is returned), the variable it
+ points to is set to NULL. Otherwise it is set to point to a textual
+ error message. This is a static string that is part of the library. You
+ must not try to free it. You should test the error pointer for NULL
+ after calling pcre_study(), to be sure that it has run successfully.
+
+ When you are finished with a pattern, you can free the memory used for
+ the study data by calling pcre_free_study(). This function was added to
+ the API for release 8.20. For earlier versions, the memory could be
+ freed with pcre_free(), just like the pattern itself. This will still
+ work in cases where JIT optimization is not used, but it is advisable
+ to change to the new function when convenient.
+
+ This is a typical way in which pcre_study() is used (except that in a
+ real application there should be tests for errors):
+
+ int rc;
+ pcre *re;
+ pcre_extra *sd;
+ re = pcre_compile("pattern", 0, &error, &erroroffset, NULL);
+ sd = pcre_study(
+ re, /* result of pcre_compile() */
+ 0, /* no options */
+ &error); /* set to NULL or points to a message */
+ rc = pcre_exec( /* see below for details of pcre_exec() options */
+ re, sd, "subject", 7, 0, 0, ovector, 30);
+ ...
+ pcre_free_study(sd);
+ pcre_free(re);
+
+ Studying a pattern does two things: first, a lower bound for the length
+ of subject string that is needed to match the pattern is computed. This
+ does not mean that there are any strings of that length that match, but
+ it does guarantee that no shorter strings match. The value is used to
+ avoid wasting time by trying to match strings that are shorter than the
+ lower bound. You can find out the value in a calling program via the
+ pcre_fullinfo() function.
+
+ Studying a pattern is also useful for non-anchored patterns that do not
+ have a single fixed starting character. A bitmap of possible starting
+ bytes is created. This speeds up finding a position in the subject at
+ which to start matching. (In 16-bit mode, the bitmap is used for 16-bit
+ values less than 256. In 32-bit mode, the bitmap is used for 32-bit
+ values less than 256.)
+
+ These two optimizations apply to both pcre_exec() and pcre_dfa_exec(),
+ and the information is also used by the JIT compiler. The optimiza-
+ tions can be disabled by setting the PCRE_NO_START_OPTIMIZE option.
+ You might want to do this if your pattern contains callouts or (*MARK)
+ and you want to make use of these facilities in cases where matching
+ fails.
+
+ PCRE_NO_START_OPTIMIZE can be specified at either compile time or exe-
+ cution time. However, if PCRE_NO_START_OPTIMIZE is passed to
+ pcre_exec(), (that is, after any JIT compilation has happened) JIT exe-
+ cution is disabled. For JIT execution to work with PCRE_NO_START_OPTI-
+ MIZE, the option must be set at compile time.
+
+ There is a longer discussion of PCRE_NO_START_OPTIMIZE below.
+
+
+LOCALE SUPPORT
+
+ PCRE handles caseless matching, and determines whether characters are
+ letters, digits, or whatever, by reference to a set of tables, indexed
+ by character value. When running in UTF-8 mode, this applies only to
+ characters with codes less than 128. By default, higher-valued codes
+ never match escapes such as \w or \d, but they can be tested with \p if
+ PCRE is built with Unicode character property support. Alternatively,
+ the PCRE_UCP option can be set at compile time; this causes \w and
+ friends to use Unicode property support instead of built-in tables. The
+ use of locales with Unicode is discouraged. If you are handling charac-
+ ters with codes greater than 128, you should either use UTF-8 and Uni-
+ code, or use locales, but not try to mix the two.
+
+ PCRE contains an internal set of tables that are used when the final
+ argument of pcre_compile() is NULL. These are sufficient for many
+ applications. Normally, the internal tables recognize only ASCII char-
+ acters. However, when PCRE is built, it is possible to cause the inter-
+ nal tables to be rebuilt in the default "C" locale of the local system,
+ which may cause them to be different.
+
+ The internal tables can always be overridden by tables supplied by the
+ application that calls PCRE. These may be created in a different locale
+ from the default. As more and more applications change to using Uni-
+ code, the need for this locale support is expected to die away.
+
+ External tables are built by calling the pcre_maketables() function,
+ which has no arguments, in the relevant locale. The result can then be
+ passed to pcre_compile() or pcre_exec() as often as necessary. For
+ example, to build and use tables that are appropriate for the French
+ locale (where accented characters with values greater than 128 are
+ treated as letters), the following code could be used:
+
+ setlocale(LC_CTYPE, "fr_FR");
+ tables = pcre_maketables();
+ re = pcre_compile(..., tables);
+
+ The locale name "fr_FR" is used on Linux and other Unix-like systems;
+ if you are using Windows, the name for the French locale is "french".
+
+ When pcre_maketables() runs, the tables are built in memory that is
+ obtained via pcre_malloc. It is the caller's responsibility to ensure
+ that the memory containing the tables remains available for as long as
+ it is needed.
+
+ The pointer that is passed to pcre_compile() is saved with the compiled
+ pattern, and the same tables are used via this pointer by pcre_study()
+ and normally also by pcre_exec(). Thus, by default, for any single pat-
+ tern, compilation, studying and matching all happen in the same locale,
+ but different patterns can be compiled in different locales.
+
+ It is possible to pass a table pointer or NULL (indicating the use of
+ the internal tables) to pcre_exec(). Although not intended for this
+ purpose, this facility could be used to match a pattern in a different
+ locale from the one in which it was compiled. Passing table pointers at
+ run time is discussed below in the section on matching a pattern.
+
+
+INFORMATION ABOUT A PATTERN
+
+ int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
+ int what, void *where);
+
+ The pcre_fullinfo() function returns information about a compiled pat-
+ tern. It replaces the pcre_info() function, which was removed from the
+ library at version 8.30, after more than 10 years of obsolescence.
+
+ The first argument for pcre_fullinfo() is a pointer to the compiled
+ pattern. The second argument is the result of pcre_study(), or NULL if
+ the pattern was not studied. The third argument specifies which piece
+ of information is required, and the fourth argument is a pointer to a
+ variable to receive the data. The yield of the function is zero for
+ success, or one of the following negative numbers:
+
+ PCRE_ERROR_NULL the argument code was NULL
+ the argument where was NULL
+ PCRE_ERROR_BADMAGIC the "magic number" was not found
+ PCRE_ERROR_BADENDIANNESS the pattern was compiled with different
+ endianness
+ PCRE_ERROR_BADOPTION the value of what was invalid
+ PCRE_ERROR_UNSET the requested field is not set
+
+ The "magic number" is placed at the start of each compiled pattern as
+ an simple check against passing an arbitrary memory pointer. The endi-
+ anness error can occur if a compiled pattern is saved and reloaded on a
+ different host. Here is a typical call of pcre_fullinfo(), to obtain
+ the length of the compiled pattern:
+
+ int rc;
+ size_t length;
+ rc = pcre_fullinfo(
+ re, /* result of pcre_compile() */
+ sd, /* result of pcre_study(), or NULL */
+ PCRE_INFO_SIZE, /* what is required */
+ &length); /* where to put the data */
+
+ The possible values for the third argument are defined in pcre.h, and
+ are as follows:
+
+ PCRE_INFO_BACKREFMAX
+
+ Return the number of the highest back reference in the pattern. The
+ fourth argument should point to an int variable. Zero is returned if
+ there are no back references.
+
+ PCRE_INFO_CAPTURECOUNT
+
+ Return the number of capturing subpatterns in the pattern. The fourth
+ argument should point to an int variable.
+
+ PCRE_INFO_DEFAULT_TABLES
+
+ Return a pointer to the internal default character tables within PCRE.
+ The fourth argument should point to an unsigned char * variable. This
+ information call is provided for internal use by the pcre_study() func-
+ tion. External callers can cause PCRE to use its internal tables by
+ passing a NULL table pointer.
+
+ PCRE_INFO_FIRSTBYTE
+
+ Return information about the first data unit of any matched string, for
+ a non-anchored pattern. (The name of this option refers to the 8-bit
+ library, where data units are bytes.) The fourth argument should point
+ to an int variable.
+
+ If there is a fixed first value, for example, the letter "c" from a
+ pattern such as (cat|cow|coyote), its value is returned. In the 8-bit
+ library, the value is always less than 256. In the 16-bit library the
+ value can be up to 0xffff. In the 32-bit library the value can be up to
+ 0x10ffff.
+
+ If there is no fixed first value, and if either
+
+ (a) the pattern was compiled with the PCRE_MULTILINE option, and every
+ branch starts with "^", or
+
+ (b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not
+ set (if it were set, the pattern would be anchored),
+
+ -1 is returned, indicating that the pattern matches only at the start
+ of a subject string or after any newline within the string. Otherwise
+ -2 is returned. For anchored patterns, -2 is returned.
+
+ Since for the 32-bit library using the non-UTF-32 mode, this function
+ is unable to return the full 32-bit range of the character, this value
+ is deprecated; instead the PCRE_INFO_FIRSTCHARACTERFLAGS and
+ PCRE_INFO_FIRSTCHARACTER values should be used.
+
+ PCRE_INFO_FIRSTTABLE
+
+ If the pattern was studied, and this resulted in the construction of a
+ 256-bit table indicating a fixed set of values for the first data unit
+ in any matching string, a pointer to the table is returned. Otherwise
+ NULL is returned. The fourth argument should point to an unsigned char
+ * variable.
+
+ PCRE_INFO_HASCRORLF
+
+ Return 1 if the pattern contains any explicit matches for CR or LF
+ characters, otherwise 0. The fourth argument should point to an int
+ variable. An explicit match is either a literal CR or LF character, or
+ \r or \n.
+
+ PCRE_INFO_JCHANGED
+
+ Return 1 if the (?J) or (?-J) option setting is used in the pattern,
+ otherwise 0. The fourth argument should point to an int variable. (?J)
+ and (?-J) set and unset the local PCRE_DUPNAMES option, respectively.
+
+ PCRE_INFO_JIT
+
+ Return 1 if the pattern was studied with one of the JIT options, and
+ just-in-time compiling was successful. The fourth argument should point
+ to an int variable. A return value of 0 means that JIT support is not
+ available in this version of PCRE, or that the pattern was not studied
+ with a JIT option, or that the JIT compiler could not handle this par-
+ ticular pattern. See the pcrejit documentation for details of what can
+ and cannot be handled.
+
+ PCRE_INFO_JITSIZE
+
+ If the pattern was successfully studied with a JIT option, return the
+ size of the JIT compiled code, otherwise return zero. The fourth argu-
+ ment should point to a size_t variable.
+
+ PCRE_INFO_LASTLITERAL
+
+ Return the value of the rightmost literal data unit that must exist in
+ any matched string, other than at its start, if such a value has been
+ recorded. The fourth argument should point to an int variable. If there
+ is no such value, -1 is returned. For anchored patterns, a last literal
+ value is recorded only if it follows something of variable length. For
+ example, for the pattern /^a\d+z\d+/ the returned value is "z", but for
+ /^a\dz\d/ the returned value is -1.
+
+ Since for the 32-bit library using the non-UTF-32 mode, this function
+ is unable to return the full 32-bit range of the character, this value
+ is deprecated; instead the PCRE_INFO_REQUIREDCHARFLAGS and
+ PCRE_INFO_REQUIREDCHAR values should be used.
+
+ PCRE_INFO_MATCHLIMIT
+
+ If the pattern set a match limit by including an item of the form
+ (*LIMIT_MATCH=nnnn) at the start, the value is returned. The fourth
+ argument should point to an unsigned 32-bit integer. If no such value
+ has been set, the call to pcre_fullinfo() returns the error
+ PCRE_ERROR_UNSET.
+
+ PCRE_INFO_MAXLOOKBEHIND
+
+ Return the number of characters (NB not data units) in the longest
+ lookbehind assertion in the pattern. This information is useful when
+ doing multi-segment matching using the partial matching facilities.
+ Note that the simple assertions \b and \B require a one-character look-
+ behind. \A also registers a one-character lookbehind, though it does
+ not actually inspect the previous character. This is to ensure that at
+ least one character from the old segment is retained when a new segment
+ is processed. Otherwise, if there are no lookbehinds in the pattern, \A
+ might match incorrectly at the start of a new segment.
+
+ PCRE_INFO_MINLENGTH
+
+ If the pattern was studied and a minimum length for matching subject
+ strings was computed, its value is returned. Otherwise the returned
+ value is -1. The value is a number of characters, which in UTF mode may
+ be different from the number of data units. The fourth argument should
+ point to an int variable. A non-negative value is a lower bound to the
+ length of any matching string. There may not be any strings of that
+ length that do actually match, but every string that does match is at
+ least that long.
+
+ PCRE_INFO_NAMECOUNT
+ PCRE_INFO_NAMEENTRYSIZE
+ PCRE_INFO_NAMETABLE
+
+ PCRE supports the use of named as well as numbered capturing parenthe-
+ ses. The names are just an additional way of identifying the parenthe-
+ ses, which still acquire numbers. Several convenience functions such as
+ pcre_get_named_substring() are provided for extracting captured sub-
+ strings by name. It is also possible to extract the data directly, by
+ first converting the name to a number in order to access the correct
+ pointers in the output vector (described with pcre_exec() below). To do
+ the conversion, you need to use the name-to-number map, which is
+ described by these three values.
+
+ The map consists of a number of fixed-size entries. PCRE_INFO_NAMECOUNT
+ gives the number of entries, and PCRE_INFO_NAMEENTRYSIZE gives the size
+ of each entry; both of these return an int value. The entry size
+ depends on the length of the longest name. PCRE_INFO_NAMETABLE returns
+ a pointer to the first entry of the table. This is a pointer to char in
+ the 8-bit library, where the first two bytes of each entry are the num-
+ ber of the capturing parenthesis, most significant byte first. In the
+ 16-bit library, the pointer points to 16-bit data units, the first of
+ which contains the parenthesis number. In the 32-bit library, the
+ pointer points to 32-bit data units, the first of which contains the
+ parenthesis number. The rest of the entry is the corresponding name,
+ zero terminated.
+
+ The names are in alphabetical order. Duplicate names may appear if (?|
+ is used to create multiple groups with the same number, as described in
+ the section on duplicate subpattern numbers in the pcrepattern page.
+ Duplicate names for subpatterns with different numbers are permitted
+ only if PCRE_DUPNAMES is set. In all cases of duplicate names, they
+ appear in the table in the order in which they were found in the pat-
+ tern. In the absence of (?| this is the order of increasing number;
+ when (?| is used this is not necessarily the case because later subpat-
+ terns may have lower numbers.
+
+ As a simple example of the name/number table, consider the following
+ pattern after compilation by the 8-bit library (assume PCRE_EXTENDED is
+ set, so white space - including newlines - is ignored):
+
+ (? (?(\d\d)?\d\d) -
+ (?\d\d) - (?\d\d) )
+
+ There are four named subpatterns, so the table has four entries, and
+ each entry in the table is eight bytes long. The table is as follows,
+ with non-printing bytes shows in hexadecimal, and undefined bytes shown
+ as ??:
+
+ 00 01 d a t e 00 ??
+ 00 05 d a y 00 ?? ??
+ 00 04 m o n t h 00
+ 00 02 y e a r 00 ??
+
+ When writing code to extract data from named subpatterns using the
+ name-to-number map, remember that the length of the entries is likely
+ to be different for each compiled pattern.
+
+ PCRE_INFO_OKPARTIAL
+
+ Return 1 if the pattern can be used for partial matching with
+ pcre_exec(), otherwise 0. The fourth argument should point to an int
+ variable. From release 8.00, this always returns 1, because the
+ restrictions that previously applied to partial matching have been
+ lifted. The pcrepartial documentation gives details of partial match-
+ ing.
+
+ PCRE_INFO_OPTIONS
+
+ Return a copy of the options with which the pattern was compiled. The
+ fourth argument should point to an unsigned long int variable. These
+ option bits are those specified in the call to pcre_compile(), modified
+ by any top-level option settings at the start of the pattern itself. In
+ other words, they are the options that will be in force when matching
+ starts. For example, if the pattern /(?im)abc(?-i)d/ is compiled with
+ the PCRE_EXTENDED option, the result is PCRE_CASELESS, PCRE_MULTILINE,
+ and PCRE_EXTENDED.
+
+ A pattern is automatically anchored by PCRE if all of its top-level
+ alternatives begin with one of the following:
+
+ ^ unless PCRE_MULTILINE is set
+ \A always
+ \G always
+ .* if PCRE_DOTALL is set and there are no back
+ references to the subpattern in which .* appears
+
+ For such patterns, the PCRE_ANCHORED bit is set in the options returned
+ by pcre_fullinfo().
+
+ PCRE_INFO_RECURSIONLIMIT
+
+ If the pattern set a recursion limit by including an item of the form
+ (*LIMIT_RECURSION=nnnn) at the start, the value is returned. The fourth
+ argument should point to an unsigned 32-bit integer. If no such value
+ has been set, the call to pcre_fullinfo() returns the error
+ PCRE_ERROR_UNSET.
+
+ PCRE_INFO_SIZE
+
+ Return the size of the compiled pattern in bytes (for all three
+ libraries). The fourth argument should point to a size_t variable. This
+ value does not include the size of the pcre structure that is returned
+ by pcre_compile(). The value that is passed as the argument to
+ pcre_malloc() when pcre_compile() is getting memory in which to place
+ the compiled data is the value returned by this option plus the size of
+ the pcre structure. Studying a compiled pattern, with or without JIT,
+ does not alter the value returned by this option.
+
+ PCRE_INFO_STUDYSIZE
+
+ Return the size in bytes (for all three libraries) of the data block
+ pointed to by the study_data field in a pcre_extra block. If pcre_extra
+ is NULL, or there is no study data, zero is returned. The fourth argu-
+ ment should point to a size_t variable. The study_data field is set by
+ pcre_study() to record information that will speed up matching (see the
+ section entitled "Studying a pattern" above). The format of the
+ study_data block is private, but its length is made available via this
+ option so that it can be saved and restored (see the pcreprecompile
+ documentation for details).
+
+ PCRE_INFO_FIRSTCHARACTERFLAGS
+
+ Return information about the first data unit of any matched string, for
+ a non-anchored pattern. The fourth argument should point to an int
+ variable.
+
+ If there is a fixed first value, for example, the letter "c" from a
+ pattern such as (cat|cow|coyote), 1 is returned, and the character
+ value can be retrieved using PCRE_INFO_FIRSTCHARACTER.
+
+ If there is no fixed first value, and if either
+
+ (a) the pattern was compiled with the PCRE_MULTILINE option, and every
+ branch starts with "^", or
+
+ (b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not
+ set (if it were set, the pattern would be anchored),
+
+ 2 is returned, indicating that the pattern matches only at the start of
+ a subject string or after any newline within the string. Otherwise 0 is
+ returned. For anchored patterns, 0 is returned.
+
+ PCRE_INFO_FIRSTCHARACTER
+
+ Return the fixed first character value, if PCRE_INFO_FIRSTCHARACTER-
+ FLAGS returned 1; otherwise returns 0. The fourth argument should point
+ to an uint_t variable.
+
+ In the 8-bit library, the value is always less than 256. In the 16-bit
+ library the value can be up to 0xffff. In the 32-bit library in UTF-32
+ mode the value can be up to 0x10ffff, and up to 0xffffffff when not
+ using UTF-32 mode.
+
+ If there is no fixed first value, and if either
+
+ (a) the pattern was compiled with the PCRE_MULTILINE option, and every
+ branch starts with "^", or
+
+ (b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not
+ set (if it were set, the pattern would be anchored),
+
+ -1 is returned, indicating that the pattern matches only at the start
+ of a subject string or after any newline within the string. Otherwise
+ -2 is returned. For anchored patterns, -2 is returned.
+
+ PCRE_INFO_REQUIREDCHARFLAGS
+
+ Returns 1 if there is a rightmost literal data unit that must exist in
+ any matched string, other than at its start. The fourth argument should
+ point to an int variable. If there is no such value, 0 is returned. If
+ returning 1, the character value itself can be retrieved using
+ PCRE_INFO_REQUIREDCHAR.
+
+ For anchored patterns, a last literal value is recorded only if it fol-
+ lows something of variable length. For example, for the pattern
+ /^a\d+z\d+/ the returned value 1 (with "z" returned from
+ PCRE_INFO_REQUIREDCHAR), but for /^a\dz\d/ the returned value is 0.
+
+ PCRE_INFO_REQUIREDCHAR
+
+ Return the value of the rightmost literal data unit that must exist in
+ any matched string, other than at its start, if such a value has been
+ recorded. The fourth argument should point to an uint32_t variable. If
+ there is no such value, 0 is returned.
+
+
+REFERENCE COUNTS
+
+ int pcre_refcount(pcre *code, int adjust);
+
+ The pcre_refcount() function is used to maintain a reference count in
+ the data block that contains a compiled pattern. It is provided for the
+ benefit of applications that operate in an object-oriented manner,
+ where different parts of the application may be using the same compiled
+ pattern, but you want to free the block when they are all done.
+
+ When a pattern is compiled, the reference count field is initialized to
+ zero. It is changed only by calling this function, whose action is to
+ add the adjust value (which may be positive or negative) to it. The
+ yield of the function is the new value. However, the value of the count
+ is constrained to lie between 0 and 65535, inclusive. If the new value
+ is outside these limits, it is forced to the appropriate limit value.
+
+ Except when it is zero, the reference count is not correctly preserved
+ if a pattern is compiled on one host and then transferred to a host
+ whose byte-order is different. (This seems a highly unlikely scenario.)
+
+
+MATCHING A PATTERN: THE TRADITIONAL FUNCTION
+
+ int pcre_exec(const pcre *code, const pcre_extra *extra,
+ const char *subject, int length, int startoffset,
+ int options, int *ovector, int ovecsize);
+
+ The function pcre_exec() is called to match a subject string against a
+ compiled pattern, which is passed in the code argument. If the pattern
+ was studied, the result of the study should be passed in the extra
+ argument. You can call pcre_exec() with the same code and extra argu-
+ ments as many times as you like, in order to match different subject
+ strings with the same pattern.
+
+ This function is the main matching facility of the library, and it
+ operates in a Perl-like manner. For specialist use there is also an
+ alternative matching function, which is described below in the section
+ about the pcre_dfa_exec() function.
+
+ In most applications, the pattern will have been compiled (and option-
+ ally studied) in the same process that calls pcre_exec(). However, it
+ is possible to save compiled patterns and study data, and then use them
+ later in different processes, possibly even on different hosts. For a
+ discussion about this, see the pcreprecompile documentation.
+
+ Here is an example of a simple call to pcre_exec():
+
+ int rc;
+ int ovector[30];
+ rc = pcre_exec(
+ re, /* result of pcre_compile() */
+ NULL, /* we didn't study the pattern */
+ "some string", /* the subject string */
+ 11, /* the length of the subject string */
+ 0, /* start at offset 0 in the subject */
+ 0, /* default options */
+ ovector, /* vector of integers for substring information */
+ 30); /* number of elements (NOT size in bytes) */
+
+ Extra data for pcre_exec()
+
+ If the extra argument is not NULL, it must point to a pcre_extra data
+ block. The pcre_study() function returns such a block (when it doesn't
+ return NULL), but you can also create one for yourself, and pass addi-
+ tional information in it. The pcre_extra block contains the following
+ fields (not necessarily in this order):
+
+ unsigned long int flags;
+ void *study_data;
+ void *executable_jit;
+ unsigned long int match_limit;
+ unsigned long int match_limit_recursion;
+ void *callout_data;
+ const unsigned char *tables;
+ unsigned char **mark;
+
+ In the 16-bit version of this structure, the mark field has type
+ "PCRE_UCHAR16 **".
+
+ In the 32-bit version of this structure, the mark field has type
+ "PCRE_UCHAR32 **".
+
+ The flags field is used to specify which of the other fields are set.
+ The flag bits are:
+
+ PCRE_EXTRA_CALLOUT_DATA
+ PCRE_EXTRA_EXECUTABLE_JIT
+ PCRE_EXTRA_MARK
+ PCRE_EXTRA_MATCH_LIMIT
+ PCRE_EXTRA_MATCH_LIMIT_RECURSION
+ PCRE_EXTRA_STUDY_DATA
+ PCRE_EXTRA_TABLES
+
+ Other flag bits should be set to zero. The study_data field and some-
+ times the executable_jit field are set in the pcre_extra block that is
+ returned by pcre_study(), together with the appropriate flag bits. You
+ should not set these yourself, but you may add to the block by setting
+ other fields and their corresponding flag bits.
+
+ The match_limit field provides a means of preventing PCRE from using up
+ a vast amount of resources when running patterns that are not going to
+ match, but which have a very large number of possibilities in their
+ search trees. The classic example is a pattern that uses nested unlim-
+ ited repeats.
+
+ Internally, pcre_exec() uses a function called match(), which it calls
+ repeatedly (sometimes recursively). The limit set by match_limit is
+ imposed on the number of times this function is called during a match,
+ which has the effect of limiting the amount of backtracking that can
+ take place. For patterns that are not anchored, the count restarts from
+ zero for each position in the subject string.
+
+ When pcre_exec() is called with a pattern that was successfully studied
+ with a JIT option, the way that the matching is executed is entirely
+ different. However, there is still the possibility of runaway matching
+ that goes on for a very long time, and so the match_limit value is also
+ used in this case (but in a different way) to limit how long the match-
+ ing can continue.
+
+ The default value for the limit can be set when PCRE is built; the
+ default default is 10 million, which handles all but the most extreme
+ cases. You can override the default by suppling pcre_exec() with a
+ pcre_extra block in which match_limit is set, and
+ PCRE_EXTRA_MATCH_LIMIT is set in the flags field. If the limit is
+ exceeded, pcre_exec() returns PCRE_ERROR_MATCHLIMIT.
+
+ A value for the match limit may also be supplied by an item at the
+ start of a pattern of the form
+
+ (*LIMIT_MATCH=d)
+
+ where d is a decimal number. However, such a setting is ignored unless
+ d is less than the limit set by the caller of pcre_exec() or, if no
+ such limit is set, less than the default.
+
+ The match_limit_recursion field is similar to match_limit, but instead
+ of limiting the total number of times that match() is called, it limits
+ the depth of recursion. The recursion depth is a smaller number than
+ the total number of calls, because not all calls to match() are recur-
+ sive. This limit is of use only if it is set smaller than match_limit.
+
+ Limiting the recursion depth limits the amount of machine stack that
+ can be used, or, when PCRE has been compiled to use memory on the heap
+ instead of the stack, the amount of heap memory that can be used. This
+ limit is not relevant, and is ignored, when matching is done using JIT
+ compiled code.
+
+ The default value for match_limit_recursion can be set when PCRE is
+ built; the default default is the same value as the default for
+ match_limit. You can override the default by suppling pcre_exec() with
+ a pcre_extra block in which match_limit_recursion is set, and
+ PCRE_EXTRA_MATCH_LIMIT_RECURSION is set in the flags field. If the
+ limit is exceeded, pcre_exec() returns PCRE_ERROR_RECURSIONLIMIT.
+
+ A value for the recursion limit may also be supplied by an item at the
+ start of a pattern of the form
+
+ (*LIMIT_RECURSION=d)
+
+ where d is a decimal number. However, such a setting is ignored unless
+ d is less than the limit set by the caller of pcre_exec() or, if no
+ such limit is set, less than the default.
+
+ The callout_data field is used in conjunction with the "callout" fea-
+ ture, and is described in the pcrecallout documentation.
+
+ The tables field is used to pass a character tables pointer to
+ pcre_exec(); this overrides the value that is stored with the compiled
+ pattern. A non-NULL value is stored with the compiled pattern only if
+ custom tables were supplied to pcre_compile() via its tableptr argu-
+ ment. If NULL is passed to pcre_exec() using this mechanism, it forces
+ PCRE's internal tables to be used. This facility is helpful when re-
+ using patterns that have been saved after compiling with an external
+ set of tables, because the external tables might be at a different
+ address when pcre_exec() is called. See the pcreprecompile documenta-
+ tion for a discussion of saving compiled patterns for later use.
+
+ If PCRE_EXTRA_MARK is set in the flags field, the mark field must be
+ set to point to a suitable variable. If the pattern contains any back-
+ tracking control verbs such as (*MARK:NAME), and the execution ends up
+ with a name to pass back, a pointer to the name string (zero termi-
+ nated) is placed in the variable pointed to by the mark field. The
+ names are within the compiled pattern; if you wish to retain such a
+ name you must copy it before freeing the memory of a compiled pattern.
+ If there is no name to pass back, the variable pointed to by the mark
+ field is set to NULL. For details of the backtracking control verbs,
+ see the section entitled "Backtracking control" in the pcrepattern doc-
+ umentation.
+
+ Option bits for pcre_exec()
+
+ The unused bits of the options argument for pcre_exec() must be zero.
+ The only bits that may be set are PCRE_ANCHORED, PCRE_NEWLINE_xxx,
+ PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART,
+ PCRE_NO_START_OPTIMIZE, PCRE_NO_UTF8_CHECK, PCRE_PARTIAL_HARD, and
+ PCRE_PARTIAL_SOFT.
+
+ If the pattern was successfully studied with one of the just-in-time
+ (JIT) compile options, the only supported options for JIT execution are
+ PCRE_NO_UTF8_CHECK, PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY,
+ PCRE_NOTEMPTY_ATSTART, PCRE_PARTIAL_HARD, and PCRE_PARTIAL_SOFT. If an
+ unsupported option is used, JIT execution is disabled and the normal
+ interpretive code in pcre_exec() is run.
+
+ PCRE_ANCHORED
+
+ The PCRE_ANCHORED option limits pcre_exec() to matching at the first
+ matching position. If a pattern was compiled with PCRE_ANCHORED, or
+ turned out to be anchored by virtue of its contents, it cannot be made
+ unachored at matching time.
+
+ PCRE_BSR_ANYCRLF
+ PCRE_BSR_UNICODE
+
+ These options (which are mutually exclusive) control what the \R escape
+ sequence matches. The choice is either to match only CR, LF, or CRLF,
+ or to match any Unicode newline sequence. These options override the
+ choice that was made or defaulted when the pattern was compiled.
+
+ PCRE_NEWLINE_CR
+ PCRE_NEWLINE_LF
+ PCRE_NEWLINE_CRLF
+ PCRE_NEWLINE_ANYCRLF
+ PCRE_NEWLINE_ANY
+
+ These options override the newline definition that was chosen or
+ defaulted when the pattern was compiled. For details, see the descrip-
+ tion of pcre_compile() above. During matching, the newline choice
+ affects the behaviour of the dot, circumflex, and dollar metacharac-
+ ters. It may also alter the way the match position is advanced after a
+ match failure for an unanchored pattern.
+
+ When PCRE_NEWLINE_CRLF, PCRE_NEWLINE_ANYCRLF, or PCRE_NEWLINE_ANY is
+ set, and a match attempt for an unanchored pattern fails when the cur-
+ rent position is at a CRLF sequence, and the pattern contains no
+ explicit matches for CR or LF characters, the match position is
+ advanced by two characters instead of one, in other words, to after the
+ CRLF.
+
+ The above rule is a compromise that makes the most common cases work as
+ expected. For example, if the pattern is .+A (and the PCRE_DOTALL
+ option is not set), it does not match the string "\r\nA" because, after
+ failing at the start, it skips both the CR and the LF before retrying.
+ However, the pattern [\r\n]A does match that string, because it con-
+ tains an explicit CR or LF reference, and so advances only by one char-
+ acter after the first failure.
+
+ An explicit match for CR of LF is either a literal appearance of one of
+ those characters, or one of the \r or \n escape sequences. Implicit
+ matches such as [^X] do not count, nor does \s (which includes CR and
+ LF in the characters that it matches).
+
+ Notwithstanding the above, anomalous effects may still occur when CRLF
+ is a valid newline sequence and explicit \r or \n escapes appear in the
+ pattern.
+
+ PCRE_NOTBOL
+
+ This option specifies that first character of the subject string is not
+ the beginning of a line, so the circumflex metacharacter should not
+ match before it. Setting this without PCRE_MULTILINE (at compile time)
+ causes circumflex never to match. This option affects only the behav-
+ iour of the circumflex metacharacter. It does not affect \A.
+
+ PCRE_NOTEOL
+
+ This option specifies that the end of the subject string is not the end
+ of a line, so the dollar metacharacter should not match it nor (except
+ in multiline mode) a newline immediately before it. Setting this with-
+ out PCRE_MULTILINE (at compile time) causes dollar never to match. This
+ option affects only the behaviour of the dollar metacharacter. It does
+ not affect \Z or \z.
+
+ PCRE_NOTEMPTY
+
+ An empty string is not considered to be a valid match if this option is
+ set. If there are alternatives in the pattern, they are tried. If all
+ the alternatives match the empty string, the entire match fails. For
+ example, if the pattern
+
+ a?b?
+
+ is applied to a string not beginning with "a" or "b", it matches an
+ empty string at the start of the subject. With PCRE_NOTEMPTY set, this
+ match is not valid, so PCRE searches further into the string for occur-
+ rences of "a" or "b".
+
+ PCRE_NOTEMPTY_ATSTART
+
+ This is like PCRE_NOTEMPTY, except that an empty string match that is
+ not at the start of the subject is permitted. If the pattern is
+ anchored, such a match can occur only if the pattern contains \K.
+
+ Perl has no direct equivalent of PCRE_NOTEMPTY or
+ PCRE_NOTEMPTY_ATSTART, but it does make a special case of a pattern
+ match of the empty string within its split() function, and when using
+ the /g modifier. It is possible to emulate Perl's behaviour after
+ matching a null string by first trying the match again at the same off-
+ set with PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED, and then if that
+ fails, by advancing the starting offset (see below) and trying an ordi-
+ nary match again. There is some code that demonstrates how to do this
+ in the pcredemo sample program. In the most general case, you have to
+ check to see if the newline convention recognizes CRLF as a newline,
+ and if so, and the current character is CR followed by LF, advance the
+ starting offset by two characters instead of one.
+
+ PCRE_NO_START_OPTIMIZE
+
+ There are a number of optimizations that pcre_exec() uses at the start
+ of a match, in order to speed up the process. For example, if it is
+ known that an unanchored match must start with a specific character, it
+ searches the subject for that character, and fails immediately if it
+ cannot find it, without actually running the main matching function.
+ This means that a special item such as (*COMMIT) at the start of a pat-
+ tern is not considered until after a suitable starting point for the
+ match has been found. Also, when callouts or (*MARK) items are in use,
+ these "start-up" optimizations can cause them to be skipped if the pat-
+ tern is never actually used. The start-up optimizations are in effect a
+ pre-scan of the subject that takes place before the pattern is run.
+
+ The PCRE_NO_START_OPTIMIZE option disables the start-up optimizations,
+ possibly causing performance to suffer, but ensuring that in cases
+ where the result is "no match", the callouts do occur, and that items
+ such as (*COMMIT) and (*MARK) are considered at every possible starting
+ position in the subject string. If PCRE_NO_START_OPTIMIZE is set at
+ compile time, it cannot be unset at matching time. The use of
+ PCRE_NO_START_OPTIMIZE at matching time (that is, passing it to
+ pcre_exec()) disables JIT execution; in this situation, matching is
+ always done using interpretively.
+
+ Setting PCRE_NO_START_OPTIMIZE can change the outcome of a matching
+ operation. Consider the pattern
+
+ (*COMMIT)ABC
+
+ When this is compiled, PCRE records the fact that a match must start
+ with the character "A". Suppose the subject string is "DEFABC". The
+ start-up optimization scans along the subject, finds "A" and runs the
+ first match attempt from there. The (*COMMIT) item means that the pat-
+ tern must match the current starting position, which in this case, it
+ does. However, if the same match is run with PCRE_NO_START_OPTIMIZE
+ set, the initial scan along the subject string does not happen. The
+ first match attempt is run starting from "D" and when this fails,
+ (*COMMIT) prevents any further matches being tried, so the overall
+ result is "no match". If the pattern is studied, more start-up opti-
+ mizations may be used. For example, a minimum length for the subject
+ may be recorded. Consider the pattern
+
+ (*MARK:A)(X|Y)
+
+ The minimum length for a match is one character. If the subject is
+ "ABC", there will be attempts to match "ABC", "BC", "C", and then
+ finally an empty string. If the pattern is studied, the final attempt
+ does not take place, because PCRE knows that the subject is too short,
+ and so the (*MARK) is never encountered. In this case, studying the
+ pattern does not affect the overall match result, which is still "no
+ match", but it does affect the auxiliary information that is returned.
+
+ PCRE_NO_UTF8_CHECK
+
+ When PCRE_UTF8 is set at compile time, the validity of the subject as a
+ UTF-8 string is automatically checked when pcre_exec() is subsequently
+ called. The entire string is checked before any other processing takes
+ place. The value of startoffset is also checked to ensure that it
+ points to the start of a UTF-8 character. There is a discussion about
+ the validity of UTF-8 strings in the pcreunicode page. If an invalid
+ sequence of bytes is found, pcre_exec() returns the error
+ PCRE_ERROR_BADUTF8 or, if PCRE_PARTIAL_HARD is set and the problem is a
+ truncated character at the end of the subject, PCRE_ERROR_SHORTUTF8. In
+ both cases, information about the precise nature of the error may also
+ be returned (see the descriptions of these errors in the section enti-
+ tled Error return values from pcre_exec() below). If startoffset con-
+ tains a value that does not point to the start of a UTF-8 character (or
+ to the end of the subject), PCRE_ERROR_BADUTF8_OFFSET is returned.
+
+ If you already know that your subject is valid, and you want to skip
+ these checks for performance reasons, you can set the
+ PCRE_NO_UTF8_CHECK option when calling pcre_exec(). You might want to
+ do this for the second and subsequent calls to pcre_exec() if you are
+ making repeated calls to find all the matches in a single subject
+ string. However, you should be sure that the value of startoffset
+ points to the start of a character (or the end of the subject). When
+ PCRE_NO_UTF8_CHECK is set, the effect of passing an invalid string as a
+ subject or an invalid value of startoffset is undefined. Your program
+ may crash.
+
+ PCRE_PARTIAL_HARD
+ PCRE_PARTIAL_SOFT
+
+ These options turn on the partial matching feature. For backwards com-
+ patibility, PCRE_PARTIAL is a synonym for PCRE_PARTIAL_SOFT. A partial
+ match occurs if the end of the subject string is reached successfully,
+ but there are not enough subject characters to complete the match. If
+ this happens when PCRE_PARTIAL_SOFT (but not PCRE_PARTIAL_HARD) is set,
+ matching continues by testing any remaining alternatives. Only if no
+ complete match can be found is PCRE_ERROR_PARTIAL returned instead of
+ PCRE_ERROR_NOMATCH. In other words, PCRE_PARTIAL_SOFT says that the
+ caller is prepared to handle a partial match, but only if no complete
+ match can be found.
+
+ If PCRE_PARTIAL_HARD is set, it overrides PCRE_PARTIAL_SOFT. In this
+ case, if a partial match is found, pcre_exec() immediately returns
+ PCRE_ERROR_PARTIAL, without considering any other alternatives. In
+ other words, when PCRE_PARTIAL_HARD is set, a partial match is consid-
+ ered to be more important that an alternative complete match.
+
+ In both cases, the portion of the string that was inspected when the
+ partial match was found is set as the first matching string. There is a
+ more detailed discussion of partial and multi-segment matching, with
+ examples, in the pcrepartial documentation.
+
+ The string to be matched by pcre_exec()
+
+ The subject string is passed to pcre_exec() as a pointer in subject, a
+ length in length, and a starting offset in startoffset. The units for
+ length and startoffset are bytes for the 8-bit library, 16-bit data
+ items for the 16-bit library, and 32-bit data items for the 32-bit
+ library.
+
+ If startoffset is negative or greater than the length of the subject,
+ pcre_exec() returns PCRE_ERROR_BADOFFSET. When the starting offset is
+ zero, the search for a match starts at the beginning of the subject,
+ and this is by far the most common case. In UTF-8 or UTF-16 mode, the
+ offset must point to the start of a character, or the end of the sub-
+ ject (in UTF-32 mode, one data unit equals one character, so all off-
+ sets are valid). Unlike the pattern string, the subject may contain
+ binary zeroes.
+
+ A non-zero starting offset is useful when searching for another match
+ in the same subject by calling pcre_exec() again after a previous suc-
+ cess. Setting startoffset differs from just passing over a shortened
+ string and setting PCRE_NOTBOL in the case of a pattern that begins
+ with any kind of lookbehind. For example, consider the pattern
+
+ \Biss\B
+
+ which finds occurrences of "iss" in the middle of words. (\B matches
+ only if the current position in the subject is not a word boundary.)
+ When applied to the string "Mississipi" the first call to pcre_exec()
+ finds the first occurrence. If pcre_exec() is called again with just
+ the remainder of the subject, namely "issipi", it does not match,
+ because \B is always false at the start of the subject, which is deemed
+ to be a word boundary. However, if pcre_exec() is passed the entire
+ string again, but with startoffset set to 4, it finds the second occur-
+ rence of "iss" because it is able to look behind the starting point to
+ discover that it is preceded by a letter.
+
+ Finding all the matches in a subject is tricky when the pattern can
+ match an empty string. It is possible to emulate Perl's /g behaviour by
+ first trying the match again at the same offset, with the
+ PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED options, and then if that
+ fails, advancing the starting offset and trying an ordinary match
+ again. There is some code that demonstrates how to do this in the pcre-
+ demo sample program. In the most general case, you have to check to see
+ if the newline convention recognizes CRLF as a newline, and if so, and
+ the current character is CR followed by LF, advance the starting offset
+ by two characters instead of one.
+
+ If a non-zero starting offset is passed when the pattern is anchored,
+ one attempt to match at the given offset is made. This can only succeed
+ if the pattern does not require the match to be at the start of the
+ subject.
+
+ How pcre_exec() returns captured substrings
+
+ In general, a pattern matches a certain portion of the subject, and in
+ addition, further substrings from the subject may be picked out by
+ parts of the pattern. Following the usage in Jeffrey Friedl's book,
+ this is called "capturing" in what follows, and the phrase "capturing
+ subpattern" is used for a fragment of a pattern that picks out a sub-
+ string. PCRE supports several other kinds of parenthesized subpattern
+ that do not cause substrings to be captured.
+
+ Captured substrings are returned to the caller via a vector of integers
+ whose address is passed in ovector. The number of elements in the vec-
+ tor is passed in ovecsize, which must be a non-negative number. Note:
+ this argument is NOT the size of ovector in bytes.
+
+ The first two-thirds of the vector is used to pass back captured sub-
+ strings, each substring using a pair of integers. The remaining third
+ of the vector is used as workspace by pcre_exec() while matching cap-
+ turing subpatterns, and is not available for passing back information.
+ The number passed in ovecsize should always be a multiple of three. If
+ it is not, it is rounded down.
+
+ When a match is successful, information about captured substrings is
+ returned in pairs of integers, starting at the beginning of ovector,
+ and continuing up to two-thirds of its length at the most. The first
+ element of each pair is set to the offset of the first character in a
+ substring, and the second is set to the offset of the first character
+ after the end of a substring. These values are always data unit off-
+ sets, even in UTF mode. They are byte offsets in the 8-bit library,
+ 16-bit data item offsets in the 16-bit library, and 32-bit data item
+ offsets in the 32-bit library. Note: they are not character counts.
+
+ The first pair of integers, ovector[0] and ovector[1], identify the
+ portion of the subject string matched by the entire pattern. The next
+ pair is used for the first capturing subpattern, and so on. The value
+ returned by pcre_exec() is one more than the highest numbered pair that
+ has been set. For example, if two substrings have been captured, the
+ returned value is 3. If there are no capturing subpatterns, the return
+ value from a successful match is 1, indicating that just the first pair
+ of offsets has been set.
+
+ If a capturing subpattern is matched repeatedly, it is the last portion
+ of the string that it matched that is returned.
+
+ If the vector is too small to hold all the captured substring offsets,
+ it is used as far as possible (up to two-thirds of its length), and the
+ function returns a value of zero. If neither the actual string matched
+ nor any captured substrings are of interest, pcre_exec() may be called
+ with ovector passed as NULL and ovecsize as zero. However, if the pat-
+ tern contains back references and the ovector is not big enough to
+ remember the related substrings, PCRE has to get additional memory for
+ use during matching. Thus it is usually advisable to supply an ovector
+ of reasonable size.
+
+ There are some cases where zero is returned (indicating vector over-
+ flow) when in fact the vector is exactly the right size for the final
+ match. For example, consider the pattern
+
+ (a)(?:(b)c|bd)
+
+ If a vector of 6 elements (allowing for only 1 captured substring) is
+ given with subject string "abd", pcre_exec() will try to set the second
+ captured string, thereby recording a vector overflow, before failing to
+ match "c" and backing up to try the second alternative. The zero
+ return, however, does correctly indicate that the maximum number of
+ slots (namely 2) have been filled. In similar cases where there is tem-
+ porary overflow, but the final number of used slots is actually less
+ than the maximum, a non-zero value is returned.
+
+ The pcre_fullinfo() function can be used to find out how many capturing
+ subpatterns there are in a compiled pattern. The smallest size for
+ ovector that will allow for n captured substrings, in addition to the
+ offsets of the substring matched by the whole pattern, is (n+1)*3.
+
+ It is possible for capturing subpattern number n+1 to match some part
+ of the subject when subpattern n has not been used at all. For example,
+ if the string "abc" is matched against the pattern (a|(z))(bc) the
+ return from the function is 4, and subpatterns 1 and 3 are matched, but
+ 2 is not. When this happens, both values in the offset pairs corre-
+ sponding to unused subpatterns are set to -1.
+
+ Offset values that correspond to unused subpatterns at the end of the
+ expression are also set to -1. For example, if the string "abc" is
+ matched against the pattern (abc)(x(yz)?)? subpatterns 2 and 3 are not
+ matched. The return from the function is 2, because the highest used
+ capturing subpattern number is 1, and the offsets for for the second
+ and third capturing subpatterns (assuming the vector is large enough,
+ of course) are set to -1.
+
+ Note: Elements in the first two-thirds of ovector that do not corre-
+ spond to capturing parentheses in the pattern are never changed. That
+ is, if a pattern contains n capturing parentheses, no more than ovec-
+ tor[0] to ovector[2n+1] are set by pcre_exec(). The other elements (in
+ the first two-thirds) retain whatever values they previously had.
+
+ Some convenience functions are provided for extracting the captured
+ substrings as separate strings. These are described below.
+
+ Error return values from pcre_exec()
+
+ If pcre_exec() fails, it returns a negative number. The following are
+ defined in the header file:
+
+ PCRE_ERROR_NOMATCH (-1)
+
+ The subject string did not match the pattern.
+
+ PCRE_ERROR_NULL (-2)
+
+ Either code or subject was passed as NULL, or ovector was NULL and
+ ovecsize was not zero.
+
+ PCRE_ERROR_BADOPTION (-3)
+
+ An unrecognized bit was set in the options argument.
+
+ PCRE_ERROR_BADMAGIC (-4)
+
+ PCRE stores a 4-byte "magic number" at the start of the compiled code,
+ to catch the case when it is passed a junk pointer and to detect when a
+ pattern that was compiled in an environment of one endianness is run in
+ an environment with the other endianness. This is the error that PCRE
+ gives when the magic number is not present.
+
+ PCRE_ERROR_UNKNOWN_OPCODE (-5)
+
+ While running the pattern match, an unknown item was encountered in the
+ compiled pattern. This error could be caused by a bug in PCRE or by
+ overwriting of the compiled pattern.
+
+ PCRE_ERROR_NOMEMORY (-6)
+
+ If a pattern contains back references, but the ovector that is passed
+ to pcre_exec() is not big enough to remember the referenced substrings,
+ PCRE gets a block of memory at the start of matching to use for this
+ purpose. If the call via pcre_malloc() fails, this error is given. The
+ memory is automatically freed at the end of matching.
+
+ This error is also given if pcre_stack_malloc() fails in pcre_exec().
+ This can happen only when PCRE has been compiled with --disable-stack-
+ for-recursion.
+
+ PCRE_ERROR_NOSUBSTRING (-7)
+
+ This error is used by the pcre_copy_substring(), pcre_get_substring(),
+ and pcre_get_substring_list() functions (see below). It is never
+ returned by pcre_exec().
+
+ PCRE_ERROR_MATCHLIMIT (-8)
+
+ The backtracking limit, as specified by the match_limit field in a
+ pcre_extra structure (or defaulted) was reached. See the description
+ above.
+
+ PCRE_ERROR_CALLOUT (-9)
+
+ This error is never generated by pcre_exec() itself. It is provided for
+ use by callout functions that want to yield a distinctive error code.
+ See the pcrecallout documentation for details.
+
+ PCRE_ERROR_BADUTF8 (-10)
+
+ A string that contains an invalid UTF-8 byte sequence was passed as a
+ subject, and the PCRE_NO_UTF8_CHECK option was not set. If the size of
+ the output vector (ovecsize) is at least 2, the byte offset to the
+ start of the the invalid UTF-8 character is placed in the first ele-
+ ment, and a reason code is placed in the second element. The reason
+ codes are listed in the following section. For backward compatibility,
+ if PCRE_PARTIAL_HARD is set and the problem is a truncated UTF-8 char-
+ acter at the end of the subject (reason codes 1 to 5),
+ PCRE_ERROR_SHORTUTF8 is returned instead of PCRE_ERROR_BADUTF8.
+
+ PCRE_ERROR_BADUTF8_OFFSET (-11)
+
+ The UTF-8 byte sequence that was passed as a subject was checked and
+ found to be valid (the PCRE_NO_UTF8_CHECK option was not set), but the
+ value of startoffset did not point to the beginning of a UTF-8 charac-
+ ter or the end of the subject.
+
+ PCRE_ERROR_PARTIAL (-12)
+
+ The subject string did not match, but it did match partially. See the
+ pcrepartial documentation for details of partial matching.
+
+ PCRE_ERROR_BADPARTIAL (-13)
+
+ This code is no longer in use. It was formerly returned when the
+ PCRE_PARTIAL option was used with a compiled pattern containing items
+ that were not supported for partial matching. From release 8.00
+ onwards, there are no restrictions on partial matching.
+
+ PCRE_ERROR_INTERNAL (-14)
+
+ An unexpected internal error has occurred. This error could be caused
+ by a bug in PCRE or by overwriting of the compiled pattern.
+
+ PCRE_ERROR_BADCOUNT (-15)
+
+ This error is given if the value of the ovecsize argument is negative.
+
+ PCRE_ERROR_RECURSIONLIMIT (-21)
+
+ The internal recursion limit, as specified by the match_limit_recursion
+ field in a pcre_extra structure (or defaulted) was reached. See the
+ description above.
+
+ PCRE_ERROR_BADNEWLINE (-23)
+
+ An invalid combination of PCRE_NEWLINE_xxx options was given.
+
+ PCRE_ERROR_BADOFFSET (-24)
+
+ The value of startoffset was negative or greater than the length of the
+ subject, that is, the value in length.
+
+ PCRE_ERROR_SHORTUTF8 (-25)
+
+ This error is returned instead of PCRE_ERROR_BADUTF8 when the subject
+ string ends with a truncated UTF-8 character and the PCRE_PARTIAL_HARD
+ option is set. Information about the failure is returned as for
+ PCRE_ERROR_BADUTF8. It is in fact sufficient to detect this case, but
+ this special error code for PCRE_PARTIAL_HARD precedes the implementa-
+ tion of returned information; it is retained for backwards compatibil-
+ ity.
+
+ PCRE_ERROR_RECURSELOOP (-26)
+
+ This error is returned when pcre_exec() detects a recursion loop within
+ the pattern. Specifically, it means that either the whole pattern or a
+ subpattern has been called recursively for the second time at the same
+ position in the subject string. Some simple patterns that might do this
+ are detected and faulted at compile time, but more complicated cases,
+ in particular mutual recursions between two different subpatterns, can-
+ not be detected until run time.
+
+ PCRE_ERROR_JIT_STACKLIMIT (-27)
+
+ This error is returned when a pattern that was successfully studied
+ using a JIT compile option is being matched, but the memory available
+ for the just-in-time processing stack is not large enough. See the
+ pcrejit documentation for more details.
+
+ PCRE_ERROR_BADMODE (-28)
+
+ This error is given if a pattern that was compiled by the 8-bit library
+ is passed to a 16-bit or 32-bit library function, or vice versa.
+
+ PCRE_ERROR_BADENDIANNESS (-29)
+
+ This error is given if a pattern that was compiled and saved is
+ reloaded on a host with different endianness. The utility function
+ pcre_pattern_to_host_byte_order() can be used to convert such a pattern
+ so that it runs on the new host.
+
+ PCRE_ERROR_JIT_BADOPTION
+
+ This error is returned when a pattern that was successfully studied
+ using a JIT compile option is being matched, but the matching mode
+ (partial or complete match) does not correspond to any JIT compilation
+ mode. When the JIT fast path function is used, this error may be also
+ given for invalid options. See the pcrejit documentation for more
+ details.
+
+ PCRE_ERROR_BADLENGTH (-32)
+
+ This error is given if pcre_exec() is called with a negative value for
+ the length argument.
+
+ Error numbers -16 to -20, -22, and 30 are not used by pcre_exec().
+
+ Reason codes for invalid UTF-8 strings
+
+ This section applies only to the 8-bit library. The corresponding
+ information for the 16-bit and 32-bit libraries is given in the pcre16
+ and pcre32 pages.
+
+ When pcre_exec() returns either PCRE_ERROR_BADUTF8 or PCRE_ERROR_SHORT-
+ UTF8, and the size of the output vector (ovecsize) is at least 2, the
+ offset of the start of the invalid UTF-8 character is placed in the
+ first output vector element (ovector[0]) and a reason code is placed in
+ the second element (ovector[1]). The reason codes are given names in
+ the pcre.h header file:
+
+ PCRE_UTF8_ERR1
+ PCRE_UTF8_ERR2
+ PCRE_UTF8_ERR3
+ PCRE_UTF8_ERR4
+ PCRE_UTF8_ERR5
+
+ The string ends with a truncated UTF-8 character; the code specifies
+ how many bytes are missing (1 to 5). Although RFC 3629 restricts UTF-8
+ characters to be no longer than 4 bytes, the encoding scheme (origi-
+ nally defined by RFC 2279) allows for up to 6 bytes, and this is
+ checked first; hence the possibility of 4 or 5 missing bytes.
+
+ PCRE_UTF8_ERR6
+ PCRE_UTF8_ERR7
+ PCRE_UTF8_ERR8
+ PCRE_UTF8_ERR9
+ PCRE_UTF8_ERR10
+
+ The two most significant bits of the 2nd, 3rd, 4th, 5th, or 6th byte of
+ the character do not have the binary value 0b10 (that is, either the
+ most significant bit is 0, or the next bit is 1).
+
+ PCRE_UTF8_ERR11
+ PCRE_UTF8_ERR12
+
+ A character that is valid by the RFC 2279 rules is either 5 or 6 bytes
+ long; these code points are excluded by RFC 3629.
+
+ PCRE_UTF8_ERR13
+
+ A 4-byte character has a value greater than 0x10fff; these code points
+ are excluded by RFC 3629.
+
+ PCRE_UTF8_ERR14
+
+ A 3-byte character has a value in the range 0xd800 to 0xdfff; this
+ range of code points are reserved by RFC 3629 for use with UTF-16, and
+ so are excluded from UTF-8.
+
+ PCRE_UTF8_ERR15
+ PCRE_UTF8_ERR16
+ PCRE_UTF8_ERR17
+ PCRE_UTF8_ERR18
+ PCRE_UTF8_ERR19
+
+ A 2-, 3-, 4-, 5-, or 6-byte character is "overlong", that is, it codes
+ for a value that can be represented by fewer bytes, which is invalid.
+ For example, the two bytes 0xc0, 0xae give the value 0x2e, whose cor-
+ rect coding uses just one byte.
+
+ PCRE_UTF8_ERR20
+
+ The two most significant bits of the first byte of a character have the
+ binary value 0b10 (that is, the most significant bit is 1 and the sec-
+ ond is 0). Such a byte can only validly occur as the second or subse-
+ quent byte of a multi-byte character.
+
+ PCRE_UTF8_ERR21
+
+ The first byte of a character has the value 0xfe or 0xff. These values
+ can never occur in a valid UTF-8 string.
+
+ PCRE_UTF8_ERR22
+
+ This error code was formerly used when the presence of a so-called
+ "non-character" caused an error. Unicode corrigendum #9 makes it clear
+ that such characters should not cause a string to be rejected, and so
+ this code is no longer in use and is never returned.
+
+
+EXTRACTING CAPTURED SUBSTRINGS BY NUMBER
+
+ int pcre_copy_substring(const char *subject, int *ovector,
+ int stringcount, int stringnumber, char *buffer,
+ int buffersize);
+
+ int pcre_get_substring(const char *subject, int *ovector,
+ int stringcount, int stringnumber,
+ const char **stringptr);
+
+ int pcre_get_substring_list(const char *subject,
+ int *ovector, int stringcount, const char ***listptr);
+
+ Captured substrings can be accessed directly by using the offsets
+ returned by pcre_exec() in ovector. For convenience, the functions
+ pcre_copy_substring(), pcre_get_substring(), and pcre_get_sub-
+ string_list() are provided for extracting captured substrings as new,
+ separate, zero-terminated strings. These functions identify substrings
+ by number. The next section describes functions for extracting named
+ substrings.
+
+ A substring that contains a binary zero is correctly extracted and has
+ a further zero added on the end, but the result is not, of course, a C
+ string. However, you can process such a string by referring to the
+ length that is returned by pcre_copy_substring() and pcre_get_sub-
+ string(). Unfortunately, the interface to pcre_get_substring_list() is
+ not adequate for handling strings containing binary zeros, because the
+ end of the final string is not independently indicated.
+
+ The first three arguments are the same for all three of these func-
+ tions: subject is the subject string that has just been successfully
+ matched, ovector is a pointer to the vector of integer offsets that was
+ passed to pcre_exec(), and stringcount is the number of substrings that
+ were captured by the match, including the substring that matched the
+ entire regular expression. This is the value returned by pcre_exec() if
+ it is greater than zero. If pcre_exec() returned zero, indicating that
+ it ran out of space in ovector, the value passed as stringcount should
+ be the number of elements in the vector divided by three.
+
+ The functions pcre_copy_substring() and pcre_get_substring() extract a
+ single substring, whose number is given as stringnumber. A value of
+ zero extracts the substring that matched the entire pattern, whereas
+ higher values extract the captured substrings. For pcre_copy_sub-
+ string(), the string is placed in buffer, whose length is given by
+ buffersize, while for pcre_get_substring() a new block of memory is
+ obtained via pcre_malloc, and its address is returned via stringptr.
+ The yield of the function is the length of the string, not including
+ the terminating zero, or one of these error codes:
+
+ PCRE_ERROR_NOMEMORY (-6)
+
+ The buffer was too small for pcre_copy_substring(), or the attempt to
+ get memory failed for pcre_get_substring().
+
+ PCRE_ERROR_NOSUBSTRING (-7)
+
+ There is no substring whose number is stringnumber.
+
+ The pcre_get_substring_list() function extracts all available sub-
+ strings and builds a list of pointers to them. All this is done in a
+ single block of memory that is obtained via pcre_malloc. The address of
+ the memory block is returned via listptr, which is also the start of
+ the list of string pointers. The end of the list is marked by a NULL
+ pointer. The yield of the function is zero if all went well, or the
+ error code
+
+ PCRE_ERROR_NOMEMORY (-6)
+
+ if the attempt to get the memory block failed.
+
+ When any of these functions encounter a substring that is unset, which
+ can happen when capturing subpattern number n+1 matches some part of
+ the subject, but subpattern n has not been used at all, they return an
+ empty string. This can be distinguished from a genuine zero-length sub-
+ string by inspecting the appropriate offset in ovector, which is nega-
+ tive for unset substrings.
+
+ The two convenience functions pcre_free_substring() and pcre_free_sub-
+ string_list() can be used to free the memory returned by a previous
+ call of pcre_get_substring() or pcre_get_substring_list(), respec-
+ tively. They do nothing more than call the function pointed to by
+ pcre_free, which of course could be called directly from a C program.
+ However, PCRE is used in some situations where it is linked via a spe-
+ cial interface to another programming language that cannot use
+ pcre_free directly; it is for these cases that the functions are pro-
+ vided.
+
+
+EXTRACTING CAPTURED SUBSTRINGS BY NAME
+
+ int pcre_get_stringnumber(const pcre *code,
+ const char *name);
+
+ int pcre_copy_named_substring(const pcre *code,
+ const char *subject, int *ovector,
+ int stringcount, const char *stringname,
+ char *buffer, int buffersize);
+
+ int pcre_get_named_substring(const pcre *code,
+ const char *subject, int *ovector,
+ int stringcount, const char *stringname,
+ const char **stringptr);
+
+ To extract a substring by name, you first have to find associated num-
+ ber. For example, for this pattern
+
+ (a+)b(?\d+)...
+
+ the number of the subpattern called "xxx" is 2. If the name is known to
+ be unique (PCRE_DUPNAMES was not set), you can find the number from the
+ name by calling pcre_get_stringnumber(). The first argument is the com-
+ piled pattern, and the second is the name. The yield of the function is
+ the subpattern number, or PCRE_ERROR_NOSUBSTRING (-7) if there is no
+ subpattern of that name.
+
+ Given the number, you can extract the substring directly, or use one of
+ the functions described in the previous section. For convenience, there
+ are also two functions that do the whole job.
+
+ Most of the arguments of pcre_copy_named_substring() and
+ pcre_get_named_substring() are the same as those for the similarly
+ named functions that extract by number. As these are described in the
+ previous section, they are not re-described here. There are just two
+ differences:
+
+ First, instead of a substring number, a substring name is given. Sec-
+ ond, there is an extra argument, given at the start, which is a pointer
+ to the compiled pattern. This is needed in order to gain access to the
+ name-to-number translation table.
+
+ These functions call pcre_get_stringnumber(), and if it succeeds, they
+ then call pcre_copy_substring() or pcre_get_substring(), as appropri-
+ ate. NOTE: If PCRE_DUPNAMES is set and there are duplicate names, the
+ behaviour may not be what you want (see the next section).
+
+ Warning: If the pattern uses the (?| feature to set up multiple subpat-
+ terns with the same number, as described in the section on duplicate
+ subpattern numbers in the pcrepattern page, you cannot use names to
+ distinguish the different subpatterns, because names are not included
+ in the compiled code. The matching process uses only numbers. For this
+ reason, the use of different names for subpatterns of the same number
+ causes an error at compile time.
+
+
+DUPLICATE SUBPATTERN NAMES
+
+ int pcre_get_stringtable_entries(const pcre *code,
+ const char *name, char **first, char **last);
+
+ When a pattern is compiled with the PCRE_DUPNAMES option, names for
+ subpatterns are not required to be unique. (Duplicate names are always
+ allowed for subpatterns with the same number, created by using the (?|
+ feature. Indeed, if such subpatterns are named, they are required to
+ use the same names.)
+
+ Normally, patterns with duplicate names are such that in any one match,
+ only one of the named subpatterns participates. An example is shown in
+ the pcrepattern documentation.
+
+ When duplicates are present, pcre_copy_named_substring() and
+ pcre_get_named_substring() return the first substring corresponding to
+ the given name that is set. If none are set, PCRE_ERROR_NOSUBSTRING
+ (-7) is returned; no data is returned. The pcre_get_stringnumber()
+ function returns one of the numbers that are associated with the name,
+ but it is not defined which it is.
+
+ If you want to get full details of all captured substrings for a given
+ name, you must use the pcre_get_stringtable_entries() function. The
+ first argument is the compiled pattern, and the second is the name. The
+ third and fourth are pointers to variables which are updated by the
+ function. After it has run, they point to the first and last entries in
+ the name-to-number table for the given name. The function itself
+ returns the length of each entry, or PCRE_ERROR_NOSUBSTRING (-7) if
+ there are none. The format of the table is described above in the sec-
+ tion entitled Information about a pattern above. Given all the rele-
+ vant entries for the name, you can extract each of their numbers, and
+ hence the captured data, if any.
+
+
+FINDING ALL POSSIBLE MATCHES
+
+ The traditional matching function uses a similar algorithm to Perl,
+ which stops when it finds the first match, starting at a given point in
+ the subject. If you want to find all possible matches, or the longest
+ possible match, consider using the alternative matching function (see
+ below) instead. If you cannot use the alternative function, but still
+ need to find all possible matches, you can kludge it up by making use
+ of the callout facility, which is described in the pcrecallout documen-
+ tation.
+
+ What you have to do is to insert a callout right at the end of the pat-
+ tern. When your callout function is called, extract and save the cur-
+ rent matched substring. Then return 1, which forces pcre_exec() to
+ backtrack and try other alternatives. Ultimately, when it runs out of
+ matches, pcre_exec() will yield PCRE_ERROR_NOMATCH.
+
+
+OBTAINING AN ESTIMATE OF STACK USAGE
+
+ Matching certain patterns using pcre_exec() can use a lot of process
+ stack, which in certain environments can be rather limited in size.
+ Some users find it helpful to have an estimate of the amount of stack
+ that is used by pcre_exec(), to help them set recursion limits, as
+ described in the pcrestack documentation. The estimate that is output
+ by pcretest when called with the -m and -C options is obtained by call-
+ ing pcre_exec with the values NULL, NULL, NULL, -999, and -999 for its
+ first five arguments.
+
+ Normally, if its first argument is NULL, pcre_exec() immediately
+ returns the negative error code PCRE_ERROR_NULL, but with this special
+ combination of arguments, it returns instead a negative number whose
+ absolute value is the approximate stack frame size in bytes. (A nega-
+ tive number is used so that it is clear that no match has happened.)
+ The value is approximate because in some cases, recursive calls to
+ pcre_exec() occur when there are one or two additional variables on the
+ stack.
+
+ If PCRE has been compiled to use the heap instead of the stack for
+ recursion, the value returned is the size of each block that is
+ obtained from the heap.
+
+
+MATCHING A PATTERN: THE ALTERNATIVE FUNCTION
+
+ int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
+ const char *subject, int length, int startoffset,
+ int options, int *ovector, int ovecsize,
+ int *workspace, int wscount);
+
+ The function pcre_dfa_exec() is called to match a subject string
+ against a compiled pattern, using a matching algorithm that scans the
+ subject string just once, and does not backtrack. This has different
+ characteristics to the normal algorithm, and is not compatible with
+ Perl. Some of the features of PCRE patterns are not supported. Never-
+ theless, there are times when this kind of matching can be useful. For
+ a discussion of the two matching algorithms, and a list of features
+ that pcre_dfa_exec() does not support, see the pcrematching documenta-
+ tion.
+
+ The arguments for the pcre_dfa_exec() function are the same as for
+ pcre_exec(), plus two extras. The ovector argument is used in a differ-
+ ent way, and this is described below. The other common arguments are
+ used in the same way as for pcre_exec(), so their description is not
+ repeated here.
+
+ The two additional arguments provide workspace for the function. The
+ workspace vector should contain at least 20 elements. It is used for
+ keeping track of multiple paths through the pattern tree. More
+ workspace will be needed for patterns and subjects where there are a
+ lot of potential matches.
+
+ Here is an example of a simple call to pcre_dfa_exec():
+
+ int rc;
+ int ovector[10];
+ int wspace[20];
+ rc = pcre_dfa_exec(
+ re, /* result of pcre_compile() */
+ NULL, /* we didn't study the pattern */
+ "some string", /* the subject string */
+ 11, /* the length of the subject string */
+ 0, /* start at offset 0 in the subject */
+ 0, /* default options */
+ ovector, /* vector of integers for substring information */
+ 10, /* number of elements (NOT size in bytes) */
+ wspace, /* working space vector */
+ 20); /* number of elements (NOT size in bytes) */
+
+ Option bits for pcre_dfa_exec()
+
+ The unused bits of the options argument for pcre_dfa_exec() must be
+ zero. The only bits that may be set are PCRE_ANCHORED, PCRE_NEW-
+ LINE_xxx, PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY,
+ PCRE_NOTEMPTY_ATSTART, PCRE_NO_UTF8_CHECK, PCRE_BSR_ANYCRLF,
+ PCRE_BSR_UNICODE, PCRE_NO_START_OPTIMIZE, PCRE_PARTIAL_HARD, PCRE_PAR-
+ TIAL_SOFT, PCRE_DFA_SHORTEST, and PCRE_DFA_RESTART. All but the last
+ four of these are exactly the same as for pcre_exec(), so their
+ description is not repeated here.
+
+ PCRE_PARTIAL_HARD
+ PCRE_PARTIAL_SOFT
+
+ These have the same general effect as they do for pcre_exec(), but the
+ details are slightly different. When PCRE_PARTIAL_HARD is set for
+ pcre_dfa_exec(), it returns PCRE_ERROR_PARTIAL if the end of the sub-
+ ject is reached and there is still at least one matching possibility
+ that requires additional characters. This happens even if some complete
+ matches have also been found. When PCRE_PARTIAL_SOFT is set, the return
+ code PCRE_ERROR_NOMATCH is converted into PCRE_ERROR_PARTIAL if the end
+ of the subject is reached, there have been no complete matches, but
+ there is still at least one matching possibility. The portion of the
+ string that was inspected when the longest partial match was found is
+ set as the first matching string in both cases. There is a more
+ detailed discussion of partial and multi-segment matching, with exam-
+ ples, in the pcrepartial documentation.
+
+ PCRE_DFA_SHORTEST
+
+ Setting the PCRE_DFA_SHORTEST option causes the matching algorithm to
+ stop as soon as it has found one match. Because of the way the alterna-
+ tive algorithm works, this is necessarily the shortest possible match
+ at the first possible matching point in the subject string.
+
+ PCRE_DFA_RESTART
+
+ When pcre_dfa_exec() returns a partial match, it is possible to call it
+ again, with additional subject characters, and have it continue with
+ the same match. The PCRE_DFA_RESTART option requests this action; when
+ it is set, the workspace and wscount options must reference the same
+ vector as before because data about the match so far is left in them
+ after a partial match. There is more discussion of this facility in the
+ pcrepartial documentation.
+
+ Successful returns from pcre_dfa_exec()
+
+ When pcre_dfa_exec() succeeds, it may have matched more than one sub-
+ string in the subject. Note, however, that all the matches from one run
+ of the function start at the same point in the subject. The shorter
+ matches are all initial substrings of the longer matches. For example,
+ if the pattern
+
+ <.*>
+
+ is matched against the string
+
+ This is no more
+
+ the three matched strings are
+
+
+
+
+
+ On success, the yield of the function is a number greater than zero,
+ which is the number of matched substrings. The substrings themselves
+ are returned in ovector. Each string uses two elements; the first is
+ the offset to the start, and the second is the offset to the end. In
+ fact, all the strings have the same start offset. (Space could have
+ been saved by giving this only once, but it was decided to retain some
+ compatibility with the way pcre_exec() returns data, even though the
+ meaning of the strings is different.)
+
+ The strings are returned in reverse order of length; that is, the long-
+ est matching string is given first. If there were too many matches to
+ fit into ovector, the yield of the function is zero, and the vector is
+ filled with the longest matches. Unlike pcre_exec(), pcre_dfa_exec()
+ can use the entire ovector for returning matched strings.
+
+ Error returns from pcre_dfa_exec()
+
+ The pcre_dfa_exec() function returns a negative number when it fails.
+ Many of the errors are the same as for pcre_exec(), and these are
+ described above. There are in addition the following errors that are
+ specific to pcre_dfa_exec():
+
+ PCRE_ERROR_DFA_UITEM (-16)
+
+ This return is given if pcre_dfa_exec() encounters an item in the pat-
+ tern that it does not support, for instance, the use of \C or a back
+ reference.
+
+ PCRE_ERROR_DFA_UCOND (-17)
+
+ This return is given if pcre_dfa_exec() encounters a condition item
+ that uses a back reference for the condition, or a test for recursion
+ in a specific group. These are not supported.
+
+ PCRE_ERROR_DFA_UMLIMIT (-18)
+
+ This return is given if pcre_dfa_exec() is called with an extra block
+ that contains a setting of the match_limit or match_limit_recursion
+ fields. This is not supported (these fields are meaningless for DFA
+ matching).
+
+ PCRE_ERROR_DFA_WSSIZE (-19)
+
+ This return is given if pcre_dfa_exec() runs out of space in the
+ workspace vector.
+
+ PCRE_ERROR_DFA_RECURSE (-20)
+
+ When a recursive subpattern is processed, the matching function calls
+ itself recursively, using private vectors for ovector and workspace.
+ This error is given if the output vector is not large enough. This
+ should be extremely rare, as a vector of size 1000 is used.
+
+ PCRE_ERROR_DFA_BADRESTART (-30)
+
+ When pcre_dfa_exec() is called with the PCRE_DFA_RESTART option, some
+ plausibility checks are made on the contents of the workspace, which
+ should contain data about the previous partial match. If any of these
+ checks fail, this error is given.
+
+
+SEE ALSO
+
+ pcre16(3), pcre32(3), pcrebuild(3), pcrecallout(3), pcrecpp(3)(3),
+ pcrematching(3), pcrepartial(3), pcreposix(3), pcreprecompile(3), pcre-
+ sample(3), pcrestack(3).
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 12 May 2013
+ Copyright (c) 1997-2013 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCRECALLOUT(3) Library Functions Manual PCRECALLOUT(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+SYNOPSIS
+
+ #include
+
+ int (*pcre_callout)(pcre_callout_block *);
+
+ int (*pcre16_callout)(pcre16_callout_block *);
+
+ int (*pcre32_callout)(pcre32_callout_block *);
+
+
+DESCRIPTION
+
+ PCRE provides a feature called "callout", which is a means of temporar-
+ ily passing control to the caller of PCRE in the middle of pattern
+ matching. The caller of PCRE provides an external function by putting
+ its entry point in the global variable pcre_callout (pcre16_callout for
+ the 16-bit library, pcre32_callout for the 32-bit library). By default,
+ this variable contains NULL, which disables all calling out.
+
+ Within a regular expression, (?C) indicates the points at which the
+ external function is to be called. Different callout points can be
+ identified by putting a number less than 256 after the letter C. The
+ default value is zero. For example, this pattern has two callout
+ points:
+
+ (?C1)abc(?C2)def
+
+ If the PCRE_AUTO_CALLOUT option bit is set when a pattern is compiled,
+ PCRE automatically inserts callouts, all with number 255, before each
+ item in the pattern. For example, if PCRE_AUTO_CALLOUT is used with the
+ pattern
+
+ A(\d{2}|--)
+
+ it is processed as if it were
+
+ (?C255)A(?C255)((?C255)\d{2}(?C255)|(?C255)-(?C255)-(?C255))(?C255)
+
+ Notice that there is a callout before and after each parenthesis and
+ alternation bar. If the pattern contains a conditional group whose con-
+ dition is an assertion, an automatic callout is inserted immediately
+ before the condition. Such a callout may also be inserted explicitly,
+ for example:
+
+ (?(?C9)(?=a)ab|de)
+
+ This applies only to assertion conditions (because they are themselves
+ independent groups).
+
+ Automatic callouts can be used for tracking the progress of pattern
+ matching. The pcretest command has an option that sets automatic call-
+ outs; when it is used, the output indicates how the pattern is matched.
+ This is useful information when you are trying to optimize the perfor-
+ mance of a particular pattern.
+
+
+MISSING CALLOUTS
+
+ You should be aware that, because of optimizations in the way PCRE
+ matches patterns by default, callouts sometimes do not happen. For
+ example, if the pattern is
+
+ ab(?C4)cd
+
+ PCRE knows that any matching string must contain the letter "d". If the
+ subject string is "abyz", the lack of "d" means that matching doesn't
+ ever start, and the callout is never reached. However, with "abyd",
+ though the result is still no match, the callout is obeyed.
+
+ If the pattern is studied, PCRE knows the minimum length of a matching
+ string, and will immediately give a "no match" return without actually
+ running a match if the subject is not long enough, or, for unanchored
+ patterns, if it has been scanned far enough.
+
+ You can disable these optimizations by passing the PCRE_NO_START_OPTI-
+ MIZE option to the matching function, or by starting the pattern with
+ (*NO_START_OPT). This slows down the matching process, but does ensure
+ that callouts such as the example above are obeyed.
+
+
+THE CALLOUT INTERFACE
+
+ During matching, when PCRE reaches a callout point, the external func-
+ tion defined by pcre_callout or pcre[16|32]_callout is called (if it is
+ set). This applies to both normal and DFA matching. The only argument
+ to the callout function is a pointer to a pcre_callout or
+ pcre[16|32]_callout block. These structures contains the following
+ fields:
+
+ int version;
+ int callout_number;
+ int *offset_vector;
+ const char *subject; (8-bit version)
+ PCRE_SPTR16 subject; (16-bit version)
+ PCRE_SPTR32 subject; (32-bit version)
+ int subject_length;
+ int start_match;
+ int current_position;
+ int capture_top;
+ int capture_last;
+ void *callout_data;
+ int pattern_position;
+ int next_item_length;
+ const unsigned char *mark; (8-bit version)
+ const PCRE_UCHAR16 *mark; (16-bit version)
+ const PCRE_UCHAR32 *mark; (32-bit version)
+
+ The version field is an integer containing the version number of the
+ block format. The initial version was 0; the current version is 2. The
+ version number will change again in future if additional fields are
+ added, but the intention is never to remove any of the existing fields.
+
+ The callout_number field contains the number of the callout, as com-
+ piled into the pattern (that is, the number after ?C for manual call-
+ outs, and 255 for automatically generated callouts).
+
+ The offset_vector field is a pointer to the vector of offsets that was
+ passed by the caller to the matching function. When pcre_exec() or
+ pcre[16|32]_exec() is used, the contents can be inspected, in order to
+ extract substrings that have been matched so far, in the same way as
+ for extracting substrings after a match has completed. For the DFA
+ matching functions, this field is not useful.
+
+ The subject and subject_length fields contain copies of the values that
+ were passed to the matching function.
+
+ The start_match field normally contains the offset within the subject
+ at which the current match attempt started. However, if the escape
+ sequence \K has been encountered, this value is changed to reflect the
+ modified starting point. If the pattern is not anchored, the callout
+ function may be called several times from the same point in the pattern
+ for different starting points in the subject.
+
+ The current_position field contains the offset within the subject of
+ the current match pointer.
+
+ When the pcre_exec() or pcre[16|32]_exec() is used, the capture_top
+ field contains one more than the number of the highest numbered cap-
+ tured substring so far. If no substrings have been captured, the value
+ of capture_top is one. This is always the case when the DFA functions
+ are used, because they do not support captured substrings.
+
+ The capture_last field contains the number of the most recently cap-
+ tured substring. However, when a recursion exits, the value reverts to
+ what it was outside the recursion, as do the values of all captured
+ substrings. If no substrings have been captured, the value of cap-
+ ture_last is -1. This is always the case for the DFA matching func-
+ tions.
+
+ The callout_data field contains a value that is passed to a matching
+ function specifically so that it can be passed back in callouts. It is
+ passed in the callout_data field of a pcre_extra or pcre[16|32]_extra
+ data structure. If no such data was passed, the value of callout_data
+ in a callout block is NULL. There is a description of the pcre_extra
+ structure in the pcreapi documentation.
+
+ The pattern_position field is present from version 1 of the callout
+ structure. It contains the offset to the next item to be matched in the
+ pattern string.
+
+ The next_item_length field is present from version 1 of the callout
+ structure. It contains the length of the next item to be matched in the
+ pattern string. When the callout immediately precedes an alternation
+ bar, a closing parenthesis, or the end of the pattern, the length is
+ zero. When the callout precedes an opening parenthesis, the length is
+ that of the entire subpattern.
+
+ The pattern_position and next_item_length fields are intended to help
+ in distinguishing between different automatic callouts, which all have
+ the same callout number. However, they are set for all callouts.
+
+ The mark field is present from version 2 of the callout structure. In
+ callouts from pcre_exec() or pcre[16|32]_exec() it contains a pointer
+ to the zero-terminated name of the most recently passed (*MARK),
+ (*PRUNE), or (*THEN) item in the match, or NULL if no such items have
+ been passed. Instances of (*PRUNE) or (*THEN) without a name do not
+ obliterate a previous (*MARK). In callouts from the DFA matching func-
+ tions this field always contains NULL.
+
+
+RETURN VALUES
+
+ The external callout function returns an integer to PCRE. If the value
+ is zero, matching proceeds as normal. If the value is greater than
+ zero, matching fails at the current point, but the testing of other
+ matching possibilities goes ahead, just as if a lookahead assertion had
+ failed. If the value is less than zero, the match is abandoned, the
+ matching function returns the negative value.
+
+ Negative values should normally be chosen from the set of
+ PCRE_ERROR_xxx values. In particular, PCRE_ERROR_NOMATCH forces a stan-
+ dard "no match" failure. The error number PCRE_ERROR_CALLOUT is
+ reserved for use by callout functions; it will never be used by PCRE
+ itself.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 03 March 2013
+ Copyright (c) 1997-2013 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCRECOMPAT(3) Library Functions Manual PCRECOMPAT(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+DIFFERENCES BETWEEN PCRE AND PERL
+
+ This document describes the differences in the ways that PCRE and Perl
+ handle regular expressions. The differences described here are with
+ respect to Perl versions 5.10 and above.
+
+ 1. PCRE has only a subset of Perl's Unicode support. Details of what it
+ does have are given in the pcreunicode page.
+
+ 2. PCRE allows repeat quantifiers only on parenthesized assertions, but
+ they do not mean what you might think. For example, (?!a){3} does not
+ assert that the next three characters are not "a". It just asserts that
+ the next character is not "a" three times (in principle: PCRE optimizes
+ this to run the assertion just once). Perl allows repeat quantifiers on
+ other assertions such as \b, but these do not seem to have any use.
+
+ 3. Capturing subpatterns that occur inside negative lookahead asser-
+ tions are counted, but their entries in the offsets vector are never
+ set. Perl sometimes (but not always) sets its numerical variables from
+ inside negative assertions.
+
+ 4. Though binary zero characters are supported in the subject string,
+ they are not allowed in a pattern string because it is passed as a nor-
+ mal C string, terminated by zero. The escape sequence \0 can be used in
+ the pattern to represent a binary zero.
+
+ 5. The following Perl escape sequences are not supported: \l, \u, \L,
+ \U, and \N when followed by a character name or Unicode value. (\N on
+ its own, matching a non-newline character, is supported.) In fact these
+ are implemented by Perl's general string-handling and are not part of
+ its pattern matching engine. If any of these are encountered by PCRE,
+ an error is generated by default. However, if the PCRE_JAVASCRIPT_COM-
+ PAT option is set, \U and \u are interpreted as JavaScript interprets
+ them.
+
+ 6. The Perl escape sequences \p, \P, and \X are supported only if PCRE
+ is built with Unicode character property support. The properties that
+ can be tested with \p and \P are limited to the general category prop-
+ erties such as Lu and Nd, script names such as Greek or Han, and the
+ derived properties Any and L&. PCRE does support the Cs (surrogate)
+ property, which Perl does not; the Perl documentation says "Because
+ Perl hides the need for the user to understand the internal representa-
+ tion of Unicode characters, there is no need to implement the somewhat
+ messy concept of surrogates."
+
+ 7. PCRE does support the \Q...\E escape for quoting substrings. Charac-
+ ters in between are treated as literals. This is slightly different
+ from Perl in that $ and @ are also handled as literals inside the
+ quotes. In Perl, they cause variable interpolation (but of course PCRE
+ does not have variables). Note the following examples:
+
+ Pattern PCRE matches Perl matches
+
+ \Qabc$xyz\E abc$xyz abc followed by the
+ contents of $xyz
+ \Qabc\$xyz\E abc\$xyz abc\$xyz
+ \Qabc\E\$\Qxyz\E abc$xyz abc$xyz
+
+ The \Q...\E sequence is recognized both inside and outside character
+ classes.
+
+ 8. Fairly obviously, PCRE does not support the (?{code}) and (??{code})
+ constructions. However, there is support for recursive patterns. This
+ is not available in Perl 5.8, but it is in Perl 5.10. Also, the PCRE
+ "callout" feature allows an external function to be called during pat-
+ tern matching. See the pcrecallout documentation for details.
+
+ 9. Subpatterns that are called as subroutines (whether or not recur-
+ sively) are always treated as atomic groups in PCRE. This is like
+ Python, but unlike Perl. Captured values that are set outside a sub-
+ routine call can be reference from inside in PCRE, but not in Perl.
+ There is a discussion that explains these differences in more detail in
+ the section on recursion differences from Perl in the pcrepattern page.
+
+ 10. If any of the backtracking control verbs are used in a subpattern
+ that is called as a subroutine (whether or not recursively), their
+ effect is confined to that subpattern; it does not extend to the sur-
+ rounding pattern. This is not always the case in Perl. In particular,
+ if (*THEN) is present in a group that is called as a subroutine, its
+ action is limited to that group, even if the group does not contain any
+ | characters. Note that such subpatterns are processed as anchored at
+ the point where they are tested.
+
+ 11. If a pattern contains more than one backtracking control verb, the
+ first one that is backtracked onto acts. For example, in the pattern
+ A(*COMMIT)B(*PRUNE)C a failure in B triggers (*COMMIT), but a failure
+ in C triggers (*PRUNE). Perl's behaviour is more complex; in many cases
+ it is the same as PCRE, but there are examples where it differs.
+
+ 12. Most backtracking verbs in assertions have their normal actions.
+ They are not confined to the assertion.
+
+ 13. There are some differences that are concerned with the settings of
+ captured strings when part of a pattern is repeated. For example,
+ matching "aba" against the pattern /^(a(b)?)+$/ in Perl leaves $2
+ unset, but in PCRE it is set to "b".
+
+ 14. PCRE's handling of duplicate subpattern numbers and duplicate sub-
+ pattern names is not as general as Perl's. This is a consequence of the
+ fact the PCRE works internally just with numbers, using an external ta-
+ ble to translate between numbers and names. In particular, a pattern
+ such as (?|(?A)|(? (Oniguruma syntax) are not synonymous. The former is a back
+ reference; the latter is a subroutine call.
+
+ Generic character types
+
+ Another use of backslash is for specifying generic character types:
+
+ \d any decimal digit
+ \D any character that is not a decimal digit
+ \h any horizontal white space character
+ \H any character that is not a horizontal white space character
+ \s any white space character
+ \S any character that is not a white space character
+ \v any vertical white space character
+ \V any character that is not a vertical white space character
+ \w any "word" character
+ \W any "non-word" character
+
+ There is also the single sequence \N, which matches a non-newline char-
+ acter. This is the same as the "." metacharacter when PCRE_DOTALL is
+ not set. Perl also uses \N to match characters by name; PCRE does not
+ support this.
+
+ Each pair of lower and upper case escape sequences partitions the com-
+ plete set of characters into two disjoint sets. Any given character
+ matches one, and only one, of each pair. The sequences can appear both
+ inside and outside character classes. They each match one character of
+ the appropriate type. If the current matching point is at the end of
+ the subject string, all of them fail, because there is no character to
+ match.
+
+ For compatibility with Perl, \s does not match the VT character (code
+ 11). This makes it different from the the POSIX "space" class. The \s
+ characters are HT (9), LF (10), FF (12), CR (13), and space (32). If
+ "use locale;" is included in a Perl script, \s may match the VT charac-
+ ter. In PCRE, it never does.
+
+ A "word" character is an underscore or any character that is a letter
+ or digit. By default, the definition of letters and digits is con-
+ trolled by PCRE's low-valued character tables, and may vary if locale-
+ specific matching is taking place (see "Locale support" in the pcreapi
+ page). For example, in a French locale such as "fr_FR" in Unix-like
+ systems, or "french" in Windows, some character codes greater than 128
+ are used for accented letters, and these are then matched by \w. The
+ use of locales with Unicode is discouraged.
+
+ By default, in a UTF mode, characters with values greater than 128
+ never match \d, \s, or \w, and always match \D, \S, and \W. These
+ sequences retain their original meanings from before UTF support was
+ available, mainly for efficiency reasons. However, if PCRE is compiled
+ with Unicode property support, and the PCRE_UCP option is set, the be-
+ haviour is changed so that Unicode properties are used to determine
+ character types, as follows:
+
+ \d any character that \p{Nd} matches (decimal digit)
+ \s any character that \p{Z} matches, plus HT, LF, FF, CR
+ \w any character that \p{L} or \p{N} matches, plus underscore
+
+ The upper case escapes match the inverse sets of characters. Note that
+ \d matches only decimal digits, whereas \w matches any Unicode digit,
+ as well as any Unicode letter, and underscore. Note also that PCRE_UCP
+ affects \b, and \B because they are defined in terms of \w and \W.
+ Matching these sequences is noticeably slower when PCRE_UCP is set.
+
+ The sequences \h, \H, \v, and \V are features that were added to Perl
+ at release 5.10. In contrast to the other sequences, which match only
+ ASCII characters by default, these always match certain high-valued
+ codepoints, whether or not PCRE_UCP is set. The horizontal space char-
+ acters are:
+
+ U+0009 Horizontal tab (HT)
+ U+0020 Space
+ U+00A0 Non-break space
+ U+1680 Ogham space mark
+ U+180E Mongolian vowel separator
+ U+2000 En quad
+ U+2001 Em quad
+ U+2002 En space
+ U+2003 Em space
+ U+2004 Three-per-em space
+ U+2005 Four-per-em space
+ U+2006 Six-per-em space
+ U+2007 Figure space
+ U+2008 Punctuation space
+ U+2009 Thin space
+ U+200A Hair space
+ U+202F Narrow no-break space
+ U+205F Medium mathematical space
+ U+3000 Ideographic space
+
+ The vertical space characters are:
+
+ U+000A Linefeed (LF)
+ U+000B Vertical tab (VT)
+ U+000C Form feed (FF)
+ U+000D Carriage return (CR)
+ U+0085 Next line (NEL)
+ U+2028 Line separator
+ U+2029 Paragraph separator
+
+ In 8-bit, non-UTF-8 mode, only the characters with codepoints less than
+ 256 are relevant.
+
+ Newline sequences
+
+ Outside a character class, by default, the escape sequence \R matches
+ any Unicode newline sequence. In 8-bit non-UTF-8 mode \R is equivalent
+ to the following:
+
+ (?>\r\n|\n|\x0b|\f|\r|\x85)
+
+ This is an example of an "atomic group", details of which are given
+ below. This particular group matches either the two-character sequence
+ CR followed by LF, or one of the single characters LF (linefeed,
+ U+000A), VT (vertical tab, U+000B), FF (form feed, U+000C), CR (car-
+ riage return, U+000D), or NEL (next line, U+0085). The two-character
+ sequence is treated as a single unit that cannot be split.
+
+ In other modes, two additional characters whose codepoints are greater
+ than 255 are added: LS (line separator, U+2028) and PS (paragraph sepa-
+ rator, U+2029). Unicode character property support is not needed for
+ these characters to be recognized.
+
+ It is possible to restrict \R to match only CR, LF, or CRLF (instead of
+ the complete set of Unicode line endings) by setting the option
+ PCRE_BSR_ANYCRLF either at compile time or when the pattern is matched.
+ (BSR is an abbrevation for "backslash R".) This can be made the default
+ when PCRE is built; if this is the case, the other behaviour can be
+ requested via the PCRE_BSR_UNICODE option. It is also possible to
+ specify these settings by starting a pattern string with one of the
+ following sequences:
+
+ (*BSR_ANYCRLF) CR, LF, or CRLF only
+ (*BSR_UNICODE) any Unicode newline sequence
+
+ These override the default and the options given to the compiling func-
+ tion, but they can themselves be overridden by options given to a
+ matching function. Note that these special settings, which are not
+ Perl-compatible, are recognized only at the very start of a pattern,
+ and that they must be in upper case. If more than one of them is
+ present, the last one is used. They can be combined with a change of
+ newline convention; for example, a pattern can start with:
+
+ (*ANY)(*BSR_ANYCRLF)
+
+ They can also be combined with the (*UTF8), (*UTF16), (*UTF32), (*UTF)
+ or (*UCP) special sequences. Inside a character class, \R is treated as
+ an unrecognized escape sequence, and so matches the letter "R" by
+ default, but causes an error if PCRE_EXTRA is set.
+
+ Unicode character properties
+
+ When PCRE is built with Unicode character property support, three addi-
+ tional escape sequences that match characters with specific properties
+ are available. When in 8-bit non-UTF-8 mode, these sequences are of
+ course limited to testing characters whose codepoints are less than
+ 256, but they do work in this mode. The extra escape sequences are:
+
+ \p{xx} a character with the xx property
+ \P{xx} a character without the xx property
+ \X a Unicode extended grapheme cluster
+
+ The property names represented by xx above are limited to the Unicode
+ script names, the general category properties, "Any", which matches any
+ character (including newline), and some special PCRE properties
+ (described in the next section). Other Perl properties such as "InMu-
+ sicalSymbols" are not currently supported by PCRE. Note that \P{Any}
+ does not match any characters, so always causes a match failure.
+
+ Sets of Unicode characters are defined as belonging to certain scripts.
+ A character from one of these sets can be matched using a script name.
+ For example:
+
+ \p{Greek}
+ \P{Han}
+
+ Those that are not part of an identified script are lumped together as
+ "Common". The current list of scripts is:
+
+ Arabic, Armenian, Avestan, Balinese, Bamum, Batak, Bengali, Bopomofo,
+ Brahmi, Braille, Buginese, Buhid, Canadian_Aboriginal, Carian, Chakma,
+ Cham, Cherokee, Common, Coptic, Cuneiform, Cypriot, Cyrillic, Deseret,
+ Devanagari, Egyptian_Hieroglyphs, Ethiopic, Georgian, Glagolitic,
+ Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hira-
+ gana, Imperial_Aramaic, Inherited, Inscriptional_Pahlavi, Inscrip-
+ tional_Parthian, Javanese, Kaithi, Kannada, Katakana, Kayah_Li,
+ Kharoshthi, Khmer, Lao, Latin, Lepcha, Limbu, Linear_B, Lisu, Lycian,
+ Lydian, Malayalam, Mandaic, Meetei_Mayek, Meroitic_Cursive,
+ Meroitic_Hieroglyphs, Miao, Mongolian, Myanmar, New_Tai_Lue, Nko,
+ Ogham, Old_Italic, Old_Persian, Old_South_Arabian, Old_Turkic,
+ Ol_Chiki, Oriya, Osmanya, Phags_Pa, Phoenician, Rejang, Runic, Samari-
+ tan, Saurashtra, Sharada, Shavian, Sinhala, Sora_Sompeng, Sundanese,
+ Syloti_Nagri, Syriac, Tagalog, Tagbanwa, Tai_Le, Tai_Tham, Tai_Viet,
+ Takri, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Vai,
+ Yi.
+
+ Each character has exactly one Unicode general category property, spec-
+ ified by a two-letter abbreviation. For compatibility with Perl, nega-
+ tion can be specified by including a circumflex between the opening
+ brace and the property name. For example, \p{^Lu} is the same as
+ \P{Lu}.
+
+ If only one letter is specified with \p or \P, it includes all the gen-
+ eral category properties that start with that letter. In this case, in
+ the absence of negation, the curly brackets in the escape sequence are
+ optional; these two examples have the same effect:
+
+ \p{L}
+ \pL
+
+ The following general category property codes are supported:
+
+ C Other
+ Cc Control
+ Cf Format
+ Cn Unassigned
+ Co Private use
+ Cs Surrogate
+
+ L Letter
+ Ll Lower case letter
+ Lm Modifier letter
+ Lo Other letter
+ Lt Title case letter
+ Lu Upper case letter
+
+ M Mark
+ Mc Spacing mark
+ Me Enclosing mark
+ Mn Non-spacing mark
+
+ N Number
+ Nd Decimal number
+ Nl Letter number
+ No Other number
+
+ P Punctuation
+ Pc Connector punctuation
+ Pd Dash punctuation
+ Pe Close punctuation
+ Pf Final punctuation
+ Pi Initial punctuation
+ Po Other punctuation
+ Ps Open punctuation
+
+ S Symbol
+ Sc Currency symbol
+ Sk Modifier symbol
+ Sm Mathematical symbol
+ So Other symbol
+
+ Z Separator
+ Zl Line separator
+ Zp Paragraph separator
+ Zs Space separator
+
+ The special property L& is also supported: it matches a character that
+ has the Lu, Ll, or Lt property, in other words, a letter that is not
+ classified as a modifier or "other".
+
+ The Cs (Surrogate) property applies only to characters in the range
+ U+D800 to U+DFFF. Such characters are not valid in Unicode strings and
+ so cannot be tested by PCRE, unless UTF validity checking has been
+ turned off (see the discussion of PCRE_NO_UTF8_CHECK,
+ PCRE_NO_UTF16_CHECK and PCRE_NO_UTF32_CHECK in the pcreapi page). Perl
+ does not support the Cs property.
+
+ The long synonyms for property names that Perl supports (such as
+ \p{Letter}) are not supported by PCRE, nor is it permitted to prefix
+ any of these properties with "Is".
+
+ No character that is in the Unicode table has the Cn (unassigned) prop-
+ erty. Instead, this property is assumed for any code point that is not
+ in the Unicode table.
+
+ Specifying caseless matching does not affect these escape sequences.
+ For example, \p{Lu} always matches only upper case letters. This is
+ different from the behaviour of current versions of Perl.
+
+ Matching characters by Unicode property is not fast, because PCRE has
+ to do a multistage table lookup in order to find a character's prop-
+ erty. That is why the traditional escape sequences such as \d and \w do
+ not use Unicode properties in PCRE by default, though you can make them
+ do so by setting the PCRE_UCP option or by starting the pattern with
+ (*UCP).
+
+ Extended grapheme clusters
+
+ The \X escape matches any number of Unicode characters that form an
+ "extended grapheme cluster", and treats the sequence as an atomic group
+ (see below). Up to and including release 8.31, PCRE matched an ear-
+ lier, simpler definition that was equivalent to
+
+ (?>\PM\pM*)
+
+ That is, it matched a character without the "mark" property, followed
+ by zero or more characters with the "mark" property. Characters with
+ the "mark" property are typically non-spacing accents that affect the
+ preceding character.
+
+ This simple definition was extended in Unicode to include more compli-
+ cated kinds of composite character by giving each character a grapheme
+ breaking property, and creating rules that use these properties to
+ define the boundaries of extended grapheme clusters. In releases of
+ PCRE later than 8.31, \X matches one of these clusters.
+
+ \X always matches at least one character. Then it decides whether to
+ add additional characters according to the following rules for ending a
+ cluster:
+
+ 1. End at the end of the subject string.
+
+ 2. Do not end between CR and LF; otherwise end after any control char-
+ acter.
+
+ 3. Do not break Hangul (a Korean script) syllable sequences. Hangul
+ characters are of five types: L, V, T, LV, and LVT. An L character may
+ be followed by an L, V, LV, or LVT character; an LV or V character may
+ be followed by a V or T character; an LVT or T character may be follwed
+ only by a T character.
+
+ 4. Do not end before extending characters or spacing marks. Characters
+ with the "mark" property always have the "extend" grapheme breaking
+ property.
+
+ 5. Do not end after prepend characters.
+
+ 6. Otherwise, end the cluster.
+
+ PCRE's additional properties
+
+ As well as the standard Unicode properties described above, PCRE sup-
+ ports four more that make it possible to convert traditional escape
+ sequences such as \w and \s and POSIX character classes to use Unicode
+ properties. PCRE uses these non-standard, non-Perl properties inter-
+ nally when PCRE_UCP is set. However, they may also be used explicitly.
+ These properties are:
+
+ Xan Any alphanumeric character
+ Xps Any POSIX space character
+ Xsp Any Perl space character
+ Xwd Any Perl "word" character
+
+ Xan matches characters that have either the L (letter) or the N (num-
+ ber) property. Xps matches the characters tab, linefeed, vertical tab,
+ form feed, or carriage return, and any other character that has the Z
+ (separator) property. Xsp is the same as Xps, except that vertical tab
+ is excluded. Xwd matches the same characters as Xan, plus underscore.
+
+ There is another non-standard property, Xuc, which matches any charac-
+ ter that can be represented by a Universal Character Name in C++ and
+ other programming languages. These are the characters $, @, ` (grave
+ accent), and all characters with Unicode code points greater than or
+ equal to U+00A0, except for the surrogates U+D800 to U+DFFF. Note that
+ most base (ASCII) characters are excluded. (Universal Character Names
+ are of the form \uHHHH or \UHHHHHHHH where H is a hexadecimal digit.
+ Note that the Xuc property does not match these sequences but the char-
+ acters that they represent.)
+
+ Resetting the match start
+
+ The escape sequence \K causes any previously matched characters not to
+ be included in the final matched sequence. For example, the pattern:
+
+ foo\Kbar
+
+ matches "foobar", but reports that it has matched "bar". This feature
+ is similar to a lookbehind assertion (described below). However, in
+ this case, the part of the subject before the real match does not have
+ to be of fixed length, as lookbehind assertions do. The use of \K does
+ not interfere with the setting of captured substrings. For example,
+ when the pattern
+
+ (foo)\Kbar
+
+ matches "foobar", the first substring is still set to "foo".
+
+ Perl documents that the use of \K within assertions is "not well
+ defined". In PCRE, \K is acted upon when it occurs inside positive
+ assertions, but is ignored in negative assertions.
+
+ Simple assertions
+
+ The final use of backslash is for certain simple assertions. An asser-
+ tion specifies a condition that has to be met at a particular point in
+ a match, without consuming any characters from the subject string. The
+ use of subpatterns for more complicated assertions is described below.
+ The backslashed assertions are:
+
+ \b matches at a word boundary
+ \B matches when not at a word boundary
+ \A matches at the start of the subject
+ \Z matches at the end of the subject
+ also matches before a newline at the end of the subject
+ \z matches only at the end of the subject
+ \G matches at the first matching position in the subject
+
+ Inside a character class, \b has a different meaning; it matches the
+ backspace character. If any other of these assertions appears in a
+ character class, by default it matches the corresponding literal char-
+ acter (for example, \B matches the letter B). However, if the
+ PCRE_EXTRA option is set, an "invalid escape sequence" error is gener-
+ ated instead.
+
+ A word boundary is a position in the subject string where the current
+ character and the previous character do not both match \w or \W (i.e.
+ one matches \w and the other matches \W), or the start or end of the
+ string if the first or last character matches \w, respectively. In a
+ UTF mode, the meanings of \w and \W can be changed by setting the
+ PCRE_UCP option. When this is done, it also affects \b and \B. Neither
+ PCRE nor Perl has a separate "start of word" or "end of word" metase-
+ quence. However, whatever follows \b normally determines which it is.
+ For example, the fragment \ba matches "a" at the start of a word.
+
+ The \A, \Z, and \z assertions differ from the traditional circumflex
+ and dollar (described in the next section) in that they only ever match
+ at the very start and end of the subject string, whatever options are
+ set. Thus, they are independent of multiline mode. These three asser-
+ tions are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options, which
+ affect only the behaviour of the circumflex and dollar metacharacters.
+ However, if the startoffset argument of pcre_exec() is non-zero, indi-
+ cating that matching is to start at a point other than the beginning of
+ the subject, \A can never match. The difference between \Z and \z is
+ that \Z matches before a newline at the end of the string as well as at
+ the very end, whereas \z matches only at the end.
+
+ The \G assertion is true only when the current matching position is at
+ the start point of the match, as specified by the startoffset argument
+ of pcre_exec(). It differs from \A when the value of startoffset is
+ non-zero. By calling pcre_exec() multiple times with appropriate argu-
+ ments, you can mimic Perl's /g option, and it is in this kind of imple-
+ mentation where \G can be useful.
+
+ Note, however, that PCRE's interpretation of \G, as the start of the
+ current match, is subtly different from Perl's, which defines it as the
+ end of the previous match. In Perl, these can be different when the
+ previously matched string was empty. Because PCRE does just one match
+ at a time, it cannot reproduce this behaviour.
+
+ If all the alternatives of a pattern begin with \G, the expression is
+ anchored to the starting match position, and the "anchored" flag is set
+ in the compiled regular expression.
+
+
+CIRCUMFLEX AND DOLLAR
+
+ The circumflex and dollar metacharacters are zero-width assertions.
+ That is, they test for a particular condition being true without con-
+ suming any characters from the subject string.
+
+ Outside a character class, in the default matching mode, the circumflex
+ character is an assertion that is true only if the current matching
+ point is at the start of the subject string. If the startoffset argu-
+ ment of pcre_exec() is non-zero, circumflex can never match if the
+ PCRE_MULTILINE option is unset. Inside a character class, circumflex
+ has an entirely different meaning (see below).
+
+ Circumflex need not be the first character of the pattern if a number
+ of alternatives are involved, but it should be the first thing in each
+ alternative in which it appears if the pattern is ever to match that
+ branch. If all possible alternatives start with a circumflex, that is,
+ if the pattern is constrained to match only at the start of the sub-
+ ject, it is said to be an "anchored" pattern. (There are also other
+ constructs that can cause a pattern to be anchored.)
+
+ The dollar character is an assertion that is true only if the current
+ matching point is at the end of the subject string, or immediately
+ before a newline at the end of the string (by default). Note, however,
+ that it does not actually match the newline. Dollar need not be the
+ last character of the pattern if a number of alternatives are involved,
+ but it should be the last item in any branch in which it appears. Dol-
+ lar has no special meaning in a character class.
+
+ The meaning of dollar can be changed so that it matches only at the
+ very end of the string, by setting the PCRE_DOLLAR_ENDONLY option at
+ compile time. This does not affect the \Z assertion.
+
+ The meanings of the circumflex and dollar characters are changed if the
+ PCRE_MULTILINE option is set. When this is the case, a circumflex
+ matches immediately after internal newlines as well as at the start of
+ the subject string. It does not match after a newline that ends the
+ string. A dollar matches before any newlines in the string, as well as
+ at the very end, when PCRE_MULTILINE is set. When newline is specified
+ as the two-character sequence CRLF, isolated CR and LF characters do
+ not indicate newlines.
+
+ For example, the pattern /^abc$/ matches the subject string "def\nabc"
+ (where \n represents a newline) in multiline mode, but not otherwise.
+ Consequently, patterns that are anchored in single line mode because
+ all branches start with ^ are not anchored in multiline mode, and a
+ match for circumflex is possible when the startoffset argument of
+ pcre_exec() is non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if
+ PCRE_MULTILINE is set.
+
+ Note that the sequences \A, \Z, and \z can be used to match the start
+ and end of the subject in both modes, and if all branches of a pattern
+ start with \A it is always anchored, whether or not PCRE_MULTILINE is
+ set.
+
+
+FULL STOP (PERIOD, DOT) AND \N
+
+ Outside a character class, a dot in the pattern matches any one charac-
+ ter in the subject string except (by default) a character that signi-
+ fies the end of a line.
+
+ When a line ending is defined as a single character, dot never matches
+ that character; when the two-character sequence CRLF is used, dot does
+ not match CR if it is immediately followed by LF, but otherwise it
+ matches all characters (including isolated CRs and LFs). When any Uni-
+ code line endings are being recognized, dot does not match CR or LF or
+ any of the other line ending characters.
+
+ The behaviour of dot with regard to newlines can be changed. If the
+ PCRE_DOTALL option is set, a dot matches any one character, without
+ exception. If the two-character sequence CRLF is present in the subject
+ string, it takes two dots to match it.
+
+ The handling of dot is entirely independent of the handling of circum-
+ flex and dollar, the only relationship being that they both involve
+ newlines. Dot has no special meaning in a character class.
+
+ The escape sequence \N behaves like a dot, except that it is not
+ affected by the PCRE_DOTALL option. In other words, it matches any
+ character except one that signifies the end of a line. Perl also uses
+ \N to match characters by name; PCRE does not support this.
+
+
+MATCHING A SINGLE DATA UNIT
+
+ Outside a character class, the escape sequence \C matches any one data
+ unit, whether or not a UTF mode is set. In the 8-bit library, one data
+ unit is one byte; in the 16-bit library it is a 16-bit unit; in the
+ 32-bit library it is a 32-bit unit. Unlike a dot, \C always matches
+ line-ending characters. The feature is provided in Perl in order to
+ match individual bytes in UTF-8 mode, but it is unclear how it can use-
+ fully be used. Because \C breaks up characters into individual data
+ units, matching one unit with \C in a UTF mode means that the rest of
+ the string may start with a malformed UTF character. This has undefined
+ results, because PCRE assumes that it is dealing with valid UTF strings
+ (and by default it checks this at the start of processing unless the
+ PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK or PCRE_NO_UTF32_CHECK option
+ is used).
+
+ PCRE does not allow \C to appear in lookbehind assertions (described
+ below) in a UTF mode, because this would make it impossible to calcu-
+ late the length of the lookbehind.
+
+ In general, the \C escape sequence is best avoided. However, one way of
+ using it that avoids the problem of malformed UTF characters is to use
+ a lookahead to check the length of the next character, as in this pat-
+ tern, which could be used with a UTF-8 string (ignore white space and
+ line breaks):
+
+ (?| (?=[\x00-\x7f])(\C) |
+ (?=[\x80-\x{7ff}])(\C)(\C) |
+ (?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |
+ (?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))
+
+ A group that starts with (?| resets the capturing parentheses numbers
+ in each alternative (see "Duplicate Subpattern Numbers" below). The
+ assertions at the start of each branch check the next UTF-8 character
+ for values whose encoding uses 1, 2, 3, or 4 bytes, respectively. The
+ character's individual bytes are then captured by the appropriate num-
+ ber of groups.
+
+
+SQUARE BRACKETS AND CHARACTER CLASSES
+
+ An opening square bracket introduces a character class, terminated by a
+ closing square bracket. A closing square bracket on its own is not spe-
+ cial by default. However, if the PCRE_JAVASCRIPT_COMPAT option is set,
+ a lone closing square bracket causes a compile-time error. If a closing
+ square bracket is required as a member of the class, it should be the
+ first data character in the class (after an initial circumflex, if
+ present) or escaped with a backslash.
+
+ A character class matches a single character in the subject. In a UTF
+ mode, the character may be more than one data unit long. A matched
+ character must be in the set of characters defined by the class, unless
+ the first character in the class definition is a circumflex, in which
+ case the subject character must not be in the set defined by the class.
+ If a circumflex is actually required as a member of the class, ensure
+ it is not the first character, or escape it with a backslash.
+
+ For example, the character class [aeiou] matches any lower case vowel,
+ while [^aeiou] matches any character that is not a lower case vowel.
+ Note that a circumflex is just a convenient notation for specifying the
+ characters that are in the class by enumerating those that are not. A
+ class that starts with a circumflex is not an assertion; it still con-
+ sumes a character from the subject string, and therefore it fails if
+ the current pointer is at the end of the string.
+
+ In UTF-8 (UTF-16, UTF-32) mode, characters with values greater than 255
+ (0xffff) can be included in a class as a literal string of data units,
+ or by using the \x{ escaping mechanism.
+
+ When caseless matching is set, any letters in a class represent both
+ their upper case and lower case versions, so for example, a caseless
+ [aeiou] matches "A" as well as "a", and a caseless [^aeiou] does not
+ match "A", whereas a caseful version would. In a UTF mode, PCRE always
+ understands the concept of case for characters whose values are less
+ than 128, so caseless matching is always possible. For characters with
+ higher values, the concept of case is supported if PCRE is compiled
+ with Unicode property support, but not otherwise. If you want to use
+ caseless matching in a UTF mode for characters 128 and above, you must
+ ensure that PCRE is compiled with Unicode property support as well as
+ with UTF support.
+
+ Characters that might indicate line breaks are never treated in any
+ special way when matching character classes, whatever line-ending
+ sequence is in use, and whatever setting of the PCRE_DOTALL and
+ PCRE_MULTILINE options is used. A class such as [^a] always matches one
+ of these characters.
+
+ The minus (hyphen) character can be used to specify a range of charac-
+ ters in a character class. For example, [d-m] matches any letter
+ between d and m, inclusive. If a minus character is required in a
+ class, it must be escaped with a backslash or appear in a position
+ where it cannot be interpreted as indicating a range, typically as the
+ first or last character in the class.
+
+ It is not possible to have the literal character "]" as the end charac-
+ ter of a range. A pattern such as [W-]46] is interpreted as a class of
+ two characters ("W" and "-") followed by a literal string "46]", so it
+ would match "W46]" or "-46]". However, if the "]" is escaped with a
+ backslash it is interpreted as the end of range, so [W-\]46] is inter-
+ preted as a class containing a range followed by two other characters.
+ The octal or hexadecimal representation of "]" can also be used to end
+ a range.
+
+ Ranges operate in the collating sequence of character values. They can
+ also be used for characters specified numerically, for example
+ [\000-\037]. Ranges can include any characters that are valid for the
+ current mode.
+
+ If a range that includes letters is used when caseless matching is set,
+ it matches the letters in either case. For example, [W-c] is equivalent
+ to [][\\^_`wxyzabc], matched caselessly, and in a non-UTF mode, if
+ character tables for a French locale are in use, [\xc8-\xcb] matches
+ accented E characters in both cases. In UTF modes, PCRE supports the
+ concept of case for characters with values greater than 128 only when
+ it is compiled with Unicode property support.
+
+ The character escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v, \V,
+ \w, and \W may appear in a character class, and add the characters that
+ they match to the class. For example, [\dABCDEF] matches any hexadeci-
+ mal digit. In UTF modes, the PCRE_UCP option affects the meanings of
+ \d, \s, \w and their upper case partners, just as it does when they
+ appear outside a character class, as described in the section entitled
+ "Generic character types" above. The escape sequence \b has a different
+ meaning inside a character class; it matches the backspace character.
+ The sequences \B, \N, \R, and \X are not special inside a character
+ class. Like any other unrecognized escape sequences, they are treated
+ as the literal characters "B", "N", "R", and "X" by default, but cause
+ an error if the PCRE_EXTRA option is set.
+
+ A circumflex can conveniently be used with the upper case character
+ types to specify a more restricted set of characters than the matching
+ lower case type. For example, the class [^\W_] matches any letter or
+ digit, but not underscore, whereas [\w] includes underscore. A positive
+ character class should be read as "something OR something OR ..." and a
+ negative class as "NOT something AND NOT something AND NOT ...".
+
+ The only metacharacters that are recognized in character classes are
+ backslash, hyphen (only where it can be interpreted as specifying a
+ range), circumflex (only at the start), opening square bracket (only
+ when it can be interpreted as introducing a POSIX class name - see the
+ next section), and the terminating closing square bracket. However,
+ escaping other non-alphanumeric characters does no harm.
+
+
+POSIX CHARACTER CLASSES
+
+ Perl supports the POSIX notation for character classes. This uses names
+ enclosed by [: and :] within the enclosing square brackets. PCRE also
+ supports this notation. For example,
+
+ [01[:alpha:]%]
+
+ matches "0", "1", any alphabetic character, or "%". The supported class
+ names are:
+
+ alnum letters and digits
+ alpha letters
+ ascii character codes 0 - 127
+ blank space or tab only
+ cntrl control characters
+ digit decimal digits (same as \d)
+ graph printing characters, excluding space
+ lower lower case letters
+ print printing characters, including space
+ punct printing characters, excluding letters and digits and space
+ space white space (not quite the same as \s)
+ upper upper case letters
+ word "word" characters (same as \w)
+ xdigit hexadecimal digits
+
+ The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13),
+ and space (32). Notice that this list includes the VT character (code
+ 11). This makes "space" different to \s, which does not include VT (for
+ Perl compatibility).
+
+ The name "word" is a Perl extension, and "blank" is a GNU extension
+ from Perl 5.8. Another Perl extension is negation, which is indicated
+ by a ^ character after the colon. For example,
+
+ [12[:^digit:]]
+
+ matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the
+ POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but
+ these are not supported, and an error is given if they are encountered.
+
+ By default, in UTF modes, characters with values greater than 128 do
+ not match any of the POSIX character classes. However, if the PCRE_UCP
+ option is passed to pcre_compile(), some of the classes are changed so
+ that Unicode character properties are used. This is achieved by replac-
+ ing the POSIX classes by other sequences, as follows:
+
+ [:alnum:] becomes \p{Xan}
+ [:alpha:] becomes \p{L}
+ [:blank:] becomes \h
+ [:digit:] becomes \p{Nd}
+ [:lower:] becomes \p{Ll}
+ [:space:] becomes \p{Xps}
+ [:upper:] becomes \p{Lu}
+ [:word:] becomes \p{Xwd}
+
+ Negated versions, such as [:^alpha:] use \P instead of \p. The other
+ POSIX classes are unchanged, and match only characters with code points
+ less than 128.
+
+
+VERTICAL BAR
+
+ Vertical bar characters are used to separate alternative patterns. For
+ example, the pattern
+
+ gilbert|sullivan
+
+ matches either "gilbert" or "sullivan". Any number of alternatives may
+ appear, and an empty alternative is permitted (matching the empty
+ string). The matching process tries each alternative in turn, from left
+ to right, and the first one that succeeds is used. If the alternatives
+ are within a subpattern (defined below), "succeeds" means matching the
+ rest of the main pattern as well as the alternative in the subpattern.
+
+
+INTERNAL OPTION SETTING
+
+ The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
+ PCRE_EXTENDED options (which are Perl-compatible) can be changed from
+ within the pattern by a sequence of Perl option letters enclosed
+ between "(?" and ")". The option letters are
+
+ i for PCRE_CASELESS
+ m for PCRE_MULTILINE
+ s for PCRE_DOTALL
+ x for PCRE_EXTENDED
+
+ For example, (?im) sets caseless, multiline matching. It is also possi-
+ ble to unset these options by preceding the letter with a hyphen, and a
+ combined setting and unsetting such as (?im-sx), which sets PCRE_CASE-
+ LESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED,
+ is also permitted. If a letter appears both before and after the
+ hyphen, the option is unset.
+
+ The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA
+ can be changed in the same way as the Perl-compatible options by using
+ the characters J, U and X respectively.
+
+ When one of these option changes occurs at top level (that is, not
+ inside subpattern parentheses), the change applies to the remainder of
+ the pattern that follows. If the change is placed right at the start of
+ a pattern, PCRE extracts it into the global options (and it will there-
+ fore show up in data extracted by the pcre_fullinfo() function).
+
+ An option change within a subpattern (see below for a description of
+ subpatterns) affects only that part of the subpattern that follows it,
+ so
+
+ (a(?i)b)c
+
+ matches abc and aBc and no other strings (assuming PCRE_CASELESS is not
+ used). By this means, options can be made to have different settings
+ in different parts of the pattern. Any changes made in one alternative
+ do carry on into subsequent branches within the same subpattern. For
+ example,
+
+ (a(?i)b|c)
+
+ matches "ab", "aB", "c", and "C", even though when matching "C" the
+ first branch is abandoned before the option setting. This is because
+ the effects of option settings happen at compile time. There would be
+ some very weird behaviour otherwise.
+
+ Note: There are other PCRE-specific options that can be set by the
+ application when the compiling or matching functions are called. In
+ some cases the pattern can contain special leading sequences such as
+ (*CRLF) to override what the application has set or what has been
+ defaulted. Details are given in the section entitled "Newline
+ sequences" above. There are also the (*UTF8), (*UTF16),(*UTF32), and
+ (*UCP) leading sequences that can be used to set UTF and Unicode prop-
+ erty modes; they are equivalent to setting the PCRE_UTF8, PCRE_UTF16,
+ PCRE_UTF32 and the PCRE_UCP options, respectively. The (*UTF) sequence
+ is a generic version that can be used with any of the libraries. How-
+ ever, the application can set the PCRE_NEVER_UTF option, which locks
+ out the use of the (*UTF) sequences.
+
+
+SUBPATTERNS
+
+ Subpatterns are delimited by parentheses (round brackets), which can be
+ nested. Turning part of a pattern into a subpattern does two things:
+
+ 1. It localizes a set of alternatives. For example, the pattern
+
+ cat(aract|erpillar|)
+
+ matches "cataract", "caterpillar", or "cat". Without the parentheses,
+ it would match "cataract", "erpillar" or an empty string.
+
+ 2. It sets up the subpattern as a capturing subpattern. This means
+ that, when the whole pattern matches, that portion of the subject
+ string that matched the subpattern is passed back to the caller via the
+ ovector argument of the matching function. (This applies only to the
+ traditional matching functions; the DFA matching functions do not sup-
+ port capturing.)
+
+ Opening parentheses are counted from left to right (starting from 1) to
+ obtain numbers for the capturing subpatterns. For example, if the
+ string "the red king" is matched against the pattern
+
+ the ((red|white) (king|queen))
+
+ the captured substrings are "red king", "red", and "king", and are num-
+ bered 1, 2, and 3, respectively.
+
+ The fact that plain parentheses fulfil two functions is not always
+ helpful. There are often times when a grouping subpattern is required
+ without a capturing requirement. If an opening parenthesis is followed
+ by a question mark and a colon, the subpattern does not do any captur-
+ ing, and is not counted when computing the number of any subsequent
+ capturing subpatterns. For example, if the string "the white queen" is
+ matched against the pattern
+
+ the ((?:red|white) (king|queen))
+
+ the captured substrings are "white queen" and "queen", and are numbered
+ 1 and 2. The maximum number of capturing subpatterns is 65535.
+
+ As a convenient shorthand, if any option settings are required at the
+ start of a non-capturing subpattern, the option letters may appear
+ between the "?" and the ":". Thus the two patterns
+
+ (?i:saturday|sunday)
+ (?:(?i)saturday|sunday)
+
+ match exactly the same set of strings. Because alternative branches are
+ tried from left to right, and options are not reset until the end of
+ the subpattern is reached, an option setting in one branch does affect
+ subsequent branches, so the above patterns match "SUNDAY" as well as
+ "Saturday".
+
+
+DUPLICATE SUBPATTERN NUMBERS
+
+ Perl 5.10 introduced a feature whereby each alternative in a subpattern
+ uses the same numbers for its capturing parentheses. Such a subpattern
+ starts with (?| and is itself a non-capturing subpattern. For example,
+ consider this pattern:
+
+ (?|(Sat)ur|(Sun))day
+
+ Because the two alternatives are inside a (?| group, both sets of cap-
+ turing parentheses are numbered one. Thus, when the pattern matches,
+ you can look at captured substring number one, whichever alternative
+ matched. This construct is useful when you want to capture part, but
+ not all, of one of a number of alternatives. Inside a (?| group, paren-
+ theses are numbered as usual, but the number is reset at the start of
+ each branch. The numbers of any capturing parentheses that follow the
+ subpattern start after the highest number used in any branch. The fol-
+ lowing example is taken from the Perl documentation. The numbers under-
+ neath show in which buffer the captured content will be stored.
+
+ # before ---------------branch-reset----------- after
+ / ( a ) (?| x ( y ) z | (p (q) r) | (t) u (v) ) ( z ) /x
+ # 1 2 2 3 2 3 4
+
+ A back reference to a numbered subpattern uses the most recent value
+ that is set for that number by any subpattern. The following pattern
+ matches "abcabc" or "defdef":
+
+ /(?|(abc)|(def))\1/
+
+ In contrast, a subroutine call to a numbered subpattern always refers
+ to the first one in the pattern with the given number. The following
+ pattern matches "abcabc" or "defabc":
+
+ /(?|(abc)|(def))(?1)/
+
+ If a condition test for a subpattern's having matched refers to a non-
+ unique number, the test is true if any of the subpatterns of that num-
+ ber have matched.
+
+ An alternative approach to using this "branch reset" feature is to use
+ duplicate named subpatterns, as described in the next section.
+
+
+NAMED SUBPATTERNS
+
+ Identifying capturing parentheses by number is simple, but it can be
+ very hard to keep track of the numbers in complicated regular expres-
+ sions. Furthermore, if an expression is modified, the numbers may
+ change. To help with this difficulty, PCRE supports the naming of sub-
+ patterns. This feature was not added to Perl until release 5.10. Python
+ had the feature earlier, and PCRE introduced it at release 4.0, using
+ the Python syntax. PCRE now supports both the Perl and the Python syn-
+ tax. Perl allows identically numbered subpatterns to have different
+ names, but PCRE does not.
+
+ In PCRE, a subpattern can be named in one of three ways: (?...)
+ or (?'name'...) as in Perl, or (?P...) as in Python. References
+ to capturing parentheses from other parts of the pattern, such as back
+ references, recursion, and conditions, can be made by name as well as
+ by number.
+
+ Names consist of up to 32 alphanumeric characters and underscores.
+ Named capturing parentheses are still allocated numbers as well as
+ names, exactly as if the names were not present. The PCRE API provides
+ function calls for extracting the name-to-number translation table from
+ a compiled pattern. There is also a convenience function for extracting
+ a captured substring by name.
+
+ By default, a name must be unique within a pattern, but it is possible
+ to relax this constraint by setting the PCRE_DUPNAMES option at compile
+ time. (Duplicate names are also always permitted for subpatterns with
+ the same number, set up as described in the previous section.) Dupli-
+ cate names can be useful for patterns where only one instance of the
+ named parentheses can match. Suppose you want to match the name of a
+ weekday, either as a 3-letter abbreviation or as the full name, and in
+ both cases you want to extract the abbreviation. This pattern (ignoring
+ the line breaks) does the job:
+
+ (?Mon|Fri|Sun)(?:day)?|
+ (?Tue)(?:sday)?|
+ (?Wed)(?:nesday)?|
+ (?Thu)(?:rsday)?|
+ (?Sat)(?:urday)?
+
+ There are five capturing substrings, but only one is ever set after a
+ match. (An alternative way of solving this problem is to use a "branch
+ reset" subpattern, as described in the previous section.)
+
+ The convenience function for extracting the data by name returns the
+ substring for the first (and in this example, the only) subpattern of
+ that name that matched. This saves searching to find which numbered
+ subpattern it was.
+
+ If you make a back reference to a non-unique named subpattern from
+ elsewhere in the pattern, the one that corresponds to the first occur-
+ rence of the name is used. In the absence of duplicate numbers (see the
+ previous section) this is the one with the lowest number. If you use a
+ named reference in a condition test (see the section about conditions
+ below), either to check whether a subpattern has matched, or to check
+ for recursion, all subpatterns with the same name are tested. If the
+ condition is true for any one of them, the overall condition is true.
+ This is the same behaviour as testing by number. For further details of
+ the interfaces for handling named subpatterns, see the pcreapi documen-
+ tation.
+
+ Warning: You cannot use different names to distinguish between two sub-
+ patterns with the same number because PCRE uses only the numbers when
+ matching. For this reason, an error is given at compile time if differ-
+ ent names are given to subpatterns with the same number. However, you
+ can give the same name to subpatterns with the same number, even when
+ PCRE_DUPNAMES is not set.
+
+
+REPETITION
+
+ Repetition is specified by quantifiers, which can follow any of the
+ following items:
+
+ a literal data character
+ the dot metacharacter
+ the \C escape sequence
+ the \X escape sequence
+ the \R escape sequence
+ an escape such as \d or \pL that matches a single character
+ a character class
+ a back reference (see next section)
+ a parenthesized subpattern (including assertions)
+ a subroutine call to a subpattern (recursive or otherwise)
+
+ The general repetition quantifier specifies a minimum and maximum num-
+ ber of permitted matches, by giving the two numbers in curly brackets
+ (braces), separated by a comma. The numbers must be less than 65536,
+ and the first must be less than or equal to the second. For example:
+
+ z{2,4}
+
+ matches "zz", "zzz", or "zzzz". A closing brace on its own is not a
+ special character. If the second number is omitted, but the comma is
+ present, there is no upper limit; if the second number and the comma
+ are both omitted, the quantifier specifies an exact number of required
+ matches. Thus
+
+ [aeiou]{3,}
+
+ matches at least 3 successive vowels, but may match many more, while
+
+ \d{8}
+
+ matches exactly 8 digits. An opening curly bracket that appears in a
+ position where a quantifier is not allowed, or one that does not match
+ the syntax of a quantifier, is taken as a literal character. For exam-
+ ple, {,6} is not a quantifier, but a literal string of four characters.
+
+ In UTF modes, quantifiers apply to characters rather than to individual
+ data units. Thus, for example, \x{100}{2} matches two characters, each
+ of which is represented by a two-byte sequence in a UTF-8 string. Simi-
+ larly, \X{3} matches three Unicode extended grapheme clusters, each of
+ which may be several data units long (and they may be of different
+ lengths).
+
+ The quantifier {0} is permitted, causing the expression to behave as if
+ the previous item and the quantifier were not present. This may be use-
+ ful for subpatterns that are referenced as subroutines from elsewhere
+ in the pattern (but see also the section entitled "Defining subpatterns
+ for use by reference only" below). Items other than subpatterns that
+ have a {0} quantifier are omitted from the compiled pattern.
+
+ For convenience, the three most common quantifiers have single-charac-
+ ter abbreviations:
+
+ * is equivalent to {0,}
+ + is equivalent to {1,}
+ ? is equivalent to {0,1}
+
+ It is possible to construct infinite loops by following a subpattern
+ that can match no characters with a quantifier that has no upper limit,
+ for example:
+
+ (a?)*
+
+ Earlier versions of Perl and PCRE used to give an error at compile time
+ for such patterns. However, because there are cases where this can be
+ useful, such patterns are now accepted, but if any repetition of the
+ subpattern does in fact match no characters, the loop is forcibly bro-
+ ken.
+
+ By default, the quantifiers are "greedy", that is, they match as much
+ as possible (up to the maximum number of permitted times), without
+ causing the rest of the pattern to fail. The classic example of where
+ this gives problems is in trying to match comments in C programs. These
+ appear between /* and */ and within the comment, individual * and /
+ characters may appear. An attempt to match C comments by applying the
+ pattern
+
+ /\*.*\*/
+
+ to the string
+
+ /* first comment */ not comment /* second comment */
+
+ fails, because it matches the entire string owing to the greediness of
+ the .* item.
+
+ However, if a quantifier is followed by a question mark, it ceases to
+ be greedy, and instead matches the minimum number of times possible, so
+ the pattern
+
+ /\*.*?\*/
+
+ does the right thing with the C comments. The meaning of the various
+ quantifiers is not otherwise changed, just the preferred number of
+ matches. Do not confuse this use of question mark with its use as a
+ quantifier in its own right. Because it has two uses, it can sometimes
+ appear doubled, as in
+
+ \d??\d
+
+ which matches one digit by preference, but can match two if that is the
+ only way the rest of the pattern matches.
+
+ If the PCRE_UNGREEDY option is set (an option that is not available in
+ Perl), the quantifiers are not greedy by default, but individual ones
+ can be made greedy by following them with a question mark. In other
+ words, it inverts the default behaviour.
+
+ When a parenthesized subpattern is quantified with a minimum repeat
+ count that is greater than 1 or with a limited maximum, more memory is
+ required for the compiled pattern, in proportion to the size of the
+ minimum or maximum.
+
+ If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equiv-
+ alent to Perl's /s) is set, thus allowing the dot to match newlines,
+ the pattern is implicitly anchored, because whatever follows will be
+ tried against every character position in the subject string, so there
+ is no point in retrying the overall match at any position after the
+ first. PCRE normally treats such a pattern as though it were preceded
+ by \A.
+
+ In cases where it is known that the subject string contains no new-
+ lines, it is worth setting PCRE_DOTALL in order to obtain this opti-
+ mization, or alternatively using ^ to indicate anchoring explicitly.
+
+ However, there are some cases where the optimization cannot be used.
+ When .* is inside capturing parentheses that are the subject of a back
+ reference elsewhere in the pattern, a match at the start may fail where
+ a later one succeeds. Consider, for example:
+
+ (.*)abc\1
+
+ If the subject is "xyz123abc123" the match point is the fourth charac-
+ ter. For this reason, such a pattern is not implicitly anchored.
+
+ Another case where implicit anchoring is not applied is when the lead-
+ ing .* is inside an atomic group. Once again, a match at the start may
+ fail where a later one succeeds. Consider this pattern:
+
+ (?>.*?a)b
+
+ It matches "ab" in the subject "aab". The use of the backtracking con-
+ trol verbs (*PRUNE) and (*SKIP) also disable this optimization.
+
+ When a capturing subpattern is repeated, the value captured is the sub-
+ string that matched the final iteration. For example, after
+
+ (tweedle[dume]{3}\s*)+
+
+ has matched "tweedledum tweedledee" the value of the captured substring
+ is "tweedledee". However, if there are nested capturing subpatterns,
+ the corresponding captured values may have been set in previous itera-
+ tions. For example, after
+
+ /(a|(b))+/
+
+ matches "aba" the value of the second captured substring is "b".
+
+
+ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS
+
+ With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
+ repetition, failure of what follows normally causes the repeated item
+ to be re-evaluated to see if a different number of repeats allows the
+ rest of the pattern to match. Sometimes it is useful to prevent this,
+ either to change the nature of the match, or to cause it fail earlier
+ than it otherwise might, when the author of the pattern knows there is
+ no point in carrying on.
+
+ Consider, for example, the pattern \d+foo when applied to the subject
+ line
+
+ 123456bar
+
+ After matching all 6 digits and then failing to match "foo", the normal
+ action of the matcher is to try again with only 5 digits matching the
+ \d+ item, and then with 4, and so on, before ultimately failing.
+ "Atomic grouping" (a term taken from Jeffrey Friedl's book) provides
+ the means for specifying that once a subpattern has matched, it is not
+ to be re-evaluated in this way.
+
+ If we use atomic grouping for the previous example, the matcher gives
+ up immediately on failing to match "foo" the first time. The notation
+ is a kind of special parenthesis, starting with (?> as in this example:
+
+ (?>\d+)foo
+
+ This kind of parenthesis "locks up" the part of the pattern it con-
+ tains once it has matched, and a failure further into the pattern is
+ prevented from backtracking into it. Backtracking past it to previous
+ items, however, works as normal.
+
+ An alternative description is that a subpattern of this type matches
+ the string of characters that an identical standalone pattern would
+ match, if anchored at the current point in the subject string.
+
+ Atomic grouping subpatterns are not capturing subpatterns. Simple cases
+ such as the above example can be thought of as a maximizing repeat that
+ must swallow everything it can. So, while both \d+ and \d+? are pre-
+ pared to adjust the number of digits they match in order to make the
+ rest of the pattern match, (?>\d+) can only match an entire sequence of
+ digits.
+
+ Atomic groups in general can of course contain arbitrarily complicated
+ subpatterns, and can be nested. However, when the subpattern for an
+ atomic group is just a single repeated item, as in the example above, a
+ simpler notation, called a "possessive quantifier" can be used. This
+ consists of an additional + character following a quantifier. Using
+ this notation, the previous example can be rewritten as
+
+ \d++foo
+
+ Note that a possessive quantifier can be used with an entire group, for
+ example:
+
+ (abc|xyz){2,3}+
+
+ Possessive quantifiers are always greedy; the setting of the
+ PCRE_UNGREEDY option is ignored. They are a convenient notation for the
+ simpler forms of atomic group. However, there is no difference in the
+ meaning of a possessive quantifier and the equivalent atomic group,
+ though there may be a performance difference; possessive quantifiers
+ should be slightly faster.
+
+ The possessive quantifier syntax is an extension to the Perl 5.8 syn-
+ tax. Jeffrey Friedl originated the idea (and the name) in the first
+ edition of his book. Mike McCloskey liked it, so implemented it when he
+ built Sun's Java package, and PCRE copied it from there. It ultimately
+ found its way into Perl at release 5.10.
+
+ PCRE has an optimization that automatically "possessifies" certain sim-
+ ple pattern constructs. For example, the sequence A+B is treated as
+ A++B because there is no point in backtracking into a sequence of A's
+ when B must follow.
+
+ When a pattern contains an unlimited repeat inside a subpattern that
+ can itself be repeated an unlimited number of times, the use of an
+ atomic group is the only way to avoid some failing matches taking a
+ very long time indeed. The pattern
+
+ (\D+|<\d+>)*[!?]
+
+ matches an unlimited number of substrings that either consist of non-
+ digits, or digits enclosed in <>, followed by either ! or ?. When it
+ matches, it runs quickly. However, if it is applied to
+
+ aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
+
+ it takes a long time before reporting failure. This is because the
+ string can be divided between the internal \D+ repeat and the external
+ * repeat in a large number of ways, and all have to be tried. (The
+ example uses [!?] rather than a single character at the end, because
+ both PCRE and Perl have an optimization that allows for fast failure
+ when a single character is used. They remember the last single charac-
+ ter that is required for a match, and fail early if it is not present
+ in the string.) If the pattern is changed so that it uses an atomic
+ group, like this:
+
+ ((?>\D+)|<\d+>)*[!?]
+
+ sequences of non-digits cannot be broken, and failure happens quickly.
+
+
+BACK REFERENCES
+
+ Outside a character class, a backslash followed by a digit greater than
+ 0 (and possibly further digits) is a back reference to a capturing sub-
+ pattern earlier (that is, to its left) in the pattern, provided there
+ have been that many previous capturing left parentheses.
+
+ However, if the decimal number following the backslash is less than 10,
+ it is always taken as a back reference, and causes an error only if
+ there are not that many capturing left parentheses in the entire pat-
+ tern. In other words, the parentheses that are referenced need not be
+ to the left of the reference for numbers less than 10. A "forward back
+ reference" of this type can make sense when a repetition is involved
+ and the subpattern to the right has participated in an earlier itera-
+ tion.
+
+ It is not possible to have a numerical "forward back reference" to a
+ subpattern whose number is 10 or more using this syntax because a
+ sequence such as \50 is interpreted as a character defined in octal.
+ See the subsection entitled "Non-printing characters" above for further
+ details of the handling of digits following a backslash. There is no
+ such problem when named parentheses are used. A back reference to any
+ subpattern is possible using named parentheses (see below).
+
+ Another way of avoiding the ambiguity inherent in the use of digits
+ following a backslash is to use the \g escape sequence. This escape
+ must be followed by an unsigned number or a negative number, optionally
+ enclosed in braces. These examples are all identical:
+
+ (ring), \1
+ (ring), \g1
+ (ring), \g{1}
+
+ An unsigned number specifies an absolute reference without the ambigu-
+ ity that is present in the older syntax. It is also useful when literal
+ digits follow the reference. A negative number is a relative reference.
+ Consider this example:
+
+ (abc(def)ghi)\g{-1}
+
+ The sequence \g{-1} is a reference to the most recently started captur-
+ ing subpattern before \g, that is, is it equivalent to \2 in this exam-
+ ple. Similarly, \g{-2} would be equivalent to \1. The use of relative
+ references can be helpful in long patterns, and also in patterns that
+ are created by joining together fragments that contain references
+ within themselves.
+
+ A back reference matches whatever actually matched the capturing sub-
+ pattern in the current subject string, rather than anything matching
+ the subpattern itself (see "Subpatterns as subroutines" below for a way
+ of doing that). So the pattern
+
+ (sens|respons)e and \1ibility
+
+ matches "sense and sensibility" and "response and responsibility", but
+ not "sense and responsibility". If caseful matching is in force at the
+ time of the back reference, the case of letters is relevant. For exam-
+ ple,
+
+ ((?i)rah)\s+\1
+
+ matches "rah rah" and "RAH RAH", but not "RAH rah", even though the
+ original capturing subpattern is matched caselessly.
+
+ There are several different ways of writing back references to named
+ subpatterns. The .NET syntax \k{name} and the Perl syntax \k or
+ \k'name' are supported, as is the Python syntax (?P=name). Perl 5.10's
+ unified back reference syntax, in which \g can be used for both numeric
+ and named references, is also supported. We could rewrite the above
+ example in any of the following ways:
+
+ (?(?i)rah)\s+\k
+ (?'p1'(?i)rah)\s+\k{p1}
+ (?P(?i)rah)\s+(?P=p1)
+ (?(?i)rah)\s+\g{p1}
+
+ A subpattern that is referenced by name may appear in the pattern
+ before or after the reference.
+
+ There may be more than one back reference to the same subpattern. If a
+ subpattern has not actually been used in a particular match, any back
+ references to it always fail by default. For example, the pattern
+
+ (a|(bc))\2
+
+ always fails if it starts to match "a" rather than "bc". However, if
+ the PCRE_JAVASCRIPT_COMPAT option is set at compile time, a back refer-
+ ence to an unset value matches an empty string.
+
+ Because there may be many capturing parentheses in a pattern, all dig-
+ its following a backslash are taken as part of a potential back refer-
+ ence number. If the pattern continues with a digit character, some
+ delimiter must be used to terminate the back reference. If the
+ PCRE_EXTENDED option is set, this can be white space. Otherwise, the
+ \g{ syntax or an empty comment (see "Comments" below) can be used.
+
+ Recursive back references
+
+ A back reference that occurs inside the parentheses to which it refers
+ fails when the subpattern is first used, so, for example, (a\1) never
+ matches. However, such references can be useful inside repeated sub-
+ patterns. For example, the pattern
+
+ (a|b\1)+
+
+ matches any number of "a"s and also "aba", "ababbaa" etc. At each iter-
+ ation of the subpattern, the back reference matches the character
+ string corresponding to the previous iteration. In order for this to
+ work, the pattern must be such that the first iteration does not need
+ to match the back reference. This can be done using alternation, as in
+ the example above, or by a quantifier with a minimum of zero.
+
+ Back references of this type cause the group that they reference to be
+ treated as an atomic group. Once the whole group has been matched, a
+ subsequent matching failure cannot cause backtracking into the middle
+ of the group.
+
+
+ASSERTIONS
+
+ An assertion is a test on the characters following or preceding the
+ current matching point that does not actually consume any characters.
+ The simple assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are
+ described above.
+
+ More complicated assertions are coded as subpatterns. There are two
+ kinds: those that look ahead of the current position in the subject
+ string, and those that look behind it. An assertion subpattern is
+ matched in the normal way, except that it does not cause the current
+ matching position to be changed.
+
+ Assertion subpatterns are not capturing subpatterns. If such an asser-
+ tion contains capturing subpatterns within it, these are counted for
+ the purposes of numbering the capturing subpatterns in the whole pat-
+ tern. However, substring capturing is carried out only for positive
+ assertions. (Perl sometimes, but not always, does do capturing in nega-
+ tive assertions.)
+
+ For compatibility with Perl, assertion subpatterns may be repeated;
+ though it makes no sense to assert the same thing several times, the
+ side effect of capturing parentheses may occasionally be useful. In
+ practice, there only three cases:
+
+ (1) If the quantifier is {0}, the assertion is never obeyed during
+ matching. However, it may contain internal capturing parenthesized
+ groups that are called from elsewhere via the subroutine mechanism.
+
+ (2) If quantifier is {0,n} where n is greater than zero, it is treated
+ as if it were {0,1}. At run time, the rest of the pattern match is
+ tried with and without the assertion, the order depending on the greed-
+ iness of the quantifier.
+
+ (3) If the minimum repetition is greater than zero, the quantifier is
+ ignored. The assertion is obeyed just once when encountered during
+ matching.
+
+ Lookahead assertions
+
+ Lookahead assertions start with (?= for positive assertions and (?! for
+ negative assertions. For example,
+
+ \w+(?=;)
+
+ matches a word followed by a semicolon, but does not include the semi-
+ colon in the match, and
+
+ foo(?!bar)
+
+ matches any occurrence of "foo" that is not followed by "bar". Note
+ that the apparently similar pattern
+
+ (?!foo)bar
+
+ does not find an occurrence of "bar" that is preceded by something
+ other than "foo"; it finds any occurrence of "bar" whatsoever, because
+ the assertion (?!foo) is always true when the next three characters are
+ "bar". A lookbehind assertion is needed to achieve the other effect.
+
+ If you want to force a matching failure at some point in a pattern, the
+ most convenient way to do it is with (?!) because an empty string
+ always matches, so an assertion that requires there not to be an empty
+ string must always fail. The backtracking control verb (*FAIL) or (*F)
+ is a synonym for (?!).
+
+ Lookbehind assertions
+
+ Lookbehind assertions start with (?<= for positive assertions and (?)...) or (?('name')...) to test for a
+ used subpattern by name. For compatibility with earlier versions of
+ PCRE, which had this facility before Perl, the syntax (?(name)...) is
+ also recognized. However, there is a possible ambiguity with this syn-
+ tax, because subpattern names may consist entirely of digits. PCRE
+ looks first for a named subpattern; if it cannot find one and the name
+ consists entirely of digits, PCRE looks for a subpattern of that num-
+ ber, which must be greater than zero. Using subpattern names that con-
+ sist entirely of digits is not recommended.
+
+ Rewriting the above example to use a named subpattern gives this:
+
+ (? \( )? [^()]+ (?() \) )
+
+ If the name used in a condition of this kind is a duplicate, the test
+ is applied to all subpatterns of the same name, and is true if any one
+ of them has matched.
+
+ Checking for pattern recursion
+
+ If the condition is the string (R), and there is no subpattern with the
+ name R, the condition is true if a recursive call to the whole pattern
+ or any subpattern has been made. If digits or a name preceded by amper-
+ sand follow the letter R, for example:
+
+ (?(R3)...) or (?(R&name)...)
+
+ the condition is true if the most recent recursion is into a subpattern
+ whose number or name is given. This condition does not check the entire
+ recursion stack. If the name used in a condition of this kind is a
+ duplicate, the test is applied to all subpatterns of the same name, and
+ is true if any one of them is the most recent recursion.
+
+ At "top level", all these recursion test conditions are false. The
+ syntax for recursive patterns is described below.
+
+ Defining subpatterns for use by reference only
+
+ If the condition is the string (DEFINE), and there is no subpattern
+ with the name DEFINE, the condition is always false. In this case,
+ there may be only one alternative in the subpattern. It is always
+ skipped if control reaches this point in the pattern; the idea of
+ DEFINE is that it can be used to define subroutines that can be refer-
+ enced from elsewhere. (The use of subroutines is described below.) For
+ example, a pattern to match an IPv4 address such as "192.168.23.245"
+ could be written like this (ignore white space and line breaks):
+
+ (?(DEFINE) (? 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d) )
+ \b (?&byte) (\.(?&byte)){3} \b
+
+ The first part of the pattern is a DEFINE group inside which a another
+ group named "byte" is defined. This matches an individual component of
+ an IPv4 address (a number less than 256). When matching takes place,
+ this part of the pattern is skipped because DEFINE acts like a false
+ condition. The rest of the pattern uses references to the named group
+ to match the four dot-separated components of an IPv4 address, insist-
+ ing on a word boundary at each end.
+
+ Assertion conditions
+
+ If the condition is not in any of the above formats, it must be an
+ assertion. This may be a positive or negative lookahead or lookbehind
+ assertion. Consider this pattern, again containing non-significant
+ white space, and with the two alternatives on the second line:
+
+ (?(?=[^a-z]*[a-z])
+ \d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2} )
+
+ The condition is a positive lookahead assertion that matches an
+ optional sequence of non-letters followed by a letter. In other words,
+ it tests for the presence of at least one letter in the subject. If a
+ letter is found, the subject is matched against the first alternative;
+ otherwise it is matched against the second. This pattern matches
+ strings in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are
+ letters and dd are digits.
+
+
+COMMENTS
+
+ There are two ways of including comments in patterns that are processed
+ by PCRE. In both cases, the start of the comment must not be in a char-
+ acter class, nor in the middle of any other sequence of related charac-
+ ters such as (?: or a subpattern name or number. The characters that
+ make up a comment play no part in the pattern matching.
+
+ The sequence (?# marks the start of a comment that continues up to the
+ next closing parenthesis. Nested parentheses are not permitted. If the
+ PCRE_EXTENDED option is set, an unescaped # character also introduces a
+ comment, which in this case continues to immediately after the next
+ newline character or character sequence in the pattern. Which charac-
+ ters are interpreted as newlines is controlled by the options passed to
+ a compiling function or by a special sequence at the start of the pat-
+ tern, as described in the section entitled "Newline conventions" above.
+ Note that the end of this type of comment is a literal newline sequence
+ in the pattern; escape sequences that happen to represent a newline do
+ not count. For example, consider this pattern when PCRE_EXTENDED is
+ set, and the default newline convention is in force:
+
+ abc #comment \n still comment
+
+ On encountering the # character, pcre_compile() skips along, looking
+ for a newline in the pattern. The sequence \n is still literal at this
+ stage, so it does not terminate the comment. Only an actual character
+ with the code value 0x0a (the default newline) does so.
+
+
+RECURSIVE PATTERNS
+
+ Consider the problem of matching a string in parentheses, allowing for
+ unlimited nested parentheses. Without the use of recursion, the best
+ that can be done is to use a pattern that matches up to some fixed
+ depth of nesting. It is not possible to handle an arbitrary nesting
+ depth.
+
+ For some time, Perl has provided a facility that allows regular expres-
+ sions to recurse (amongst other things). It does this by interpolating
+ Perl code in the expression at run time, and the code can refer to the
+ expression itself. A Perl pattern using code interpolation to solve the
+ parentheses problem can be created like this:
+
+ $re = qr{\( (?: (?>[^()]+) | (?p{$re}) )* \)}x;
+
+ The (?p{...}) item interpolates Perl code at run time, and in this case
+ refers recursively to the pattern in which it appears.
+
+ Obviously, PCRE cannot support the interpolation of Perl code. Instead,
+ it supports special syntax for recursion of the entire pattern, and
+ also for individual subpattern recursion. After its introduction in
+ PCRE and Python, this kind of recursion was subsequently introduced
+ into Perl at release 5.10.
+
+ A special item that consists of (? followed by a number greater than
+ zero and a closing parenthesis is a recursive subroutine call of the
+ subpattern of the given number, provided that it occurs inside that
+ subpattern. (If not, it is a non-recursive subroutine call, which is
+ described in the next section.) The special item (?R) or (?0) is a
+ recursive call of the entire regular expression.
+
+ This PCRE pattern solves the nested parentheses problem (assume the
+ PCRE_EXTENDED option is set so that white space is ignored):
+
+ \( ( [^()]++ | (?R) )* \)
+
+ First it matches an opening parenthesis. Then it matches any number of
+ substrings which can either be a sequence of non-parentheses, or a
+ recursive match of the pattern itself (that is, a correctly parenthe-
+ sized substring). Finally there is a closing parenthesis. Note the use
+ of a possessive quantifier to avoid backtracking into sequences of non-
+ parentheses.
+
+ If this were part of a larger pattern, you would not want to recurse
+ the entire pattern, so instead you could use this:
+
+ ( \( ( [^()]++ | (?1) )* \) )
+
+ We have put the pattern into parentheses, and caused the recursion to
+ refer to them instead of the whole pattern.
+
+ In a larger pattern, keeping track of parenthesis numbers can be
+ tricky. This is made easier by the use of relative references. Instead
+ of (?1) in the pattern above you can write (?-2) to refer to the second
+ most recently opened parentheses preceding the recursion. In other
+ words, a negative number counts capturing parentheses leftwards from
+ the point at which it is encountered.
+
+ It is also possible to refer to subsequently opened parentheses, by
+ writing references such as (?+2). However, these cannot be recursive
+ because the reference is not inside the parentheses that are refer-
+ enced. They are always non-recursive subroutine calls, as described in
+ the next section.
+
+ An alternative approach is to use named parentheses instead. The Perl
+ syntax for this is (?&name); PCRE's earlier syntax (?P>name) is also
+ supported. We could rewrite the above example as follows:
+
+ (? \( ( [^()]++ | (?&pn) )* \) )
+
+ If there is more than one subpattern with the same name, the earliest
+ one is used.
+
+ This particular example pattern that we have been looking at contains
+ nested unlimited repeats, and so the use of a possessive quantifier for
+ matching strings of non-parentheses is important when applying the pat-
+ tern to strings that do not match. For example, when this pattern is
+ applied to
+
+ (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()
+
+ it yields "no match" quickly. However, if a possessive quantifier is
+ not used, the match runs for a very long time indeed because there are
+ so many different ways the + and * repeats can carve up the subject,
+ and all have to be tested before failure can be reported.
+
+ At the end of a match, the values of capturing parentheses are those
+ from the outermost level. If you want to obtain intermediate values, a
+ callout function can be used (see below and the pcrecallout documenta-
+ tion). If the pattern above is matched against
+
+ (ab(cd)ef)
+
+ the value for the inner capturing parentheses (numbered 2) is "ef",
+ which is the last value taken on at the top level. If a capturing sub-
+ pattern is not matched at the top level, its final captured value is
+ unset, even if it was (temporarily) set at a deeper level during the
+ matching process.
+
+ If there are more than 15 capturing parentheses in a pattern, PCRE has
+ to obtain extra memory to store data during a recursion, which it does
+ by using pcre_malloc, freeing it via pcre_free afterwards. If no memory
+ can be obtained, the match fails with the PCRE_ERROR_NOMEMORY error.
+
+ Do not confuse the (?R) item with the condition (R), which tests for
+ recursion. Consider this pattern, which matches text in angle brack-
+ ets, allowing for arbitrary nesting. Only digits are allowed in nested
+ brackets (that is, when recursing), whereas any characters are permit-
+ ted at the outer level.
+
+ < (?: (?(R) \d++ | [^<>]*+) | (?R)) * >
+
+ In this pattern, (?(R) is the start of a conditional subpattern, with
+ two different alternatives for the recursive and non-recursive cases.
+ The (?R) item is the actual recursive call.
+
+ Differences in recursion processing between PCRE and Perl
+
+ Recursion processing in PCRE differs from Perl in two important ways.
+ In PCRE (like Python, but unlike Perl), a recursive subpattern call is
+ always treated as an atomic group. That is, once it has matched some of
+ the subject string, it is never re-entered, even if it contains untried
+ alternatives and there is a subsequent matching failure. This can be
+ illustrated by the following pattern, which purports to match a palin-
+ dromic string that contains an odd number of characters (for example,
+ "a", "aba", "abcba", "abcdcba"):
+
+ ^(.|(.)(?1)\2)$
+
+ The idea is that it either matches a single character, or two identical
+ characters surrounding a sub-palindrome. In Perl, this pattern works;
+ in PCRE it does not if the pattern is longer than three characters.
+ Consider the subject string "abcba":
+
+ At the top level, the first character is matched, but as it is not at
+ the end of the string, the first alternative fails; the second alterna-
+ tive is taken and the recursion kicks in. The recursive call to subpat-
+ tern 1 successfully matches the next character ("b"). (Note that the
+ beginning and end of line tests are not part of the recursion).
+
+ Back at the top level, the next character ("c") is compared with what
+ subpattern 2 matched, which was "a". This fails. Because the recursion
+ is treated as an atomic group, there are now no backtracking points,
+ and so the entire match fails. (Perl is able, at this point, to re-
+ enter the recursion and try the second alternative.) However, if the
+ pattern is written with the alternatives in the other order, things are
+ different:
+
+ ^((.)(?1)\2|.)$
+
+ This time, the recursing alternative is tried first, and continues to
+ recurse until it runs out of characters, at which point the recursion
+ fails. But this time we do have another alternative to try at the
+ higher level. That is the big difference: in the previous case the
+ remaining alternative is at a deeper recursion level, which PCRE cannot
+ use.
+
+ To change the pattern so that it matches all palindromic strings, not
+ just those with an odd number of characters, it is tempting to change
+ the pattern to this:
+
+ ^((.)(?1)\2|.?)$
+
+ Again, this works in Perl, but not in PCRE, and for the same reason.
+ When a deeper recursion has matched a single character, it cannot be
+ entered again in order to match an empty string. The solution is to
+ separate the two cases, and write out the odd and even cases as alter-
+ natives at the higher level:
+
+ ^(?:((.)(?1)\2|)|((.)(?3)\4|.))
+
+ If you want to match typical palindromic phrases, the pattern has to
+ ignore all non-word characters, which can be done like this:
+
+ ^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$
+
+ If run with the PCRE_CASELESS option, this pattern matches phrases such
+ as "A man, a plan, a canal: Panama!" and it works well in both PCRE and
+ Perl. Note the use of the possessive quantifier *+ to avoid backtrack-
+ ing into sequences of non-word characters. Without this, PCRE takes a
+ great deal longer (ten times or more) to match typical phrases, and
+ Perl takes so long that you think it has gone into a loop.
+
+ WARNING: The palindrome-matching patterns above work only if the sub-
+ ject string does not start with a palindrome that is shorter than the
+ entire string. For example, although "abcba" is correctly matched, if
+ the subject is "ababa", PCRE finds the palindrome "aba" at the start,
+ then fails at top level because the end of the string does not follow.
+ Once again, it cannot jump back into the recursion to try other alter-
+ natives, so the entire match fails.
+
+ The second way in which PCRE and Perl differ in their recursion pro-
+ cessing is in the handling of captured values. In Perl, when a subpat-
+ tern is called recursively or as a subpattern (see the next section),
+ it has no access to any values that were captured outside the recur-
+ sion, whereas in PCRE these values can be referenced. Consider this
+ pattern:
+
+ ^(.)(\1|a(?2))
+
+ In PCRE, this pattern matches "bab". The first capturing parentheses
+ match "b", then in the second group, when the back reference \1 fails
+ to match "b", the second alternative matches "a" and then recurses. In
+ the recursion, \1 does now match "b" and so the whole match succeeds.
+ In Perl, the pattern fails to match because inside the recursive call
+ \1 cannot access the externally set value.
+
+
+SUBPATTERNS AS SUBROUTINES
+
+ If the syntax for a recursive subpattern call (either by number or by
+ name) is used outside the parentheses to which it refers, it operates
+ like a subroutine in a programming language. The called subpattern may
+ be defined before or after the reference. A numbered reference can be
+ absolute or relative, as in these examples:
+
+ (...(absolute)...)...(?2)...
+ (...(relative)...)...(?-1)...
+ (...(?+1)...(relative)...
+
+ An earlier example pointed out that the pattern
+
+ (sens|respons)e and \1ibility
+
+ matches "sense and sensibility" and "response and responsibility", but
+ not "sense and responsibility". If instead the pattern
+
+ (sens|respons)e and (?1)ibility
+
+ is used, it does match "sense and responsibility" as well as the other
+ two strings. Another example is given in the discussion of DEFINE
+ above.
+
+ All subroutine calls, whether recursive or not, are always treated as
+ atomic groups. That is, once a subroutine has matched some of the sub-
+ ject string, it is never re-entered, even if it contains untried alter-
+ natives and there is a subsequent matching failure. Any capturing
+ parentheses that are set during the subroutine call revert to their
+ previous values afterwards.
+
+ Processing options such as case-independence are fixed when a subpat-
+ tern is defined, so if it is used as a subroutine, such options cannot
+ be changed for different calls. For example, consider this pattern:
+
+ (abc)(?i:(?-1))
+
+ It matches "abcabc". It does not match "abcABC" because the change of
+ processing option does not affect the called subpattern.
+
+
+ONIGURUMA SUBROUTINE SYNTAX
+
+ For compatibility with Oniguruma, the non-Perl syntax \g followed by a
+ name or a number enclosed either in angle brackets or single quotes, is
+ an alternative syntax for referencing a subpattern as a subroutine,
+ possibly recursively. Here are two of the examples used above, rewrit-
+ ten using this syntax:
+
+ (? \( ( (?>[^()]+) | \g )* \) )
+ (sens|respons)e and \g'1'ibility
+
+ PCRE supports an extension to Oniguruma: if a number is preceded by a
+ plus or a minus sign it is taken as a relative reference. For example:
+
+ (abc)(?i:\g<-1>)
+
+ Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not
+ synonymous. The former is a back reference; the latter is a subroutine
+ call.
+
+
+CALLOUTS
+
+ Perl has a feature whereby using the sequence (?{...}) causes arbitrary
+ Perl code to be obeyed in the middle of matching a regular expression.
+ This makes it possible, amongst other things, to extract different sub-
+ strings that match the same pair of parentheses when there is a repeti-
+ tion.
+
+ PCRE provides a similar feature, but of course it cannot obey arbitrary
+ Perl code. The feature is called "callout". The caller of PCRE provides
+ an external function by putting its entry point in the global variable
+ pcre_callout (8-bit library) or pcre[16|32]_callout (16-bit or 32-bit
+ library). By default, this variable contains NULL, which disables all
+ calling out.
+
+ Within a regular expression, (?C) indicates the points at which the
+ external function is to be called. If you want to identify different
+ callout points, you can put a number less than 256 after the letter C.
+ The default value is zero. For example, this pattern has two callout
+ points:
+
+ (?C1)abc(?C2)def
+
+ If the PCRE_AUTO_CALLOUT flag is passed to a compiling function, call-
+ outs are automatically installed before each item in the pattern. They
+ are all numbered 255. If there is a conditional group in the pattern
+ whose condition is an assertion, an additional callout is inserted just
+ before the condition. An explicit callout may also be set at this posi-
+ tion, as in this example:
+
+ (?(?C9)(?=a)abc|def)
+
+ Note that this applies only to assertion conditions, not to other types
+ of condition.
+
+ During matching, when PCRE reaches a callout point, the external func-
+ tion is called. It is provided with the number of the callout, the
+ position in the pattern, and, optionally, one item of data originally
+ supplied by the caller of the matching function. The callout function
+ may cause matching to proceed, to backtrack, or to fail altogether. A
+ complete description of the interface to the callout function is given
+ in the pcrecallout documentation.
+
+
+BACKTRACKING CONTROL
+
+ Perl 5.10 introduced a number of "Special Backtracking Control Verbs",
+ which are still described in the Perl documentation as "experimental
+ and subject to change or removal in a future version of Perl". It goes
+ on to say: "Their usage in production code should be noted to avoid
+ problems during upgrades." The same remarks apply to the PCRE features
+ described in this section.
+
+ The new verbs make use of what was previously invalid syntax: an open-
+ ing parenthesis followed by an asterisk. They are generally of the form
+ (*VERB) or (*VERB:NAME). Some may take either form, possibly behaving
+ differently depending on whether or not a name is present. A name is
+ any sequence of characters that does not include a closing parenthesis.
+ The maximum length of name is 255 in the 8-bit library and 65535 in the
+ 16-bit and 32-bit libraries. If the name is empty, that is, if the
+ closing parenthesis immediately follows the colon, the effect is as if
+ the colon were not there. Any number of these verbs may occur in a
+ pattern.
+
+ Since these verbs are specifically related to backtracking, most of
+ them can be used only when the pattern is to be matched using one of
+ the traditional matching functions, because these use a backtracking
+ algorithm. With the exception of (*FAIL), which behaves like a failing
+ negative assertion, the backtracking control verbs cause an error if
+ encountered by a DFA matching function.
+
+ The behaviour of these verbs in repeated groups, assertions, and in
+ subpatterns called as subroutines (whether or not recursively) is docu-
+ mented below.
+
+ Optimizations that affect backtracking verbs
+
+ PCRE contains some optimizations that are used to speed up matching by
+ running some checks at the start of each match attempt. For example, it
+ may know the minimum length of matching subject, or that a particular
+ character must be present. When one of these optimizations bypasses the
+ running of a match, any included backtracking verbs will not, of
+ course, be processed. You can suppress the start-of-match optimizations
+ by setting the PCRE_NO_START_OPTIMIZE option when calling pcre_com-
+ pile() or pcre_exec(), or by starting the pattern with (*NO_START_OPT).
+ There is more discussion of this option in the section entitled "Option
+ bits for pcre_exec()" in the pcreapi documentation.
+
+ Experiments with Perl suggest that it too has similar optimizations,
+ sometimes leading to anomalous results.
+
+ Verbs that act immediately
+
+ The following verbs act as soon as they are encountered. They may not
+ be followed by a name.
+
+ (*ACCEPT)
+
+ This verb causes the match to end successfully, skipping the remainder
+ of the pattern. However, when it is inside a subpattern that is called
+ as a subroutine, only that subpattern is ended successfully. Matching
+ then continues at the outer level. If (*ACCEPT) in triggered in a posi-
+ tive assertion, the assertion succeeds; in a negative assertion, the
+ assertion fails.
+
+ If (*ACCEPT) is inside capturing parentheses, the data so far is cap-
+ tured. For example:
+
+ A((?:A|B(*ACCEPT)|C)D)
+
+ This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" is cap-
+ tured by the outer parentheses.
+
+ (*FAIL) or (*F)
+
+ This verb causes a matching failure, forcing backtracking to occur. It
+ is equivalent to (?!) but easier to read. The Perl documentation notes
+ that it is probably useful only when combined with (?{}) or (??{}).
+ Those are, of course, Perl features that are not present in PCRE. The
+ nearest equivalent is the callout feature, as for example in this pat-
+ tern:
+
+ a+(?C)(*FAIL)
+
+ A match with the string "aaaa" always fails, but the callout is taken
+ before each backtrack happens (in this example, 10 times).
+
+ Recording which path was taken
+
+ There is one verb whose main purpose is to track how a match was
+ arrived at, though it also has a secondary use in conjunction with
+ advancing the match starting point (see (*SKIP) below).
+
+ (*MARK:NAME) or (*:NAME)
+
+ A name is always required with this verb. There may be as many
+ instances of (*MARK) as you like in a pattern, and their names do not
+ have to be unique.
+
+ When a match succeeds, the name of the last-encountered (*MARK:NAME),
+ (*PRUNE:NAME), or (*THEN:NAME) on the matching path is passed back to
+ the caller as described in the section entitled "Extra data for
+ pcre_exec()" in the pcreapi documentation. Here is an example of
+ pcretest output, where the /K modifier requests the retrieval and out-
+ putting of (*MARK) data:
+
+ re> /X(*MARK:A)Y|X(*MARK:B)Z/K
+ data> XY
+ 0: XY
+ MK: A
+ XZ
+ 0: XZ
+ MK: B
+
+ The (*MARK) name is tagged with "MK:" in this output, and in this exam-
+ ple it indicates which of the two alternatives matched. This is a more
+ efficient way of obtaining this information than putting each alterna-
+ tive in its own capturing parentheses.
+
+ If a verb with a name is encountered in a positive assertion that is
+ true, the name is recorded and passed back if it is the last-encoun-
+ tered. This does not happen for negative assertions or failing positive
+ assertions.
+
+ After a partial match or a failed match, the last encountered name in
+ the entire match process is returned. For example:
+
+ re> /X(*MARK:A)Y|X(*MARK:B)Z/K
+ data> XP
+ No match, mark = B
+
+ Note that in this unanchored example the mark is retained from the
+ match attempt that started at the letter "X" in the subject. Subsequent
+ match attempts starting at "P" and then with an empty string do not get
+ as far as the (*MARK) item, but nevertheless do not reset it.
+
+ If you are interested in (*MARK) values after failed matches, you
+ should probably set the PCRE_NO_START_OPTIMIZE option (see above) to
+ ensure that the match is always attempted.
+
+ Verbs that act after backtracking
+
+ The following verbs do nothing when they are encountered. Matching con-
+ tinues with what follows, but if there is no subsequent match, causing
+ a backtrack to the verb, a failure is forced. That is, backtracking
+ cannot pass to the left of the verb. However, when one of these verbs
+ appears inside an atomic group or an assertion that is true, its effect
+ is confined to that group, because once the group has been matched,
+ there is never any backtracking into it. In this situation, backtrack-
+ ing can "jump back" to the left of the entire atomic group or asser-
+ tion. (Remember also, as stated above, that this localization also
+ applies in subroutine calls.)
+
+ These verbs differ in exactly what kind of failure occurs when back-
+ tracking reaches them. The behaviour described below is what happens
+ when the verb is not in a subroutine or an assertion. Subsequent sec-
+ tions cover these special cases.
+
+ (*COMMIT)
+
+ This verb, which may not be followed by a name, causes the whole match
+ to fail outright if there is a later matching failure that causes back-
+ tracking to reach it. Even if the pattern is unanchored, no further
+ attempts to find a match by advancing the starting point take place. If
+ (*COMMIT) is the only backtracking verb that is encountered, once it
+ has been passed pcre_exec() is committed to finding a match at the cur-
+ rent starting point, or not at all. For example:
+
+ a+(*COMMIT)b
+
+ This matches "xxaab" but not "aacaab". It can be thought of as a kind
+ of dynamic anchor, or "I've started, so I must finish." The name of the
+ most recently passed (*MARK) in the path is passed back when (*COMMIT)
+ forces a match failure.
+
+ If there is more than one backtracking verb in a pattern, a different
+ one that follows (*COMMIT) may be triggered first, so merely passing
+ (*COMMIT) during a match does not always guarantee that a match must be
+ at this starting point.
+
+ Note that (*COMMIT) at the start of a pattern is not the same as an
+ anchor, unless PCRE's start-of-match optimizations are turned off, as
+ shown in this pcretest example:
+
+ re> /(*COMMIT)abc/
+ data> xyzabc
+ 0: abc
+ xyzabc\Y
+ No match
+
+ PCRE knows that any match must start with "a", so the optimization
+ skips along the subject to "a" before running the first match attempt,
+ which succeeds. When the optimization is disabled by the \Y escape in
+ the second subject, the match starts at "x" and so the (*COMMIT) causes
+ it to fail without trying any other starting points.
+
+ (*PRUNE) or (*PRUNE:NAME)
+
+ This verb causes the match to fail at the current starting position in
+ the subject if there is a later matching failure that causes backtrack-
+ ing to reach it. If the pattern is unanchored, the normal "bumpalong"
+ advance to the next starting character then happens. Backtracking can
+ occur as usual to the left of (*PRUNE), before it is reached, or when
+ matching to the right of (*PRUNE), but if there is no match to the
+ right, backtracking cannot cross (*PRUNE). In simple cases, the use of
+ (*PRUNE) is just an alternative to an atomic group or possessive quan-
+ tifier, but there are some uses of (*PRUNE) that cannot be expressed in
+ any other way. In an anchored pattern (*PRUNE) has the same effect as
+ (*COMMIT).
+
+ The behaviour of (*PRUNE:NAME) is the not the same as
+ (*MARK:NAME)(*PRUNE). It is like (*MARK:NAME) in that the name is
+ remembered for passing back to the caller. However, (*SKIP:NAME)
+ searches only for names set with (*MARK).
+
+ (*SKIP)
+
+ This verb, when given without a name, is like (*PRUNE), except that if
+ the pattern is unanchored, the "bumpalong" advance is not to the next
+ character, but to the position in the subject where (*SKIP) was encoun-
+ tered. (*SKIP) signifies that whatever text was matched leading up to
+ it cannot be part of a successful match. Consider:
+
+ a+(*SKIP)b
+
+ If the subject is "aaaac...", after the first match attempt fails
+ (starting at the first character in the string), the starting point
+ skips on to start the next attempt at "c". Note that a possessive quan-
+ tifer does not have the same effect as this example; although it would
+ suppress backtracking during the first match attempt, the second
+ attempt would start at the second character instead of skipping on to
+ "c".
+
+ (*SKIP:NAME)
+
+ When (*SKIP) has an associated name, its behaviour is modified. When it
+ is triggered, the previous path through the pattern is searched for the
+ most recent (*MARK) that has the same name. If one is found, the
+ "bumpalong" advance is to the subject position that corresponds to that
+ (*MARK) instead of to where (*SKIP) was encountered. If no (*MARK) with
+ a matching name is found, the (*SKIP) is ignored.
+
+ Note that (*SKIP:NAME) searches only for names set by (*MARK:NAME). It
+ ignores names that are set by (*PRUNE:NAME) or (*THEN:NAME).
+
+ (*THEN) or (*THEN:NAME)
+
+ This verb causes a skip to the next innermost alternative when back-
+ tracking reaches it. That is, it cancels any further backtracking
+ within the current alternative. Its name comes from the observation
+ that it can be used for a pattern-based if-then-else block:
+
+ ( COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ ) ...
+
+ If the COND1 pattern matches, FOO is tried (and possibly further items
+ after the end of the group if FOO succeeds); on failure, the matcher
+ skips to the second alternative and tries COND2, without backtracking
+ into COND1. If that succeeds and BAR fails, COND3 is tried. If subse-
+ quently BAZ fails, there are no more alternatives, so there is a back-
+ track to whatever came before the entire group. If (*THEN) is not
+ inside an alternation, it acts like (*PRUNE).
+
+ The behaviour of (*THEN:NAME) is the not the same as
+ (*MARK:NAME)(*THEN). It is like (*MARK:NAME) in that the name is
+ remembered for passing back to the caller. However, (*SKIP:NAME)
+ searches only for names set with (*MARK).
+
+ A subpattern that does not contain a | character is just a part of the
+ enclosing alternative; it is not a nested alternation with only one
+ alternative. The effect of (*THEN) extends beyond such a subpattern to
+ the enclosing alternative. Consider this pattern, where A, B, etc. are
+ complex pattern fragments that do not contain any | characters at this
+ level:
+
+ A (B(*THEN)C) | D
+
+ If A and B are matched, but there is a failure in C, matching does not
+ backtrack into A; instead it moves to the next alternative, that is, D.
+ However, if the subpattern containing (*THEN) is given an alternative,
+ it behaves differently:
+
+ A (B(*THEN)C | (*FAIL)) | D
+
+ The effect of (*THEN) is now confined to the inner subpattern. After a
+ failure in C, matching moves to (*FAIL), which causes the whole subpat-
+ tern to fail because there are no more alternatives to try. In this
+ case, matching does now backtrack into A.
+
+ Note that a conditional subpattern is not considered as having two
+ alternatives, because only one is ever used. In other words, the |
+ character in a conditional subpattern has a different meaning. Ignoring
+ white space, consider:
+
+ ^.*? (?(?=a) a | b(*THEN)c )
+
+ If the subject is "ba", this pattern does not match. Because .*? is
+ ungreedy, it initially matches zero characters. The condition (?=a)
+ then fails, the character "b" is matched, but "c" is not. At this
+ point, matching does not backtrack to .*? as might perhaps be expected
+ from the presence of the | character. The conditional subpattern is
+ part of the single alternative that comprises the whole pattern, and so
+ the match fails. (If there was a backtrack into .*?, allowing it to
+ match "b", the match would succeed.)
+
+ The verbs just described provide four different "strengths" of control
+ when subsequent matching fails. (*THEN) is the weakest, carrying on the
+ match at the next alternative. (*PRUNE) comes next, failing the match
+ at the current starting position, but allowing an advance to the next
+ character (for an unanchored pattern). (*SKIP) is similar, except that
+ the advance may be more than one character. (*COMMIT) is the strongest,
+ causing the entire match to fail.
+
+ More than one backtracking verb
+
+ If more than one backtracking verb is present in a pattern, the one
+ that is backtracked onto first acts. For example, consider this pat-
+ tern, where A, B, etc. are complex pattern fragments:
+
+ (A(*COMMIT)B(*THEN)C|ABD)
+
+ If A matches but B fails, the backtrack to (*COMMIT) causes the entire
+ match to fail. However, if A and B match, but C fails, the backtrack to
+ (*THEN) causes the next alternative (ABD) to be tried. This behaviour
+ is consistent, but is not always the same as Perl's. It means that if
+ two or more backtracking verbs appear in succession, all the the last
+ of them has no effect. Consider this example:
+
+ ...(*COMMIT)(*PRUNE)...
+
+ If there is a matching failure to the right, backtracking onto (*PRUNE)
+ cases it to be triggered, and its action is taken. There can never be a
+ backtrack onto (*COMMIT).
+
+ Backtracking verbs in repeated groups
+
+ PCRE differs from Perl in its handling of backtracking verbs in
+ repeated groups. For example, consider:
+
+ /(a(*COMMIT)b)+ac/
+
+ If the subject is "abac", Perl matches, but PCRE fails because the
+ (*COMMIT) in the second repeat of the group acts.
+
+ Backtracking verbs in assertions
+
+ (*FAIL) in an assertion has its normal effect: it forces an immediate
+ backtrack.
+
+ (*ACCEPT) in a positive assertion causes the assertion to succeed with-
+ out any further processing. In a negative assertion, (*ACCEPT) causes
+ the assertion to fail without any further processing.
+
+ The other backtracking verbs are not treated specially if they appear
+ in a positive assertion. In particular, (*THEN) skips to the next
+ alternative in the innermost enclosing group that has alternations,
+ whether or not this is within the assertion.
+
+ Negative assertions are, however, different, in order to ensure that
+ changing a positive assertion into a negative assertion changes its
+ result. Backtracking into (*COMMIT), (*SKIP), or (*PRUNE) causes a neg-
+ ative assertion to be true, without considering any further alternative
+ branches in the assertion. Backtracking into (*THEN) causes it to skip
+ to the next enclosing alternative within the assertion (the normal be-
+ haviour), but if the assertion does not have such an alternative,
+ (*THEN) behaves like (*PRUNE).
+
+ Backtracking verbs in subroutines
+
+ These behaviours occur whether or not the subpattern is called recur-
+ sively. Perl's treatment of subroutines is different in some cases.
+
+ (*FAIL) in a subpattern called as a subroutine has its normal effect:
+ it forces an immediate backtrack.
+
+ (*ACCEPT) in a subpattern called as a subroutine causes the subroutine
+ match to succeed without any further processing. Matching then contin-
+ ues after the subroutine call.
+
+ (*COMMIT), (*SKIP), and (*PRUNE) in a subpattern called as a subroutine
+ cause the subroutine match to fail.
+
+ (*THEN) skips to the next alternative in the innermost enclosing group
+ within the subpattern that has alternatives. If there is no such group
+ within the subpattern, (*THEN) causes the subroutine match to fail.
+
+
+SEE ALSO
+
+ pcreapi(3), pcrecallout(3), pcrematching(3), pcresyntax(3), pcre(3),
+ pcre16(3), pcre32(3).
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 26 April 2013
+ Copyright (c) 1997-2013 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCRESYNTAX(3) Library Functions Manual PCRESYNTAX(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+PCRE REGULAR EXPRESSION SYNTAX SUMMARY
+
+ The full syntax and semantics of the regular expressions that are sup-
+ ported by PCRE are described in the pcrepattern documentation. This
+ document contains a quick-reference summary of the syntax.
+
+
+QUOTING
+
+ \x where x is non-alphanumeric is a literal x
+ \Q...\E treat enclosed characters as literal
+
+
+CHARACTERS
+
+ \a alarm, that is, the BEL character (hex 07)
+ \cx "control-x", where x is any ASCII character
+ \e escape (hex 1B)
+ \f form feed (hex 0C)
+ \n newline (hex 0A)
+ \r carriage return (hex 0D)
+ \t tab (hex 09)
+ \ddd character with octal code ddd, or backreference
+ \xhh character with hex code hh
+ \x{hhh..} character with hex code hhh..
+
+
+CHARACTER TYPES
+
+ . any character except newline;
+ in dotall mode, any character whatsoever
+ \C one data unit, even in UTF mode (best avoided)
+ \d a decimal digit
+ \D a character that is not a decimal digit
+ \h a horizontal white space character
+ \H a character that is not a horizontal white space character
+ \N a character that is not a newline
+ \p{xx} a character with the xx property
+ \P{xx} a character without the xx property
+ \R a newline sequence
+ \s a white space character
+ \S a character that is not a white space character
+ \v a vertical white space character
+ \V a character that is not a vertical white space character
+ \w a "word" character
+ \W a "non-word" character
+ \X a Unicode extended grapheme cluster
+
+ In PCRE, by default, \d, \D, \s, \S, \w, and \W recognize only ASCII
+ characters, even in a UTF mode. However, this can be changed by setting
+ the PCRE_UCP option.
+
+
+GENERAL CATEGORY PROPERTIES FOR \p and \P
+
+ C Other
+ Cc Control
+ Cf Format
+ Cn Unassigned
+ Co Private use
+ Cs Surrogate
+
+ L Letter
+ Ll Lower case letter
+ Lm Modifier letter
+ Lo Other letter
+ Lt Title case letter
+ Lu Upper case letter
+ L& Ll, Lu, or Lt
+
+ M Mark
+ Mc Spacing mark
+ Me Enclosing mark
+ Mn Non-spacing mark
+
+ N Number
+ Nd Decimal number
+ Nl Letter number
+ No Other number
+
+ P Punctuation
+ Pc Connector punctuation
+ Pd Dash punctuation
+ Pe Close punctuation
+ Pf Final punctuation
+ Pi Initial punctuation
+ Po Other punctuation
+ Ps Open punctuation
+
+ S Symbol
+ Sc Currency symbol
+ Sk Modifier symbol
+ Sm Mathematical symbol
+ So Other symbol
+
+ Z Separator
+ Zl Line separator
+ Zp Paragraph separator
+ Zs Space separator
+
+
+PCRE SPECIAL CATEGORY PROPERTIES FOR \p and \P
+
+ Xan Alphanumeric: union of properties L and N
+ Xps POSIX space: property Z or tab, NL, VT, FF, CR
+ Xsp Perl space: property Z or tab, NL, FF, CR
+ Xuc Univerally-named character: one that can be
+ represented by a Universal Character Name
+ Xwd Perl word: property Xan or underscore
+
+
+SCRIPT NAMES FOR \p AND \P
+
+ Arabic, Armenian, Avestan, Balinese, Bamum, Batak, Bengali, Bopomofo,
+ Brahmi, Braille, Buginese, Buhid, Canadian_Aboriginal, Carian, Chakma,
+ Cham, Cherokee, Common, Coptic, Cuneiform, Cypriot, Cyrillic, Deseret,
+ Devanagari, Egyptian_Hieroglyphs, Ethiopic, Georgian, Glagolitic,
+ Gothic, Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hira-
+ gana, Imperial_Aramaic, Inherited, Inscriptional_Pahlavi, Inscrip-
+ tional_Parthian, Javanese, Kaithi, Kannada, Katakana, Kayah_Li,
+ Kharoshthi, Khmer, Lao, Latin, Lepcha, Limbu, Linear_B, Lisu, Lycian,
+ Lydian, Malayalam, Mandaic, Meetei_Mayek, Meroitic_Cursive,
+ Meroitic_Hieroglyphs, Miao, Mongolian, Myanmar, New_Tai_Lue, Nko,
+ Ogham, Old_Italic, Old_Persian, Old_South_Arabian, Old_Turkic,
+ Ol_Chiki, Oriya, Osmanya, Phags_Pa, Phoenician, Rejang, Runic, Samari-
+ tan, Saurashtra, Sharada, Shavian, Sinhala, Sora_Sompeng, Sundanese,
+ Syloti_Nagri, Syriac, Tagalog, Tagbanwa, Tai_Le, Tai_Tham, Tai_Viet,
+ Takri, Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Vai,
+ Yi.
+
+
+CHARACTER CLASSES
+
+ [...] positive character class
+ [^...] negative character class
+ [x-y] range (can be used for hex characters)
+ [[:xxx:]] positive POSIX named set
+ [[:^xxx:]] negative POSIX named set
+
+ alnum alphanumeric
+ alpha alphabetic
+ ascii 0-127
+ blank space or tab
+ cntrl control character
+ digit decimal digit
+ graph printing, excluding space
+ lower lower case letter
+ print printing, including space
+ punct printing, excluding alphanumeric
+ space white space
+ upper upper case letter
+ word same as \w
+ xdigit hexadecimal digit
+
+ In PCRE, POSIX character set names recognize only ASCII characters by
+ default, but some of them use Unicode properties if PCRE_UCP is set.
+ You can use \Q...\E inside a character class.
+
+
+QUANTIFIERS
+
+ ? 0 or 1, greedy
+ ?+ 0 or 1, possessive
+ ?? 0 or 1, lazy
+ * 0 or more, greedy
+ *+ 0 or more, possessive
+ *? 0 or more, lazy
+ + 1 or more, greedy
+ ++ 1 or more, possessive
+ +? 1 or more, lazy
+ {n} exactly n
+ {n,m} at least n, no more than m, greedy
+ {n,m}+ at least n, no more than m, possessive
+ {n,m}? at least n, no more than m, lazy
+ {n,} n or more, greedy
+ {n,}+ n or more, possessive
+ {n,}? n or more, lazy
+
+
+ANCHORS AND SIMPLE ASSERTIONS
+
+ \b word boundary
+ \B not a word boundary
+ ^ start of subject
+ also after internal newline in multiline mode
+ \A start of subject
+ $ end of subject
+ also before newline at end of subject
+ also before internal newline in multiline mode
+ \Z end of subject
+ also before newline at end of subject
+ \z end of subject
+ \G first matching position in subject
+
+
+MATCH POINT RESET
+
+ \K reset start of match
+
+
+ALTERNATION
+
+ expr|expr|expr...
+
+
+CAPTURING
+
+ (...) capturing group
+ (?...) named capturing group (Perl)
+ (?'name'...) named capturing group (Perl)
+ (?P...) named capturing group (Python)
+ (?:...) non-capturing group
+ (?|...) non-capturing group; reset group numbers for
+ capturing groups in each alternative
+
+
+ATOMIC GROUPS
+
+ (?>...) atomic, non-capturing group
+
+
+COMMENT
+
+ (?#....) comment (not nestable)
+
+
+OPTION SETTING
+
+ (?i) caseless
+ (?J) allow duplicate names
+ (?m) multiline
+ (?s) single line (dotall)
+ (?U) default ungreedy (lazy)
+ (?x) extended (ignore white space)
+ (?-...) unset option(s)
+
+ The following are recognized only at the start of a pattern or after
+ one of the newline-setting options with similar syntax:
+
+ (*LIMIT_MATCH=d) set the match limit to d (decimal number)
+ (*LIMIT_RECURSION=d) set the recursion limit to d (decimal number)
+ (*NO_START_OPT) no start-match optimization (PCRE_NO_START_OPTIMIZE)
+ (*UTF8) set UTF-8 mode: 8-bit library (PCRE_UTF8)
+ (*UTF16) set UTF-16 mode: 16-bit library (PCRE_UTF16)
+ (*UTF32) set UTF-32 mode: 32-bit library (PCRE_UTF32)
+ (*UTF) set appropriate UTF mode for the library in use
+ (*UCP) set PCRE_UCP (use Unicode properties for \d etc)
+
+
+LOOKAHEAD AND LOOKBEHIND ASSERTIONS
+
+ (?=...) positive look ahead
+ (?!...) negative look ahead
+ (?<=...) positive look behind
+ (? reference by name (Perl)
+ \k'name' reference by name (Perl)
+ \g{name} reference by name (Perl)
+ \k{name} reference by name (.NET)
+ (?P=name) reference by name (Python)
+
+
+SUBROUTINE REFERENCES (POSSIBLY RECURSIVE)
+
+ (?R) recurse whole pattern
+ (?n) call subpattern by absolute number
+ (?+n) call subpattern by relative number
+ (?-n) call subpattern by relative number
+ (?&name) call subpattern by name (Perl)
+ (?P>name) call subpattern by name (Python)
+ \g call subpattern by name (Oniguruma)
+ \g'name' call subpattern by name (Oniguruma)
+ \g call subpattern by absolute number (Oniguruma)
+ \g'n' call subpattern by absolute number (Oniguruma)
+ \g<+n> call subpattern by relative number (PCRE extension)
+ \g'+n' call subpattern by relative number (PCRE extension)
+ \g<-n> call subpattern by relative number (PCRE extension)
+ \g'-n' call subpattern by relative number (PCRE extension)
+
+
+CONDITIONAL PATTERNS
+
+ (?(condition)yes-pattern)
+ (?(condition)yes-pattern|no-pattern)
+
+ (?(n)... absolute reference condition
+ (?(+n)... relative reference condition
+ (?(-n)... relative reference condition
+ (?()... named reference condition (Perl)
+ (?('name')... named reference condition (Perl)
+ (?(name)... named reference condition (PCRE)
+ (?(R)... overall recursion condition
+ (?(Rn)... specific group recursion condition
+ (?(R&name)... specific recursion condition
+ (?(DEFINE)... define subpattern for reference
+ (?(assert)... assertion condition
+
+
+BACKTRACKING CONTROL
+
+ The following act immediately they are reached:
+
+ (*ACCEPT) force successful match
+ (*FAIL) force backtrack; synonym (*F)
+ (*MARK:NAME) set name to be passed back; synonym (*:NAME)
+
+ The following act only when a subsequent match failure causes a back-
+ track to reach them. They all force a match failure, but they differ in
+ what happens afterwards. Those that advance the start-of-match point do
+ so only if the pattern is not anchored.
+
+ (*COMMIT) overall failure, no advance of starting point
+ (*PRUNE) advance to next starting character
+ (*PRUNE:NAME) equivalent to (*MARK:NAME)(*PRUNE)
+ (*SKIP) advance to current matching position
+ (*SKIP:NAME) advance to position corresponding to an earlier
+ (*MARK:NAME); if not found, the (*SKIP) is ignored
+ (*THEN) local failure, backtrack to next alternation
+ (*THEN:NAME) equivalent to (*MARK:NAME)(*THEN)
+
+
+NEWLINE CONVENTIONS
+
+ These are recognized only at the very start of the pattern or after a
+ (*BSR_...), (*UTF8), (*UTF16), (*UTF32) or (*UCP) option.
+
+ (*CR) carriage return only
+ (*LF) linefeed only
+ (*CRLF) carriage return followed by linefeed
+ (*ANYCRLF) all three of the above
+ (*ANY) any Unicode newline sequence
+
+
+WHAT \R MATCHES
+
+ These are recognized only at the very start of the pattern or after a
+ (*...) option that sets the newline convention or a UTF or UCP mode.
+
+ (*BSR_ANYCRLF) CR, LF, or CRLF
+ (*BSR_UNICODE) any Unicode newline sequence
+
+
+CALLOUTS
+
+ (?C) callout
+ (?Cn) callout with data n
+
+
+SEE ALSO
+
+ pcrepattern(3), pcreapi(3), pcrecallout(3), pcrematching(3), pcre(3).
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 26 April 2013
+ Copyright (c) 1997-2013 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCREUNICODE(3) Library Functions Manual PCREUNICODE(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+UTF-8, UTF-16, UTF-32, AND UNICODE PROPERTY SUPPORT
+
+ As well as UTF-8 support, PCRE also supports UTF-16 (from release 8.30)
+ and UTF-32 (from release 8.32), by means of two additional libraries.
+ They can be built as well as, or instead of, the 8-bit library.
+
+
+UTF-8 SUPPORT
+
+ In order process UTF-8 strings, you must build PCRE's 8-bit library
+ with UTF support, and, in addition, you must call pcre_compile() with
+ the PCRE_UTF8 option flag, or the pattern must start with the sequence
+ (*UTF8) or (*UTF). When either of these is the case, both the pattern
+ and any subject strings that are matched against it are treated as
+ UTF-8 strings instead of strings of individual 1-byte characters.
+
+
+UTF-16 AND UTF-32 SUPPORT
+
+ In order process UTF-16 or UTF-32 strings, you must build PCRE's 16-bit
+ or 32-bit library with UTF support, and, in addition, you must call
+ pcre16_compile() or pcre32_compile() with the PCRE_UTF16 or PCRE_UTF32
+ option flag, as appropriate. Alternatively, the pattern must start with
+ the sequence (*UTF16), (*UTF32), as appropriate, or (*UTF), which can
+ be used with either library. When UTF mode is set, both the pattern and
+ any subject strings that are matched against it are treated as UTF-16
+ or UTF-32 strings instead of strings of individual 16-bit or 32-bit
+ characters.
+
+
+UTF SUPPORT OVERHEAD
+
+ If you compile PCRE with UTF support, but do not use it at run time,
+ the library will be a bit bigger, but the additional run time overhead
+ is limited to testing the PCRE_UTF[8|16|32] flag occasionally, so
+ should not be very big.
+
+
+UNICODE PROPERTY SUPPORT
+
+ If PCRE is built with Unicode character property support (which implies
+ UTF support), the escape sequences \p{..}, \P{..}, and \X can be used.
+ The available properties that can be tested are limited to the general
+ category properties such as Lu for an upper case letter or Nd for a
+ decimal number, the Unicode script names such as Arabic or Han, and the
+ derived properties Any and L&. Full lists is given in the pcrepattern
+ and pcresyntax documentation. Only the short names for properties are
+ supported. For example, \p{L} matches a letter. Its Perl synonym,
+ \p{Letter}, is not supported. Furthermore, in Perl, many properties
+ may optionally be prefixed by "Is", for compatibility with Perl 5.6.
+ PCRE does not support this.
+
+ Validity of UTF-8 strings
+
+ When you set the PCRE_UTF8 flag, the byte strings passed as patterns
+ and subjects are (by default) checked for validity on entry to the rel-
+ evant functions. The entire string is checked before any other process-
+ ing takes place. From release 7.3 of PCRE, the check is according the
+ rules of RFC 3629, which are themselves derived from the Unicode speci-
+ fication. Earlier releases of PCRE followed the rules of RFC 2279,
+ which allows the full range of 31-bit values (0 to 0x7FFFFFFF). The
+ current check allows only values in the range U+0 to U+10FFFF, exclud-
+ ing the surrogate area. (From release 8.33 the so-called "non-charac-
+ ter" code points are no longer excluded because Unicode corrigendum #9
+ makes it clear that they should not be.)
+
+ Characters in the "Surrogate Area" of Unicode are reserved for use by
+ UTF-16, where they are used in pairs to encode codepoints with values
+ greater than 0xFFFF. The code points that are encoded by UTF-16 pairs
+ are available independently in the UTF-8 and UTF-32 encodings. (In
+ other words, the whole surrogate thing is a fudge for UTF-16 which
+ unfortunately messes up UTF-8 and UTF-32.)
+
+ If an invalid UTF-8 string is passed to PCRE, an error return is given.
+ At compile time, the only additional information is the offset to the
+ first byte of the failing character. The run-time functions pcre_exec()
+ and pcre_dfa_exec() also pass back this information, as well as a more
+ detailed reason code if the caller has provided memory in which to do
+ this.
+
+ In some situations, you may already know that your strings are valid,
+ and therefore want to skip these checks in order to improve perfor-
+ mance, for example in the case of a long subject string that is being
+ scanned repeatedly. If you set the PCRE_NO_UTF8_CHECK flag at compile
+ time or at run time, PCRE assumes that the pattern or subject it is
+ given (respectively) contains only valid UTF-8 codes. In this case, it
+ does not diagnose an invalid UTF-8 string.
+
+ Note that passing PCRE_NO_UTF8_CHECK to pcre_compile() just disables
+ the check for the pattern; it does not also apply to subject strings.
+ If you want to disable the check for a subject string you must pass
+ this option to pcre_exec() or pcre_dfa_exec().
+
+ If you pass an invalid UTF-8 string when PCRE_NO_UTF8_CHECK is set, the
+ result is undefined and your program may crash.
+
+ Validity of UTF-16 strings
+
+ When you set the PCRE_UTF16 flag, the strings of 16-bit data units that
+ are passed as patterns and subjects are (by default) checked for valid-
+ ity on entry to the relevant functions. Values other than those in the
+ surrogate range U+D800 to U+DFFF are independent code points. Values in
+ the surrogate range must be used in pairs in the correct manner.
+
+ If an invalid UTF-16 string is passed to PCRE, an error return is
+ given. At compile time, the only additional information is the offset
+ to the first data unit of the failing character. The run-time functions
+ pcre16_exec() and pcre16_dfa_exec() also pass back this information, as
+ well as a more detailed reason code if the caller has provided memory
+ in which to do this.
+
+ In some situations, you may already know that your strings are valid,
+ and therefore want to skip these checks in order to improve perfor-
+ mance. If you set the PCRE_NO_UTF16_CHECK flag at compile time or at
+ run time, PCRE assumes that the pattern or subject it is given (respec-
+ tively) contains only valid UTF-16 sequences. In this case, it does not
+ diagnose an invalid UTF-16 string. However, if an invalid string is
+ passed, the result is undefined.
+
+ Validity of UTF-32 strings
+
+ When you set the PCRE_UTF32 flag, the strings of 32-bit data units that
+ are passed as patterns and subjects are (by default) checked for valid-
+ ity on entry to the relevant functions. This check allows only values
+ in the range U+0 to U+10FFFF, excluding the surrogate area U+D800 to
+ U+DFFF.
+
+ If an invalid UTF-32 string is passed to PCRE, an error return is
+ given. At compile time, the only additional information is the offset
+ to the first data unit of the failing character. The run-time functions
+ pcre32_exec() and pcre32_dfa_exec() also pass back this information, as
+ well as a more detailed reason code if the caller has provided memory
+ in which to do this.
+
+ In some situations, you may already know that your strings are valid,
+ and therefore want to skip these checks in order to improve perfor-
+ mance. If you set the PCRE_NO_UTF32_CHECK flag at compile time or at
+ run time, PCRE assumes that the pattern or subject it is given (respec-
+ tively) contains only valid UTF-32 sequences. In this case, it does not
+ diagnose an invalid UTF-32 string. However, if an invalid string is
+ passed, the result is undefined.
+
+ General comments about UTF modes
+
+ 1. Codepoints less than 256 can be specified in patterns by either
+ braced or unbraced hexadecimal escape sequences (for example, \x{b3} or
+ \xb3). Larger values have to use braced sequences.
+
+ 2. Octal numbers up to \777 are recognized, and in UTF-8 mode they
+ match two-byte characters for values greater than \177.
+
+ 3. Repeat quantifiers apply to complete UTF characters, not to individ-
+ ual data units, for example: \x{100}{3}.
+
+ 4. The dot metacharacter matches one UTF character instead of a single
+ data unit.
+
+ 5. The escape sequence \C can be used to match a single byte in UTF-8
+ mode, or a single 16-bit data unit in UTF-16 mode, or a single 32-bit
+ data unit in UTF-32 mode, but its use can lead to some strange effects
+ because it breaks up multi-unit characters (see the description of \C
+ in the pcrepattern documentation). The use of \C is not supported in
+ the alternative matching function pcre[16|32]_dfa_exec(), nor is it
+ supported in UTF mode by the JIT optimization of pcre[16|32]_exec(). If
+ JIT optimization is requested for a UTF pattern that contains \C, it
+ will not succeed, and so the matching will be carried out by the normal
+ interpretive function.
+
+ 6. The character escapes \b, \B, \d, \D, \s, \S, \w, and \W correctly
+ test characters of any code value, but, by default, the characters that
+ PCRE recognizes as digits, spaces, or word characters remain the same
+ set as in non-UTF mode, all with values less than 256. This remains
+ true even when PCRE is built to include Unicode property support,
+ because to do otherwise would slow down PCRE in many common cases. Note
+ in particular that this applies to \b and \B, because they are defined
+ in terms of \w and \W. If you really want to test for a wider sense of,
+ say, "digit", you can use explicit Unicode property tests such as
+ \p{Nd}. Alternatively, if you set the PCRE_UCP option, the way that the
+ character escapes work is changed so that Unicode properties are used
+ to determine which characters match. There are more details in the sec-
+ tion on generic character types in the pcrepattern documentation.
+
+ 7. Similarly, characters that match the POSIX named character classes
+ are all low-valued characters, unless the PCRE_UCP option is set.
+
+ 8. However, the horizontal and vertical white space matching escapes
+ (\h, \H, \v, and \V) do match all the appropriate Unicode characters,
+ whether or not PCRE_UCP is set.
+
+ 9. Case-insensitive matching applies only to characters whose values
+ are less than 128, unless PCRE is built with Unicode property support.
+ A few Unicode characters such as Greek sigma have more than two code-
+ points that are case-equivalent. Up to and including PCRE release 8.31,
+ only one-to-one case mappings were supported, but later releases (with
+ Unicode property support) do treat as case-equivalent all versions of
+ characters such as Greek sigma.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 27 February 2013
+ Copyright (c) 1997-2013 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCREJIT(3) Library Functions Manual PCREJIT(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+PCRE JUST-IN-TIME COMPILER SUPPORT
+
+ Just-in-time compiling is a heavyweight optimization that can greatly
+ speed up pattern matching. However, it comes at the cost of extra pro-
+ cessing before the match is performed. Therefore, it is of most benefit
+ when the same pattern is going to be matched many times. This does not
+ necessarily mean many calls of a matching function; if the pattern is
+ not anchored, matching attempts may take place many times at various
+ positions in the subject, even for a single call. Therefore, if the
+ subject string is very long, it may still pay to use JIT for one-off
+ matches.
+
+ JIT support applies only to the traditional Perl-compatible matching
+ function. It does not apply when the DFA matching function is being
+ used. The code for this support was written by Zoltan Herczeg.
+
+
+8-BIT, 16-BIT AND 32-BIT SUPPORT
+
+ JIT support is available for all of the 8-bit, 16-bit and 32-bit PCRE
+ libraries. To keep this documentation simple, only the 8-bit interface
+ is described in what follows. If you are using the 16-bit library, sub-
+ stitute the 16-bit functions and 16-bit structures (for example,
+ pcre16_jit_stack instead of pcre_jit_stack). If you are using the
+ 32-bit library, substitute the 32-bit functions and 32-bit structures
+ (for example, pcre32_jit_stack instead of pcre_jit_stack).
+
+
+AVAILABILITY OF JIT SUPPORT
+
+ JIT support is an optional feature of PCRE. The "configure" option
+ --enable-jit (or equivalent CMake option) must be set when PCRE is
+ built if you want to use JIT. The support is limited to the following
+ hardware platforms:
+
+ ARM v5, v7, and Thumb2
+ Intel x86 32-bit and 64-bit
+ MIPS 32-bit
+ Power PC 32-bit and 64-bit
+ SPARC 32-bit (experimental)
+
+ If --enable-jit is set on an unsupported platform, compilation fails.
+
+ A program that is linked with PCRE 8.20 or later can tell if JIT sup-
+ port is available by calling pcre_config() with the PCRE_CONFIG_JIT
+ option. The result is 1 when JIT is available, and 0 otherwise. How-
+ ever, a simple program does not need to check this in order to use JIT.
+ The normal API is implemented in a way that falls back to the interpre-
+ tive code if JIT is not available. For programs that need the best pos-
+ sible performance, there is also a "fast path" API that is JIT-spe-
+ cific.
+
+ If your program may sometimes be linked with versions of PCRE that are
+ older than 8.20, but you want to use JIT when it is available, you can
+ test the values of PCRE_MAJOR and PCRE_MINOR, or the existence of a JIT
+ macro such as PCRE_CONFIG_JIT, for compile-time control of your code.
+
+
+SIMPLE USE OF JIT
+
+ You have to do two things to make use of the JIT support in the sim-
+ plest way:
+
+ (1) Call pcre_study() with the PCRE_STUDY_JIT_COMPILE option for
+ each compiled pattern, and pass the resulting pcre_extra block to
+ pcre_exec().
+
+ (2) Use pcre_free_study() to free the pcre_extra block when it is
+ no longer needed, instead of just freeing it yourself. This
+ ensures that
+ any JIT data is also freed.
+
+ For a program that may be linked with pre-8.20 versions of PCRE, you
+ can insert
+
+ #ifndef PCRE_STUDY_JIT_COMPILE
+ #define PCRE_STUDY_JIT_COMPILE 0
+ #endif
+
+ so that no option is passed to pcre_study(), and then use something
+ like this to free the study data:
+
+ #ifdef PCRE_CONFIG_JIT
+ pcre_free_study(study_ptr);
+ #else
+ pcre_free(study_ptr);
+ #endif
+
+ PCRE_STUDY_JIT_COMPILE requests the JIT compiler to generate code for
+ complete matches. If you want to run partial matches using the
+ PCRE_PARTIAL_HARD or PCRE_PARTIAL_SOFT options of pcre_exec(), you
+ should set one or both of the following options in addition to, or
+ instead of, PCRE_STUDY_JIT_COMPILE when you call pcre_study():
+
+ PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
+
+ The JIT compiler generates different optimized code for each of the
+ three modes (normal, soft partial, hard partial). When pcre_exec() is
+ called, the appropriate code is run if it is available. Otherwise, the
+ pattern is matched using interpretive code.
+
+ In some circumstances you may need to call additional functions. These
+ are described in the section entitled "Controlling the JIT stack"
+ below.
+
+ If JIT support is not available, PCRE_STUDY_JIT_COMPILE etc. are
+ ignored, and no JIT data is created. Otherwise, the compiled pattern is
+ passed to the JIT compiler, which turns it into machine code that exe-
+ cutes much faster than the normal interpretive code. When pcre_exec()
+ is passed a pcre_extra block containing a pointer to JIT code of the
+ appropriate mode (normal or hard/soft partial), it obeys that code
+ instead of running the interpreter. The result is identical, but the
+ compiled JIT code runs much faster.
+
+ There are some pcre_exec() options that are not supported for JIT exe-
+ cution. There are also some pattern items that JIT cannot handle.
+ Details are given below. In both cases, execution automatically falls
+ back to the interpretive code. If you want to know whether JIT was
+ actually used for a particular match, you should arrange for a JIT
+ callback function to be set up as described in the section entitled
+ "Controlling the JIT stack" below, even if you do not need to supply a
+ non-default JIT stack. Such a callback function is called whenever JIT
+ code is about to be obeyed. If the execution options are not right for
+ JIT execution, the callback function is not obeyed.
+
+ If the JIT compiler finds an unsupported item, no JIT data is gener-
+ ated. You can find out if JIT execution is available after studying a
+ pattern by calling pcre_fullinfo() with the PCRE_INFO_JIT option. A
+ result of 1 means that JIT compilation was successful. A result of 0
+ means that JIT support is not available, or the pattern was not studied
+ with PCRE_STUDY_JIT_COMPILE etc., or the JIT compiler was not able to
+ handle the pattern.
+
+ Once a pattern has been studied, with or without JIT, it can be used as
+ many times as you like for matching different subject strings.
+
+
+UNSUPPORTED OPTIONS AND PATTERN ITEMS
+
+ The only pcre_exec() options that are supported for JIT execution are
+ PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK, PCRE_NO_UTF32_CHECK, PCRE_NOT-
+ BOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART, PCRE_PAR-
+ TIAL_HARD, and PCRE_PARTIAL_SOFT.
+
+ The only unsupported pattern items are \C (match a single data unit)
+ when running in a UTF mode, and a callout immediately before an asser-
+ tion condition in a conditional group.
+
+
+RETURN VALUES FROM JIT EXECUTION
+
+ When a pattern is matched using JIT execution, the return values are
+ the same as those given by the interpretive pcre_exec() code, with the
+ addition of one new error code: PCRE_ERROR_JIT_STACKLIMIT. This means
+ that the memory used for the JIT stack was insufficient. See "Control-
+ ling the JIT stack" below for a discussion of JIT stack usage. For com-
+ patibility with the interpretive pcre_exec() code, no more than two-
+ thirds of the ovector argument is used for passing back captured sub-
+ strings.
+
+ The error code PCRE_ERROR_MATCHLIMIT is returned by the JIT code if
+ searching a very large pattern tree goes on for too long, as it is in
+ the same circumstance when JIT is not used, but the details of exactly
+ what is counted are not the same. The PCRE_ERROR_RECURSIONLIMIT error
+ code is never returned by JIT execution.
+
+
+SAVING AND RESTORING COMPILED PATTERNS
+
+ The code that is generated by the JIT compiler is architecture-spe-
+ cific, and is also position dependent. For those reasons it cannot be
+ saved (in a file or database) and restored later like the bytecode and
+ other data of a compiled pattern. Saving and restoring compiled pat-
+ terns is not something many people do. More detail about this facility
+ is given in the pcreprecompile documentation. It should be possible to
+ run pcre_study() on a saved and restored pattern, and thereby recreate
+ the JIT data, but because JIT compilation uses significant resources,
+ it is probably not worth doing this; you might as well recompile the
+ original pattern.
+
+
+CONTROLLING THE JIT STACK
+
+ When the compiled JIT code runs, it needs a block of memory to use as a
+ stack. By default, it uses 32K on the machine stack. However, some
+ large or complicated patterns need more than this. The error
+ PCRE_ERROR_JIT_STACKLIMIT is given when there is not enough stack.
+ Three functions are provided for managing blocks of memory for use as
+ JIT stacks. There is further discussion about the use of JIT stacks in
+ the section entitled "JIT stack FAQ" below.
+
+ The pcre_jit_stack_alloc() function creates a JIT stack. Its arguments
+ are a starting size and a maximum size, and it returns a pointer to an
+ opaque structure of type pcre_jit_stack, or NULL if there is an error.
+ The pcre_jit_stack_free() function can be used to free a stack that is
+ no longer needed. (For the technically minded: the address space is
+ allocated by mmap or VirtualAlloc.)
+
+ JIT uses far less memory for recursion than the interpretive code, and
+ a maximum stack size of 512K to 1M should be more than enough for any
+ pattern.
+
+ The pcre_assign_jit_stack() function specifies which stack JIT code
+ should use. Its arguments are as follows:
+
+ pcre_extra *extra
+ pcre_jit_callback callback
+ void *data
+
+ The extra argument must be the result of studying a pattern with
+ PCRE_STUDY_JIT_COMPILE etc. There are three cases for the values of the
+ other two options:
+
+ (1) If callback is NULL and data is NULL, an internal 32K block
+ on the machine stack is used.
+
+ (2) If callback is NULL and data is not NULL, data must be
+ a valid JIT stack, the result of calling pcre_jit_stack_alloc().
+
+ (3) If callback is not NULL, it must point to a function that is
+ called with data as an argument at the start of matching, in
+ order to set up a JIT stack. If the return from the callback
+ function is NULL, the internal 32K stack is used; otherwise the
+ return value must be a valid JIT stack, the result of calling
+ pcre_jit_stack_alloc().
+
+ A callback function is obeyed whenever JIT code is about to be run; it
+ is not obeyed when pcre_exec() is called with options that are incom-
+ patible for JIT execution. A callback function can therefore be used to
+ determine whether a match operation was executed by JIT or by the
+ interpreter.
+
+ You may safely use the same JIT stack for more than one pattern (either
+ by assigning directly or by callback), as long as the patterns are all
+ matched sequentially in the same thread. In a multithread application,
+ if you do not specify a JIT stack, or if you assign or pass back NULL
+ from a callback, that is thread-safe, because each thread has its own
+ machine stack. However, if you assign or pass back a non-NULL JIT
+ stack, this must be a different stack for each thread so that the
+ application is thread-safe.
+
+ Strictly speaking, even more is allowed. You can assign the same non-
+ NULL stack to any number of patterns as long as they are not used for
+ matching by multiple threads at the same time. For example, you can
+ assign the same stack to all compiled patterns, and use a global mutex
+ in the callback to wait until the stack is available for use. However,
+ this is an inefficient solution, and not recommended.
+
+ This is a suggestion for how a multithreaded program that needs to set
+ up non-default JIT stacks might operate:
+
+ During thread initalization
+ thread_local_var = pcre_jit_stack_alloc(...)
+
+ During thread exit
+ pcre_jit_stack_free(thread_local_var)
+
+ Use a one-line callback function
+ return thread_local_var
+
+ All the functions described in this section do nothing if JIT is not
+ available, and pcre_assign_jit_stack() does nothing unless the extra
+ argument is non-NULL and points to a pcre_extra block that is the
+ result of a successful study with PCRE_STUDY_JIT_COMPILE etc.
+
+
+JIT STACK FAQ
+
+ (1) Why do we need JIT stacks?
+
+ PCRE (and JIT) is a recursive, depth-first engine, so it needs a stack
+ where the local data of the current node is pushed before checking its
+ child nodes. Allocating real machine stack on some platforms is diffi-
+ cult. For example, the stack chain needs to be updated every time if we
+ extend the stack on PowerPC. Although it is possible, its updating
+ time overhead decreases performance. So we do the recursion in memory.
+
+ (2) Why don't we simply allocate blocks of memory with malloc()?
+
+ Modern operating systems have a nice feature: they can reserve an
+ address space instead of allocating memory. We can safely allocate mem-
+ ory pages inside this address space, so the stack could grow without
+ moving memory data (this is important because of pointers). Thus we can
+ allocate 1M address space, and use only a single memory page (usually
+ 4K) if that is enough. However, we can still grow up to 1M anytime if
+ needed.
+
+ (3) Who "owns" a JIT stack?
+
+ The owner of the stack is the user program, not the JIT studied pattern
+ or anything else. The user program must ensure that if a stack is used
+ by pcre_exec(), (that is, it is assigned to the pattern currently run-
+ ning), that stack must not be used by any other threads (to avoid over-
+ writing the same memory area). The best practice for multithreaded pro-
+ grams is to allocate a stack for each thread, and return this stack
+ through the JIT callback function.
+
+ (4) When should a JIT stack be freed?
+
+ You can free a JIT stack at any time, as long as it will not be used by
+ pcre_exec() again. When you assign the stack to a pattern, only a
+ pointer is set. There is no reference counting or any other magic. You
+ can free the patterns and stacks in any order, anytime. Just do not
+ call pcre_exec() with a pattern pointing to an already freed stack, as
+ that will cause SEGFAULT. (Also, do not free a stack currently used by
+ pcre_exec() in another thread). You can also replace the stack for a
+ pattern at any time. You can even free the previous stack before
+ assigning a replacement.
+
+ (5) Should I allocate/free a stack every time before/after calling
+ pcre_exec()?
+
+ No, because this is too costly in terms of resources. However, you
+ could implement some clever idea which release the stack if it is not
+ used in let's say two minutes. The JIT callback can help to achieve
+ this without keeping a list of the currently JIT studied patterns.
+
+ (6) OK, the stack is for long term memory allocation. But what happens
+ if a pattern causes stack overflow with a stack of 1M? Is that 1M kept
+ until the stack is freed?
+
+ Especially on embedded sytems, it might be a good idea to release mem-
+ ory sometimes without freeing the stack. There is no API for this at
+ the moment. Probably a function call which returns with the currently
+ allocated memory for any stack and another which allows releasing mem-
+ ory (shrinking the stack) would be a good idea if someone needs this.
+
+ (7) This is too much of a headache. Isn't there any better solution for
+ JIT stack handling?
+
+ No, thanks to Windows. If POSIX threads were used everywhere, we could
+ throw out this complicated API.
+
+
+EXAMPLE CODE
+
+ This is a single-threaded example that specifies a JIT stack without
+ using a callback.
+
+ int rc;
+ int ovector[30];
+ pcre *re;
+ pcre_extra *extra;
+ pcre_jit_stack *jit_stack;
+
+ re = pcre_compile(pattern, 0, &error, &erroffset, NULL);
+ /* Check for errors */
+ extra = pcre_study(re, PCRE_STUDY_JIT_COMPILE, &error);
+ jit_stack = pcre_jit_stack_alloc(32*1024, 512*1024);
+ /* Check for error (NULL) */
+ pcre_assign_jit_stack(extra, NULL, jit_stack);
+ rc = pcre_exec(re, extra, subject, length, 0, 0, ovector, 30);
+ /* Check results */
+ pcre_free(re);
+ pcre_free_study(extra);
+ pcre_jit_stack_free(jit_stack);
+
+
+JIT FAST PATH API
+
+ Because the API described above falls back to interpreted execution
+ when JIT is not available, it is convenient for programs that are writ-
+ ten for general use in many environments. However, calling JIT via
+ pcre_exec() does have a performance impact. Programs that are written
+ for use where JIT is known to be available, and which need the best
+ possible performance, can instead use a "fast path" API to call JIT
+ execution directly instead of calling pcre_exec() (obviously only for
+ patterns that have been successfully studied by JIT).
+
+ The fast path function is called pcre_jit_exec(), and it takes exactly
+ the same arguments as pcre_exec(), plus one additional argument that
+ must point to a JIT stack. The JIT stack arrangements described above
+ do not apply. The return values are the same as for pcre_exec().
+
+ When you call pcre_exec(), as well as testing for invalid options, a
+ number of other sanity checks are performed on the arguments. For exam-
+ ple, if the subject pointer is NULL, or its length is negative, an
+ immediate error is given. Also, unless PCRE_NO_UTF[8|16|32] is set, a
+ UTF subject string is tested for validity. In the interests of speed,
+ these checks do not happen on the JIT fast path, and if invalid data is
+ passed, the result is undefined.
+
+ Bypassing the sanity checks and the pcre_exec() wrapping can give
+ speedups of more than 10%.
+
+
+SEE ALSO
+
+ pcreapi(3)
+
+
+AUTHOR
+
+ Philip Hazel (FAQ by Zoltan Herczeg)
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 17 March 2013
+ Copyright (c) 1997-2013 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCREPARTIAL(3) Library Functions Manual PCREPARTIAL(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+PARTIAL MATCHING IN PCRE
+
+ In normal use of PCRE, if the subject string that is passed to a match-
+ ing function matches as far as it goes, but is too short to match the
+ entire pattern, PCRE_ERROR_NOMATCH is returned. There are circumstances
+ where it might be helpful to distinguish this case from other cases in
+ which there is no match.
+
+ Consider, for example, an application where a human is required to type
+ in data for a field with specific formatting requirements. An example
+ might be a date in the form ddmmmyy, defined by this pattern:
+
+ ^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$
+
+ If the application sees the user's keystrokes one by one, and can check
+ that what has been typed so far is potentially valid, it is able to
+ raise an error as soon as a mistake is made, by beeping and not
+ reflecting the character that has been typed, for example. This immedi-
+ ate feedback is likely to be a better user interface than a check that
+ is delayed until the entire string has been entered. Partial matching
+ can also be useful when the subject string is very long and is not all
+ available at once.
+
+ PCRE supports partial matching by means of the PCRE_PARTIAL_SOFT and
+ PCRE_PARTIAL_HARD options, which can be set when calling any of the
+ matching functions. For backwards compatibility, PCRE_PARTIAL is a syn-
+ onym for PCRE_PARTIAL_SOFT. The essential difference between the two
+ options is whether or not a partial match is preferred to an alterna-
+ tive complete match, though the details differ between the two types of
+ matching function. If both options are set, PCRE_PARTIAL_HARD takes
+ precedence.
+
+ If you want to use partial matching with just-in-time optimized code,
+ you must call pcre_study(), pcre16_study() or pcre32_study() with one
+ or both of these options:
+
+ PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
+
+ PCRE_STUDY_JIT_COMPILE should also be set if you are going to run non-
+ partial matches on the same pattern. If the appropriate JIT study mode
+ has not been set for a match, the interpretive matching code is used.
+
+ Setting a partial matching option disables two of PCRE's standard opti-
+ mizations. PCRE remembers the last literal data unit in a pattern, and
+ abandons matching immediately if it is not present in the subject
+ string. This optimization cannot be used for a subject string that
+ might match only partially. If the pattern was studied, PCRE knows the
+ minimum length of a matching string, and does not bother to run the
+ matching function on shorter strings. This optimization is also dis-
+ abled for partial matching.
+
+
+PARTIAL MATCHING USING pcre_exec() OR pcre[16|32]_exec()
+
+ A partial match occurs during a call to pcre_exec() or
+ pcre[16|32]_exec() when the end of the subject string is reached suc-
+ cessfully, but matching cannot continue because more characters are
+ needed. However, at least one character in the subject must have been
+ inspected. This character need not form part of the final matched
+ string; lookbehind assertions and the \K escape sequence provide ways
+ of inspecting characters before the start of a matched substring. The
+ requirement for inspecting at least one character exists because an
+ empty string can always be matched; without such a restriction there
+ would always be a partial match of an empty string at the end of the
+ subject.
+
+ If there are at least two slots in the offsets vector when a partial
+ match is returned, the first slot is set to the offset of the earliest
+ character that was inspected. For convenience, the second offset points
+ to the end of the subject so that a substring can easily be identified.
+ If there are at least three slots in the offsets vector, the third slot
+ is set to the offset of the character where matching started.
+
+ For the majority of patterns, the contents of the first and third slots
+ will be the same. However, for patterns that contain lookbehind asser-
+ tions, or begin with \b or \B, characters before the one where matching
+ started may have been inspected while carrying out the match. For exam-
+ ple, consider this pattern:
+
+ /(?<=abc)123/
+
+ This pattern matches "123", but only if it is preceded by "abc". If the
+ subject string is "xyzabc12", the first two offsets after a partial
+ match are for the substring "abc12", because all these characters were
+ inspected. However, the third offset is set to 6, because that is the
+ offset where matching began.
+
+ What happens when a partial match is identified depends on which of the
+ two partial matching options are set.
+
+ PCRE_PARTIAL_SOFT WITH pcre_exec() OR pcre[16|32]_exec()
+
+ If PCRE_PARTIAL_SOFT is set when pcre_exec() or pcre[16|32]_exec()
+ identifies a partial match, the partial match is remembered, but match-
+ ing continues as normal, and other alternatives in the pattern are
+ tried. If no complete match can be found, PCRE_ERROR_PARTIAL is
+ returned instead of PCRE_ERROR_NOMATCH.
+
+ This option is "soft" because it prefers a complete match over a par-
+ tial match. All the various matching items in a pattern behave as if
+ the subject string is potentially complete. For example, \z, \Z, and $
+ match at the end of the subject, as normal, and for \b and \B the end
+ of the subject is treated as a non-alphanumeric.
+
+ If there is more than one partial match, the first one that was found
+ provides the data that is returned. Consider this pattern:
+
+ /123\w+X|dogY/
+
+ If this is matched against the subject string "abc123dog", both alter-
+ natives fail to match, but the end of the subject is reached during
+ matching, so PCRE_ERROR_PARTIAL is returned. The offsets are set to 3
+ and 9, identifying "123dog" as the first partial match that was found.
+ (In this example, there are two partial matches, because "dog" on its
+ own partially matches the second alternative.)
+
+ PCRE_PARTIAL_HARD WITH pcre_exec() OR pcre[16|32]_exec()
+
+ If PCRE_PARTIAL_HARD is set for pcre_exec() or pcre[16|32]_exec(),
+ PCRE_ERROR_PARTIAL is returned as soon as a partial match is found,
+ without continuing to search for possible complete matches. This option
+ is "hard" because it prefers an earlier partial match over a later com-
+ plete match. For this reason, the assumption is made that the end of
+ the supplied subject string may not be the true end of the available
+ data, and so, if \z, \Z, \b, \B, or $ are encountered at the end of the
+ subject, the result is PCRE_ERROR_PARTIAL, provided that at least one
+ character in the subject has been inspected.
+
+ Setting PCRE_PARTIAL_HARD also affects the way UTF-8 and UTF-16 subject
+ strings are checked for validity. Normally, an invalid sequence causes
+ the error PCRE_ERROR_BADUTF8 or PCRE_ERROR_BADUTF16. However, in the
+ special case of a truncated character at the end of the subject,
+ PCRE_ERROR_SHORTUTF8 or PCRE_ERROR_SHORTUTF16 is returned when
+ PCRE_PARTIAL_HARD is set.
+
+ Comparing hard and soft partial matching
+
+ The difference between the two partial matching options can be illus-
+ trated by a pattern such as:
+
+ /dog(sbody)?/
+
+ This matches either "dog" or "dogsbody", greedily (that is, it prefers
+ the longer string if possible). If it is matched against the string
+ "dog" with PCRE_PARTIAL_SOFT, it yields a complete match for "dog".
+ However, if PCRE_PARTIAL_HARD is set, the result is PCRE_ERROR_PARTIAL.
+ On the other hand, if the pattern is made ungreedy the result is dif-
+ ferent:
+
+ /dog(sbody)??/
+
+ In this case the result is always a complete match because that is
+ found first, and matching never continues after finding a complete
+ match. It might be easier to follow this explanation by thinking of the
+ two patterns like this:
+
+ /dog(sbody)?/ is the same as /dogsbody|dog/
+ /dog(sbody)??/ is the same as /dog|dogsbody/
+
+ The second pattern will never match "dogsbody", because it will always
+ find the shorter match first.
+
+
+PARTIAL MATCHING USING pcre_dfa_exec() OR pcre[16|32]_dfa_exec()
+
+ The DFA functions move along the subject string character by character,
+ without backtracking, searching for all possible matches simultane-
+ ously. If the end of the subject is reached before the end of the pat-
+ tern, there is the possibility of a partial match, again provided that
+ at least one character has been inspected.
+
+ When PCRE_PARTIAL_SOFT is set, PCRE_ERROR_PARTIAL is returned only if
+ there have been no complete matches. Otherwise, the complete matches
+ are returned. However, if PCRE_PARTIAL_HARD is set, a partial match
+ takes precedence over any complete matches. The portion of the string
+ that was inspected when the longest partial match was found is set as
+ the first matching string, provided there are at least two slots in the
+ offsets vector.
+
+ Because the DFA functions always search for all possible matches, and
+ there is no difference between greedy and ungreedy repetition, their
+ behaviour is different from the standard functions when PCRE_PAR-
+ TIAL_HARD is set. Consider the string "dog" matched against the
+ ungreedy pattern shown above:
+
+ /dog(sbody)??/
+
+ Whereas the standard functions stop as soon as they find the complete
+ match for "dog", the DFA functions also find the partial match for
+ "dogsbody", and so return that when PCRE_PARTIAL_HARD is set.
+
+
+PARTIAL MATCHING AND WORD BOUNDARIES
+
+ If a pattern ends with one of sequences \b or \B, which test for word
+ boundaries, partial matching with PCRE_PARTIAL_SOFT can give counter-
+ intuitive results. Consider this pattern:
+
+ /\bcat\b/
+
+ This matches "cat", provided there is a word boundary at either end. If
+ the subject string is "the cat", the comparison of the final "t" with a
+ following character cannot take place, so a partial match is found.
+ However, normal matching carries on, and \b matches at the end of the
+ subject when the last character is a letter, so a complete match is
+ found. The result, therefore, is not PCRE_ERROR_PARTIAL. Using
+ PCRE_PARTIAL_HARD in this case does yield PCRE_ERROR_PARTIAL, because
+ then the partial match takes precedence.
+
+
+FORMERLY RESTRICTED PATTERNS
+
+ For releases of PCRE prior to 8.00, because of the way certain internal
+ optimizations were implemented in the pcre_exec() function, the
+ PCRE_PARTIAL option (predecessor of PCRE_PARTIAL_SOFT) could not be
+ used with all patterns. From release 8.00 onwards, the restrictions no
+ longer apply, and partial matching with can be requested for any pat-
+ tern.
+
+ Items that were formerly restricted were repeated single characters and
+ repeated metasequences. If PCRE_PARTIAL was set for a pattern that did
+ not conform to the restrictions, pcre_exec() returned the error code
+ PCRE_ERROR_BADPARTIAL (-13). This error code is no longer in use. The
+ PCRE_INFO_OKPARTIAL call to pcre_fullinfo() to find out if a compiled
+ pattern can be used for partial matching now always returns 1.
+
+
+EXAMPLE OF PARTIAL MATCHING USING PCRETEST
+
+ If the escape sequence \P is present in a pcretest data line, the
+ PCRE_PARTIAL_SOFT option is used for the match. Here is a run of
+ pcretest that uses the date example quoted above:
+
+ re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
+ data> 25jun04\P
+ 0: 25jun04
+ 1: jun
+ data> 25dec3\P
+ Partial match: 23dec3
+ data> 3ju\P
+ Partial match: 3ju
+ data> 3juj\P
+ No match
+ data> j\P
+ No match
+
+ The first data string is matched completely, so pcretest shows the
+ matched substrings. The remaining four strings do not match the com-
+ plete pattern, but the first two are partial matches. Similar output is
+ obtained if DFA matching is used.
+
+ If the escape sequence \P is present more than once in a pcretest data
+ line, the PCRE_PARTIAL_HARD option is set for the match.
+
+
+MULTI-SEGMENT MATCHING WITH pcre_dfa_exec() OR pcre[16|32]_dfa_exec()
+
+ When a partial match has been found using a DFA matching function, it
+ is possible to continue the match by providing additional subject data
+ and calling the function again with the same compiled regular expres-
+ sion, this time setting the PCRE_DFA_RESTART option. You must pass the
+ same working space as before, because this is where details of the pre-
+ vious partial match are stored. Here is an example using pcretest,
+ using the \R escape sequence to set the PCRE_DFA_RESTART option (\D
+ specifies the use of the DFA matching function):
+
+ re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
+ data> 23ja\P\D
+ Partial match: 23ja
+ data> n05\R\D
+ 0: n05
+
+ The first call has "23ja" as the subject, and requests partial match-
+ ing; the second call has "n05" as the subject for the continued
+ (restarted) match. Notice that when the match is complete, only the
+ last part is shown; PCRE does not retain the previously partially-
+ matched string. It is up to the calling program to do that if it needs
+ to.
+
+ You can set the PCRE_PARTIAL_SOFT or PCRE_PARTIAL_HARD options with
+ PCRE_DFA_RESTART to continue partial matching over multiple segments.
+ This facility can be used to pass very long subject strings to the DFA
+ matching functions.
+
+
+MULTI-SEGMENT MATCHING WITH pcre_exec() OR pcre[16|32]_exec()
+
+ From release 8.00, the standard matching functions can also be used to
+ do multi-segment matching. Unlike the DFA functions, it is not possible
+ to restart the previous match with a new segment of data. Instead, new
+ data must be added to the previous subject string, and the entire match
+ re-run, starting from the point where the partial match occurred. Ear-
+ lier data can be discarded.
+
+ It is best to use PCRE_PARTIAL_HARD in this situation, because it does
+ not treat the end of a segment as the end of the subject when matching
+ \z, \Z, \b, \B, and $. Consider an unanchored pattern that matches
+ dates:
+
+ re> /\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d/
+ data> The date is 23ja\P\P
+ Partial match: 23ja
+
+ At this stage, an application could discard the text preceding "23ja",
+ add on text from the next segment, and call the matching function
+ again. Unlike the DFA matching functions, the entire matching string
+ must always be available, and the complete matching process occurs for
+ each call, so more memory and more processing time is needed.
+
+ Note: If the pattern contains lookbehind assertions, or \K, or starts
+ with \b or \B, the string that is returned for a partial match includes
+ characters that precede the start of what would be returned for a com-
+ plete match, because it contains all the characters that were inspected
+ during the partial match.
+
+
+ISSUES WITH MULTI-SEGMENT MATCHING
+
+ Certain types of pattern may give problems with multi-segment matching,
+ whichever matching function is used.
+
+ 1. If the pattern contains a test for the beginning of a line, you need
+ to pass the PCRE_NOTBOL option when the subject string for any call
+ does start at the beginning of a line. There is also a PCRE_NOTEOL
+ option, but in practice when doing multi-segment matching you should be
+ using PCRE_PARTIAL_HARD, which includes the effect of PCRE_NOTEOL.
+
+ 2. Lookbehind assertions that have already been obeyed are catered for
+ in the offsets that are returned for a partial match. However a lookbe-
+ hind assertion later in the pattern could require even earlier charac-
+ ters to be inspected. You can handle this case by using the
+ PCRE_INFO_MAXLOOKBEHIND option of the pcre_fullinfo() or
+ pcre[16|32]_fullinfo() functions to obtain the length of the longest
+ lookbehind in the pattern. This length is given in characters, not
+ bytes. If you always retain at least that many characters before the
+ partially matched string, all should be well. (Of course, near the
+ start of the subject, fewer characters may be present; in that case all
+ characters should be retained.)
+
+ From release 8.33, there is a more accurate way of deciding which char-
+ acters to retain. Instead of subtracting the length of the longest
+ lookbehind from the earliest inspected character (offsets[0]), the
+ match start position (offsets[2]) should be used, and the next match
+ attempt started at the offsets[2] character by setting the startoffset
+ argument of pcre_exec() or pcre_dfa_exec().
+
+ For example, if the pattern "(?<=123)abc" is partially matched against
+ the string "xx123a", the three offset values returned are 2, 6, and 5.
+ This indicates that the matching process that gave a partial match
+ started at offset 5, but the characters "123a" were all inspected. The
+ maximum lookbehind for that pattern is 3, so taking that away from 5
+ shows that we need only keep "123a", and the next match attempt can be
+ started at offset 3 (that is, at "a") when further characters have been
+ added. When the match start is not the earliest inspected character,
+ pcretest shows it explicitly:
+
+ re> "(?<=123)abc"
+ data> xx123a\P\P
+ Partial match at offset 5: 123a
+
+ 3. Because a partial match must always contain at least one character,
+ what might be considered a partial match of an empty string actually
+ gives a "no match" result. For example:
+
+ re> /c(?<=abc)x/
+ data> ab\P
+ No match
+
+ If the next segment begins "cx", a match should be found, but this will
+ only happen if characters from the previous segment are retained. For
+ this reason, a "no match" result should be interpreted as "partial
+ match of an empty string" when the pattern contains lookbehinds.
+
+ 4. Matching a subject string that is split into multiple segments may
+ not always produce exactly the same result as matching over one single
+ long string, especially when PCRE_PARTIAL_SOFT is used. The section
+ "Partial Matching and Word Boundaries" above describes an issue that
+ arises if the pattern ends with \b or \B. Another kind of difference
+ may occur when there are multiple matching possibilities, because (for
+ PCRE_PARTIAL_SOFT) a partial match result is given only when there are
+ no completed matches. This means that as soon as the shortest match has
+ been found, continuation to a new subject segment is no longer possi-
+ ble. Consider again this pcretest example:
+
+ re> /dog(sbody)?/
+ data> dogsb\P
+ 0: dog
+ data> do\P\D
+ Partial match: do
+ data> gsb\R\P\D
+ 0: g
+ data> dogsbody\D
+ 0: dogsbody
+ 1: dog
+
+ The first data line passes the string "dogsb" to a standard matching
+ function, setting the PCRE_PARTIAL_SOFT option. Although the string is
+ a partial match for "dogsbody", the result is not PCRE_ERROR_PARTIAL,
+ because the shorter string "dog" is a complete match. Similarly, when
+ the subject is presented to a DFA matching function in several parts
+ ("do" and "gsb" being the first two) the match stops when "dog" has
+ been found, and it is not possible to continue. On the other hand, if
+ "dogsbody" is presented as a single string, a DFA matching function
+ finds both matches.
+
+ Because of these problems, it is best to use PCRE_PARTIAL_HARD when
+ matching multi-segment data. The example above then behaves differ-
+ ently:
+
+ re> /dog(sbody)?/
+ data> dogsb\P\P
+ Partial match: dogsb
+ data> do\P\D
+ Partial match: do
+ data> gsb\R\P\P\D
+ Partial match: gsb
+
+ 5. Patterns that contain alternatives at the top level which do not all
+ start with the same pattern item may not work as expected when
+ PCRE_DFA_RESTART is used. For example, consider this pattern:
+
+ 1234|3789
+
+ If the first part of the subject is "ABC123", a partial match of the
+ first alternative is found at offset 3. There is no partial match for
+ the second alternative, because such a match does not start at the same
+ point in the subject string. Attempting to continue with the string
+ "7890" does not yield a match because only those alternatives that
+ match at one point in the subject are remembered. The problem arises
+ because the start of the second alternative matches within the first
+ alternative. There is no problem with anchored patterns or patterns
+ such as:
+
+ 1234|ABCD
+
+ where no string can be a partial match for both alternatives. This is
+ not a problem if a standard matching function is used, because the
+ entire match has to be rerun each time:
+
+ re> /1234|3789/
+ data> ABC123\P\P
+ Partial match: 123
+ data> 1237890
+ 0: 3789
+
+ Of course, instead of using PCRE_DFA_RESTART, the same technique of re-
+ running the entire match can also be used with the DFA matching func-
+ tions. Another possibility is to work with two buffers. If a partial
+ match at offset n in the first buffer is followed by "no match" when
+ PCRE_DFA_RESTART is used on the second buffer, you can then try a new
+ match starting at offset n+1 in the first buffer.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 20 February 2013
+ Copyright (c) 1997-2013 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCREPRECOMPILE(3) Library Functions Manual PCREPRECOMPILE(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+SAVING AND RE-USING PRECOMPILED PCRE PATTERNS
+
+ If you are running an application that uses a large number of regular
+ expression patterns, it may be useful to store them in a precompiled
+ form instead of having to compile them every time the application is
+ run. If you are not using any private character tables (see the
+ pcre_maketables() documentation), this is relatively straightforward.
+ If you are using private tables, it is a little bit more complicated.
+ However, if you are using the just-in-time optimization feature, it is
+ not possible to save and reload the JIT data.
+
+ If you save compiled patterns to a file, you can copy them to a differ-
+ ent host and run them there. If the two hosts have different endianness
+ (byte order), you should run the pcre[16|32]_pat-
+ tern_to_host_byte_order() function on the new host before trying to
+ match the pattern. The matching functions return PCRE_ERROR_BADENDIAN-
+ NESS if they detect a pattern with the wrong endianness.
+
+ Compiling regular expressions with one version of PCRE for use with a
+ different version is not guaranteed to work and may cause crashes, and
+ saving and restoring a compiled pattern loses any JIT optimization
+ data.
+
+
+SAVING A COMPILED PATTERN
+
+ The value returned by pcre[16|32]_compile() points to a single block of
+ memory that holds the compiled pattern and associated data. You can
+ find the length of this block in bytes by calling
+ pcre[16|32]_fullinfo() with an argument of PCRE_INFO_SIZE. You can then
+ save the data in any appropriate manner. Here is sample code for the
+ 8-bit library that compiles a pattern and writes it to a file. It
+ assumes that the variable fd refers to a file that is open for output:
+
+ int erroroffset, rc, size;
+ char *error;
+ pcre *re;
+
+ re = pcre_compile("my pattern", 0, &error, &erroroffset, NULL);
+ if (re == NULL) { ... handle errors ... }
+ rc = pcre_fullinfo(re, NULL, PCRE_INFO_SIZE, &size);
+ if (rc < 0) { ... handle errors ... }
+ rc = fwrite(re, 1, size, fd);
+ if (rc != size) { ... handle errors ... }
+
+ In this example, the bytes that comprise the compiled pattern are
+ copied exactly. Note that this is binary data that may contain any of
+ the 256 possible byte values. On systems that make a distinction
+ between binary and non-binary data, be sure that the file is opened for
+ binary output.
+
+ If you want to write more than one pattern to a file, you will have to
+ devise a way of separating them. For binary data, preceding each pat-
+ tern with its length is probably the most straightforward approach.
+ Another possibility is to write out the data in hexadecimal instead of
+ binary, one pattern to a line.
+
+ Saving compiled patterns in a file is only one possible way of storing
+ them for later use. They could equally well be saved in a database, or
+ in the memory of some daemon process that passes them via sockets to
+ the processes that want them.
+
+ If the pattern has been studied, it is also possible to save the normal
+ study data in a similar way to the compiled pattern itself. However, if
+ the PCRE_STUDY_JIT_COMPILE was used, the just-in-time data that is cre-
+ ated cannot be saved because it is too dependent on the current envi-
+ ronment. When studying generates additional information,
+ pcre[16|32]_study() returns a pointer to a pcre[16|32]_extra data
+ block. Its format is defined in the section on matching a pattern in
+ the pcreapi documentation. The study_data field points to the binary
+ study data, and this is what you must save (not the pcre[16|32]_extra
+ block itself). The length of the study data can be obtained by calling
+ pcre[16|32]_fullinfo() with an argument of PCRE_INFO_STUDYSIZE. Remem-
+ ber to check that pcre[16|32]_study() did return a non-NULL value
+ before trying to save the study data.
+
+
+RE-USING A PRECOMPILED PATTERN
+
+ Re-using a precompiled pattern is straightforward. Having reloaded it
+ into main memory, called pcre[16|32]_pattern_to_host_byte_order() if
+ necessary, you pass its pointer to pcre[16|32]_exec() or
+ pcre[16|32]_dfa_exec() in the usual way.
+
+ However, if you passed a pointer to custom character tables when the
+ pattern was compiled (the tableptr argument of pcre[16|32]_compile()),
+ you must now pass a similar pointer to pcre[16|32]_exec() or
+ pcre[16|32]_dfa_exec(), because the value saved with the compiled pat-
+ tern will obviously be nonsense. A field in a pcre[16|32]_extra() block
+ is used to pass this data, as described in the section on matching a
+ pattern in the pcreapi documentation.
+
+ If you did not provide custom character tables when the pattern was
+ compiled, the pointer in the compiled pattern is NULL, which causes the
+ matching functions to use PCRE's internal tables. Thus, you do not need
+ to take any special action at run time in this case.
+
+ If you saved study data with the compiled pattern, you need to create
+ your own pcre[16|32]_extra data block and set the study_data field to
+ point to the reloaded study data. You must also set the
+ PCRE_EXTRA_STUDY_DATA bit in the flags field to indicate that study
+ data is present. Then pass the pcre[16|32]_extra block to the matching
+ function in the usual way. If the pattern was studied for just-in-time
+ optimization, that data cannot be saved, and so is lost by a
+ save/restore cycle.
+
+
+COMPATIBILITY WITH DIFFERENT PCRE RELEASES
+
+ In general, it is safest to recompile all saved patterns when you
+ update to a new PCRE release, though not all updates actually require
+ this.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 24 June 2012
+ Copyright (c) 1997-2012 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCREPERFORM(3) Library Functions Manual PCREPERFORM(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+PCRE PERFORMANCE
+
+ Two aspects of performance are discussed below: memory usage and pro-
+ cessing time. The way you express your pattern as a regular expression
+ can affect both of them.
+
+
+COMPILED PATTERN MEMORY USAGE
+
+ Patterns are compiled by PCRE into a reasonably efficient interpretive
+ code, so that most simple patterns do not use much memory. However,
+ there is one case where the memory usage of a compiled pattern can be
+ unexpectedly large. If a parenthesized subpattern has a quantifier with
+ a minimum greater than 1 and/or a limited maximum, the whole subpattern
+ is repeated in the compiled code. For example, the pattern
+
+ (abc|def){2,4}
+
+ is compiled as if it were
+
+ (abc|def)(abc|def)((abc|def)(abc|def)?)?
+
+ (Technical aside: It is done this way so that backtrack points within
+ each of the repetitions can be independently maintained.)
+
+ For regular expressions whose quantifiers use only small numbers, this
+ is not usually a problem. However, if the numbers are large, and par-
+ ticularly if such repetitions are nested, the memory usage can become
+ an embarrassment. For example, the very simple pattern
+
+ ((ab){1,1000}c){1,3}
+
+ uses 51K bytes when compiled using the 8-bit library. When PCRE is com-
+ piled with its default internal pointer size of two bytes, the size
+ limit on a compiled pattern is 64K data units, and this is reached with
+ the above pattern if the outer repetition is increased from 3 to 4.
+ PCRE can be compiled to use larger internal pointers and thus handle
+ larger compiled patterns, but it is better to try to rewrite your pat-
+ tern to use less memory if you can.
+
+ One way of reducing the memory usage for such patterns is to make use
+ of PCRE's "subroutine" facility. Re-writing the above pattern as
+
+ ((ab)(?2){0,999}c)(?1){0,2}
+
+ reduces the memory requirements to 18K, and indeed it remains under 20K
+ even with the outer repetition increased to 100. However, this pattern
+ is not exactly equivalent, because the "subroutine" calls are treated
+ as atomic groups into which there can be no backtracking if there is a
+ subsequent matching failure. Therefore, PCRE cannot do this kind of
+ rewriting automatically. Furthermore, there is a noticeable loss of
+ speed when executing the modified pattern. Nevertheless, if the atomic
+ grouping is not a problem and the loss of speed is acceptable, this
+ kind of rewriting will allow you to process patterns that PCRE cannot
+ otherwise handle.
+
+
+STACK USAGE AT RUN TIME
+
+ When pcre_exec() or pcre[16|32]_exec() is used for matching, certain
+ kinds of pattern can cause it to use large amounts of the process
+ stack. In some environments the default process stack is quite small,
+ and if it runs out the result is often SIGSEGV. This issue is probably
+ the most frequently raised problem with PCRE. Rewriting your pattern
+ can often help. The pcrestack documentation discusses this issue in
+ detail.
+
+
+PROCESSING TIME
+
+ Certain items in regular expression patterns are processed more effi-
+ ciently than others. It is more efficient to use a character class like
+ [aeiou] than a set of single-character alternatives such as
+ (a|e|i|o|u). In general, the simplest construction that provides the
+ required behaviour is usually the most efficient. Jeffrey Friedl's book
+ contains a lot of useful general discussion about optimizing regular
+ expressions for efficient performance. This document contains a few
+ observations about PCRE.
+
+ Using Unicode character properties (the \p, \P, and \X escapes) is
+ slow, because PCRE has to use a multi-stage table lookup whenever it
+ needs a character's property. If you can find an alternative pattern
+ that does not use character properties, it will probably be faster.
+
+ By default, the escape sequences \b, \d, \s, and \w, and the POSIX
+ character classes such as [:alpha:] do not use Unicode properties,
+ partly for backwards compatibility, and partly for performance reasons.
+ However, you can set PCRE_UCP if you want Unicode character properties
+ to be used. This can double the matching time for items such as \d,
+ when matched with a traditional matching function; the performance loss
+ is less with a DFA matching function, and in both cases there is not
+ much difference for \b.
+
+ When a pattern begins with .* not in parentheses, or in parentheses
+ that are not the subject of a backreference, and the PCRE_DOTALL option
+ is set, the pattern is implicitly anchored by PCRE, since it can match
+ only at the start of a subject string. However, if PCRE_DOTALL is not
+ set, PCRE cannot make this optimization, because the . metacharacter
+ does not then match a newline, and if the subject string contains new-
+ lines, the pattern may match from the character immediately following
+ one of them instead of from the very start. For example, the pattern
+
+ .*second
+
+ matches the subject "first\nand second" (where \n stands for a newline
+ character), with the match starting at the seventh character. In order
+ to do this, PCRE has to retry the match starting after every newline in
+ the subject.
+
+ If you are using such a pattern with subject strings that do not con-
+ tain newlines, the best performance is obtained by setting PCRE_DOTALL,
+ or starting the pattern with ^.* or ^.*? to indicate explicit anchor-
+ ing. That saves PCRE from having to scan along the subject looking for
+ a newline to restart at.
+
+ Beware of patterns that contain nested indefinite repeats. These can
+ take a long time to run when applied to a string that does not match.
+ Consider the pattern fragment
+
+ ^(a+)*
+
+ This can match "aaaa" in 16 different ways, and this number increases
+ very rapidly as the string gets longer. (The * repeat can match 0, 1,
+ 2, 3, or 4 times, and for each of those cases other than 0 or 4, the +
+ repeats can match different numbers of times.) When the remainder of
+ the pattern is such that the entire match is going to fail, PCRE has in
+ principle to try every possible variation, and this can take an
+ extremely long time, even for relatively short strings.
+
+ An optimization catches some of the more simple cases such as
+
+ (a+)*b
+
+ where a literal character follows. Before embarking on the standard
+ matching procedure, PCRE checks that there is a "b" later in the sub-
+ ject string, and if there is not, it fails the match immediately. How-
+ ever, when there is no following literal this optimization cannot be
+ used. You can see the difference by comparing the behaviour of
+
+ (a+)*\d
+
+ with the pattern above. The former gives a failure almost instantly
+ when applied to a whole line of "a" characters, whereas the latter
+ takes an appreciable time with strings longer than about 20 characters.
+
+ In many cases, the solution to this kind of performance issue is to use
+ an atomic group or a possessive quantifier.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 25 August 2012
+ Copyright (c) 1997-2012 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCREPOSIX(3) Library Functions Manual PCREPOSIX(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions.
+
+SYNOPSIS OF POSIX API
+
+ #include
+
+ int regcomp(regex_t *preg, const char *pattern,
+ int cflags);
+
+ int regexec(regex_t *preg, const char *string,
+ size_t nmatch, regmatch_t pmatch[], int eflags);
+
+ size_t regerror(int errcode, const regex_t *preg,
+ char *errbuf, size_t errbuf_size);
+
+ void regfree(regex_t *preg);
+
+
+DESCRIPTION
+
+ This set of functions provides a POSIX-style API for the PCRE regular
+ expression 8-bit library. See the pcreapi documentation for a descrip-
+ tion of PCRE's native API, which contains much additional functional-
+ ity. There is no POSIX-style wrapper for PCRE's 16-bit and 32-bit
+ library.
+
+ The functions described here are just wrapper functions that ultimately
+ call the PCRE native API. Their prototypes are defined in the
+ pcreposix.h header file, and on Unix systems the library itself is
+ called pcreposix.a, so can be accessed by adding -lpcreposix to the
+ command for linking an application that uses them. Because the POSIX
+ functions call the native ones, it is also necessary to add -lpcre.
+
+ I have implemented only those POSIX option bits that can be reasonably
+ mapped to PCRE native options. In addition, the option REG_EXTENDED is
+ defined with the value zero. This has no effect, but since programs
+ that are written to the POSIX interface often use it, this makes it
+ easier to slot in PCRE as a replacement library. Other POSIX options
+ are not even defined.
+
+ There are also some other options that are not defined by POSIX. These
+ have been added at the request of users who want to make use of certain
+ PCRE-specific features via the POSIX calling interface.
+
+ When PCRE is called via these functions, it is only the API that is
+ POSIX-like in style. The syntax and semantics of the regular expres-
+ sions themselves are still those of Perl, subject to the setting of
+ various PCRE options, as described below. "POSIX-like in style" means
+ that the API approximates to the POSIX definition; it is not fully
+ POSIX-compatible, and in multi-byte encoding domains it is probably
+ even less compatible.
+
+ The header for these functions is supplied as pcreposix.h to avoid any
+ potential clash with other POSIX libraries. It can, of course, be
+ renamed or aliased as regex.h, which is the "correct" name. It provides
+ two structure types, regex_t for compiled internal forms, and reg-
+ match_t for returning captured substrings. It also defines some con-
+ stants whose names start with "REG_"; these are used for setting
+ options and identifying error codes.
+
+
+COMPILING A PATTERN
+
+ The function regcomp() is called to compile a pattern into an internal
+ form. The pattern is a C string terminated by a binary zero, and is
+ passed in the argument pattern. The preg argument is a pointer to a
+ regex_t structure that is used as a base for storing information about
+ the compiled regular expression.
+
+ The argument cflags is either zero, or contains one or more of the bits
+ defined by the following macros:
+
+ REG_DOTALL
+
+ The PCRE_DOTALL option is set when the regular expression is passed for
+ compilation to the native function. Note that REG_DOTALL is not part of
+ the POSIX standard.
+
+ REG_ICASE
+
+ The PCRE_CASELESS option is set when the regular expression is passed
+ for compilation to the native function.
+
+ REG_NEWLINE
+
+ The PCRE_MULTILINE option is set when the regular expression is passed
+ for compilation to the native function. Note that this does not mimic
+ the defined POSIX behaviour for REG_NEWLINE (see the following sec-
+ tion).
+
+ REG_NOSUB
+
+ The PCRE_NO_AUTO_CAPTURE option is set when the regular expression is
+ passed for compilation to the native function. In addition, when a pat-
+ tern that is compiled with this flag is passed to regexec() for match-
+ ing, the nmatch and pmatch arguments are ignored, and no captured
+ strings are returned.
+
+ REG_UCP
+
+ The PCRE_UCP option is set when the regular expression is passed for
+ compilation to the native function. This causes PCRE to use Unicode
+ properties when matchine \d, \w, etc., instead of just recognizing
+ ASCII values. Note that REG_UTF8 is not part of the POSIX standard.
+
+ REG_UNGREEDY
+
+ The PCRE_UNGREEDY option is set when the regular expression is passed
+ for compilation to the native function. Note that REG_UNGREEDY is not
+ part of the POSIX standard.
+
+ REG_UTF8
+
+ The PCRE_UTF8 option is set when the regular expression is passed for
+ compilation to the native function. This causes the pattern itself and
+ all data strings used for matching it to be treated as UTF-8 strings.
+ Note that REG_UTF8 is not part of the POSIX standard.
+
+ In the absence of these flags, no options are passed to the native
+ function. This means the the regex is compiled with PCRE default
+ semantics. In particular, the way it handles newline characters in the
+ subject string is the Perl way, not the POSIX way. Note that setting
+ PCRE_MULTILINE has only some of the effects specified for REG_NEWLINE.
+ It does not affect the way newlines are matched by . (they are not) or
+ by a negative class such as [^a] (they are).
+
+ The yield of regcomp() is zero on success, and non-zero otherwise. The
+ preg structure is filled in on success, and one member of the structure
+ is public: re_nsub contains the number of capturing subpatterns in the
+ regular expression. Various error codes are defined in the header file.
+
+ NOTE: If the yield of regcomp() is non-zero, you must not attempt to
+ use the contents of the preg structure. If, for example, you pass it to
+ regexec(), the result is undefined and your program is likely to crash.
+
+
+MATCHING NEWLINE CHARACTERS
+
+ This area is not simple, because POSIX and Perl take different views of
+ things. It is not possible to get PCRE to obey POSIX semantics, but
+ then PCRE was never intended to be a POSIX engine. The following table
+ lists the different possibilities for matching newline characters in
+ PCRE:
+
+ Default Change with
+
+ . matches newline no PCRE_DOTALL
+ newline matches [^a] yes not changeable
+ $ matches \n at end yes PCRE_DOLLARENDONLY
+ $ matches \n in middle no PCRE_MULTILINE
+ ^ matches \n in middle no PCRE_MULTILINE
+
+ This is the equivalent table for POSIX:
+
+ Default Change with
+
+ . matches newline yes REG_NEWLINE
+ newline matches [^a] yes REG_NEWLINE
+ $ matches \n at end no REG_NEWLINE
+ $ matches \n in middle no REG_NEWLINE
+ ^ matches \n in middle no REG_NEWLINE
+
+ PCRE's behaviour is the same as Perl's, except that there is no equiva-
+ lent for PCRE_DOLLAR_ENDONLY in Perl. In both PCRE and Perl, there is
+ no way to stop newline from matching [^a].
+
+ The default POSIX newline handling can be obtained by setting
+ PCRE_DOTALL and PCRE_DOLLAR_ENDONLY, but there is no way to make PCRE
+ behave exactly as for the REG_NEWLINE action.
+
+
+MATCHING A PATTERN
+
+ The function regexec() is called to match a compiled pattern preg
+ against a given string, which is by default terminated by a zero byte
+ (but see REG_STARTEND below), subject to the options in eflags. These
+ can be:
+
+ REG_NOTBOL
+
+ The PCRE_NOTBOL option is set when calling the underlying PCRE matching
+ function.
+
+ REG_NOTEMPTY
+
+ The PCRE_NOTEMPTY option is set when calling the underlying PCRE match-
+ ing function. Note that REG_NOTEMPTY is not part of the POSIX standard.
+ However, setting this option can give more POSIX-like behaviour in some
+ situations.
+
+ REG_NOTEOL
+
+ The PCRE_NOTEOL option is set when calling the underlying PCRE matching
+ function.
+
+ REG_STARTEND
+
+ The string is considered to start at string + pmatch[0].rm_so and to
+ have a terminating NUL located at string + pmatch[0].rm_eo (there need
+ not actually be a NUL at that location), regardless of the value of
+ nmatch. This is a BSD extension, compatible with but not specified by
+ IEEE Standard 1003.2 (POSIX.2), and should be used with caution in
+ software intended to be portable to other systems. Note that a non-zero
+ rm_so does not imply REG_NOTBOL; REG_STARTEND affects only the location
+ of the string, not how it is matched.
+
+ If the pattern was compiled with the REG_NOSUB flag, no data about any
+ matched strings is returned. The nmatch and pmatch arguments of
+ regexec() are ignored.
+
+ If the value of nmatch is zero, or if the value pmatch is NULL, no data
+ about any matched strings is returned.
+
+ Otherwise,the portion of the string that was matched, and also any cap-
+ tured substrings, are returned via the pmatch argument, which points to
+ an array of nmatch structures of type regmatch_t, containing the mem-
+ bers rm_so and rm_eo. These contain the offset to the first character
+ of each substring and the offset to the first character after the end
+ of each substring, respectively. The 0th element of the vector relates
+ to the entire portion of string that was matched; subsequent elements
+ relate to the capturing subpatterns of the regular expression. Unused
+ entries in the array have both structure members set to -1.
+
+ A successful match yields a zero return; various error codes are
+ defined in the header file, of which REG_NOMATCH is the "expected"
+ failure code.
+
+
+ERROR MESSAGES
+
+ The regerror() function maps a non-zero errorcode from either regcomp()
+ or regexec() to a printable message. If preg is not NULL, the error
+ should have arisen from the use of that structure. A message terminated
+ by a binary zero is placed in errbuf. The length of the message,
+ including the zero, is limited to errbuf_size. The yield of the func-
+ tion is the size of buffer needed to hold the whole message.
+
+
+MEMORY USAGE
+
+ Compiling a regular expression causes memory to be allocated and asso-
+ ciated with the preg structure. The function regfree() frees all such
+ memory, after which preg may no longer be used as a compiled expres-
+ sion.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 09 January 2012
+ Copyright (c) 1997-2012 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCRECPP(3) Library Functions Manual PCRECPP(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions.
+
+SYNOPSIS OF C++ WRAPPER
+
+ #include
+
+
+DESCRIPTION
+
+ The C++ wrapper for PCRE was provided by Google Inc. Some additional
+ functionality was added by Giuseppe Maxia. This brief man page was con-
+ structed from the notes in the pcrecpp.h file, which should be con-
+ sulted for further details. Note that the C++ wrapper supports only the
+ original 8-bit PCRE library. There is no 16-bit or 32-bit support at
+ present.
+
+
+MATCHING INTERFACE
+
+ The "FullMatch" operation checks that supplied text matches a supplied
+ pattern exactly. If pointer arguments are supplied, it copies matched
+ sub-strings that match sub-patterns into them.
+
+ Example: successful match
+ pcrecpp::RE re("h.*o");
+ re.FullMatch("hello");
+
+ Example: unsuccessful match (requires full match):
+ pcrecpp::RE re("e");
+ !re.FullMatch("hello");
+
+ Example: creating a temporary RE object:
+ pcrecpp::RE("h.*o").FullMatch("hello");
+
+ You can pass in a "const char*" or a "string" for "text". The examples
+ below tend to use a const char*. You can, as in the different examples
+ above, store the RE object explicitly in a variable or use a temporary
+ RE object. The examples below use one mode or the other arbitrarily.
+ Either could correctly be used for any of these examples.
+
+ You must supply extra pointer arguments to extract matched subpieces.
+
+ Example: extracts "ruby" into "s" and 1234 into "i"
+ int i;
+ string s;
+ pcrecpp::RE re("(\\w+):(\\d+)");
+ re.FullMatch("ruby:1234", &s, &i);
+
+ Example: does not try to extract any extra sub-patterns
+ re.FullMatch("ruby:1234", &s);
+
+ Example: does not try to extract into NULL
+ re.FullMatch("ruby:1234", NULL, &i);
+
+ Example: integer overflow causes failure
+ !re.FullMatch("ruby:1234567891234", NULL, &i);
+
+ Example: fails because there aren't enough sub-patterns:
+ !pcrecpp::RE("\\w+:\\d+").FullMatch("ruby:1234", &s);
+
+ Example: fails because string cannot be stored in integer
+ !pcrecpp::RE("(.*)").FullMatch("ruby", &i);
+
+ The provided pointer arguments can be pointers to any scalar numeric
+ type, or one of:
+
+ string (matched piece is copied to string)
+ StringPiece (StringPiece is mutated to point to matched piece)
+ T (where "bool T::ParseFrom(const char*, int)" exists)
+ NULL (the corresponding matched sub-pattern is not copied)
+
+ The function returns true iff all of the following conditions are sat-
+ isfied:
+
+ a. "text" matches "pattern" exactly;
+
+ b. The number of matched sub-patterns is >= number of supplied
+ pointers;
+
+ c. The "i"th argument has a suitable type for holding the
+ string captured as the "i"th sub-pattern. If you pass in
+ void * NULL for the "i"th argument, or a non-void * NULL
+ of the correct type, or pass fewer arguments than the
+ number of sub-patterns, "i"th captured sub-pattern is
+ ignored.
+
+ CAVEAT: An optional sub-pattern that does not exist in the matched
+ string is assigned the empty string. Therefore, the following will
+ return false (because the empty string is not a valid number):
+
+ int number;
+ pcrecpp::RE::FullMatch("abc", "[a-z]+(\\d+)?", &number);
+
+ The matching interface supports at most 16 arguments per call. If you
+ need more, consider using the more general interface
+ pcrecpp::RE::DoMatch. See pcrecpp.h for the signature for DoMatch.
+
+ NOTE: Do not use no_arg, which is used internally to mark the end of a
+ list of optional arguments, as a placeholder for missing arguments, as
+ this can lead to segfaults.
+
+
+QUOTING METACHARACTERS
+
+ You can use the "QuoteMeta" operation to insert backslashes before all
+ potentially meaningful characters in a string. The returned string,
+ used as a regular expression, will exactly match the original string.
+
+ Example:
+ string quoted = RE::QuoteMeta(unquoted);
+
+ Note that it's legal to escape a character even if it has no special
+ meaning in a regular expression -- so this function does that. (This
+ also makes it identical to the perl function of the same name; see
+ "perldoc -f quotemeta".) For example, "1.5-2.0?" becomes
+ "1\.5\-2\.0\?".
+
+
+PARTIAL MATCHES
+
+ You can use the "PartialMatch" operation when you want the pattern to
+ match any substring of the text.
+
+ Example: simple search for a string:
+ pcrecpp::RE("ell").PartialMatch("hello");
+
+ Example: find first number in a string:
+ int number;
+ pcrecpp::RE re("(\\d+)");
+ re.PartialMatch("x*100 + 20", &number);
+ assert(number == 100);
+
+
+UTF-8 AND THE MATCHING INTERFACE
+
+ By default, pattern and text are plain text, one byte per character.
+ The UTF8 flag, passed to the constructor, causes both pattern and
+ string to be treated as UTF-8 text, still a byte stream but potentially
+ multiple bytes per character. In practice, the text is likelier to be
+ UTF-8 than the pattern, but the match returned may depend on the UTF8
+ flag, so always use it when matching UTF8 text. For example, "." will
+ match one byte normally but with UTF8 set may match up to three bytes
+ of a multi-byte character.
+
+ Example:
+ pcrecpp::RE_Options options;
+ options.set_utf8();
+ pcrecpp::RE re(utf8_pattern, options);
+ re.FullMatch(utf8_string);
+
+ Example: using the convenience function UTF8():
+ pcrecpp::RE re(utf8_pattern, pcrecpp::UTF8());
+ re.FullMatch(utf8_string);
+
+ NOTE: The UTF8 flag is ignored if pcre was not configured with the
+ --enable-utf8 flag.
+
+
+PASSING MODIFIERS TO THE REGULAR EXPRESSION ENGINE
+
+ PCRE defines some modifiers to change the behavior of the regular
+ expression engine. The C++ wrapper defines an auxiliary class,
+ RE_Options, as a vehicle to pass such modifiers to a RE class. Cur-
+ rently, the following modifiers are supported:
+
+ modifier description Perl corresponding
+
+ PCRE_CASELESS case insensitive match /i
+ PCRE_MULTILINE multiple lines match /m
+ PCRE_DOTALL dot matches newlines /s
+ PCRE_DOLLAR_ENDONLY $ matches only at end N/A
+ PCRE_EXTRA strict escape parsing N/A
+ PCRE_EXTENDED ignore white spaces /x
+ PCRE_UTF8 handles UTF8 chars built-in
+ PCRE_UNGREEDY reverses * and *? N/A
+ PCRE_NO_AUTO_CAPTURE disables capturing parens N/A (*)
+
+ (*) Both Perl and PCRE allow non capturing parentheses by means of the
+ "?:" modifier within the pattern itself. e.g. (?:ab|cd) does not cap-
+ ture, while (ab|cd) does.
+
+ For a full account on how each modifier works, please check the PCRE
+ API reference page.
+
+ For each modifier, there are two member functions whose name is made
+ out of the modifier in lowercase, without the "PCRE_" prefix. For
+ instance, PCRE_CASELESS is handled by
+
+ bool caseless()
+
+ which returns true if the modifier is set, and
+
+ RE_Options & set_caseless(bool)
+
+ which sets or unsets the modifier. Moreover, PCRE_EXTRA_MATCH_LIMIT can
+ be accessed through the set_match_limit() and match_limit() member
+ functions. Setting match_limit to a non-zero value will limit the exe-
+ cution of pcre to keep it from doing bad things like blowing the stack
+ or taking an eternity to return a result. A value of 5000 is good
+ enough to stop stack blowup in a 2MB thread stack. Setting match_limit
+ to zero disables match limiting. Alternatively, you can call
+ match_limit_recursion() which uses PCRE_EXTRA_MATCH_LIMIT_RECURSION to
+ limit how much PCRE recurses. match_limit() limits the number of
+ matches PCRE does; match_limit_recursion() limits the depth of internal
+ recursion, and therefore the amount of stack that is used.
+
+ Normally, to pass one or more modifiers to a RE class, you declare a
+ RE_Options object, set the appropriate options, and pass this object to
+ a RE constructor. Example:
+
+ RE_Options opt;
+ opt.set_caseless(true);
+ if (RE("HELLO", opt).PartialMatch("hello world")) ...
+
+ RE_options has two constructors. The default constructor takes no argu-
+ ments and creates a set of flags that are off by default. The optional
+ parameter option_flags is to facilitate transfer of legacy code from C
+ programs. This lets you do
+
+ RE(pattern,
+ RE_Options(PCRE_CASELESS|PCRE_MULTILINE)).PartialMatch(str);
+
+ However, new code is better off doing
+
+ RE(pattern,
+ RE_Options().set_caseless(true).set_multiline(true))
+ .PartialMatch(str);
+
+ If you are going to pass one of the most used modifiers, there are some
+ convenience functions that return a RE_Options class with the appropri-
+ ate modifier already set: CASELESS(), UTF8(), MULTILINE(), DOTALL(),
+ and EXTENDED().
+
+ If you need to set several options at once, and you don't want to go
+ through the pains of declaring a RE_Options object and setting several
+ options, there is a parallel method that give you such ability on the
+ fly. You can concatenate several set_xxxxx() member functions, since
+ each of them returns a reference to its class object. For example, to
+ pass PCRE_CASELESS, PCRE_EXTENDED, and PCRE_MULTILINE to a RE with one
+ statement, you may write:
+
+ RE(" ^ xyz \\s+ .* blah$",
+ RE_Options()
+ .set_caseless(true)
+ .set_extended(true)
+ .set_multiline(true)).PartialMatch(sometext);
+
+
+SCANNING TEXT INCREMENTALLY
+
+ The "Consume" operation may be useful if you want to repeatedly match
+ regular expressions at the front of a string and skip over them as they
+ match. This requires use of the "StringPiece" type, which represents a
+ sub-range of a real string. Like RE, StringPiece is defined in the
+ pcrecpp namespace.
+
+ Example: read lines of the form "var = value" from a string.
+ string contents = ...; // Fill string somehow
+ pcrecpp::StringPiece input(contents); // Wrap in a StringPiece
+
+ string var;
+ int value;
+ pcrecpp::RE re("(\\w+) = (\\d+)\n");
+ while (re.Consume(&input, &var, &value)) {
+ ...;
+ }
+
+ Each successful call to "Consume" will set "var/value", and also
+ advance "input" so it points past the matched text.
+
+ The "FindAndConsume" operation is similar to "Consume" but does not
+ anchor your match at the beginning of the string. For example, you
+ could extract all words from a string by repeatedly calling
+
+ pcrecpp::RE("(\\w+)").FindAndConsume(&input, &word)
+
+
+PARSING HEX/OCTAL/C-RADIX NUMBERS
+
+ By default, if you pass a pointer to a numeric value, the corresponding
+ text is interpreted as a base-10 number. You can instead wrap the
+ pointer with a call to one of the operators Hex(), Octal(), or CRadix()
+ to interpret the text in another base. The CRadix operator interprets
+ C-style "0" (base-8) and "0x" (base-16) prefixes, but defaults to
+ base-10.
+
+ Example:
+ int a, b, c, d;
+ pcrecpp::RE re("(.*) (.*) (.*) (.*)");
+ re.FullMatch("100 40 0100 0x40",
+ pcrecpp::Octal(&a), pcrecpp::Hex(&b),
+ pcrecpp::CRadix(&c), pcrecpp::CRadix(&d));
+
+ will leave 64 in a, b, c, and d.
+
+
+REPLACING PARTS OF STRINGS
+
+ You can replace the first match of "pattern" in "str" with "rewrite".
+ Within "rewrite", backslash-escaped digits (\1 to \9) can be used to
+ insert text matching corresponding parenthesized group from the pat-
+ tern. \0 in "rewrite" refers to the entire matching text. For example:
+
+ string s = "yabba dabba doo";
+ pcrecpp::RE("b+").Replace("d", &s);
+
+ will leave "s" containing "yada dabba doo". The result is true if the
+ pattern matches and a replacement occurs, false otherwise.
+
+ GlobalReplace is like Replace except that it replaces all occurrences
+ of the pattern in the string with the rewrite. Replacements are not
+ subject to re-matching. For example:
+
+ string s = "yabba dabba doo";
+ pcrecpp::RE("b+").GlobalReplace("d", &s);
+
+ will leave "s" containing "yada dada doo". It returns the number of
+ replacements made.
+
+ Extract is like Replace, except that if the pattern matches, "rewrite"
+ is copied into "out" (an additional argument) with substitutions. The
+ non-matching portions of "text" are ignored. Returns true iff a match
+ occurred and the extraction happened successfully; if no match occurs,
+ the string is left unaffected.
+
+
+AUTHOR
+
+ The C++ wrapper was contributed by Google Inc.
+ Copyright (c) 2007 Google Inc.
+
+
+REVISION
+
+ Last updated: 08 January 2012
+------------------------------------------------------------------------------
+
+
+PCRESAMPLE(3) Library Functions Manual PCRESAMPLE(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+PCRE SAMPLE PROGRAM
+
+ A simple, complete demonstration program, to get you started with using
+ PCRE, is supplied in the file pcredemo.c in the PCRE distribution. A
+ listing of this program is given in the pcredemo documentation. If you
+ do not have a copy of the PCRE distribution, you can save this listing
+ to re-create pcredemo.c.
+
+ The demonstration program, which uses the original PCRE 8-bit library,
+ compiles the regular expression that is its first argument, and matches
+ it against the subject string in its second argument. No PCRE options
+ are set, and default character tables are used. If matching succeeds,
+ the program outputs the portion of the subject that matched, together
+ with the contents of any captured substrings.
+
+ If the -g option is given on the command line, the program then goes on
+ to check for further matches of the same regular expression in the same
+ subject string. The logic is a little bit tricky because of the possi-
+ bility of matching an empty string. Comments in the code explain what
+ is going on.
+
+ If PCRE is installed in the standard include and library directories
+ for your operating system, you should be able to compile the demonstra-
+ tion program using this command:
+
+ gcc -o pcredemo pcredemo.c -lpcre
+
+ If PCRE is installed elsewhere, you may need to add additional options
+ to the command line. For example, on a Unix-like system that has PCRE
+ installed in /usr/local, you can compile the demonstration program
+ using a command like this:
+
+ gcc -o pcredemo -I/usr/local/include pcredemo.c \
+ -L/usr/local/lib -lpcre
+
+ In a Windows environment, if you want to statically link the program
+ against a non-dll pcre.a file, you must uncomment the line that defines
+ PCRE_STATIC before including pcre.h, because otherwise the pcre_mal-
+ loc() and pcre_free() exported functions will be declared
+ __declspec(dllimport), with unwanted results.
+
+ Once you have compiled and linked the demonstration program, you can
+ run simple tests like this:
+
+ ./pcredemo 'cat|dog' 'the cat sat on the mat'
+ ./pcredemo -g 'cat|dog' 'the dog sat on the cat'
+
+ Note that there is a much more comprehensive test program, called
+ pcretest, which supports many more facilities for testing regular
+ expressions and both PCRE libraries. The pcredemo program is provided
+ as a simple coding example.
+
+ If you try to run pcredemo when PCRE is not installed in the standard
+ library directory, you may get an error like this on some operating
+ systems (e.g. Solaris):
+
+ ld.so.1: a.out: fatal: libpcre.so.0: open failed: No such file or
+ directory
+
+ This is caused by the way shared library support works on those sys-
+ tems. You need to add
+
+ -R/usr/local/lib
+
+ (for example) to the compile command to get round this problem.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 10 January 2012
+ Copyright (c) 1997-2012 University of Cambridge.
+------------------------------------------------------------------------------
+PCRELIMITS(3) Library Functions Manual PCRELIMITS(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+SIZE AND OTHER LIMITATIONS
+
+ There are some size limitations in PCRE but it is hoped that they will
+ never in practice be relevant.
+
+ The maximum length of a compiled pattern is approximately 64K data
+ units (bytes for the 8-bit library, 32-bit units for the 32-bit
+ library, and 32-bit units for the 32-bit library) if PCRE is compiled
+ with the default internal linkage size of 2 bytes. If you want to
+ process regular expressions that are truly enormous, you can compile
+ PCRE with an internal linkage size of 3 or 4 (when building the 16-bit
+ or 32-bit library, 3 is rounded up to 4). See the README file in the
+ source distribution and the pcrebuild documentation for details. In
+ these cases the limit is substantially larger. However, the speed of
+ execution is slower.
+
+ All values in repeating quantifiers must be less than 65536.
+
+ There is no limit to the number of parenthesized subpatterns, but there
+ can be no more than 65535 capturing subpatterns.
+
+ There is a limit to the number of forward references to subsequent sub-
+ patterns of around 200,000. Repeated forward references with fixed
+ upper limits, for example, (?2){0,100} when subpattern number 2 is to
+ the right, are included in the count. There is no limit to the number
+ of backward references.
+
+ The maximum length of name for a named subpattern is 32 characters, and
+ the maximum number of named subpatterns is 10000.
+
+ The maximum length of a name in a (*MARK), (*PRUNE), (*SKIP), or
+ (*THEN) verb is 255 for the 8-bit library and 65535 for the 16-bit and
+ 32-bit library.
+
+ The maximum length of a subject string is the largest positive number
+ that an integer variable can hold. However, when using the traditional
+ matching function, PCRE uses recursion to handle subpatterns and indef-
+ inite repetition. This means that the available stack space may limit
+ the size of a subject string that can be processed by certain patterns.
+ For a discussion of stack issues, see the pcrestack documentation.
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 04 May 2012
+ Copyright (c) 1997-2012 University of Cambridge.
+------------------------------------------------------------------------------
+
+
+PCRESTACK(3) Library Functions Manual PCRESTACK(3)
+
+
+
+NAME
+ PCRE - Perl-compatible regular expressions
+
+PCRE DISCUSSION OF STACK USAGE
+
+ When you call pcre[16|32]_exec(), it makes use of an internal function
+ called match(). This calls itself recursively at branch points in the
+ pattern, in order to remember the state of the match so that it can
+ back up and try a different alternative if the first one fails. As
+ matching proceeds deeper and deeper into the tree of possibilities, the
+ recursion depth increases. The match() function is also called in other
+ circumstances, for example, whenever a parenthesized sub-pattern is
+ entered, and in certain cases of repetition.
+
+ Not all calls of match() increase the recursion depth; for an item such
+ as a* it may be called several times at the same level, after matching
+ different numbers of a's. Furthermore, in a number of cases where the
+ result of the recursive call would immediately be passed back as the
+ result of the current call (a "tail recursion"), the function is just
+ restarted instead.
+
+ The above comments apply when pcre[16|32]_exec() is run in its normal
+ interpretive manner. If the pattern was studied with the
+ PCRE_STUDY_JIT_COMPILE option, and just-in-time compiling was success-
+ ful, and the options passed to pcre[16|32]_exec() were not incompati-
+ ble, the matching process uses the JIT-compiled code instead of the
+ match() function. In this case, the memory requirements are handled
+ entirely differently. See the pcrejit documentation for details.
+
+ The pcre[16|32]_dfa_exec() function operates in an entirely different
+ way, and uses recursion only when there is a regular expression recur-
+ sion or subroutine call in the pattern. This includes the processing of
+ assertion and "once-only" subpatterns, which are handled like subrou-
+ tine calls. Normally, these are never very deep, and the limit on the
+ complexity of pcre[16|32]_dfa_exec() is controlled by the amount of
+ workspace it is given. However, it is possible to write patterns with
+ runaway infinite recursions; such patterns will cause
+ pcre[16|32]_dfa_exec() to run out of stack. At present, there is no
+ protection against this.
+
+ The comments that follow do NOT apply to pcre[16|32]_dfa_exec(); they
+ are relevant only for pcre[16|32]_exec() without the JIT optimization.
+
+ Reducing pcre[16|32]_exec()'s stack usage
+
+ Each time that match() is actually called recursively, it uses memory
+ from the process stack. For certain kinds of pattern and data, very
+ large amounts of stack may be needed, despite the recognition of "tail
+ recursion". You can often reduce the amount of recursion, and there-
+ fore the amount of stack used, by modifying the pattern that is being
+ matched. Consider, for example, this pattern:
+
+ ([^<]|<(?!inet))+
+
+ It matches from wherever it starts until it encounters "
+.
+.
+.SH "PCRE 16-BIT API BASIC FUNCTIONS"
+.rs
+.sp
+.SM
+.B pcre16 *pcre16_compile(PCRE_SPTR16 \fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.PP
+.B pcre16 *pcre16_compile2(PCRE_SPTR16 \fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B int *\fIerrorcodeptr\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.PP
+.B pcre16_extra *pcre16_study(const pcre16 *\fIcode\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP);
+.PP
+.B void pcre16_free_study(pcre16_extra *\fIextra\fP);
+.PP
+.B int pcre16_exec(const pcre16 *\fIcode\fP, "const pcre16_extra *\fIextra\fP,"
+.ti +5n
+.B "PCRE_SPTR16 \fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP);
+.PP
+.B int pcre16_dfa_exec(const pcre16 *\fIcode\fP, "const pcre16_extra *\fIextra\fP,"
+.ti +5n
+.B "PCRE_SPTR16 \fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP,
+.ti +5n
+.B int *\fIworkspace\fP, int \fIwscount\fP);
+.
+.
+.SH "PCRE 16-BIT API STRING EXTRACTION FUNCTIONS"
+.rs
+.sp
+.B int pcre16_copy_named_substring(const pcre16 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR16 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, PCRE_SPTR16 \fIstringname\fP,
+.ti +5n
+.B PCRE_UCHAR16 *\fIbuffer\fP, int \fIbuffersize\fP);
+.PP
+.B int pcre16_copy_substring(PCRE_SPTR16 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP, PCRE_UCHAR16 *\fIbuffer\fP,
+.ti +5n
+.B int \fIbuffersize\fP);
+.PP
+.B int pcre16_get_named_substring(const pcre16 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR16 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, PCRE_SPTR16 \fIstringname\fP,
+.ti +5n
+.B PCRE_SPTR16 *\fIstringptr\fP);
+.PP
+.B int pcre16_get_stringnumber(const pcre16 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR16 \fIname\fP);
+.PP
+.B int pcre16_get_stringtable_entries(const pcre16 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR16 \fIname\fP, PCRE_UCHAR16 **\fIfirst\fP, PCRE_UCHAR16 **\fIlast\fP);
+.PP
+.B int pcre16_get_substring(PCRE_SPTR16 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP,
+.ti +5n
+.B PCRE_SPTR16 *\fIstringptr\fP);
+.PP
+.B int pcre16_get_substring_list(PCRE_SPTR16 \fIsubject\fP,
+.ti +5n
+.B int *\fIovector\fP, int \fIstringcount\fP, "PCRE_SPTR16 **\fIlistptr\fP);"
+.PP
+.B void pcre16_free_substring(PCRE_SPTR16 \fIstringptr\fP);
+.PP
+.B void pcre16_free_substring_list(PCRE_SPTR16 *\fIstringptr\fP);
+.
+.
+.SH "PCRE 16-BIT API AUXILIARY FUNCTIONS"
+.rs
+.sp
+.B pcre16_jit_stack *pcre16_jit_stack_alloc(int \fIstartsize\fP, int \fImaxsize\fP);
+.PP
+.B void pcre16_jit_stack_free(pcre16_jit_stack *\fIstack\fP);
+.PP
+.B void pcre16_assign_jit_stack(pcre16_extra *\fIextra\fP,
+.ti +5n
+.B pcre16_jit_callback \fIcallback\fP, void *\fIdata\fP);
+.PP
+.B const unsigned char *pcre16_maketables(void);
+.PP
+.B int pcre16_fullinfo(const pcre16 *\fIcode\fP, "const pcre16_extra *\fIextra\fP,"
+.ti +5n
+.B int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+.B int pcre16_refcount(pcre16 *\fIcode\fP, int \fIadjust\fP);
+.PP
+.B int pcre16_config(int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+.B const char *pcre16_version(void);
+.PP
+.B int pcre16_pattern_to_host_byte_order(pcre16 *\fIcode\fP,
+.ti +5n
+.B pcre16_extra *\fIextra\fP, const unsigned char *\fItables\fP);
+.
+.
+.SH "PCRE 16-BIT API INDIRECTED FUNCTIONS"
+.rs
+.sp
+.B void *(*pcre16_malloc)(size_t);
+.PP
+.B void (*pcre16_free)(void *);
+.PP
+.B void *(*pcre16_stack_malloc)(size_t);
+.PP
+.B void (*pcre16_stack_free)(void *);
+.PP
+.B int (*pcre16_callout)(pcre16_callout_block *);
+.
+.
+.SH "PCRE 16-BIT API 16-BIT-ONLY FUNCTION"
+.rs
+.sp
+.B int pcre16_utf16_to_host_byte_order(PCRE_UCHAR16 *\fIoutput\fP,
+.ti +5n
+.B PCRE_SPTR16 \fIinput\fP, int \fIlength\fP, int *\fIbyte_order\fP,
+.ti +5n
+.B int \fIkeep_boms\fP);
+.
+.
+.SH "THE PCRE 16-BIT LIBRARY"
+.rs
+.sp
+Starting with release 8.30, it is possible to compile a PCRE library that
+supports 16-bit character strings, including UTF-16 strings, as well as or
+instead of the original 8-bit library. The majority of the work to make this
+possible was done by Zoltan Herczeg. The two libraries contain identical sets
+of functions, used in exactly the same way. Only the names of the functions and
+the data types of their arguments and results are different. To avoid
+over-complication and reduce the documentation maintenance load, most of the
+PCRE documentation describes the 8-bit library, with only occasional references
+to the 16-bit library. This page describes what is different when you use the
+16-bit library.
+.P
+WARNING: A single application can be linked with both libraries, but you must
+take care when processing any particular pattern to use functions from just one
+library. For example, if you want to study a pattern that was compiled with
+\fBpcre16_compile()\fP, you must do so with \fBpcre16_study()\fP, not
+\fBpcre_study()\fP, and you must free the study data with
+\fBpcre16_free_study()\fP.
+.
+.
+.SH "THE HEADER FILE"
+.rs
+.sp
+There is only one header file, \fBpcre.h\fP. It contains prototypes for all the
+functions in all libraries, as well as definitions of flags, structures, error
+codes, etc.
+.
+.
+.SH "THE LIBRARY NAME"
+.rs
+.sp
+In Unix-like systems, the 16-bit library is called \fBlibpcre16\fP, and can
+normally be accesss by adding \fB-lpcre16\fP to the command for linking an
+application that uses PCRE.
+.
+.
+.SH "STRING TYPES"
+.rs
+.sp
+In the 8-bit library, strings are passed to PCRE library functions as vectors
+of bytes with the C type "char *". In the 16-bit library, strings are passed as
+vectors of unsigned 16-bit quantities. The macro PCRE_UCHAR16 specifies an
+appropriate data type, and PCRE_SPTR16 is defined as "const PCRE_UCHAR16 *". In
+very many environments, "short int" is a 16-bit data type. When PCRE is built,
+it defines PCRE_UCHAR16 as "unsigned short int", but checks that it really is a
+16-bit data type. If it is not, the build fails with an error message telling
+the maintainer to modify the definition appropriately.
+.
+.
+.SH "STRUCTURE TYPES"
+.rs
+.sp
+The types of the opaque structures that are used for compiled 16-bit patterns
+and JIT stacks are \fBpcre16\fP and \fBpcre16_jit_stack\fP respectively. The
+type of the user-accessible structure that is returned by \fBpcre16_study()\fP
+is \fBpcre16_extra\fP, and the type of the structure that is used for passing
+data to a callout function is \fBpcre16_callout_block\fP. These structures
+contain the same fields, with the same names, as their 8-bit counterparts. The
+only difference is that pointers to character strings are 16-bit instead of
+8-bit types.
+.
+.
+.SH "16-BIT FUNCTIONS"
+.rs
+.sp
+For every function in the 8-bit library there is a corresponding function in
+the 16-bit library with a name that starts with \fBpcre16_\fP instead of
+\fBpcre_\fP. The prototypes are listed above. In addition, there is one extra
+function, \fBpcre16_utf16_to_host_byte_order()\fP. This is a utility function
+that converts a UTF-16 character string to host byte order if necessary. The
+other 16-bit functions expect the strings they are passed to be in host byte
+order.
+.P
+The \fIinput\fP and \fIoutput\fP arguments of
+\fBpcre16_utf16_to_host_byte_order()\fP may point to the same address, that is,
+conversion in place is supported. The output buffer must be at least as long as
+the input.
+.P
+The \fIlength\fP argument specifies the number of 16-bit data units in the
+input string; a negative value specifies a zero-terminated string.
+.P
+If \fIbyte_order\fP is NULL, it is assumed that the string starts off in host
+byte order. This may be changed by byte-order marks (BOMs) anywhere in the
+string (commonly as the first character).
+.P
+If \fIbyte_order\fP is not NULL, a non-zero value of the integer to which it
+points means that the input starts off in host byte order, otherwise the
+opposite order is assumed. Again, BOMs in the string can change this. The final
+byte order is passed back at the end of processing.
+.P
+If \fIkeep_boms\fP is not zero, byte-order mark characters (0xfeff) are copied
+into the output string. Otherwise they are discarded.
+.P
+The result of the function is the number of 16-bit units placed into the output
+buffer, including the zero terminator if the string was zero-terminated.
+.
+.
+.SH "SUBJECT STRING OFFSETS"
+.rs
+.sp
+The lengths and starting offsets of subject strings must be specified in 16-bit
+data units, and the offsets within subject strings that are returned by the
+matching functions are in also 16-bit units rather than bytes.
+.
+.
+.SH "NAMED SUBPATTERNS"
+.rs
+.sp
+The name-to-number translation table that is maintained for named subpatterns
+uses 16-bit characters. The \fBpcre16_get_stringtable_entries()\fP function
+returns the length of each entry in the table as the number of 16-bit data
+units.
+.
+.
+.SH "OPTION NAMES"
+.rs
+.sp
+There are two new general option names, PCRE_UTF16 and PCRE_NO_UTF16_CHECK,
+which correspond to PCRE_UTF8 and PCRE_NO_UTF8_CHECK in the 8-bit library. In
+fact, these new options define the same bits in the options word. There is a
+discussion about the
+.\" HTML
+.\"
+validity of UTF-16 strings
+.\"
+in the
+.\" HREF
+\fBpcreunicode\fP
+.\"
+page.
+.P
+For the \fBpcre16_config()\fP function there is an option PCRE_CONFIG_UTF16
+that returns 1 if UTF-16 support is configured, otherwise 0. If this option is
+given to \fBpcre_config()\fP or \fBpcre32_config()\fP, or if the
+PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF32 option is given to \fBpcre16_config()\fP,
+the result is the PCRE_ERROR_BADOPTION error.
+.
+.
+.SH "CHARACTER CODES"
+.rs
+.sp
+In 16-bit mode, when PCRE_UTF16 is not set, character values are treated in the
+same way as in 8-bit, non UTF-8 mode, except, of course, that they can range
+from 0 to 0xffff instead of 0 to 0xff. Character types for characters less than
+0xff can therefore be influenced by the locale in the same way as before.
+Characters greater than 0xff have only one case, and no "type" (such as letter
+or digit).
+.P
+In UTF-16 mode, the character code is Unicode, in the range 0 to 0x10ffff, with
+the exception of values in the range 0xd800 to 0xdfff because those are
+"surrogate" values that are used in pairs to encode values greater than 0xffff.
+.P
+A UTF-16 string can indicate its endianness by special code knows as a
+byte-order mark (BOM). The PCRE functions do not handle this, expecting strings
+to be in host byte order. A utility function called
+\fBpcre16_utf16_to_host_byte_order()\fP is provided to help with this (see
+above).
+.
+.
+.SH "ERROR NAMES"
+.rs
+.sp
+The errors PCRE_ERROR_BADUTF16_OFFSET and PCRE_ERROR_SHORTUTF16 correspond to
+their 8-bit counterparts. The error PCRE_ERROR_BADMODE is given when a compiled
+pattern is passed to a function that processes patterns in the other
+mode, for example, if a pattern compiled with \fBpcre_compile()\fP is passed to
+\fBpcre16_exec()\fP.
+.P
+There are new error codes whose names begin with PCRE_UTF16_ERR for invalid
+UTF-16 strings, corresponding to the PCRE_UTF8_ERR codes for UTF-8 strings that
+are described in the section entitled
+.\" HTML
+.\"
+"Reason codes for invalid UTF-8 strings"
+.\"
+in the main
+.\" HREF
+\fBpcreapi\fP
+.\"
+page. The UTF-16 errors are:
+.sp
+ PCRE_UTF16_ERR1 Missing low surrogate at end of string
+ PCRE_UTF16_ERR2 Invalid low surrogate follows high surrogate
+ PCRE_UTF16_ERR3 Isolated low surrogate
+ PCRE_UTF16_ERR4 Non-character
+.
+.
+.SH "ERROR TEXTS"
+.rs
+.sp
+If there is an error while compiling a pattern, the error text that is passed
+back by \fBpcre16_compile()\fP or \fBpcre16_compile2()\fP is still an 8-bit
+character string, zero-terminated.
+.
+.
+.SH "CALLOUTS"
+.rs
+.sp
+The \fIsubject\fP and \fImark\fP fields in the callout block that is passed to
+a callout function point to 16-bit vectors.
+.
+.
+.SH "TESTING"
+.rs
+.sp
+The \fBpcretest\fP program continues to operate with 8-bit input and output
+files, but it can be used for testing the 16-bit library. If it is run with the
+command line option \fB-16\fP, patterns and subject strings are converted from
+8-bit to 16-bit before being passed to PCRE, and the 16-bit library functions
+are used instead of the 8-bit ones. Returned 16-bit strings are converted to
+8-bit for output. If both the 8-bit and the 32-bit libraries were not compiled,
+\fBpcretest\fP defaults to 16-bit and the \fB-16\fP option is ignored.
+.P
+When PCRE is being built, the \fBRunTest\fP script that is called by "make
+check" uses the \fBpcretest\fP \fB-C\fP option to discover which of the 8-bit,
+16-bit and 32-bit libraries has been built, and runs the tests appropriately.
+.
+.
+.SH "NOT SUPPORTED IN 16-BIT MODE"
+.rs
+.sp
+Not all the features of the 8-bit library are available with the 16-bit
+library. The C++ and POSIX wrapper functions support only the 8-bit library,
+and the \fBpcregrep\fP program is at present 8-bit only.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 12 May 2013
+Copyright (c) 1997-2013 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcre32.3 b/pcre/doc/pcre32.3
new file mode 100644
index 00000000000..516c8ee570c
--- /dev/null
+++ b/pcre/doc/pcre32.3
@@ -0,0 +1,390 @@
+.TH PCRE 3 "12 May 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.sp
+.B #include
+.
+.
+.SH "PCRE 32-BIT API BASIC FUNCTIONS"
+.rs
+.sp
+.SM
+.B pcre32 *pcre32_compile(PCRE_SPTR32 \fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.PP
+.B pcre32 *pcre32_compile2(PCRE_SPTR32 \fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B int *\fIerrorcodeptr\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.PP
+.B pcre32_extra *pcre32_study(const pcre32 *\fIcode\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP);
+.PP
+.B void pcre32_free_study(pcre32_extra *\fIextra\fP);
+.PP
+.B int pcre32_exec(const pcre32 *\fIcode\fP, "const pcre32_extra *\fIextra\fP,"
+.ti +5n
+.B "PCRE_SPTR32 \fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP);
+.PP
+.B int pcre32_dfa_exec(const pcre32 *\fIcode\fP, "const pcre32_extra *\fIextra\fP,"
+.ti +5n
+.B "PCRE_SPTR32 \fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP,
+.ti +5n
+.B int *\fIworkspace\fP, int \fIwscount\fP);
+.
+.
+.SH "PCRE 32-BIT API STRING EXTRACTION FUNCTIONS"
+.rs
+.sp
+.B int pcre32_copy_named_substring(const pcre32 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR32 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, PCRE_SPTR32 \fIstringname\fP,
+.ti +5n
+.B PCRE_UCHAR32 *\fIbuffer\fP, int \fIbuffersize\fP);
+.PP
+.B int pcre32_copy_substring(PCRE_SPTR32 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP, PCRE_UCHAR32 *\fIbuffer\fP,
+.ti +5n
+.B int \fIbuffersize\fP);
+.PP
+.B int pcre32_get_named_substring(const pcre32 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR32 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, PCRE_SPTR32 \fIstringname\fP,
+.ti +5n
+.B PCRE_SPTR32 *\fIstringptr\fP);
+.PP
+.B int pcre32_get_stringnumber(const pcre32 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR32 \fIname\fP);
+.PP
+.B int pcre32_get_stringtable_entries(const pcre32 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR32 \fIname\fP, PCRE_UCHAR32 **\fIfirst\fP, PCRE_UCHAR32 **\fIlast\fP);
+.PP
+.B int pcre32_get_substring(PCRE_SPTR32 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP,
+.ti +5n
+.B PCRE_SPTR32 *\fIstringptr\fP);
+.PP
+.B int pcre32_get_substring_list(PCRE_SPTR32 \fIsubject\fP,
+.ti +5n
+.B int *\fIovector\fP, int \fIstringcount\fP, "PCRE_SPTR32 **\fIlistptr\fP);"
+.PP
+.B void pcre32_free_substring(PCRE_SPTR32 \fIstringptr\fP);
+.PP
+.B void pcre32_free_substring_list(PCRE_SPTR32 *\fIstringptr\fP);
+.
+.
+.SH "PCRE 32-BIT API AUXILIARY FUNCTIONS"
+.rs
+.sp
+.B pcre32_jit_stack *pcre32_jit_stack_alloc(int \fIstartsize\fP, int \fImaxsize\fP);
+.PP
+.B void pcre32_jit_stack_free(pcre32_jit_stack *\fIstack\fP);
+.PP
+.B void pcre32_assign_jit_stack(pcre32_extra *\fIextra\fP,
+.ti +5n
+.B pcre32_jit_callback \fIcallback\fP, void *\fIdata\fP);
+.PP
+.B const unsigned char *pcre32_maketables(void);
+.PP
+.B int pcre32_fullinfo(const pcre32 *\fIcode\fP, "const pcre32_extra *\fIextra\fP,"
+.ti +5n
+.B int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+.B int pcre32_refcount(pcre32 *\fIcode\fP, int \fIadjust\fP);
+.PP
+.B int pcre32_config(int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+.B const char *pcre32_version(void);
+.PP
+.B int pcre32_pattern_to_host_byte_order(pcre32 *\fIcode\fP,
+.ti +5n
+.B pcre32_extra *\fIextra\fP, const unsigned char *\fItables\fP);
+.
+.
+.SH "PCRE 32-BIT API INDIRECTED FUNCTIONS"
+.rs
+.sp
+.B void *(*pcre32_malloc)(size_t);
+.PP
+.B void (*pcre32_free)(void *);
+.PP
+.B void *(*pcre32_stack_malloc)(size_t);
+.PP
+.B void (*pcre32_stack_free)(void *);
+.PP
+.B int (*pcre32_callout)(pcre32_callout_block *);
+.
+.
+.SH "PCRE 32-BIT API 32-BIT-ONLY FUNCTION"
+.rs
+.sp
+.B int pcre32_utf32_to_host_byte_order(PCRE_UCHAR32 *\fIoutput\fP,
+.ti +5n
+.B PCRE_SPTR32 \fIinput\fP, int \fIlength\fP, int *\fIbyte_order\fP,
+.ti +5n
+.B int \fIkeep_boms\fP);
+.
+.
+.SH "THE PCRE 32-BIT LIBRARY"
+.rs
+.sp
+Starting with release 8.32, it is possible to compile a PCRE library that
+supports 32-bit character strings, including UTF-32 strings, as well as or
+instead of the original 8-bit library. This work was done by Christian Persch,
+based on the work done by Zoltan Herczeg for the 16-bit library. All three
+libraries contain identical sets of functions, used in exactly the same way.
+Only the names of the functions and the data types of their arguments and
+results are different. To avoid over-complication and reduce the documentation
+maintenance load, most of the PCRE documentation describes the 8-bit library,
+with only occasional references to the 16-bit and 32-bit libraries. This page
+describes what is different when you use the 32-bit library.
+.P
+WARNING: A single application can be linked with all or any of the three
+libraries, but you must take care when processing any particular pattern
+to use functions from just one library. For example, if you want to study
+a pattern that was compiled with \fBpcre32_compile()\fP, you must do so
+with \fBpcre32_study()\fP, not \fBpcre_study()\fP, and you must free the
+study data with \fBpcre32_free_study()\fP.
+.
+.
+.SH "THE HEADER FILE"
+.rs
+.sp
+There is only one header file, \fBpcre.h\fP. It contains prototypes for all the
+functions in all libraries, as well as definitions of flags, structures, error
+codes, etc.
+.
+.
+.SH "THE LIBRARY NAME"
+.rs
+.sp
+In Unix-like systems, the 32-bit library is called \fBlibpcre32\fP, and can
+normally be accesss by adding \fB-lpcre32\fP to the command for linking an
+application that uses PCRE.
+.
+.
+.SH "STRING TYPES"
+.rs
+.sp
+In the 8-bit library, strings are passed to PCRE library functions as vectors
+of bytes with the C type "char *". In the 32-bit library, strings are passed as
+vectors of unsigned 32-bit quantities. The macro PCRE_UCHAR32 specifies an
+appropriate data type, and PCRE_SPTR32 is defined as "const PCRE_UCHAR32 *". In
+very many environments, "unsigned int" is a 32-bit data type. When PCRE is
+built, it defines PCRE_UCHAR32 as "unsigned int", but checks that it really is
+a 32-bit data type. If it is not, the build fails with an error message telling
+the maintainer to modify the definition appropriately.
+.
+.
+.SH "STRUCTURE TYPES"
+.rs
+.sp
+The types of the opaque structures that are used for compiled 32-bit patterns
+and JIT stacks are \fBpcre32\fP and \fBpcre32_jit_stack\fP respectively. The
+type of the user-accessible structure that is returned by \fBpcre32_study()\fP
+is \fBpcre32_extra\fP, and the type of the structure that is used for passing
+data to a callout function is \fBpcre32_callout_block\fP. These structures
+contain the same fields, with the same names, as their 8-bit counterparts. The
+only difference is that pointers to character strings are 32-bit instead of
+8-bit types.
+.
+.
+.SH "32-BIT FUNCTIONS"
+.rs
+.sp
+For every function in the 8-bit library there is a corresponding function in
+the 32-bit library with a name that starts with \fBpcre32_\fP instead of
+\fBpcre_\fP. The prototypes are listed above. In addition, there is one extra
+function, \fBpcre32_utf32_to_host_byte_order()\fP. This is a utility function
+that converts a UTF-32 character string to host byte order if necessary. The
+other 32-bit functions expect the strings they are passed to be in host byte
+order.
+.P
+The \fIinput\fP and \fIoutput\fP arguments of
+\fBpcre32_utf32_to_host_byte_order()\fP may point to the same address, that is,
+conversion in place is supported. The output buffer must be at least as long as
+the input.
+.P
+The \fIlength\fP argument specifies the number of 32-bit data units in the
+input string; a negative value specifies a zero-terminated string.
+.P
+If \fIbyte_order\fP is NULL, it is assumed that the string starts off in host
+byte order. This may be changed by byte-order marks (BOMs) anywhere in the
+string (commonly as the first character).
+.P
+If \fIbyte_order\fP is not NULL, a non-zero value of the integer to which it
+points means that the input starts off in host byte order, otherwise the
+opposite order is assumed. Again, BOMs in the string can change this. The final
+byte order is passed back at the end of processing.
+.P
+If \fIkeep_boms\fP is not zero, byte-order mark characters (0xfeff) are copied
+into the output string. Otherwise they are discarded.
+.P
+The result of the function is the number of 32-bit units placed into the output
+buffer, including the zero terminator if the string was zero-terminated.
+.
+.
+.SH "SUBJECT STRING OFFSETS"
+.rs
+.sp
+The lengths and starting offsets of subject strings must be specified in 32-bit
+data units, and the offsets within subject strings that are returned by the
+matching functions are in also 32-bit units rather than bytes.
+.
+.
+.SH "NAMED SUBPATTERNS"
+.rs
+.sp
+The name-to-number translation table that is maintained for named subpatterns
+uses 32-bit characters. The \fBpcre32_get_stringtable_entries()\fP function
+returns the length of each entry in the table as the number of 32-bit data
+units.
+.
+.
+.SH "OPTION NAMES"
+.rs
+.sp
+There are two new general option names, PCRE_UTF32 and PCRE_NO_UTF32_CHECK,
+which correspond to PCRE_UTF8 and PCRE_NO_UTF8_CHECK in the 8-bit library. In
+fact, these new options define the same bits in the options word. There is a
+discussion about the
+.\" HTML
+.\"
+validity of UTF-32 strings
+.\"
+in the
+.\" HREF
+\fBpcreunicode\fP
+.\"
+page.
+.P
+For the \fBpcre32_config()\fP function there is an option PCRE_CONFIG_UTF32
+that returns 1 if UTF-32 support is configured, otherwise 0. If this option is
+given to \fBpcre_config()\fP or \fBpcre16_config()\fP, or if the
+PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF16 option is given to \fBpcre32_config()\fP,
+the result is the PCRE_ERROR_BADOPTION error.
+.
+.
+.SH "CHARACTER CODES"
+.rs
+.sp
+In 32-bit mode, when PCRE_UTF32 is not set, character values are treated in the
+same way as in 8-bit, non UTF-8 mode, except, of course, that they can range
+from 0 to 0x7fffffff instead of 0 to 0xff. Character types for characters less
+than 0xff can therefore be influenced by the locale in the same way as before.
+Characters greater than 0xff have only one case, and no "type" (such as letter
+or digit).
+.P
+In UTF-32 mode, the character code is Unicode, in the range 0 to 0x10ffff, with
+the exception of values in the range 0xd800 to 0xdfff because those are
+"surrogate" values that are ill-formed in UTF-32.
+.P
+A UTF-32 string can indicate its endianness by special code knows as a
+byte-order mark (BOM). The PCRE functions do not handle this, expecting strings
+to be in host byte order. A utility function called
+\fBpcre32_utf32_to_host_byte_order()\fP is provided to help with this (see
+above).
+.
+.
+.SH "ERROR NAMES"
+.rs
+.sp
+The error PCRE_ERROR_BADUTF32 corresponds to its 8-bit counterpart.
+The error PCRE_ERROR_BADMODE is given when a compiled
+pattern is passed to a function that processes patterns in the other
+mode, for example, if a pattern compiled with \fBpcre_compile()\fP is passed to
+\fBpcre32_exec()\fP.
+.P
+There are new error codes whose names begin with PCRE_UTF32_ERR for invalid
+UTF-32 strings, corresponding to the PCRE_UTF8_ERR codes for UTF-8 strings that
+are described in the section entitled
+.\" HTML
+.\"
+"Reason codes for invalid UTF-8 strings"
+.\"
+in the main
+.\" HREF
+\fBpcreapi\fP
+.\"
+page. The UTF-32 errors are:
+.sp
+ PCRE_UTF32_ERR1 Surrogate character (range from 0xd800 to 0xdfff)
+ PCRE_UTF32_ERR2 Non-character
+ PCRE_UTF32_ERR3 Character > 0x10ffff
+.
+.
+.SH "ERROR TEXTS"
+.rs
+.sp
+If there is an error while compiling a pattern, the error text that is passed
+back by \fBpcre32_compile()\fP or \fBpcre32_compile2()\fP is still an 8-bit
+character string, zero-terminated.
+.
+.
+.SH "CALLOUTS"
+.rs
+.sp
+The \fIsubject\fP and \fImark\fP fields in the callout block that is passed to
+a callout function point to 32-bit vectors.
+.
+.
+.SH "TESTING"
+.rs
+.sp
+The \fBpcretest\fP program continues to operate with 8-bit input and output
+files, but it can be used for testing the 32-bit library. If it is run with the
+command line option \fB-32\fP, patterns and subject strings are converted from
+8-bit to 32-bit before being passed to PCRE, and the 32-bit library functions
+are used instead of the 8-bit ones. Returned 32-bit strings are converted to
+8-bit for output. If both the 8-bit and the 16-bit libraries were not compiled,
+\fBpcretest\fP defaults to 32-bit and the \fB-32\fP option is ignored.
+.P
+When PCRE is being built, the \fBRunTest\fP script that is called by "make
+check" uses the \fBpcretest\fP \fB-C\fP option to discover which of the 8-bit,
+16-bit and 32-bit libraries has been built, and runs the tests appropriately.
+.
+.
+.SH "NOT SUPPORTED IN 32-BIT MODE"
+.rs
+.sp
+Not all the features of the 8-bit library are available with the 32-bit
+library. The C++ and POSIX wrapper functions support only the 8-bit library,
+and the \fBpcregrep\fP program is at present 8-bit only.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 12 May 2013
+Copyright (c) 1997-2013 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcre_assign_jit_stack.3 b/pcre/doc/pcre_assign_jit_stack.3
new file mode 100644
index 00000000000..e1563b6e06d
--- /dev/null
+++ b/pcre/doc/pcre_assign_jit_stack.3
@@ -0,0 +1,61 @@
+.TH PCRE_ASSIGN_JIT_STACK 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B void pcre_assign_jit_stack(pcre_extra *\fIextra\fP,
+.ti +5n
+.B pcre_jit_callback \fIcallback\fP, void *\fIdata\fP);
+.PP
+.B void pcre16_assign_jit_stack(pcre16_extra *\fIextra\fP,
+.ti +5n
+.B pcre16_jit_callback \fIcallback\fP, void *\fIdata\fP);
+.PP
+.B void pcre32_assign_jit_stack(pcre32_extra *\fIextra\fP,
+.ti +5n
+.B pcre32_jit_callback \fIcallback\fP, void *\fIdata\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function provides control over the memory used as a stack at run-time by a
+call to \fBpcre[16|32]_exec()\fP with a pattern that has been successfully
+compiled with JIT optimization. The arguments are:
+.sp
+ extra the data pointer returned by \fBpcre[16|32]_study()\fP
+ callback a callback function
+ data a JIT stack or a value to be passed to the callback
+ function
+.P
+If \fIcallback\fP is NULL and \fIdata\fP is NULL, an internal 32K block on
+the machine stack is used.
+.P
+If \fIcallback\fP is NULL and \fIdata\fP is not NULL, \fIdata\fP must
+be a valid JIT stack, the result of calling \fBpcre[16|32]_jit_stack_alloc()\fP.
+.P
+If \fIcallback\fP not NULL, it is called with \fIdata\fP as an argument at
+the start of matching, in order to set up a JIT stack. If the result is NULL,
+the internal 32K stack is used; otherwise the return value must be a valid JIT
+stack, the result of calling \fBpcre[16|32]_jit_stack_alloc()\fP.
+.P
+You may safely assign the same JIT stack to multiple patterns, as long as they
+are all matched in the same thread. In a multithread application, each thread
+must use its own JIT stack. For more details, see the
+.\" HREF
+\fBpcrejit\fP
+.\"
+page.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_compile.3 b/pcre/doc/pcre_compile.3
new file mode 100644
index 00000000000..d09768d8021
--- /dev/null
+++ b/pcre/doc/pcre_compile.3
@@ -0,0 +1,98 @@
+.TH PCRE_COMPILE 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B pcre *pcre_compile(const char *\fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.PP
+.B pcre16 *pcre16_compile(PCRE_SPTR16 \fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.PP
+.B pcre32 *pcre32_compile(PCRE_SPTR32 \fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function compiles a regular expression into an internal form. It is the
+same as \fBpcre[16|32]_compile2()\fP, except for the absence of the
+\fIerrorcodeptr\fP argument. Its arguments are:
+.sp
+ \fIpattern\fP A zero-terminated string containing the
+ regular expression to be compiled
+ \fIoptions\fP Zero or more option bits
+ \fIerrptr\fP Where to put an error message
+ \fIerroffset\fP Offset in pattern where error was found
+ \fItableptr\fP Pointer to character tables, or NULL to
+ use the built-in default
+.sp
+The option bits are:
+.sp
+ PCRE_ANCHORED Force pattern anchoring
+ PCRE_AUTO_CALLOUT Compile automatic callouts
+ PCRE_BSR_ANYCRLF \eR matches only CR, LF, or CRLF
+ PCRE_BSR_UNICODE \eR matches all Unicode line endings
+ PCRE_CASELESS Do caseless matching
+ PCRE_DOLLAR_ENDONLY $ not to match newline at end
+ PCRE_DOTALL . matches anything including NL
+ PCRE_DUPNAMES Allow duplicate names for subpatterns
+ PCRE_EXTENDED Ignore white space and # comments
+ PCRE_EXTRA PCRE extra features
+ (not much use currently)
+ PCRE_FIRSTLINE Force matching to be before newline
+ PCRE_JAVASCRIPT_COMPAT JavaScript compatibility
+ PCRE_MULTILINE ^ and $ match newlines within data
+ PCRE_NEWLINE_ANY Recognize any Unicode newline sequence
+ PCRE_NEWLINE_ANYCRLF Recognize CR, LF, and CRLF as newline
+ sequences
+ PCRE_NEWLINE_CR Set CR as the newline sequence
+ PCRE_NEWLINE_CRLF Set CRLF as the newline sequence
+ PCRE_NEWLINE_LF Set LF as the newline sequence
+ PCRE_NO_AUTO_CAPTURE Disable numbered capturing paren-
+ theses (named ones available)
+ PCRE_NO_UTF16_CHECK Do not check the pattern for UTF-16
+ validity (only relevant if
+ PCRE_UTF16 is set)
+ PCRE_NO_UTF32_CHECK Do not check the pattern for UTF-32
+ validity (only relevant if
+ PCRE_UTF32 is set)
+ PCRE_NO_UTF8_CHECK Do not check the pattern for UTF-8
+ validity (only relevant if
+ PCRE_UTF8 is set)
+ PCRE_UCP Use Unicode properties for \ed, \ew, etc.
+ PCRE_UNGREEDY Invert greediness of quantifiers
+ PCRE_UTF16 Run in \fBpcre16_compile()\fP UTF-16 mode
+ PCRE_UTF32 Run in \fBpcre32_compile()\fP UTF-32 mode
+ PCRE_UTF8 Run in \fBpcre_compile()\fP UTF-8 mode
+.sp
+PCRE must be built with UTF support in order to use PCRE_UTF8/16/32 and
+PCRE_NO_UTF8/16/32_CHECK, and with UCP support if PCRE_UCP is used.
+.P
+The yield of the function is a pointer to a private data structure that
+contains the compiled pattern, or NULL if an error was detected. Note that
+compiling regular expressions with one version of PCRE for use with a different
+version is not guaranteed to work and may cause crashes.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_compile2.3 b/pcre/doc/pcre_compile2.3
new file mode 100644
index 00000000000..1fcae433b43
--- /dev/null
+++ b/pcre/doc/pcre_compile2.3
@@ -0,0 +1,106 @@
+.TH PCRE_COMPILE2 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B pcre *pcre_compile2(const char *\fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B int *\fIerrorcodeptr\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.PP
+.B pcre16 *pcre16_compile2(PCRE_SPTR16 \fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B int *\fIerrorcodeptr\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.PP
+.B pcre32 *pcre32_compile2(PCRE_SPTR32 \fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B int *\fIerrorcodeptr\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function compiles a regular expression into an internal form. It is the
+same as \fBpcre[16|32]_compile()\fP, except for the addition of the
+\fIerrorcodeptr\fP argument. The arguments are:
+.
+.sp
+ \fIpattern\fP A zero-terminated string containing the
+ regular expression to be compiled
+ \fIoptions\fP Zero or more option bits
+ \fIerrorcodeptr\fP Where to put an error code
+ \fIerrptr\fP Where to put an error message
+ \fIerroffset\fP Offset in pattern where error was found
+ \fItableptr\fP Pointer to character tables, or NULL to
+ use the built-in default
+.sp
+The option bits are:
+.sp
+ PCRE_ANCHORED Force pattern anchoring
+ PCRE_AUTO_CALLOUT Compile automatic callouts
+ PCRE_BSR_ANYCRLF \eR matches only CR, LF, or CRLF
+ PCRE_BSR_UNICODE \eR matches all Unicode line endings
+ PCRE_CASELESS Do caseless matching
+ PCRE_DOLLAR_ENDONLY $ not to match newline at end
+ PCRE_DOTALL . matches anything including NL
+ PCRE_DUPNAMES Allow duplicate names for subpatterns
+ PCRE_EXTENDED Ignore white space and # comments
+ PCRE_EXTRA PCRE extra features
+ (not much use currently)
+ PCRE_FIRSTLINE Force matching to be before newline
+ PCRE_JAVASCRIPT_COMPAT JavaScript compatibility
+ PCRE_MULTILINE ^ and $ match newlines within data
+ PCRE_NEWLINE_ANY Recognize any Unicode newline sequence
+ PCRE_NEWLINE_ANYCRLF Recognize CR, LF, and CRLF as newline
+ sequences
+ PCRE_NEWLINE_CR Set CR as the newline sequence
+ PCRE_NEWLINE_CRLF Set CRLF as the newline sequence
+ PCRE_NEWLINE_LF Set LF as the newline sequence
+ PCRE_NO_AUTO_CAPTURE Disable numbered capturing paren-
+ theses (named ones available)
+ PCRE_NO_UTF16_CHECK Do not check the pattern for UTF-16
+ validity (only relevant if
+ PCRE_UTF16 is set)
+ PCRE_NO_UTF32_CHECK Do not check the pattern for UTF-32
+ validity (only relevant if
+ PCRE_UTF32 is set)
+ PCRE_NO_UTF8_CHECK Do not check the pattern for UTF-8
+ validity (only relevant if
+ PCRE_UTF8 is set)
+ PCRE_UCP Use Unicode properties for \ed, \ew, etc.
+ PCRE_UNGREEDY Invert greediness of quantifiers
+ PCRE_UTF16 Run \fBpcre16_compile()\fP in UTF-16 mode
+ PCRE_UTF32 Run \fBpcre32_compile()\fP in UTF-32 mode
+ PCRE_UTF8 Run \fBpcre_compile()\fP in UTF-8 mode
+.sp
+PCRE must be built with UTF support in order to use PCRE_UTF8/16/32 and
+PCRE_NO_UTF8/16/32_CHECK, and with UCP support if PCRE_UCP is used.
+.P
+The yield of the function is a pointer to a private data structure that
+contains the compiled pattern, or NULL if an error was detected. Note that
+compiling regular expressions with one version of PCRE for use with a different
+version is not guaranteed to work and may cause crashes.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_config.3 b/pcre/doc/pcre_config.3
new file mode 100644
index 00000000000..5a6e6be7a47
--- /dev/null
+++ b/pcre/doc/pcre_config.3
@@ -0,0 +1,76 @@
+.TH PCRE_CONFIG 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_config(int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+.B int pcre16_config(int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+.B int pcre32_config(int \fIwhat\fP, void *\fIwhere\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function makes it possible for a client program to find out which optional
+features are available in the version of the PCRE library it is using. The
+arguments are as follows:
+.sp
+ \fIwhat\fP A code specifying what information is required
+ \fIwhere\fP Points to where to put the data
+.sp
+The \fIwhere\fP argument must point to an integer variable, except for
+PCRE_CONFIG_MATCH_LIMIT and PCRE_CONFIG_MATCH_LIMIT_RECURSION, when it must
+point to an unsigned long integer. The available codes are:
+.sp
+ PCRE_CONFIG_JIT Availability of just-in-time compiler
+ support (1=yes 0=no)
+ PCRE_CONFIG_JITTARGET String containing information about the
+ target architecture for the JIT compiler,
+ or NULL if there is no JIT support
+ PCRE_CONFIG_LINK_SIZE Internal link size: 2, 3, or 4
+ PCRE_CONFIG_MATCH_LIMIT Internal resource limit
+ PCRE_CONFIG_MATCH_LIMIT_RECURSION
+ Internal recursion depth limit
+ PCRE_CONFIG_NEWLINE Value of the default newline sequence:
+ 13 (0x000d) for CR
+ 10 (0x000a) for LF
+ 3338 (0x0d0a) for CRLF
+ -2 for ANYCRLF
+ -1 for ANY
+ PCRE_CONFIG_BSR Indicates what \eR matches by default:
+ 0 all Unicode line endings
+ 1 CR, LF, or CRLF only
+ PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
+ Threshold of return slots, above which
+ \fBmalloc()\fP is used by the POSIX API
+ PCRE_CONFIG_STACKRECURSE Recursion implementation (1=stack 0=heap)
+ PCRE_CONFIG_UTF16 Availability of UTF-16 support (1=yes
+ 0=no); option for \fBpcre16_config()\fP
+ PCRE_CONFIG_UTF32 Availability of UTF-32 support (1=yes
+ 0=no); option for \fBpcre32_config()\fP
+ PCRE_CONFIG_UTF8 Availability of UTF-8 support (1=yes 0=no);
+ option for \fBpcre_config()\fP
+ PCRE_CONFIG_UNICODE_PROPERTIES
+ Availability of Unicode property support
+ (1=yes 0=no)
+.sp
+The function yields 0 on success or PCRE_ERROR_BADOPTION otherwise. That error
+is also given if PCRE_CONFIG_UTF16 or PCRE_CONFIG_UTF32 is passed to
+\fBpcre_config()\fP, if PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF32 is passed to
+\fBpcre16_config()\fP, or if PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF16 is passed to
+\fBpcre32_config()\fP.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_copy_named_substring.3 b/pcre/doc/pcre_copy_named_substring.3
new file mode 100644
index 00000000000..e3281d8feae
--- /dev/null
+++ b/pcre/doc/pcre_copy_named_substring.3
@@ -0,0 +1,59 @@
+.TH PCRE_COPY_NAMED_SUBSTRING 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_copy_named_substring(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, const char *\fIstringname\fP,
+.ti +5n
+.B char *\fIbuffer\fP, int \fIbuffersize\fP);
+.PP
+.B int pcre16_copy_named_substring(const pcre16 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR16 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, PCRE_SPTR16 \fIstringname\fP,
+.ti +5n
+.B PCRE_UCHAR16 *\fIbuffer\fP, int \fIbuffersize\fP);
+.PP
+.B int pcre32_copy_named_substring(const pcre32 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR32 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, PCRE_SPTR32 \fIstringname\fP,
+.ti +5n
+.B PCRE_UCHAR32 *\fIbuffer\fP, int \fIbuffersize\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This is a convenience function for extracting a captured substring, identified
+by name, into a given buffer. The arguments are:
+.sp
+ \fIcode\fP Pattern that was successfully matched
+ \fIsubject\fP Subject that has been successfully matched
+ \fIovector\fP Offset vector that \fBpcre[16|32]_exec()\fP used
+ \fIstringcount\fP Value returned by \fBpcre[16|32]_exec()\fP
+ \fIstringname\fP Name of the required substring
+ \fIbuffer\fP Buffer to receive the string
+ \fIbuffersize\fP Size of buffer
+.sp
+The yield is the length of the substring, PCRE_ERROR_NOMEMORY if the buffer was
+too small, or PCRE_ERROR_NOSUBSTRING if the string name is invalid.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_copy_substring.3 b/pcre/doc/pcre_copy_substring.3
new file mode 100644
index 00000000000..96bff3a2c66
--- /dev/null
+++ b/pcre/doc/pcre_copy_substring.3
@@ -0,0 +1,52 @@
+.TH PCRE_COPY_SUBSTRING 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_copy_substring(const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP, char *\fIbuffer\fP,
+.ti +5n
+.B int \fIbuffersize\fP);
+.PP
+.B int pcre16_copy_substring(PCRE_SPTR16 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP, PCRE_UCHAR16 *\fIbuffer\fP,
+.ti +5n
+.B int \fIbuffersize\fP);
+.PP
+.B int pcre32_copy_substring(PCRE_SPTR32 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP, PCRE_UCHAR32 *\fIbuffer\fP,
+.ti +5n
+.B int \fIbuffersize\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This is a convenience function for extracting a captured substring into a given
+buffer. The arguments are:
+.sp
+ \fIsubject\fP Subject that has been successfully matched
+ \fIovector\fP Offset vector that \fBpcre[16|32]_exec()\fP used
+ \fIstringcount\fP Value returned by \fBpcre[16|32]_exec()\fP
+ \fIstringnumber\fP Number of the required substring
+ \fIbuffer\fP Buffer to receive the string
+ \fIbuffersize\fP Size of buffer
+.sp
+The yield is the length of the string, PCRE_ERROR_NOMEMORY if the buffer was
+too small, or PCRE_ERROR_NOSUBSTRING if the string number is invalid.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_dfa_exec.3 b/pcre/doc/pcre_dfa_exec.3
new file mode 100644
index 00000000000..9bc7448b6a3
--- /dev/null
+++ b/pcre/doc/pcre_dfa_exec.3
@@ -0,0 +1,126 @@
+.TH PCRE_DFA_EXEC 3 "12 May 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_dfa_exec(const pcre *\fIcode\fP, "const pcre_extra *\fIextra\fP,"
+.ti +5n
+.B "const char *\fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP,
+.ti +5n
+.B int *\fIworkspace\fP, int \fIwscount\fP);
+.PP
+.B int pcre16_dfa_exec(const pcre16 *\fIcode\fP, "const pcre16_extra *\fIextra\fP,"
+.ti +5n
+.B "PCRE_SPTR16 \fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP,
+.ti +5n
+.B int *\fIworkspace\fP, int \fIwscount\fP);
+.PP
+.B int pcre32_dfa_exec(const pcre32 *\fIcode\fP, "const pcre32_extra *\fIextra\fP,"
+.ti +5n
+.B "PCRE_SPTR32 \fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP,
+.ti +5n
+.B int *\fIworkspace\fP, int \fIwscount\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function matches a compiled regular expression against a given subject
+string, using an alternative matching algorithm that scans the subject string
+just once (\fInot\fP Perl-compatible). Note that the main, Perl-compatible,
+matching function is \fBpcre[16|32]_exec()\fP. The arguments for this function
+are:
+.sp
+ \fIcode\fP Points to the compiled pattern
+ \fIextra\fP Points to an associated \fBpcre[16|32]_extra\fP structure,
+ or is NULL
+ \fIsubject\fP Points to the subject string
+ \fIlength\fP Length of the subject string
+ \fIstartoffset\fP Offset in the subject at which to start matching
+ \fIoptions\fP Option bits
+ \fIovector\fP Points to a vector of ints for result offsets
+ \fIovecsize\fP Number of elements in the vector
+ \fIworkspace\fP Points to a vector of ints used as working space
+ \fIwscount\fP Number of elements in the vector
+.sp
+The units for \fIlength\fP and \fIstartoffset\fP are bytes for
+\fBpcre_exec()\fP, 16-bit data items for \fBpcre16_exec()\fP, and 32-bit items
+for \fBpcre32_exec()\fP. The options are:
+.sp
+ PCRE_ANCHORED Match only at the first position
+ PCRE_BSR_ANYCRLF \eR matches only CR, LF, or CRLF
+ PCRE_BSR_UNICODE \eR matches all Unicode line endings
+ PCRE_NEWLINE_ANY Recognize any Unicode newline sequence
+ PCRE_NEWLINE_ANYCRLF Recognize CR, LF, & CRLF as newline sequences
+ PCRE_NEWLINE_CR Recognize CR as the only newline sequence
+ PCRE_NEWLINE_CRLF Recognize CRLF as the only newline sequence
+ PCRE_NEWLINE_LF Recognize LF as the only newline sequence
+ PCRE_NOTBOL Subject is not the beginning of a line
+ PCRE_NOTEOL Subject is not the end of a line
+ PCRE_NOTEMPTY An empty string is not a valid match
+ PCRE_NOTEMPTY_ATSTART An empty string at the start of the subject
+ is not a valid match
+ PCRE_NO_START_OPTIMIZE Do not do "start-match" optimizations
+ PCRE_NO_UTF16_CHECK Do not check the subject for UTF-16
+ validity (only relevant if PCRE_UTF16
+ was set at compile time)
+ PCRE_NO_UTF32_CHECK Do not check the subject for UTF-32
+ validity (only relevant if PCRE_UTF32
+ was set at compile time)
+ PCRE_NO_UTF8_CHECK Do not check the subject for UTF-8
+ validity (only relevant if PCRE_UTF8
+ was set at compile time)
+ PCRE_PARTIAL ) Return PCRE_ERROR_PARTIAL for a partial
+ PCRE_PARTIAL_SOFT ) match if no full matches are found
+ PCRE_PARTIAL_HARD Return PCRE_ERROR_PARTIAL for a partial match
+ even if there is a full match as well
+ PCRE_DFA_SHORTEST Return only the shortest match
+ PCRE_DFA_RESTART Restart after a partial match
+.sp
+There are restrictions on what may appear in a pattern when using this matching
+function. Details are given in the
+.\" HREF
+\fBpcrematching\fP
+.\"
+documentation. For details of partial matching, see the
+.\" HREF
+\fBpcrepartial\fP
+.\"
+page.
+.P
+A \fBpcre[16|32]_extra\fP structure contains the following fields:
+.sp
+ \fIflags\fP Bits indicating which fields are set
+ \fIstudy_data\fP Opaque data from \fBpcre[16|32]_study()\fP
+ \fImatch_limit\fP Limit on internal resource use
+ \fImatch_limit_recursion\fP Limit on internal recursion depth
+ \fIcallout_data\fP Opaque data passed back to callouts
+ \fItables\fP Points to character tables or is NULL
+ \fImark\fP For passing back a *MARK pointer
+ \fIexecutable_jit\fP Opaque data from JIT compilation
+.sp
+The flag bits are PCRE_EXTRA_STUDY_DATA, PCRE_EXTRA_MATCH_LIMIT,
+PCRE_EXTRA_MATCH_LIMIT_RECURSION, PCRE_EXTRA_CALLOUT_DATA,
+PCRE_EXTRA_TABLES, PCRE_EXTRA_MARK and PCRE_EXTRA_EXECUTABLE_JIT. For this
+matching function, the \fImatch_limit\fP and \fImatch_limit_recursion\fP fields
+are not used, and must not be set. The PCRE_EXTRA_EXECUTABLE_JIT flag and
+the corresponding variable are ignored.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_exec.3 b/pcre/doc/pcre_exec.3
new file mode 100644
index 00000000000..c92c2a57a69
--- /dev/null
+++ b/pcre/doc/pcre_exec.3
@@ -0,0 +1,104 @@
+.TH PCRE_EXEC 3 "12 May 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_exec(const pcre *\fIcode\fP, "const pcre_extra *\fIextra\fP,"
+.ti +5n
+.B "const char *\fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP);
+.PP
+.B int pcre16_exec(const pcre16 *\fIcode\fP, "const pcre16_extra *\fIextra\fP,"
+.ti +5n
+.B "PCRE_SPTR16 \fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP);
+.PP
+.B int pcre32_exec(const pcre32 *\fIcode\fP, "const pcre32_extra *\fIextra\fP,"
+.ti +5n
+.B "PCRE_SPTR32 \fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function matches a compiled regular expression against a given subject
+string, using a matching algorithm that is similar to Perl's. It returns
+offsets to captured substrings. Its arguments are:
+.sp
+ \fIcode\fP Points to the compiled pattern
+ \fIextra\fP Points to an associated \fBpcre[16|32]_extra\fP structure,
+ or is NULL
+ \fIsubject\fP Points to the subject string
+ \fIlength\fP Length of the subject string
+ \fIstartoffset\fP Offset in the subject at which to start matching
+ \fIoptions\fP Option bits
+ \fIovector\fP Points to a vector of ints for result offsets
+ \fIovecsize\fP Number of elements in the vector (a multiple of 3)
+.sp
+The units for \fIlength\fP and \fIstartoffset\fP are bytes for
+\fBpcre_exec()\fP, 16-bit data items for \fBpcre16_exec()\fP, and 32-bit items
+for \fBpcre32_exec()\fP. The options are:
+.sp
+ PCRE_ANCHORED Match only at the first position
+ PCRE_BSR_ANYCRLF \eR matches only CR, LF, or CRLF
+ PCRE_BSR_UNICODE \eR matches all Unicode line endings
+ PCRE_NEWLINE_ANY Recognize any Unicode newline sequence
+ PCRE_NEWLINE_ANYCRLF Recognize CR, LF, & CRLF as newline sequences
+ PCRE_NEWLINE_CR Recognize CR as the only newline sequence
+ PCRE_NEWLINE_CRLF Recognize CRLF as the only newline sequence
+ PCRE_NEWLINE_LF Recognize LF as the only newline sequence
+ PCRE_NOTBOL Subject string is not the beginning of a line
+ PCRE_NOTEOL Subject string is not the end of a line
+ PCRE_NOTEMPTY An empty string is not a valid match
+ PCRE_NOTEMPTY_ATSTART An empty string at the start of the subject
+ is not a valid match
+ PCRE_NO_START_OPTIMIZE Do not do "start-match" optimizations
+ PCRE_NO_UTF16_CHECK Do not check the subject for UTF-16
+ validity (only relevant if PCRE_UTF16
+ was set at compile time)
+ PCRE_NO_UTF32_CHECK Do not check the subject for UTF-32
+ validity (only relevant if PCRE_UTF32
+ was set at compile time)
+ PCRE_NO_UTF8_CHECK Do not check the subject for UTF-8
+ validity (only relevant if PCRE_UTF8
+ was set at compile time)
+ PCRE_PARTIAL ) Return PCRE_ERROR_PARTIAL for a partial
+ PCRE_PARTIAL_SOFT ) match if no full matches are found
+ PCRE_PARTIAL_HARD Return PCRE_ERROR_PARTIAL for a partial match
+ if that is found before a full match
+.sp
+For details of partial matching, see the
+.\" HREF
+\fBpcrepartial\fP
+.\"
+page. A \fBpcre_extra\fP structure contains the following fields:
+.sp
+ \fIflags\fP Bits indicating which fields are set
+ \fIstudy_data\fP Opaque data from \fBpcre[16|32]_study()\fP
+ \fImatch_limit\fP Limit on internal resource use
+ \fImatch_limit_recursion\fP Limit on internal recursion depth
+ \fIcallout_data\fP Opaque data passed back to callouts
+ \fItables\fP Points to character tables or is NULL
+ \fImark\fP For passing back a *MARK pointer
+ \fIexecutable_jit\fP Opaque data from JIT compilation
+.sp
+The flag bits are PCRE_EXTRA_STUDY_DATA, PCRE_EXTRA_MATCH_LIMIT,
+PCRE_EXTRA_MATCH_LIMIT_RECURSION, PCRE_EXTRA_CALLOUT_DATA,
+PCRE_EXTRA_TABLES, PCRE_EXTRA_MARK and PCRE_EXTRA_EXECUTABLE_JIT.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_free_study.3 b/pcre/doc/pcre_free_study.3
new file mode 100644
index 00000000000..8826b73597b
--- /dev/null
+++ b/pcre/doc/pcre_free_study.3
@@ -0,0 +1,31 @@
+.TH PCRE_FREE_STUDY 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B void pcre_free_study(pcre_extra *\fIextra\fP);
+.PP
+.B void pcre16_free_study(pcre16_extra *\fIextra\fP);
+.PP
+.B void pcre32_free_study(pcre32_extra *\fIextra\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function is used to free the memory used for the data generated by a call
+to \fBpcre[16|32]_study()\fP when it is no longer needed. The argument must be the
+result of such a call.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_free_substring.3 b/pcre/doc/pcre_free_substring.3
new file mode 100644
index 00000000000..88c04019f40
--- /dev/null
+++ b/pcre/doc/pcre_free_substring.3
@@ -0,0 +1,31 @@
+.TH PCRE_FREE_SUBSTRING 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B void pcre_free_substring(const char *\fIstringptr\fP);
+.PP
+.B void pcre16_free_substring(PCRE_SPTR16 \fIstringptr\fP);
+.PP
+.B void pcre32_free_substring(PCRE_SPTR32 \fIstringptr\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This is a convenience function for freeing the store obtained by a previous
+call to \fBpcre[16|32]_get_substring()\fP or \fBpcre[16|32]_get_named_substring()\fP.
+Its only argument is a pointer to the string.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_free_substring_list.3 b/pcre/doc/pcre_free_substring_list.3
new file mode 100644
index 00000000000..248b4bd01b9
--- /dev/null
+++ b/pcre/doc/pcre_free_substring_list.3
@@ -0,0 +1,31 @@
+.TH PCRE_FREE_SUBSTRING_LIST 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B void pcre_free_substring_list(const char **\fIstringptr\fP);
+.PP
+.B void pcre16_free_substring_list(PCRE_SPTR16 *\fIstringptr\fP);
+.PP
+.B void pcre32_free_substring_list(PCRE_SPTR32 *\fIstringptr\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This is a convenience function for freeing the store obtained by a previous
+call to \fBpcre[16|32]_get_substring_list()\fP. Its only argument is a pointer to
+the list of string pointers.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_fullinfo.3 b/pcre/doc/pcre_fullinfo.3
new file mode 100644
index 00000000000..ad640fc66fc
--- /dev/null
+++ b/pcre/doc/pcre_fullinfo.3
@@ -0,0 +1,95 @@
+.TH PCRE_FULLINFO 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_fullinfo(const pcre *\fIcode\fP, "const pcre_extra *\fIextra\fP,"
+.ti +5n
+.B int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+.B int pcre16_fullinfo(const pcre16 *\fIcode\fP, "const pcre16_extra *\fIextra\fP,"
+.ti +5n
+.B int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+.B int pcre32_fullinfo(const pcre32 *\fIcode\fP, "const pcre32_extra *\fIextra\fP,"
+.ti +5n
+.B int \fIwhat\fP, void *\fIwhere\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function returns information about a compiled pattern. Its arguments are:
+.sp
+ \fIcode\fP Compiled regular expression
+ \fIextra\fP Result of \fBpcre[16|32]_study()\fP or NULL
+ \fIwhat\fP What information is required
+ \fIwhere\fP Where to put the information
+.sp
+The following information is available:
+.sp
+ PCRE_INFO_BACKREFMAX Number of highest back reference
+ PCRE_INFO_CAPTURECOUNT Number of capturing subpatterns
+ PCRE_INFO_DEFAULT_TABLES Pointer to default tables
+ PCRE_INFO_FIRSTBYTE Fixed first data unit for a match, or
+ -1 for start of string
+ or after newline, or
+ -2 otherwise
+ PCRE_INFO_FIRSTTABLE Table of first data units (after studying)
+ PCRE_INFO_HASCRORLF Return 1 if explicit CR or LF matches exist
+ PCRE_INFO_JCHANGED Return 1 if (?J) or (?-J) was used
+ PCRE_INFO_JIT Return 1 after successful JIT compilation
+ PCRE_INFO_JITSIZE Size of JIT compiled code
+ PCRE_INFO_LASTLITERAL Literal last data unit required
+ PCRE_INFO_MINLENGTH Lower bound length of matching strings
+ PCRE_INFO_NAMECOUNT Number of named subpatterns
+ PCRE_INFO_NAMEENTRYSIZE Size of name table entry
+ PCRE_INFO_NAMETABLE Pointer to name table
+ PCRE_INFO_OKPARTIAL Return 1 if partial matching can be tried
+ (always returns 1 after release 8.00)
+ PCRE_INFO_OPTIONS Option bits used for compilation
+ PCRE_INFO_SIZE Size of compiled pattern
+ PCRE_INFO_STUDYSIZE Size of study data
+ PCRE_INFO_FIRSTCHARACTER Fixed first data unit for a match
+ PCRE_INFO_FIRSTCHARACTERFLAGS Returns
+ 1 if there is a first data character set, which can
+ then be retrieved using PCRE_INFO_FIRSTCHARACTER,
+ 2 if the first character is at the start of the data
+ string or after a newline, and
+ 0 otherwise
+ PCRE_INFO_REQUIREDCHAR Literal last data unit required
+ PCRE_INFO_REQUIREDCHARFLAGS Returns 1 if the last data character is set (which can then
+ be retrieved using PCRE_INFO_REQUIREDCHAR); 0 otherwise
+.sp
+The \fIwhere\fP argument must point to an integer variable, except for the
+following \fIwhat\fP values:
+.sp
+ PCRE_INFO_DEFAULT_TABLES const unsigned char *
+ PCRE_INFO_FIRSTTABLE const unsigned char *
+ PCRE_INFO_NAMETABLE PCRE_SPTR16 (16-bit library)
+ PCRE_INFO_NAMETABLE PCRE_SPTR32 (32-bit library)
+ PCRE_INFO_NAMETABLE const unsigned char * (8-bit library)
+ PCRE_INFO_OPTIONS unsigned long int
+ PCRE_INFO_SIZE size_t
+ PCRE_INFO_FIRSTCHARACTER uint32_t
+ PCRE_INFO_REQUIREDCHAR uint32_t
+.sp
+The yield of the function is zero on success or:
+.sp
+ PCRE_ERROR_NULL the argument \fIcode\fP was NULL
+ the argument \fIwhere\fP was NULL
+ PCRE_ERROR_BADMAGIC the "magic number" was not found
+ PCRE_ERROR_BADOPTION the value of \fIwhat\fP was invalid
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_get_named_substring.3 b/pcre/doc/pcre_get_named_substring.3
new file mode 100644
index 00000000000..f81a243c6bf
--- /dev/null
+++ b/pcre/doc/pcre_get_named_substring.3
@@ -0,0 +1,62 @@
+.TH PCRE_GET_NAMED_SUBSTRING 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_get_named_substring(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, const char *\fIstringname\fP,
+.ti +5n
+.B const char **\fIstringptr\fP);
+.PP
+.B int pcre16_get_named_substring(const pcre16 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR16 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, PCRE_SPTR16 \fIstringname\fP,
+.ti +5n
+.B PCRE_SPTR16 *\fIstringptr\fP);
+.PP
+.B int pcre32_get_named_substring(const pcre32 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR32 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, PCRE_SPTR32 \fIstringname\fP,
+.ti +5n
+.B PCRE_SPTR32 *\fIstringptr\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This is a convenience function for extracting a captured substring by name. The
+arguments are:
+.sp
+ \fIcode\fP Compiled pattern
+ \fIsubject\fP Subject that has been successfully matched
+ \fIovector\fP Offset vector that \fBpcre[16|32]_exec()\fP used
+ \fIstringcount\fP Value returned by \fBpcre[16|32]_exec()\fP
+ \fIstringname\fP Name of the required substring
+ \fIstringptr\fP Where to put the string pointer
+.sp
+The memory in which the substring is placed is obtained by calling
+\fBpcre[16|32]_malloc()\fP. The convenience function
+\fBpcre[16|32]_free_substring()\fP can be used to free it when it is no longer
+needed. The yield of the function is the length of the extracted substring,
+PCRE_ERROR_NOMEMORY if sufficient memory could not be obtained, or
+PCRE_ERROR_NOSUBSTRING if the string name is invalid.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_get_stringnumber.3 b/pcre/doc/pcre_get_stringnumber.3
new file mode 100644
index 00000000000..7def00bafd1
--- /dev/null
+++ b/pcre/doc/pcre_get_stringnumber.3
@@ -0,0 +1,45 @@
+.TH PCRE_GET_STRINGNUMBER 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_get_stringnumber(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIname\fP);
+.PP
+.B int pcre16_get_stringnumber(const pcre16 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR16 \fIname\fP);
+.PP
+.B int pcre32_get_stringnumber(const pcre32 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR32 \fIname\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This convenience function finds the number of a named substring capturing
+parenthesis in a compiled pattern. Its arguments are:
+.sp
+ \fIcode\fP Compiled regular expression
+ \fIname\fP Name whose number is required
+.sp
+The yield of the function is the number of the parenthesis if the name is
+found, or PCRE_ERROR_NOSUBSTRING otherwise. When duplicate names are allowed
+(PCRE_DUPNAMES is set), it is not defined which of the numbers is returned by
+\fBpcre[16|32]_get_stringnumber()\fP. You can obtain the complete list by calling
+\fBpcre[16|32]_get_stringtable_entries()\fP.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_get_stringtable_entries.3 b/pcre/doc/pcre_get_stringtable_entries.3
new file mode 100644
index 00000000000..39178165c59
--- /dev/null
+++ b/pcre/doc/pcre_get_stringtable_entries.3
@@ -0,0 +1,48 @@
+.TH PCRE_GET_STRINGTABLE_ENTRIES 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_get_stringtable_entries(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIname\fP, char **\fIfirst\fP, char **\fIlast\fP);
+.PP
+.B int pcre16_get_stringtable_entries(const pcre16 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR16 \fIname\fP, PCRE_UCHAR16 **\fIfirst\fP, PCRE_UCHAR16 **\fIlast\fP);
+.PP
+.B int pcre32_get_stringtable_entries(const pcre32 *\fIcode\fP,
+.ti +5n
+.B PCRE_SPTR32 \fIname\fP, PCRE_UCHAR32 **\fIfirst\fP, PCRE_UCHAR32 **\fIlast\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This convenience function finds, for a compiled pattern, the first and last
+entries for a given name in the table that translates capturing parenthesis
+names into numbers. When names are required to be unique (PCRE_DUPNAMES is
+\fInot\fP set), it is usually easier to use \fBpcre[16|32]_get_stringnumber()\fP
+instead.
+.sp
+ \fIcode\fP Compiled regular expression
+ \fIname\fP Name whose entries required
+ \fIfirst\fP Where to return a pointer to the first entry
+ \fIlast\fP Where to return a pointer to the last entry
+.sp
+The yield of the function is the length of each entry, or
+PCRE_ERROR_NOSUBSTRING if none are found.
+.P
+There is a complete description of the PCRE native API, including the format of
+the table entries, in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page, and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_get_substring.3 b/pcre/doc/pcre_get_substring.3
new file mode 100644
index 00000000000..d5bc60c45d1
--- /dev/null
+++ b/pcre/doc/pcre_get_substring.3
@@ -0,0 +1,55 @@
+.TH PCRE_GET_SUBSTRING 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_get_substring(const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP,
+.ti +5n
+.B const char **\fIstringptr\fP);
+.PP
+.B int pcre16_get_substring(PCRE_SPTR16 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP,
+.ti +5n
+.B PCRE_SPTR16 *\fIstringptr\fP);
+.PP
+.B int pcre32_get_substring(PCRE_SPTR32 \fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP,
+.ti +5n
+.B PCRE_SPTR32 *\fIstringptr\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This is a convenience function for extracting a captured substring. The
+arguments are:
+.sp
+ \fIsubject\fP Subject that has been successfully matched
+ \fIovector\fP Offset vector that \fBpcre[16|32]_exec()\fP used
+ \fIstringcount\fP Value returned by \fBpcre[16|32]_exec()\fP
+ \fIstringnumber\fP Number of the required substring
+ \fIstringptr\fP Where to put the string pointer
+.sp
+The memory in which the substring is placed is obtained by calling
+\fBpcre[16|32]_malloc()\fP. The convenience function
+\fBpcre[16|32]_free_substring()\fP can be used to free it when it is no longer
+needed. The yield of the function is the length of the substring,
+PCRE_ERROR_NOMEMORY if sufficient memory could not be obtained, or
+PCRE_ERROR_NOSUBSTRING if the string number is invalid.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_get_substring_list.3 b/pcre/doc/pcre_get_substring_list.3
new file mode 100644
index 00000000000..a1a57496b19
--- /dev/null
+++ b/pcre/doc/pcre_get_substring_list.3
@@ -0,0 +1,49 @@
+.TH PCRE_GET_SUBSTRING_LIST 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_get_substring_list(const char *\fIsubject\fP,
+.ti +5n
+.B int *\fIovector\fP, int \fIstringcount\fP, "const char ***\fIlistptr\fP);"
+.PP
+.B int pcre16_get_substring_list(PCRE_SPTR16 \fIsubject\fP,
+.ti +5n
+.B int *\fIovector\fP, int \fIstringcount\fP, "PCRE_SPTR16 **\fIlistptr\fP);"
+.PP
+.B int pcre32_get_substring_list(PCRE_SPTR32 \fIsubject\fP,
+.ti +5n
+.B int *\fIovector\fP, int \fIstringcount\fP, "PCRE_SPTR32 **\fIlistptr\fP);"
+.
+.SH DESCRIPTION
+.rs
+.sp
+This is a convenience function for extracting a list of all the captured
+substrings. The arguments are:
+.sp
+ \fIsubject\fP Subject that has been successfully matched
+ \fIovector\fP Offset vector that \fBpcre[16|32]_exec\fP used
+ \fIstringcount\fP Value returned by \fBpcre[16|32]_exec\fP
+ \fIlistptr\fP Where to put a pointer to the list
+.sp
+The memory in which the substrings and the list are placed is obtained by
+calling \fBpcre[16|32]_malloc()\fP. The convenience function
+\fBpcre[16|32]_free_substring_list()\fP can be used to free it when it is no
+longer needed. A pointer to a list of pointers is put in the variable whose
+address is in \fIlistptr\fP. The list is terminated by a NULL pointer. The
+yield of the function is zero on success or PCRE_ERROR_NOMEMORY if sufficient
+memory could not be obtained.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_jit_exec.3 b/pcre/doc/pcre_jit_exec.3
new file mode 100644
index 00000000000..8b9d05bf1ee
--- /dev/null
+++ b/pcre/doc/pcre_jit_exec.3
@@ -0,0 +1,104 @@
+.TH PCRE_EXEC 3 "31 October 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_jit_exec(const pcre *\fIcode\fP, "const pcre_extra *\fIextra\fP,"
+.ti +5n
+.B "const char *\fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP,
+.ti +5n
+.B pcre_jit_stack *\fIjstack\fP);
+.PP
+.B int pcre16_jit_exec(const pcre16 *\fIcode\fP, "const pcre16_extra *\fIextra\fP,"
+.ti +5n
+.B "PCRE_SPTR16 \fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP,
+.ti +5n
+.B pcre_jit_stack *\fIjstack\fP);
+.PP
+.B int pcre32_jit_exec(const pcre32 *\fIcode\fP, "const pcre32_extra *\fIextra\fP,"
+.ti +5n
+.B "PCRE_SPTR32 \fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP,
+.ti +5n
+.B pcre_jit_stack *\fIjstack\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function matches a compiled regular expression that has been successfully
+studied with one of the JIT options against a given subject string, using a
+matching algorithm that is similar to Perl's. It is a "fast path" interface to
+JIT, and it bypasses some of the sanity checks that \fBpcre_exec()\fP applies.
+It returns offsets to captured substrings. Its arguments are:
+.sp
+ \fIcode\fP Points to the compiled pattern
+ \fIextra\fP Points to an associated \fBpcre[16|32]_extra\fP structure,
+ or is NULL
+ \fIsubject\fP Points to the subject string
+ \fIlength\fP Length of the subject string, in bytes
+ \fIstartoffset\fP Offset in bytes in the subject at which to
+ start matching
+ \fIoptions\fP Option bits
+ \fIovector\fP Points to a vector of ints for result offsets
+ \fIovecsize\fP Number of elements in the vector (a multiple of 3)
+ \fIjstack\fP Pointer to a JIT stack
+.sp
+The allowed options are:
+.sp
+ PCRE_NOTBOL Subject string is not the beginning of a line
+ PCRE_NOTEOL Subject string is not the end of a line
+ PCRE_NOTEMPTY An empty string is not a valid match
+ PCRE_NOTEMPTY_ATSTART An empty string at the start of the subject
+ is not a valid match
+ PCRE_NO_UTF16_CHECK Do not check the subject for UTF-16
+ validity (only relevant if PCRE_UTF16
+ was set at compile time)
+ PCRE_NO_UTF32_CHECK Do not check the subject for UTF-32
+ validity (only relevant if PCRE_UTF32
+ was set at compile time)
+ PCRE_NO_UTF8_CHECK Do not check the subject for UTF-8
+ validity (only relevant if PCRE_UTF8
+ was set at compile time)
+ PCRE_PARTIAL ) Return PCRE_ERROR_PARTIAL for a partial
+ PCRE_PARTIAL_SOFT ) match if no full matches are found
+ PCRE_PARTIAL_HARD Return PCRE_ERROR_PARTIAL for a partial match
+ if that is found before a full match
+.sp
+However, the PCRE_NO_UTF[8|16|32]_CHECK options have no effect, as this check
+is never applied. For details of partial matching, see the
+.\" HREF
+\fBpcrepartial\fP
+.\"
+page. A \fBpcre_extra\fP structure contains the following fields:
+.sp
+ \fIflags\fP Bits indicating which fields are set
+ \fIstudy_data\fP Opaque data from \fBpcre[16|32]_study()\fP
+ \fImatch_limit\fP Limit on internal resource use
+ \fImatch_limit_recursion\fP Limit on internal recursion depth
+ \fIcallout_data\fP Opaque data passed back to callouts
+ \fItables\fP Points to character tables or is NULL
+ \fImark\fP For passing back a *MARK pointer
+ \fIexecutable_jit\fP Opaque data from JIT compilation
+.sp
+The flag bits are PCRE_EXTRA_STUDY_DATA, PCRE_EXTRA_MATCH_LIMIT,
+PCRE_EXTRA_MATCH_LIMIT_RECURSION, PCRE_EXTRA_CALLOUT_DATA,
+PCRE_EXTRA_TABLES, PCRE_EXTRA_MARK and PCRE_EXTRA_EXECUTABLE_JIT.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the JIT API in the
+.\" HREF
+\fBpcrejit\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_jit_stack_alloc.3 b/pcre/doc/pcre_jit_stack_alloc.3
new file mode 100644
index 00000000000..5d2a117882a
--- /dev/null
+++ b/pcre/doc/pcre_jit_stack_alloc.3
@@ -0,0 +1,45 @@
+.TH PCRE_JIT_STACK_ALLOC 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B pcre_jit_stack *pcre_jit_stack_alloc(int \fIstartsize\fP,
+.ti +5n
+.B int \fImaxsize\fP);
+.PP
+.B pcre16_jit_stack *pcre16_jit_stack_alloc(int \fIstartsize\fP,
+.ti +5n
+.B int \fImaxsize\fP);
+.PP
+.B pcre32_jit_stack *pcre32_jit_stack_alloc(int \fIstartsize\fP,
+.ti +5n
+.B int \fImaxsize\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function is used to create a stack for use by the code compiled by the JIT
+optimization of \fBpcre[16|32]_study()\fP. The arguments are a starting size for
+the stack, and a maximum size to which it is allowed to grow. The result can be
+passed to the JIT run-time code by \fBpcre[16|32]_assign_jit_stack()\fP, or that
+function can set up a callback for obtaining a stack. A maximum stack size of
+512K to 1M should be more than enough for any pattern. For more details, see
+the
+.\" HREF
+\fBpcrejit\fP
+.\"
+page.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_jit_stack_free.3 b/pcre/doc/pcre_jit_stack_free.3
new file mode 100644
index 00000000000..494724e844f
--- /dev/null
+++ b/pcre/doc/pcre_jit_stack_free.3
@@ -0,0 +1,35 @@
+.TH PCRE_JIT_STACK_FREE 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B void pcre_jit_stack_free(pcre_jit_stack *\fIstack\fP);
+.PP
+.B void pcre16_jit_stack_free(pcre16_jit_stack *\fIstack\fP);
+.PP
+.B void pcre32_jit_stack_free(pcre32_jit_stack *\fIstack\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function is used to free a JIT stack that was created by
+\fBpcre[16|32]_jit_stack_alloc()\fP when it is no longer needed. For more details,
+see the
+.\" HREF
+\fBpcrejit\fP
+.\"
+page.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_maketables.3 b/pcre/doc/pcre_maketables.3
new file mode 100644
index 00000000000..b2c3d23aa68
--- /dev/null
+++ b/pcre/doc/pcre_maketables.3
@@ -0,0 +1,33 @@
+.TH PCRE_MAKETABLES 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B const unsigned char *pcre_maketables(void);
+.PP
+.B const unsigned char *pcre16_maketables(void);
+.PP
+.B const unsigned char *pcre32_maketables(void);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function builds a set of character tables for character values less than
+256. These can be passed to \fBpcre[16|32]_compile()\fP to override PCRE's
+internal, built-in tables (which were made by \fBpcre[16|32]_maketables()\fP when
+PCRE was compiled). You might want to do this if you are using a non-standard
+locale. The function yields a pointer to the tables.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_pattern_to_host_byte_order.3 b/pcre/doc/pcre_pattern_to_host_byte_order.3
new file mode 100644
index 00000000000..4c306eef178
--- /dev/null
+++ b/pcre/doc/pcre_pattern_to_host_byte_order.3
@@ -0,0 +1,46 @@
+.TH PCRE_PATTERN_TO_HOST_BYTE_ORDER 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_pattern_to_host_byte_order(pcre *\fIcode\fP,
+.ti +5n
+.B pcre_extra *\fIextra\fP, const unsigned char *\fItables\fP);
+.PP
+.B int pcre16_pattern_to_host_byte_order(pcre16 *\fIcode\fP,
+.ti +5n
+.B pcre16_extra *\fIextra\fP, const unsigned char *\fItables\fP);
+.PP
+.B int pcre32_pattern_to_host_byte_order(pcre32 *\fIcode\fP,
+.ti +5n
+.B pcre32_extra *\fIextra\fP, const unsigned char *\fItables\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function ensures that the bytes in 2-byte and 4-byte values in a compiled
+pattern are in the correct order for the current host. It is useful when a
+pattern that has been compiled on one host is transferred to another that might
+have different endianness. The arguments are:
+.sp
+ \fIcode\fP A compiled regular expression
+ \fIextra\fP Points to an associated \fBpcre[16|32]_extra\fP structure,
+ or is NULL
+ \fItables\fP Pointer to character tables, or NULL to
+ set the built-in default
+.sp
+The result is 0 for success, a negative PCRE_ERROR_xxx value otherwise.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_refcount.3 b/pcre/doc/pcre_refcount.3
new file mode 100644
index 00000000000..45a41fef6a0
--- /dev/null
+++ b/pcre/doc/pcre_refcount.3
@@ -0,0 +1,36 @@
+.TH PCRE_REFCOUNT 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre_refcount(pcre *\fIcode\fP, int \fIadjust\fP);
+.PP
+.B int pcre16_refcount(pcre16 *\fIcode\fP, int \fIadjust\fP);
+.PP
+.B int pcre32_refcount(pcre32 *\fIcode\fP, int \fIadjust\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function is used to maintain a reference count inside a data block that
+contains a compiled pattern. Its arguments are:
+.sp
+ \fIcode\fP Compiled regular expression
+ \fIadjust\fP Adjustment to reference value
+.sp
+The yield of the function is the adjusted reference value, which is constrained
+to lie between 0 and 65535.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_study.3 b/pcre/doc/pcre_study.3
new file mode 100644
index 00000000000..1f2b465afff
--- /dev/null
+++ b/pcre/doc/pcre_study.3
@@ -0,0 +1,56 @@
+.TH PCRE_STUDY 3 " 24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B pcre_extra *pcre_study(const pcre *\fIcode\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP);
+.PP
+.B pcre16_extra *pcre16_study(const pcre16 *\fIcode\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP);
+.PP
+.B pcre32_extra *pcre32_study(const pcre32 *\fIcode\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function studies a compiled pattern, to see if additional information can
+be extracted that might speed up matching. Its arguments are:
+.sp
+ \fIcode\fP A compiled regular expression
+ \fIoptions\fP Options for \fBpcre[16|32]_study()\fP
+ \fIerrptr\fP Where to put an error message
+.sp
+If the function succeeds, it returns a value that can be passed to
+\fBpcre[16|32]_exec()\fP or \fBpcre[16|32]_dfa_exec()\fP via their \fIextra\fP
+arguments.
+.P
+If the function returns NULL, either it could not find any additional
+information, or there was an error. You can tell the difference by looking at
+the error value. It is NULL in first case.
+.P
+The only option is PCRE_STUDY_JIT_COMPILE. It requests just-in-time compilation
+if possible. If PCRE has been compiled without JIT support, this option is
+ignored. See the
+.\" HREF
+\fBpcrejit\fP
+.\"
+page for further details.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_utf16_to_host_byte_order.3 b/pcre/doc/pcre_utf16_to_host_byte_order.3
new file mode 100644
index 00000000000..8f0d2d4e8a9
--- /dev/null
+++ b/pcre/doc/pcre_utf16_to_host_byte_order.3
@@ -0,0 +1,46 @@
+.TH PCRE_UTF16_TO_HOST_BYTE_ORDER 3 "21 January 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre16_utf16_to_host_byte_order(PCRE_UCHAR16 *\fIoutput\fP,
+.ti +5n
+.B PCRE_SPTR16 \fIinput\fP, int \fIlength\fP, int *\fIhost_byte_order\fP,
+.ti +5n
+.B int \fIkeep_boms\fP);
+.
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function, which exists only in the 16-bit library, converts a UTF-16
+string to the correct order for the current host, taking account of any byte
+order marks (BOMs) within the string. Its arguments are:
+.sp
+ \fIoutput\fP pointer to output buffer, may be the same as \fIinput\fP
+ \fIinput\fP pointer to input buffer
+ \fIlength\fP number of 16-bit units in the input, or negative for
+ a zero-terminated string
+ \fIhost_byte_order\fP a NULL value or a non-zero value pointed to means
+ start in host byte order
+ \fIkeep_boms\fP if non-zero, BOMs are copied to the output string
+.sp
+The result of the function is the number of 16-bit units placed into the output
+buffer, including the zero terminator if the string was zero-terminated.
+.P
+If \fIhost_byte_order\fP is not NULL, it is set to indicate the byte order that
+is current at the end of the string.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_utf32_to_host_byte_order.3 b/pcre/doc/pcre_utf32_to_host_byte_order.3
new file mode 100644
index 00000000000..fa4c1796b81
--- /dev/null
+++ b/pcre/doc/pcre_utf32_to_host_byte_order.3
@@ -0,0 +1,46 @@
+.TH PCRE_UTF32_TO_HOST_BYTE_ORDER 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int pcre32_utf32_to_host_byte_order(PCRE_UCHAR32 *\fIoutput\fP,
+.ti +5n
+.B PCRE_SPTR32 \fIinput\fP, int \fIlength\fP, int *\fIhost_byte_order\fP,
+.ti +5n
+.B int \fIkeep_boms\fP);
+.
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function, which exists only in the 32-bit library, converts a UTF-32
+string to the correct order for the current host, taking account of any byte
+order marks (BOMs) within the string. Its arguments are:
+.sp
+ \fIoutput\fP pointer to output buffer, may be the same as \fIinput\fP
+ \fIinput\fP pointer to input buffer
+ \fIlength\fP number of 32-bit units in the input, or negative for
+ a zero-terminated string
+ \fIhost_byte_order\fP a NULL value or a non-zero value pointed to means
+ start in host byte order
+ \fIkeep_boms\fP if non-zero, BOMs are copied to the output string
+.sp
+The result of the function is the number of 32-bit units placed into the output
+buffer, including the zero terminator if the string was zero-terminated.
+.P
+If \fIhost_byte_order\fP is not NULL, it is set to indicate the byte order that
+is current at the end of the string.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcre_version.3 b/pcre/doc/pcre_version.3
new file mode 100644
index 00000000000..0f4973f9c7d
--- /dev/null
+++ b/pcre/doc/pcre_version.3
@@ -0,0 +1,31 @@
+.TH PCRE_VERSION 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B const char *pcre_version(void);
+.PP
+.B const char *pcre16_version(void);
+.PP
+.B const char *pcre32_version(void);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This function (even in the 16-bit and 32-bit libraries) returns a
+zero-terminated, 8-bit character string that gives the version number of the
+PCRE library and the date of its release.
+.P
+There is a complete description of the PCRE native API in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page and a description of the POSIX API in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+page.
diff --git a/pcre/doc/pcreapi.3 b/pcre/doc/pcreapi.3
new file mode 100644
index 00000000000..4718c7fd71b
--- /dev/null
+++ b/pcre/doc/pcreapi.3
@@ -0,0 +1,2891 @@
+.TH PCREAPI 3 "12 May 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.sp
+.B #include
+.
+.
+.SH "PCRE NATIVE API BASIC FUNCTIONS"
+.rs
+.sp
+.SM
+.B pcre *pcre_compile(const char *\fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.PP
+.B pcre *pcre_compile2(const char *\fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B int *\fIerrorcodeptr\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.PP
+.B pcre_extra *pcre_study(const pcre *\fIcode\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP);
+.PP
+.B void pcre_free_study(pcre_extra *\fIextra\fP);
+.PP
+.B int pcre_exec(const pcre *\fIcode\fP, "const pcre_extra *\fIextra\fP,"
+.ti +5n
+.B "const char *\fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP);
+.PP
+.B int pcre_dfa_exec(const pcre *\fIcode\fP, "const pcre_extra *\fIextra\fP,"
+.ti +5n
+.B "const char *\fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP,
+.ti +5n
+.B int *\fIworkspace\fP, int \fIwscount\fP);
+.
+.
+.SH "PCRE NATIVE API STRING EXTRACTION FUNCTIONS"
+.rs
+.sp
+.B int pcre_copy_named_substring(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, const char *\fIstringname\fP,
+.ti +5n
+.B char *\fIbuffer\fP, int \fIbuffersize\fP);
+.PP
+.B int pcre_copy_substring(const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP, char *\fIbuffer\fP,
+.ti +5n
+.B int \fIbuffersize\fP);
+.PP
+.B int pcre_get_named_substring(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, const char *\fIstringname\fP,
+.ti +5n
+.B const char **\fIstringptr\fP);
+.PP
+.B int pcre_get_stringnumber(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIname\fP);
+.PP
+.B int pcre_get_stringtable_entries(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIname\fP, char **\fIfirst\fP, char **\fIlast\fP);
+.PP
+.B int pcre_get_substring(const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP,
+.ti +5n
+.B const char **\fIstringptr\fP);
+.PP
+.B int pcre_get_substring_list(const char *\fIsubject\fP,
+.ti +5n
+.B int *\fIovector\fP, int \fIstringcount\fP, "const char ***\fIlistptr\fP);"
+.PP
+.B void pcre_free_substring(const char *\fIstringptr\fP);
+.PP
+.B void pcre_free_substring_list(const char **\fIstringptr\fP);
+.
+.
+.SH "PCRE NATIVE API AUXILIARY FUNCTIONS"
+.rs
+.sp
+.B int pcre_jit_exec(const pcre *\fIcode\fP, "const pcre_extra *\fIextra\fP,"
+.ti +5n
+.B "const char *\fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP,
+.ti +5n
+.B pcre_jit_stack *\fIjstack\fP);
+.PP
+.B pcre_jit_stack *pcre_jit_stack_alloc(int \fIstartsize\fP, int \fImaxsize\fP);
+.PP
+.B void pcre_jit_stack_free(pcre_jit_stack *\fIstack\fP);
+.PP
+.B void pcre_assign_jit_stack(pcre_extra *\fIextra\fP,
+.ti +5n
+.B pcre_jit_callback \fIcallback\fP, void *\fIdata\fP);
+.PP
+.B const unsigned char *pcre_maketables(void);
+.PP
+.B int pcre_fullinfo(const pcre *\fIcode\fP, "const pcre_extra *\fIextra\fP,"
+.ti +5n
+.B int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+.B int pcre_refcount(pcre *\fIcode\fP, int \fIadjust\fP);
+.PP
+.B int pcre_config(int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+.B const char *pcre_version(void);
+.PP
+.B int pcre_pattern_to_host_byte_order(pcre *\fIcode\fP,
+.ti +5n
+.B pcre_extra *\fIextra\fP, const unsigned char *\fItables\fP);
+.
+.
+.SH "PCRE NATIVE API INDIRECTED FUNCTIONS"
+.rs
+.sp
+.B void *(*pcre_malloc)(size_t);
+.PP
+.B void (*pcre_free)(void *);
+.PP
+.B void *(*pcre_stack_malloc)(size_t);
+.PP
+.B void (*pcre_stack_free)(void *);
+.PP
+.B int (*pcre_callout)(pcre_callout_block *);
+.
+.
+.SH "PCRE 8-BIT, 16-BIT, AND 32-BIT LIBRARIES"
+.rs
+.sp
+As well as support for 8-bit character strings, PCRE also supports 16-bit
+strings (from release 8.30) and 32-bit strings (from release 8.32), by means of
+two additional libraries. They can be built as well as, or instead of, the
+8-bit library. To avoid too much complication, this document describes the
+8-bit versions of the functions, with only occasional references to the 16-bit
+and 32-bit libraries.
+.P
+The 16-bit and 32-bit functions operate in the same way as their 8-bit
+counterparts; they just use different data types for their arguments and
+results, and their names start with \fBpcre16_\fP or \fBpcre32_\fP instead of
+\fBpcre_\fP. For every option that has UTF8 in its name (for example,
+PCRE_UTF8), there are corresponding 16-bit and 32-bit names with UTF8 replaced
+by UTF16 or UTF32, respectively. This facility is in fact just cosmetic; the
+16-bit and 32-bit option names define the same bit values.
+.P
+References to bytes and UTF-8 in this document should be read as references to
+16-bit data units and UTF-16 when using the 16-bit library, or 32-bit data
+units and UTF-32 when using the 32-bit library, unless specified otherwise.
+More details of the specific differences for the 16-bit and 32-bit libraries
+are given in the
+.\" HREF
+\fBpcre16\fP
+.\"
+and
+.\" HREF
+\fBpcre32\fP
+.\"
+pages.
+.
+.
+.SH "PCRE API OVERVIEW"
+.rs
+.sp
+PCRE has its own native API, which is described in this document. There are
+also some wrapper functions (for the 8-bit library only) that correspond to the
+POSIX regular expression API, but they do not give access to all the
+functionality. They are described in the
+.\" HREF
+\fBpcreposix\fP
+.\"
+documentation. Both of these APIs define a set of C function calls. A C++
+wrapper (again for the 8-bit library only) is also distributed with PCRE. It is
+documented in the
+.\" HREF
+\fBpcrecpp\fP
+.\"
+page.
+.P
+The native API C function prototypes are defined in the header file
+\fBpcre.h\fP, and on Unix-like systems the (8-bit) library itself is called
+\fBlibpcre\fP. It can normally be accessed by adding \fB-lpcre\fP to the
+command for linking an application that uses PCRE. The header file defines the
+macros PCRE_MAJOR and PCRE_MINOR to contain the major and minor release numbers
+for the library. Applications can use these to include support for different
+releases of PCRE.
+.P
+In a Windows environment, if you want to statically link an application program
+against a non-dll \fBpcre.a\fP file, you must define PCRE_STATIC before
+including \fBpcre.h\fP or \fBpcrecpp.h\fP, because otherwise the
+\fBpcre_malloc()\fP and \fBpcre_free()\fP exported functions will be declared
+\fB__declspec(dllimport)\fP, with unwanted results.
+.P
+The functions \fBpcre_compile()\fP, \fBpcre_compile2()\fP, \fBpcre_study()\fP,
+and \fBpcre_exec()\fP are used for compiling and matching regular expressions
+in a Perl-compatible manner. A sample program that demonstrates the simplest
+way of using them is provided in the file called \fIpcredemo.c\fP in the PCRE
+source distribution. A listing of this program is given in the
+.\" HREF
+\fBpcredemo\fP
+.\"
+documentation, and the
+.\" HREF
+\fBpcresample\fP
+.\"
+documentation describes how to compile and run it.
+.P
+Just-in-time compiler support is an optional feature of PCRE that can be built
+in appropriate hardware environments. It greatly speeds up the matching
+performance of many patterns. Simple programs can easily request that it be
+used if available, by setting an option that is ignored when it is not
+relevant. More complicated programs might need to make use of the functions
+\fBpcre_jit_stack_alloc()\fP, \fBpcre_jit_stack_free()\fP, and
+\fBpcre_assign_jit_stack()\fP in order to control the JIT code's memory usage.
+.P
+From release 8.32 there is also a direct interface for JIT execution, which
+gives improved performance. The JIT-specific functions are discussed in the
+.\" HREF
+\fBpcrejit\fP
+.\"
+documentation.
+.P
+A second matching function, \fBpcre_dfa_exec()\fP, which is not
+Perl-compatible, is also provided. This uses a different algorithm for the
+matching. The alternative algorithm finds all possible matches (at a given
+point in the subject), and scans the subject just once (unless there are
+lookbehind assertions). However, this algorithm does not return captured
+substrings. A description of the two matching algorithms and their advantages
+and disadvantages is given in the
+.\" HREF
+\fBpcrematching\fP
+.\"
+documentation.
+.P
+In addition to the main compiling and matching functions, there are convenience
+functions for extracting captured substrings from a subject string that is
+matched by \fBpcre_exec()\fP. They are:
+.sp
+ \fBpcre_copy_substring()\fP
+ \fBpcre_copy_named_substring()\fP
+ \fBpcre_get_substring()\fP
+ \fBpcre_get_named_substring()\fP
+ \fBpcre_get_substring_list()\fP
+ \fBpcre_get_stringnumber()\fP
+ \fBpcre_get_stringtable_entries()\fP
+.sp
+\fBpcre_free_substring()\fP and \fBpcre_free_substring_list()\fP are also
+provided, to free the memory used for extracted strings.
+.P
+The function \fBpcre_maketables()\fP is used to build a set of character tables
+in the current locale for passing to \fBpcre_compile()\fP, \fBpcre_exec()\fP,
+or \fBpcre_dfa_exec()\fP. This is an optional facility that is provided for
+specialist use. Most commonly, no special tables are passed, in which case
+internal tables that are generated when PCRE is built are used.
+.P
+The function \fBpcre_fullinfo()\fP is used to find out information about a
+compiled pattern. The function \fBpcre_version()\fP returns a pointer to a
+string containing the version of PCRE and its date of release.
+.P
+The function \fBpcre_refcount()\fP maintains a reference count in a data block
+containing a compiled pattern. This is provided for the benefit of
+object-oriented applications.
+.P
+The global variables \fBpcre_malloc\fP and \fBpcre_free\fP initially contain
+the entry points of the standard \fBmalloc()\fP and \fBfree()\fP functions,
+respectively. PCRE calls the memory management functions via these variables,
+so a calling program can replace them if it wishes to intercept the calls. This
+should be done before calling any PCRE functions.
+.P
+The global variables \fBpcre_stack_malloc\fP and \fBpcre_stack_free\fP are also
+indirections to memory management functions. These special functions are used
+only when PCRE is compiled to use the heap for remembering data, instead of
+recursive function calls, when running the \fBpcre_exec()\fP function. See the
+.\" HREF
+\fBpcrebuild\fP
+.\"
+documentation for details of how to do this. It is a non-standard way of
+building PCRE, for use in environments that have limited stacks. Because of the
+greater use of memory management, it runs more slowly. Separate functions are
+provided so that special-purpose external code can be used for this case. When
+used, these functions are always called in a stack-like manner (last obtained,
+first freed), and always for memory blocks of the same size. There is a
+discussion about PCRE's stack usage in the
+.\" HREF
+\fBpcrestack\fP
+.\"
+documentation.
+.P
+The global variable \fBpcre_callout\fP initially contains NULL. It can be set
+by the caller to a "callout" function, which PCRE will then call at specified
+points during a matching operation. Details are given in the
+.\" HREF
+\fBpcrecallout\fP
+.\"
+documentation.
+.
+.
+.\" HTML
+.SH NEWLINES
+.rs
+.sp
+PCRE supports five different conventions for indicating line breaks in
+strings: a single CR (carriage return) character, a single LF (linefeed)
+character, the two-character sequence CRLF, any of the three preceding, or any
+Unicode newline sequence. The Unicode newline sequences are the three just
+mentioned, plus the single characters VT (vertical tab, U+000B), FF (form feed,
+U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS
+(paragraph separator, U+2029).
+.P
+Each of the first three conventions is used by at least one operating system as
+its standard newline sequence. When PCRE is built, a default can be specified.
+The default default is LF, which is the Unix standard. When PCRE is run, the
+default can be overridden, either when a pattern is compiled, or when it is
+matched.
+.P
+At compile time, the newline convention can be specified by the \fIoptions\fP
+argument of \fBpcre_compile()\fP, or it can be specified by special text at the
+start of the pattern itself; this overrides any other settings. See the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+page for details of the special character sequences.
+.P
+In the PCRE documentation the word "newline" is used to mean "the character or
+pair of characters that indicate a line break". The choice of newline
+convention affects the handling of the dot, circumflex, and dollar
+metacharacters, the handling of #-comments in /x mode, and, when CRLF is a
+recognized line ending sequence, the match position advancement for a
+non-anchored pattern. There is more detail about this in the
+.\" HTML
+.\"
+section on \fBpcre_exec()\fP options
+.\"
+below.
+.P
+The choice of newline convention does not affect the interpretation of
+the \en or \er escape sequences, nor does it affect what \eR matches, which is
+controlled in a similar way, but by separate options.
+.
+.
+.SH MULTITHREADING
+.rs
+.sp
+The PCRE functions can be used in multi-threading applications, with the
+proviso that the memory management functions pointed to by \fBpcre_malloc\fP,
+\fBpcre_free\fP, \fBpcre_stack_malloc\fP, and \fBpcre_stack_free\fP, and the
+callout function pointed to by \fBpcre_callout\fP, are shared by all threads.
+.P
+The compiled form of a regular expression is not altered during matching, so
+the same compiled pattern can safely be used by several threads at once.
+.P
+If the just-in-time optimization feature is being used, it needs separate
+memory stack areas for each thread. See the
+.\" HREF
+\fBpcrejit\fP
+.\"
+documentation for more details.
+.
+.
+.SH "SAVING PRECOMPILED PATTERNS FOR LATER USE"
+.rs
+.sp
+The compiled form of a regular expression can be saved and re-used at a later
+time, possibly by a different program, and even on a host other than the one on
+which it was compiled. Details are given in the
+.\" HREF
+\fBpcreprecompile\fP
+.\"
+documentation, which includes a description of the
+\fBpcre_pattern_to_host_byte_order()\fP function. However, compiling a regular
+expression with one version of PCRE for use with a different version is not
+guaranteed to work and may cause crashes.
+.
+.
+.SH "CHECKING BUILD-TIME OPTIONS"
+.rs
+.sp
+.B int pcre_config(int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+The function \fBpcre_config()\fP makes it possible for a PCRE client to
+discover which optional features have been compiled into the PCRE library. The
+.\" HREF
+\fBpcrebuild\fP
+.\"
+documentation has more details about these optional features.
+.P
+The first argument for \fBpcre_config()\fP is an integer, specifying which
+information is required; the second argument is a pointer to a variable into
+which the information is placed. The returned value is zero on success, or the
+negative error code PCRE_ERROR_BADOPTION if the value in the first argument is
+not recognized. The following information is available:
+.sp
+ PCRE_CONFIG_UTF8
+.sp
+The output is an integer that is set to one if UTF-8 support is available;
+otherwise it is set to zero. This value should normally be given to the 8-bit
+version of this function, \fBpcre_config()\fP. If it is given to the 16-bit
+or 32-bit version of this function, the result is PCRE_ERROR_BADOPTION.
+.sp
+ PCRE_CONFIG_UTF16
+.sp
+The output is an integer that is set to one if UTF-16 support is available;
+otherwise it is set to zero. This value should normally be given to the 16-bit
+version of this function, \fBpcre16_config()\fP. If it is given to the 8-bit
+or 32-bit version of this function, the result is PCRE_ERROR_BADOPTION.
+.sp
+ PCRE_CONFIG_UTF32
+.sp
+The output is an integer that is set to one if UTF-32 support is available;
+otherwise it is set to zero. This value should normally be given to the 32-bit
+version of this function, \fBpcre32_config()\fP. If it is given to the 8-bit
+or 16-bit version of this function, the result is PCRE_ERROR_BADOPTION.
+.sp
+ PCRE_CONFIG_UNICODE_PROPERTIES
+.sp
+The output is an integer that is set to one if support for Unicode character
+properties is available; otherwise it is set to zero.
+.sp
+ PCRE_CONFIG_JIT
+.sp
+The output is an integer that is set to one if support for just-in-time
+compiling is available; otherwise it is set to zero.
+.sp
+ PCRE_CONFIG_JITTARGET
+.sp
+The output is a pointer to a zero-terminated "const char *" string. If JIT
+support is available, the string contains the name of the architecture for
+which the JIT compiler is configured, for example "x86 32bit (little endian +
+unaligned)". If JIT support is not available, the result is NULL.
+.sp
+ PCRE_CONFIG_NEWLINE
+.sp
+The output is an integer whose value specifies the default character sequence
+that is recognized as meaning "newline". The values that are supported in
+ASCII/Unicode environments are: 10 for LF, 13 for CR, 3338 for CRLF, -2 for
+ANYCRLF, and -1 for ANY. In EBCDIC environments, CR, ANYCRLF, and ANY yield the
+same values. However, the value for LF is normally 21, though some EBCDIC
+environments use 37. The corresponding values for CRLF are 3349 and 3365. The
+default should normally correspond to the standard sequence for your operating
+system.
+.sp
+ PCRE_CONFIG_BSR
+.sp
+The output is an integer whose value indicates what character sequences the \eR
+escape sequence matches by default. A value of 0 means that \eR matches any
+Unicode line ending sequence; a value of 1 means that \eR matches only CR, LF,
+or CRLF. The default can be overridden when a pattern is compiled or matched.
+.sp
+ PCRE_CONFIG_LINK_SIZE
+.sp
+The output is an integer that contains the number of bytes used for internal
+linkage in compiled regular expressions. For the 8-bit library, the value can
+be 2, 3, or 4. For the 16-bit library, the value is either 2 or 4 and is still
+a number of bytes. For the 32-bit library, the value is either 2 or 4 and is
+still a number of bytes. The default value of 2 is sufficient for all but the
+most massive patterns, since it allows the compiled pattern to be up to 64K in
+size. Larger values allow larger regular expressions to be compiled, at the
+expense of slower matching.
+.sp
+ PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
+.sp
+The output is an integer that contains the threshold above which the POSIX
+interface uses \fBmalloc()\fP for output vectors. Further details are given in
+the
+.\" HREF
+\fBpcreposix\fP
+.\"
+documentation.
+.sp
+ PCRE_CONFIG_MATCH_LIMIT
+.sp
+The output is a long integer that gives the default limit for the number of
+internal matching function calls in a \fBpcre_exec()\fP execution. Further
+details are given with \fBpcre_exec()\fP below.
+.sp
+ PCRE_CONFIG_MATCH_LIMIT_RECURSION
+.sp
+The output is a long integer that gives the default limit for the depth of
+recursion when calling the internal matching function in a \fBpcre_exec()\fP
+execution. Further details are given with \fBpcre_exec()\fP below.
+.sp
+ PCRE_CONFIG_STACKRECURSE
+.sp
+The output is an integer that is set to one if internal recursion when running
+\fBpcre_exec()\fP is implemented by recursive function calls that use the stack
+to remember their state. This is the usual way that PCRE is compiled. The
+output is zero if PCRE was compiled to use blocks of data on the heap instead
+of recursive function calls. In this case, \fBpcre_stack_malloc\fP and
+\fBpcre_stack_free\fP are called to manage memory blocks on the heap, thus
+avoiding the use of the stack.
+.
+.
+.SH "COMPILING A PATTERN"
+.rs
+.sp
+.B pcre *pcre_compile(const char *\fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.sp
+.B pcre *pcre_compile2(const char *\fIpattern\fP, int \fIoptions\fP,
+.ti +5n
+.B int *\fIerrorcodeptr\fP,
+.ti +5n
+.B const char **\fIerrptr\fP, int *\fIerroffset\fP,
+.ti +5n
+.B const unsigned char *\fItableptr\fP);
+.P
+Either of the functions \fBpcre_compile()\fP or \fBpcre_compile2()\fP can be
+called to compile a pattern into an internal form. The only difference between
+the two interfaces is that \fBpcre_compile2()\fP has an additional argument,
+\fIerrorcodeptr\fP, via which a numerical error code can be returned. To avoid
+too much repetition, we refer just to \fBpcre_compile()\fP below, but the
+information applies equally to \fBpcre_compile2()\fP.
+.P
+The pattern is a C string terminated by a binary zero, and is passed in the
+\fIpattern\fP argument. A pointer to a single block of memory that is obtained
+via \fBpcre_malloc\fP is returned. This contains the compiled code and related
+data. The \fBpcre\fP type is defined for the returned block; this is a typedef
+for a structure whose contents are not externally defined. It is up to the
+caller to free the memory (via \fBpcre_free\fP) when it is no longer required.
+.P
+Although the compiled code of a PCRE regex is relocatable, that is, it does not
+depend on memory location, the complete \fBpcre\fP data block is not
+fully relocatable, because it may contain a copy of the \fItableptr\fP
+argument, which is an address (see below).
+.P
+The \fIoptions\fP argument contains various bit settings that affect the
+compilation. It should be zero if no options are required. The available
+options are described below. Some of them (in particular, those that are
+compatible with Perl, but some others as well) can also be set and unset from
+within the pattern (see the detailed description in the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+documentation). For those options that can be different in different parts of
+the pattern, the contents of the \fIoptions\fP argument specifies their
+settings at the start of compilation and execution. The PCRE_ANCHORED,
+PCRE_BSR_\fIxxx\fP, PCRE_NEWLINE_\fIxxx\fP, PCRE_NO_UTF8_CHECK, and
+PCRE_NO_START_OPTIMIZE options can be set at the time of matching as well as at
+compile time.
+.P
+If \fIerrptr\fP is NULL, \fBpcre_compile()\fP returns NULL immediately.
+Otherwise, if compilation of a pattern fails, \fBpcre_compile()\fP returns
+NULL, and sets the variable pointed to by \fIerrptr\fP to point to a textual
+error message. This is a static string that is part of the library. You must
+not try to free it. Normally, the offset from the start of the pattern to the
+data unit that was being processed when the error was discovered is placed in
+the variable pointed to by \fIerroffset\fP, which must not be NULL (if it is,
+an immediate error is given). However, for an invalid UTF-8 or UTF-16 string,
+the offset is that of the first data unit of the failing character.
+.P
+Some errors are not detected until the whole pattern has been scanned; in these
+cases, the offset passed back is the length of the pattern. Note that the
+offset is in data units, not characters, even in a UTF mode. It may sometimes
+point into the middle of a UTF-8 or UTF-16 character.
+.P
+If \fBpcre_compile2()\fP is used instead of \fBpcre_compile()\fP, and the
+\fIerrorcodeptr\fP argument is not NULL, a non-zero error code number is
+returned via this argument in the event of an error. This is in addition to the
+textual error message. Error codes and messages are listed below.
+.P
+If the final argument, \fItableptr\fP, is NULL, PCRE uses a default set of
+character tables that are built when PCRE is compiled, using the default C
+locale. Otherwise, \fItableptr\fP must be an address that is the result of a
+call to \fBpcre_maketables()\fP. This value is stored with the compiled
+pattern, and used again by \fBpcre_exec()\fP, unless another table pointer is
+passed to it. For more discussion, see the section on locale support below.
+.P
+This code fragment shows a typical straightforward call to \fBpcre_compile()\fP:
+.sp
+ pcre *re;
+ const char *error;
+ int erroffset;
+ re = pcre_compile(
+ "^A.*Z", /* the pattern */
+ 0, /* default options */
+ &error, /* for error message */
+ &erroffset, /* for error offset */
+ NULL); /* use default character tables */
+.sp
+The following names for option bits are defined in the \fBpcre.h\fP header
+file:
+.sp
+ PCRE_ANCHORED
+.sp
+If this bit is set, the pattern is forced to be "anchored", that is, it is
+constrained to match only at the first matching point in the string that is
+being searched (the "subject string"). This effect can also be achieved by
+appropriate constructs in the pattern itself, which is the only way to do it in
+Perl.
+.sp
+ PCRE_AUTO_CALLOUT
+.sp
+If this bit is set, \fBpcre_compile()\fP automatically inserts callout items,
+all with number 255, before each pattern item. For discussion of the callout
+facility, see the
+.\" HREF
+\fBpcrecallout\fP
+.\"
+documentation.
+.sp
+ PCRE_BSR_ANYCRLF
+ PCRE_BSR_UNICODE
+.sp
+These options (which are mutually exclusive) control what the \eR escape
+sequence matches. The choice is either to match only CR, LF, or CRLF, or to
+match any Unicode newline sequence. The default is specified when PCRE is
+built. It can be overridden from within the pattern, or by setting an option
+when a compiled pattern is matched.
+.sp
+ PCRE_CASELESS
+.sp
+If this bit is set, letters in the pattern match both upper and lower case
+letters. It is equivalent to Perl's /i option, and it can be changed within a
+pattern by a (?i) option setting. In UTF-8 mode, PCRE always understands the
+concept of case for characters whose values are less than 128, so caseless
+matching is always possible. For characters with higher values, the concept of
+case is supported if PCRE is compiled with Unicode property support, but not
+otherwise. If you want to use caseless matching for characters 128 and above,
+you must ensure that PCRE is compiled with Unicode property support as well as
+with UTF-8 support.
+.sp
+ PCRE_DOLLAR_ENDONLY
+.sp
+If this bit is set, a dollar metacharacter in the pattern matches only at the
+end of the subject string. Without this option, a dollar also matches
+immediately before a newline at the end of the string (but not before any other
+newlines). The PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is set.
+There is no equivalent to this option in Perl, and no way to set it within a
+pattern.
+.sp
+ PCRE_DOTALL
+.sp
+If this bit is set, a dot metacharacter in the pattern matches a character of
+any value, including one that indicates a newline. However, it only ever
+matches one character, even if newlines are coded as CRLF. Without this option,
+a dot does not match when the current position is at a newline. This option is
+equivalent to Perl's /s option, and it can be changed within a pattern by a
+(?s) option setting. A negative class such as [^a] always matches newline
+characters, independent of the setting of this option.
+.sp
+ PCRE_DUPNAMES
+.sp
+If this bit is set, names used to identify capturing subpatterns need not be
+unique. This can be helpful for certain types of pattern when it is known that
+only one instance of the named subpattern can ever be matched. There are more
+details of named subpatterns below; see also the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+documentation.
+.sp
+ PCRE_EXTENDED
+.sp
+If this bit is set, white space data characters in the pattern are totally
+ignored except when escaped or inside a character class. White space does not
+include the VT character (code 11). In addition, characters between an
+unescaped # outside a character class and the next newline, inclusive, are also
+ignored. This is equivalent to Perl's /x option, and it can be changed within a
+pattern by a (?x) option setting.
+.P
+Which characters are interpreted as newlines is controlled by the options
+passed to \fBpcre_compile()\fP or by a special sequence at the start of the
+pattern, as described in the section entitled
+.\" HTML
+.\"
+"Newline conventions"
+.\"
+in the \fBpcrepattern\fP documentation. Note that the end of this type of
+comment is a literal newline sequence in the pattern; escape sequences that
+happen to represent a newline do not count.
+.P
+This option makes it possible to include comments inside complicated patterns.
+Note, however, that this applies only to data characters. White space characters
+may never appear within special character sequences in a pattern, for example
+within the sequence (?( that introduces a conditional subpattern.
+.sp
+ PCRE_EXTRA
+.sp
+This option was invented in order to turn on additional functionality of PCRE
+that is incompatible with Perl, but it is currently of very little use. When
+set, any backslash in a pattern that is followed by a letter that has no
+special meaning causes an error, thus reserving these combinations for future
+expansion. By default, as in Perl, a backslash followed by a letter with no
+special meaning is treated as a literal. (Perl can, however, be persuaded to
+give an error for this, by running it with the -w option.) There are at present
+no other features controlled by this option. It can also be set by a (?X)
+option setting within a pattern.
+.sp
+ PCRE_FIRSTLINE
+.sp
+If this option is set, an unanchored pattern is required to match before or at
+the first newline in the subject string, though the matched text may continue
+over the newline.
+.sp
+ PCRE_JAVASCRIPT_COMPAT
+.sp
+If this option is set, PCRE's behaviour is changed in some ways so that it is
+compatible with JavaScript rather than Perl. The changes are as follows:
+.P
+(1) A lone closing square bracket in a pattern causes a compile-time error,
+because this is illegal in JavaScript (by default it is treated as a data
+character). Thus, the pattern AB]CD becomes illegal when this option is set.
+.P
+(2) At run time, a back reference to an unset subpattern group matches an empty
+string (by default this causes the current matching alternative to fail). A
+pattern such as (\e1)(a) succeeds when this option is set (assuming it can find
+an "a" in the subject), whereas it fails by default, for Perl compatibility.
+.P
+(3) \eU matches an upper case "U" character; by default \eU causes a compile
+time error (Perl uses \eU to upper case subsequent characters).
+.P
+(4) \eu matches a lower case "u" character unless it is followed by four
+hexadecimal digits, in which case the hexadecimal number defines the code point
+to match. By default, \eu causes a compile time error (Perl uses it to upper
+case the following character).
+.P
+(5) \ex matches a lower case "x" character unless it is followed by two
+hexadecimal digits, in which case the hexadecimal number defines the code point
+to match. By default, as in Perl, a hexadecimal number is always expected after
+\ex, but it may have zero, one, or two digits (so, for example, \exz matches a
+binary zero character followed by z).
+.sp
+ PCRE_MULTILINE
+.sp
+By default, for the purposes of matching "start of line" and "end of line",
+PCRE treats the subject string as consisting of a single line of characters,
+even if it actually contains newlines. The "start of line" metacharacter (^)
+matches only at the start of the string, and the "end of line" metacharacter
+($) matches only at the end of the string, or before a terminating newline
+(except when PCRE_DOLLAR_ENDONLY is set). Note, however, that unless
+PCRE_DOTALL is set, the "any character" metacharacter (.) does not match at a
+newline. This behaviour (for ^, $, and dot) is the same as Perl.
+.P
+When PCRE_MULTILINE it is set, the "start of line" and "end of line" constructs
+match immediately following or immediately before internal newlines in the
+subject string, respectively, as well as at the very start and end. This is
+equivalent to Perl's /m option, and it can be changed within a pattern by a
+(?m) option setting. If there are no newlines in a subject string, or no
+occurrences of ^ or $ in a pattern, setting PCRE_MULTILINE has no effect.
+.sp
+ PCRE_NEVER_UTF
+.sp
+This option locks out interpretation of the pattern as UTF-8 (or UTF-16 or
+UTF-32 in the 16-bit and 32-bit libraries). In particular, it prevents the
+creator of the pattern from switching to UTF interpretation by starting the
+pattern with (*UTF). This may be useful in applications that process patterns
+from external sources. The combination of PCRE_UTF8 and PCRE_NEVER_UTF also
+causes an error.
+.sp
+ PCRE_NEWLINE_CR
+ PCRE_NEWLINE_LF
+ PCRE_NEWLINE_CRLF
+ PCRE_NEWLINE_ANYCRLF
+ PCRE_NEWLINE_ANY
+.sp
+These options override the default newline definition that was chosen when PCRE
+was built. Setting the first or the second specifies that a newline is
+indicated by a single character (CR or LF, respectively). Setting
+PCRE_NEWLINE_CRLF specifies that a newline is indicated by the two-character
+CRLF sequence. Setting PCRE_NEWLINE_ANYCRLF specifies that any of the three
+preceding sequences should be recognized. Setting PCRE_NEWLINE_ANY specifies
+that any Unicode newline sequence should be recognized.
+.P
+In an ASCII/Unicode environment, the Unicode newline sequences are the three
+just mentioned, plus the single characters VT (vertical tab, U+000B), FF (form
+feed, U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and PS
+(paragraph separator, U+2029). For the 8-bit library, the last two are
+recognized only in UTF-8 mode.
+.P
+When PCRE is compiled to run in an EBCDIC (mainframe) environment, the code for
+CR is 0x0d, the same as ASCII. However, the character code for LF is normally
+0x15, though in some EBCDIC environments 0x25 is used. Whichever of these is
+not LF is made to correspond to Unicode's NEL character. EBCDIC codes are all
+less than 256. For more details, see the
+.\" HREF
+\fBpcrebuild\fP
+.\"
+documentation.
+.P
+The newline setting in the options word uses three bits that are treated
+as a number, giving eight possibilities. Currently only six are used (default
+plus the five values above). This means that if you set more than one newline
+option, the combination may or may not be sensible. For example,
+PCRE_NEWLINE_CR with PCRE_NEWLINE_LF is equivalent to PCRE_NEWLINE_CRLF, but
+other combinations may yield unused numbers and cause an error.
+.P
+The only time that a line break in a pattern is specially recognized when
+compiling is when PCRE_EXTENDED is set. CR and LF are white space characters,
+and so are ignored in this mode. Also, an unescaped # outside a character class
+indicates a comment that lasts until after the next line break sequence. In
+other circumstances, line break sequences in patterns are treated as literal
+data.
+.P
+The newline option that is set at compile time becomes the default that is used
+for \fBpcre_exec()\fP and \fBpcre_dfa_exec()\fP, but it can be overridden.
+.sp
+ PCRE_NO_AUTO_CAPTURE
+.sp
+If this option is set, it disables the use of numbered capturing parentheses in
+the pattern. Any opening parenthesis that is not followed by ? behaves as if it
+were followed by ?: but named parentheses can still be used for capturing (and
+they acquire numbers in the usual way). There is no equivalent of this option
+in Perl.
+.sp
+ PCRE_NO_START_OPTIMIZE
+.sp
+This is an option that acts at matching time; that is, it is really an option
+for \fBpcre_exec()\fP or \fBpcre_dfa_exec()\fP. If it is set at compile time,
+it is remembered with the compiled pattern and assumed at matching time. This
+is necessary if you want to use JIT execution, because the JIT compiler needs
+to know whether or not this option is set. For details see the discussion of
+PCRE_NO_START_OPTIMIZE
+.\" HTML
+.\"
+below.
+.\"
+.sp
+ PCRE_UCP
+.sp
+This option changes the way PCRE processes \eB, \eb, \eD, \ed, \eS, \es, \eW,
+\ew, and some of the POSIX character classes. By default, only ASCII characters
+are recognized, but if PCRE_UCP is set, Unicode properties are used instead to
+classify characters. More details are given in the section on
+.\" HTML
+.\"
+generic character types
+.\"
+in the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+page. If you set PCRE_UCP, matching one of the items it affects takes much
+longer. The option is available only if PCRE has been compiled with Unicode
+property support.
+.sp
+ PCRE_UNGREEDY
+.sp
+This option inverts the "greediness" of the quantifiers so that they are not
+greedy by default, but become greedy if followed by "?". It is not compatible
+with Perl. It can also be set by a (?U) option setting within the pattern.
+.sp
+ PCRE_UTF8
+.sp
+This option causes PCRE to regard both the pattern and the subject as strings
+of UTF-8 characters instead of single-byte strings. However, it is available
+only when PCRE is built to include UTF support. If not, the use of this option
+provokes an error. Details of how this option changes the behaviour of PCRE are
+given in the
+.\" HREF
+\fBpcreunicode\fP
+.\"
+page.
+.sp
+ PCRE_NO_UTF8_CHECK
+.sp
+When PCRE_UTF8 is set, the validity of the pattern as a UTF-8 string is
+automatically checked. There is a discussion about the
+.\" HTML
+.\"
+validity of UTF-8 strings
+.\"
+in the
+.\" HREF
+\fBpcreunicode\fP
+.\"
+page. If an invalid UTF-8 sequence is found, \fBpcre_compile()\fP returns an
+error. If you already know that your pattern is valid, and you want to skip
+this check for performance reasons, you can set the PCRE_NO_UTF8_CHECK option.
+When it is set, the effect of passing an invalid UTF-8 string as a pattern is
+undefined. It may cause your program to crash. Note that this option can also
+be passed to \fBpcre_exec()\fP and \fBpcre_dfa_exec()\fP, to suppress the
+validity checking of subject strings only. If the same string is being matched
+many times, the option can be safely set for the second and subsequent
+matchings to improve performance.
+.
+.
+.SH "COMPILATION ERROR CODES"
+.rs
+.sp
+The following table lists the error codes than may be returned by
+\fBpcre_compile2()\fP, along with the error messages that may be returned by
+both compiling functions. Note that error messages are always 8-bit ASCII
+strings, even in 16-bit or 32-bit mode. As PCRE has developed, some error codes
+have fallen out of use. To avoid confusion, they have not been re-used.
+.sp
+ 0 no error
+ 1 \e at end of pattern
+ 2 \ec at end of pattern
+ 3 unrecognized character follows \e
+ 4 numbers out of order in {} quantifier
+ 5 number too big in {} quantifier
+ 6 missing terminating ] for character class
+ 7 invalid escape sequence in character class
+ 8 range out of order in character class
+ 9 nothing to repeat
+ 10 [this code is not in use]
+ 11 internal error: unexpected repeat
+ 12 unrecognized character after (? or (?-
+ 13 POSIX named classes are supported only within a class
+ 14 missing )
+ 15 reference to non-existent subpattern
+ 16 erroffset passed as NULL
+ 17 unknown option bit(s) set
+ 18 missing ) after comment
+ 19 [this code is not in use]
+ 20 regular expression is too large
+ 21 failed to get memory
+ 22 unmatched parentheses
+ 23 internal error: code overflow
+ 24 unrecognized character after (?<
+ 25 lookbehind assertion is not fixed length
+ 26 malformed number or name after (?(
+ 27 conditional group contains more than two branches
+ 28 assertion expected after (?(
+ 29 (?R or (?[+-]digits must be followed by )
+ 30 unknown POSIX class name
+ 31 POSIX collating elements are not supported
+ 32 this version of PCRE is compiled without UTF support
+ 33 [this code is not in use]
+ 34 character value in \ex{...} sequence is too large
+ 35 invalid condition (?(0)
+ 36 \eC not allowed in lookbehind assertion
+ 37 PCRE does not support \eL, \el, \eN{name}, \eU, or \eu
+ 38 number after (?C is > 255
+ 39 closing ) for (?C expected
+ 40 recursive call could loop indefinitely
+ 41 unrecognized character after (?P
+ 42 syntax error in subpattern name (missing terminator)
+ 43 two named subpatterns have the same name
+ 44 invalid UTF-8 string (specifically UTF-8)
+ 45 support for \eP, \ep, and \eX has not been compiled
+ 46 malformed \eP or \ep sequence
+ 47 unknown property name after \eP or \ep
+ 48 subpattern name is too long (maximum 32 characters)
+ 49 too many named subpatterns (maximum 10000)
+ 50 [this code is not in use]
+ 51 octal value is greater than \e377 in 8-bit non-UTF-8 mode
+ 52 internal error: overran compiling workspace
+ 53 internal error: previously-checked referenced subpattern
+ not found
+ 54 DEFINE group contains more than one branch
+ 55 repeating a DEFINE group is not allowed
+ 56 inconsistent NEWLINE options
+ 57 \eg is not followed by a braced, angle-bracketed, or quoted
+ name/number or by a plain number
+ 58 a numbered reference must not be zero
+ 59 an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)
+ 60 (*VERB) not recognized or malformed
+ 61 number is too big
+ 62 subpattern name expected
+ 63 digit expected after (?+
+ 64 ] is an invalid data character in JavaScript compatibility mode
+ 65 different names for subpatterns of the same number are
+ not allowed
+ 66 (*MARK) must have an argument
+ 67 this version of PCRE is not compiled with Unicode property
+ support
+ 68 \ec must be followed by an ASCII character
+ 69 \ek is not followed by a braced, angle-bracketed, or quoted name
+ 70 internal error: unknown opcode in find_fixedlength()
+ 71 \eN is not supported in a class
+ 72 too many forward references
+ 73 disallowed Unicode code point (>= 0xd800 && <= 0xdfff)
+ 74 invalid UTF-16 string (specifically UTF-16)
+ 75 name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)
+ 76 character value in \eu.... sequence is too large
+ 77 invalid UTF-32 string (specifically UTF-32)
+.sp
+The numbers 32 and 10000 in errors 48 and 49 are defaults; different values may
+be used if the limits were changed when PCRE was built.
+.
+.
+.\" HTML
+.SH "STUDYING A PATTERN"
+.rs
+.sp
+.B pcre_extra *pcre_study(const pcre *\fIcode\fP, int \fIoptions\fP
+.ti +5n
+.B const char **\fIerrptr\fP);
+.PP
+If a compiled pattern is going to be used several times, it is worth spending
+more time analyzing it in order to speed up the time taken for matching. The
+function \fBpcre_study()\fP takes a pointer to a compiled pattern as its first
+argument. If studying the pattern produces additional information that will
+help speed up matching, \fBpcre_study()\fP returns a pointer to a
+\fBpcre_extra\fP block, in which the \fIstudy_data\fP field points to the
+results of the study.
+.P
+The returned value from \fBpcre_study()\fP can be passed directly to
+\fBpcre_exec()\fP or \fBpcre_dfa_exec()\fP. However, a \fBpcre_extra\fP block
+also contains other fields that can be set by the caller before the block is
+passed; these are described
+.\" HTML
+.\"
+below
+.\"
+in the section on matching a pattern.
+.P
+If studying the pattern does not produce any useful information,
+\fBpcre_study()\fP returns NULL by default. In that circumstance, if the
+calling program wants to pass any of the other fields to \fBpcre_exec()\fP or
+\fBpcre_dfa_exec()\fP, it must set up its own \fBpcre_extra\fP block. However,
+if \fBpcre_study()\fP is called with the PCRE_STUDY_EXTRA_NEEDED option, it
+returns a \fBpcre_extra\fP block even if studying did not find any additional
+information. It may still return NULL, however, if an error occurs in
+\fBpcre_study()\fP.
+.P
+The second argument of \fBpcre_study()\fP contains option bits. There are three
+further options in addition to PCRE_STUDY_EXTRA_NEEDED:
+.sp
+ PCRE_STUDY_JIT_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
+.sp
+If any of these are set, and the just-in-time compiler is available, the
+pattern is further compiled into machine code that executes much faster than
+the \fBpcre_exec()\fP interpretive matching function. If the just-in-time
+compiler is not available, these options are ignored. All undefined bits in the
+\fIoptions\fP argument must be zero.
+.P
+JIT compilation is a heavyweight optimization. It can take some time for
+patterns to be analyzed, and for one-off matches and simple patterns the
+benefit of faster execution might be offset by a much slower study time.
+Not all patterns can be optimized by the JIT compiler. For those that cannot be
+handled, matching automatically falls back to the \fBpcre_exec()\fP
+interpreter. For more details, see the
+.\" HREF
+\fBpcrejit\fP
+.\"
+documentation.
+.P
+The third argument for \fBpcre_study()\fP is a pointer for an error message. If
+studying succeeds (even if no data is returned), the variable it points to is
+set to NULL. Otherwise it is set to point to a textual error message. This is a
+static string that is part of the library. You must not try to free it. You
+should test the error pointer for NULL after calling \fBpcre_study()\fP, to be
+sure that it has run successfully.
+.P
+When you are finished with a pattern, you can free the memory used for the
+study data by calling \fBpcre_free_study()\fP. This function was added to the
+API for release 8.20. For earlier versions, the memory could be freed with
+\fBpcre_free()\fP, just like the pattern itself. This will still work in cases
+where JIT optimization is not used, but it is advisable to change to the new
+function when convenient.
+.P
+This is a typical way in which \fBpcre_study\fP() is used (except that in a
+real application there should be tests for errors):
+.sp
+ int rc;
+ pcre *re;
+ pcre_extra *sd;
+ re = pcre_compile("pattern", 0, &error, &erroroffset, NULL);
+ sd = pcre_study(
+ re, /* result of pcre_compile() */
+ 0, /* no options */
+ &error); /* set to NULL or points to a message */
+ rc = pcre_exec( /* see below for details of pcre_exec() options */
+ re, sd, "subject", 7, 0, 0, ovector, 30);
+ ...
+ pcre_free_study(sd);
+ pcre_free(re);
+.sp
+Studying a pattern does two things: first, a lower bound for the length of
+subject string that is needed to match the pattern is computed. This does not
+mean that there are any strings of that length that match, but it does
+guarantee that no shorter strings match. The value is used to avoid wasting
+time by trying to match strings that are shorter than the lower bound. You can
+find out the value in a calling program via the \fBpcre_fullinfo()\fP function.
+.P
+Studying a pattern is also useful for non-anchored patterns that do not have a
+single fixed starting character. A bitmap of possible starting bytes is
+created. This speeds up finding a position in the subject at which to start
+matching. (In 16-bit mode, the bitmap is used for 16-bit values less than 256.
+In 32-bit mode, the bitmap is used for 32-bit values less than 256.)
+.P
+These two optimizations apply to both \fBpcre_exec()\fP and
+\fBpcre_dfa_exec()\fP, and the information is also used by the JIT compiler.
+The optimizations can be disabled by setting the PCRE_NO_START_OPTIMIZE option.
+You might want to do this if your pattern contains callouts or (*MARK) and you
+want to make use of these facilities in cases where matching fails.
+.P
+PCRE_NO_START_OPTIMIZE can be specified at either compile time or execution
+time. However, if PCRE_NO_START_OPTIMIZE is passed to \fBpcre_exec()\fP, (that
+is, after any JIT compilation has happened) JIT execution is disabled. For JIT
+execution to work with PCRE_NO_START_OPTIMIZE, the option must be set at
+compile time.
+.P
+There is a longer discussion of PCRE_NO_START_OPTIMIZE
+.\" HTML
+.\"
+below.
+.\"
+.
+.
+.\" HTML
+.SH "LOCALE SUPPORT"
+.rs
+.sp
+PCRE handles caseless matching, and determines whether characters are letters,
+digits, or whatever, by reference to a set of tables, indexed by character
+value. When running in UTF-8 mode, this applies only to characters
+with codes less than 128. By default, higher-valued codes never match escapes
+such as \ew or \ed, but they can be tested with \ep if PCRE is built with
+Unicode character property support. Alternatively, the PCRE_UCP option can be
+set at compile time; this causes \ew and friends to use Unicode property
+support instead of built-in tables. The use of locales with Unicode is
+discouraged. If you are handling characters with codes greater than 128, you
+should either use UTF-8 and Unicode, or use locales, but not try to mix the
+two.
+.P
+PCRE contains an internal set of tables that are used when the final argument
+of \fBpcre_compile()\fP is NULL. These are sufficient for many applications.
+Normally, the internal tables recognize only ASCII characters. However, when
+PCRE is built, it is possible to cause the internal tables to be rebuilt in the
+default "C" locale of the local system, which may cause them to be different.
+.P
+The internal tables can always be overridden by tables supplied by the
+application that calls PCRE. These may be created in a different locale from
+the default. As more and more applications change to using Unicode, the need
+for this locale support is expected to die away.
+.P
+External tables are built by calling the \fBpcre_maketables()\fP function,
+which has no arguments, in the relevant locale. The result can then be passed
+to \fBpcre_compile()\fP or \fBpcre_exec()\fP as often as necessary. For
+example, to build and use tables that are appropriate for the French locale
+(where accented characters with values greater than 128 are treated as letters),
+the following code could be used:
+.sp
+ setlocale(LC_CTYPE, "fr_FR");
+ tables = pcre_maketables();
+ re = pcre_compile(..., tables);
+.sp
+The locale name "fr_FR" is used on Linux and other Unix-like systems; if you
+are using Windows, the name for the French locale is "french".
+.P
+When \fBpcre_maketables()\fP runs, the tables are built in memory that is
+obtained via \fBpcre_malloc\fP. It is the caller's responsibility to ensure
+that the memory containing the tables remains available for as long as it is
+needed.
+.P
+The pointer that is passed to \fBpcre_compile()\fP is saved with the compiled
+pattern, and the same tables are used via this pointer by \fBpcre_study()\fP
+and normally also by \fBpcre_exec()\fP. Thus, by default, for any single
+pattern, compilation, studying and matching all happen in the same locale, but
+different patterns can be compiled in different locales.
+.P
+It is possible to pass a table pointer or NULL (indicating the use of the
+internal tables) to \fBpcre_exec()\fP. Although not intended for this purpose,
+this facility could be used to match a pattern in a different locale from the
+one in which it was compiled. Passing table pointers at run time is discussed
+below in the section on matching a pattern.
+.
+.
+.\" HTML
+.SH "INFORMATION ABOUT A PATTERN"
+.rs
+.sp
+.B int pcre_fullinfo(const pcre *\fIcode\fP, "const pcre_extra *\fIextra\fP,"
+.ti +5n
+.B int \fIwhat\fP, void *\fIwhere\fP);
+.PP
+The \fBpcre_fullinfo()\fP function returns information about a compiled
+pattern. It replaces the \fBpcre_info()\fP function, which was removed from the
+library at version 8.30, after more than 10 years of obsolescence.
+.P
+The first argument for \fBpcre_fullinfo()\fP is a pointer to the compiled
+pattern. The second argument is the result of \fBpcre_study()\fP, or NULL if
+the pattern was not studied. The third argument specifies which piece of
+information is required, and the fourth argument is a pointer to a variable
+to receive the data. The yield of the function is zero for success, or one of
+the following negative numbers:
+.sp
+ PCRE_ERROR_NULL the argument \fIcode\fP was NULL
+ the argument \fIwhere\fP was NULL
+ PCRE_ERROR_BADMAGIC the "magic number" was not found
+ PCRE_ERROR_BADENDIANNESS the pattern was compiled with different
+ endianness
+ PCRE_ERROR_BADOPTION the value of \fIwhat\fP was invalid
+ PCRE_ERROR_UNSET the requested field is not set
+.sp
+The "magic number" is placed at the start of each compiled pattern as an simple
+check against passing an arbitrary memory pointer. The endianness error can
+occur if a compiled pattern is saved and reloaded on a different host. Here is
+a typical call of \fBpcre_fullinfo()\fP, to obtain the length of the compiled
+pattern:
+.sp
+ int rc;
+ size_t length;
+ rc = pcre_fullinfo(
+ re, /* result of pcre_compile() */
+ sd, /* result of pcre_study(), or NULL */
+ PCRE_INFO_SIZE, /* what is required */
+ &length); /* where to put the data */
+.sp
+The possible values for the third argument are defined in \fBpcre.h\fP, and are
+as follows:
+.sp
+ PCRE_INFO_BACKREFMAX
+.sp
+Return the number of the highest back reference in the pattern. The fourth
+argument should point to an \fBint\fP variable. Zero is returned if there are
+no back references.
+.sp
+ PCRE_INFO_CAPTURECOUNT
+.sp
+Return the number of capturing subpatterns in the pattern. The fourth argument
+should point to an \fBint\fP variable.
+.sp
+ PCRE_INFO_DEFAULT_TABLES
+.sp
+Return a pointer to the internal default character tables within PCRE. The
+fourth argument should point to an \fBunsigned char *\fP variable. This
+information call is provided for internal use by the \fBpcre_study()\fP
+function. External callers can cause PCRE to use its internal tables by passing
+a NULL table pointer.
+.sp
+ PCRE_INFO_FIRSTBYTE
+.sp
+Return information about the first data unit of any matched string, for a
+non-anchored pattern. (The name of this option refers to the 8-bit library,
+where data units are bytes.) The fourth argument should point to an \fBint\fP
+variable.
+.P
+If there is a fixed first value, for example, the letter "c" from a pattern
+such as (cat|cow|coyote), its value is returned. In the 8-bit library, the
+value is always less than 256. In the 16-bit library the value can be up to
+0xffff. In the 32-bit library the value can be up to 0x10ffff.
+.P
+If there is no fixed first value, and if either
+.sp
+(a) the pattern was compiled with the PCRE_MULTILINE option, and every branch
+starts with "^", or
+.sp
+(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not set
+(if it were set, the pattern would be anchored),
+.sp
+-1 is returned, indicating that the pattern matches only at the start of a
+subject string or after any newline within the string. Otherwise -2 is
+returned. For anchored patterns, -2 is returned.
+.P
+Since for the 32-bit library using the non-UTF-32 mode, this function is unable
+to return the full 32-bit range of the character, this value is deprecated;
+instead the PCRE_INFO_FIRSTCHARACTERFLAGS and PCRE_INFO_FIRSTCHARACTER values
+should be used.
+.sp
+ PCRE_INFO_FIRSTTABLE
+.sp
+If the pattern was studied, and this resulted in the construction of a 256-bit
+table indicating a fixed set of values for the first data unit in any matching
+string, a pointer to the table is returned. Otherwise NULL is returned. The
+fourth argument should point to an \fBunsigned char *\fP variable.
+.sp
+ PCRE_INFO_HASCRORLF
+.sp
+Return 1 if the pattern contains any explicit matches for CR or LF characters,
+otherwise 0. The fourth argument should point to an \fBint\fP variable. An
+explicit match is either a literal CR or LF character, or \er or \en.
+.sp
+ PCRE_INFO_JCHANGED
+.sp
+Return 1 if the (?J) or (?-J) option setting is used in the pattern, otherwise
+0. The fourth argument should point to an \fBint\fP variable. (?J) and
+(?-J) set and unset the local PCRE_DUPNAMES option, respectively.
+.sp
+ PCRE_INFO_JIT
+.sp
+Return 1 if the pattern was studied with one of the JIT options, and
+just-in-time compiling was successful. The fourth argument should point to an
+\fBint\fP variable. A return value of 0 means that JIT support is not available
+in this version of PCRE, or that the pattern was not studied with a JIT option,
+or that the JIT compiler could not handle this particular pattern. See the
+.\" HREF
+\fBpcrejit\fP
+.\"
+documentation for details of what can and cannot be handled.
+.sp
+ PCRE_INFO_JITSIZE
+.sp
+If the pattern was successfully studied with a JIT option, return the size of
+the JIT compiled code, otherwise return zero. The fourth argument should point
+to a \fBsize_t\fP variable.
+.sp
+ PCRE_INFO_LASTLITERAL
+.sp
+Return the value of the rightmost literal data unit that must exist in any
+matched string, other than at its start, if such a value has been recorded. The
+fourth argument should point to an \fBint\fP variable. If there is no such
+value, -1 is returned. For anchored patterns, a last literal value is recorded
+only if it follows something of variable length. For example, for the pattern
+/^a\ed+z\ed+/ the returned value is "z", but for /^a\edz\ed/ the returned value
+is -1.
+.P
+Since for the 32-bit library using the non-UTF-32 mode, this function is unable
+to return the full 32-bit range of the character, this value is deprecated;
+instead the PCRE_INFO_REQUIREDCHARFLAGS and PCRE_INFO_REQUIREDCHAR values should
+be used.
+.sp
+ PCRE_INFO_MATCHLIMIT
+.sp
+If the pattern set a match limit by including an item of the form
+(*LIMIT_MATCH=nnnn) at the start, the value is returned. The fourth argument
+should point to an unsigned 32-bit integer. If no such value has been set, the
+call to \fBpcre_fullinfo()\fP returns the error PCRE_ERROR_UNSET.
+.sp
+ PCRE_INFO_MAXLOOKBEHIND
+.sp
+Return the number of characters (NB not data units) in the longest lookbehind
+assertion in the pattern. This information is useful when doing multi-segment
+matching using the partial matching facilities. Note that the simple assertions
+\eb and \eB require a one-character lookbehind. \eA also registers a
+one-character lookbehind, though it does not actually inspect the previous
+character. This is to ensure that at least one character from the old segment
+is retained when a new segment is processed. Otherwise, if there are no
+lookbehinds in the pattern, \eA might match incorrectly at the start of a new
+segment.
+.sp
+ PCRE_INFO_MINLENGTH
+.sp
+If the pattern was studied and a minimum length for matching subject strings
+was computed, its value is returned. Otherwise the returned value is -1. The
+value is a number of characters, which in UTF mode may be different from the
+number of data units. The fourth argument should point to an \fBint\fP
+variable. A non-negative value is a lower bound to the length of any matching
+string. There may not be any strings of that length that do actually match, but
+every string that does match is at least that long.
+.sp
+ PCRE_INFO_NAMECOUNT
+ PCRE_INFO_NAMEENTRYSIZE
+ PCRE_INFO_NAMETABLE
+.sp
+PCRE supports the use of named as well as numbered capturing parentheses. The
+names are just an additional way of identifying the parentheses, which still
+acquire numbers. Several convenience functions such as
+\fBpcre_get_named_substring()\fP are provided for extracting captured
+substrings by name. It is also possible to extract the data directly, by first
+converting the name to a number in order to access the correct pointers in the
+output vector (described with \fBpcre_exec()\fP below). To do the conversion,
+you need to use the name-to-number map, which is described by these three
+values.
+.P
+The map consists of a number of fixed-size entries. PCRE_INFO_NAMECOUNT gives
+the number of entries, and PCRE_INFO_NAMEENTRYSIZE gives the size of each
+entry; both of these return an \fBint\fP value. The entry size depends on the
+length of the longest name. PCRE_INFO_NAMETABLE returns a pointer to the first
+entry of the table. This is a pointer to \fBchar\fP in the 8-bit library, where
+the first two bytes of each entry are the number of the capturing parenthesis,
+most significant byte first. In the 16-bit library, the pointer points to
+16-bit data units, the first of which contains the parenthesis number. In the
+32-bit library, the pointer points to 32-bit data units, the first of which
+contains the parenthesis number. The rest of the entry is the corresponding
+name, zero terminated.
+.P
+The names are in alphabetical order. Duplicate names may appear if (?| is used
+to create multiple groups with the same number, as described in the
+.\" HTML
+.\"
+section on duplicate subpattern numbers
+.\"
+in the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+page. Duplicate names for subpatterns with different numbers are permitted only
+if PCRE_DUPNAMES is set. In all cases of duplicate names, they appear in the
+table in the order in which they were found in the pattern. In the absence of
+(?| this is the order of increasing number; when (?| is used this is not
+necessarily the case because later subpatterns may have lower numbers.
+.P
+As a simple example of the name/number table, consider the following pattern
+after compilation by the 8-bit library (assume PCRE_EXTENDED is set, so white
+space - including newlines - is ignored):
+.sp
+.\" JOIN
+ (? (?(\ed\ed)?\ed\ed) -
+ (?\ed\ed) - (?\ed\ed) )
+.sp
+There are four named subpatterns, so the table has four entries, and each entry
+in the table is eight bytes long. The table is as follows, with non-printing
+bytes shows in hexadecimal, and undefined bytes shown as ??:
+.sp
+ 00 01 d a t e 00 ??
+ 00 05 d a y 00 ?? ??
+ 00 04 m o n t h 00
+ 00 02 y e a r 00 ??
+.sp
+When writing code to extract data from named subpatterns using the
+name-to-number map, remember that the length of the entries is likely to be
+different for each compiled pattern.
+.sp
+ PCRE_INFO_OKPARTIAL
+.sp
+Return 1 if the pattern can be used for partial matching with
+\fBpcre_exec()\fP, otherwise 0. The fourth argument should point to an
+\fBint\fP variable. From release 8.00, this always returns 1, because the
+restrictions that previously applied to partial matching have been lifted. The
+.\" HREF
+\fBpcrepartial\fP
+.\"
+documentation gives details of partial matching.
+.sp
+ PCRE_INFO_OPTIONS
+.sp
+Return a copy of the options with which the pattern was compiled. The fourth
+argument should point to an \fBunsigned long int\fP variable. These option bits
+are those specified in the call to \fBpcre_compile()\fP, modified by any
+top-level option settings at the start of the pattern itself. In other words,
+they are the options that will be in force when matching starts. For example,
+if the pattern /(?im)abc(?-i)d/ is compiled with the PCRE_EXTENDED option, the
+result is PCRE_CASELESS, PCRE_MULTILINE, and PCRE_EXTENDED.
+.P
+A pattern is automatically anchored by PCRE if all of its top-level
+alternatives begin with one of the following:
+.sp
+ ^ unless PCRE_MULTILINE is set
+ \eA always
+ \eG always
+.\" JOIN
+ .* if PCRE_DOTALL is set and there are no back
+ references to the subpattern in which .* appears
+.sp
+For such patterns, the PCRE_ANCHORED bit is set in the options returned by
+\fBpcre_fullinfo()\fP.
+.sp
+ PCRE_INFO_RECURSIONLIMIT
+.sp
+If the pattern set a recursion limit by including an item of the form
+(*LIMIT_RECURSION=nnnn) at the start, the value is returned. The fourth
+argument should point to an unsigned 32-bit integer. If no such value has been
+set, the call to \fBpcre_fullinfo()\fP returns the error PCRE_ERROR_UNSET.
+.sp
+ PCRE_INFO_SIZE
+.sp
+Return the size of the compiled pattern in bytes (for all three libraries). The
+fourth argument should point to a \fBsize_t\fP variable. This value does not
+include the size of the \fBpcre\fP structure that is returned by
+\fBpcre_compile()\fP. The value that is passed as the argument to
+\fBpcre_malloc()\fP when \fBpcre_compile()\fP is getting memory in which to
+place the compiled data is the value returned by this option plus the size of
+the \fBpcre\fP structure. Studying a compiled pattern, with or without JIT,
+does not alter the value returned by this option.
+.sp
+ PCRE_INFO_STUDYSIZE
+.sp
+Return the size in bytes (for all three libraries) of the data block pointed to
+by the \fIstudy_data\fP field in a \fBpcre_extra\fP block. If \fBpcre_extra\fP
+is NULL, or there is no study data, zero is returned. The fourth argument
+should point to a \fBsize_t\fP variable. The \fIstudy_data\fP field is set by
+\fBpcre_study()\fP to record information that will speed up matching (see the
+section entitled
+.\" HTML
+.\"
+"Studying a pattern"
+.\"
+above). The format of the \fIstudy_data\fP block is private, but its length
+is made available via this option so that it can be saved and restored (see the
+.\" HREF
+\fBpcreprecompile\fP
+.\"
+documentation for details).
+.sp
+ PCRE_INFO_FIRSTCHARACTERFLAGS
+.sp
+Return information about the first data unit of any matched string, for a
+non-anchored pattern. The fourth argument should point to an \fBint\fP
+variable.
+.P
+If there is a fixed first value, for example, the letter "c" from a pattern
+such as (cat|cow|coyote), 1 is returned, and the character value can be
+retrieved using PCRE_INFO_FIRSTCHARACTER.
+.P
+If there is no fixed first value, and if either
+.sp
+(a) the pattern was compiled with the PCRE_MULTILINE option, and every branch
+starts with "^", or
+.sp
+(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not set
+(if it were set, the pattern would be anchored),
+.sp
+2 is returned, indicating that the pattern matches only at the start of a
+subject string or after any newline within the string. Otherwise 0 is
+returned. For anchored patterns, 0 is returned.
+.sp
+ PCRE_INFO_FIRSTCHARACTER
+.sp
+Return the fixed first character value, if PCRE_INFO_FIRSTCHARACTERFLAGS
+returned 1; otherwise returns 0. The fourth argument should point to an
+\fBuint_t\fP variable.
+.P
+In the 8-bit library, the value is always less than 256. In the 16-bit library
+the value can be up to 0xffff. In the 32-bit library in UTF-32 mode the value
+can be up to 0x10ffff, and up to 0xffffffff when not using UTF-32 mode.
+.P
+If there is no fixed first value, and if either
+.sp
+(a) the pattern was compiled with the PCRE_MULTILINE option, and every branch
+starts with "^", or
+.sp
+(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not set
+(if it were set, the pattern would be anchored),
+.sp
+-1 is returned, indicating that the pattern matches only at the start of a
+subject string or after any newline within the string. Otherwise -2 is
+returned. For anchored patterns, -2 is returned.
+.sp
+ PCRE_INFO_REQUIREDCHARFLAGS
+.sp
+Returns 1 if there is a rightmost literal data unit that must exist in any
+matched string, other than at its start. The fourth argument should point to
+an \fBint\fP variable. If there is no such value, 0 is returned. If returning
+1, the character value itself can be retrieved using PCRE_INFO_REQUIREDCHAR.
+.P
+For anchored patterns, a last literal value is recorded only if it follows
+something of variable length. For example, for the pattern /^a\ed+z\ed+/ the
+returned value 1 (with "z" returned from PCRE_INFO_REQUIREDCHAR), but for
+/^a\edz\ed/ the returned value is 0.
+.sp
+ PCRE_INFO_REQUIREDCHAR
+.sp
+Return the value of the rightmost literal data unit that must exist in any
+matched string, other than at its start, if such a value has been recorded. The
+fourth argument should point to an \fBuint32_t\fP variable. If there is no such
+value, 0 is returned.
+.
+.
+.SH "REFERENCE COUNTS"
+.rs
+.sp
+.B int pcre_refcount(pcre *\fIcode\fP, int \fIadjust\fP);
+.PP
+The \fBpcre_refcount()\fP function is used to maintain a reference count in the
+data block that contains a compiled pattern. It is provided for the benefit of
+applications that operate in an object-oriented manner, where different parts
+of the application may be using the same compiled pattern, but you want to free
+the block when they are all done.
+.P
+When a pattern is compiled, the reference count field is initialized to zero.
+It is changed only by calling this function, whose action is to add the
+\fIadjust\fP value (which may be positive or negative) to it. The yield of the
+function is the new value. However, the value of the count is constrained to
+lie between 0 and 65535, inclusive. If the new value is outside these limits,
+it is forced to the appropriate limit value.
+.P
+Except when it is zero, the reference count is not correctly preserved if a
+pattern is compiled on one host and then transferred to a host whose byte-order
+is different. (This seems a highly unlikely scenario.)
+.
+.
+.SH "MATCHING A PATTERN: THE TRADITIONAL FUNCTION"
+.rs
+.sp
+.B int pcre_exec(const pcre *\fIcode\fP, "const pcre_extra *\fIextra\fP,"
+.ti +5n
+.B "const char *\fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP);
+.P
+The function \fBpcre_exec()\fP is called to match a subject string against a
+compiled pattern, which is passed in the \fIcode\fP argument. If the
+pattern was studied, the result of the study should be passed in the
+\fIextra\fP argument. You can call \fBpcre_exec()\fP with the same \fIcode\fP
+and \fIextra\fP arguments as many times as you like, in order to match
+different subject strings with the same pattern.
+.P
+This function is the main matching facility of the library, and it operates in
+a Perl-like manner. For specialist use there is also an alternative matching
+function, which is described
+.\" HTML
+.\"
+below
+.\"
+in the section about the \fBpcre_dfa_exec()\fP function.
+.P
+In most applications, the pattern will have been compiled (and optionally
+studied) in the same process that calls \fBpcre_exec()\fP. However, it is
+possible to save compiled patterns and study data, and then use them later
+in different processes, possibly even on different hosts. For a discussion
+about this, see the
+.\" HREF
+\fBpcreprecompile\fP
+.\"
+documentation.
+.P
+Here is an example of a simple call to \fBpcre_exec()\fP:
+.sp
+ int rc;
+ int ovector[30];
+ rc = pcre_exec(
+ re, /* result of pcre_compile() */
+ NULL, /* we didn't study the pattern */
+ "some string", /* the subject string */
+ 11, /* the length of the subject string */
+ 0, /* start at offset 0 in the subject */
+ 0, /* default options */
+ ovector, /* vector of integers for substring information */
+ 30); /* number of elements (NOT size in bytes) */
+.
+.
+.\" HTML
+.SS "Extra data for \fBpcre_exec()\fR"
+.rs
+.sp
+If the \fIextra\fP argument is not NULL, it must point to a \fBpcre_extra\fP
+data block. The \fBpcre_study()\fP function returns such a block (when it
+doesn't return NULL), but you can also create one for yourself, and pass
+additional information in it. The \fBpcre_extra\fP block contains the following
+fields (not necessarily in this order):
+.sp
+ unsigned long int \fIflags\fP;
+ void *\fIstudy_data\fP;
+ void *\fIexecutable_jit\fP;
+ unsigned long int \fImatch_limit\fP;
+ unsigned long int \fImatch_limit_recursion\fP;
+ void *\fIcallout_data\fP;
+ const unsigned char *\fItables\fP;
+ unsigned char **\fImark\fP;
+.sp
+In the 16-bit version of this structure, the \fImark\fP field has type
+"PCRE_UCHAR16 **".
+.sp
+In the 32-bit version of this structure, the \fImark\fP field has type
+"PCRE_UCHAR32 **".
+.P
+The \fIflags\fP field is used to specify which of the other fields are set. The
+flag bits are:
+.sp
+ PCRE_EXTRA_CALLOUT_DATA
+ PCRE_EXTRA_EXECUTABLE_JIT
+ PCRE_EXTRA_MARK
+ PCRE_EXTRA_MATCH_LIMIT
+ PCRE_EXTRA_MATCH_LIMIT_RECURSION
+ PCRE_EXTRA_STUDY_DATA
+ PCRE_EXTRA_TABLES
+.sp
+Other flag bits should be set to zero. The \fIstudy_data\fP field and sometimes
+the \fIexecutable_jit\fP field are set in the \fBpcre_extra\fP block that is
+returned by \fBpcre_study()\fP, together with the appropriate flag bits. You
+should not set these yourself, but you may add to the block by setting other
+fields and their corresponding flag bits.
+.P
+The \fImatch_limit\fP field provides a means of preventing PCRE from using up a
+vast amount of resources when running patterns that are not going to match,
+but which have a very large number of possibilities in their search trees. The
+classic example is a pattern that uses nested unlimited repeats.
+.P
+Internally, \fBpcre_exec()\fP uses a function called \fBmatch()\fP, which it
+calls repeatedly (sometimes recursively). The limit set by \fImatch_limit\fP is
+imposed on the number of times this function is called during a match, which
+has the effect of limiting the amount of backtracking that can take place. For
+patterns that are not anchored, the count restarts from zero for each position
+in the subject string.
+.P
+When \fBpcre_exec()\fP is called with a pattern that was successfully studied
+with a JIT option, the way that the matching is executed is entirely different.
+However, there is still the possibility of runaway matching that goes on for a
+very long time, and so the \fImatch_limit\fP value is also used in this case
+(but in a different way) to limit how long the matching can continue.
+.P
+The default value for the limit can be set when PCRE is built; the default
+default is 10 million, which handles all but the most extreme cases. You can
+override the default by suppling \fBpcre_exec()\fP with a \fBpcre_extra\fP
+block in which \fImatch_limit\fP is set, and PCRE_EXTRA_MATCH_LIMIT is set in
+the \fIflags\fP field. If the limit is exceeded, \fBpcre_exec()\fP returns
+PCRE_ERROR_MATCHLIMIT.
+.P
+A value for the match limit may also be supplied by an item at the start of a
+pattern of the form
+.sp
+ (*LIMIT_MATCH=d)
+.sp
+where d is a decimal number. However, such a setting is ignored unless d is
+less than the limit set by the caller of \fBpcre_exec()\fP or, if no such limit
+is set, less than the default.
+.P
+The \fImatch_limit_recursion\fP field is similar to \fImatch_limit\fP, but
+instead of limiting the total number of times that \fBmatch()\fP is called, it
+limits the depth of recursion. The recursion depth is a smaller number than the
+total number of calls, because not all calls to \fBmatch()\fP are recursive.
+This limit is of use only if it is set smaller than \fImatch_limit\fP.
+.P
+Limiting the recursion depth limits the amount of machine stack that can be
+used, or, when PCRE has been compiled to use memory on the heap instead of the
+stack, the amount of heap memory that can be used. This limit is not relevant,
+and is ignored, when matching is done using JIT compiled code.
+.P
+The default value for \fImatch_limit_recursion\fP can be set when PCRE is
+built; the default default is the same value as the default for
+\fImatch_limit\fP. You can override the default by suppling \fBpcre_exec()\fP
+with a \fBpcre_extra\fP block in which \fImatch_limit_recursion\fP is set, and
+PCRE_EXTRA_MATCH_LIMIT_RECURSION is set in the \fIflags\fP field. If the limit
+is exceeded, \fBpcre_exec()\fP returns PCRE_ERROR_RECURSIONLIMIT.
+.P
+A value for the recursion limit may also be supplied by an item at the start of
+a pattern of the form
+.sp
+ (*LIMIT_RECURSION=d)
+.sp
+where d is a decimal number. However, such a setting is ignored unless d is
+less than the limit set by the caller of \fBpcre_exec()\fP or, if no such limit
+is set, less than the default.
+.P
+The \fIcallout_data\fP field is used in conjunction with the "callout" feature,
+and is described in the
+.\" HREF
+\fBpcrecallout\fP
+.\"
+documentation.
+.P
+The \fItables\fP field is used to pass a character tables pointer to
+\fBpcre_exec()\fP; this overrides the value that is stored with the compiled
+pattern. A non-NULL value is stored with the compiled pattern only if custom
+tables were supplied to \fBpcre_compile()\fP via its \fItableptr\fP argument.
+If NULL is passed to \fBpcre_exec()\fP using this mechanism, it forces PCRE's
+internal tables to be used. This facility is helpful when re-using patterns
+that have been saved after compiling with an external set of tables, because
+the external tables might be at a different address when \fBpcre_exec()\fP is
+called. See the
+.\" HREF
+\fBpcreprecompile\fP
+.\"
+documentation for a discussion of saving compiled patterns for later use.
+.P
+If PCRE_EXTRA_MARK is set in the \fIflags\fP field, the \fImark\fP field must
+be set to point to a suitable variable. If the pattern contains any
+backtracking control verbs such as (*MARK:NAME), and the execution ends up with
+a name to pass back, a pointer to the name string (zero terminated) is placed
+in the variable pointed to by the \fImark\fP field. The names are within the
+compiled pattern; if you wish to retain such a name you must copy it before
+freeing the memory of a compiled pattern. If there is no name to pass back, the
+variable pointed to by the \fImark\fP field is set to NULL. For details of the
+backtracking control verbs, see the section entitled
+.\" HTML
+.\"
+"Backtracking control"
+.\"
+in the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+documentation.
+.
+.
+.\" HTML
+.SS "Option bits for \fBpcre_exec()\fP"
+.rs
+.sp
+The unused bits of the \fIoptions\fP argument for \fBpcre_exec()\fP must be
+zero. The only bits that may be set are PCRE_ANCHORED, PCRE_NEWLINE_\fIxxx\fP,
+PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART,
+PCRE_NO_START_OPTIMIZE, PCRE_NO_UTF8_CHECK, PCRE_PARTIAL_HARD, and
+PCRE_PARTIAL_SOFT.
+.P
+If the pattern was successfully studied with one of the just-in-time (JIT)
+compile options, the only supported options for JIT execution are
+PCRE_NO_UTF8_CHECK, PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY,
+PCRE_NOTEMPTY_ATSTART, PCRE_PARTIAL_HARD, and PCRE_PARTIAL_SOFT. If an
+unsupported option is used, JIT execution is disabled and the normal
+interpretive code in \fBpcre_exec()\fP is run.
+.sp
+ PCRE_ANCHORED
+.sp
+The PCRE_ANCHORED option limits \fBpcre_exec()\fP to matching at the first
+matching position. If a pattern was compiled with PCRE_ANCHORED, or turned out
+to be anchored by virtue of its contents, it cannot be made unachored at
+matching time.
+.sp
+ PCRE_BSR_ANYCRLF
+ PCRE_BSR_UNICODE
+.sp
+These options (which are mutually exclusive) control what the \eR escape
+sequence matches. The choice is either to match only CR, LF, or CRLF, or to
+match any Unicode newline sequence. These options override the choice that was
+made or defaulted when the pattern was compiled.
+.sp
+ PCRE_NEWLINE_CR
+ PCRE_NEWLINE_LF
+ PCRE_NEWLINE_CRLF
+ PCRE_NEWLINE_ANYCRLF
+ PCRE_NEWLINE_ANY
+.sp
+These options override the newline definition that was chosen or defaulted when
+the pattern was compiled. For details, see the description of
+\fBpcre_compile()\fP above. During matching, the newline choice affects the
+behaviour of the dot, circumflex, and dollar metacharacters. It may also alter
+the way the match position is advanced after a match failure for an unanchored
+pattern.
+.P
+When PCRE_NEWLINE_CRLF, PCRE_NEWLINE_ANYCRLF, or PCRE_NEWLINE_ANY is set, and a
+match attempt for an unanchored pattern fails when the current position is at a
+CRLF sequence, and the pattern contains no explicit matches for CR or LF
+characters, the match position is advanced by two characters instead of one, in
+other words, to after the CRLF.
+.P
+The above rule is a compromise that makes the most common cases work as
+expected. For example, if the pattern is .+A (and the PCRE_DOTALL option is not
+set), it does not match the string "\er\enA" because, after failing at the
+start, it skips both the CR and the LF before retrying. However, the pattern
+[\er\en]A does match that string, because it contains an explicit CR or LF
+reference, and so advances only by one character after the first failure.
+.P
+An explicit match for CR of LF is either a literal appearance of one of those
+characters, or one of the \er or \en escape sequences. Implicit matches such as
+[^X] do not count, nor does \es (which includes CR and LF in the characters
+that it matches).
+.P
+Notwithstanding the above, anomalous effects may still occur when CRLF is a
+valid newline sequence and explicit \er or \en escapes appear in the pattern.
+.sp
+ PCRE_NOTBOL
+.sp
+This option specifies that first character of the subject string is not the
+beginning of a line, so the circumflex metacharacter should not match before
+it. Setting this without PCRE_MULTILINE (at compile time) causes circumflex
+never to match. This option affects only the behaviour of the circumflex
+metacharacter. It does not affect \eA.
+.sp
+ PCRE_NOTEOL
+.sp
+This option specifies that the end of the subject string is not the end of a
+line, so the dollar metacharacter should not match it nor (except in multiline
+mode) a newline immediately before it. Setting this without PCRE_MULTILINE (at
+compile time) causes dollar never to match. This option affects only the
+behaviour of the dollar metacharacter. It does not affect \eZ or \ez.
+.sp
+ PCRE_NOTEMPTY
+.sp
+An empty string is not considered to be a valid match if this option is set. If
+there are alternatives in the pattern, they are tried. If all the alternatives
+match the empty string, the entire match fails. For example, if the pattern
+.sp
+ a?b?
+.sp
+is applied to a string not beginning with "a" or "b", it matches an empty
+string at the start of the subject. With PCRE_NOTEMPTY set, this match is not
+valid, so PCRE searches further into the string for occurrences of "a" or "b".
+.sp
+ PCRE_NOTEMPTY_ATSTART
+.sp
+This is like PCRE_NOTEMPTY, except that an empty string match that is not at
+the start of the subject is permitted. If the pattern is anchored, such a match
+can occur only if the pattern contains \eK.
+.P
+Perl has no direct equivalent of PCRE_NOTEMPTY or PCRE_NOTEMPTY_ATSTART, but it
+does make a special case of a pattern match of the empty string within its
+\fBsplit()\fP function, and when using the /g modifier. It is possible to
+emulate Perl's behaviour after matching a null string by first trying the match
+again at the same offset with PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED, and then
+if that fails, by advancing the starting offset (see below) and trying an
+ordinary match again. There is some code that demonstrates how to do this in
+the
+.\" HREF
+\fBpcredemo\fP
+.\"
+sample program. In the most general case, you have to check to see if the
+newline convention recognizes CRLF as a newline, and if so, and the current
+character is CR followed by LF, advance the starting offset by two characters
+instead of one.
+.sp
+ PCRE_NO_START_OPTIMIZE
+.sp
+There are a number of optimizations that \fBpcre_exec()\fP uses at the start of
+a match, in order to speed up the process. For example, if it is known that an
+unanchored match must start with a specific character, it searches the subject
+for that character, and fails immediately if it cannot find it, without
+actually running the main matching function. This means that a special item
+such as (*COMMIT) at the start of a pattern is not considered until after a
+suitable starting point for the match has been found. Also, when callouts or
+(*MARK) items are in use, these "start-up" optimizations can cause them to be
+skipped if the pattern is never actually used. The start-up optimizations are
+in effect a pre-scan of the subject that takes place before the pattern is run.
+.P
+The PCRE_NO_START_OPTIMIZE option disables the start-up optimizations, possibly
+causing performance to suffer, but ensuring that in cases where the result is
+"no match", the callouts do occur, and that items such as (*COMMIT) and (*MARK)
+are considered at every possible starting position in the subject string. If
+PCRE_NO_START_OPTIMIZE is set at compile time, it cannot be unset at matching
+time. The use of PCRE_NO_START_OPTIMIZE at matching time (that is, passing it
+to \fBpcre_exec()\fP) disables JIT execution; in this situation, matching is
+always done using interpretively.
+.P
+Setting PCRE_NO_START_OPTIMIZE can change the outcome of a matching operation.
+Consider the pattern
+.sp
+ (*COMMIT)ABC
+.sp
+When this is compiled, PCRE records the fact that a match must start with the
+character "A". Suppose the subject string is "DEFABC". The start-up
+optimization scans along the subject, finds "A" and runs the first match
+attempt from there. The (*COMMIT) item means that the pattern must match the
+current starting position, which in this case, it does. However, if the same
+match is run with PCRE_NO_START_OPTIMIZE set, the initial scan along the
+subject string does not happen. The first match attempt is run starting from
+"D" and when this fails, (*COMMIT) prevents any further matches being tried, so
+the overall result is "no match". If the pattern is studied, more start-up
+optimizations may be used. For example, a minimum length for the subject may be
+recorded. Consider the pattern
+.sp
+ (*MARK:A)(X|Y)
+.sp
+The minimum length for a match is one character. If the subject is "ABC", there
+will be attempts to match "ABC", "BC", "C", and then finally an empty string.
+If the pattern is studied, the final attempt does not take place, because PCRE
+knows that the subject is too short, and so the (*MARK) is never encountered.
+In this case, studying the pattern does not affect the overall match result,
+which is still "no match", but it does affect the auxiliary information that is
+returned.
+.sp
+ PCRE_NO_UTF8_CHECK
+.sp
+When PCRE_UTF8 is set at compile time, the validity of the subject as a UTF-8
+string is automatically checked when \fBpcre_exec()\fP is subsequently called.
+The entire string is checked before any other processing takes place. The value
+of \fIstartoffset\fP is also checked to ensure that it points to the start of a
+UTF-8 character. There is a discussion about the
+.\" HTML
+.\"
+validity of UTF-8 strings
+.\"
+in the
+.\" HREF
+\fBpcreunicode\fP
+.\"
+page. If an invalid sequence of bytes is found, \fBpcre_exec()\fP returns the
+error PCRE_ERROR_BADUTF8 or, if PCRE_PARTIAL_HARD is set and the problem is a
+truncated character at the end of the subject, PCRE_ERROR_SHORTUTF8. In both
+cases, information about the precise nature of the error may also be returned
+(see the descriptions of these errors in the section entitled \fIError return
+values from\fP \fBpcre_exec()\fP
+.\" HTML
+.\"
+below).
+.\"
+If \fIstartoffset\fP contains a value that does not point to the start of a
+UTF-8 character (or to the end of the subject), PCRE_ERROR_BADUTF8_OFFSET is
+returned.
+.P
+If you already know that your subject is valid, and you want to skip these
+checks for performance reasons, you can set the PCRE_NO_UTF8_CHECK option when
+calling \fBpcre_exec()\fP. You might want to do this for the second and
+subsequent calls to \fBpcre_exec()\fP if you are making repeated calls to find
+all the matches in a single subject string. However, you should be sure that
+the value of \fIstartoffset\fP points to the start of a character (or the end
+of the subject). When PCRE_NO_UTF8_CHECK is set, the effect of passing an
+invalid string as a subject or an invalid value of \fIstartoffset\fP is
+undefined. Your program may crash.
+.sp
+ PCRE_PARTIAL_HARD
+ PCRE_PARTIAL_SOFT
+.sp
+These options turn on the partial matching feature. For backwards
+compatibility, PCRE_PARTIAL is a synonym for PCRE_PARTIAL_SOFT. A partial match
+occurs if the end of the subject string is reached successfully, but there are
+not enough subject characters to complete the match. If this happens when
+PCRE_PARTIAL_SOFT (but not PCRE_PARTIAL_HARD) is set, matching continues by
+testing any remaining alternatives. Only if no complete match can be found is
+PCRE_ERROR_PARTIAL returned instead of PCRE_ERROR_NOMATCH. In other words,
+PCRE_PARTIAL_SOFT says that the caller is prepared to handle a partial match,
+but only if no complete match can be found.
+.P
+If PCRE_PARTIAL_HARD is set, it overrides PCRE_PARTIAL_SOFT. In this case, if a
+partial match is found, \fBpcre_exec()\fP immediately returns
+PCRE_ERROR_PARTIAL, without considering any other alternatives. In other words,
+when PCRE_PARTIAL_HARD is set, a partial match is considered to be more
+important that an alternative complete match.
+.P
+In both cases, the portion of the string that was inspected when the partial
+match was found is set as the first matching string. There is a more detailed
+discussion of partial and multi-segment matching, with examples, in the
+.\" HREF
+\fBpcrepartial\fP
+.\"
+documentation.
+.
+.
+.SS "The string to be matched by \fBpcre_exec()\fP"
+.rs
+.sp
+The subject string is passed to \fBpcre_exec()\fP as a pointer in
+\fIsubject\fP, a length in \fIlength\fP, and a starting offset in
+\fIstartoffset\fP. The units for \fIlength\fP and \fIstartoffset\fP are bytes
+for the 8-bit library, 16-bit data items for the 16-bit library, and 32-bit
+data items for the 32-bit library.
+.P
+If \fIstartoffset\fP is negative or greater than the length of the subject,
+\fBpcre_exec()\fP returns PCRE_ERROR_BADOFFSET. When the starting offset is
+zero, the search for a match starts at the beginning of the subject, and this
+is by far the most common case. In UTF-8 or UTF-16 mode, the offset must point
+to the start of a character, or the end of the subject (in UTF-32 mode, one
+data unit equals one character, so all offsets are valid). Unlike the pattern
+string, the subject may contain binary zeroes.
+.P
+A non-zero starting offset is useful when searching for another match in the
+same subject by calling \fBpcre_exec()\fP again after a previous success.
+Setting \fIstartoffset\fP differs from just passing over a shortened string and
+setting PCRE_NOTBOL in the case of a pattern that begins with any kind of
+lookbehind. For example, consider the pattern
+.sp
+ \eBiss\eB
+.sp
+which finds occurrences of "iss" in the middle of words. (\eB matches only if
+the current position in the subject is not a word boundary.) When applied to
+the string "Mississipi" the first call to \fBpcre_exec()\fP finds the first
+occurrence. If \fBpcre_exec()\fP is called again with just the remainder of the
+subject, namely "issipi", it does not match, because \eB is always false at the
+start of the subject, which is deemed to be a word boundary. However, if
+\fBpcre_exec()\fP is passed the entire string again, but with \fIstartoffset\fP
+set to 4, it finds the second occurrence of "iss" because it is able to look
+behind the starting point to discover that it is preceded by a letter.
+.P
+Finding all the matches in a subject is tricky when the pattern can match an
+empty string. It is possible to emulate Perl's /g behaviour by first trying the
+match again at the same offset, with the PCRE_NOTEMPTY_ATSTART and
+PCRE_ANCHORED options, and then if that fails, advancing the starting offset
+and trying an ordinary match again. There is some code that demonstrates how to
+do this in the
+.\" HREF
+\fBpcredemo\fP
+.\"
+sample program. In the most general case, you have to check to see if the
+newline convention recognizes CRLF as a newline, and if so, and the current
+character is CR followed by LF, advance the starting offset by two characters
+instead of one.
+.P
+If a non-zero starting offset is passed when the pattern is anchored, one
+attempt to match at the given offset is made. This can only succeed if the
+pattern does not require the match to be at the start of the subject.
+.
+.
+.SS "How \fBpcre_exec()\fP returns captured substrings"
+.rs
+.sp
+In general, a pattern matches a certain portion of the subject, and in
+addition, further substrings from the subject may be picked out by parts of the
+pattern. Following the usage in Jeffrey Friedl's book, this is called
+"capturing" in what follows, and the phrase "capturing subpattern" is used for
+a fragment of a pattern that picks out a substring. PCRE supports several other
+kinds of parenthesized subpattern that do not cause substrings to be captured.
+.P
+Captured substrings are returned to the caller via a vector of integers whose
+address is passed in \fIovector\fP. The number of elements in the vector is
+passed in \fIovecsize\fP, which must be a non-negative number. \fBNote\fP: this
+argument is NOT the size of \fIovector\fP in bytes.
+.P
+The first two-thirds of the vector is used to pass back captured substrings,
+each substring using a pair of integers. The remaining third of the vector is
+used as workspace by \fBpcre_exec()\fP while matching capturing subpatterns,
+and is not available for passing back information. The number passed in
+\fIovecsize\fP should always be a multiple of three. If it is not, it is
+rounded down.
+.P
+When a match is successful, information about captured substrings is returned
+in pairs of integers, starting at the beginning of \fIovector\fP, and
+continuing up to two-thirds of its length at the most. The first element of
+each pair is set to the offset of the first character in a substring, and the
+second is set to the offset of the first character after the end of a
+substring. These values are always data unit offsets, even in UTF mode. They
+are byte offsets in the 8-bit library, 16-bit data item offsets in the 16-bit
+library, and 32-bit data item offsets in the 32-bit library. \fBNote\fP: they
+are not character counts.
+.P
+The first pair of integers, \fIovector[0]\fP and \fIovector[1]\fP, identify the
+portion of the subject string matched by the entire pattern. The next pair is
+used for the first capturing subpattern, and so on. The value returned by
+\fBpcre_exec()\fP is one more than the highest numbered pair that has been set.
+For example, if two substrings have been captured, the returned value is 3. If
+there are no capturing subpatterns, the return value from a successful match is
+1, indicating that just the first pair of offsets has been set.
+.P
+If a capturing subpattern is matched repeatedly, it is the last portion of the
+string that it matched that is returned.
+.P
+If the vector is too small to hold all the captured substring offsets, it is
+used as far as possible (up to two-thirds of its length), and the function
+returns a value of zero. If neither the actual string matched nor any captured
+substrings are of interest, \fBpcre_exec()\fP may be called with \fIovector\fP
+passed as NULL and \fIovecsize\fP as zero. However, if the pattern contains
+back references and the \fIovector\fP is not big enough to remember the related
+substrings, PCRE has to get additional memory for use during matching. Thus it
+is usually advisable to supply an \fIovector\fP of reasonable size.
+.P
+There are some cases where zero is returned (indicating vector overflow) when
+in fact the vector is exactly the right size for the final match. For example,
+consider the pattern
+.sp
+ (a)(?:(b)c|bd)
+.sp
+If a vector of 6 elements (allowing for only 1 captured substring) is given
+with subject string "abd", \fBpcre_exec()\fP will try to set the second
+captured string, thereby recording a vector overflow, before failing to match
+"c" and backing up to try the second alternative. The zero return, however,
+does correctly indicate that the maximum number of slots (namely 2) have been
+filled. In similar cases where there is temporary overflow, but the final
+number of used slots is actually less than the maximum, a non-zero value is
+returned.
+.P
+The \fBpcre_fullinfo()\fP function can be used to find out how many capturing
+subpatterns there are in a compiled pattern. The smallest size for
+\fIovector\fP that will allow for \fIn\fP captured substrings, in addition to
+the offsets of the substring matched by the whole pattern, is (\fIn\fP+1)*3.
+.P
+It is possible for capturing subpattern number \fIn+1\fP to match some part of
+the subject when subpattern \fIn\fP has not been used at all. For example, if
+the string "abc" is matched against the pattern (a|(z))(bc) the return from the
+function is 4, and subpatterns 1 and 3 are matched, but 2 is not. When this
+happens, both values in the offset pairs corresponding to unused subpatterns
+are set to -1.
+.P
+Offset values that correspond to unused subpatterns at the end of the
+expression are also set to -1. For example, if the string "abc" is matched
+against the pattern (abc)(x(yz)?)? subpatterns 2 and 3 are not matched. The
+return from the function is 2, because the highest used capturing subpattern
+number is 1, and the offsets for for the second and third capturing subpatterns
+(assuming the vector is large enough, of course) are set to -1.
+.P
+\fBNote\fP: Elements in the first two-thirds of \fIovector\fP that do not
+correspond to capturing parentheses in the pattern are never changed. That is,
+if a pattern contains \fIn\fP capturing parentheses, no more than
+\fIovector[0]\fP to \fIovector[2n+1]\fP are set by \fBpcre_exec()\fP. The other
+elements (in the first two-thirds) retain whatever values they previously had.
+.P
+Some convenience functions are provided for extracting the captured substrings
+as separate strings. These are described below.
+.
+.
+.\" HTML
+.SS "Error return values from \fBpcre_exec()\fP"
+.rs
+.sp
+If \fBpcre_exec()\fP fails, it returns a negative number. The following are
+defined in the header file:
+.sp
+ PCRE_ERROR_NOMATCH (-1)
+.sp
+The subject string did not match the pattern.
+.sp
+ PCRE_ERROR_NULL (-2)
+.sp
+Either \fIcode\fP or \fIsubject\fP was passed as NULL, or \fIovector\fP was
+NULL and \fIovecsize\fP was not zero.
+.sp
+ PCRE_ERROR_BADOPTION (-3)
+.sp
+An unrecognized bit was set in the \fIoptions\fP argument.
+.sp
+ PCRE_ERROR_BADMAGIC (-4)
+.sp
+PCRE stores a 4-byte "magic number" at the start of the compiled code, to catch
+the case when it is passed a junk pointer and to detect when a pattern that was
+compiled in an environment of one endianness is run in an environment with the
+other endianness. This is the error that PCRE gives when the magic number is
+not present.
+.sp
+ PCRE_ERROR_UNKNOWN_OPCODE (-5)
+.sp
+While running the pattern match, an unknown item was encountered in the
+compiled pattern. This error could be caused by a bug in PCRE or by overwriting
+of the compiled pattern.
+.sp
+ PCRE_ERROR_NOMEMORY (-6)
+.sp
+If a pattern contains back references, but the \fIovector\fP that is passed to
+\fBpcre_exec()\fP is not big enough to remember the referenced substrings, PCRE
+gets a block of memory at the start of matching to use for this purpose. If the
+call via \fBpcre_malloc()\fP fails, this error is given. The memory is
+automatically freed at the end of matching.
+.P
+This error is also given if \fBpcre_stack_malloc()\fP fails in
+\fBpcre_exec()\fP. This can happen only when PCRE has been compiled with
+\fB--disable-stack-for-recursion\fP.
+.sp
+ PCRE_ERROR_NOSUBSTRING (-7)
+.sp
+This error is used by the \fBpcre_copy_substring()\fP,
+\fBpcre_get_substring()\fP, and \fBpcre_get_substring_list()\fP functions (see
+below). It is never returned by \fBpcre_exec()\fP.
+.sp
+ PCRE_ERROR_MATCHLIMIT (-8)
+.sp
+The backtracking limit, as specified by the \fImatch_limit\fP field in a
+\fBpcre_extra\fP structure (or defaulted) was reached. See the description
+above.
+.sp
+ PCRE_ERROR_CALLOUT (-9)
+.sp
+This error is never generated by \fBpcre_exec()\fP itself. It is provided for
+use by callout functions that want to yield a distinctive error code. See the
+.\" HREF
+\fBpcrecallout\fP
+.\"
+documentation for details.
+.sp
+ PCRE_ERROR_BADUTF8 (-10)
+.sp
+A string that contains an invalid UTF-8 byte sequence was passed as a subject,
+and the PCRE_NO_UTF8_CHECK option was not set. If the size of the output vector
+(\fIovecsize\fP) is at least 2, the byte offset to the start of the the invalid
+UTF-8 character is placed in the first element, and a reason code is placed in
+the second element. The reason codes are listed in the
+.\" HTML
+.\"
+following section.
+.\"
+For backward compatibility, if PCRE_PARTIAL_HARD is set and the problem is a
+truncated UTF-8 character at the end of the subject (reason codes 1 to 5),
+PCRE_ERROR_SHORTUTF8 is returned instead of PCRE_ERROR_BADUTF8.
+.sp
+ PCRE_ERROR_BADUTF8_OFFSET (-11)
+.sp
+The UTF-8 byte sequence that was passed as a subject was checked and found to
+be valid (the PCRE_NO_UTF8_CHECK option was not set), but the value of
+\fIstartoffset\fP did not point to the beginning of a UTF-8 character or the
+end of the subject.
+.sp
+ PCRE_ERROR_PARTIAL (-12)
+.sp
+The subject string did not match, but it did match partially. See the
+.\" HREF
+\fBpcrepartial\fP
+.\"
+documentation for details of partial matching.
+.sp
+ PCRE_ERROR_BADPARTIAL (-13)
+.sp
+This code is no longer in use. It was formerly returned when the PCRE_PARTIAL
+option was used with a compiled pattern containing items that were not
+supported for partial matching. From release 8.00 onwards, there are no
+restrictions on partial matching.
+.sp
+ PCRE_ERROR_INTERNAL (-14)
+.sp
+An unexpected internal error has occurred. This error could be caused by a bug
+in PCRE or by overwriting of the compiled pattern.
+.sp
+ PCRE_ERROR_BADCOUNT (-15)
+.sp
+This error is given if the value of the \fIovecsize\fP argument is negative.
+.sp
+ PCRE_ERROR_RECURSIONLIMIT (-21)
+.sp
+The internal recursion limit, as specified by the \fImatch_limit_recursion\fP
+field in a \fBpcre_extra\fP structure (or defaulted) was reached. See the
+description above.
+.sp
+ PCRE_ERROR_BADNEWLINE (-23)
+.sp
+An invalid combination of PCRE_NEWLINE_\fIxxx\fP options was given.
+.sp
+ PCRE_ERROR_BADOFFSET (-24)
+.sp
+The value of \fIstartoffset\fP was negative or greater than the length of the
+subject, that is, the value in \fIlength\fP.
+.sp
+ PCRE_ERROR_SHORTUTF8 (-25)
+.sp
+This error is returned instead of PCRE_ERROR_BADUTF8 when the subject string
+ends with a truncated UTF-8 character and the PCRE_PARTIAL_HARD option is set.
+Information about the failure is returned as for PCRE_ERROR_BADUTF8. It is in
+fact sufficient to detect this case, but this special error code for
+PCRE_PARTIAL_HARD precedes the implementation of returned information; it is
+retained for backwards compatibility.
+.sp
+ PCRE_ERROR_RECURSELOOP (-26)
+.sp
+This error is returned when \fBpcre_exec()\fP detects a recursion loop within
+the pattern. Specifically, it means that either the whole pattern or a
+subpattern has been called recursively for the second time at the same position
+in the subject string. Some simple patterns that might do this are detected and
+faulted at compile time, but more complicated cases, in particular mutual
+recursions between two different subpatterns, cannot be detected until run
+time.
+.sp
+ PCRE_ERROR_JIT_STACKLIMIT (-27)
+.sp
+This error is returned when a pattern that was successfully studied using a
+JIT compile option is being matched, but the memory available for the
+just-in-time processing stack is not large enough. See the
+.\" HREF
+\fBpcrejit\fP
+.\"
+documentation for more details.
+.sp
+ PCRE_ERROR_BADMODE (-28)
+.sp
+This error is given if a pattern that was compiled by the 8-bit library is
+passed to a 16-bit or 32-bit library function, or vice versa.
+.sp
+ PCRE_ERROR_BADENDIANNESS (-29)
+.sp
+This error is given if a pattern that was compiled and saved is reloaded on a
+host with different endianness. The utility function
+\fBpcre_pattern_to_host_byte_order()\fP can be used to convert such a pattern
+so that it runs on the new host.
+.sp
+ PCRE_ERROR_JIT_BADOPTION
+.sp
+This error is returned when a pattern that was successfully studied using a JIT
+compile option is being matched, but the matching mode (partial or complete
+match) does not correspond to any JIT compilation mode. When the JIT fast path
+function is used, this error may be also given for invalid options. See the
+.\" HREF
+\fBpcrejit\fP
+.\"
+documentation for more details.
+.sp
+ PCRE_ERROR_BADLENGTH (-32)
+.sp
+This error is given if \fBpcre_exec()\fP is called with a negative value for
+the \fIlength\fP argument.
+.P
+Error numbers -16 to -20, -22, and 30 are not used by \fBpcre_exec()\fP.
+.
+.
+.\" HTML
+.SS "Reason codes for invalid UTF-8 strings"
+.rs
+.sp
+This section applies only to the 8-bit library. The corresponding information
+for the 16-bit and 32-bit libraries is given in the
+.\" HREF
+\fBpcre16\fP
+.\"
+and
+.\" HREF
+\fBpcre32\fP
+.\"
+pages.
+.P
+When \fBpcre_exec()\fP returns either PCRE_ERROR_BADUTF8 or
+PCRE_ERROR_SHORTUTF8, and the size of the output vector (\fIovecsize\fP) is at
+least 2, the offset of the start of the invalid UTF-8 character is placed in
+the first output vector element (\fIovector[0]\fP) and a reason code is placed
+in the second element (\fIovector[1]\fP). The reason codes are given names in
+the \fBpcre.h\fP header file:
+.sp
+ PCRE_UTF8_ERR1
+ PCRE_UTF8_ERR2
+ PCRE_UTF8_ERR3
+ PCRE_UTF8_ERR4
+ PCRE_UTF8_ERR5
+.sp
+The string ends with a truncated UTF-8 character; the code specifies how many
+bytes are missing (1 to 5). Although RFC 3629 restricts UTF-8 characters to be
+no longer than 4 bytes, the encoding scheme (originally defined by RFC 2279)
+allows for up to 6 bytes, and this is checked first; hence the possibility of
+4 or 5 missing bytes.
+.sp
+ PCRE_UTF8_ERR6
+ PCRE_UTF8_ERR7
+ PCRE_UTF8_ERR8
+ PCRE_UTF8_ERR9
+ PCRE_UTF8_ERR10
+.sp
+The two most significant bits of the 2nd, 3rd, 4th, 5th, or 6th byte of the
+character do not have the binary value 0b10 (that is, either the most
+significant bit is 0, or the next bit is 1).
+.sp
+ PCRE_UTF8_ERR11
+ PCRE_UTF8_ERR12
+.sp
+A character that is valid by the RFC 2279 rules is either 5 or 6 bytes long;
+these code points are excluded by RFC 3629.
+.sp
+ PCRE_UTF8_ERR13
+.sp
+A 4-byte character has a value greater than 0x10fff; these code points are
+excluded by RFC 3629.
+.sp
+ PCRE_UTF8_ERR14
+.sp
+A 3-byte character has a value in the range 0xd800 to 0xdfff; this range of
+code points are reserved by RFC 3629 for use with UTF-16, and so are excluded
+from UTF-8.
+.sp
+ PCRE_UTF8_ERR15
+ PCRE_UTF8_ERR16
+ PCRE_UTF8_ERR17
+ PCRE_UTF8_ERR18
+ PCRE_UTF8_ERR19
+.sp
+A 2-, 3-, 4-, 5-, or 6-byte character is "overlong", that is, it codes for a
+value that can be represented by fewer bytes, which is invalid. For example,
+the two bytes 0xc0, 0xae give the value 0x2e, whose correct coding uses just
+one byte.
+.sp
+ PCRE_UTF8_ERR20
+.sp
+The two most significant bits of the first byte of a character have the binary
+value 0b10 (that is, the most significant bit is 1 and the second is 0). Such a
+byte can only validly occur as the second or subsequent byte of a multi-byte
+character.
+.sp
+ PCRE_UTF8_ERR21
+.sp
+The first byte of a character has the value 0xfe or 0xff. These values can
+never occur in a valid UTF-8 string.
+.sp
+ PCRE_UTF8_ERR22
+.sp
+This error code was formerly used when the presence of a so-called
+"non-character" caused an error. Unicode corrigendum #9 makes it clear that
+such characters should not cause a string to be rejected, and so this code is
+no longer in use and is never returned.
+.
+.
+.SH "EXTRACTING CAPTURED SUBSTRINGS BY NUMBER"
+.rs
+.sp
+.B int pcre_copy_substring(const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP, char *\fIbuffer\fP,
+.ti +5n
+.B int \fIbuffersize\fP);
+.PP
+.B int pcre_get_substring(const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, int \fIstringnumber\fP,
+.ti +5n
+.B const char **\fIstringptr\fP);
+.PP
+.B int pcre_get_substring_list(const char *\fIsubject\fP,
+.ti +5n
+.B int *\fIovector\fP, int \fIstringcount\fP, "const char ***\fIlistptr\fP);"
+.PP
+Captured substrings can be accessed directly by using the offsets returned by
+\fBpcre_exec()\fP in \fIovector\fP. For convenience, the functions
+\fBpcre_copy_substring()\fP, \fBpcre_get_substring()\fP, and
+\fBpcre_get_substring_list()\fP are provided for extracting captured substrings
+as new, separate, zero-terminated strings. These functions identify substrings
+by number. The next section describes functions for extracting named
+substrings.
+.P
+A substring that contains a binary zero is correctly extracted and has a
+further zero added on the end, but the result is not, of course, a C string.
+However, you can process such a string by referring to the length that is
+returned by \fBpcre_copy_substring()\fP and \fBpcre_get_substring()\fP.
+Unfortunately, the interface to \fBpcre_get_substring_list()\fP is not adequate
+for handling strings containing binary zeros, because the end of the final
+string is not independently indicated.
+.P
+The first three arguments are the same for all three of these functions:
+\fIsubject\fP is the subject string that has just been successfully matched,
+\fIovector\fP is a pointer to the vector of integer offsets that was passed to
+\fBpcre_exec()\fP, and \fIstringcount\fP is the number of substrings that were
+captured by the match, including the substring that matched the entire regular
+expression. This is the value returned by \fBpcre_exec()\fP if it is greater
+than zero. If \fBpcre_exec()\fP returned zero, indicating that it ran out of
+space in \fIovector\fP, the value passed as \fIstringcount\fP should be the
+number of elements in the vector divided by three.
+.P
+The functions \fBpcre_copy_substring()\fP and \fBpcre_get_substring()\fP
+extract a single substring, whose number is given as \fIstringnumber\fP. A
+value of zero extracts the substring that matched the entire pattern, whereas
+higher values extract the captured substrings. For \fBpcre_copy_substring()\fP,
+the string is placed in \fIbuffer\fP, whose length is given by
+\fIbuffersize\fP, while for \fBpcre_get_substring()\fP a new block of memory is
+obtained via \fBpcre_malloc\fP, and its address is returned via
+\fIstringptr\fP. The yield of the function is the length of the string, not
+including the terminating zero, or one of these error codes:
+.sp
+ PCRE_ERROR_NOMEMORY (-6)
+.sp
+The buffer was too small for \fBpcre_copy_substring()\fP, or the attempt to get
+memory failed for \fBpcre_get_substring()\fP.
+.sp
+ PCRE_ERROR_NOSUBSTRING (-7)
+.sp
+There is no substring whose number is \fIstringnumber\fP.
+.P
+The \fBpcre_get_substring_list()\fP function extracts all available substrings
+and builds a list of pointers to them. All this is done in a single block of
+memory that is obtained via \fBpcre_malloc\fP. The address of the memory block
+is returned via \fIlistptr\fP, which is also the start of the list of string
+pointers. The end of the list is marked by a NULL pointer. The yield of the
+function is zero if all went well, or the error code
+.sp
+ PCRE_ERROR_NOMEMORY (-6)
+.sp
+if the attempt to get the memory block failed.
+.P
+When any of these functions encounter a substring that is unset, which can
+happen when capturing subpattern number \fIn+1\fP matches some part of the
+subject, but subpattern \fIn\fP has not been used at all, they return an empty
+string. This can be distinguished from a genuine zero-length substring by
+inspecting the appropriate offset in \fIovector\fP, which is negative for unset
+substrings.
+.P
+The two convenience functions \fBpcre_free_substring()\fP and
+\fBpcre_free_substring_list()\fP can be used to free the memory returned by
+a previous call of \fBpcre_get_substring()\fP or
+\fBpcre_get_substring_list()\fP, respectively. They do nothing more than call
+the function pointed to by \fBpcre_free\fP, which of course could be called
+directly from a C program. However, PCRE is used in some situations where it is
+linked via a special interface to another programming language that cannot use
+\fBpcre_free\fP directly; it is for these cases that the functions are
+provided.
+.
+.
+.SH "EXTRACTING CAPTURED SUBSTRINGS BY NAME"
+.rs
+.sp
+.B int pcre_get_stringnumber(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIname\fP);
+.PP
+.B int pcre_copy_named_substring(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, const char *\fIstringname\fP,
+.ti +5n
+.B char *\fIbuffer\fP, int \fIbuffersize\fP);
+.PP
+.B int pcre_get_named_substring(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIsubject\fP, int *\fIovector\fP,
+.ti +5n
+.B int \fIstringcount\fP, const char *\fIstringname\fP,
+.ti +5n
+.B const char **\fIstringptr\fP);
+.PP
+To extract a substring by name, you first have to find associated number.
+For example, for this pattern
+.sp
+ (a+)b(?\ed+)...
+.sp
+the number of the subpattern called "xxx" is 2. If the name is known to be
+unique (PCRE_DUPNAMES was not set), you can find the number from the name by
+calling \fBpcre_get_stringnumber()\fP. The first argument is the compiled
+pattern, and the second is the name. The yield of the function is the
+subpattern number, or PCRE_ERROR_NOSUBSTRING (-7) if there is no subpattern of
+that name.
+.P
+Given the number, you can extract the substring directly, or use one of the
+functions described in the previous section. For convenience, there are also
+two functions that do the whole job.
+.P
+Most of the arguments of \fBpcre_copy_named_substring()\fP and
+\fBpcre_get_named_substring()\fP are the same as those for the similarly named
+functions that extract by number. As these are described in the previous
+section, they are not re-described here. There are just two differences:
+.P
+First, instead of a substring number, a substring name is given. Second, there
+is an extra argument, given at the start, which is a pointer to the compiled
+pattern. This is needed in order to gain access to the name-to-number
+translation table.
+.P
+These functions call \fBpcre_get_stringnumber()\fP, and if it succeeds, they
+then call \fBpcre_copy_substring()\fP or \fBpcre_get_substring()\fP, as
+appropriate. \fBNOTE:\fP If PCRE_DUPNAMES is set and there are duplicate names,
+the behaviour may not be what you want (see the next section).
+.P
+\fBWarning:\fP If the pattern uses the (?| feature to set up multiple
+subpatterns with the same number, as described in the
+.\" HTML
+.\"
+section on duplicate subpattern numbers
+.\"
+in the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+page, you cannot use names to distinguish the different subpatterns, because
+names are not included in the compiled code. The matching process uses only
+numbers. For this reason, the use of different names for subpatterns of the
+same number causes an error at compile time.
+.
+.
+.SH "DUPLICATE SUBPATTERN NAMES"
+.rs
+.sp
+.B int pcre_get_stringtable_entries(const pcre *\fIcode\fP,
+.ti +5n
+.B const char *\fIname\fP, char **\fIfirst\fP, char **\fIlast\fP);
+.PP
+When a pattern is compiled with the PCRE_DUPNAMES option, names for subpatterns
+are not required to be unique. (Duplicate names are always allowed for
+subpatterns with the same number, created by using the (?| feature. Indeed, if
+such subpatterns are named, they are required to use the same names.)
+.P
+Normally, patterns with duplicate names are such that in any one match, only
+one of the named subpatterns participates. An example is shown in the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+documentation.
+.P
+When duplicates are present, \fBpcre_copy_named_substring()\fP and
+\fBpcre_get_named_substring()\fP return the first substring corresponding to
+the given name that is set. If none are set, PCRE_ERROR_NOSUBSTRING (-7) is
+returned; no data is returned. The \fBpcre_get_stringnumber()\fP function
+returns one of the numbers that are associated with the name, but it is not
+defined which it is.
+.P
+If you want to get full details of all captured substrings for a given name,
+you must use the \fBpcre_get_stringtable_entries()\fP function. The first
+argument is the compiled pattern, and the second is the name. The third and
+fourth are pointers to variables which are updated by the function. After it
+has run, they point to the first and last entries in the name-to-number table
+for the given name. The function itself returns the length of each entry, or
+PCRE_ERROR_NOSUBSTRING (-7) if there are none. The format of the table is
+described above in the section entitled \fIInformation about a pattern\fP
+.\" HTML
+.\"
+above.
+.\"
+Given all the relevant entries for the name, you can extract each of their
+numbers, and hence the captured data, if any.
+.
+.
+.SH "FINDING ALL POSSIBLE MATCHES"
+.rs
+.sp
+The traditional matching function uses a similar algorithm to Perl, which stops
+when it finds the first match, starting at a given point in the subject. If you
+want to find all possible matches, or the longest possible match, consider
+using the alternative matching function (see below) instead. If you cannot use
+the alternative function, but still need to find all possible matches, you
+can kludge it up by making use of the callout facility, which is described in
+the
+.\" HREF
+\fBpcrecallout\fP
+.\"
+documentation.
+.P
+What you have to do is to insert a callout right at the end of the pattern.
+When your callout function is called, extract and save the current matched
+substring. Then return 1, which forces \fBpcre_exec()\fP to backtrack and try
+other alternatives. Ultimately, when it runs out of matches, \fBpcre_exec()\fP
+will yield PCRE_ERROR_NOMATCH.
+.
+.
+.SH "OBTAINING AN ESTIMATE OF STACK USAGE"
+.rs
+.sp
+Matching certain patterns using \fBpcre_exec()\fP can use a lot of process
+stack, which in certain environments can be rather limited in size. Some users
+find it helpful to have an estimate of the amount of stack that is used by
+\fBpcre_exec()\fP, to help them set recursion limits, as described in the
+.\" HREF
+\fBpcrestack\fP
+.\"
+documentation. The estimate that is output by \fBpcretest\fP when called with
+the \fB-m\fP and \fB-C\fP options is obtained by calling \fBpcre_exec\fP with
+the values NULL, NULL, NULL, -999, and -999 for its first five arguments.
+.P
+Normally, if its first argument is NULL, \fBpcre_exec()\fP immediately returns
+the negative error code PCRE_ERROR_NULL, but with this special combination of
+arguments, it returns instead a negative number whose absolute value is the
+approximate stack frame size in bytes. (A negative number is used so that it is
+clear that no match has happened.) The value is approximate because in some
+cases, recursive calls to \fBpcre_exec()\fP occur when there are one or two
+additional variables on the stack.
+.P
+If PCRE has been compiled to use the heap instead of the stack for recursion,
+the value returned is the size of each block that is obtained from the heap.
+.
+.
+.\" HTML
+.SH "MATCHING A PATTERN: THE ALTERNATIVE FUNCTION"
+.rs
+.sp
+.B int pcre_dfa_exec(const pcre *\fIcode\fP, "const pcre_extra *\fIextra\fP,"
+.ti +5n
+.B "const char *\fIsubject\fP," int \fIlength\fP, int \fIstartoffset\fP,
+.ti +5n
+.B int \fIoptions\fP, int *\fIovector\fP, int \fIovecsize\fP,
+.ti +5n
+.B int *\fIworkspace\fP, int \fIwscount\fP);
+.P
+The function \fBpcre_dfa_exec()\fP is called to match a subject string against
+a compiled pattern, using a matching algorithm that scans the subject string
+just once, and does not backtrack. This has different characteristics to the
+normal algorithm, and is not compatible with Perl. Some of the features of PCRE
+patterns are not supported. Nevertheless, there are times when this kind of
+matching can be useful. For a discussion of the two matching algorithms, and a
+list of features that \fBpcre_dfa_exec()\fP does not support, see the
+.\" HREF
+\fBpcrematching\fP
+.\"
+documentation.
+.P
+The arguments for the \fBpcre_dfa_exec()\fP function are the same as for
+\fBpcre_exec()\fP, plus two extras. The \fIovector\fP argument is used in a
+different way, and this is described below. The other common arguments are used
+in the same way as for \fBpcre_exec()\fP, so their description is not repeated
+here.
+.P
+The two additional arguments provide workspace for the function. The workspace
+vector should contain at least 20 elements. It is used for keeping track of
+multiple paths through the pattern tree. More workspace will be needed for
+patterns and subjects where there are a lot of potential matches.
+.P
+Here is an example of a simple call to \fBpcre_dfa_exec()\fP:
+.sp
+ int rc;
+ int ovector[10];
+ int wspace[20];
+ rc = pcre_dfa_exec(
+ re, /* result of pcre_compile() */
+ NULL, /* we didn't study the pattern */
+ "some string", /* the subject string */
+ 11, /* the length of the subject string */
+ 0, /* start at offset 0 in the subject */
+ 0, /* default options */
+ ovector, /* vector of integers for substring information */
+ 10, /* number of elements (NOT size in bytes) */
+ wspace, /* working space vector */
+ 20); /* number of elements (NOT size in bytes) */
+.
+.SS "Option bits for \fBpcre_dfa_exec()\fP"
+.rs
+.sp
+The unused bits of the \fIoptions\fP argument for \fBpcre_dfa_exec()\fP must be
+zero. The only bits that may be set are PCRE_ANCHORED, PCRE_NEWLINE_\fIxxx\fP,
+PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART,
+PCRE_NO_UTF8_CHECK, PCRE_BSR_ANYCRLF, PCRE_BSR_UNICODE, PCRE_NO_START_OPTIMIZE,
+PCRE_PARTIAL_HARD, PCRE_PARTIAL_SOFT, PCRE_DFA_SHORTEST, and PCRE_DFA_RESTART.
+All but the last four of these are exactly the same as for \fBpcre_exec()\fP,
+so their description is not repeated here.
+.sp
+ PCRE_PARTIAL_HARD
+ PCRE_PARTIAL_SOFT
+.sp
+These have the same general effect as they do for \fBpcre_exec()\fP, but the
+details are slightly different. When PCRE_PARTIAL_HARD is set for
+\fBpcre_dfa_exec()\fP, it returns PCRE_ERROR_PARTIAL if the end of the subject
+is reached and there is still at least one matching possibility that requires
+additional characters. This happens even if some complete matches have also
+been found. When PCRE_PARTIAL_SOFT is set, the return code PCRE_ERROR_NOMATCH
+is converted into PCRE_ERROR_PARTIAL if the end of the subject is reached,
+there have been no complete matches, but there is still at least one matching
+possibility. The portion of the string that was inspected when the longest
+partial match was found is set as the first matching string in both cases.
+There is a more detailed discussion of partial and multi-segment matching, with
+examples, in the
+.\" HREF
+\fBpcrepartial\fP
+.\"
+documentation.
+.sp
+ PCRE_DFA_SHORTEST
+.sp
+Setting the PCRE_DFA_SHORTEST option causes the matching algorithm to stop as
+soon as it has found one match. Because of the way the alternative algorithm
+works, this is necessarily the shortest possible match at the first possible
+matching point in the subject string.
+.sp
+ PCRE_DFA_RESTART
+.sp
+When \fBpcre_dfa_exec()\fP returns a partial match, it is possible to call it
+again, with additional subject characters, and have it continue with the same
+match. The PCRE_DFA_RESTART option requests this action; when it is set, the
+\fIworkspace\fP and \fIwscount\fP options must reference the same vector as
+before because data about the match so far is left in them after a partial
+match. There is more discussion of this facility in the
+.\" HREF
+\fBpcrepartial\fP
+.\"
+documentation.
+.
+.
+.SS "Successful returns from \fBpcre_dfa_exec()\fP"
+.rs
+.sp
+When \fBpcre_dfa_exec()\fP succeeds, it may have matched more than one
+substring in the subject. Note, however, that all the matches from one run of
+the function start at the same point in the subject. The shorter matches are
+all initial substrings of the longer matches. For example, if the pattern
+.sp
+ <.*>
+.sp
+is matched against the string
+.sp
+ This is no more
+.sp
+the three matched strings are
+.sp
+
+
+
+.sp
+On success, the yield of the function is a number greater than zero, which is
+the number of matched substrings. The substrings themselves are returned in
+\fIovector\fP. Each string uses two elements; the first is the offset to the
+start, and the second is the offset to the end. In fact, all the strings have
+the same start offset. (Space could have been saved by giving this only once,
+but it was decided to retain some compatibility with the way \fBpcre_exec()\fP
+returns data, even though the meaning of the strings is different.)
+.P
+The strings are returned in reverse order of length; that is, the longest
+matching string is given first. If there were too many matches to fit into
+\fIovector\fP, the yield of the function is zero, and the vector is filled with
+the longest matches. Unlike \fBpcre_exec()\fP, \fBpcre_dfa_exec()\fP can use
+the entire \fIovector\fP for returning matched strings.
+.
+.
+.SS "Error returns from \fBpcre_dfa_exec()\fP"
+.rs
+.sp
+The \fBpcre_dfa_exec()\fP function returns a negative number when it fails.
+Many of the errors are the same as for \fBpcre_exec()\fP, and these are
+described
+.\" HTML
+.\"
+above.
+.\"
+There are in addition the following errors that are specific to
+\fBpcre_dfa_exec()\fP:
+.sp
+ PCRE_ERROR_DFA_UITEM (-16)
+.sp
+This return is given if \fBpcre_dfa_exec()\fP encounters an item in the pattern
+that it does not support, for instance, the use of \eC or a back reference.
+.sp
+ PCRE_ERROR_DFA_UCOND (-17)
+.sp
+This return is given if \fBpcre_dfa_exec()\fP encounters a condition item that
+uses a back reference for the condition, or a test for recursion in a specific
+group. These are not supported.
+.sp
+ PCRE_ERROR_DFA_UMLIMIT (-18)
+.sp
+This return is given if \fBpcre_dfa_exec()\fP is called with an \fIextra\fP
+block that contains a setting of the \fImatch_limit\fP or
+\fImatch_limit_recursion\fP fields. This is not supported (these fields are
+meaningless for DFA matching).
+.sp
+ PCRE_ERROR_DFA_WSSIZE (-19)
+.sp
+This return is given if \fBpcre_dfa_exec()\fP runs out of space in the
+\fIworkspace\fP vector.
+.sp
+ PCRE_ERROR_DFA_RECURSE (-20)
+.sp
+When a recursive subpattern is processed, the matching function calls itself
+recursively, using private vectors for \fIovector\fP and \fIworkspace\fP. This
+error is given if the output vector is not large enough. This should be
+extremely rare, as a vector of size 1000 is used.
+.sp
+ PCRE_ERROR_DFA_BADRESTART (-30)
+.sp
+When \fBpcre_dfa_exec()\fP is called with the \fBPCRE_DFA_RESTART\fP option,
+some plausibility checks are made on the contents of the workspace, which
+should contain data about the previous partial match. If any of these checks
+fail, this error is given.
+.
+.
+.SH "SEE ALSO"
+.rs
+.sp
+\fBpcre16\fP(3), \fBpcre32\fP(3), \fBpcrebuild\fP(3), \fBpcrecallout\fP(3),
+\fBpcrecpp(3)\fP(3), \fBpcrematching\fP(3), \fBpcrepartial\fP(3),
+\fBpcreposix\fP(3), \fBpcreprecompile\fP(3), \fBpcresample\fP(3),
+\fBpcrestack\fP(3).
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 12 May 2013
+Copyright (c) 1997-2013 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcrebuild.3 b/pcre/doc/pcrebuild.3
new file mode 100644
index 00000000000..403f2ae32f1
--- /dev/null
+++ b/pcre/doc/pcrebuild.3
@@ -0,0 +1,550 @@
+.TH PCREBUILD 3 "12 May 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.
+.
+.SH "BUILDING PCRE"
+.rs
+.sp
+PCRE is distributed with a \fBconfigure\fP script that can be used to build the
+library in Unix-like environments using the applications known as Autotools.
+Also in the distribution are files to support building using \fBCMake\fP
+instead of \fBconfigure\fP. The text file
+.\" HTML
+.\"
+\fBREADME\fP
+.\"
+contains general information about building with Autotools (some of which is
+repeated below), and also has some comments about building on various operating
+systems. There is a lot more information about building PCRE without using
+Autotools (including information about using \fBCMake\fP and building "by
+hand") in the text file called
+.\" HTML
+.\"
+\fBNON-AUTOTOOLS-BUILD\fP.
+.\"
+You should consult this file as well as the
+.\" HTML
+.\"
+\fBREADME\fP
+.\"
+file if you are building in a non-Unix-like environment.
+.
+.
+.SH "PCRE BUILD-TIME OPTIONS"
+.rs
+.sp
+The rest of this document describes the optional features of PCRE that can be
+selected when the library is compiled. It assumes use of the \fBconfigure\fP
+script, where the optional features are selected or deselected by providing
+options to \fBconfigure\fP before running the \fBmake\fP command. However, the
+same options can be selected in both Unix-like and non-Unix-like environments
+using the GUI facility of \fBcmake-gui\fP if you are using \fBCMake\fP instead
+of \fBconfigure\fP to build PCRE.
+.P
+If you are not using Autotools or \fBCMake\fP, option selection can be done by
+editing the \fBconfig.h\fP file, or by passing parameter settings to the
+compiler, as described in
+.\" HTML
+.\"
+\fBNON-AUTOTOOLS-BUILD\fP.
+.\"
+.P
+The complete list of options for \fBconfigure\fP (which includes the standard
+ones such as the selection of the installation directory) can be obtained by
+running
+.sp
+ ./configure --help
+.sp
+The following sections include descriptions of options whose names begin with
+--enable or --disable. These settings specify changes to the defaults for the
+\fBconfigure\fP command. Because of the way that \fBconfigure\fP works,
+--enable and --disable always come in pairs, so the complementary option always
+exists as well, but as it specifies the default, it is not described.
+.
+.
+.SH "BUILDING 8-BIT, 16-BIT AND 32-BIT LIBRARIES"
+.rs
+.sp
+By default, a library called \fBlibpcre\fP is built, containing functions that
+take string arguments contained in vectors of bytes, either as single-byte
+characters, or interpreted as UTF-8 strings. You can also build a separate
+library, called \fBlibpcre16\fP, in which strings are contained in vectors of
+16-bit data units and interpreted either as single-unit characters or UTF-16
+strings, by adding
+.sp
+ --enable-pcre16
+.sp
+to the \fBconfigure\fP command. You can also build yet another separate
+library, called \fBlibpcre32\fP, in which strings are contained in vectors of
+32-bit data units and interpreted either as single-unit characters or UTF-32
+strings, by adding
+.sp
+ --enable-pcre32
+.sp
+to the \fBconfigure\fP command. If you do not want the 8-bit library, add
+.sp
+ --disable-pcre8
+.sp
+as well. At least one of the three libraries must be built. Note that the C++
+and POSIX wrappers are for the 8-bit library only, and that \fBpcregrep\fP is
+an 8-bit program. None of these are built if you select only the 16-bit or
+32-bit libraries.
+.
+.
+.SH "BUILDING SHARED AND STATIC LIBRARIES"
+.rs
+.sp
+The Autotools PCRE building process uses \fBlibtool\fP to build both shared and
+static libraries by default. You can suppress one of these by adding one of
+.sp
+ --disable-shared
+ --disable-static
+.sp
+to the \fBconfigure\fP command, as required.
+.
+.
+.SH "C++ SUPPORT"
+.rs
+.sp
+By default, if the 8-bit library is being built, the \fBconfigure\fP script
+will search for a C++ compiler and C++ header files. If it finds them, it
+automatically builds the C++ wrapper library (which supports only 8-bit
+strings). You can disable this by adding
+.sp
+ --disable-cpp
+.sp
+to the \fBconfigure\fP command.
+.
+.
+.SH "UTF-8, UTF-16 AND UTF-32 SUPPORT"
+.rs
+.sp
+To build PCRE with support for UTF Unicode character strings, add
+.sp
+ --enable-utf
+.sp
+to the \fBconfigure\fP command. This setting applies to all three libraries,
+adding support for UTF-8 to the 8-bit library, support for UTF-16 to the 16-bit
+library, and support for UTF-32 to the to the 32-bit library. There are no
+separate options for enabling UTF-8, UTF-16 and UTF-32 independently because
+that would allow ridiculous settings such as requesting UTF-16 support while
+building only the 8-bit library. It is not possible to build one library with
+UTF support and another without in the same configuration. (For backwards
+compatibility, --enable-utf8 is a synonym of --enable-utf.)
+.P
+Of itself, this setting does not make PCRE treat strings as UTF-8, UTF-16 or
+UTF-32. As well as compiling PCRE with this option, you also have have to set
+the PCRE_UTF8, PCRE_UTF16 or PCRE_UTF32 option (as appropriate) when you call
+one of the pattern compiling functions.
+.P
+If you set --enable-utf when compiling in an EBCDIC environment, PCRE expects
+its input to be either ASCII or UTF-8 (depending on the run-time option). It is
+not possible to support both EBCDIC and UTF-8 codes in the same version of the
+library. Consequently, --enable-utf and --enable-ebcdic are mutually
+exclusive.
+.
+.
+.SH "UNICODE CHARACTER PROPERTY SUPPORT"
+.rs
+.sp
+UTF support allows the libraries to process character codepoints up to 0x10ffff
+in the strings that they handle. On its own, however, it does not provide any
+facilities for accessing the properties of such characters. If you want to be
+able to use the pattern escapes \eP, \ep, and \eX, which refer to Unicode
+character properties, you must add
+.sp
+ --enable-unicode-properties
+.sp
+to the \fBconfigure\fP command. This implies UTF support, even if you have
+not explicitly requested it.
+.P
+Including Unicode property support adds around 30K of tables to the PCRE
+library. Only the general category properties such as \fILu\fP and \fINd\fP are
+supported. Details are given in the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+documentation.
+.
+.
+.SH "JUST-IN-TIME COMPILER SUPPORT"
+.rs
+.sp
+Just-in-time compiler support is included in the build by specifying
+.sp
+ --enable-jit
+.sp
+This support is available only for certain hardware architectures. If this
+option is set for an unsupported architecture, a compile time error occurs.
+See the
+.\" HREF
+\fBpcrejit\fP
+.\"
+documentation for a discussion of JIT usage. When JIT support is enabled,
+pcregrep automatically makes use of it, unless you add
+.sp
+ --disable-pcregrep-jit
+.sp
+to the "configure" command.
+.
+.
+.SH "CODE VALUE OF NEWLINE"
+.rs
+.sp
+By default, PCRE interprets the linefeed (LF) character as indicating the end
+of a line. This is the normal newline character on Unix-like systems. You can
+compile PCRE to use carriage return (CR) instead, by adding
+.sp
+ --enable-newline-is-cr
+.sp
+to the \fBconfigure\fP command. There is also a --enable-newline-is-lf option,
+which explicitly specifies linefeed as the newline character.
+.sp
+Alternatively, you can specify that line endings are to be indicated by the two
+character sequence CRLF. If you want this, add
+.sp
+ --enable-newline-is-crlf
+.sp
+to the \fBconfigure\fP command. There is a fourth option, specified by
+.sp
+ --enable-newline-is-anycrlf
+.sp
+which causes PCRE to recognize any of the three sequences CR, LF, or CRLF as
+indicating a line ending. Finally, a fifth option, specified by
+.sp
+ --enable-newline-is-any
+.sp
+causes PCRE to recognize any Unicode newline sequence.
+.P
+Whatever line ending convention is selected when PCRE is built can be
+overridden when the library functions are called. At build time it is
+conventional to use the standard for your operating system.
+.
+.
+.SH "WHAT \eR MATCHES"
+.rs
+.sp
+By default, the sequence \eR in a pattern matches any Unicode newline sequence,
+whatever has been selected as the line ending sequence. If you specify
+.sp
+ --enable-bsr-anycrlf
+.sp
+the default is changed so that \eR matches only CR, LF, or CRLF. Whatever is
+selected when PCRE is built can be overridden when the library functions are
+called.
+.
+.
+.SH "POSIX MALLOC USAGE"
+.rs
+.sp
+When the 8-bit library is called through the POSIX interface (see the
+.\" HREF
+\fBpcreposix\fP
+.\"
+documentation), additional working storage is required for holding the pointers
+to capturing substrings, because PCRE requires three integers per substring,
+whereas the POSIX interface provides only two. If the number of expected
+substrings is small, the wrapper function uses space on the stack, because this
+is faster than using \fBmalloc()\fP for each call. The default threshold above
+which the stack is no longer used is 10; it can be changed by adding a setting
+such as
+.sp
+ --with-posix-malloc-threshold=20
+.sp
+to the \fBconfigure\fP command.
+.
+.
+.SH "HANDLING VERY LARGE PATTERNS"
+.rs
+.sp
+Within a compiled pattern, offset values are used to point from one part to
+another (for example, from an opening parenthesis to an alternation
+metacharacter). By default, in the 8-bit and 16-bit libraries, two-byte values
+are used for these offsets, leading to a maximum size for a compiled pattern of
+around 64K. This is sufficient to handle all but the most gigantic patterns.
+Nevertheless, some people do want to process truly enormous patterns, so it is
+possible to compile PCRE to use three-byte or four-byte offsets by adding a
+setting such as
+.sp
+ --with-link-size=3
+.sp
+to the \fBconfigure\fP command. The value given must be 2, 3, or 4. For the
+16-bit library, a value of 3 is rounded up to 4. In these libraries, using
+longer offsets slows down the operation of PCRE because it has to load
+additional data when handling them. For the 32-bit library the value is always
+4 and cannot be overridden; the value of --with-link-size is ignored.
+.
+.
+.SH "AVOIDING EXCESSIVE STACK USAGE"
+.rs
+.sp
+When matching with the \fBpcre_exec()\fP function, PCRE implements backtracking
+by making recursive calls to an internal function called \fBmatch()\fP. In
+environments where the size of the stack is limited, this can severely limit
+PCRE's operation. (The Unix environment does not usually suffer from this
+problem, but it may sometimes be necessary to increase the maximum stack size.
+There is a discussion in the
+.\" HREF
+\fBpcrestack\fP
+.\"
+documentation.) An alternative approach to recursion that uses memory from the
+heap to remember data, instead of using recursive function calls, has been
+implemented to work round the problem of limited stack size. If you want to
+build a version of PCRE that works this way, add
+.sp
+ --disable-stack-for-recursion
+.sp
+to the \fBconfigure\fP command. With this configuration, PCRE will use the
+\fBpcre_stack_malloc\fP and \fBpcre_stack_free\fP variables to call memory
+management functions. By default these point to \fBmalloc()\fP and
+\fBfree()\fP, but you can replace the pointers so that your own functions are
+used instead.
+.P
+Separate functions are provided rather than using \fBpcre_malloc\fP and
+\fBpcre_free\fP because the usage is very predictable: the block sizes
+requested are always the same, and the blocks are always freed in reverse
+order. A calling program might be able to implement optimized functions that
+perform better than \fBmalloc()\fP and \fBfree()\fP. PCRE runs noticeably more
+slowly when built in this way. This option affects only the \fBpcre_exec()\fP
+function; it is not relevant for \fBpcre_dfa_exec()\fP.
+.
+.
+.SH "LIMITING PCRE RESOURCE USAGE"
+.rs
+.sp
+Internally, PCRE has a function called \fBmatch()\fP, which it calls repeatedly
+(sometimes recursively) when matching a pattern with the \fBpcre_exec()\fP
+function. By controlling the maximum number of times this function may be
+called during a single matching operation, a limit can be placed on the
+resources used by a single call to \fBpcre_exec()\fP. The limit can be changed
+at run time, as described in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+documentation. The default is 10 million, but this can be changed by adding a
+setting such as
+.sp
+ --with-match-limit=500000
+.sp
+to the \fBconfigure\fP command. This setting has no effect on the
+\fBpcre_dfa_exec()\fP matching function.
+.P
+In some environments it is desirable to limit the depth of recursive calls of
+\fBmatch()\fP more strictly than the total number of calls, in order to
+restrict the maximum amount of stack (or heap, if --disable-stack-for-recursion
+is specified) that is used. A second limit controls this; it defaults to the
+value that is set for --with-match-limit, which imposes no additional
+constraints. However, you can set a lower limit by adding, for example,
+.sp
+ --with-match-limit-recursion=10000
+.sp
+to the \fBconfigure\fP command. This value can also be overridden at run time.
+.
+.
+.SH "CREATING CHARACTER TABLES AT BUILD TIME"
+.rs
+.sp
+PCRE uses fixed tables for processing characters whose code values are less
+than 256. By default, PCRE is built with a set of tables that are distributed
+in the file \fIpcre_chartables.c.dist\fP. These tables are for ASCII codes
+only. If you add
+.sp
+ --enable-rebuild-chartables
+.sp
+to the \fBconfigure\fP command, the distributed tables are no longer used.
+Instead, a program called \fBdftables\fP is compiled and run. This outputs the
+source for new set of tables, created in the default locale of your C run-time
+system. (This method of replacing the tables does not work if you are cross
+compiling, because \fBdftables\fP is run on the local host. If you need to
+create alternative tables when cross compiling, you will have to do so "by
+hand".)
+.
+.
+.SH "USING EBCDIC CODE"
+.rs
+.sp
+PCRE assumes by default that it will run in an environment where the character
+code is ASCII (or Unicode, which is a superset of ASCII). This is the case for
+most computer operating systems. PCRE can, however, be compiled to run in an
+EBCDIC environment by adding
+.sp
+ --enable-ebcdic
+.sp
+to the \fBconfigure\fP command. This setting implies
+--enable-rebuild-chartables. You should only use it if you know that you are in
+an EBCDIC environment (for example, an IBM mainframe operating system). The
+--enable-ebcdic option is incompatible with --enable-utf.
+.P
+The EBCDIC character that corresponds to an ASCII LF is assumed to have the
+value 0x15 by default. However, in some EBCDIC environments, 0x25 is used. In
+such an environment you should use
+.sp
+ --enable-ebcdic-nl25
+.sp
+as well as, or instead of, --enable-ebcdic. The EBCDIC character for CR has the
+same value as in ASCII, namely, 0x0d. Whichever of 0x15 and 0x25 is \fInot\fP
+chosen as LF is made to correspond to the Unicode NEL character (which, in
+Unicode, is 0x85).
+.P
+The options that select newline behaviour, such as --enable-newline-is-cr,
+and equivalent run-time options, refer to these character values in an EBCDIC
+environment.
+.
+.
+.SH "PCREGREP OPTIONS FOR COMPRESSED FILE SUPPORT"
+.rs
+.sp
+By default, \fBpcregrep\fP reads all files as plain text. You can build it so
+that it recognizes files whose names end in \fB.gz\fP or \fB.bz2\fP, and reads
+them with \fBlibz\fP or \fBlibbz2\fP, respectively, by adding one or both of
+.sp
+ --enable-pcregrep-libz
+ --enable-pcregrep-libbz2
+.sp
+to the \fBconfigure\fP command. These options naturally require that the
+relevant libraries are installed on your system. Configuration will fail if
+they are not.
+.
+.
+.SH "PCREGREP BUFFER SIZE"
+.rs
+.sp
+\fBpcregrep\fP uses an internal buffer to hold a "window" on the file it is
+scanning, in order to be able to output "before" and "after" lines when it
+finds a match. The size of the buffer is controlled by a parameter whose
+default value is 20K. The buffer itself is three times this size, but because
+of the way it is used for holding "before" lines, the longest line that is
+guaranteed to be processable is the parameter size. You can change the default
+parameter value by adding, for example,
+.sp
+ --with-pcregrep-bufsize=50K
+.sp
+to the \fBconfigure\fP command. The caller of \fPpcregrep\fP can, however,
+override this value by specifying a run-time option.
+.
+.
+.SH "PCRETEST OPTION FOR LIBREADLINE SUPPORT"
+.rs
+.sp
+If you add
+.sp
+ --enable-pcretest-libreadline
+.sp
+to the \fBconfigure\fP command, \fBpcretest\fP is linked with the
+\fBlibreadline\fP library, and when its input is from a terminal, it reads it
+using the \fBreadline()\fP function. This provides line-editing and history
+facilities. Note that \fBlibreadline\fP is GPL-licensed, so if you distribute a
+binary of \fBpcretest\fP linked in this way, there may be licensing issues.
+.P
+Setting this option causes the \fB-lreadline\fP option to be added to the
+\fBpcretest\fP build. In many operating environments with a sytem-installed
+\fBlibreadline\fP this is sufficient. However, in some environments (e.g.
+if an unmodified distribution version of readline is in use), some extra
+configuration may be necessary. The INSTALL file for \fBlibreadline\fP says
+this:
+.sp
+ "Readline uses the termcap functions, but does not link with the
+ termcap or curses library itself, allowing applications which link
+ with readline the to choose an appropriate library."
+.sp
+If your environment has not been set up so that an appropriate library is
+automatically included, you may need to add something like
+.sp
+ LIBS="-ncurses"
+.sp
+immediately before the \fBconfigure\fP command.
+.
+.
+.SH "DEBUGGING WITH VALGRIND SUPPORT"
+.rs
+.sp
+By adding the
+.sp
+ --enable-valgrind
+.sp
+option to to the \fBconfigure\fP command, PCRE will use valgrind annotations
+to mark certain memory regions as unaddressable. This allows it to detect
+invalid memory accesses, and is mostly useful for debugging PCRE itself.
+.
+.
+.SH "CODE COVERAGE REPORTING"
+.rs
+.sp
+If your C compiler is gcc, you can build a version of PCRE that can generate a
+code coverage report for its test suite. To enable this, you must install
+\fBlcov\fP version 1.6 or above. Then specify
+.sp
+ --enable-coverage
+.sp
+to the \fBconfigure\fP command and build PCRE in the usual way.
+.P
+Note that using \fBccache\fP (a caching C compiler) is incompatible with code
+coverage reporting. If you have configured \fBccache\fP to run automatically
+on your system, you must set the environment variable
+.sp
+ CCACHE_DISABLE=1
+.sp
+before running \fBmake\fP to build PCRE, so that \fBccache\fP is not used.
+.P
+When --enable-coverage is used, the following addition targets are added to the
+\fIMakefile\fP:
+.sp
+ make coverage
+.sp
+This creates a fresh coverage report for the PCRE test suite. It is equivalent
+to running "make coverage-reset", "make coverage-baseline", "make check", and
+then "make coverage-report".
+.sp
+ make coverage-reset
+.sp
+This zeroes the coverage counters, but does nothing else.
+.sp
+ make coverage-baseline
+.sp
+This captures baseline coverage information.
+.sp
+ make coverage-report
+.sp
+This creates the coverage report.
+.sp
+ make coverage-clean-report
+.sp
+This removes the generated coverage report without cleaning the coverage data
+itself.
+.sp
+ make coverage-clean-data
+.sp
+This removes the captured coverage data without removing the coverage files
+created at compile time (*.gcno).
+.sp
+ make coverage-clean
+.sp
+This cleans all coverage data including the generated coverage report. For more
+information about code coverage, see the \fBgcov\fP and \fBlcov\fP
+documentation.
+.
+.
+.SH "SEE ALSO"
+.rs
+.sp
+\fBpcreapi\fP(3), \fBpcre16\fP, \fBpcre32\fP, \fBpcre_config\fP(3).
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 12 May 2013
+Copyright (c) 1997-2013 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcrecallout.3 b/pcre/doc/pcrecallout.3
new file mode 100644
index 00000000000..79e2bb931aa
--- /dev/null
+++ b/pcre/doc/pcrecallout.3
@@ -0,0 +1,222 @@
+.TH PCRECALLOUT 3 "03 March 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH SYNOPSIS
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int (*pcre_callout)(pcre_callout_block *);
+.PP
+.B int (*pcre16_callout)(pcre16_callout_block *);
+.PP
+.B int (*pcre32_callout)(pcre32_callout_block *);
+.
+.SH DESCRIPTION
+.rs
+.sp
+PCRE provides a feature called "callout", which is a means of temporarily
+passing control to the caller of PCRE in the middle of pattern matching. The
+caller of PCRE provides an external function by putting its entry point in the
+global variable \fIpcre_callout\fP (\fIpcre16_callout\fP for the 16-bit
+library, \fIpcre32_callout\fP for the 32-bit library). By default, this
+variable contains NULL, which disables all calling out.
+.P
+Within a regular expression, (?C) indicates the points at which the external
+function is to be called. Different callout points can be identified by putting
+a number less than 256 after the letter C. The default value is zero.
+For example, this pattern has two callout points:
+.sp
+ (?C1)abc(?C2)def
+.sp
+If the PCRE_AUTO_CALLOUT option bit is set when a pattern is compiled, PCRE
+automatically inserts callouts, all with number 255, before each item in the
+pattern. For example, if PCRE_AUTO_CALLOUT is used with the pattern
+.sp
+ A(\ed{2}|--)
+.sp
+it is processed as if it were
+.sp
+(?C255)A(?C255)((?C255)\ed{2}(?C255)|(?C255)-(?C255)-(?C255))(?C255)
+.sp
+Notice that there is a callout before and after each parenthesis and
+alternation bar. If the pattern contains a conditional group whose condition is
+an assertion, an automatic callout is inserted immediately before the
+condition. Such a callout may also be inserted explicitly, for example:
+.sp
+ (?(?C9)(?=a)ab|de)
+.sp
+This applies only to assertion conditions (because they are themselves
+independent groups).
+.P
+Automatic callouts can be used for tracking the progress of pattern matching.
+The
+.\" HREF
+\fBpcretest\fP
+.\"
+command has an option that sets automatic callouts; when it is used, the output
+indicates how the pattern is matched. This is useful information when you are
+trying to optimize the performance of a particular pattern.
+.
+.
+.SH "MISSING CALLOUTS"
+.rs
+.sp
+You should be aware that, because of optimizations in the way PCRE matches
+patterns by default, callouts sometimes do not happen. For example, if the
+pattern is
+.sp
+ ab(?C4)cd
+.sp
+PCRE knows that any matching string must contain the letter "d". If the subject
+string is "abyz", the lack of "d" means that matching doesn't ever start, and
+the callout is never reached. However, with "abyd", though the result is still
+no match, the callout is obeyed.
+.P
+If the pattern is studied, PCRE knows the minimum length of a matching string,
+and will immediately give a "no match" return without actually running a match
+if the subject is not long enough, or, for unanchored patterns, if it has
+been scanned far enough.
+.P
+You can disable these optimizations by passing the PCRE_NO_START_OPTIMIZE
+option to the matching function, or by starting the pattern with
+(*NO_START_OPT). This slows down the matching process, but does ensure that
+callouts such as the example above are obeyed.
+.
+.
+.SH "THE CALLOUT INTERFACE"
+.rs
+.sp
+During matching, when PCRE reaches a callout point, the external function
+defined by \fIpcre_callout\fP or \fIpcre[16|32]_callout\fP is called
+(if it is set). This applies to both normal and DFA matching. The only
+argument to the callout function is a pointer to a \fBpcre_callout\fP
+or \fBpcre[16|32]_callout\fP block.
+These structures contains the following fields:
+.sp
+ int \fIversion\fP;
+ int \fIcallout_number\fP;
+ int *\fIoffset_vector\fP;
+ const char *\fIsubject\fP; (8-bit version)
+ PCRE_SPTR16 \fIsubject\fP; (16-bit version)
+ PCRE_SPTR32 \fIsubject\fP; (32-bit version)
+ int \fIsubject_length\fP;
+ int \fIstart_match\fP;
+ int \fIcurrent_position\fP;
+ int \fIcapture_top\fP;
+ int \fIcapture_last\fP;
+ void *\fIcallout_data\fP;
+ int \fIpattern_position\fP;
+ int \fInext_item_length\fP;
+ const unsigned char *\fImark\fP; (8-bit version)
+ const PCRE_UCHAR16 *\fImark\fP; (16-bit version)
+ const PCRE_UCHAR32 *\fImark\fP; (32-bit version)
+.sp
+The \fIversion\fP field is an integer containing the version number of the
+block format. The initial version was 0; the current version is 2. The version
+number will change again in future if additional fields are added, but the
+intention is never to remove any of the existing fields.
+.P
+The \fIcallout_number\fP field contains the number of the callout, as compiled
+into the pattern (that is, the number after ?C for manual callouts, and 255 for
+automatically generated callouts).
+.P
+The \fIoffset_vector\fP field is a pointer to the vector of offsets that was
+passed by the caller to the matching function. When \fBpcre_exec()\fP or
+\fBpcre[16|32]_exec()\fP is used, the contents can be inspected, in order to
+extract substrings that have been matched so far, in the same way as for
+extracting substrings after a match has completed. For the DFA matching
+functions, this field is not useful.
+.P
+The \fIsubject\fP and \fIsubject_length\fP fields contain copies of the values
+that were passed to the matching function.
+.P
+The \fIstart_match\fP field normally contains the offset within the subject at
+which the current match attempt started. However, if the escape sequence \eK
+has been encountered, this value is changed to reflect the modified starting
+point. If the pattern is not anchored, the callout function may be called
+several times from the same point in the pattern for different starting points
+in the subject.
+.P
+The \fIcurrent_position\fP field contains the offset within the subject of the
+current match pointer.
+.P
+When the \fBpcre_exec()\fP or \fBpcre[16|32]_exec()\fP is used, the
+\fIcapture_top\fP field contains one more than the number of the highest
+numbered captured substring so far. If no substrings have been captured, the
+value of \fIcapture_top\fP is one. This is always the case when the DFA
+functions are used, because they do not support captured substrings.
+.P
+The \fIcapture_last\fP field contains the number of the most recently captured
+substring. However, when a recursion exits, the value reverts to what it was
+outside the recursion, as do the values of all captured substrings. If no
+substrings have been captured, the value of \fIcapture_last\fP is -1. This is
+always the case for the DFA matching functions.
+.P
+The \fIcallout_data\fP field contains a value that is passed to a matching
+function specifically so that it can be passed back in callouts. It is passed
+in the \fIcallout_data\fP field of a \fBpcre_extra\fP or \fBpcre[16|32]_extra\fP
+data structure. If no such data was passed, the value of \fIcallout_data\fP in
+a callout block is NULL. There is a description of the \fBpcre_extra\fP
+structure in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+documentation.
+.P
+The \fIpattern_position\fP field is present from version 1 of the callout
+structure. It contains the offset to the next item to be matched in the pattern
+string.
+.P
+The \fInext_item_length\fP field is present from version 1 of the callout
+structure. It contains the length of the next item to be matched in the pattern
+string. When the callout immediately precedes an alternation bar, a closing
+parenthesis, or the end of the pattern, the length is zero. When the callout
+precedes an opening parenthesis, the length is that of the entire subpattern.
+.P
+The \fIpattern_position\fP and \fInext_item_length\fP fields are intended to
+help in distinguishing between different automatic callouts, which all have the
+same callout number. However, they are set for all callouts.
+.P
+The \fImark\fP field is present from version 2 of the callout structure. In
+callouts from \fBpcre_exec()\fP or \fBpcre[16|32]_exec()\fP it contains a
+pointer to the zero-terminated name of the most recently passed (*MARK),
+(*PRUNE), or (*THEN) item in the match, or NULL if no such items have been
+passed. Instances of (*PRUNE) or (*THEN) without a name do not obliterate a
+previous (*MARK). In callouts from the DFA matching functions this field always
+contains NULL.
+.
+.
+.SH "RETURN VALUES"
+.rs
+.sp
+The external callout function returns an integer to PCRE. If the value is zero,
+matching proceeds as normal. If the value is greater than zero, matching fails
+at the current point, but the testing of other matching possibilities goes
+ahead, just as if a lookahead assertion had failed. If the value is less than
+zero, the match is abandoned, the matching function returns the negative value.
+.P
+Negative values should normally be chosen from the set of PCRE_ERROR_xxx
+values. In particular, PCRE_ERROR_NOMATCH forces a standard "no match" failure.
+The error number PCRE_ERROR_CALLOUT is reserved for use by callout functions;
+it will never be used by PCRE itself.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 03 March 2013
+Copyright (c) 1997-2013 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcrecompat.3 b/pcre/doc/pcrecompat.3
new file mode 100644
index 00000000000..2c109ea9999
--- /dev/null
+++ b/pcre/doc/pcrecompat.3
@@ -0,0 +1,195 @@
+.TH PCRECOMPAT 3 "19 March 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH "DIFFERENCES BETWEEN PCRE AND PERL"
+.rs
+.sp
+This document describes the differences in the ways that PCRE and Perl handle
+regular expressions. The differences described here are with respect to Perl
+versions 5.10 and above.
+.P
+1. PCRE has only a subset of Perl's Unicode support. Details of what it does
+have are given in the
+.\" HREF
+\fBpcreunicode\fP
+.\"
+page.
+.P
+2. PCRE allows repeat quantifiers only on parenthesized assertions, but they do
+not mean what you might think. For example, (?!a){3} does not assert that the
+next three characters are not "a". It just asserts that the next character is
+not "a" three times (in principle: PCRE optimizes this to run the assertion
+just once). Perl allows repeat quantifiers on other assertions such as \eb, but
+these do not seem to have any use.
+.P
+3. Capturing subpatterns that occur inside negative lookahead assertions are
+counted, but their entries in the offsets vector are never set. Perl sometimes
+(but not always) sets its numerical variables from inside negative assertions.
+.P
+4. Though binary zero characters are supported in the subject string, they are
+not allowed in a pattern string because it is passed as a normal C string,
+terminated by zero. The escape sequence \e0 can be used in the pattern to
+represent a binary zero.
+.P
+5. The following Perl escape sequences are not supported: \el, \eu, \eL,
+\eU, and \eN when followed by a character name or Unicode value. (\eN on its
+own, matching a non-newline character, is supported.) In fact these are
+implemented by Perl's general string-handling and are not part of its pattern
+matching engine. If any of these are encountered by PCRE, an error is
+generated by default. However, if the PCRE_JAVASCRIPT_COMPAT option is set,
+\eU and \eu are interpreted as JavaScript interprets them.
+.P
+6. The Perl escape sequences \ep, \eP, and \eX are supported only if PCRE is
+built with Unicode character property support. The properties that can be
+tested with \ep and \eP are limited to the general category properties such as
+Lu and Nd, script names such as Greek or Han, and the derived properties Any
+and L&. PCRE does support the Cs (surrogate) property, which Perl does not; the
+Perl documentation says "Because Perl hides the need for the user to understand
+the internal representation of Unicode characters, there is no need to
+implement the somewhat messy concept of surrogates."
+.P
+7. PCRE does support the \eQ...\eE escape for quoting substrings. Characters in
+between are treated as literals. This is slightly different from Perl in that $
+and @ are also handled as literals inside the quotes. In Perl, they cause
+variable interpolation (but of course PCRE does not have variables). Note the
+following examples:
+.sp
+ Pattern PCRE matches Perl matches
+.sp
+.\" JOIN
+ \eQabc$xyz\eE abc$xyz abc followed by the
+ contents of $xyz
+ \eQabc\e$xyz\eE abc\e$xyz abc\e$xyz
+ \eQabc\eE\e$\eQxyz\eE abc$xyz abc$xyz
+.sp
+The \eQ...\eE sequence is recognized both inside and outside character classes.
+.P
+8. Fairly obviously, PCRE does not support the (?{code}) and (??{code})
+constructions. However, there is support for recursive patterns. This is not
+available in Perl 5.8, but it is in Perl 5.10. Also, the PCRE "callout"
+feature allows an external function to be called during pattern matching. See
+the
+.\" HREF
+\fBpcrecallout\fP
+.\"
+documentation for details.
+.P
+9. Subpatterns that are called as subroutines (whether or not recursively) are
+always treated as atomic groups in PCRE. This is like Python, but unlike Perl.
+Captured values that are set outside a subroutine call can be reference from
+inside in PCRE, but not in Perl. There is a discussion that explains these
+differences in more detail in the
+.\" HTML
+.\"
+section on recursion differences from Perl
+.\"
+in the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+page.
+.P
+10. If any of the backtracking control verbs are used in a subpattern that is
+called as a subroutine (whether or not recursively), their effect is confined
+to that subpattern; it does not extend to the surrounding pattern. This is not
+always the case in Perl. In particular, if (*THEN) is present in a group that
+is called as a subroutine, its action is limited to that group, even if the
+group does not contain any | characters. Note that such subpatterns are
+processed as anchored at the point where they are tested.
+.P
+11. If a pattern contains more than one backtracking control verb, the first
+one that is backtracked onto acts. For example, in the pattern
+A(*COMMIT)B(*PRUNE)C a failure in B triggers (*COMMIT), but a failure in C
+triggers (*PRUNE). Perl's behaviour is more complex; in many cases it is the
+same as PCRE, but there are examples where it differs.
+.P
+12. Most backtracking verbs in assertions have their normal actions. They are
+not confined to the assertion.
+.P
+13. There are some differences that are concerned with the settings of captured
+strings when part of a pattern is repeated. For example, matching "aba" against
+the pattern /^(a(b)?)+$/ in Perl leaves $2 unset, but in PCRE it is set to "b".
+.P
+14. PCRE's handling of duplicate subpattern numbers and duplicate subpattern
+names is not as general as Perl's. This is a consequence of the fact the PCRE
+works internally just with numbers, using an external table to translate
+between numbers and names. In particular, a pattern such as (?|(?A)|(?
+.
+.SH DESCRIPTION
+.rs
+.sp
+The C++ wrapper for PCRE was provided by Google Inc. Some additional
+functionality was added by Giuseppe Maxia. This brief man page was constructed
+from the notes in the \fIpcrecpp.h\fP file, which should be consulted for
+further details. Note that the C++ wrapper supports only the original 8-bit
+PCRE library. There is no 16-bit or 32-bit support at present.
+.
+.
+.SH "MATCHING INTERFACE"
+.rs
+.sp
+The "FullMatch" operation checks that supplied text matches a supplied pattern
+exactly. If pointer arguments are supplied, it copies matched sub-strings that
+match sub-patterns into them.
+.sp
+ Example: successful match
+ pcrecpp::RE re("h.*o");
+ re.FullMatch("hello");
+.sp
+ Example: unsuccessful match (requires full match):
+ pcrecpp::RE re("e");
+ !re.FullMatch("hello");
+.sp
+ Example: creating a temporary RE object:
+ pcrecpp::RE("h.*o").FullMatch("hello");
+.sp
+You can pass in a "const char*" or a "string" for "text". The examples below
+tend to use a const char*. You can, as in the different examples above, store
+the RE object explicitly in a variable or use a temporary RE object. The
+examples below use one mode or the other arbitrarily. Either could correctly be
+used for any of these examples.
+.P
+You must supply extra pointer arguments to extract matched subpieces.
+.sp
+ Example: extracts "ruby" into "s" and 1234 into "i"
+ int i;
+ string s;
+ pcrecpp::RE re("(\e\ew+):(\e\ed+)");
+ re.FullMatch("ruby:1234", &s, &i);
+.sp
+ Example: does not try to extract any extra sub-patterns
+ re.FullMatch("ruby:1234", &s);
+.sp
+ Example: does not try to extract into NULL
+ re.FullMatch("ruby:1234", NULL, &i);
+.sp
+ Example: integer overflow causes failure
+ !re.FullMatch("ruby:1234567891234", NULL, &i);
+.sp
+ Example: fails because there aren't enough sub-patterns:
+ !pcrecpp::RE("\e\ew+:\e\ed+").FullMatch("ruby:1234", &s);
+.sp
+ Example: fails because string cannot be stored in integer
+ !pcrecpp::RE("(.*)").FullMatch("ruby", &i);
+.sp
+The provided pointer arguments can be pointers to any scalar numeric
+type, or one of:
+.sp
+ string (matched piece is copied to string)
+ StringPiece (StringPiece is mutated to point to matched piece)
+ T (where "bool T::ParseFrom(const char*, int)" exists)
+ NULL (the corresponding matched sub-pattern is not copied)
+.sp
+The function returns true iff all of the following conditions are satisfied:
+.sp
+ a. "text" matches "pattern" exactly;
+.sp
+ b. The number of matched sub-patterns is >= number of supplied
+ pointers;
+.sp
+ c. The "i"th argument has a suitable type for holding the
+ string captured as the "i"th sub-pattern. If you pass in
+ void * NULL for the "i"th argument, or a non-void * NULL
+ of the correct type, or pass fewer arguments than the
+ number of sub-patterns, "i"th captured sub-pattern is
+ ignored.
+.sp
+CAVEAT: An optional sub-pattern that does not exist in the matched
+string is assigned the empty string. Therefore, the following will
+return false (because the empty string is not a valid number):
+.sp
+ int number;
+ pcrecpp::RE::FullMatch("abc", "[a-z]+(\e\ed+)?", &number);
+.sp
+The matching interface supports at most 16 arguments per call.
+If you need more, consider using the more general interface
+\fBpcrecpp::RE::DoMatch\fP. See \fBpcrecpp.h\fP for the signature for
+\fBDoMatch\fP.
+.P
+NOTE: Do not use \fBno_arg\fP, which is used internally to mark the end of a
+list of optional arguments, as a placeholder for missing arguments, as this can
+lead to segfaults.
+.
+.
+.SH "QUOTING METACHARACTERS"
+.rs
+.sp
+You can use the "QuoteMeta" operation to insert backslashes before all
+potentially meaningful characters in a string. The returned string, used as a
+regular expression, will exactly match the original string.
+.sp
+ Example:
+ string quoted = RE::QuoteMeta(unquoted);
+.sp
+Note that it's legal to escape a character even if it has no special meaning in
+a regular expression -- so this function does that. (This also makes it
+identical to the perl function of the same name; see "perldoc -f quotemeta".)
+For example, "1.5-2.0?" becomes "1\e.5\e-2\e.0\e?".
+.
+.SH "PARTIAL MATCHES"
+.rs
+.sp
+You can use the "PartialMatch" operation when you want the pattern
+to match any substring of the text.
+.sp
+ Example: simple search for a string:
+ pcrecpp::RE("ell").PartialMatch("hello");
+.sp
+ Example: find first number in a string:
+ int number;
+ pcrecpp::RE re("(\e\ed+)");
+ re.PartialMatch("x*100 + 20", &number);
+ assert(number == 100);
+.
+.
+.SH "UTF-8 AND THE MATCHING INTERFACE"
+.rs
+.sp
+By default, pattern and text are plain text, one byte per character. The UTF8
+flag, passed to the constructor, causes both pattern and string to be treated
+as UTF-8 text, still a byte stream but potentially multiple bytes per
+character. In practice, the text is likelier to be UTF-8 than the pattern, but
+the match returned may depend on the UTF8 flag, so always use it when matching
+UTF8 text. For example, "." will match one byte normally but with UTF8 set may
+match up to three bytes of a multi-byte character.
+.sp
+ Example:
+ pcrecpp::RE_Options options;
+ options.set_utf8();
+ pcrecpp::RE re(utf8_pattern, options);
+ re.FullMatch(utf8_string);
+.sp
+ Example: using the convenience function UTF8():
+ pcrecpp::RE re(utf8_pattern, pcrecpp::UTF8());
+ re.FullMatch(utf8_string);
+.sp
+NOTE: The UTF8 flag is ignored if pcre was not configured with the
+ --enable-utf8 flag.
+.
+.
+.SH "PASSING MODIFIERS TO THE REGULAR EXPRESSION ENGINE"
+.rs
+.sp
+PCRE defines some modifiers to change the behavior of the regular expression
+engine. The C++ wrapper defines an auxiliary class, RE_Options, as a vehicle to
+pass such modifiers to a RE class. Currently, the following modifiers are
+supported:
+.sp
+ modifier description Perl corresponding
+.sp
+ PCRE_CASELESS case insensitive match /i
+ PCRE_MULTILINE multiple lines match /m
+ PCRE_DOTALL dot matches newlines /s
+ PCRE_DOLLAR_ENDONLY $ matches only at end N/A
+ PCRE_EXTRA strict escape parsing N/A
+ PCRE_EXTENDED ignore white spaces /x
+ PCRE_UTF8 handles UTF8 chars built-in
+ PCRE_UNGREEDY reverses * and *? N/A
+ PCRE_NO_AUTO_CAPTURE disables capturing parens N/A (*)
+.sp
+(*) Both Perl and PCRE allow non capturing parentheses by means of the
+"?:" modifier within the pattern itself. e.g. (?:ab|cd) does not
+capture, while (ab|cd) does.
+.P
+For a full account on how each modifier works, please check the
+PCRE API reference page.
+.P
+For each modifier, there are two member functions whose name is made
+out of the modifier in lowercase, without the "PCRE_" prefix. For
+instance, PCRE_CASELESS is handled by
+.sp
+ bool caseless()
+.sp
+which returns true if the modifier is set, and
+.sp
+ RE_Options & set_caseless(bool)
+.sp
+which sets or unsets the modifier. Moreover, PCRE_EXTRA_MATCH_LIMIT can be
+accessed through the \fBset_match_limit()\fP and \fBmatch_limit()\fP member
+functions. Setting \fImatch_limit\fP to a non-zero value will limit the
+execution of pcre to keep it from doing bad things like blowing the stack or
+taking an eternity to return a result. A value of 5000 is good enough to stop
+stack blowup in a 2MB thread stack. Setting \fImatch_limit\fP to zero disables
+match limiting. Alternatively, you can call \fBmatch_limit_recursion()\fP
+which uses PCRE_EXTRA_MATCH_LIMIT_RECURSION to limit how much PCRE
+recurses. \fBmatch_limit()\fP limits the number of matches PCRE does;
+\fBmatch_limit_recursion()\fP limits the depth of internal recursion, and
+therefore the amount of stack that is used.
+.P
+Normally, to pass one or more modifiers to a RE class, you declare
+a \fIRE_Options\fP object, set the appropriate options, and pass this
+object to a RE constructor. Example:
+.sp
+ RE_Options opt;
+ opt.set_caseless(true);
+ if (RE("HELLO", opt).PartialMatch("hello world")) ...
+.sp
+RE_options has two constructors. The default constructor takes no arguments and
+creates a set of flags that are off by default. The optional parameter
+\fIoption_flags\fP is to facilitate transfer of legacy code from C programs.
+This lets you do
+.sp
+ RE(pattern,
+ RE_Options(PCRE_CASELESS|PCRE_MULTILINE)).PartialMatch(str);
+.sp
+However, new code is better off doing
+.sp
+ RE(pattern,
+ RE_Options().set_caseless(true).set_multiline(true))
+ .PartialMatch(str);
+.sp
+If you are going to pass one of the most used modifiers, there are some
+convenience functions that return a RE_Options class with the
+appropriate modifier already set: \fBCASELESS()\fP, \fBUTF8()\fP,
+\fBMULTILINE()\fP, \fBDOTALL\fP(), and \fBEXTENDED()\fP.
+.P
+If you need to set several options at once, and you don't want to go through
+the pains of declaring a RE_Options object and setting several options, there
+is a parallel method that give you such ability on the fly. You can concatenate
+several \fBset_xxxxx()\fP member functions, since each of them returns a
+reference to its class object. For example, to pass PCRE_CASELESS,
+PCRE_EXTENDED, and PCRE_MULTILINE to a RE with one statement, you may write:
+.sp
+ RE(" ^ xyz \e\es+ .* blah$",
+ RE_Options()
+ .set_caseless(true)
+ .set_extended(true)
+ .set_multiline(true)).PartialMatch(sometext);
+.sp
+.
+.
+.SH "SCANNING TEXT INCREMENTALLY"
+.rs
+.sp
+The "Consume" operation may be useful if you want to repeatedly
+match regular expressions at the front of a string and skip over
+them as they match. This requires use of the "StringPiece" type,
+which represents a sub-range of a real string. Like RE, StringPiece
+is defined in the pcrecpp namespace.
+.sp
+ Example: read lines of the form "var = value" from a string.
+ string contents = ...; // Fill string somehow
+ pcrecpp::StringPiece input(contents); // Wrap in a StringPiece
+.sp
+ string var;
+ int value;
+ pcrecpp::RE re("(\e\ew+) = (\e\ed+)\en");
+ while (re.Consume(&input, &var, &value)) {
+ ...;
+ }
+.sp
+Each successful call to "Consume" will set "var/value", and also
+advance "input" so it points past the matched text.
+.P
+The "FindAndConsume" operation is similar to "Consume" but does not
+anchor your match at the beginning of the string. For example, you
+could extract all words from a string by repeatedly calling
+.sp
+ pcrecpp::RE("(\e\ew+)").FindAndConsume(&input, &word)
+.
+.
+.SH "PARSING HEX/OCTAL/C-RADIX NUMBERS"
+.rs
+.sp
+By default, if you pass a pointer to a numeric value, the
+corresponding text is interpreted as a base-10 number. You can
+instead wrap the pointer with a call to one of the operators Hex(),
+Octal(), or CRadix() to interpret the text in another base. The
+CRadix operator interprets C-style "0" (base-8) and "0x" (base-16)
+prefixes, but defaults to base-10.
+.sp
+ Example:
+ int a, b, c, d;
+ pcrecpp::RE re("(.*) (.*) (.*) (.*)");
+ re.FullMatch("100 40 0100 0x40",
+ pcrecpp::Octal(&a), pcrecpp::Hex(&b),
+ pcrecpp::CRadix(&c), pcrecpp::CRadix(&d));
+.sp
+will leave 64 in a, b, c, and d.
+.
+.
+.SH "REPLACING PARTS OF STRINGS"
+.rs
+.sp
+You can replace the first match of "pattern" in "str" with "rewrite".
+Within "rewrite", backslash-escaped digits (\e1 to \e9) can be
+used to insert text matching corresponding parenthesized group
+from the pattern. \e0 in "rewrite" refers to the entire matching
+text. For example:
+.sp
+ string s = "yabba dabba doo";
+ pcrecpp::RE("b+").Replace("d", &s);
+.sp
+will leave "s" containing "yada dabba doo". The result is true if the pattern
+matches and a replacement occurs, false otherwise.
+.P
+\fBGlobalReplace\fP is like \fBReplace\fP except that it replaces all
+occurrences of the pattern in the string with the rewrite. Replacements are
+not subject to re-matching. For example:
+.sp
+ string s = "yabba dabba doo";
+ pcrecpp::RE("b+").GlobalReplace("d", &s);
+.sp
+will leave "s" containing "yada dada doo". It returns the number of
+replacements made.
+.P
+\fBExtract\fP is like \fBReplace\fP, except that if the pattern matches,
+"rewrite" is copied into "out" (an additional argument) with substitutions.
+The non-matching portions of "text" are ignored. Returns true iff a match
+occurred and the extraction happened successfully; if no match occurs, the
+string is left unaffected.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+The C++ wrapper was contributed by Google Inc.
+Copyright (c) 2007 Google Inc.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 08 January 2012
+.fi
diff --git a/pcre/doc/pcredemo.3 b/pcre/doc/pcredemo.3
new file mode 100644
index 00000000000..194629b1fac
--- /dev/null
+++ b/pcre/doc/pcredemo.3
@@ -0,0 +1,424 @@
+.\" Start example.
+.de EX
+. nr mE \\n(.f
+. nf
+. nh
+. ft CW
+..
+.
+.
+.\" End example.
+.de EE
+. ft \\n(mE
+. fi
+. hy \\n(HY
+..
+.
+.EX
+/*************************************************
+* PCRE DEMONSTRATION PROGRAM *
+*************************************************/
+
+/* This is a demonstration program to illustrate the most straightforward ways
+of calling the PCRE regular expression library from a C program. See the
+pcresample documentation for a short discussion ("man pcresample" if you have
+the PCRE man pages installed).
+
+In Unix-like environments, if PCRE is installed in your standard system
+libraries, you should be able to compile this program using this command:
+
+gcc -Wall pcredemo.c -lpcre -o pcredemo
+
+If PCRE is not installed in a standard place, it is likely to be installed with
+support for the pkg-config mechanism. If you have pkg-config, you can compile
+this program using this command:
+
+gcc -Wall pcredemo.c `pkg-config --cflags --libs libpcre` -o pcredemo
+
+If you do not have pkg-config, you may have to use this:
+
+gcc -Wall pcredemo.c -I/usr/local/include -L/usr/local/lib \e
+ -R/usr/local/lib -lpcre -o pcredemo
+
+Replace "/usr/local/include" and "/usr/local/lib" with wherever the include and
+library files for PCRE are installed on your system. Only some operating
+systems (e.g. Solaris) use the -R option.
+
+Building under Windows:
+
+If you want to statically link this program against a non-dll .a file, you must
+define PCRE_STATIC before including pcre.h, otherwise the pcre_malloc() and
+pcre_free() exported functions will be declared __declspec(dllimport), with
+unwanted results. So in this environment, uncomment the following line. */
+
+/* #define PCRE_STATIC */
+
+#include
+#include
+#include
+
+#define OVECCOUNT 30 /* should be a multiple of 3 */
+
+
+int main(int argc, char **argv)
+{
+pcre *re;
+const char *error;
+char *pattern;
+char *subject;
+unsigned char *name_table;
+unsigned int option_bits;
+int erroffset;
+int find_all;
+int crlf_is_newline;
+int namecount;
+int name_entry_size;
+int ovector[OVECCOUNT];
+int subject_length;
+int rc, i;
+int utf8;
+
+
+/**************************************************************************
+* First, sort out the command line. There is only one possible option at *
+* the moment, "-g" to request repeated matching to find all occurrences, *
+* like Perl's /g option. We set the variable find_all to a non-zero value *
+* if the -g option is present. Apart from that, there must be exactly two *
+* arguments. *
+**************************************************************************/
+
+find_all = 0;
+for (i = 1; i < argc; i++)
+ {
+ if (strcmp(argv[i], "-g") == 0) find_all = 1;
+ else break;
+ }
+
+/* After the options, we require exactly two arguments, which are the pattern,
+and the subject string. */
+
+if (argc - i != 2)
+ {
+ printf("Two arguments required: a regex and a subject string\en");
+ return 1;
+ }
+
+pattern = argv[i];
+subject = argv[i+1];
+subject_length = (int)strlen(subject);
+
+
+/*************************************************************************
+* Now we are going to compile the regular expression pattern, and handle *
+* and errors that are detected. *
+*************************************************************************/
+
+re = pcre_compile(
+ pattern, /* the pattern */
+ 0, /* default options */
+ &error, /* for error message */
+ &erroffset, /* for error offset */
+ NULL); /* use default character tables */
+
+/* Compilation failed: print the error message and exit */
+
+if (re == NULL)
+ {
+ printf("PCRE compilation failed at offset %d: %s\en", erroffset, error);
+ return 1;
+ }
+
+
+/*************************************************************************
+* If the compilation succeeded, we call PCRE again, in order to do a *
+* pattern match against the subject string. This does just ONE match. If *
+* further matching is needed, it will be done below. *
+*************************************************************************/
+
+rc = pcre_exec(
+ re, /* the compiled pattern */
+ NULL, /* no extra data - we didn't study the pattern */
+ subject, /* the subject string */
+ subject_length, /* the length of the subject */
+ 0, /* start at offset 0 in the subject */
+ 0, /* default options */
+ ovector, /* output vector for substring information */
+ OVECCOUNT); /* number of elements in the output vector */
+
+/* Matching failed: handle error cases */
+
+if (rc < 0)
+ {
+ switch(rc)
+ {
+ case PCRE_ERROR_NOMATCH: printf("No match\en"); break;
+ /*
+ Handle other special cases if you like
+ */
+ default: printf("Matching error %d\en", rc); break;
+ }
+ pcre_free(re); /* Release memory used for the compiled pattern */
+ return 1;
+ }
+
+/* Match succeded */
+
+printf("\enMatch succeeded at offset %d\en", ovector[0]);
+
+
+/*************************************************************************
+* We have found the first match within the subject string. If the output *
+* vector wasn't big enough, say so. Then output any substrings that were *
+* captured. *
+*************************************************************************/
+
+/* The output vector wasn't big enough */
+
+if (rc == 0)
+ {
+ rc = OVECCOUNT/3;
+ printf("ovector only has room for %d captured substrings\en", rc - 1);
+ }
+
+/* Show substrings stored in the output vector by number. Obviously, in a real
+application you might want to do things other than print them. */
+
+for (i = 0; i < rc; i++)
+ {
+ char *substring_start = subject + ovector[2*i];
+ int substring_length = ovector[2*i+1] - ovector[2*i];
+ printf("%2d: %.*s\en", i, substring_length, substring_start);
+ }
+
+
+/**************************************************************************
+* That concludes the basic part of this demonstration program. We have *
+* compiled a pattern, and performed a single match. The code that follows *
+* shows first how to access named substrings, and then how to code for *
+* repeated matches on the same subject. *
+**************************************************************************/
+
+/* See if there are any named substrings, and if so, show them by name. First
+we have to extract the count of named parentheses from the pattern. */
+
+(void)pcre_fullinfo(
+ re, /* the compiled pattern */
+ NULL, /* no extra data - we didn't study the pattern */
+ PCRE_INFO_NAMECOUNT, /* number of named substrings */
+ &namecount); /* where to put the answer */
+
+if (namecount <= 0) printf("No named substrings\en"); else
+ {
+ unsigned char *tabptr;
+ printf("Named substrings\en");
+
+ /* Before we can access the substrings, we must extract the table for
+ translating names to numbers, and the size of each entry in the table. */
+
+ (void)pcre_fullinfo(
+ re, /* the compiled pattern */
+ NULL, /* no extra data - we didn't study the pattern */
+ PCRE_INFO_NAMETABLE, /* address of the table */
+ &name_table); /* where to put the answer */
+
+ (void)pcre_fullinfo(
+ re, /* the compiled pattern */
+ NULL, /* no extra data - we didn't study the pattern */
+ PCRE_INFO_NAMEENTRYSIZE, /* size of each entry in the table */
+ &name_entry_size); /* where to put the answer */
+
+ /* Now we can scan the table and, for each entry, print the number, the name,
+ and the substring itself. */
+
+ tabptr = name_table;
+ for (i = 0; i < namecount; i++)
+ {
+ int n = (tabptr[0] << 8) | tabptr[1];
+ printf("(%d) %*s: %.*s\en", n, name_entry_size - 3, tabptr + 2,
+ ovector[2*n+1] - ovector[2*n], subject + ovector[2*n]);
+ tabptr += name_entry_size;
+ }
+ }
+
+
+/*************************************************************************
+* If the "-g" option was given on the command line, we want to continue *
+* to search for additional matches in the subject string, in a similar *
+* way to the /g option in Perl. This turns out to be trickier than you *
+* might think because of the possibility of matching an empty string. *
+* What happens is as follows: *
+* *
+* If the previous match was NOT for an empty string, we can just start *
+* the next match at the end of the previous one. *
+* *
+* If the previous match WAS for an empty string, we can't do that, as it *
+* would lead to an infinite loop. Instead, a special call of pcre_exec() *
+* is made with the PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED flags set. *
+* The first of these tells PCRE that an empty string at the start of the *
+* subject is not a valid match; other possibilities must be tried. The *
+* second flag restricts PCRE to one match attempt at the initial string *
+* position. If this match succeeds, an alternative to the empty string *
+* match has been found, and we can print it and proceed round the loop, *
+* advancing by the length of whatever was found. If this match does not *
+* succeed, we still stay in the loop, advancing by just one character. *
+* In UTF-8 mode, which can be set by (*UTF8) in the pattern, this may be *
+* more than one byte. *
+* *
+* However, there is a complication concerned with newlines. When the *
+* newline convention is such that CRLF is a valid newline, we must *
+* advance by two characters rather than one. The newline convention can *
+* be set in the regex by (*CR), etc.; if not, we must find the default. *
+*************************************************************************/
+
+if (!find_all) /* Check for -g */
+ {
+ pcre_free(re); /* Release the memory used for the compiled pattern */
+ return 0; /* Finish unless -g was given */
+ }
+
+/* Before running the loop, check for UTF-8 and whether CRLF is a valid newline
+sequence. First, find the options with which the regex was compiled; extract
+the UTF-8 state, and mask off all but the newline options. */
+
+(void)pcre_fullinfo(re, NULL, PCRE_INFO_OPTIONS, &option_bits);
+utf8 = option_bits & PCRE_UTF8;
+option_bits &= PCRE_NEWLINE_CR|PCRE_NEWLINE_LF|PCRE_NEWLINE_CRLF|
+ PCRE_NEWLINE_ANY|PCRE_NEWLINE_ANYCRLF;
+
+/* If no newline options were set, find the default newline convention from the
+build configuration. */
+
+if (option_bits == 0)
+ {
+ int d;
+ (void)pcre_config(PCRE_CONFIG_NEWLINE, &d);
+ /* Note that these values are always the ASCII ones, even in
+ EBCDIC environments. CR = 13, NL = 10. */
+ option_bits = (d == 13)? PCRE_NEWLINE_CR :
+ (d == 10)? PCRE_NEWLINE_LF :
+ (d == (13<<8 | 10))? PCRE_NEWLINE_CRLF :
+ (d == -2)? PCRE_NEWLINE_ANYCRLF :
+ (d == -1)? PCRE_NEWLINE_ANY : 0;
+ }
+
+/* See if CRLF is a valid newline sequence. */
+
+crlf_is_newline =
+ option_bits == PCRE_NEWLINE_ANY ||
+ option_bits == PCRE_NEWLINE_CRLF ||
+ option_bits == PCRE_NEWLINE_ANYCRLF;
+
+/* Loop for second and subsequent matches */
+
+for (;;)
+ {
+ int options = 0; /* Normally no options */
+ int start_offset = ovector[1]; /* Start at end of previous match */
+
+ /* If the previous match was for an empty string, we are finished if we are
+ at the end of the subject. Otherwise, arrange to run another match at the
+ same point to see if a non-empty match can be found. */
+
+ if (ovector[0] == ovector[1])
+ {
+ if (ovector[0] == subject_length) break;
+ options = PCRE_NOTEMPTY_ATSTART | PCRE_ANCHORED;
+ }
+
+ /* Run the next matching operation */
+
+ rc = pcre_exec(
+ re, /* the compiled pattern */
+ NULL, /* no extra data - we didn't study the pattern */
+ subject, /* the subject string */
+ subject_length, /* the length of the subject */
+ start_offset, /* starting offset in the subject */
+ options, /* options */
+ ovector, /* output vector for substring information */
+ OVECCOUNT); /* number of elements in the output vector */
+
+ /* This time, a result of NOMATCH isn't an error. If the value in "options"
+ is zero, it just means we have found all possible matches, so the loop ends.
+ Otherwise, it means we have failed to find a non-empty-string match at a
+ point where there was a previous empty-string match. In this case, we do what
+ Perl does: advance the matching position by one character, and continue. We
+ do this by setting the "end of previous match" offset, because that is picked
+ up at the top of the loop as the point at which to start again.
+
+ There are two complications: (a) When CRLF is a valid newline sequence, and
+ the current position is just before it, advance by an extra byte. (b)
+ Otherwise we must ensure that we skip an entire UTF-8 character if we are in
+ UTF-8 mode. */
+
+ if (rc == PCRE_ERROR_NOMATCH)
+ {
+ if (options == 0) break; /* All matches found */
+ ovector[1] = start_offset + 1; /* Advance one byte */
+ if (crlf_is_newline && /* If CRLF is newline & */
+ start_offset < subject_length - 1 && /* we are at CRLF, */
+ subject[start_offset] == '\er' &&
+ subject[start_offset + 1] == '\en')
+ ovector[1] += 1; /* Advance by one more. */
+ else if (utf8) /* Otherwise, ensure we */
+ { /* advance a whole UTF-8 */
+ while (ovector[1] < subject_length) /* character. */
+ {
+ if ((subject[ovector[1]] & 0xc0) != 0x80) break;
+ ovector[1] += 1;
+ }
+ }
+ continue; /* Go round the loop again */
+ }
+
+ /* Other matching errors are not recoverable. */
+
+ if (rc < 0)
+ {
+ printf("Matching error %d\en", rc);
+ pcre_free(re); /* Release memory used for the compiled pattern */
+ return 1;
+ }
+
+ /* Match succeded */
+
+ printf("\enMatch succeeded again at offset %d\en", ovector[0]);
+
+ /* The match succeeded, but the output vector wasn't big enough. */
+
+ if (rc == 0)
+ {
+ rc = OVECCOUNT/3;
+ printf("ovector only has room for %d captured substrings\en", rc - 1);
+ }
+
+ /* As before, show substrings stored in the output vector by number, and then
+ also any named substrings. */
+
+ for (i = 0; i < rc; i++)
+ {
+ char *substring_start = subject + ovector[2*i];
+ int substring_length = ovector[2*i+1] - ovector[2*i];
+ printf("%2d: %.*s\en", i, substring_length, substring_start);
+ }
+
+ if (namecount <= 0) printf("No named substrings\en"); else
+ {
+ unsigned char *tabptr = name_table;
+ printf("Named substrings\en");
+ for (i = 0; i < namecount; i++)
+ {
+ int n = (tabptr[0] << 8) | tabptr[1];
+ printf("(%d) %*s: %.*s\en", n, name_entry_size - 3, tabptr + 2,
+ ovector[2*n+1] - ovector[2*n], subject + ovector[2*n]);
+ tabptr += name_entry_size;
+ }
+ }
+ } /* End of loop to find second and subsequent matches */
+
+printf("\en");
+pcre_free(re); /* Release memory used for the compiled pattern */
+return 0;
+}
+
+/* End of pcredemo.c */
+.EE
diff --git a/pcre/doc/pcregrep.1 b/pcre/doc/pcregrep.1
new file mode 100644
index 00000000000..7fa5b65e030
--- /dev/null
+++ b/pcre/doc/pcregrep.1
@@ -0,0 +1,679 @@
+.TH PCREGREP 1 "13 September 2012" "PCRE 8.32"
+.SH NAME
+pcregrep - a grep with Perl-compatible regular expressions.
+.SH SYNOPSIS
+.B pcregrep [options] [long options] [pattern] [path1 path2 ...]
+.
+.SH DESCRIPTION
+.rs
+.sp
+\fBpcregrep\fP searches files for character patterns, in the same way as other
+grep commands do, but it uses the PCRE regular expression library to support
+patterns that are compatible with the regular expressions of Perl 5. See
+.\" HREF
+\fBpcrepattern\fP(3)
+.\"
+for a full description of syntax and semantics of the regular expressions
+that PCRE supports.
+.P
+Patterns, whether supplied on the command line or in a separate file, are given
+without delimiters. For example:
+.sp
+ pcregrep Thursday /etc/motd
+.sp
+If you attempt to use delimiters (for example, by surrounding a pattern with
+slashes, as is common in Perl scripts), they are interpreted as part of the
+pattern. Quotes can of course be used to delimit patterns on the command line
+because they are interpreted by the shell, and indeed quotes are required if a
+pattern contains white space or shell metacharacters.
+.P
+The first argument that follows any option settings is treated as the single
+pattern to be matched when neither \fB-e\fP nor \fB-f\fP is present.
+Conversely, when one or both of these options are used to specify patterns, all
+arguments are treated as path names. At least one of \fB-e\fP, \fB-f\fP, or an
+argument pattern must be provided.
+.P
+If no files are specified, \fBpcregrep\fP reads the standard input. The
+standard input can also be referenced by a name consisting of a single hyphen.
+For example:
+.sp
+ pcregrep some-pattern /file1 - /file3
+.sp
+By default, each line that matches a pattern is copied to the standard
+output, and if there is more than one file, the file name is output at the
+start of each line, followed by a colon. However, there are options that can
+change how \fBpcregrep\fP behaves. In particular, the \fB-M\fP option makes it
+possible to search for patterns that span line boundaries. What defines a line
+boundary is controlled by the \fB-N\fP (\fB--newline\fP) option.
+.P
+The amount of memory used for buffering files that are being scanned is
+controlled by a parameter that can be set by the \fB--buffer-size\fP option.
+The default value for this parameter is specified when \fBpcregrep\fP is built,
+with the default default being 20K. A block of memory three times this size is
+used (to allow for buffering "before" and "after" lines). An error occurs if a
+line overflows the buffer.
+.P
+Patterns can be no longer than 8K or BUFSIZ bytes, whichever is the greater.
+BUFSIZ is defined in \fB\fP. When there is more than one pattern
+(specified by the use of \fB-e\fP and/or \fB-f\fP), each pattern is applied to
+each line in the order in which they are defined, except that all the \fB-e\fP
+patterns are tried before the \fB-f\fP patterns.
+.P
+By default, as soon as one pattern matches a line, no further patterns are
+considered. However, if \fB--colour\fP (or \fB--color\fP) is used to colour the
+matching substrings, or if \fB--only-matching\fP, \fB--file-offsets\fP, or
+\fB--line-offsets\fP is used to output only the part of the line that matched
+(either shown literally, or as an offset), scanning resumes immediately
+following the match, so that further matches on the same line can be found. If
+there are multiple patterns, they are all tried on the remainder of the line,
+but patterns that follow the one that matched are not tried on the earlier part
+of the line.
+.P
+This behaviour means that the order in which multiple patterns are specified
+can affect the output when one of the above options is used. This is no longer
+the same behaviour as GNU grep, which now manages to display earlier matches
+for later patterns (as long as there is no overlap).
+.P
+Patterns that can match an empty string are accepted, but empty string
+matches are never recognized. An example is the pattern "(super)?(man)?", in
+which all components are optional. This pattern finds all occurrences of both
+"super" and "man"; the output differs from matching with "super|man" when only
+the matching substrings are being shown.
+.P
+If the \fBLC_ALL\fP or \fBLC_CTYPE\fP environment variable is set,
+\fBpcregrep\fP uses the value to set a locale when calling the PCRE library.
+The \fB--locale\fP option can be used to override this.
+.
+.
+.SH "SUPPORT FOR COMPRESSED FILES"
+.rs
+.sp
+It is possible to compile \fBpcregrep\fP so that it uses \fBlibz\fP or
+\fBlibbz2\fP to read files whose names end in \fB.gz\fP or \fB.bz2\fP,
+respectively. You can find out whether your binary has support for one or both
+of these file types by running it with the \fB--help\fP option. If the
+appropriate support is not present, files are treated as plain text. The
+standard input is always so treated.
+.
+.
+.SH "BINARY FILES"
+.rs
+.sp
+By default, a file that contains a binary zero byte within the first 1024 bytes
+is identified as a binary file, and is processed specially. (GNU grep also
+identifies binary files in this manner.) See the \fB--binary-files\fP option
+for a means of changing the way binary files are handled.
+.
+.
+.SH OPTIONS
+.rs
+.sp
+The order in which some of the options appear can affect the output. For
+example, both the \fB-h\fP and \fB-l\fP options affect the printing of file
+names. Whichever comes later in the command line will be the one that takes
+effect. Similarly, except where noted below, if an option is given twice, the
+later setting is used. Numerical values for options may be followed by K or M,
+to signify multiplication by 1024 or 1024*1024 respectively.
+.TP 10
+\fB--\fP
+This terminates the list of options. It is useful if the next item on the
+command line starts with a hyphen but is not an option. This allows for the
+processing of patterns and filenames that start with hyphens.
+.TP
+\fB-A\fP \fInumber\fP, \fB--after-context=\fP\fInumber\fP
+Output \fInumber\fP lines of context after each matching line. If filenames
+and/or line numbers are being output, a hyphen separator is used instead of a
+colon for the context lines. A line containing "--" is output between each
+group of lines, unless they are in fact contiguous in the input file. The value
+of \fInumber\fP is expected to be relatively small. However, \fBpcregrep\fP
+guarantees to have up to 8K of following text available for context output.
+.TP
+\fB-a\fP, \fB--text\fP
+Treat binary files as text. This is equivalent to
+\fB--binary-files\fP=\fItext\fP.
+.TP
+\fB-B\fP \fInumber\fP, \fB--before-context=\fP\fInumber\fP
+Output \fInumber\fP lines of context before each matching line. If filenames
+and/or line numbers are being output, a hyphen separator is used instead of a
+colon for the context lines. A line containing "--" is output between each
+group of lines, unless they are in fact contiguous in the input file. The value
+of \fInumber\fP is expected to be relatively small. However, \fBpcregrep\fP
+guarantees to have up to 8K of preceding text available for context output.
+.TP
+\fB--binary-files=\fP\fIword\fP
+Specify how binary files are to be processed. If the word is "binary" (the
+default), pattern matching is performed on binary files, but the only output is
+"Binary file matches" when a match succeeds. If the word is "text",
+which is equivalent to the \fB-a\fP or \fB--text\fP option, binary files are
+processed in the same way as any other file. In this case, when a match
+succeeds, the output may be binary garbage, which can have nasty effects if
+sent to a terminal. If the word is "without-match", which is equivalent to the
+\fB-I\fP option, binary files are not processed at all; they are assumed not to
+be of interest.
+.TP
+\fB--buffer-size=\fP\fInumber\fP
+Set the parameter that controls how much memory is used for buffering files
+that are being scanned.
+.TP
+\fB-C\fP \fInumber\fP, \fB--context=\fP\fInumber\fP
+Output \fInumber\fP lines of context both before and after each matching line.
+This is equivalent to setting both \fB-A\fP and \fB-B\fP to the same value.
+.TP
+\fB-c\fP, \fB--count\fP
+Do not output individual lines from the files that are being scanned; instead
+output the number of lines that would otherwise have been shown. If no lines
+are selected, the number zero is output. If several files are are being
+scanned, a count is output for each of them. However, if the
+\fB--files-with-matches\fP option is also used, only those files whose counts
+are greater than zero are listed. When \fB-c\fP is used, the \fB-A\fP,
+\fB-B\fP, and \fB-C\fP options are ignored.
+.TP
+\fB--colour\fP, \fB--color\fP
+If this option is given without any data, it is equivalent to "--colour=auto".
+If data is required, it must be given in the same shell item, separated by an
+equals sign.
+.TP
+\fB--colour=\fP\fIvalue\fP, \fB--color=\fP\fIvalue\fP
+This option specifies under what circumstances the parts of a line that matched
+a pattern should be coloured in the output. By default, the output is not
+coloured. The value (which is optional, see above) may be "never", "always", or
+"auto". In the latter case, colouring happens only if the standard output is
+connected to a terminal. More resources are used when colouring is enabled,
+because \fBpcregrep\fP has to search for all possible matches in a line, not
+just one, in order to colour them all.
+.sp
+The colour that is used can be specified by setting the environment variable
+PCREGREP_COLOUR or PCREGREP_COLOR. The value of this variable should be a
+string of two numbers, separated by a semicolon. They are copied directly into
+the control string for setting colour on a terminal, so it is your
+responsibility to ensure that they make sense. If neither of the environment
+variables is set, the default is "1;31", which gives red.
+.TP
+\fB-D\fP \fIaction\fP, \fB--devices=\fP\fIaction\fP
+If an input path is not a regular file or a directory, "action" specifies how
+it is to be processed. Valid values are "read" (the default) or "skip"
+(silently skip the path).
+.TP
+\fB-d\fP \fIaction\fP, \fB--directories=\fP\fIaction\fP
+If an input path is a directory, "action" specifies how it is to be processed.
+Valid values are "read" (the default in non-Windows environments, for
+compatibility with GNU grep), "recurse" (equivalent to the \fB-r\fP option), or
+"skip" (silently skip the path, the default in Windows environments). In the
+"read" case, directories are read as if they were ordinary files. In some
+operating systems the effect of reading a directory like this is an immediate
+end-of-file; in others it may provoke an error.
+.TP
+\fB-e\fP \fIpattern\fP, \fB--regex=\fP\fIpattern\fP, \fB--regexp=\fP\fIpattern\fP
+Specify a pattern to be matched. This option can be used multiple times in
+order to specify several patterns. It can also be used as a way of specifying a
+single pattern that starts with a hyphen. When \fB-e\fP is used, no argument
+pattern is taken from the command line; all arguments are treated as file
+names. There is no limit to the number of patterns. They are applied to each
+line in the order in which they are defined until one matches.
+.sp
+If \fB-f\fP is used with \fB-e\fP, the command line patterns are matched first,
+followed by the patterns from the file(s), independent of the order in which
+these options are specified. Note that multiple use of \fB-e\fP is not the same
+as a single pattern with alternatives. For example, X|Y finds the first
+character in a line that is X or Y, whereas if the two patterns are given
+separately, with X first, \fBpcregrep\fP finds X if it is present, even if it
+follows Y in the line. It finds Y only if there is no X in the line. This
+matters only if you are using \fB-o\fP or \fB--colo(u)r\fP to show the part(s)
+of the line that matched.
+.TP
+\fB--exclude\fP=\fIpattern\fP
+Files (but not directories) whose names match the pattern are skipped without
+being processed. This applies to all files, whether listed on the command line,
+obtained from \fB--file-list\fP, or by scanning a directory. The pattern is a
+PCRE regular expression, and is matched against the final component of the file
+name, not the entire path. The \fB-F\fP, \fB-w\fP, and \fB-x\fP options do not
+apply to this pattern. The option may be given any number of times in order to
+specify multiple patterns. If a file name matches both an \fB--include\fP
+and an \fB--exclude\fP pattern, it is excluded. There is no short form for this
+option.
+.TP
+\fB--exclude-from=\fP\fIfilename\fP
+Treat each non-empty line of the file as the data for an \fB--exclude\fP
+option. What constitutes a newline when reading the file is the operating
+system's default. The \fB--newline\fP option has no effect on this option. This
+option may be given more than once in order to specify a number of files to
+read.
+.TP
+\fB--exclude-dir\fP=\fIpattern\fP
+Directories whose names match the pattern are skipped without being processed,
+whatever the setting of the \fB--recursive\fP option. This applies to all
+directories, whether listed on the command line, obtained from
+\fB--file-list\fP, or by scanning a parent directory. The pattern is a PCRE
+regular expression, and is matched against the final component of the directory
+name, not the entire path. The \fB-F\fP, \fB-w\fP, and \fB-x\fP options do not
+apply to this pattern. The option may be given any number of times in order to
+specify more than one pattern. If a directory matches both \fB--include-dir\fP
+and \fB--exclude-dir\fP, it is excluded. There is no short form for this
+option.
+.TP
+\fB-F\fP, \fB--fixed-strings\fP
+Interpret each data-matching pattern as a list of fixed strings, separated by
+newlines, instead of as a regular expression. What constitutes a newline for
+this purpose is controlled by the \fB--newline\fP option. The \fB-w\fP (match
+as a word) and \fB-x\fP (match whole line) options can be used with \fB-F\fP.
+They apply to each of the fixed strings. A line is selected if any of the fixed
+strings are found in it (subject to \fB-w\fP or \fB-x\fP, if present). This
+option applies only to the patterns that are matched against the contents of
+files; it does not apply to patterns specified by any of the \fB--include\fP or
+\fB--exclude\fP options.
+.TP
+\fB-f\fP \fIfilename\fP, \fB--file=\fP\fIfilename\fP
+Read patterns from the file, one per line, and match them against
+each line of input. What constitutes a newline when reading the file is the
+operating system's default. The \fB--newline\fP option has no effect on this
+option. Trailing white space is removed from each line, and blank lines are
+ignored. An empty file contains no patterns and therefore matches nothing. See
+also the comments about multiple patterns versus a single pattern with
+alternatives in the description of \fB-e\fP above.
+.sp
+If this option is given more than once, all the specified files are
+read. A data line is output if any of the patterns match it. A filename can
+be given as "-" to refer to the standard input. When \fB-f\fP is used, patterns
+specified on the command line using \fB-e\fP may also be present; they are
+tested before the file's patterns. However, no other pattern is taken from the
+command line; all arguments are treated as the names of paths to be searched.
+.TP
+\fB--file-list\fP=\fIfilename\fP
+Read a list of files and/or directories that are to be scanned from the given
+file, one per line. Trailing white space is removed from each line, and blank
+lines are ignored. These paths are processed before any that are listed on the
+command line. The filename can be given as "-" to refer to the standard input.
+If \fB--file\fP and \fB--file-list\fP are both specified as "-", patterns are
+read first. This is useful only when the standard input is a terminal, from
+which further lines (the list of files) can be read after an end-of-file
+indication. If this option is given more than once, all the specified files are
+read.
+.TP
+\fB--file-offsets\fP
+Instead of showing lines or parts of lines that match, show each match as an
+offset from the start of the file and a length, separated by a comma. In this
+mode, no context is shown. That is, the \fB-A\fP, \fB-B\fP, and \fB-C\fP
+options are ignored. If there is more than one match in a line, each of them is
+shown separately. This option is mutually exclusive with \fB--line-offsets\fP
+and \fB--only-matching\fP.
+.TP
+\fB-H\fP, \fB--with-filename\fP
+Force the inclusion of the filename at the start of output lines when searching
+a single file. By default, the filename is not shown in this case. For matching
+lines, the filename is followed by a colon; for context lines, a hyphen
+separator is used. If a line number is also being output, it follows the file
+name.
+.TP
+\fB-h\fP, \fB--no-filename\fP
+Suppress the output filenames when searching multiple files. By default,
+filenames are shown when multiple files are searched. For matching lines, the
+filename is followed by a colon; for context lines, a hyphen separator is used.
+If a line number is also being output, it follows the file name.
+.TP
+\fB--help\fP
+Output a help message, giving brief details of the command options and file
+type support, and then exit. Anything else on the command line is
+ignored.
+.TP
+\fB-I\fP
+Treat binary files as never matching. This is equivalent to
+\fB--binary-files\fP=\fIwithout-match\fP.
+.TP
+\fB-i\fP, \fB--ignore-case\fP
+Ignore upper/lower case distinctions during comparisons.
+.TP
+\fB--include\fP=\fIpattern\fP
+If any \fB--include\fP patterns are specified, the only files that are
+processed are those that match one of the patterns (and do not match an
+\fB--exclude\fP pattern). This option does not affect directories, but it
+applies to all files, whether listed on the command line, obtained from
+\fB--file-list\fP, or by scanning a directory. The pattern is a PCRE regular
+expression, and is matched against the final component of the file name, not
+the entire path. The \fB-F\fP, \fB-w\fP, and \fB-x\fP options do not apply to
+this pattern. The option may be given any number of times. If a file name
+matches both an \fB--include\fP and an \fB--exclude\fP pattern, it is excluded.
+There is no short form for this option.
+.TP
+\fB--include-from=\fP\fIfilename\fP
+Treat each non-empty line of the file as the data for an \fB--include\fP
+option. What constitutes a newline for this purpose is the operating system's
+default. The \fB--newline\fP option has no effect on this option. This option
+may be given any number of times; all the files are read.
+.TP
+\fB--include-dir\fP=\fIpattern\fP
+If any \fB--include-dir\fP patterns are specified, the only directories that
+are processed are those that match one of the patterns (and do not match an
+\fB--exclude-dir\fP pattern). This applies to all directories, whether listed
+on the command line, obtained from \fB--file-list\fP, or by scanning a parent
+directory. The pattern is a PCRE regular expression, and is matched against the
+final component of the directory name, not the entire path. The \fB-F\fP,
+\fB-w\fP, and \fB-x\fP options do not apply to this pattern. The option may be
+given any number of times. If a directory matches both \fB--include-dir\fP and
+\fB--exclude-dir\fP, it is excluded. There is no short form for this option.
+.TP
+\fB-L\fP, \fB--files-without-match\fP
+Instead of outputting lines from the files, just output the names of the files
+that do not contain any lines that would have been output. Each file name is
+output once, on a separate line.
+.TP
+\fB-l\fP, \fB--files-with-matches\fP
+Instead of outputting lines from the files, just output the names of the files
+containing lines that would have been output. Each file name is output
+once, on a separate line. Searching normally stops as soon as a matching line
+is found in a file. However, if the \fB-c\fP (count) option is also used,
+matching continues in order to obtain the correct count, and those files that
+have at least one match are listed along with their counts. Using this option
+with \fB-c\fP is a way of suppressing the listing of files with no matches.
+.TP
+\fB--label\fP=\fIname\fP
+This option supplies a name to be used for the standard input when file names
+are being output. If not supplied, "(standard input)" is used. There is no
+short form for this option.
+.TP
+\fB--line-buffered\fP
+When this option is given, input is read and processed line by line, and the
+output is flushed after each write. By default, input is read in large chunks,
+unless \fBpcregrep\fP can determine that it is reading from a terminal (which
+is currently possible only in Unix-like environments). Output to terminal is
+normally automatically flushed by the operating system. This option can be
+useful when the input or output is attached to a pipe and you do not want
+\fBpcregrep\fP to buffer up large amounts of data. However, its use will affect
+performance, and the \fB-M\fP (multiline) option ceases to work.
+.TP
+\fB--line-offsets\fP
+Instead of showing lines or parts of lines that match, show each match as a
+line number, the offset from the start of the line, and a length. The line
+number is terminated by a colon (as usual; see the \fB-n\fP option), and the
+offset and length are separated by a comma. In this mode, no context is shown.
+That is, the \fB-A\fP, \fB-B\fP, and \fB-C\fP options are ignored. If there is
+more than one match in a line, each of them is shown separately. This option is
+mutually exclusive with \fB--file-offsets\fP and \fB--only-matching\fP.
+.TP
+\fB--locale\fP=\fIlocale-name\fP
+This option specifies a locale to be used for pattern matching. It overrides
+the value in the \fBLC_ALL\fP or \fBLC_CTYPE\fP environment variables. If no
+locale is specified, the PCRE library's default (usually the "C" locale) is
+used. There is no short form for this option.
+.TP
+\fB--match-limit\fP=\fInumber\fP
+Processing some regular expression patterns can require a very large amount of
+memory, leading in some cases to a program crash if not enough is available.
+Other patterns may take a very long time to search for all possible matching
+strings. The \fBpcre_exec()\fP function that is called by \fBpcregrep\fP to do
+the matching has two parameters that can limit the resources that it uses.
+.sp
+The \fB--match-limit\fP option provides a means of limiting resource usage
+when processing patterns that are not going to match, but which have a very
+large number of possibilities in their search trees. The classic example is a
+pattern that uses nested unlimited repeats. Internally, PCRE uses a function
+called \fBmatch()\fP which it calls repeatedly (sometimes recursively). The
+limit set by \fB--match-limit\fP is imposed on the number of times this
+function is called during a match, which has the effect of limiting the amount
+of backtracking that can take place.
+.sp
+The \fB--recursion-limit\fP option is similar to \fB--match-limit\fP, but
+instead of limiting the total number of times that \fBmatch()\fP is called, it
+limits the depth of recursive calls, which in turn limits the amount of memory
+that can be used. The recursion depth is a smaller number than the total number
+of calls, because not all calls to \fBmatch()\fP are recursive. This limit is
+of use only if it is set smaller than \fB--match-limit\fP.
+.sp
+There are no short forms for these options. The default settings are specified
+when the PCRE library is compiled, with the default default being 10 million.
+.TP
+\fB-M\fP, \fB--multiline\fP
+Allow patterns to match more than one line. When this option is given, patterns
+may usefully contain literal newline characters and internal occurrences of ^
+and $ characters. The output for a successful match may consist of more than
+one line, the last of which is the one in which the match ended. If the matched
+string ends with a newline sequence the output ends at the end of that line.
+.sp
+When this option is set, the PCRE library is called in "multiline" mode.
+There is a limit to the number of lines that can be matched, imposed by the way
+that \fBpcregrep\fP buffers the input file as it scans it. However,
+\fBpcregrep\fP ensures that at least 8K characters or the rest of the document
+(whichever is the shorter) are available for forward matching, and similarly
+the previous 8K characters (or all the previous characters, if fewer than 8K)
+are guaranteed to be available for lookbehind assertions. This option does not
+work when input is read line by line (see \fP--line-buffered\fP.)
+.TP
+\fB-N\fP \fInewline-type\fP, \fB--newline\fP=\fInewline-type\fP
+The PCRE library supports five different conventions for indicating
+the ends of lines. They are the single-character sequences CR (carriage return)
+and LF (linefeed), the two-character sequence CRLF, an "anycrlf" convention,
+which recognizes any of the preceding three types, and an "any" convention, in
+which any Unicode line ending sequence is assumed to end a line. The Unicode
+sequences are the three just mentioned, plus VT (vertical tab, U+000B), FF
+(form feed, U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and
+PS (paragraph separator, U+2029).
+.sp
+When the PCRE library is built, a default line-ending sequence is specified.
+This is normally the standard sequence for the operating system. Unless
+otherwise specified by this option, \fBpcregrep\fP uses the library's default.
+The possible values for this option are CR, LF, CRLF, ANYCRLF, or ANY. This
+makes it possible to use \fBpcregrep\fP to scan files that have come from other
+environments without having to modify their line endings. If the data that is
+being scanned does not agree with the convention set by this option,
+\fBpcregrep\fP may behave in strange ways. Note that this option does not
+apply to files specified by the \fB-f\fP, \fB--exclude-from\fP, or
+\fB--include-from\fP options, which are expected to use the operating system's
+standard newline sequence.
+.TP
+\fB-n\fP, \fB--line-number\fP
+Precede each output line by its line number in the file, followed by a colon
+for matching lines or a hyphen for context lines. If the filename is also being
+output, it precedes the line number. This option is forced if
+\fB--line-offsets\fP is used.
+.TP
+\fB--no-jit\fP
+If the PCRE library is built with support for just-in-time compiling (which
+speeds up matching), \fBpcregrep\fP automatically makes use of this, unless it
+was explicitly disabled at build time. This option can be used to disable the
+use of JIT at run time. It is provided for testing and working round problems.
+It should never be needed in normal use.
+.TP
+\fB-o\fP, \fB--only-matching\fP
+Show only the part of the line that matched a pattern instead of the whole
+line. In this mode, no context is shown. That is, the \fB-A\fP, \fB-B\fP, and
+\fB-C\fP options are ignored. If there is more than one match in a line, each
+of them is shown separately. If \fB-o\fP is combined with \fB-v\fP (invert the
+sense of the match to find non-matching lines), no output is generated, but the
+return code is set appropriately. If the matched portion of the line is empty,
+nothing is output unless the file name or line number are being printed, in
+which case they are shown on an otherwise empty line. This option is mutually
+exclusive with \fB--file-offsets\fP and \fB--line-offsets\fP.
+.TP
+\fB-o\fP\fInumber\fP, \fB--only-matching\fP=\fInumber\fP
+Show only the part of the line that matched the capturing parentheses of the
+given number. Up to 32 capturing parentheses are supported, and -o0 is
+equivalent to \fB-o\fP without a number. Because these options can be given
+without an argument (see above), if an argument is present, it must be given in
+the same shell item, for example, -o3 or --only-matching=2. The comments given
+for the non-argument case above also apply to this case. If the specified
+capturing parentheses do not exist in the pattern, or were not set in the
+match, nothing is output unless the file name or line number are being printed.
+.sp
+If this option is given multiple times, multiple substrings are output, in the
+order the options are given. For example, -o3 -o1 -o3 causes the substrings
+matched by capturing parentheses 3 and 1 and then 3 again to be output. By
+default, there is no separator (but see the next option).
+.TP
+\fB--om-separator\fP=\fItext\fP
+Specify a separating string for multiple occurrences of \fB-o\fP. The default
+is an empty string. Separating strings are never coloured.
+.TP
+\fB-q\fP, \fB--quiet\fP
+Work quietly, that is, display nothing except error messages. The exit
+status indicates whether or not any matches were found.
+.TP
+\fB-r\fP, \fB--recursive\fP
+If any given path is a directory, recursively scan the files it contains,
+taking note of any \fB--include\fP and \fB--exclude\fP settings. By default, a
+directory is read as a normal file; in some operating systems this gives an
+immediate end-of-file. This option is a shorthand for setting the \fB-d\fP
+option to "recurse".
+.TP
+\fB--recursion-limit\fP=\fInumber\fP
+See \fB--match-limit\fP above.
+.TP
+\fB-s\fP, \fB--no-messages\fP
+Suppress error messages about non-existent or unreadable files. Such files are
+quietly skipped. However, the return code is still 2, even if matches were
+found in other files.
+.TP
+\fB-u\fP, \fB--utf-8\fP
+Operate in UTF-8 mode. This option is available only if PCRE has been compiled
+with UTF-8 support. All patterns (including those for any \fB--exclude\fP and
+\fB--include\fP options) and all subject lines that are scanned must be valid
+strings of UTF-8 characters.
+.TP
+\fB-V\fP, \fB--version\fP
+Write the version numbers of \fBpcregrep\fP and the PCRE library to the
+standard output and then exit. Anything else on the command line is
+ignored.
+.TP
+\fB-v\fP, \fB--invert-match\fP
+Invert the sense of the match, so that lines which do \fInot\fP match any of
+the patterns are the ones that are found.
+.TP
+\fB-w\fP, \fB--word-regex\fP, \fB--word-regexp\fP
+Force the patterns to match only whole words. This is equivalent to having \eb
+at the start and end of the pattern. This option applies only to the patterns
+that are matched against the contents of files; it does not apply to patterns
+specified by any of the \fB--include\fP or \fB--exclude\fP options.
+.TP
+\fB-x\fP, \fB--line-regex\fP, \fB--line-regexp\fP
+Force the patterns to be anchored (each must start matching at the beginning of
+a line) and in addition, require them to match entire lines. This is equivalent
+to having ^ and $ characters at the start and end of each alternative branch in
+every pattern. This option applies only to the patterns that are matched
+against the contents of files; it does not apply to patterns specified by any
+of the \fB--include\fP or \fB--exclude\fP options.
+.
+.
+.SH "ENVIRONMENT VARIABLES"
+.rs
+.sp
+The environment variables \fBLC_ALL\fP and \fBLC_CTYPE\fP are examined, in that
+order, for a locale. The first one that is set is used. This can be overridden
+by the \fB--locale\fP option. If no locale is set, the PCRE library's default
+(usually the "C" locale) is used.
+.
+.
+.SH "NEWLINES"
+.rs
+.sp
+The \fB-N\fP (\fB--newline\fP) option allows \fBpcregrep\fP to scan files with
+different newline conventions from the default. Any parts of the input files
+that are written to the standard output are copied identically, with whatever
+newline sequences they have in the input. However, the setting of this option
+does not affect the interpretation of files specified by the \fB-f\fP,
+\fB--exclude-from\fP, or \fB--include-from\fP options, which are assumed to use
+the operating system's standard newline sequence, nor does it affect the way in
+which \fBpcregrep\fP writes informational messages to the standard error and
+output streams. For these it uses the string "\en" to indicate newlines,
+relying on the C I/O library to convert this to an appropriate sequence.
+.
+.
+.SH "OPTIONS COMPATIBILITY"
+.rs
+.sp
+Many of the short and long forms of \fBpcregrep\fP's options are the same
+as in the GNU \fBgrep\fP program. Any long option of the form
+\fB--xxx-regexp\fP (GNU terminology) is also available as \fB--xxx-regex\fP
+(PCRE terminology). However, the \fB--file-list\fP, \fB--file-offsets\fP,
+\fB--include-dir\fP, \fB--line-offsets\fP, \fB--locale\fP, \fB--match-limit\fP,
+\fB-M\fP, \fB--multiline\fP, \fB-N\fP, \fB--newline\fP, \fB--om-separator\fP,
+\fB--recursion-limit\fP, \fB-u\fP, and \fB--utf-8\fP options are specific to
+\fBpcregrep\fP, as is the use of the \fB--only-matching\fP option with a
+capturing parentheses number.
+.P
+Although most of the common options work the same way, a few are different in
+\fBpcregrep\fP. For example, the \fB--include\fP option's argument is a glob
+for GNU \fBgrep\fP, but a regular expression for \fBpcregrep\fP. If both the
+\fB-c\fP and \fB-l\fP options are given, GNU grep lists only file names,
+without counts, but \fBpcregrep\fP gives the counts.
+.
+.
+.SH "OPTIONS WITH DATA"
+.rs
+.sp
+There are four different ways in which an option with data can be specified.
+If a short form option is used, the data may follow immediately, or (with one
+exception) in the next command line item. For example:
+.sp
+ -f/some/file
+ -f /some/file
+.sp
+The exception is the \fB-o\fP option, which may appear with or without data.
+Because of this, if data is present, it must follow immediately in the same
+item, for example -o3.
+.P
+If a long form option is used, the data may appear in the same command line
+item, separated by an equals character, or (with two exceptions) it may appear
+in the next command line item. For example:
+.sp
+ --file=/some/file
+ --file /some/file
+.sp
+Note, however, that if you want to supply a file name beginning with ~ as data
+in a shell command, and have the shell expand ~ to a home directory, you must
+separate the file name from the option, because the shell does not treat ~
+specially unless it is at the start of an item.
+.P
+The exceptions to the above are the \fB--colour\fP (or \fB--color\fP) and
+\fB--only-matching\fP options, for which the data is optional. If one of these
+options does have data, it must be given in the first form, using an equals
+character. Otherwise \fBpcregrep\fP will assume that it has no data.
+.
+.
+.SH "MATCHING ERRORS"
+.rs
+.sp
+It is possible to supply a regular expression that takes a very long time to
+fail to match certain lines. Such patterns normally involve nested indefinite
+repeats, for example: (a+)*\ed when matched against a line of a's with no final
+digit. The PCRE matching function has a resource limit that causes it to abort
+in these circumstances. If this happens, \fBpcregrep\fP outputs an error
+message and the line that caused the problem to the standard error stream. If
+there are more than 20 such errors, \fBpcregrep\fP gives up.
+.P
+The \fB--match-limit\fP option of \fBpcregrep\fP can be used to set the overall
+resource limit; there is a second option called \fB--recursion-limit\fP that
+sets a limit on the amount of memory (usually stack) that is used (see the
+discussion of these options above).
+.
+.
+.SH DIAGNOSTICS
+.rs
+.sp
+Exit status is 0 if any matches were found, 1 if no matches were found, and 2
+for syntax errors, overlong lines, non-existent or inaccessible files (even if
+matches were found in other files) or too many matching errors. Using the
+\fB-s\fP option to suppress error messages about inaccessible files does not
+affect the return code.
+.
+.
+.SH "SEE ALSO"
+.rs
+.sp
+\fBpcrepattern\fP(3), \fBpcresyntax\fP(3), \fBpcretest\fP(1).
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 13 September 2012
+Copyright (c) 1997-2012 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcregrep.txt b/pcre/doc/pcregrep.txt
new file mode 100644
index 00000000000..b31eb77c304
--- /dev/null
+++ b/pcre/doc/pcregrep.txt
@@ -0,0 +1,740 @@
+PCREGREP(1) General Commands Manual PCREGREP(1)
+
+
+
+NAME
+ pcregrep - a grep with Perl-compatible regular expressions.
+
+SYNOPSIS
+ pcregrep [options] [long options] [pattern] [path1 path2 ...]
+
+
+DESCRIPTION
+
+ pcregrep searches files for character patterns, in the same way as
+ other grep commands do, but it uses the PCRE regular expression library
+ to support patterns that are compatible with the regular expressions of
+ Perl 5. See pcrepattern(3) for a full description of syntax and seman-
+ tics of the regular expressions that PCRE supports.
+
+ Patterns, whether supplied on the command line or in a separate file,
+ are given without delimiters. For example:
+
+ pcregrep Thursday /etc/motd
+
+ If you attempt to use delimiters (for example, by surrounding a pattern
+ with slashes, as is common in Perl scripts), they are interpreted as
+ part of the pattern. Quotes can of course be used to delimit patterns
+ on the command line because they are interpreted by the shell, and
+ indeed quotes are required if a pattern contains white space or shell
+ metacharacters.
+
+ The first argument that follows any option settings is treated as the
+ single pattern to be matched when neither -e nor -f is present. Con-
+ versely, when one or both of these options are used to specify pat-
+ terns, all arguments are treated as path names. At least one of -e, -f,
+ or an argument pattern must be provided.
+
+ If no files are specified, pcregrep reads the standard input. The stan-
+ dard input can also be referenced by a name consisting of a single
+ hyphen. For example:
+
+ pcregrep some-pattern /file1 - /file3
+
+ By default, each line that matches a pattern is copied to the standard
+ output, and if there is more than one file, the file name is output at
+ the start of each line, followed by a colon. However, there are options
+ that can change how pcregrep behaves. In particular, the -M option
+ makes it possible to search for patterns that span line boundaries.
+ What defines a line boundary is controlled by the -N (--newline)
+ option.
+
+ The amount of memory used for buffering files that are being scanned is
+ controlled by a parameter that can be set by the --buffer-size option.
+ The default value for this parameter is specified when pcregrep is
+ built, with the default default being 20K. A block of memory three
+ times this size is used (to allow for buffering "before" and "after"
+ lines). An error occurs if a line overflows the buffer.
+
+ Patterns can be no longer than 8K or BUFSIZ bytes, whichever is the
+ greater. BUFSIZ is defined in . When there is more than one
+ pattern (specified by the use of -e and/or -f), each pattern is applied
+ to each line in the order in which they are defined, except that all
+ the -e patterns are tried before the -f patterns.
+
+ By default, as soon as one pattern matches a line, no further patterns
+ are considered. However, if --colour (or --color) is used to colour the
+ matching substrings, or if --only-matching, --file-offsets, or --line-
+ offsets is used to output only the part of the line that matched
+ (either shown literally, or as an offset), scanning resumes immediately
+ following the match, so that further matches on the same line can be
+ found. If there are multiple patterns, they are all tried on the
+ remainder of the line, but patterns that follow the one that matched
+ are not tried on the earlier part of the line.
+
+ This behaviour means that the order in which multiple patterns are
+ specified can affect the output when one of the above options is used.
+ This is no longer the same behaviour as GNU grep, which now manages to
+ display earlier matches for later patterns (as long as there is no
+ overlap).
+
+ Patterns that can match an empty string are accepted, but empty string
+ matches are never recognized. An example is the pattern
+ "(super)?(man)?", in which all components are optional. This pattern
+ finds all occurrences of both "super" and "man"; the output differs
+ from matching with "super|man" when only the matching substrings are
+ being shown.
+
+ If the LC_ALL or LC_CTYPE environment variable is set, pcregrep uses
+ the value to set a locale when calling the PCRE library. The --locale
+ option can be used to override this.
+
+
+SUPPORT FOR COMPRESSED FILES
+
+ It is possible to compile pcregrep so that it uses libz or libbz2 to
+ read files whose names end in .gz or .bz2, respectively. You can find
+ out whether your binary has support for one or both of these file types
+ by running it with the --help option. If the appropriate support is not
+ present, files are treated as plain text. The standard input is always
+ so treated.
+
+
+BINARY FILES
+
+ By default, a file that contains a binary zero byte within the first
+ 1024 bytes is identified as a binary file, and is processed specially.
+ (GNU grep also identifies binary files in this manner.) See the
+ --binary-files option for a means of changing the way binary files are
+ handled.
+
+
+OPTIONS
+
+ The order in which some of the options appear can affect the output.
+ For example, both the -h and -l options affect the printing of file
+ names. Whichever comes later in the command line will be the one that
+ takes effect. Similarly, except where noted below, if an option is
+ given twice, the later setting is used. Numerical values for options
+ may be followed by K or M, to signify multiplication by 1024 or
+ 1024*1024 respectively.
+
+ -- This terminates the list of options. It is useful if the next
+ item on the command line starts with a hyphen but is not an
+ option. This allows for the processing of patterns and file-
+ names that start with hyphens.
+
+ -A number, --after-context=number
+ Output number lines of context after each matching line. If
+ filenames and/or line numbers are being output, a hyphen sep-
+ arator is used instead of a colon for the context lines. A
+ line containing "--" is output between each group of lines,
+ unless they are in fact contiguous in the input file. The
+ value of number is expected to be relatively small. However,
+ pcregrep guarantees to have up to 8K of following text avail-
+ able for context output.
+
+ -a, --text
+ Treat binary files as text. This is equivalent to --binary-
+ files=text.
+
+ -B number, --before-context=number
+ Output number lines of context before each matching line. If
+ filenames and/or line numbers are being output, a hyphen sep-
+ arator is used instead of a colon for the context lines. A
+ line containing "--" is output between each group of lines,
+ unless they are in fact contiguous in the input file. The
+ value of number is expected to be relatively small. However,
+ pcregrep guarantees to have up to 8K of preceding text avail-
+ able for context output.
+
+ --binary-files=word
+ Specify how binary files are to be processed. If the word is
+ "binary" (the default), pattern matching is performed on
+ binary files, but the only output is "Binary file
+ matches" when a match succeeds. If the word is "text", which
+ is equivalent to the -a or --text option, binary files are
+ processed in the same way as any other file. In this case,
+ when a match succeeds, the output may be binary garbage,
+ which can have nasty effects if sent to a terminal. If the
+ word is "without-match", which is equivalent to the -I
+ option, binary files are not processed at all; they are
+ assumed not to be of interest.
+
+ --buffer-size=number
+ Set the parameter that controls how much memory is used for
+ buffering files that are being scanned.
+
+ -C number, --context=number
+ Output number lines of context both before and after each
+ matching line. This is equivalent to setting both -A and -B
+ to the same value.
+
+ -c, --count
+ Do not output individual lines from the files that are being
+ scanned; instead output the number of lines that would other-
+ wise have been shown. If no lines are selected, the number
+ zero is output. If several files are are being scanned, a
+ count is output for each of them. However, if the --files-
+ with-matches option is also used, only those files whose
+ counts are greater than zero are listed. When -c is used, the
+ -A, -B, and -C options are ignored.
+
+ --colour, --color
+ If this option is given without any data, it is equivalent to
+ "--colour=auto". If data is required, it must be given in
+ the same shell item, separated by an equals sign.
+
+ --colour=value, --color=value
+ This option specifies under what circumstances the parts of a
+ line that matched a pattern should be coloured in the output.
+ By default, the output is not coloured. The value (which is
+ optional, see above) may be "never", "always", or "auto". In
+ the latter case, colouring happens only if the standard out-
+ put is connected to a terminal. More resources are used when
+ colouring is enabled, because pcregrep has to search for all
+ possible matches in a line, not just one, in order to colour
+ them all.
+
+ The colour that is used can be specified by setting the envi-
+ ronment variable PCREGREP_COLOUR or PCREGREP_COLOR. The value
+ of this variable should be a string of two numbers, separated
+ by a semicolon. They are copied directly into the control
+ string for setting colour on a terminal, so it is your
+ responsibility to ensure that they make sense. If neither of
+ the environment variables is set, the default is "1;31",
+ which gives red.
+
+ -D action, --devices=action
+ If an input path is not a regular file or a directory,
+ "action" specifies how it is to be processed. Valid values
+ are "read" (the default) or "skip" (silently skip the path).
+
+ -d action, --directories=action
+ If an input path is a directory, "action" specifies how it is
+ to be processed. Valid values are "read" (the default in
+ non-Windows environments, for compatibility with GNU grep),
+ "recurse" (equivalent to the -r option), or "skip" (silently
+ skip the path, the default in Windows environments). In the
+ "read" case, directories are read as if they were ordinary
+ files. In some operating systems the effect of reading a
+ directory like this is an immediate end-of-file; in others it
+ may provoke an error.
+
+ -e pattern, --regex=pattern, --regexp=pattern
+ Specify a pattern to be matched. This option can be used mul-
+ tiple times in order to specify several patterns. It can also
+ be used as a way of specifying a single pattern that starts
+ with a hyphen. When -e is used, no argument pattern is taken
+ from the command line; all arguments are treated as file
+ names. There is no limit to the number of patterns. They are
+ applied to each line in the order in which they are defined
+ until one matches.
+
+ If -f is used with -e, the command line patterns are matched
+ first, followed by the patterns from the file(s), independent
+ of the order in which these options are specified. Note that
+ multiple use of -e is not the same as a single pattern with
+ alternatives. For example, X|Y finds the first character in a
+ line that is X or Y, whereas if the two patterns are given
+ separately, with X first, pcregrep finds X if it is present,
+ even if it follows Y in the line. It finds Y only if there is
+ no X in the line. This matters only if you are using -o or
+ --colo(u)r to show the part(s) of the line that matched.
+
+ --exclude=pattern
+ Files (but not directories) whose names match the pattern are
+ skipped without being processed. This applies to all files,
+ whether listed on the command line, obtained from --file-
+ list, or by scanning a directory. The pattern is a PCRE regu-
+ lar expression, and is matched against the final component of
+ the file name, not the entire path. The -F, -w, and -x
+ options do not apply to this pattern. The option may be given
+ any number of times in order to specify multiple patterns. If
+ a file name matches both an --include and an --exclude pat-
+ tern, it is excluded. There is no short form for this option.
+
+ --exclude-from=filename
+ Treat each non-empty line of the file as the data for an
+ --exclude option. What constitutes a newline when reading the
+ file is the operating system's default. The --newline option
+ has no effect on this option. This option may be given more
+ than once in order to specify a number of files to read.
+
+ --exclude-dir=pattern
+ Directories whose names match the pattern are skipped without
+ being processed, whatever the setting of the --recursive
+ option. This applies to all directories, whether listed on
+ the command line, obtained from --file-list, or by scanning a
+ parent directory. The pattern is a PCRE regular expression,
+ and is matched against the final component of the directory
+ name, not the entire path. The -F, -w, and -x options do not
+ apply to this pattern. The option may be given any number of
+ times in order to specify more than one pattern. If a direc-
+ tory matches both --include-dir and --exclude-dir, it is
+ excluded. There is no short form for this option.
+
+ -F, --fixed-strings
+ Interpret each data-matching pattern as a list of fixed
+ strings, separated by newlines, instead of as a regular
+ expression. What constitutes a newline for this purpose is
+ controlled by the --newline option. The -w (match as a word)
+ and -x (match whole line) options can be used with -F. They
+ apply to each of the fixed strings. A line is selected if any
+ of the fixed strings are found in it (subject to -w or -x, if
+ present). This option applies only to the patterns that are
+ matched against the contents of files; it does not apply to
+ patterns specified by any of the --include or --exclude
+ options.
+
+ -f filename, --file=filename
+ Read patterns from the file, one per line, and match them
+ against each line of input. What constitutes a newline when
+ reading the file is the operating system's default. The
+ --newline option has no effect on this option. Trailing white
+ space is removed from each line, and blank lines are ignored.
+ An empty file contains no patterns and therefore matches
+ nothing. See also the comments about multiple patterns versus
+ a single pattern with alternatives in the description of -e
+ above.
+
+ If this option is given more than once, all the specified
+ files are read. A data line is output if any of the patterns
+ match it. A filename can be given as "-" to refer to the
+ standard input. When -f is used, patterns specified on the
+ command line using -e may also be present; they are tested
+ before the file's patterns. However, no other pattern is
+ taken from the command line; all arguments are treated as the
+ names of paths to be searched.
+
+ --file-list=filename
+ Read a list of files and/or directories that are to be
+ scanned from the given file, one per line. Trailing white
+ space is removed from each line, and blank lines are ignored.
+ These paths are processed before any that are listed on the
+ command line. The filename can be given as "-" to refer to
+ the standard input. If --file and --file-list are both spec-
+ ified as "-", patterns are read first. This is useful only
+ when the standard input is a terminal, from which further
+ lines (the list of files) can be read after an end-of-file
+ indication. If this option is given more than once, all the
+ specified files are read.
+
+ --file-offsets
+ Instead of showing lines or parts of lines that match, show
+ each match as an offset from the start of the file and a
+ length, separated by a comma. In this mode, no context is
+ shown. That is, the -A, -B, and -C options are ignored. If
+ there is more than one match in a line, each of them is shown
+ separately. This option is mutually exclusive with --line-
+ offsets and --only-matching.
+
+ -H, --with-filename
+ Force the inclusion of the filename at the start of output
+ lines when searching a single file. By default, the filename
+ is not shown in this case. For matching lines, the filename
+ is followed by a colon; for context lines, a hyphen separator
+ is used. If a line number is also being output, it follows
+ the file name.
+
+ -h, --no-filename
+ Suppress the output filenames when searching multiple files.
+ By default, filenames are shown when multiple files are
+ searched. For matching lines, the filename is followed by a
+ colon; for context lines, a hyphen separator is used. If a
+ line number is also being output, it follows the file name.
+
+ --help Output a help message, giving brief details of the command
+ options and file type support, and then exit. Anything else
+ on the command line is ignored.
+
+ -I Treat binary files as never matching. This is equivalent to
+ --binary-files=without-match.
+
+ -i, --ignore-case
+ Ignore upper/lower case distinctions during comparisons.
+
+ --include=pattern
+ If any --include patterns are specified, the only files that
+ are processed are those that match one of the patterns (and
+ do not match an --exclude pattern). This option does not
+ affect directories, but it applies to all files, whether
+ listed on the command line, obtained from --file-list, or by
+ scanning a directory. The pattern is a PCRE regular expres-
+ sion, and is matched against the final component of the file
+ name, not the entire path. The -F, -w, and -x options do not
+ apply to this pattern. The option may be given any number of
+ times. If a file name matches both an --include and an
+ --exclude pattern, it is excluded. There is no short form
+ for this option.
+
+ --include-from=filename
+ Treat each non-empty line of the file as the data for an
+ --include option. What constitutes a newline for this purpose
+ is the operating system's default. The --newline option has
+ no effect on this option. This option may be given any number
+ of times; all the files are read.
+
+ --include-dir=pattern
+ If any --include-dir patterns are specified, the only direc-
+ tories that are processed are those that match one of the
+ patterns (and do not match an --exclude-dir pattern). This
+ applies to all directories, whether listed on the command
+ line, obtained from --file-list, or by scanning a parent
+ directory. The pattern is a PCRE regular expression, and is
+ matched against the final component of the directory name,
+ not the entire path. The -F, -w, and -x options do not apply
+ to this pattern. The option may be given any number of times.
+ If a directory matches both --include-dir and --exclude-dir,
+ it is excluded. There is no short form for this option.
+
+ -L, --files-without-match
+ Instead of outputting lines from the files, just output the
+ names of the files that do not contain any lines that would
+ have been output. Each file name is output once, on a sepa-
+ rate line.
+
+ -l, --files-with-matches
+ Instead of outputting lines from the files, just output the
+ names of the files containing lines that would have been out-
+ put. Each file name is output once, on a separate line.
+ Searching normally stops as soon as a matching line is found
+ in a file. However, if the -c (count) option is also used,
+ matching continues in order to obtain the correct count, and
+ those files that have at least one match are listed along
+ with their counts. Using this option with -c is a way of sup-
+ pressing the listing of files with no matches.
+
+ --label=name
+ This option supplies a name to be used for the standard input
+ when file names are being output. If not supplied, "(standard
+ input)" is used. There is no short form for this option.
+
+ --line-buffered
+ When this option is given, input is read and processed line
+ by line, and the output is flushed after each write. By
+ default, input is read in large chunks, unless pcregrep can
+ determine that it is reading from a terminal (which is cur-
+ rently possible only in Unix-like environments). Output to
+ terminal is normally automatically flushed by the operating
+ system. This option can be useful when the input or output is
+ attached to a pipe and you do not want pcregrep to buffer up
+ large amounts of data. However, its use will affect perfor-
+ mance, and the -M (multiline) option ceases to work.
+
+ --line-offsets
+ Instead of showing lines or parts of lines that match, show
+ each match as a line number, the offset from the start of the
+ line, and a length. The line number is terminated by a colon
+ (as usual; see the -n option), and the offset and length are
+ separated by a comma. In this mode, no context is shown.
+ That is, the -A, -B, and -C options are ignored. If there is
+ more than one match in a line, each of them is shown sepa-
+ rately. This option is mutually exclusive with --file-offsets
+ and --only-matching.
+
+ --locale=locale-name
+ This option specifies a locale to be used for pattern match-
+ ing. It overrides the value in the LC_ALL or LC_CTYPE envi-
+ ronment variables. If no locale is specified, the PCRE
+ library's default (usually the "C" locale) is used. There is
+ no short form for this option.
+
+ --match-limit=number
+ Processing some regular expression patterns can require a
+ very large amount of memory, leading in some cases to a pro-
+ gram crash if not enough is available. Other patterns may
+ take a very long time to search for all possible matching
+ strings. The pcre_exec() function that is called by pcregrep
+ to do the matching has two parameters that can limit the
+ resources that it uses.
+
+ The --match-limit option provides a means of limiting
+ resource usage when processing patterns that are not going to
+ match, but which have a very large number of possibilities in
+ their search trees. The classic example is a pattern that
+ uses nested unlimited repeats. Internally, PCRE uses a func-
+ tion called match() which it calls repeatedly (sometimes
+ recursively). The limit set by --match-limit is imposed on
+ the number of times this function is called during a match,
+ which has the effect of limiting the amount of backtracking
+ that can take place.
+
+ The --recursion-limit option is similar to --match-limit, but
+ instead of limiting the total number of times that match() is
+ called, it limits the depth of recursive calls, which in turn
+ limits the amount of memory that can be used. The recursion
+ depth is a smaller number than the total number of calls,
+ because not all calls to match() are recursive. This limit is
+ of use only if it is set smaller than --match-limit.
+
+ There are no short forms for these options. The default set-
+ tings are specified when the PCRE library is compiled, with
+ the default default being 10 million.
+
+ -M, --multiline
+ Allow patterns to match more than one line. When this option
+ is given, patterns may usefully contain literal newline char-
+ acters and internal occurrences of ^ and $ characters. The
+ output for a successful match may consist of more than one
+ line, the last of which is the one in which the match ended.
+ If the matched string ends with a newline sequence the output
+ ends at the end of that line.
+
+ When this option is set, the PCRE library is called in "mul-
+ tiline" mode. There is a limit to the number of lines that
+ can be matched, imposed by the way that pcregrep buffers the
+ input file as it scans it. However, pcregrep ensures that at
+ least 8K characters or the rest of the document (whichever is
+ the shorter) are available for forward matching, and simi-
+ larly the previous 8K characters (or all the previous charac-
+ ters, if fewer than 8K) are guaranteed to be available for
+ lookbehind assertions. This option does not work when input
+ is read line by line (see --line-buffered.)
+
+ -N newline-type, --newline=newline-type
+ The PCRE library supports five different conventions for
+ indicating the ends of lines. They are the single-character
+ sequences CR (carriage return) and LF (linefeed), the two-
+ character sequence CRLF, an "anycrlf" convention, which rec-
+ ognizes any of the preceding three types, and an "any" con-
+ vention, in which any Unicode line ending sequence is assumed
+ to end a line. The Unicode sequences are the three just men-
+ tioned, plus VT (vertical tab, U+000B), FF (form feed,
+ U+000C), NEL (next line, U+0085), LS (line separator,
+ U+2028), and PS (paragraph separator, U+2029).
+
+ When the PCRE library is built, a default line-ending
+ sequence is specified. This is normally the standard
+ sequence for the operating system. Unless otherwise specified
+ by this option, pcregrep uses the library's default. The
+ possible values for this option are CR, LF, CRLF, ANYCRLF, or
+ ANY. This makes it possible to use pcregrep to scan files
+ that have come from other environments without having to mod-
+ ify their line endings. If the data that is being scanned
+ does not agree with the convention set by this option, pcre-
+ grep may behave in strange ways. Note that this option does
+ not apply to files specified by the -f, --exclude-from, or
+ --include-from options, which are expected to use the operat-
+ ing system's standard newline sequence.
+
+ -n, --line-number
+ Precede each output line by its line number in the file, fol-
+ lowed by a colon for matching lines or a hyphen for context
+ lines. If the filename is also being output, it precedes the
+ line number. This option is forced if --line-offsets is used.
+
+ --no-jit If the PCRE library is built with support for just-in-time
+ compiling (which speeds up matching), pcregrep automatically
+ makes use of this, unless it was explicitly disabled at build
+ time. This option can be used to disable the use of JIT at
+ run time. It is provided for testing and working round prob-
+ lems. It should never be needed in normal use.
+
+ -o, --only-matching
+ Show only the part of the line that matched a pattern instead
+ of the whole line. In this mode, no context is shown. That
+ is, the -A, -B, and -C options are ignored. If there is more
+ than one match in a line, each of them is shown separately.
+ If -o is combined with -v (invert the sense of the match to
+ find non-matching lines), no output is generated, but the
+ return code is set appropriately. If the matched portion of
+ the line is empty, nothing is output unless the file name or
+ line number are being printed, in which case they are shown
+ on an otherwise empty line. This option is mutually exclusive
+ with --file-offsets and --line-offsets.
+
+ -onumber, --only-matching=number
+ Show only the part of the line that matched the capturing
+ parentheses of the given number. Up to 32 capturing parenthe-
+ ses are supported, and -o0 is equivalent to -o without a num-
+ ber. Because these options can be given without an argument
+ (see above), if an argument is present, it must be given in
+ the same shell item, for example, -o3 or --only-matching=2.
+ The comments given for the non-argument case above also apply
+ to this case. If the specified capturing parentheses do not
+ exist in the pattern, or were not set in the match, nothing
+ is output unless the file name or line number are being
+ printed.
+
+ If this option is given multiple times, multiple substrings
+ are output, in the order the options are given. For example,
+ -o3 -o1 -o3 causes the substrings matched by capturing paren-
+ theses 3 and 1 and then 3 again to be output. By default,
+ there is no separator (but see the next option).
+
+ --om-separator=text
+ Specify a separating string for multiple occurrences of -o.
+ The default is an empty string. Separating strings are never
+ coloured.
+
+ -q, --quiet
+ Work quietly, that is, display nothing except error messages.
+ The exit status indicates whether or not any matches were
+ found.
+
+ -r, --recursive
+ If any given path is a directory, recursively scan the files
+ it contains, taking note of any --include and --exclude set-
+ tings. By default, a directory is read as a normal file; in
+ some operating systems this gives an immediate end-of-file.
+ This option is a shorthand for setting the -d option to
+ "recurse".
+
+ --recursion-limit=number
+ See --match-limit above.
+
+ -s, --no-messages
+ Suppress error messages about non-existent or unreadable
+ files. Such files are quietly skipped. However, the return
+ code is still 2, even if matches were found in other files.
+
+ -u, --utf-8
+ Operate in UTF-8 mode. This option is available only if PCRE
+ has been compiled with UTF-8 support. All patterns (including
+ those for any --exclude and --include options) and all sub-
+ ject lines that are scanned must be valid strings of UTF-8
+ characters.
+
+ -V, --version
+ Write the version numbers of pcregrep and the PCRE library to
+ the standard output and then exit. Anything else on the com-
+ mand line is ignored.
+
+ -v, --invert-match
+ Invert the sense of the match, so that lines which do not
+ match any of the patterns are the ones that are found.
+
+ -w, --word-regex, --word-regexp
+ Force the patterns to match only whole words. This is equiva-
+ lent to having \b at the start and end of the pattern. This
+ option applies only to the patterns that are matched against
+ the contents of files; it does not apply to patterns speci-
+ fied by any of the --include or --exclude options.
+
+ -x, --line-regex, --line-regexp
+ Force the patterns to be anchored (each must start matching
+ at the beginning of a line) and in addition, require them to
+ match entire lines. This is equivalent to having ^ and $
+ characters at the start and end of each alternative branch in
+ every pattern. This option applies only to the patterns that
+ are matched against the contents of files; it does not apply
+ to patterns specified by any of the --include or --exclude
+ options.
+
+
+ENVIRONMENT VARIABLES
+
+ The environment variables LC_ALL and LC_CTYPE are examined, in that
+ order, for a locale. The first one that is set is used. This can be
+ overridden by the --locale option. If no locale is set, the PCRE
+ library's default (usually the "C" locale) is used.
+
+
+NEWLINES
+
+ The -N (--newline) option allows pcregrep to scan files with different
+ newline conventions from the default. Any parts of the input files that
+ are written to the standard output are copied identically, with what-
+ ever newline sequences they have in the input. However, the setting of
+ this option does not affect the interpretation of files specified by
+ the -f, --exclude-from, or --include-from options, which are assumed to
+ use the operating system's standard newline sequence, nor does it
+ affect the way in which pcregrep writes informational messages to the
+ standard error and output streams. For these it uses the string "\n" to
+ indicate newlines, relying on the C I/O library to convert this to an
+ appropriate sequence.
+
+
+OPTIONS COMPATIBILITY
+
+ Many of the short and long forms of pcregrep's options are the same as
+ in the GNU grep program. Any long option of the form --xxx-regexp (GNU
+ terminology) is also available as --xxx-regex (PCRE terminology). How-
+ ever, the --file-list, --file-offsets, --include-dir, --line-offsets,
+ --locale, --match-limit, -M, --multiline, -N, --newline, --om-separa-
+ tor, --recursion-limit, -u, and --utf-8 options are specific to pcre-
+ grep, as is the use of the --only-matching option with a capturing
+ parentheses number.
+
+ Although most of the common options work the same way, a few are dif-
+ ferent in pcregrep. For example, the --include option's argument is a
+ glob for GNU grep, but a regular expression for pcregrep. If both the
+ -c and -l options are given, GNU grep lists only file names, without
+ counts, but pcregrep gives the counts.
+
+
+OPTIONS WITH DATA
+
+ There are four different ways in which an option with data can be spec-
+ ified. If a short form option is used, the data may follow immedi-
+ ately, or (with one exception) in the next command line item. For exam-
+ ple:
+
+ -f/some/file
+ -f /some/file
+
+ The exception is the -o option, which may appear with or without data.
+ Because of this, if data is present, it must follow immediately in the
+ same item, for example -o3.
+
+ If a long form option is used, the data may appear in the same command
+ line item, separated by an equals character, or (with two exceptions)
+ it may appear in the next command line item. For example:
+
+ --file=/some/file
+ --file /some/file
+
+ Note, however, that if you want to supply a file name beginning with ~
+ as data in a shell command, and have the shell expand ~ to a home
+ directory, you must separate the file name from the option, because the
+ shell does not treat ~ specially unless it is at the start of an item.
+
+ The exceptions to the above are the --colour (or --color) and --only-
+ matching options, for which the data is optional. If one of these
+ options does have data, it must be given in the first form, using an
+ equals character. Otherwise pcregrep will assume that it has no data.
+
+
+MATCHING ERRORS
+
+ It is possible to supply a regular expression that takes a very long
+ time to fail to match certain lines. Such patterns normally involve
+ nested indefinite repeats, for example: (a+)*\d when matched against a
+ line of a's with no final digit. The PCRE matching function has a
+ resource limit that causes it to abort in these circumstances. If this
+ happens, pcregrep outputs an error message and the line that caused the
+ problem to the standard error stream. If there are more than 20 such
+ errors, pcregrep gives up.
+
+ The --match-limit option of pcregrep can be used to set the overall
+ resource limit; there is a second option called --recursion-limit that
+ sets a limit on the amount of memory (usually stack) that is used (see
+ the discussion of these options above).
+
+
+DIAGNOSTICS
+
+ Exit status is 0 if any matches were found, 1 if no matches were found,
+ and 2 for syntax errors, overlong lines, non-existent or inaccessible
+ files (even if matches were found in other files) or too many matching
+ errors. Using the -s option to suppress error messages about inaccessi-
+ ble files does not affect the return code.
+
+
+SEE ALSO
+
+ pcrepattern(3), pcresyntax(3), pcretest(1).
+
+
+AUTHOR
+
+ Philip Hazel
+ University Computing Service
+ Cambridge CB2 3QH, England.
+
+
+REVISION
+
+ Last updated: 13 September 2012
+ Copyright (c) 1997-2012 University of Cambridge.
diff --git a/pcre/doc/pcrejit.3 b/pcre/doc/pcrejit.3
new file mode 100644
index 00000000000..341403f7c84
--- /dev/null
+++ b/pcre/doc/pcrejit.3
@@ -0,0 +1,431 @@
+.TH PCREJIT 3 "17 March 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH "PCRE JUST-IN-TIME COMPILER SUPPORT"
+.rs
+.sp
+Just-in-time compiling is a heavyweight optimization that can greatly speed up
+pattern matching. However, it comes at the cost of extra processing before the
+match is performed. Therefore, it is of most benefit when the same pattern is
+going to be matched many times. This does not necessarily mean many calls of a
+matching function; if the pattern is not anchored, matching attempts may take
+place many times at various positions in the subject, even for a single call.
+Therefore, if the subject string is very long, it may still pay to use JIT for
+one-off matches.
+.P
+JIT support applies only to the traditional Perl-compatible matching function.
+It does not apply when the DFA matching function is being used. The code for
+this support was written by Zoltan Herczeg.
+.
+.
+.SH "8-BIT, 16-BIT AND 32-BIT SUPPORT"
+.rs
+.sp
+JIT support is available for all of the 8-bit, 16-bit and 32-bit PCRE
+libraries. To keep this documentation simple, only the 8-bit interface is
+described in what follows. If you are using the 16-bit library, substitute the
+16-bit functions and 16-bit structures (for example, \fIpcre16_jit_stack\fP
+instead of \fIpcre_jit_stack\fP). If you are using the 32-bit library,
+substitute the 32-bit functions and 32-bit structures (for example,
+\fIpcre32_jit_stack\fP instead of \fIpcre_jit_stack\fP).
+.
+.
+.SH "AVAILABILITY OF JIT SUPPORT"
+.rs
+.sp
+JIT support is an optional feature of PCRE. The "configure" option --enable-jit
+(or equivalent CMake option) must be set when PCRE is built if you want to use
+JIT. The support is limited to the following hardware platforms:
+.sp
+ ARM v5, v7, and Thumb2
+ Intel x86 32-bit and 64-bit
+ MIPS 32-bit
+ Power PC 32-bit and 64-bit
+ SPARC 32-bit (experimental)
+.sp
+If --enable-jit is set on an unsupported platform, compilation fails.
+.P
+A program that is linked with PCRE 8.20 or later can tell if JIT support is
+available by calling \fBpcre_config()\fP with the PCRE_CONFIG_JIT option. The
+result is 1 when JIT is available, and 0 otherwise. However, a simple program
+does not need to check this in order to use JIT. The normal API is implemented
+in a way that falls back to the interpretive code if JIT is not available. For
+programs that need the best possible performance, there is also a "fast path"
+API that is JIT-specific.
+.P
+If your program may sometimes be linked with versions of PCRE that are older
+than 8.20, but you want to use JIT when it is available, you can test
+the values of PCRE_MAJOR and PCRE_MINOR, or the existence of a JIT macro such
+as PCRE_CONFIG_JIT, for compile-time control of your code.
+.
+.
+.SH "SIMPLE USE OF JIT"
+.rs
+.sp
+You have to do two things to make use of the JIT support in the simplest way:
+.sp
+ (1) Call \fBpcre_study()\fP with the PCRE_STUDY_JIT_COMPILE option for
+ each compiled pattern, and pass the resulting \fBpcre_extra\fP block to
+ \fBpcre_exec()\fP.
+.sp
+ (2) Use \fBpcre_free_study()\fP to free the \fBpcre_extra\fP block when it is
+ no longer needed, instead of just freeing it yourself. This ensures that
+ any JIT data is also freed.
+.sp
+For a program that may be linked with pre-8.20 versions of PCRE, you can insert
+.sp
+ #ifndef PCRE_STUDY_JIT_COMPILE
+ #define PCRE_STUDY_JIT_COMPILE 0
+ #endif
+.sp
+so that no option is passed to \fBpcre_study()\fP, and then use something like
+this to free the study data:
+.sp
+ #ifdef PCRE_CONFIG_JIT
+ pcre_free_study(study_ptr);
+ #else
+ pcre_free(study_ptr);
+ #endif
+.sp
+PCRE_STUDY_JIT_COMPILE requests the JIT compiler to generate code for complete
+matches. If you want to run partial matches using the PCRE_PARTIAL_HARD or
+PCRE_PARTIAL_SOFT options of \fBpcre_exec()\fP, you should set one or both of
+the following options in addition to, or instead of, PCRE_STUDY_JIT_COMPILE
+when you call \fBpcre_study()\fP:
+.sp
+ PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
+.sp
+The JIT compiler generates different optimized code for each of the three
+modes (normal, soft partial, hard partial). When \fBpcre_exec()\fP is called,
+the appropriate code is run if it is available. Otherwise, the pattern is
+matched using interpretive code.
+.P
+In some circumstances you may need to call additional functions. These are
+described in the section entitled
+.\" HTML
+.\"
+"Controlling the JIT stack"
+.\"
+below.
+.P
+If JIT support is not available, PCRE_STUDY_JIT_COMPILE etc. are ignored, and
+no JIT data is created. Otherwise, the compiled pattern is passed to the JIT
+compiler, which turns it into machine code that executes much faster than the
+normal interpretive code. When \fBpcre_exec()\fP is passed a \fBpcre_extra\fP
+block containing a pointer to JIT code of the appropriate mode (normal or
+hard/soft partial), it obeys that code instead of running the interpreter. The
+result is identical, but the compiled JIT code runs much faster.
+.P
+There are some \fBpcre_exec()\fP options that are not supported for JIT
+execution. There are also some pattern items that JIT cannot handle. Details
+are given below. In both cases, execution automatically falls back to the
+interpretive code. If you want to know whether JIT was actually used for a
+particular match, you should arrange for a JIT callback function to be set up
+as described in the section entitled
+.\" HTML
+.\"
+"Controlling the JIT stack"
+.\"
+below, even if you do not need to supply a non-default JIT stack. Such a
+callback function is called whenever JIT code is about to be obeyed. If the
+execution options are not right for JIT execution, the callback function is not
+obeyed.
+.P
+If the JIT compiler finds an unsupported item, no JIT data is generated. You
+can find out if JIT execution is available after studying a pattern by calling
+\fBpcre_fullinfo()\fP with the PCRE_INFO_JIT option. A result of 1 means that
+JIT compilation was successful. A result of 0 means that JIT support is not
+available, or the pattern was not studied with PCRE_STUDY_JIT_COMPILE etc., or
+the JIT compiler was not able to handle the pattern.
+.P
+Once a pattern has been studied, with or without JIT, it can be used as many
+times as you like for matching different subject strings.
+.
+.
+.SH "UNSUPPORTED OPTIONS AND PATTERN ITEMS"
+.rs
+.sp
+The only \fBpcre_exec()\fP options that are supported for JIT execution are
+PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK, PCRE_NO_UTF32_CHECK, PCRE_NOTBOL,
+PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART, PCRE_PARTIAL_HARD, and
+PCRE_PARTIAL_SOFT.
+.P
+The only unsupported pattern items are \eC (match a single data unit) when
+running in a UTF mode, and a callout immediately before an assertion condition
+in a conditional group.
+.
+.
+.SH "RETURN VALUES FROM JIT EXECUTION"
+.rs
+.sp
+When a pattern is matched using JIT execution, the return values are the same
+as those given by the interpretive \fBpcre_exec()\fP code, with the addition of
+one new error code: PCRE_ERROR_JIT_STACKLIMIT. This means that the memory used
+for the JIT stack was insufficient. See
+.\" HTML
+.\"
+"Controlling the JIT stack"
+.\"
+below for a discussion of JIT stack usage. For compatibility with the
+interpretive \fBpcre_exec()\fP code, no more than two-thirds of the
+\fIovector\fP argument is used for passing back captured substrings.
+.P
+The error code PCRE_ERROR_MATCHLIMIT is returned by the JIT code if searching a
+very large pattern tree goes on for too long, as it is in the same circumstance
+when JIT is not used, but the details of exactly what is counted are not the
+same. The PCRE_ERROR_RECURSIONLIMIT error code is never returned by JIT
+execution.
+.
+.
+.SH "SAVING AND RESTORING COMPILED PATTERNS"
+.rs
+.sp
+The code that is generated by the JIT compiler is architecture-specific, and is
+also position dependent. For those reasons it cannot be saved (in a file or
+database) and restored later like the bytecode and other data of a compiled
+pattern. Saving and restoring compiled patterns is not something many people
+do. More detail about this facility is given in the
+.\" HREF
+\fBpcreprecompile\fP
+.\"
+documentation. It should be possible to run \fBpcre_study()\fP on a saved and
+restored pattern, and thereby recreate the JIT data, but because JIT
+compilation uses significant resources, it is probably not worth doing this;
+you might as well recompile the original pattern.
+.
+.
+.\" HTML
+.SH "CONTROLLING THE JIT STACK"
+.rs
+.sp
+When the compiled JIT code runs, it needs a block of memory to use as a stack.
+By default, it uses 32K on the machine stack. However, some large or
+complicated patterns need more than this. The error PCRE_ERROR_JIT_STACKLIMIT
+is given when there is not enough stack. Three functions are provided for
+managing blocks of memory for use as JIT stacks. There is further discussion
+about the use of JIT stacks in the section entitled
+.\" HTML
+.\"
+"JIT stack FAQ"
+.\"
+below.
+.P
+The \fBpcre_jit_stack_alloc()\fP function creates a JIT stack. Its arguments
+are a starting size and a maximum size, and it returns a pointer to an opaque
+structure of type \fBpcre_jit_stack\fP, or NULL if there is an error. The
+\fBpcre_jit_stack_free()\fP function can be used to free a stack that is no
+longer needed. (For the technically minded: the address space is allocated by
+mmap or VirtualAlloc.)
+.P
+JIT uses far less memory for recursion than the interpretive code,
+and a maximum stack size of 512K to 1M should be more than enough for any
+pattern.
+.P
+The \fBpcre_assign_jit_stack()\fP function specifies which stack JIT code
+should use. Its arguments are as follows:
+.sp
+ pcre_extra *extra
+ pcre_jit_callback callback
+ void *data
+.sp
+The \fIextra\fP argument must be the result of studying a pattern with
+PCRE_STUDY_JIT_COMPILE etc. There are three cases for the values of the other
+two options:
+.sp
+ (1) If \fIcallback\fP is NULL and \fIdata\fP is NULL, an internal 32K block
+ on the machine stack is used.
+.sp
+ (2) If \fIcallback\fP is NULL and \fIdata\fP is not NULL, \fIdata\fP must be
+ a valid JIT stack, the result of calling \fBpcre_jit_stack_alloc()\fP.
+.sp
+ (3) If \fIcallback\fP is not NULL, it must point to a function that is
+ called with \fIdata\fP as an argument at the start of matching, in
+ order to set up a JIT stack. If the return from the callback
+ function is NULL, the internal 32K stack is used; otherwise the
+ return value must be a valid JIT stack, the result of calling
+ \fBpcre_jit_stack_alloc()\fP.
+.sp
+A callback function is obeyed whenever JIT code is about to be run; it is not
+obeyed when \fBpcre_exec()\fP is called with options that are incompatible for
+JIT execution. A callback function can therefore be used to determine whether a
+match operation was executed by JIT or by the interpreter.
+.P
+You may safely use the same JIT stack for more than one pattern (either by
+assigning directly or by callback), as long as the patterns are all matched
+sequentially in the same thread. In a multithread application, if you do not
+specify a JIT stack, or if you assign or pass back NULL from a callback, that
+is thread-safe, because each thread has its own machine stack. However, if you
+assign or pass back a non-NULL JIT stack, this must be a different stack for
+each thread so that the application is thread-safe.
+.P
+Strictly speaking, even more is allowed. You can assign the same non-NULL stack
+to any number of patterns as long as they are not used for matching by multiple
+threads at the same time. For example, you can assign the same stack to all
+compiled patterns, and use a global mutex in the callback to wait until the
+stack is available for use. However, this is an inefficient solution, and not
+recommended.
+.P
+This is a suggestion for how a multithreaded program that needs to set up
+non-default JIT stacks might operate:
+.sp
+ During thread initalization
+ thread_local_var = pcre_jit_stack_alloc(...)
+.sp
+ During thread exit
+ pcre_jit_stack_free(thread_local_var)
+.sp
+ Use a one-line callback function
+ return thread_local_var
+.sp
+All the functions described in this section do nothing if JIT is not available,
+and \fBpcre_assign_jit_stack()\fP does nothing unless the \fBextra\fP argument
+is non-NULL and points to a \fBpcre_extra\fP block that is the result of a
+successful study with PCRE_STUDY_JIT_COMPILE etc.
+.
+.
+.\" HTML
+.SH "JIT STACK FAQ"
+.rs
+.sp
+(1) Why do we need JIT stacks?
+.sp
+PCRE (and JIT) is a recursive, depth-first engine, so it needs a stack where
+the local data of the current node is pushed before checking its child nodes.
+Allocating real machine stack on some platforms is difficult. For example, the
+stack chain needs to be updated every time if we extend the stack on PowerPC.
+Although it is possible, its updating time overhead decreases performance. So
+we do the recursion in memory.
+.P
+(2) Why don't we simply allocate blocks of memory with \fBmalloc()\fP?
+.sp
+Modern operating systems have a nice feature: they can reserve an address space
+instead of allocating memory. We can safely allocate memory pages inside this
+address space, so the stack could grow without moving memory data (this is
+important because of pointers). Thus we can allocate 1M address space, and use
+only a single memory page (usually 4K) if that is enough. However, we can still
+grow up to 1M anytime if needed.
+.P
+(3) Who "owns" a JIT stack?
+.sp
+The owner of the stack is the user program, not the JIT studied pattern or
+anything else. The user program must ensure that if a stack is used by
+\fBpcre_exec()\fP, (that is, it is assigned to the pattern currently running),
+that stack must not be used by any other threads (to avoid overwriting the same
+memory area). The best practice for multithreaded programs is to allocate a
+stack for each thread, and return this stack through the JIT callback function.
+.P
+(4) When should a JIT stack be freed?
+.sp
+You can free a JIT stack at any time, as long as it will not be used by
+\fBpcre_exec()\fP again. When you assign the stack to a pattern, only a pointer
+is set. There is no reference counting or any other magic. You can free the
+patterns and stacks in any order, anytime. Just \fIdo not\fP call
+\fBpcre_exec()\fP with a pattern pointing to an already freed stack, as that
+will cause SEGFAULT. (Also, do not free a stack currently used by
+\fBpcre_exec()\fP in another thread). You can also replace the stack for a
+pattern at any time. You can even free the previous stack before assigning a
+replacement.
+.P
+(5) Should I allocate/free a stack every time before/after calling
+\fBpcre_exec()\fP?
+.sp
+No, because this is too costly in terms of resources. However, you could
+implement some clever idea which release the stack if it is not used in let's
+say two minutes. The JIT callback can help to achieve this without keeping a
+list of the currently JIT studied patterns.
+.P
+(6) OK, the stack is for long term memory allocation. But what happens if a
+pattern causes stack overflow with a stack of 1M? Is that 1M kept until the
+stack is freed?
+.sp
+Especially on embedded sytems, it might be a good idea to release memory
+sometimes without freeing the stack. There is no API for this at the moment.
+Probably a function call which returns with the currently allocated memory for
+any stack and another which allows releasing memory (shrinking the stack) would
+be a good idea if someone needs this.
+.P
+(7) This is too much of a headache. Isn't there any better solution for JIT
+stack handling?
+.sp
+No, thanks to Windows. If POSIX threads were used everywhere, we could throw
+out this complicated API.
+.
+.
+.SH "EXAMPLE CODE"
+.rs
+.sp
+This is a single-threaded example that specifies a JIT stack without using a
+callback.
+.sp
+ int rc;
+ int ovector[30];
+ pcre *re;
+ pcre_extra *extra;
+ pcre_jit_stack *jit_stack;
+.sp
+ re = pcre_compile(pattern, 0, &error, &erroffset, NULL);
+ /* Check for errors */
+ extra = pcre_study(re, PCRE_STUDY_JIT_COMPILE, &error);
+ jit_stack = pcre_jit_stack_alloc(32*1024, 512*1024);
+ /* Check for error (NULL) */
+ pcre_assign_jit_stack(extra, NULL, jit_stack);
+ rc = pcre_exec(re, extra, subject, length, 0, 0, ovector, 30);
+ /* Check results */
+ pcre_free(re);
+ pcre_free_study(extra);
+ pcre_jit_stack_free(jit_stack);
+.sp
+.
+.
+.SH "JIT FAST PATH API"
+.rs
+.sp
+Because the API described above falls back to interpreted execution when JIT is
+not available, it is convenient for programs that are written for general use
+in many environments. However, calling JIT via \fBpcre_exec()\fP does have a
+performance impact. Programs that are written for use where JIT is known to be
+available, and which need the best possible performance, can instead use a
+"fast path" API to call JIT execution directly instead of calling
+\fBpcre_exec()\fP (obviously only for patterns that have been successfully
+studied by JIT).
+.P
+The fast path function is called \fBpcre_jit_exec()\fP, and it takes exactly
+the same arguments as \fBpcre_exec()\fP, plus one additional argument that
+must point to a JIT stack. The JIT stack arrangements described above do not
+apply. The return values are the same as for \fBpcre_exec()\fP.
+.P
+When you call \fBpcre_exec()\fP, as well as testing for invalid options, a
+number of other sanity checks are performed on the arguments. For example, if
+the subject pointer is NULL, or its length is negative, an immediate error is
+given. Also, unless PCRE_NO_UTF[8|16|32] is set, a UTF subject string is tested
+for validity. In the interests of speed, these checks do not happen on the JIT
+fast path, and if invalid data is passed, the result is undefined.
+.P
+Bypassing the sanity checks and the \fBpcre_exec()\fP wrapping can give
+speedups of more than 10%.
+.
+.
+.SH "SEE ALSO"
+.rs
+.sp
+\fBpcreapi\fP(3)
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel (FAQ by Zoltan Herczeg)
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 17 March 2013
+Copyright (c) 1997-2013 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcrelimits.3 b/pcre/doc/pcrelimits.3
new file mode 100644
index 00000000000..14ffbc466ed
--- /dev/null
+++ b/pcre/doc/pcrelimits.3
@@ -0,0 +1,67 @@
+.TH PCRELIMITS 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH "SIZE AND OTHER LIMITATIONS"
+.rs
+.sp
+There are some size limitations in PCRE but it is hoped that they will never in
+practice be relevant.
+.P
+The maximum length of a compiled pattern is approximately 64K data units (bytes
+for the 8-bit library, 32-bit units for the 32-bit library, and 32-bit units for
+the 32-bit library) if PCRE is compiled with the default internal linkage size
+of 2 bytes. If you want to process regular expressions that are truly enormous,
+you can compile PCRE with an internal linkage size of 3 or 4 (when building the
+16-bit or 32-bit library, 3 is rounded up to 4). See the \fBREADME\fP file in
+the source distribution and the
+.\" HREF
+\fBpcrebuild\fP
+.\"
+documentation for details. In these cases the limit is substantially larger.
+However, the speed of execution is slower.
+.P
+All values in repeating quantifiers must be less than 65536.
+.P
+There is no limit to the number of parenthesized subpatterns, but there can be
+no more than 65535 capturing subpatterns.
+.P
+There is a limit to the number of forward references to subsequent subpatterns
+of around 200,000. Repeated forward references with fixed upper limits, for
+example, (?2){0,100} when subpattern number 2 is to the right, are included in
+the count. There is no limit to the number of backward references.
+.P
+The maximum length of name for a named subpattern is 32 characters, and the
+maximum number of named subpatterns is 10000.
+.P
+The maximum length of a name in a (*MARK), (*PRUNE), (*SKIP), or (*THEN) verb
+is 255 for the 8-bit library and 65535 for the 16-bit and 32-bit library.
+.P
+The maximum length of a subject string is the largest positive number that an
+integer variable can hold. However, when using the traditional matching
+function, PCRE uses recursion to handle subpatterns and indefinite repetition.
+This means that the available stack space may limit the size of a subject
+string that can be processed by certain patterns. For a discussion of stack
+issues, see the
+.\" HREF
+\fBpcrestack\fP
+.\"
+documentation.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 04 May 2012
+Copyright (c) 1997-2012 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcrematching.3 b/pcre/doc/pcrematching.3
new file mode 100644
index 00000000000..a9977d5e05a
--- /dev/null
+++ b/pcre/doc/pcrematching.3
@@ -0,0 +1,206 @@
+.TH PCREMATCHING 3 "08 January 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH "PCRE MATCHING ALGORITHMS"
+.rs
+.sp
+This document describes the two different algorithms that are available in PCRE
+for matching a compiled regular expression against a given subject string. The
+"standard" algorithm is the one provided by the \fBpcre_exec()\fP,
+\fBpcre16_exec()\fP and \fBpcre32_exec()\fP functions. These work in the same
+as as Perl's matching function, and provide a Perl-compatible matching operation.
+The just-in-time (JIT) optimization that is described in the
+.\" HREF
+\fBpcrejit\fP
+.\"
+documentation is compatible with these functions.
+.P
+An alternative algorithm is provided by the \fBpcre_dfa_exec()\fP,
+\fBpcre16_dfa_exec()\fP and \fBpcre32_dfa_exec()\fP functions; they operate in
+a different way, and are not Perl-compatible. This alternative has advantages
+and disadvantages compared with the standard algorithm, and these are described
+below.
+.P
+When there is only one possible way in which a given subject string can match a
+pattern, the two algorithms give the same answer. A difference arises, however,
+when there are multiple possibilities. For example, if the pattern
+.sp
+ ^<.*>
+.sp
+is matched against the string
+.sp
+
+.sp
+there are three possible answers. The standard algorithm finds only one of
+them, whereas the alternative algorithm finds all three.
+.
+.
+.SH "REGULAR EXPRESSIONS AS TREES"
+.rs
+.sp
+The set of strings that are matched by a regular expression can be represented
+as a tree structure. An unlimited repetition in the pattern makes the tree of
+infinite size, but it is still a tree. Matching the pattern to a given subject
+string (from a given starting point) can be thought of as a search of the tree.
+There are two ways to search a tree: depth-first and breadth-first, and these
+correspond to the two matching algorithms provided by PCRE.
+.
+.
+.SH "THE STANDARD MATCHING ALGORITHM"
+.rs
+.sp
+In the terminology of Jeffrey Friedl's book "Mastering Regular
+Expressions", the standard algorithm is an "NFA algorithm". It conducts a
+depth-first search of the pattern tree. That is, it proceeds along a single
+path through the tree, checking that the subject matches what is required. When
+there is a mismatch, the algorithm tries any alternatives at the current point,
+and if they all fail, it backs up to the previous branch point in the tree, and
+tries the next alternative branch at that level. This often involves backing up
+(moving to the left) in the subject string as well. The order in which
+repetition branches are tried is controlled by the greedy or ungreedy nature of
+the quantifier.
+.P
+If a leaf node is reached, a matching string has been found, and at that point
+the algorithm stops. Thus, if there is more than one possible match, this
+algorithm returns the first one that it finds. Whether this is the shortest,
+the longest, or some intermediate length depends on the way the greedy and
+ungreedy repetition quantifiers are specified in the pattern.
+.P
+Because it ends up with a single path through the tree, it is relatively
+straightforward for this algorithm to keep track of the substrings that are
+matched by portions of the pattern in parentheses. This provides support for
+capturing parentheses and back references.
+.
+.
+.SH "THE ALTERNATIVE MATCHING ALGORITHM"
+.rs
+.sp
+This algorithm conducts a breadth-first search of the tree. Starting from the
+first matching point in the subject, it scans the subject string from left to
+right, once, character by character, and as it does this, it remembers all the
+paths through the tree that represent valid matches. In Friedl's terminology,
+this is a kind of "DFA algorithm", though it is not implemented as a
+traditional finite state machine (it keeps multiple states active
+simultaneously).
+.P
+Although the general principle of this matching algorithm is that it scans the
+subject string only once, without backtracking, there is one exception: when a
+lookaround assertion is encountered, the characters following or preceding the
+current point have to be independently inspected.
+.P
+The scan continues until either the end of the subject is reached, or there are
+no more unterminated paths. At this point, terminated paths represent the
+different matching possibilities (if there are none, the match has failed).
+Thus, if there is more than one possible match, this algorithm finds all of
+them, and in particular, it finds the longest. The matches are returned in
+decreasing order of length. There is an option to stop the algorithm after the
+first match (which is necessarily the shortest) is found.
+.P
+Note that all the matches that are found start at the same point in the
+subject. If the pattern
+.sp
+ cat(er(pillar)?)?
+.sp
+is matched against the string "the caterpillar catchment", the result will be
+the three strings "caterpillar", "cater", and "cat" that start at the fifth
+character of the subject. The algorithm does not automatically move on to find
+matches that start at later positions.
+.P
+There are a number of features of PCRE regular expressions that are not
+supported by the alternative matching algorithm. They are as follows:
+.P
+1. Because the algorithm finds all possible matches, the greedy or ungreedy
+nature of repetition quantifiers is not relevant. Greedy and ungreedy
+quantifiers are treated in exactly the same way. However, possessive
+quantifiers can make a difference when what follows could also match what is
+quantified, for example in a pattern like this:
+.sp
+ ^a++\ew!
+.sp
+This pattern matches "aaab!" but not "aaa!", which would be matched by a
+non-possessive quantifier. Similarly, if an atomic group is present, it is
+matched as if it were a standalone pattern at the current point, and the
+longest match is then "locked in" for the rest of the overall pattern.
+.P
+2. When dealing with multiple paths through the tree simultaneously, it is not
+straightforward to keep track of captured substrings for the different matching
+possibilities, and PCRE's implementation of this algorithm does not attempt to
+do this. This means that no captured substrings are available.
+.P
+3. Because no substrings are captured, back references within the pattern are
+not supported, and cause errors if encountered.
+.P
+4. For the same reason, conditional expressions that use a backreference as the
+condition or test for a specific group recursion are not supported.
+.P
+5. Because many paths through the tree may be active, the \eK escape sequence,
+which resets the start of the match when encountered (but may be on some paths
+and not on others), is not supported. It causes an error if encountered.
+.P
+6. Callouts are supported, but the value of the \fIcapture_top\fP field is
+always 1, and the value of the \fIcapture_last\fP field is always -1.
+.P
+7. The \eC escape sequence, which (in the standard algorithm) always matches a
+single data unit, even in UTF-8, UTF-16 or UTF-32 modes, is not supported in
+these modes, because the alternative algorithm moves through the subject string
+one character (not data unit) at a time, for all active paths through the tree.
+.P
+8. Except for (*FAIL), the backtracking control verbs such as (*PRUNE) are not
+supported. (*FAIL) is supported, and behaves like a failing negative assertion.
+.
+.
+.SH "ADVANTAGES OF THE ALTERNATIVE ALGORITHM"
+.rs
+.sp
+Using the alternative matching algorithm provides the following advantages:
+.P
+1. All possible matches (at a single point in the subject) are automatically
+found, and in particular, the longest match is found. To find more than one
+match using the standard algorithm, you have to do kludgy things with
+callouts.
+.P
+2. Because the alternative algorithm scans the subject string just once, and
+never needs to backtrack (except for lookbehinds), it is possible to pass very
+long subject strings to the matching function in several pieces, checking for
+partial matching each time. Although it is possible to do multi-segment
+matching using the standard algorithm by retaining partially matched
+substrings, it is more complicated. The
+.\" HREF
+\fBpcrepartial\fP
+.\"
+documentation gives details of partial matching and discusses multi-segment
+matching.
+.
+.
+.SH "DISADVANTAGES OF THE ALTERNATIVE ALGORITHM"
+.rs
+.sp
+The alternative algorithm suffers from a number of disadvantages:
+.P
+1. It is substantially slower than the standard algorithm. This is partly
+because it has to search for all possible matches, but is also because it is
+less susceptible to optimization.
+.P
+2. Capturing parentheses and back references are not supported.
+.P
+3. Although atomic groups are supported, their use does not provide the
+performance advantage that it does for the standard algorithm.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 08 January 2012
+Copyright (c) 1997-2012 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcrepartial.3 b/pcre/doc/pcrepartial.3
new file mode 100644
index 00000000000..4041838c3e9
--- /dev/null
+++ b/pcre/doc/pcrepartial.3
@@ -0,0 +1,467 @@
+.TH PCREPARTIAL 3 "20 February 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH "PARTIAL MATCHING IN PCRE"
+.rs
+.sp
+In normal use of PCRE, if the subject string that is passed to a matching
+function matches as far as it goes, but is too short to match the entire
+pattern, PCRE_ERROR_NOMATCH is returned. There are circumstances where it might
+be helpful to distinguish this case from other cases in which there is no
+match.
+.P
+Consider, for example, an application where a human is required to type in data
+for a field with specific formatting requirements. An example might be a date
+in the form \fIddmmmyy\fP, defined by this pattern:
+.sp
+ ^\ed?\ed(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\ed\ed$
+.sp
+If the application sees the user's keystrokes one by one, and can check that
+what has been typed so far is potentially valid, it is able to raise an error
+as soon as a mistake is made, by beeping and not reflecting the character that
+has been typed, for example. This immediate feedback is likely to be a better
+user interface than a check that is delayed until the entire string has been
+entered. Partial matching can also be useful when the subject string is very
+long and is not all available at once.
+.P
+PCRE supports partial matching by means of the PCRE_PARTIAL_SOFT and
+PCRE_PARTIAL_HARD options, which can be set when calling any of the matching
+functions. For backwards compatibility, PCRE_PARTIAL is a synonym for
+PCRE_PARTIAL_SOFT. The essential difference between the two options is whether
+or not a partial match is preferred to an alternative complete match, though
+the details differ between the two types of matching function. If both options
+are set, PCRE_PARTIAL_HARD takes precedence.
+.P
+If you want to use partial matching with just-in-time optimized code, you must
+call \fBpcre_study()\fP, \fBpcre16_study()\fP or \fBpcre32_study()\fP with one
+or both of these options:
+.sp
+ PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
+ PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
+.sp
+PCRE_STUDY_JIT_COMPILE should also be set if you are going to run non-partial
+matches on the same pattern. If the appropriate JIT study mode has not been set
+for a match, the interpretive matching code is used.
+.P
+Setting a partial matching option disables two of PCRE's standard
+optimizations. PCRE remembers the last literal data unit in a pattern, and
+abandons matching immediately if it is not present in the subject string. This
+optimization cannot be used for a subject string that might match only
+partially. If the pattern was studied, PCRE knows the minimum length of a
+matching string, and does not bother to run the matching function on shorter
+strings. This optimization is also disabled for partial matching.
+.
+.
+.SH "PARTIAL MATCHING USING pcre_exec() OR pcre[16|32]_exec()"
+.rs
+.sp
+A partial match occurs during a call to \fBpcre_exec()\fP or
+\fBpcre[16|32]_exec()\fP when the end of the subject string is reached
+successfully, but matching cannot continue because more characters are needed.
+However, at least one character in the subject must have been inspected. This
+character need not form part of the final matched string; lookbehind assertions
+and the \eK escape sequence provide ways of inspecting characters before the
+start of a matched substring. The requirement for inspecting at least one
+character exists because an empty string can always be matched; without such a
+restriction there would always be a partial match of an empty string at the end
+of the subject.
+.P
+If there are at least two slots in the offsets vector when a partial match is
+returned, the first slot is set to the offset of the earliest character that
+was inspected. For convenience, the second offset points to the end of the
+subject so that a substring can easily be identified. If there are at least
+three slots in the offsets vector, the third slot is set to the offset of the
+character where matching started.
+.P
+For the majority of patterns, the contents of the first and third slots will be
+the same. However, for patterns that contain lookbehind assertions, or begin
+with \eb or \eB, characters before the one where matching started may have been
+inspected while carrying out the match. For example, consider this pattern:
+.sp
+ /(?<=abc)123/
+.sp
+This pattern matches "123", but only if it is preceded by "abc". If the subject
+string is "xyzabc12", the first two offsets after a partial match are for the
+substring "abc12", because all these characters were inspected. However, the
+third offset is set to 6, because that is the offset where matching began.
+.P
+What happens when a partial match is identified depends on which of the two
+partial matching options are set.
+.
+.
+.SS "PCRE_PARTIAL_SOFT WITH pcre_exec() OR pcre[16|32]_exec()"
+.rs
+.sp
+If PCRE_PARTIAL_SOFT is set when \fBpcre_exec()\fP or \fBpcre[16|32]_exec()\fP
+identifies a partial match, the partial match is remembered, but matching
+continues as normal, and other alternatives in the pattern are tried. If no
+complete match can be found, PCRE_ERROR_PARTIAL is returned instead of
+PCRE_ERROR_NOMATCH.
+.P
+This option is "soft" because it prefers a complete match over a partial match.
+All the various matching items in a pattern behave as if the subject string is
+potentially complete. For example, \ez, \eZ, and $ match at the end of the
+subject, as normal, and for \eb and \eB the end of the subject is treated as a
+non-alphanumeric.
+.P
+If there is more than one partial match, the first one that was found provides
+the data that is returned. Consider this pattern:
+.sp
+ /123\ew+X|dogY/
+.sp
+If this is matched against the subject string "abc123dog", both
+alternatives fail to match, but the end of the subject is reached during
+matching, so PCRE_ERROR_PARTIAL is returned. The offsets are set to 3 and 9,
+identifying "123dog" as the first partial match that was found. (In this
+example, there are two partial matches, because "dog" on its own partially
+matches the second alternative.)
+.
+.
+.SS "PCRE_PARTIAL_HARD WITH pcre_exec() OR pcre[16|32]_exec()"
+.rs
+.sp
+If PCRE_PARTIAL_HARD is set for \fBpcre_exec()\fP or \fBpcre[16|32]_exec()\fP,
+PCRE_ERROR_PARTIAL is returned as soon as a partial match is found, without
+continuing to search for possible complete matches. This option is "hard"
+because it prefers an earlier partial match over a later complete match. For
+this reason, the assumption is made that the end of the supplied subject string
+may not be the true end of the available data, and so, if \ez, \eZ, \eb, \eB,
+or $ are encountered at the end of the subject, the result is
+PCRE_ERROR_PARTIAL, provided that at least one character in the subject has
+been inspected.
+.P
+Setting PCRE_PARTIAL_HARD also affects the way UTF-8 and UTF-16
+subject strings are checked for validity. Normally, an invalid sequence
+causes the error PCRE_ERROR_BADUTF8 or PCRE_ERROR_BADUTF16. However, in the
+special case of a truncated character at the end of the subject,
+PCRE_ERROR_SHORTUTF8 or PCRE_ERROR_SHORTUTF16 is returned when
+PCRE_PARTIAL_HARD is set.
+.
+.
+.SS "Comparing hard and soft partial matching"
+.rs
+.sp
+The difference between the two partial matching options can be illustrated by a
+pattern such as:
+.sp
+ /dog(sbody)?/
+.sp
+This matches either "dog" or "dogsbody", greedily (that is, it prefers the
+longer string if possible). If it is matched against the string "dog" with
+PCRE_PARTIAL_SOFT, it yields a complete match for "dog". However, if
+PCRE_PARTIAL_HARD is set, the result is PCRE_ERROR_PARTIAL. On the other hand,
+if the pattern is made ungreedy the result is different:
+.sp
+ /dog(sbody)??/
+.sp
+In this case the result is always a complete match because that is found first,
+and matching never continues after finding a complete match. It might be easier
+to follow this explanation by thinking of the two patterns like this:
+.sp
+ /dog(sbody)?/ is the same as /dogsbody|dog/
+ /dog(sbody)??/ is the same as /dog|dogsbody/
+.sp
+The second pattern will never match "dogsbody", because it will always find the
+shorter match first.
+.
+.
+.SH "PARTIAL MATCHING USING pcre_dfa_exec() OR pcre[16|32]_dfa_exec()"
+.rs
+.sp
+The DFA functions move along the subject string character by character, without
+backtracking, searching for all possible matches simultaneously. If the end of
+the subject is reached before the end of the pattern, there is the possibility
+of a partial match, again provided that at least one character has been
+inspected.
+.P
+When PCRE_PARTIAL_SOFT is set, PCRE_ERROR_PARTIAL is returned only if there
+have been no complete matches. Otherwise, the complete matches are returned.
+However, if PCRE_PARTIAL_HARD is set, a partial match takes precedence over any
+complete matches. The portion of the string that was inspected when the longest
+partial match was found is set as the first matching string, provided there are
+at least two slots in the offsets vector.
+.P
+Because the DFA functions always search for all possible matches, and there is
+no difference between greedy and ungreedy repetition, their behaviour is
+different from the standard functions when PCRE_PARTIAL_HARD is set. Consider
+the string "dog" matched against the ungreedy pattern shown above:
+.sp
+ /dog(sbody)??/
+.sp
+Whereas the standard functions stop as soon as they find the complete match for
+"dog", the DFA functions also find the partial match for "dogsbody", and so
+return that when PCRE_PARTIAL_HARD is set.
+.
+.
+.SH "PARTIAL MATCHING AND WORD BOUNDARIES"
+.rs
+.sp
+If a pattern ends with one of sequences \eb or \eB, which test for word
+boundaries, partial matching with PCRE_PARTIAL_SOFT can give counter-intuitive
+results. Consider this pattern:
+.sp
+ /\ebcat\eb/
+.sp
+This matches "cat", provided there is a word boundary at either end. If the
+subject string is "the cat", the comparison of the final "t" with a following
+character cannot take place, so a partial match is found. However, normal
+matching carries on, and \eb matches at the end of the subject when the last
+character is a letter, so a complete match is found. The result, therefore, is
+\fInot\fP PCRE_ERROR_PARTIAL. Using PCRE_PARTIAL_HARD in this case does yield
+PCRE_ERROR_PARTIAL, because then the partial match takes precedence.
+.
+.
+.SH "FORMERLY RESTRICTED PATTERNS"
+.rs
+.sp
+For releases of PCRE prior to 8.00, because of the way certain internal
+optimizations were implemented in the \fBpcre_exec()\fP function, the
+PCRE_PARTIAL option (predecessor of PCRE_PARTIAL_SOFT) could not be used with
+all patterns. From release 8.00 onwards, the restrictions no longer apply, and
+partial matching with can be requested for any pattern.
+.P
+Items that were formerly restricted were repeated single characters and
+repeated metasequences. If PCRE_PARTIAL was set for a pattern that did not
+conform to the restrictions, \fBpcre_exec()\fP returned the error code
+PCRE_ERROR_BADPARTIAL (-13). This error code is no longer in use. The
+PCRE_INFO_OKPARTIAL call to \fBpcre_fullinfo()\fP to find out if a compiled
+pattern can be used for partial matching now always returns 1.
+.
+.
+.SH "EXAMPLE OF PARTIAL MATCHING USING PCRETEST"
+.rs
+.sp
+If the escape sequence \eP is present in a \fBpcretest\fP data line, the
+PCRE_PARTIAL_SOFT option is used for the match. Here is a run of \fBpcretest\fP
+that uses the date example quoted above:
+.sp
+ re> /^\ed?\ed(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\ed\ed$/
+ data> 25jun04\eP
+ 0: 25jun04
+ 1: jun
+ data> 25dec3\eP
+ Partial match: 23dec3
+ data> 3ju\eP
+ Partial match: 3ju
+ data> 3juj\eP
+ No match
+ data> j\eP
+ No match
+.sp
+The first data string is matched completely, so \fBpcretest\fP shows the
+matched substrings. The remaining four strings do not match the complete
+pattern, but the first two are partial matches. Similar output is obtained
+if DFA matching is used.
+.P
+If the escape sequence \eP is present more than once in a \fBpcretest\fP data
+line, the PCRE_PARTIAL_HARD option is set for the match.
+.
+.
+.SH "MULTI-SEGMENT MATCHING WITH pcre_dfa_exec() OR pcre[16|32]_dfa_exec()"
+.rs
+.sp
+When a partial match has been found using a DFA matching function, it is
+possible to continue the match by providing additional subject data and calling
+the function again with the same compiled regular expression, this time setting
+the PCRE_DFA_RESTART option. You must pass the same working space as before,
+because this is where details of the previous partial match are stored. Here is
+an example using \fBpcretest\fP, using the \eR escape sequence to set the
+PCRE_DFA_RESTART option (\eD specifies the use of the DFA matching function):
+.sp
+ re> /^\ed?\ed(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\ed\ed$/
+ data> 23ja\eP\eD
+ Partial match: 23ja
+ data> n05\eR\eD
+ 0: n05
+.sp
+The first call has "23ja" as the subject, and requests partial matching; the
+second call has "n05" as the subject for the continued (restarted) match.
+Notice that when the match is complete, only the last part is shown; PCRE does
+not retain the previously partially-matched string. It is up to the calling
+program to do that if it needs to.
+.P
+You can set the PCRE_PARTIAL_SOFT or PCRE_PARTIAL_HARD options with
+PCRE_DFA_RESTART to continue partial matching over multiple segments. This
+facility can be used to pass very long subject strings to the DFA matching
+functions.
+.
+.
+.SH "MULTI-SEGMENT MATCHING WITH pcre_exec() OR pcre[16|32]_exec()"
+.rs
+.sp
+From release 8.00, the standard matching functions can also be used to do
+multi-segment matching. Unlike the DFA functions, it is not possible to
+restart the previous match with a new segment of data. Instead, new data must
+be added to the previous subject string, and the entire match re-run, starting
+from the point where the partial match occurred. Earlier data can be discarded.
+.P
+It is best to use PCRE_PARTIAL_HARD in this situation, because it does not
+treat the end of a segment as the end of the subject when matching \ez, \eZ,
+\eb, \eB, and $. Consider an unanchored pattern that matches dates:
+.sp
+ re> /\ed?\ed(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\ed\ed/
+ data> The date is 23ja\eP\eP
+ Partial match: 23ja
+.sp
+At this stage, an application could discard the text preceding "23ja", add on
+text from the next segment, and call the matching function again. Unlike the
+DFA matching functions, the entire matching string must always be available,
+and the complete matching process occurs for each call, so more memory and more
+processing time is needed.
+.P
+\fBNote:\fP If the pattern contains lookbehind assertions, or \eK, or starts
+with \eb or \eB, the string that is returned for a partial match includes
+characters that precede the start of what would be returned for a complete
+match, because it contains all the characters that were inspected during the
+partial match.
+.
+.
+.SH "ISSUES WITH MULTI-SEGMENT MATCHING"
+.rs
+.sp
+Certain types of pattern may give problems with multi-segment matching,
+whichever matching function is used.
+.P
+1. If the pattern contains a test for the beginning of a line, you need to pass
+the PCRE_NOTBOL option when the subject string for any call does start at the
+beginning of a line. There is also a PCRE_NOTEOL option, but in practice when
+doing multi-segment matching you should be using PCRE_PARTIAL_HARD, which
+includes the effect of PCRE_NOTEOL.
+.P
+2. Lookbehind assertions that have already been obeyed are catered for in the
+offsets that are returned for a partial match. However a lookbehind assertion
+later in the pattern could require even earlier characters to be inspected. You
+can handle this case by using the PCRE_INFO_MAXLOOKBEHIND option of the
+\fBpcre_fullinfo()\fP or \fBpcre[16|32]_fullinfo()\fP functions to obtain the
+length of the longest lookbehind in the pattern. This length is given in
+characters, not bytes. If you always retain at least that many characters
+before the partially matched string, all should be well. (Of course, near the
+start of the subject, fewer characters may be present; in that case all
+characters should be retained.)
+.P
+From release 8.33, there is a more accurate way of deciding which characters to
+retain. Instead of subtracting the length of the longest lookbehind from the
+earliest inspected character (\fIoffsets[0]\fP), the match start position
+(\fIoffsets[2]\fP) should be used, and the next match attempt started at the
+\fIoffsets[2]\fP character by setting the \fIstartoffset\fP argument of
+\fBpcre_exec()\fP or \fBpcre_dfa_exec()\fP.
+.P
+For example, if the pattern "(?<=123)abc" is partially
+matched against the string "xx123a", the three offset values returned are 2, 6,
+and 5. This indicates that the matching process that gave a partial match
+started at offset 5, but the characters "123a" were all inspected. The maximum
+lookbehind for that pattern is 3, so taking that away from 5 shows that we need
+only keep "123a", and the next match attempt can be started at offset 3 (that
+is, at "a") when further characters have been added. When the match start is
+not the earliest inspected character, \fBpcretest\fP shows it explicitly:
+.sp
+ re> "(?<=123)abc"
+ data> xx123a\eP\eP
+ Partial match at offset 5: 123a
+.P
+3. Because a partial match must always contain at least one character, what
+might be considered a partial match of an empty string actually gives a "no
+match" result. For example:
+.sp
+ re> /c(?<=abc)x/
+ data> ab\eP
+ No match
+.sp
+If the next segment begins "cx", a match should be found, but this will only
+happen if characters from the previous segment are retained. For this reason, a
+"no match" result should be interpreted as "partial match of an empty string"
+when the pattern contains lookbehinds.
+.P
+4. Matching a subject string that is split into multiple segments may not
+always produce exactly the same result as matching over one single long string,
+especially when PCRE_PARTIAL_SOFT is used. The section "Partial Matching and
+Word Boundaries" above describes an issue that arises if the pattern ends with
+\eb or \eB. Another kind of difference may occur when there are multiple
+matching possibilities, because (for PCRE_PARTIAL_SOFT) a partial match result
+is given only when there are no completed matches. This means that as soon as
+the shortest match has been found, continuation to a new subject segment is no
+longer possible. Consider again this \fBpcretest\fP example:
+.sp
+ re> /dog(sbody)?/
+ data> dogsb\eP
+ 0: dog
+ data> do\eP\eD
+ Partial match: do
+ data> gsb\eR\eP\eD
+ 0: g
+ data> dogsbody\eD
+ 0: dogsbody
+ 1: dog
+.sp
+The first data line passes the string "dogsb" to a standard matching function,
+setting the PCRE_PARTIAL_SOFT option. Although the string is a partial match
+for "dogsbody", the result is not PCRE_ERROR_PARTIAL, because the shorter
+string "dog" is a complete match. Similarly, when the subject is presented to
+a DFA matching function in several parts ("do" and "gsb" being the first two)
+the match stops when "dog" has been found, and it is not possible to continue.
+On the other hand, if "dogsbody" is presented as a single string, a DFA
+matching function finds both matches.
+.P
+Because of these problems, it is best to use PCRE_PARTIAL_HARD when matching
+multi-segment data. The example above then behaves differently:
+.sp
+ re> /dog(sbody)?/
+ data> dogsb\eP\eP
+ Partial match: dogsb
+ data> do\eP\eD
+ Partial match: do
+ data> gsb\eR\eP\eP\eD
+ Partial match: gsb
+.sp
+5. Patterns that contain alternatives at the top level which do not all start
+with the same pattern item may not work as expected when PCRE_DFA_RESTART is
+used. For example, consider this pattern:
+.sp
+ 1234|3789
+.sp
+If the first part of the subject is "ABC123", a partial match of the first
+alternative is found at offset 3. There is no partial match for the second
+alternative, because such a match does not start at the same point in the
+subject string. Attempting to continue with the string "7890" does not yield a
+match because only those alternatives that match at one point in the subject
+are remembered. The problem arises because the start of the second alternative
+matches within the first alternative. There is no problem with anchored
+patterns or patterns such as:
+.sp
+ 1234|ABCD
+.sp
+where no string can be a partial match for both alternatives. This is not a
+problem if a standard matching function is used, because the entire match has
+to be rerun each time:
+.sp
+ re> /1234|3789/
+ data> ABC123\eP\eP
+ Partial match: 123
+ data> 1237890
+ 0: 3789
+.sp
+Of course, instead of using PCRE_DFA_RESTART, the same technique of re-running
+the entire match can also be used with the DFA matching functions. Another
+possibility is to work with two buffers. If a partial match at offset \fIn\fP
+in the first buffer is followed by "no match" when PCRE_DFA_RESTART is used on
+the second buffer, you can then try a new match starting at offset \fIn+1\fP in
+the first buffer.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 20 February 2013
+Copyright (c) 1997-2013 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcrepattern.3 b/pcre/doc/pcrepattern.3
new file mode 100644
index 00000000000..39711014996
--- /dev/null
+++ b/pcre/doc/pcrepattern.3
@@ -0,0 +1,3150 @@
+.TH PCREPATTERN 3 "26 April 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH "PCRE REGULAR EXPRESSION DETAILS"
+.rs
+.sp
+The syntax and semantics of the regular expressions that are supported by PCRE
+are described in detail below. There is a quick-reference syntax summary in the
+.\" HREF
+\fBpcresyntax\fP
+.\"
+page. PCRE tries to match Perl syntax and semantics as closely as it can. PCRE
+also supports some alternative regular expression syntax (which does not
+conflict with the Perl syntax) in order to provide some compatibility with
+regular expressions in Python, .NET, and Oniguruma.
+.P
+Perl's regular expressions are described in its own documentation, and
+regular expressions in general are covered in a number of books, some of which
+have copious examples. Jeffrey Friedl's "Mastering Regular Expressions",
+published by O'Reilly, covers regular expressions in great detail. This
+description of PCRE's regular expressions is intended as reference material.
+.P
+This document discusses the patterns that are supported by PCRE when one its
+main matching functions, \fBpcre_exec()\fP (8-bit) or \fBpcre[16|32]_exec()\fP
+(16- or 32-bit), is used. PCRE also has alternative matching functions,
+\fBpcre_dfa_exec()\fP and \fBpcre[16|32_dfa_exec()\fP, which match using a
+different algorithm that is not Perl-compatible. Some of the features discussed
+below are not available when DFA matching is used. The advantages and
+disadvantages of the alternative functions, and how they differ from the normal
+functions, are discussed in the
+.\" HREF
+\fBpcrematching\fP
+.\"
+page.
+.
+.
+.SH "SPECIAL START-OF-PATTERN ITEMS"
+.rs
+.sp
+A number of options that can be passed to \fBpcre_compile()\fP can also be set
+by special items at the start of a pattern. These are not Perl-compatible, but
+are provided to make these options accessible to pattern writers who are not
+able to change the program that processes the pattern. Any number of these
+items may appear, but they must all be together right at the start of the
+pattern string, and the letters must be in upper case.
+.
+.
+.SS "UTF support"
+.rs
+.sp
+The original operation of PCRE was on strings of one-byte characters. However,
+there is now also support for UTF-8 strings in the original library, an
+extra library that supports 16-bit and UTF-16 character strings, and a
+third library that supports 32-bit and UTF-32 character strings. To use these
+features, PCRE must be built to include appropriate support. When using UTF
+strings you must either call the compiling function with the PCRE_UTF8,
+PCRE_UTF16, or PCRE_UTF32 option, or the pattern must start with one of
+these special sequences:
+.sp
+ (*UTF8)
+ (*UTF16)
+ (*UTF32)
+ (*UTF)
+.sp
+(*UTF) is a generic sequence that can be used with any of the libraries.
+Starting a pattern with such a sequence is equivalent to setting the relevant
+option. How setting a UTF mode affects pattern matching is mentioned in several
+places below. There is also a summary of features in the
+.\" HREF
+\fBpcreunicode\fP
+.\"
+page.
+.P
+Some applications that allow their users to supply patterns may wish to
+restrict them to non-UTF data for security reasons. If the PCRE_NEVER_UTF
+option is set at compile time, (*UTF) etc. are not allowed, and their
+appearance causes an error.
+.
+.
+.SS "Unicode property support"
+.rs
+.sp
+Another special sequence that may appear at the start of a pattern is
+.sp
+ (*UCP)
+.sp
+This has the same effect as setting the PCRE_UCP option: it causes sequences
+such as \ed and \ew to use Unicode properties to determine character types,
+instead of recognizing only characters with codes less than 128 via a lookup
+table.
+.
+.
+.SS "Disabling start-up optimizations"
+.rs
+.sp
+If a pattern starts with (*NO_START_OPT), it has the same effect as setting the
+PCRE_NO_START_OPTIMIZE option either at compile or matching time.
+.
+.
+.\" HTML
+.SS "Newline conventions"
+.rs
+.sp
+PCRE supports five different conventions for indicating line breaks in
+strings: a single CR (carriage return) character, a single LF (linefeed)
+character, the two-character sequence CRLF, any of the three preceding, or any
+Unicode newline sequence. The
+.\" HREF
+\fBpcreapi\fP
+.\"
+page has
+.\" HTML
+.\"
+further discussion
+.\"
+about newlines, and shows how to set the newline convention in the
+\fIoptions\fP arguments for the compiling and matching functions.
+.P
+It is also possible to specify a newline convention by starting a pattern
+string with one of the following five sequences:
+.sp
+ (*CR) carriage return
+ (*LF) linefeed
+ (*CRLF) carriage return, followed by linefeed
+ (*ANYCRLF) any of the three above
+ (*ANY) all Unicode newline sequences
+.sp
+These override the default and the options given to the compiling function. For
+example, on a Unix system where LF is the default newline sequence, the pattern
+.sp
+ (*CR)a.b
+.sp
+changes the convention to CR. That pattern matches "a\enb" because LF is no
+longer a newline. If more than one of these settings is present, the last one
+is used.
+.P
+The newline convention affects where the circumflex and dollar assertions are
+true. It also affects the interpretation of the dot metacharacter when
+PCRE_DOTALL is not set, and the behaviour of \eN. However, it does not affect
+what the \eR escape sequence matches. By default, this is any Unicode newline
+sequence, for Perl compatibility. However, this can be changed; see the
+description of \eR in the section entitled
+.\" HTML
+.\"
+"Newline sequences"
+.\"
+below. A change of \eR setting can be combined with a change of newline
+convention.
+.
+.
+.SS "Setting match and recursion limits"
+.rs
+.sp
+The caller of \fBpcre_exec()\fP can set a limit on the number of times the
+internal \fBmatch()\fP function is called and on the maximum depth of
+recursive calls. These facilities are provided to catch runaway matches that
+are provoked by patterns with huge matching trees (a typical example is a
+pattern with nested unlimited repeats) and to avoid running out of system stack
+by too much recursion. When one of these limits is reached, \fBpcre_exec()\fP
+gives an error return. The limits can also be set by items at the start of the
+pattern of the form
+.sp
+ (*LIMIT_MATCH=d)
+ (*LIMIT_RECURSION=d)
+.sp
+where d is any number of decimal digits. However, the value of the setting must
+be less than the value set by the caller of \fBpcre_exec()\fP for it to have
+any effect. In other words, the pattern writer can lower the limit set by the
+programmer, but not raise it. If there is more than one setting of one of these
+limits, the lower value is used.
+.
+.
+.SH "EBCDIC CHARACTER CODES"
+.rs
+.sp
+PCRE can be compiled to run in an environment that uses EBCDIC as its character
+code rather than ASCII or Unicode (typically a mainframe system). In the
+sections below, character code values are ASCII or Unicode; in an EBCDIC
+environment these characters may have different code values, and there are no
+code points greater than 255.
+.
+.
+.SH "CHARACTERS AND METACHARACTERS"
+.rs
+.sp
+A regular expression is a pattern that is matched against a subject string from
+left to right. Most characters stand for themselves in a pattern, and match the
+corresponding characters in the subject. As a trivial example, the pattern
+.sp
+ The quick brown fox
+.sp
+matches a portion of a subject string that is identical to itself. When
+caseless matching is specified (the PCRE_CASELESS option), letters are matched
+independently of case. In a UTF mode, PCRE always understands the concept of
+case for characters whose values are less than 128, so caseless matching is
+always possible. For characters with higher values, the concept of case is
+supported if PCRE is compiled with Unicode property support, but not otherwise.
+If you want to use caseless matching for characters 128 and above, you must
+ensure that PCRE is compiled with Unicode property support as well as with
+UTF support.
+.P
+The power of regular expressions comes from the ability to include alternatives
+and repetitions in the pattern. These are encoded in the pattern by the use of
+\fImetacharacters\fP, which do not stand for themselves but instead are
+interpreted in some special way.
+.P
+There are two different sets of metacharacters: those that are recognized
+anywhere in the pattern except within square brackets, and those that are
+recognized within square brackets. Outside square brackets, the metacharacters
+are as follows:
+.sp
+ \e general escape character with several uses
+ ^ assert start of string (or line, in multiline mode)
+ $ assert end of string (or line, in multiline mode)
+ . match any character except newline (by default)
+ [ start character class definition
+ | start of alternative branch
+ ( start subpattern
+ ) end subpattern
+ ? extends the meaning of (
+ also 0 or 1 quantifier
+ also quantifier minimizer
+ * 0 or more quantifier
+ + 1 or more quantifier
+ also "possessive quantifier"
+ { start min/max quantifier
+.sp
+Part of a pattern that is in square brackets is called a "character class". In
+a character class the only metacharacters are:
+.sp
+ \e general escape character
+ ^ negate the class, but only if the first character
+ - indicates character range
+.\" JOIN
+ [ POSIX character class (only if followed by POSIX
+ syntax)
+ ] terminates the character class
+.sp
+The following sections describe the use of each of the metacharacters.
+.
+.
+.SH BACKSLASH
+.rs
+.sp
+The backslash character has several uses. Firstly, if it is followed by a
+character that is not a number or a letter, it takes away any special meaning
+that character may have. This use of backslash as an escape character applies
+both inside and outside character classes.
+.P
+For example, if you want to match a * character, you write \e* in the pattern.
+This escaping action applies whether or not the following character would
+otherwise be interpreted as a metacharacter, so it is always safe to precede a
+non-alphanumeric with backslash to specify that it stands for itself. In
+particular, if you want to match a backslash, you write \e\e.
+.P
+In a UTF mode, only ASCII numbers and letters have any special meaning after a
+backslash. All other characters (in particular, those whose codepoints are
+greater than 127) are treated as literals.
+.P
+If a pattern is compiled with the PCRE_EXTENDED option, white space in the
+pattern (other than in a character class) and characters between a # outside
+a character class and the next newline are ignored. An escaping backslash can
+be used to include a white space or # character as part of the pattern.
+.P
+If you want to remove the special meaning from a sequence of characters, you
+can do so by putting them between \eQ and \eE. This is different from Perl in
+that $ and @ are handled as literals in \eQ...\eE sequences in PCRE, whereas in
+Perl, $ and @ cause variable interpolation. Note the following examples:
+.sp
+ Pattern PCRE matches Perl matches
+.sp
+.\" JOIN
+ \eQabc$xyz\eE abc$xyz abc followed by the
+ contents of $xyz
+ \eQabc\e$xyz\eE abc\e$xyz abc\e$xyz
+ \eQabc\eE\e$\eQxyz\eE abc$xyz abc$xyz
+.sp
+The \eQ...\eE sequence is recognized both inside and outside character classes.
+An isolated \eE that is not preceded by \eQ is ignored. If \eQ is not followed
+by \eE later in the pattern, the literal interpretation continues to the end of
+the pattern (that is, \eE is assumed at the end). If the isolated \eQ is inside
+a character class, this causes an error, because the character class is not
+terminated.
+.
+.
+.\" HTML
+.SS "Non-printing characters"
+.rs
+.sp
+A second use of backslash provides a way of encoding non-printing characters
+in patterns in a visible manner. There is no restriction on the appearance of
+non-printing characters, apart from the binary zero that terminates a pattern,
+but when a pattern is being prepared by text editing, it is often easier to use
+one of the following escape sequences than the binary character it represents:
+.sp
+ \ea alarm, that is, the BEL character (hex 07)
+ \ecx "control-x", where x is any ASCII character
+ \ee escape (hex 1B)
+ \ef form feed (hex 0C)
+ \en linefeed (hex 0A)
+ \er carriage return (hex 0D)
+ \et tab (hex 09)
+ \eddd character with octal code ddd, or back reference
+ \exhh character with hex code hh
+ \ex{hhh..} character with hex code hhh.. (non-JavaScript mode)
+ \euhhhh character with hex code hhhh (JavaScript mode only)
+.sp
+The precise effect of \ecx on ASCII characters is as follows: if x is a lower
+case letter, it is converted to upper case. Then bit 6 of the character (hex
+40) is inverted. Thus \ecA to \ecZ become hex 01 to hex 1A (A is 41, Z is 5A),
+but \ec{ becomes hex 3B ({ is 7B), and \ec; becomes hex 7B (; is 3B). If the
+data item (byte or 16-bit value) following \ec has a value greater than 127, a
+compile-time error occurs. This locks out non-ASCII characters in all modes.
+.P
+The \ec facility was designed for use with ASCII characters, but with the
+extension to Unicode it is even less useful than it once was. It is, however,
+recognized when PCRE is compiled in EBCDIC mode, where data items are always
+bytes. In this mode, all values are valid after \ec. If the next character is a
+lower case letter, it is converted to upper case. Then the 0xc0 bits of the
+byte are inverted. Thus \ecA becomes hex 01, as in ASCII (A is C1), but because
+the EBCDIC letters are disjoint, \ecZ becomes hex 29 (Z is E9), and other
+characters also generate different values.
+.P
+By default, after \ex, from zero to two hexadecimal digits are read (letters
+can be in upper or lower case). Any number of hexadecimal digits may appear
+between \ex{ and }, but the character code is constrained as follows:
+.sp
+ 8-bit non-UTF mode less than 0x100
+ 8-bit UTF-8 mode less than 0x10ffff and a valid codepoint
+ 16-bit non-UTF mode less than 0x10000
+ 16-bit UTF-16 mode less than 0x10ffff and a valid codepoint
+ 32-bit non-UTF mode less than 0x80000000
+ 32-bit UTF-32 mode less than 0x10ffff and a valid codepoint
+.sp
+Invalid Unicode codepoints are the range 0xd800 to 0xdfff (the so-called
+"surrogate" codepoints), and 0xffef.
+.P
+If characters other than hexadecimal digits appear between \ex{ and }, or if
+there is no terminating }, this form of escape is not recognized. Instead, the
+initial \ex will be interpreted as a basic hexadecimal escape, with no
+following digits, giving a character whose value is zero.
+.P
+If the PCRE_JAVASCRIPT_COMPAT option is set, the interpretation of \ex is
+as just described only when it is followed by two hexadecimal digits.
+Otherwise, it matches a literal "x" character. In JavaScript mode, support for
+code points greater than 256 is provided by \eu, which must be followed by
+four hexadecimal digits; otherwise it matches a literal "u" character.
+Character codes specified by \eu in JavaScript mode are constrained in the same
+was as those specified by \ex in non-JavaScript mode.
+.P
+Characters whose value is less than 256 can be defined by either of the two
+syntaxes for \ex (or by \eu in JavaScript mode). There is no difference in the
+way they are handled. For example, \exdc is exactly the same as \ex{dc} (or
+\eu00dc in JavaScript mode).
+.P
+After \e0 up to two further octal digits are read. If there are fewer than two
+digits, just those that are present are used. Thus the sequence \e0\ex\e07
+specifies two binary zeros followed by a BEL character (code value 7). Make
+sure you supply two digits after the initial zero if the pattern character that
+follows is itself an octal digit.
+.P
+The handling of a backslash followed by a digit other than 0 is complicated.
+Outside a character class, PCRE reads it and any following digits as a decimal
+number. If the number is less than 10, or if there have been at least that many
+previous capturing left parentheses in the expression, the entire sequence is
+taken as a \fIback reference\fP. A description of how this works is given
+.\" HTML
+.\"
+later,
+.\"
+following the discussion of
+.\" HTML
+.\"
+parenthesized subpatterns.
+.\"
+.P
+Inside a character class, or if the decimal number is greater than 9 and there
+have not been that many capturing subpatterns, PCRE re-reads up to three octal
+digits following the backslash, and uses them to generate a data character. Any
+subsequent digits stand for themselves. The value of the character is
+constrained in the same way as characters specified in hexadecimal.
+For example:
+.sp
+ \e040 is another way of writing an ASCII space
+.\" JOIN
+ \e40 is the same, provided there are fewer than 40
+ previous capturing subpatterns
+ \e7 is always a back reference
+.\" JOIN
+ \e11 might be a back reference, or another way of
+ writing a tab
+ \e011 is always a tab
+ \e0113 is a tab followed by the character "3"
+.\" JOIN
+ \e113 might be a back reference, otherwise the
+ character with octal code 113
+.\" JOIN
+ \e377 might be a back reference, otherwise
+ the value 255 (decimal)
+.\" JOIN
+ \e81 is either a back reference, or a binary zero
+ followed by the two characters "8" and "1"
+.sp
+Note that octal values of 100 or greater must not be introduced by a leading
+zero, because no more than three octal digits are ever read.
+.P
+All the sequences that define a single character value can be used both inside
+and outside character classes. In addition, inside a character class, \eb is
+interpreted as the backspace character (hex 08).
+.P
+\eN is not allowed in a character class. \eB, \eR, and \eX are not special
+inside a character class. Like other unrecognized escape sequences, they are
+treated as the literal characters "B", "R", and "X" by default, but cause an
+error if the PCRE_EXTRA option is set. Outside a character class, these
+sequences have different meanings.
+.
+.
+.SS "Unsupported escape sequences"
+.rs
+.sp
+In Perl, the sequences \el, \eL, \eu, and \eU are recognized by its string
+handler and used to modify the case of following characters. By default, PCRE
+does not support these escape sequences. However, if the PCRE_JAVASCRIPT_COMPAT
+option is set, \eU matches a "U" character, and \eu can be used to define a
+character by code point, as described in the previous section.
+.
+.
+.SS "Absolute and relative back references"
+.rs
+.sp
+The sequence \eg followed by an unsigned or a negative number, optionally
+enclosed in braces, is an absolute or relative back reference. A named back
+reference can be coded as \eg{name}. Back references are discussed
+.\" HTML
+.\"
+later,
+.\"
+following the discussion of
+.\" HTML
+.\"
+parenthesized subpatterns.
+.\"
+.
+.
+.SS "Absolute and relative subroutine calls"
+.rs
+.sp
+For compatibility with Oniguruma, the non-Perl syntax \eg followed by a name or
+a number enclosed either in angle brackets or single quotes, is an alternative
+syntax for referencing a subpattern as a "subroutine". Details are discussed
+.\" HTML
+.\"
+later.
+.\"
+Note that \eg{...} (Perl syntax) and \eg<...> (Oniguruma syntax) are \fInot\fP
+synonymous. The former is a back reference; the latter is a
+.\" HTML
+.\"
+subroutine
+.\"
+call.
+.
+.
+.\" HTML
+.SS "Generic character types"
+.rs
+.sp
+Another use of backslash is for specifying generic character types:
+.sp
+ \ed any decimal digit
+ \eD any character that is not a decimal digit
+ \eh any horizontal white space character
+ \eH any character that is not a horizontal white space character
+ \es any white space character
+ \eS any character that is not a white space character
+ \ev any vertical white space character
+ \eV any character that is not a vertical white space character
+ \ew any "word" character
+ \eW any "non-word" character
+.sp
+There is also the single sequence \eN, which matches a non-newline character.
+This is the same as
+.\" HTML
+.\"
+the "." metacharacter
+.\"
+when PCRE_DOTALL is not set. Perl also uses \eN to match characters by name;
+PCRE does not support this.
+.P
+Each pair of lower and upper case escape sequences partitions the complete set
+of characters into two disjoint sets. Any given character matches one, and only
+one, of each pair. The sequences can appear both inside and outside character
+classes. They each match one character of the appropriate type. If the current
+matching point is at the end of the subject string, all of them fail, because
+there is no character to match.
+.P
+For compatibility with Perl, \es does not match the VT character (code 11).
+This makes it different from the the POSIX "space" class. The \es characters
+are HT (9), LF (10), FF (12), CR (13), and space (32). If "use locale;" is
+included in a Perl script, \es may match the VT character. In PCRE, it never
+does.
+.P
+A "word" character is an underscore or any character that is a letter or digit.
+By default, the definition of letters and digits is controlled by PCRE's
+low-valued character tables, and may vary if locale-specific matching is taking
+place (see
+.\" HTML
+.\"
+"Locale support"
+.\"
+in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page). For example, in a French locale such as "fr_FR" in Unix-like systems,
+or "french" in Windows, some character codes greater than 128 are used for
+accented letters, and these are then matched by \ew. The use of locales with
+Unicode is discouraged.
+.P
+By default, in a UTF mode, characters with values greater than 128 never match
+\ed, \es, or \ew, and always match \eD, \eS, and \eW. These sequences retain
+their original meanings from before UTF support was available, mainly for
+efficiency reasons. However, if PCRE is compiled with Unicode property support,
+and the PCRE_UCP option is set, the behaviour is changed so that Unicode
+properties are used to determine character types, as follows:
+.sp
+ \ed any character that \ep{Nd} matches (decimal digit)
+ \es any character that \ep{Z} matches, plus HT, LF, FF, CR
+ \ew any character that \ep{L} or \ep{N} matches, plus underscore
+.sp
+The upper case escapes match the inverse sets of characters. Note that \ed
+matches only decimal digits, whereas \ew matches any Unicode digit, as well as
+any Unicode letter, and underscore. Note also that PCRE_UCP affects \eb, and
+\eB because they are defined in terms of \ew and \eW. Matching these sequences
+is noticeably slower when PCRE_UCP is set.
+.P
+The sequences \eh, \eH, \ev, and \eV are features that were added to Perl at
+release 5.10. In contrast to the other sequences, which match only ASCII
+characters by default, these always match certain high-valued codepoints,
+whether or not PCRE_UCP is set. The horizontal space characters are:
+.sp
+ U+0009 Horizontal tab (HT)
+ U+0020 Space
+ U+00A0 Non-break space
+ U+1680 Ogham space mark
+ U+180E Mongolian vowel separator
+ U+2000 En quad
+ U+2001 Em quad
+ U+2002 En space
+ U+2003 Em space
+ U+2004 Three-per-em space
+ U+2005 Four-per-em space
+ U+2006 Six-per-em space
+ U+2007 Figure space
+ U+2008 Punctuation space
+ U+2009 Thin space
+ U+200A Hair space
+ U+202F Narrow no-break space
+ U+205F Medium mathematical space
+ U+3000 Ideographic space
+.sp
+The vertical space characters are:
+.sp
+ U+000A Linefeed (LF)
+ U+000B Vertical tab (VT)
+ U+000C Form feed (FF)
+ U+000D Carriage return (CR)
+ U+0085 Next line (NEL)
+ U+2028 Line separator
+ U+2029 Paragraph separator
+.sp
+In 8-bit, non-UTF-8 mode, only the characters with codepoints less than 256 are
+relevant.
+.
+.
+.\" HTML
+.SS "Newline sequences"
+.rs
+.sp
+Outside a character class, by default, the escape sequence \eR matches any
+Unicode newline sequence. In 8-bit non-UTF-8 mode \eR is equivalent to the
+following:
+.sp
+ (?>\er\en|\en|\ex0b|\ef|\er|\ex85)
+.sp
+This is an example of an "atomic group", details of which are given
+.\" HTML
+.\"
+below.
+.\"
+This particular group matches either the two-character sequence CR followed by
+LF, or one of the single characters LF (linefeed, U+000A), VT (vertical tab,
+U+000B), FF (form feed, U+000C), CR (carriage return, U+000D), or NEL (next
+line, U+0085). The two-character sequence is treated as a single unit that
+cannot be split.
+.P
+In other modes, two additional characters whose codepoints are greater than 255
+are added: LS (line separator, U+2028) and PS (paragraph separator, U+2029).
+Unicode character property support is not needed for these characters to be
+recognized.
+.P
+It is possible to restrict \eR to match only CR, LF, or CRLF (instead of the
+complete set of Unicode line endings) by setting the option PCRE_BSR_ANYCRLF
+either at compile time or when the pattern is matched. (BSR is an abbrevation
+for "backslash R".) This can be made the default when PCRE is built; if this is
+the case, the other behaviour can be requested via the PCRE_BSR_UNICODE option.
+It is also possible to specify these settings by starting a pattern string with
+one of the following sequences:
+.sp
+ (*BSR_ANYCRLF) CR, LF, or CRLF only
+ (*BSR_UNICODE) any Unicode newline sequence
+.sp
+These override the default and the options given to the compiling function, but
+they can themselves be overridden by options given to a matching function. Note
+that these special settings, which are not Perl-compatible, are recognized only
+at the very start of a pattern, and that they must be in upper case. If more
+than one of them is present, the last one is used. They can be combined with a
+change of newline convention; for example, a pattern can start with:
+.sp
+ (*ANY)(*BSR_ANYCRLF)
+.sp
+They can also be combined with the (*UTF8), (*UTF16), (*UTF32), (*UTF) or
+(*UCP) special sequences. Inside a character class, \eR is treated as an
+unrecognized escape sequence, and so matches the letter "R" by default, but
+causes an error if PCRE_EXTRA is set.
+.
+.
+.\" HTML
+.SS Unicode character properties
+.rs
+.sp
+When PCRE is built with Unicode character property support, three additional
+escape sequences that match characters with specific properties are available.
+When in 8-bit non-UTF-8 mode, these sequences are of course limited to testing
+characters whose codepoints are less than 256, but they do work in this mode.
+The extra escape sequences are:
+.sp
+ \ep{\fIxx\fP} a character with the \fIxx\fP property
+ \eP{\fIxx\fP} a character without the \fIxx\fP property
+ \eX a Unicode extended grapheme cluster
+.sp
+The property names represented by \fIxx\fP above are limited to the Unicode
+script names, the general category properties, "Any", which matches any
+character (including newline), and some special PCRE properties (described
+in the
+.\" HTML
+.\"
+next section).
+.\"
+Other Perl properties such as "InMusicalSymbols" are not currently supported by
+PCRE. Note that \eP{Any} does not match any characters, so always causes a
+match failure.
+.P
+Sets of Unicode characters are defined as belonging to certain scripts. A
+character from one of these sets can be matched using a script name. For
+example:
+.sp
+ \ep{Greek}
+ \eP{Han}
+.sp
+Those that are not part of an identified script are lumped together as
+"Common". The current list of scripts is:
+.P
+Arabic,
+Armenian,
+Avestan,
+Balinese,
+Bamum,
+Batak,
+Bengali,
+Bopomofo,
+Brahmi,
+Braille,
+Buginese,
+Buhid,
+Canadian_Aboriginal,
+Carian,
+Chakma,
+Cham,
+Cherokee,
+Common,
+Coptic,
+Cuneiform,
+Cypriot,
+Cyrillic,
+Deseret,
+Devanagari,
+Egyptian_Hieroglyphs,
+Ethiopic,
+Georgian,
+Glagolitic,
+Gothic,
+Greek,
+Gujarati,
+Gurmukhi,
+Han,
+Hangul,
+Hanunoo,
+Hebrew,
+Hiragana,
+Imperial_Aramaic,
+Inherited,
+Inscriptional_Pahlavi,
+Inscriptional_Parthian,
+Javanese,
+Kaithi,
+Kannada,
+Katakana,
+Kayah_Li,
+Kharoshthi,
+Khmer,
+Lao,
+Latin,
+Lepcha,
+Limbu,
+Linear_B,
+Lisu,
+Lycian,
+Lydian,
+Malayalam,
+Mandaic,
+Meetei_Mayek,
+Meroitic_Cursive,
+Meroitic_Hieroglyphs,
+Miao,
+Mongolian,
+Myanmar,
+New_Tai_Lue,
+Nko,
+Ogham,
+Old_Italic,
+Old_Persian,
+Old_South_Arabian,
+Old_Turkic,
+Ol_Chiki,
+Oriya,
+Osmanya,
+Phags_Pa,
+Phoenician,
+Rejang,
+Runic,
+Samaritan,
+Saurashtra,
+Sharada,
+Shavian,
+Sinhala,
+Sora_Sompeng,
+Sundanese,
+Syloti_Nagri,
+Syriac,
+Tagalog,
+Tagbanwa,
+Tai_Le,
+Tai_Tham,
+Tai_Viet,
+Takri,
+Tamil,
+Telugu,
+Thaana,
+Thai,
+Tibetan,
+Tifinagh,
+Ugaritic,
+Vai,
+Yi.
+.P
+Each character has exactly one Unicode general category property, specified by
+a two-letter abbreviation. For compatibility with Perl, negation can be
+specified by including a circumflex between the opening brace and the property
+name. For example, \ep{^Lu} is the same as \eP{Lu}.
+.P
+If only one letter is specified with \ep or \eP, it includes all the general
+category properties that start with that letter. In this case, in the absence
+of negation, the curly brackets in the escape sequence are optional; these two
+examples have the same effect:
+.sp
+ \ep{L}
+ \epL
+.sp
+The following general category property codes are supported:
+.sp
+ C Other
+ Cc Control
+ Cf Format
+ Cn Unassigned
+ Co Private use
+ Cs Surrogate
+.sp
+ L Letter
+ Ll Lower case letter
+ Lm Modifier letter
+ Lo Other letter
+ Lt Title case letter
+ Lu Upper case letter
+.sp
+ M Mark
+ Mc Spacing mark
+ Me Enclosing mark
+ Mn Non-spacing mark
+.sp
+ N Number
+ Nd Decimal number
+ Nl Letter number
+ No Other number
+.sp
+ P Punctuation
+ Pc Connector punctuation
+ Pd Dash punctuation
+ Pe Close punctuation
+ Pf Final punctuation
+ Pi Initial punctuation
+ Po Other punctuation
+ Ps Open punctuation
+.sp
+ S Symbol
+ Sc Currency symbol
+ Sk Modifier symbol
+ Sm Mathematical symbol
+ So Other symbol
+.sp
+ Z Separator
+ Zl Line separator
+ Zp Paragraph separator
+ Zs Space separator
+.sp
+The special property L& is also supported: it matches a character that has
+the Lu, Ll, or Lt property, in other words, a letter that is not classified as
+a modifier or "other".
+.P
+The Cs (Surrogate) property applies only to characters in the range U+D800 to
+U+DFFF. Such characters are not valid in Unicode strings and so
+cannot be tested by PCRE, unless UTF validity checking has been turned off
+(see the discussion of PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK and
+PCRE_NO_UTF32_CHECK in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+page). Perl does not support the Cs property.
+.P
+The long synonyms for property names that Perl supports (such as \ep{Letter})
+are not supported by PCRE, nor is it permitted to prefix any of these
+properties with "Is".
+.P
+No character that is in the Unicode table has the Cn (unassigned) property.
+Instead, this property is assumed for any code point that is not in the
+Unicode table.
+.P
+Specifying caseless matching does not affect these escape sequences. For
+example, \ep{Lu} always matches only upper case letters. This is different from
+the behaviour of current versions of Perl.
+.P
+Matching characters by Unicode property is not fast, because PCRE has to do a
+multistage table lookup in order to find a character's property. That is why
+the traditional escape sequences such as \ed and \ew do not use Unicode
+properties in PCRE by default, though you can make them do so by setting the
+PCRE_UCP option or by starting the pattern with (*UCP).
+.
+.
+.SS Extended grapheme clusters
+.rs
+.sp
+The \eX escape matches any number of Unicode characters that form an "extended
+grapheme cluster", and treats the sequence as an atomic group
+.\" HTML
+.\"
+(see below).
+.\"
+Up to and including release 8.31, PCRE matched an earlier, simpler definition
+that was equivalent to
+.sp
+ (?>\ePM\epM*)
+.sp
+That is, it matched a character without the "mark" property, followed by zero
+or more characters with the "mark" property. Characters with the "mark"
+property are typically non-spacing accents that affect the preceding character.
+.P
+This simple definition was extended in Unicode to include more complicated
+kinds of composite character by giving each character a grapheme breaking
+property, and creating rules that use these properties to define the boundaries
+of extended grapheme clusters. In releases of PCRE later than 8.31, \eX matches
+one of these clusters.
+.P
+\eX always matches at least one character. Then it decides whether to add
+additional characters according to the following rules for ending a cluster:
+.P
+1. End at the end of the subject string.
+.P
+2. Do not end between CR and LF; otherwise end after any control character.
+.P
+3. Do not break Hangul (a Korean script) syllable sequences. Hangul characters
+are of five types: L, V, T, LV, and LVT. An L character may be followed by an
+L, V, LV, or LVT character; an LV or V character may be followed by a V or T
+character; an LVT or T character may be follwed only by a T character.
+.P
+4. Do not end before extending characters or spacing marks. Characters with
+the "mark" property always have the "extend" grapheme breaking property.
+.P
+5. Do not end after prepend characters.
+.P
+6. Otherwise, end the cluster.
+.
+.
+.\" HTML
+.SS PCRE's additional properties
+.rs
+.sp
+As well as the standard Unicode properties described above, PCRE supports four
+more that make it possible to convert traditional escape sequences such as \ew
+and \es and POSIX character classes to use Unicode properties. PCRE uses these
+non-standard, non-Perl properties internally when PCRE_UCP is set. However,
+they may also be used explicitly. These properties are:
+.sp
+ Xan Any alphanumeric character
+ Xps Any POSIX space character
+ Xsp Any Perl space character
+ Xwd Any Perl "word" character
+.sp
+Xan matches characters that have either the L (letter) or the N (number)
+property. Xps matches the characters tab, linefeed, vertical tab, form feed, or
+carriage return, and any other character that has the Z (separator) property.
+Xsp is the same as Xps, except that vertical tab is excluded. Xwd matches the
+same characters as Xan, plus underscore.
+.P
+There is another non-standard property, Xuc, which matches any character that
+can be represented by a Universal Character Name in C++ and other programming
+languages. These are the characters $, @, ` (grave accent), and all characters
+with Unicode code points greater than or equal to U+00A0, except for the
+surrogates U+D800 to U+DFFF. Note that most base (ASCII) characters are
+excluded. (Universal Character Names are of the form \euHHHH or \eUHHHHHHHH
+where H is a hexadecimal digit. Note that the Xuc property does not match these
+sequences but the characters that they represent.)
+.
+.
+.\" HTML
+.SS "Resetting the match start"
+.rs
+.sp
+The escape sequence \eK causes any previously matched characters not to be
+included in the final matched sequence. For example, the pattern:
+.sp
+ foo\eKbar
+.sp
+matches "foobar", but reports that it has matched "bar". This feature is
+similar to a lookbehind assertion
+.\" HTML
+.\"
+(described below).
+.\"
+However, in this case, the part of the subject before the real match does not
+have to be of fixed length, as lookbehind assertions do. The use of \eK does
+not interfere with the setting of
+.\" HTML
+.\"
+captured substrings.
+.\"
+For example, when the pattern
+.sp
+ (foo)\eKbar
+.sp
+matches "foobar", the first substring is still set to "foo".
+.P
+Perl documents that the use of \eK within assertions is "not well defined". In
+PCRE, \eK is acted upon when it occurs inside positive assertions, but is
+ignored in negative assertions.
+.
+.
+.\" HTML
+.SS "Simple assertions"
+.rs
+.sp
+The final use of backslash is for certain simple assertions. An assertion
+specifies a condition that has to be met at a particular point in a match,
+without consuming any characters from the subject string. The use of
+subpatterns for more complicated assertions is described
+.\" HTML
+.\"
+below.
+.\"
+The backslashed assertions are:
+.sp
+ \eb matches at a word boundary
+ \eB matches when not at a word boundary
+ \eA matches at the start of the subject
+ \eZ matches at the end of the subject
+ also matches before a newline at the end of the subject
+ \ez matches only at the end of the subject
+ \eG matches at the first matching position in the subject
+.sp
+Inside a character class, \eb has a different meaning; it matches the backspace
+character. If any other of these assertions appears in a character class, by
+default it matches the corresponding literal character (for example, \eB
+matches the letter B). However, if the PCRE_EXTRA option is set, an "invalid
+escape sequence" error is generated instead.
+.P
+A word boundary is a position in the subject string where the current character
+and the previous character do not both match \ew or \eW (i.e. one matches
+\ew and the other matches \eW), or the start or end of the string if the
+first or last character matches \ew, respectively. In a UTF mode, the meanings
+of \ew and \eW can be changed by setting the PCRE_UCP option. When this is
+done, it also affects \eb and \eB. Neither PCRE nor Perl has a separate "start
+of word" or "end of word" metasequence. However, whatever follows \eb normally
+determines which it is. For example, the fragment \eba matches "a" at the start
+of a word.
+.P
+The \eA, \eZ, and \ez assertions differ from the traditional circumflex and
+dollar (described in the next section) in that they only ever match at the very
+start and end of the subject string, whatever options are set. Thus, they are
+independent of multiline mode. These three assertions are not affected by the
+PCRE_NOTBOL or PCRE_NOTEOL options, which affect only the behaviour of the
+circumflex and dollar metacharacters. However, if the \fIstartoffset\fP
+argument of \fBpcre_exec()\fP is non-zero, indicating that matching is to start
+at a point other than the beginning of the subject, \eA can never match. The
+difference between \eZ and \ez is that \eZ matches before a newline at the end
+of the string as well as at the very end, whereas \ez matches only at the end.
+.P
+The \eG assertion is true only when the current matching position is at the
+start point of the match, as specified by the \fIstartoffset\fP argument of
+\fBpcre_exec()\fP. It differs from \eA when the value of \fIstartoffset\fP is
+non-zero. By calling \fBpcre_exec()\fP multiple times with appropriate
+arguments, you can mimic Perl's /g option, and it is in this kind of
+implementation where \eG can be useful.
+.P
+Note, however, that PCRE's interpretation of \eG, as the start of the current
+match, is subtly different from Perl's, which defines it as the end of the
+previous match. In Perl, these can be different when the previously matched
+string was empty. Because PCRE does just one match at a time, it cannot
+reproduce this behaviour.
+.P
+If all the alternatives of a pattern begin with \eG, the expression is anchored
+to the starting match position, and the "anchored" flag is set in the compiled
+regular expression.
+.
+.
+.SH "CIRCUMFLEX AND DOLLAR"
+.rs
+.sp
+The circumflex and dollar metacharacters are zero-width assertions. That is,
+they test for a particular condition being true without consuming any
+characters from the subject string.
+.P
+Outside a character class, in the default matching mode, the circumflex
+character is an assertion that is true only if the current matching point is at
+the start of the subject string. If the \fIstartoffset\fP argument of
+\fBpcre_exec()\fP is non-zero, circumflex can never match if the PCRE_MULTILINE
+option is unset. Inside a character class, circumflex has an entirely different
+meaning
+.\" HTML
+.\"
+(see below).
+.\"
+.P
+Circumflex need not be the first character of the pattern if a number of
+alternatives are involved, but it should be the first thing in each alternative
+in which it appears if the pattern is ever to match that branch. If all
+possible alternatives start with a circumflex, that is, if the pattern is
+constrained to match only at the start of the subject, it is said to be an
+"anchored" pattern. (There are also other constructs that can cause a pattern
+to be anchored.)
+.P
+The dollar character is an assertion that is true only if the current matching
+point is at the end of the subject string, or immediately before a newline at
+the end of the string (by default). Note, however, that it does not actually
+match the newline. Dollar need not be the last character of the pattern if a
+number of alternatives are involved, but it should be the last item in any
+branch in which it appears. Dollar has no special meaning in a character class.
+.P
+The meaning of dollar can be changed so that it matches only at the very end of
+the string, by setting the PCRE_DOLLAR_ENDONLY option at compile time. This
+does not affect the \eZ assertion.
+.P
+The meanings of the circumflex and dollar characters are changed if the
+PCRE_MULTILINE option is set. When this is the case, a circumflex matches
+immediately after internal newlines as well as at the start of the subject
+string. It does not match after a newline that ends the string. A dollar
+matches before any newlines in the string, as well as at the very end, when
+PCRE_MULTILINE is set. When newline is specified as the two-character
+sequence CRLF, isolated CR and LF characters do not indicate newlines.
+.P
+For example, the pattern /^abc$/ matches the subject string "def\enabc" (where
+\en represents a newline) in multiline mode, but not otherwise. Consequently,
+patterns that are anchored in single line mode because all branches start with
+^ are not anchored in multiline mode, and a match for circumflex is possible
+when the \fIstartoffset\fP argument of \fBpcre_exec()\fP is non-zero. The
+PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is set.
+.P
+Note that the sequences \eA, \eZ, and \ez can be used to match the start and
+end of the subject in both modes, and if all branches of a pattern start with
+\eA it is always anchored, whether or not PCRE_MULTILINE is set.
+.
+.
+.\" HTML
+.SH "FULL STOP (PERIOD, DOT) AND \eN"
+.rs
+.sp
+Outside a character class, a dot in the pattern matches any one character in
+the subject string except (by default) a character that signifies the end of a
+line.
+.P
+When a line ending is defined as a single character, dot never matches that
+character; when the two-character sequence CRLF is used, dot does not match CR
+if it is immediately followed by LF, but otherwise it matches all characters
+(including isolated CRs and LFs). When any Unicode line endings are being
+recognized, dot does not match CR or LF or any of the other line ending
+characters.
+.P
+The behaviour of dot with regard to newlines can be changed. If the PCRE_DOTALL
+option is set, a dot matches any one character, without exception. If the
+two-character sequence CRLF is present in the subject string, it takes two dots
+to match it.
+.P
+The handling of dot is entirely independent of the handling of circumflex and
+dollar, the only relationship being that they both involve newlines. Dot has no
+special meaning in a character class.
+.P
+The escape sequence \eN behaves like a dot, except that it is not affected by
+the PCRE_DOTALL option. In other words, it matches any character except one
+that signifies the end of a line. Perl also uses \eN to match characters by
+name; PCRE does not support this.
+.
+.
+.SH "MATCHING A SINGLE DATA UNIT"
+.rs
+.sp
+Outside a character class, the escape sequence \eC matches any one data unit,
+whether or not a UTF mode is set. In the 8-bit library, one data unit is one
+byte; in the 16-bit library it is a 16-bit unit; in the 32-bit library it is
+a 32-bit unit. Unlike a dot, \eC always
+matches line-ending characters. The feature is provided in Perl in order to
+match individual bytes in UTF-8 mode, but it is unclear how it can usefully be
+used. Because \eC breaks up characters into individual data units, matching one
+unit with \eC in a UTF mode means that the rest of the string may start with a
+malformed UTF character. This has undefined results, because PCRE assumes that
+it is dealing with valid UTF strings (and by default it checks this at the
+start of processing unless the PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK or
+PCRE_NO_UTF32_CHECK option is used).
+.P
+PCRE does not allow \eC to appear in lookbehind assertions
+.\" HTML
+.\"
+(described below)
+.\"
+in a UTF mode, because this would make it impossible to calculate the length of
+the lookbehind.
+.P
+In general, the \eC escape sequence is best avoided. However, one
+way of using it that avoids the problem of malformed UTF characters is to use a
+lookahead to check the length of the next character, as in this pattern, which
+could be used with a UTF-8 string (ignore white space and line breaks):
+.sp
+ (?| (?=[\ex00-\ex7f])(\eC) |
+ (?=[\ex80-\ex{7ff}])(\eC)(\eC) |
+ (?=[\ex{800}-\ex{ffff}])(\eC)(\eC)(\eC) |
+ (?=[\ex{10000}-\ex{1fffff}])(\eC)(\eC)(\eC)(\eC))
+.sp
+A group that starts with (?| resets the capturing parentheses numbers in each
+alternative (see
+.\" HTML
+.\"
+"Duplicate Subpattern Numbers"
+.\"
+below). The assertions at the start of each branch check the next UTF-8
+character for values whose encoding uses 1, 2, 3, or 4 bytes, respectively. The
+character's individual bytes are then captured by the appropriate number of
+groups.
+.
+.
+.\" HTML
+.SH "SQUARE BRACKETS AND CHARACTER CLASSES"
+.rs
+.sp
+An opening square bracket introduces a character class, terminated by a closing
+square bracket. A closing square bracket on its own is not special by default.
+However, if the PCRE_JAVASCRIPT_COMPAT option is set, a lone closing square
+bracket causes a compile-time error. If a closing square bracket is required as
+a member of the class, it should be the first data character in the class
+(after an initial circumflex, if present) or escaped with a backslash.
+.P
+A character class matches a single character in the subject. In a UTF mode, the
+character may be more than one data unit long. A matched character must be in
+the set of characters defined by the class, unless the first character in the
+class definition is a circumflex, in which case the subject character must not
+be in the set defined by the class. If a circumflex is actually required as a
+member of the class, ensure it is not the first character, or escape it with a
+backslash.
+.P
+For example, the character class [aeiou] matches any lower case vowel, while
+[^aeiou] matches any character that is not a lower case vowel. Note that a
+circumflex is just a convenient notation for specifying the characters that
+are in the class by enumerating those that are not. A class that starts with a
+circumflex is not an assertion; it still consumes a character from the subject
+string, and therefore it fails if the current pointer is at the end of the
+string.
+.P
+In UTF-8 (UTF-16, UTF-32) mode, characters with values greater than 255 (0xffff)
+can be included in a class as a literal string of data units, or by using the
+\ex{ escaping mechanism.
+.P
+When caseless matching is set, any letters in a class represent both their
+upper case and lower case versions, so for example, a caseless [aeiou] matches
+"A" as well as "a", and a caseless [^aeiou] does not match "A", whereas a
+caseful version would. In a UTF mode, PCRE always understands the concept of
+case for characters whose values are less than 128, so caseless matching is
+always possible. For characters with higher values, the concept of case is
+supported if PCRE is compiled with Unicode property support, but not otherwise.
+If you want to use caseless matching in a UTF mode for characters 128 and
+above, you must ensure that PCRE is compiled with Unicode property support as
+well as with UTF support.
+.P
+Characters that might indicate line breaks are never treated in any special way
+when matching character classes, whatever line-ending sequence is in use, and
+whatever setting of the PCRE_DOTALL and PCRE_MULTILINE options is used. A class
+such as [^a] always matches one of these characters.
+.P
+The minus (hyphen) character can be used to specify a range of characters in a
+character class. For example, [d-m] matches any letter between d and m,
+inclusive. If a minus character is required in a class, it must be escaped with
+a backslash or appear in a position where it cannot be interpreted as
+indicating a range, typically as the first or last character in the class.
+.P
+It is not possible to have the literal character "]" as the end character of a
+range. A pattern such as [W-]46] is interpreted as a class of two characters
+("W" and "-") followed by a literal string "46]", so it would match "W46]" or
+"-46]". However, if the "]" is escaped with a backslash it is interpreted as
+the end of range, so [W-\e]46] is interpreted as a class containing a range
+followed by two other characters. The octal or hexadecimal representation of
+"]" can also be used to end a range.
+.P
+Ranges operate in the collating sequence of character values. They can also be
+used for characters specified numerically, for example [\e000-\e037]. Ranges
+can include any characters that are valid for the current mode.
+.P
+If a range that includes letters is used when caseless matching is set, it
+matches the letters in either case. For example, [W-c] is equivalent to
+[][\e\e^_`wxyzabc], matched caselessly, and in a non-UTF mode, if character
+tables for a French locale are in use, [\exc8-\excb] matches accented E
+characters in both cases. In UTF modes, PCRE supports the concept of case for
+characters with values greater than 128 only when it is compiled with Unicode
+property support.
+.P
+The character escape sequences \ed, \eD, \eh, \eH, \ep, \eP, \es, \eS, \ev,
+\eV, \ew, and \eW may appear in a character class, and add the characters that
+they match to the class. For example, [\edABCDEF] matches any hexadecimal
+digit. In UTF modes, the PCRE_UCP option affects the meanings of \ed, \es, \ew
+and their upper case partners, just as it does when they appear outside a
+character class, as described in the section entitled
+.\" HTML
+.\"
+"Generic character types"
+.\"
+above. The escape sequence \eb has a different meaning inside a character
+class; it matches the backspace character. The sequences \eB, \eN, \eR, and \eX
+are not special inside a character class. Like any other unrecognized escape
+sequences, they are treated as the literal characters "B", "N", "R", and "X" by
+default, but cause an error if the PCRE_EXTRA option is set.
+.P
+A circumflex can conveniently be used with the upper case character types to
+specify a more restricted set of characters than the matching lower case type.
+For example, the class [^\eW_] matches any letter or digit, but not underscore,
+whereas [\ew] includes underscore. A positive character class should be read as
+"something OR something OR ..." and a negative class as "NOT something AND NOT
+something AND NOT ...".
+.P
+The only metacharacters that are recognized in character classes are backslash,
+hyphen (only where it can be interpreted as specifying a range), circumflex
+(only at the start), opening square bracket (only when it can be interpreted as
+introducing a POSIX class name - see the next section), and the terminating
+closing square bracket. However, escaping other non-alphanumeric characters
+does no harm.
+.
+.
+.SH "POSIX CHARACTER CLASSES"
+.rs
+.sp
+Perl supports the POSIX notation for character classes. This uses names
+enclosed by [: and :] within the enclosing square brackets. PCRE also supports
+this notation. For example,
+.sp
+ [01[:alpha:]%]
+.sp
+matches "0", "1", any alphabetic character, or "%". The supported class names
+are:
+.sp
+ alnum letters and digits
+ alpha letters
+ ascii character codes 0 - 127
+ blank space or tab only
+ cntrl control characters
+ digit decimal digits (same as \ed)
+ graph printing characters, excluding space
+ lower lower case letters
+ print printing characters, including space
+ punct printing characters, excluding letters and digits and space
+ space white space (not quite the same as \es)
+ upper upper case letters
+ word "word" characters (same as \ew)
+ xdigit hexadecimal digits
+.sp
+The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13), and
+space (32). Notice that this list includes the VT character (code 11). This
+makes "space" different to \es, which does not include VT (for Perl
+compatibility).
+.P
+The name "word" is a Perl extension, and "blank" is a GNU extension from Perl
+5.8. Another Perl extension is negation, which is indicated by a ^ character
+after the colon. For example,
+.sp
+ [12[:^digit:]]
+.sp
+matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the POSIX
+syntax [.ch.] and [=ch=] where "ch" is a "collating element", but these are not
+supported, and an error is given if they are encountered.
+.P
+By default, in UTF modes, characters with values greater than 128 do not match
+any of the POSIX character classes. However, if the PCRE_UCP option is passed
+to \fBpcre_compile()\fP, some of the classes are changed so that Unicode
+character properties are used. This is achieved by replacing the POSIX classes
+by other sequences, as follows:
+.sp
+ [:alnum:] becomes \ep{Xan}
+ [:alpha:] becomes \ep{L}
+ [:blank:] becomes \eh
+ [:digit:] becomes \ep{Nd}
+ [:lower:] becomes \ep{Ll}
+ [:space:] becomes \ep{Xps}
+ [:upper:] becomes \ep{Lu}
+ [:word:] becomes \ep{Xwd}
+.sp
+Negated versions, such as [:^alpha:] use \eP instead of \ep. The other POSIX
+classes are unchanged, and match only characters with code points less than
+128.
+.
+.
+.SH "VERTICAL BAR"
+.rs
+.sp
+Vertical bar characters are used to separate alternative patterns. For example,
+the pattern
+.sp
+ gilbert|sullivan
+.sp
+matches either "gilbert" or "sullivan". Any number of alternatives may appear,
+and an empty alternative is permitted (matching the empty string). The matching
+process tries each alternative in turn, from left to right, and the first one
+that succeeds is used. If the alternatives are within a subpattern
+.\" HTML
+.\"
+(defined below),
+.\"
+"succeeds" means matching the rest of the main pattern as well as the
+alternative in the subpattern.
+.
+.
+.SH "INTERNAL OPTION SETTING"
+.rs
+.sp
+The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
+PCRE_EXTENDED options (which are Perl-compatible) can be changed from within
+the pattern by a sequence of Perl option letters enclosed between "(?" and ")".
+The option letters are
+.sp
+ i for PCRE_CASELESS
+ m for PCRE_MULTILINE
+ s for PCRE_DOTALL
+ x for PCRE_EXTENDED
+.sp
+For example, (?im) sets caseless, multiline matching. It is also possible to
+unset these options by preceding the letter with a hyphen, and a combined
+setting and unsetting such as (?im-sx), which sets PCRE_CASELESS and
+PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED, is also
+permitted. If a letter appears both before and after the hyphen, the option is
+unset.
+.P
+The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA can be
+changed in the same way as the Perl-compatible options by using the characters
+J, U and X respectively.
+.P
+When one of these option changes occurs at top level (that is, not inside
+subpattern parentheses), the change applies to the remainder of the pattern
+that follows. If the change is placed right at the start of a pattern, PCRE
+extracts it into the global options (and it will therefore show up in data
+extracted by the \fBpcre_fullinfo()\fP function).
+.P
+An option change within a subpattern (see below for a description of
+subpatterns) affects only that part of the subpattern that follows it, so
+.sp
+ (a(?i)b)c
+.sp
+matches abc and aBc and no other strings (assuming PCRE_CASELESS is not used).
+By this means, options can be made to have different settings in different
+parts of the pattern. Any changes made in one alternative do carry on
+into subsequent branches within the same subpattern. For example,
+.sp
+ (a(?i)b|c)
+.sp
+matches "ab", "aB", "c", and "C", even though when matching "C" the first
+branch is abandoned before the option setting. This is because the effects of
+option settings happen at compile time. There would be some very weird
+behaviour otherwise.
+.P
+\fBNote:\fP There are other PCRE-specific options that can be set by the
+application when the compiling or matching functions are called. In some cases
+the pattern can contain special leading sequences such as (*CRLF) to override
+what the application has set or what has been defaulted. Details are given in
+the section entitled
+.\" HTML
+.\"
+"Newline sequences"
+.\"
+above. There are also the (*UTF8), (*UTF16),(*UTF32), and (*UCP) leading
+sequences that can be used to set UTF and Unicode property modes; they are
+equivalent to setting the PCRE_UTF8, PCRE_UTF16, PCRE_UTF32 and the PCRE_UCP
+options, respectively. The (*UTF) sequence is a generic version that can be
+used with any of the libraries. However, the application can set the
+PCRE_NEVER_UTF option, which locks out the use of the (*UTF) sequences.
+.
+.
+.\" HTML
+.SH SUBPATTERNS
+.rs
+.sp
+Subpatterns are delimited by parentheses (round brackets), which can be nested.
+Turning part of a pattern into a subpattern does two things:
+.sp
+1. It localizes a set of alternatives. For example, the pattern
+.sp
+ cat(aract|erpillar|)
+.sp
+matches "cataract", "caterpillar", or "cat". Without the parentheses, it would
+match "cataract", "erpillar" or an empty string.
+.sp
+2. It sets up the subpattern as a capturing subpattern. This means that, when
+the whole pattern matches, that portion of the subject string that matched the
+subpattern is passed back to the caller via the \fIovector\fP argument of the
+matching function. (This applies only to the traditional matching functions;
+the DFA matching functions do not support capturing.)
+.P
+Opening parentheses are counted from left to right (starting from 1) to obtain
+numbers for the capturing subpatterns. For example, if the string "the red
+king" is matched against the pattern
+.sp
+ the ((red|white) (king|queen))
+.sp
+the captured substrings are "red king", "red", and "king", and are numbered 1,
+2, and 3, respectively.
+.P
+The fact that plain parentheses fulfil two functions is not always helpful.
+There are often times when a grouping subpattern is required without a
+capturing requirement. If an opening parenthesis is followed by a question mark
+and a colon, the subpattern does not do any capturing, and is not counted when
+computing the number of any subsequent capturing subpatterns. For example, if
+the string "the white queen" is matched against the pattern
+.sp
+ the ((?:red|white) (king|queen))
+.sp
+the captured substrings are "white queen" and "queen", and are numbered 1 and
+2. The maximum number of capturing subpatterns is 65535.
+.P
+As a convenient shorthand, if any option settings are required at the start of
+a non-capturing subpattern, the option letters may appear between the "?" and
+the ":". Thus the two patterns
+.sp
+ (?i:saturday|sunday)
+ (?:(?i)saturday|sunday)
+.sp
+match exactly the same set of strings. Because alternative branches are tried
+from left to right, and options are not reset until the end of the subpattern
+is reached, an option setting in one branch does affect subsequent branches, so
+the above patterns match "SUNDAY" as well as "Saturday".
+.
+.
+.\" HTML
+.SH "DUPLICATE SUBPATTERN NUMBERS"
+.rs
+.sp
+Perl 5.10 introduced a feature whereby each alternative in a subpattern uses
+the same numbers for its capturing parentheses. Such a subpattern starts with
+(?| and is itself a non-capturing subpattern. For example, consider this
+pattern:
+.sp
+ (?|(Sat)ur|(Sun))day
+.sp
+Because the two alternatives are inside a (?| group, both sets of capturing
+parentheses are numbered one. Thus, when the pattern matches, you can look
+at captured substring number one, whichever alternative matched. This construct
+is useful when you want to capture part, but not all, of one of a number of
+alternatives. Inside a (?| group, parentheses are numbered as usual, but the
+number is reset at the start of each branch. The numbers of any capturing
+parentheses that follow the subpattern start after the highest number used in
+any branch. The following example is taken from the Perl documentation. The
+numbers underneath show in which buffer the captured content will be stored.
+.sp
+ # before ---------------branch-reset----------- after
+ / ( a ) (?| x ( y ) z | (p (q) r) | (t) u (v) ) ( z ) /x
+ # 1 2 2 3 2 3 4
+.sp
+A back reference to a numbered subpattern uses the most recent value that is
+set for that number by any subpattern. The following pattern matches "abcabc"
+or "defdef":
+.sp
+ /(?|(abc)|(def))\e1/
+.sp
+In contrast, a subroutine call to a numbered subpattern always refers to the
+first one in the pattern with the given number. The following pattern matches
+"abcabc" or "defabc":
+.sp
+ /(?|(abc)|(def))(?1)/
+.sp
+If a
+.\" HTML
+.\"
+condition test
+.\"
+for a subpattern's having matched refers to a non-unique number, the test is
+true if any of the subpatterns of that number have matched.
+.P
+An alternative approach to using this "branch reset" feature is to use
+duplicate named subpatterns, as described in the next section.
+.
+.
+.SH "NAMED SUBPATTERNS"
+.rs
+.sp
+Identifying capturing parentheses by number is simple, but it can be very hard
+to keep track of the numbers in complicated regular expressions. Furthermore,
+if an expression is modified, the numbers may change. To help with this
+difficulty, PCRE supports the naming of subpatterns. This feature was not
+added to Perl until release 5.10. Python had the feature earlier, and PCRE
+introduced it at release 4.0, using the Python syntax. PCRE now supports both
+the Perl and the Python syntax. Perl allows identically numbered subpatterns to
+have different names, but PCRE does not.
+.P
+In PCRE, a subpattern can be named in one of three ways: (?...) or
+(?'name'...) as in Perl, or (?P...) as in Python. References to capturing
+parentheses from other parts of the pattern, such as
+.\" HTML
+.\"
+back references,
+.\"
+.\" HTML
+.\"
+recursion,
+.\"
+and
+.\" HTML
+.\"
+conditions,
+.\"
+can be made by name as well as by number.
+.P
+Names consist of up to 32 alphanumeric characters and underscores. Named
+capturing parentheses are still allocated numbers as well as names, exactly as
+if the names were not present. The PCRE API provides function calls for
+extracting the name-to-number translation table from a compiled pattern. There
+is also a convenience function for extracting a captured substring by name.
+.P
+By default, a name must be unique within a pattern, but it is possible to relax
+this constraint by setting the PCRE_DUPNAMES option at compile time. (Duplicate
+names are also always permitted for subpatterns with the same number, set up as
+described in the previous section.) Duplicate names can be useful for patterns
+where only one instance of the named parentheses can match. Suppose you want to
+match the name of a weekday, either as a 3-letter abbreviation or as the full
+name, and in both cases you want to extract the abbreviation. This pattern
+(ignoring the line breaks) does the job:
+.sp
+ (?Mon|Fri|Sun)(?:day)?|
+ (?Tue)(?:sday)?|
+ (?Wed)(?:nesday)?|
+ (?Thu)(?:rsday)?|
+ (?Sat)(?:urday)?
+.sp
+There are five capturing substrings, but only one is ever set after a match.
+(An alternative way of solving this problem is to use a "branch reset"
+subpattern, as described in the previous section.)
+.P
+The convenience function for extracting the data by name returns the substring
+for the first (and in this example, the only) subpattern of that name that
+matched. This saves searching to find which numbered subpattern it was.
+.P
+If you make a back reference to a non-unique named subpattern from elsewhere in
+the pattern, the one that corresponds to the first occurrence of the name is
+used. In the absence of duplicate numbers (see the previous section) this is
+the one with the lowest number. If you use a named reference in a condition
+test (see the
+.\"
+.\" HTML
+.\"
+section about conditions
+.\"
+below), either to check whether a subpattern has matched, or to check for
+recursion, all subpatterns with the same name are tested. If the condition is
+true for any one of them, the overall condition is true. This is the same
+behaviour as testing by number. For further details of the interfaces for
+handling named subpatterns, see the
+.\" HREF
+\fBpcreapi\fP
+.\"
+documentation.
+.P
+\fBWarning:\fP You cannot use different names to distinguish between two
+subpatterns with the same number because PCRE uses only the numbers when
+matching. For this reason, an error is given at compile time if different names
+are given to subpatterns with the same number. However, you can give the same
+name to subpatterns with the same number, even when PCRE_DUPNAMES is not set.
+.
+.
+.SH REPETITION
+.rs
+.sp
+Repetition is specified by quantifiers, which can follow any of the following
+items:
+.sp
+ a literal data character
+ the dot metacharacter
+ the \eC escape sequence
+ the \eX escape sequence
+ the \eR escape sequence
+ an escape such as \ed or \epL that matches a single character
+ a character class
+ a back reference (see next section)
+ a parenthesized subpattern (including assertions)
+ a subroutine call to a subpattern (recursive or otherwise)
+.sp
+The general repetition quantifier specifies a minimum and maximum number of
+permitted matches, by giving the two numbers in curly brackets (braces),
+separated by a comma. The numbers must be less than 65536, and the first must
+be less than or equal to the second. For example:
+.sp
+ z{2,4}
+.sp
+matches "zz", "zzz", or "zzzz". A closing brace on its own is not a special
+character. If the second number is omitted, but the comma is present, there is
+no upper limit; if the second number and the comma are both omitted, the
+quantifier specifies an exact number of required matches. Thus
+.sp
+ [aeiou]{3,}
+.sp
+matches at least 3 successive vowels, but may match many more, while
+.sp
+ \ed{8}
+.sp
+matches exactly 8 digits. An opening curly bracket that appears in a position
+where a quantifier is not allowed, or one that does not match the syntax of a
+quantifier, is taken as a literal character. For example, {,6} is not a
+quantifier, but a literal string of four characters.
+.P
+In UTF modes, quantifiers apply to characters rather than to individual data
+units. Thus, for example, \ex{100}{2} matches two characters, each of
+which is represented by a two-byte sequence in a UTF-8 string. Similarly,
+\eX{3} matches three Unicode extended grapheme clusters, each of which may be
+several data units long (and they may be of different lengths).
+.P
+The quantifier {0} is permitted, causing the expression to behave as if the
+previous item and the quantifier were not present. This may be useful for
+subpatterns that are referenced as
+.\" HTML
+.\"
+subroutines
+.\"
+from elsewhere in the pattern (but see also the section entitled
+.\" HTML
+.\"
+"Defining subpatterns for use by reference only"
+.\"
+below). Items other than subpatterns that have a {0} quantifier are omitted
+from the compiled pattern.
+.P
+For convenience, the three most common quantifiers have single-character
+abbreviations:
+.sp
+ * is equivalent to {0,}
+ + is equivalent to {1,}
+ ? is equivalent to {0,1}
+.sp
+It is possible to construct infinite loops by following a subpattern that can
+match no characters with a quantifier that has no upper limit, for example:
+.sp
+ (a?)*
+.sp
+Earlier versions of Perl and PCRE used to give an error at compile time for
+such patterns. However, because there are cases where this can be useful, such
+patterns are now accepted, but if any repetition of the subpattern does in fact
+match no characters, the loop is forcibly broken.
+.P
+By default, the quantifiers are "greedy", that is, they match as much as
+possible (up to the maximum number of permitted times), without causing the
+rest of the pattern to fail. The classic example of where this gives problems
+is in trying to match comments in C programs. These appear between /* and */
+and within the comment, individual * and / characters may appear. An attempt to
+match C comments by applying the pattern
+.sp
+ /\e*.*\e*/
+.sp
+to the string
+.sp
+ /* first comment */ not comment /* second comment */
+.sp
+fails, because it matches the entire string owing to the greediness of the .*
+item.
+.P
+However, if a quantifier is followed by a question mark, it ceases to be
+greedy, and instead matches the minimum number of times possible, so the
+pattern
+.sp
+ /\e*.*?\e*/
+.sp
+does the right thing with the C comments. The meaning of the various
+quantifiers is not otherwise changed, just the preferred number of matches.
+Do not confuse this use of question mark with its use as a quantifier in its
+own right. Because it has two uses, it can sometimes appear doubled, as in
+.sp
+ \ed??\ed
+.sp
+which matches one digit by preference, but can match two if that is the only
+way the rest of the pattern matches.
+.P
+If the PCRE_UNGREEDY option is set (an option that is not available in Perl),
+the quantifiers are not greedy by default, but individual ones can be made
+greedy by following them with a question mark. In other words, it inverts the
+default behaviour.
+.P
+When a parenthesized subpattern is quantified with a minimum repeat count that
+is greater than 1 or with a limited maximum, more memory is required for the
+compiled pattern, in proportion to the size of the minimum or maximum.
+.P
+If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent
+to Perl's /s) is set, thus allowing the dot to match newlines, the pattern is
+implicitly anchored, because whatever follows will be tried against every
+character position in the subject string, so there is no point in retrying the
+overall match at any position after the first. PCRE normally treats such a
+pattern as though it were preceded by \eA.
+.P
+In cases where it is known that the subject string contains no newlines, it is
+worth setting PCRE_DOTALL in order to obtain this optimization, or
+alternatively using ^ to indicate anchoring explicitly.
+.P
+However, there are some cases where the optimization cannot be used. When .*
+is inside capturing parentheses that are the subject of a back reference
+elsewhere in the pattern, a match at the start may fail where a later one
+succeeds. Consider, for example:
+.sp
+ (.*)abc\e1
+.sp
+If the subject is "xyz123abc123" the match point is the fourth character. For
+this reason, such a pattern is not implicitly anchored.
+.P
+Another case where implicit anchoring is not applied is when the leading .* is
+inside an atomic group. Once again, a match at the start may fail where a later
+one succeeds. Consider this pattern:
+.sp
+ (?>.*?a)b
+.sp
+It matches "ab" in the subject "aab". The use of the backtracking control verbs
+(*PRUNE) and (*SKIP) also disable this optimization.
+.P
+When a capturing subpattern is repeated, the value captured is the substring
+that matched the final iteration. For example, after
+.sp
+ (tweedle[dume]{3}\es*)+
+.sp
+has matched "tweedledum tweedledee" the value of the captured substring is
+"tweedledee". However, if there are nested capturing subpatterns, the
+corresponding captured values may have been set in previous iterations. For
+example, after
+.sp
+ /(a|(b))+/
+.sp
+matches "aba" the value of the second captured substring is "b".
+.
+.
+.\" HTML
+.SH "ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS"
+.rs
+.sp
+With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
+repetition, failure of what follows normally causes the repeated item to be
+re-evaluated to see if a different number of repeats allows the rest of the
+pattern to match. Sometimes it is useful to prevent this, either to change the
+nature of the match, or to cause it fail earlier than it otherwise might, when
+the author of the pattern knows there is no point in carrying on.
+.P
+Consider, for example, the pattern \ed+foo when applied to the subject line
+.sp
+ 123456bar
+.sp
+After matching all 6 digits and then failing to match "foo", the normal
+action of the matcher is to try again with only 5 digits matching the \ed+
+item, and then with 4, and so on, before ultimately failing. "Atomic grouping"
+(a term taken from Jeffrey Friedl's book) provides the means for specifying
+that once a subpattern has matched, it is not to be re-evaluated in this way.
+.P
+If we use atomic grouping for the previous example, the matcher gives up
+immediately on failing to match "foo" the first time. The notation is a kind of
+special parenthesis, starting with (?> as in this example:
+.sp
+ (?>\ed+)foo
+.sp
+This kind of parenthesis "locks up" the part of the pattern it contains once
+it has matched, and a failure further into the pattern is prevented from
+backtracking into it. Backtracking past it to previous items, however, works as
+normal.
+.P
+An alternative description is that a subpattern of this type matches the string
+of characters that an identical standalone pattern would match, if anchored at
+the current point in the subject string.
+.P
+Atomic grouping subpatterns are not capturing subpatterns. Simple cases such as
+the above example can be thought of as a maximizing repeat that must swallow
+everything it can. So, while both \ed+ and \ed+? are prepared to adjust the
+number of digits they match in order to make the rest of the pattern match,
+(?>\ed+) can only match an entire sequence of digits.
+.P
+Atomic groups in general can of course contain arbitrarily complicated
+subpatterns, and can be nested. However, when the subpattern for an atomic
+group is just a single repeated item, as in the example above, a simpler
+notation, called a "possessive quantifier" can be used. This consists of an
+additional + character following a quantifier. Using this notation, the
+previous example can be rewritten as
+.sp
+ \ed++foo
+.sp
+Note that a possessive quantifier can be used with an entire group, for
+example:
+.sp
+ (abc|xyz){2,3}+
+.sp
+Possessive quantifiers are always greedy; the setting of the PCRE_UNGREEDY
+option is ignored. They are a convenient notation for the simpler forms of
+atomic group. However, there is no difference in the meaning of a possessive
+quantifier and the equivalent atomic group, though there may be a performance
+difference; possessive quantifiers should be slightly faster.
+.P
+The possessive quantifier syntax is an extension to the Perl 5.8 syntax.
+Jeffrey Friedl originated the idea (and the name) in the first edition of his
+book. Mike McCloskey liked it, so implemented it when he built Sun's Java
+package, and PCRE copied it from there. It ultimately found its way into Perl
+at release 5.10.
+.P
+PCRE has an optimization that automatically "possessifies" certain simple
+pattern constructs. For example, the sequence A+B is treated as A++B because
+there is no point in backtracking into a sequence of A's when B must follow.
+.P
+When a pattern contains an unlimited repeat inside a subpattern that can itself
+be repeated an unlimited number of times, the use of an atomic group is the
+only way to avoid some failing matches taking a very long time indeed. The
+pattern
+.sp
+ (\eD+|<\ed+>)*[!?]
+.sp
+matches an unlimited number of substrings that either consist of non-digits, or
+digits enclosed in <>, followed by either ! or ?. When it matches, it runs
+quickly. However, if it is applied to
+.sp
+ aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
+.sp
+it takes a long time before reporting failure. This is because the string can
+be divided between the internal \eD+ repeat and the external * repeat in a
+large number of ways, and all have to be tried. (The example uses [!?] rather
+than a single character at the end, because both PCRE and Perl have an
+optimization that allows for fast failure when a single character is used. They
+remember the last single character that is required for a match, and fail early
+if it is not present in the string.) If the pattern is changed so that it uses
+an atomic group, like this:
+.sp
+ ((?>\eD+)|<\ed+>)*[!?]
+.sp
+sequences of non-digits cannot be broken, and failure happens quickly.
+.
+.
+.\" HTML
+.SH "BACK REFERENCES"
+.rs
+.sp
+Outside a character class, a backslash followed by a digit greater than 0 (and
+possibly further digits) is a back reference to a capturing subpattern earlier
+(that is, to its left) in the pattern, provided there have been that many
+previous capturing left parentheses.
+.P
+However, if the decimal number following the backslash is less than 10, it is
+always taken as a back reference, and causes an error only if there are not
+that many capturing left parentheses in the entire pattern. In other words, the
+parentheses that are referenced need not be to the left of the reference for
+numbers less than 10. A "forward back reference" of this type can make sense
+when a repetition is involved and the subpattern to the right has participated
+in an earlier iteration.
+.P
+It is not possible to have a numerical "forward back reference" to a subpattern
+whose number is 10 or more using this syntax because a sequence such as \e50 is
+interpreted as a character defined in octal. See the subsection entitled
+"Non-printing characters"
+.\" HTML
+.\"
+above
+.\"
+for further details of the handling of digits following a backslash. There is
+no such problem when named parentheses are used. A back reference to any
+subpattern is possible using named parentheses (see below).
+.P
+Another way of avoiding the ambiguity inherent in the use of digits following a
+backslash is to use the \eg escape sequence. This escape must be followed by an
+unsigned number or a negative number, optionally enclosed in braces. These
+examples are all identical:
+.sp
+ (ring), \e1
+ (ring), \eg1
+ (ring), \eg{1}
+.sp
+An unsigned number specifies an absolute reference without the ambiguity that
+is present in the older syntax. It is also useful when literal digits follow
+the reference. A negative number is a relative reference. Consider this
+example:
+.sp
+ (abc(def)ghi)\eg{-1}
+.sp
+The sequence \eg{-1} is a reference to the most recently started capturing
+subpattern before \eg, that is, is it equivalent to \e2 in this example.
+Similarly, \eg{-2} would be equivalent to \e1. The use of relative references
+can be helpful in long patterns, and also in patterns that are created by
+joining together fragments that contain references within themselves.
+.P
+A back reference matches whatever actually matched the capturing subpattern in
+the current subject string, rather than anything matching the subpattern
+itself (see
+.\" HTML
+.\"
+"Subpatterns as subroutines"
+.\"
+below for a way of doing that). So the pattern
+.sp
+ (sens|respons)e and \e1ibility
+.sp
+matches "sense and sensibility" and "response and responsibility", but not
+"sense and responsibility". If caseful matching is in force at the time of the
+back reference, the case of letters is relevant. For example,
+.sp
+ ((?i)rah)\es+\e1
+.sp
+matches "rah rah" and "RAH RAH", but not "RAH rah", even though the original
+capturing subpattern is matched caselessly.
+.P
+There are several different ways of writing back references to named
+subpatterns. The .NET syntax \ek{name} and the Perl syntax \ek or
+\ek'name' are supported, as is the Python syntax (?P=name). Perl 5.10's unified
+back reference syntax, in which \eg can be used for both numeric and named
+references, is also supported. We could rewrite the above example in any of
+the following ways:
+.sp
+ (?(?i)rah)\es+\ek
+ (?'p1'(?i)rah)\es+\ek{p1}
+ (?P(?i)rah)\es+(?P=p1)
+ (?(?i)rah)\es+\eg{p1}
+.sp
+A subpattern that is referenced by name may appear in the pattern before or
+after the reference.
+.P
+There may be more than one back reference to the same subpattern. If a
+subpattern has not actually been used in a particular match, any back
+references to it always fail by default. For example, the pattern
+.sp
+ (a|(bc))\e2
+.sp
+always fails if it starts to match "a" rather than "bc". However, if the
+PCRE_JAVASCRIPT_COMPAT option is set at compile time, a back reference to an
+unset value matches an empty string.
+.P
+Because there may be many capturing parentheses in a pattern, all digits
+following a backslash are taken as part of a potential back reference number.
+If the pattern continues with a digit character, some delimiter must be used to
+terminate the back reference. If the PCRE_EXTENDED option is set, this can be
+white space. Otherwise, the \eg{ syntax or an empty comment (see
+.\" HTML
+.\"
+"Comments"
+.\"
+below) can be used.
+.
+.SS "Recursive back references"
+.rs
+.sp
+A back reference that occurs inside the parentheses to which it refers fails
+when the subpattern is first used, so, for example, (a\e1) never matches.
+However, such references can be useful inside repeated subpatterns. For
+example, the pattern
+.sp
+ (a|b\e1)+
+.sp
+matches any number of "a"s and also "aba", "ababbaa" etc. At each iteration of
+the subpattern, the back reference matches the character string corresponding
+to the previous iteration. In order for this to work, the pattern must be such
+that the first iteration does not need to match the back reference. This can be
+done using alternation, as in the example above, or by a quantifier with a
+minimum of zero.
+.P
+Back references of this type cause the group that they reference to be treated
+as an
+.\" HTML
+.\"
+atomic group.
+.\"
+Once the whole group has been matched, a subsequent matching failure cannot
+cause backtracking into the middle of the group.
+.
+.
+.\" HTML
+.SH ASSERTIONS
+.rs
+.sp
+An assertion is a test on the characters following or preceding the current
+matching point that does not actually consume any characters. The simple
+assertions coded as \eb, \eB, \eA, \eG, \eZ, \ez, ^ and $ are described
+.\" HTML
+.\"
+above.
+.\"
+.P
+More complicated assertions are coded as subpatterns. There are two kinds:
+those that look ahead of the current position in the subject string, and those
+that look behind it. An assertion subpattern is matched in the normal way,
+except that it does not cause the current matching position to be changed.
+.P
+Assertion subpatterns are not capturing subpatterns. If such an assertion
+contains capturing subpatterns within it, these are counted for the purposes of
+numbering the capturing subpatterns in the whole pattern. However, substring
+capturing is carried out only for positive assertions. (Perl sometimes, but not
+always, does do capturing in negative assertions.)
+.P
+For compatibility with Perl, assertion subpatterns may be repeated; though
+it makes no sense to assert the same thing several times, the side effect of
+capturing parentheses may occasionally be useful. In practice, there only three
+cases:
+.sp
+(1) If the quantifier is {0}, the assertion is never obeyed during matching.
+However, it may contain internal capturing parenthesized groups that are called
+from elsewhere via the
+.\" HTML
+.\"
+subroutine mechanism.
+.\"
+.sp
+(2) If quantifier is {0,n} where n is greater than zero, it is treated as if it
+were {0,1}. At run time, the rest of the pattern match is tried with and
+without the assertion, the order depending on the greediness of the quantifier.
+.sp
+(3) If the minimum repetition is greater than zero, the quantifier is ignored.
+The assertion is obeyed just once when encountered during matching.
+.
+.
+.SS "Lookahead assertions"
+.rs
+.sp
+Lookahead assertions start with (?= for positive assertions and (?! for
+negative assertions. For example,
+.sp
+ \ew+(?=;)
+.sp
+matches a word followed by a semicolon, but does not include the semicolon in
+the match, and
+.sp
+ foo(?!bar)
+.sp
+matches any occurrence of "foo" that is not followed by "bar". Note that the
+apparently similar pattern
+.sp
+ (?!foo)bar
+.sp
+does not find an occurrence of "bar" that is preceded by something other than
+"foo"; it finds any occurrence of "bar" whatsoever, because the assertion
+(?!foo) is always true when the next three characters are "bar". A
+lookbehind assertion is needed to achieve the other effect.
+.P
+If you want to force a matching failure at some point in a pattern, the most
+convenient way to do it is with (?!) because an empty string always matches, so
+an assertion that requires there not to be an empty string must always fail.
+The backtracking control verb (*FAIL) or (*F) is a synonym for (?!).
+.
+.
+.\" HTML
+.SS "Lookbehind assertions"
+.rs
+.sp
+Lookbehind assertions start with (?<= for positive assertions and (?
+.\"
+(see above)
+.\"
+can be used instead of a lookbehind assertion to get round the fixed-length
+restriction.
+.P
+The implementation of lookbehind assertions is, for each alternative, to
+temporarily move the current position back by the fixed length and then try to
+match. If there are insufficient characters before the current position, the
+assertion fails.
+.P
+In a UTF mode, PCRE does not allow the \eC escape (which matches a single data
+unit even in a UTF mode) to appear in lookbehind assertions, because it makes
+it impossible to calculate the length of the lookbehind. The \eX and \eR
+escapes, which can match different numbers of data units, are also not
+permitted.
+.P
+.\" HTML
+.\"
+"Subroutine"
+.\"
+calls (see below) such as (?2) or (?&X) are permitted in lookbehinds, as long
+as the subpattern matches a fixed-length string.
+.\" HTML
+.\"
+Recursion,
+.\"
+however, is not supported.
+.P
+Possessive quantifiers can be used in conjunction with lookbehind assertions to
+specify efficient matching of fixed-length strings at the end of subject
+strings. Consider a simple pattern such as
+.sp
+ abcd$
+.sp
+when applied to a long string that does not match. Because matching proceeds
+from left to right, PCRE will look for each "a" in the subject and then see if
+what follows matches the rest of the pattern. If the pattern is specified as
+.sp
+ ^.*abcd$
+.sp
+the initial .* matches the entire string at first, but when this fails (because
+there is no following "a"), it backtracks to match all but the last character,
+then all but the last two characters, and so on. Once again the search for "a"
+covers the entire string, from right to left, so we are no better off. However,
+if the pattern is written as
+.sp
+ ^.*+(?<=abcd)
+.sp
+there can be no backtracking for the .*+ item; it can match only the entire
+string. The subsequent lookbehind assertion does a single test on the last four
+characters. If it fails, the match fails immediately. For long strings, this
+approach makes a significant difference to the processing time.
+.
+.
+.SS "Using multiple assertions"
+.rs
+.sp
+Several assertions (of any sort) may occur in succession. For example,
+.sp
+ (?<=\ed{3})(?
+.SH "CONDITIONAL SUBPATTERNS"
+.rs
+.sp
+It is possible to cause the matching process to obey a subpattern
+conditionally or to choose between two alternative subpatterns, depending on
+the result of an assertion, or whether a specific capturing subpattern has
+already been matched. The two possible forms of conditional subpattern are:
+.sp
+ (?(condition)yes-pattern)
+ (?(condition)yes-pattern|no-pattern)
+.sp
+If the condition is satisfied, the yes-pattern is used; otherwise the
+no-pattern (if present) is used. If there are more than two alternatives in the
+subpattern, a compile-time error occurs. Each of the two alternatives may
+itself contain nested subpatterns of any form, including conditional
+subpatterns; the restriction to two alternatives applies only at the level of
+the condition. This pattern fragment is an example where the alternatives are
+complex:
+.sp
+ (?(1) (A|B|C) | (D | (?(2)E|F) | E) )
+.sp
+.P
+There are four kinds of condition: references to subpatterns, references to
+recursion, a pseudo-condition called DEFINE, and assertions.
+.
+.SS "Checking for a used subpattern by number"
+.rs
+.sp
+If the text between the parentheses consists of a sequence of digits, the
+condition is true if a capturing subpattern of that number has previously
+matched. If there is more than one capturing subpattern with the same number
+(see the earlier
+.\"
+.\" HTML
+.\"
+section about duplicate subpattern numbers),
+.\"
+the condition is true if any of them have matched. An alternative notation is
+to precede the digits with a plus or minus sign. In this case, the subpattern
+number is relative rather than absolute. The most recently opened parentheses
+can be referenced by (?(-1), the next most recent by (?(-2), and so on. Inside
+loops it can also make sense to refer to subsequent groups. The next
+parentheses to be opened can be referenced as (?(+1), and so on. (The value
+zero in any of these forms is not used; it provokes a compile-time error.)
+.P
+Consider the following pattern, which contains non-significant white space to
+make it more readable (assume the PCRE_EXTENDED option) and to divide it into
+three parts for ease of discussion:
+.sp
+ ( \e( )? [^()]+ (?(1) \e) )
+.sp
+The first part matches an optional opening parenthesis, and if that
+character is present, sets it as the first captured substring. The second part
+matches one or more characters that are not parentheses. The third part is a
+conditional subpattern that tests whether or not the first set of parentheses
+matched. If they did, that is, if subject started with an opening parenthesis,
+the condition is true, and so the yes-pattern is executed and a closing
+parenthesis is required. Otherwise, since no-pattern is not present, the
+subpattern matches nothing. In other words, this pattern matches a sequence of
+non-parentheses, optionally enclosed in parentheses.
+.P
+If you were embedding this pattern in a larger one, you could use a relative
+reference:
+.sp
+ ...other stuff... ( \e( )? [^()]+ (?(-1) \e) ) ...
+.sp
+This makes the fragment independent of the parentheses in the larger pattern.
+.
+.SS "Checking for a used subpattern by name"
+.rs
+.sp
+Perl uses the syntax (?()...) or (?('name')...) to test for a used
+subpattern by name. For compatibility with earlier versions of PCRE, which had
+this facility before Perl, the syntax (?(name)...) is also recognized. However,
+there is a possible ambiguity with this syntax, because subpattern names may
+consist entirely of digits. PCRE looks first for a named subpattern; if it
+cannot find one and the name consists entirely of digits, PCRE looks for a
+subpattern of that number, which must be greater than zero. Using subpattern
+names that consist entirely of digits is not recommended.
+.P
+Rewriting the above example to use a named subpattern gives this:
+.sp
+ (? \e( )? [^()]+ (?() \e) )
+.sp
+If the name used in a condition of this kind is a duplicate, the test is
+applied to all subpatterns of the same name, and is true if any one of them has
+matched.
+.
+.SS "Checking for pattern recursion"
+.rs
+.sp
+If the condition is the string (R), and there is no subpattern with the name R,
+the condition is true if a recursive call to the whole pattern or any
+subpattern has been made. If digits or a name preceded by ampersand follow the
+letter R, for example:
+.sp
+ (?(R3)...) or (?(R&name)...)
+.sp
+the condition is true if the most recent recursion is into a subpattern whose
+number or name is given. This condition does not check the entire recursion
+stack. If the name used in a condition of this kind is a duplicate, the test is
+applied to all subpatterns of the same name, and is true if any one of them is
+the most recent recursion.
+.P
+At "top level", all these recursion test conditions are false.
+.\" HTML
+.\"
+The syntax for recursive patterns
+.\"
+is described below.
+.
+.\" HTML
+.SS "Defining subpatterns for use by reference only"
+.rs
+.sp
+If the condition is the string (DEFINE), and there is no subpattern with the
+name DEFINE, the condition is always false. In this case, there may be only one
+alternative in the subpattern. It is always skipped if control reaches this
+point in the pattern; the idea of DEFINE is that it can be used to define
+subroutines that can be referenced from elsewhere. (The use of
+.\" HTML
+.\"
+subroutines
+.\"
+is described below.) For example, a pattern to match an IPv4 address such as
+"192.168.23.245" could be written like this (ignore white space and line
+breaks):
+.sp
+ (?(DEFINE) (? 2[0-4]\ed | 25[0-5] | 1\ed\ed | [1-9]?\ed) )
+ \eb (?&byte) (\e.(?&byte)){3} \eb
+.sp
+The first part of the pattern is a DEFINE group inside which a another group
+named "byte" is defined. This matches an individual component of an IPv4
+address (a number less than 256). When matching takes place, this part of the
+pattern is skipped because DEFINE acts like a false condition. The rest of the
+pattern uses references to the named group to match the four dot-separated
+components of an IPv4 address, insisting on a word boundary at each end.
+.
+.SS "Assertion conditions"
+.rs
+.sp
+If the condition is not in any of the above formats, it must be an assertion.
+This may be a positive or negative lookahead or lookbehind assertion. Consider
+this pattern, again containing non-significant white space, and with the two
+alternatives on the second line:
+.sp
+ (?(?=[^a-z]*[a-z])
+ \ed{2}-[a-z]{3}-\ed{2} | \ed{2}-\ed{2}-\ed{2} )
+.sp
+The condition is a positive lookahead assertion that matches an optional
+sequence of non-letters followed by a letter. In other words, it tests for the
+presence of at least one letter in the subject. If a letter is found, the
+subject is matched against the first alternative; otherwise it is matched
+against the second. This pattern matches strings in one of the two forms
+dd-aaa-dd or dd-dd-dd, where aaa are letters and dd are digits.
+.
+.
+.\" HTML
+.SH COMMENTS
+.rs
+.sp
+There are two ways of including comments in patterns that are processed by
+PCRE. In both cases, the start of the comment must not be in a character class,
+nor in the middle of any other sequence of related characters such as (?: or a
+subpattern name or number. The characters that make up a comment play no part
+in the pattern matching.
+.P
+The sequence (?# marks the start of a comment that continues up to the next
+closing parenthesis. Nested parentheses are not permitted. If the PCRE_EXTENDED
+option is set, an unescaped # character also introduces a comment, which in
+this case continues to immediately after the next newline character or
+character sequence in the pattern. Which characters are interpreted as newlines
+is controlled by the options passed to a compiling function or by a special
+sequence at the start of the pattern, as described in the section entitled
+.\" HTML
+.\"
+"Newline conventions"
+.\"
+above. Note that the end of this type of comment is a literal newline sequence
+in the pattern; escape sequences that happen to represent a newline do not
+count. For example, consider this pattern when PCRE_EXTENDED is set, and the
+default newline convention is in force:
+.sp
+ abc #comment \en still comment
+.sp
+On encountering the # character, \fBpcre_compile()\fP skips along, looking for
+a newline in the pattern. The sequence \en is still literal at this stage, so
+it does not terminate the comment. Only an actual character with the code value
+0x0a (the default newline) does so.
+.
+.
+.\" HTML
+.SH "RECURSIVE PATTERNS"
+.rs
+.sp
+Consider the problem of matching a string in parentheses, allowing for
+unlimited nested parentheses. Without the use of recursion, the best that can
+be done is to use a pattern that matches up to some fixed depth of nesting. It
+is not possible to handle an arbitrary nesting depth.
+.P
+For some time, Perl has provided a facility that allows regular expressions to
+recurse (amongst other things). It does this by interpolating Perl code in the
+expression at run time, and the code can refer to the expression itself. A Perl
+pattern using code interpolation to solve the parentheses problem can be
+created like this:
+.sp
+ $re = qr{\e( (?: (?>[^()]+) | (?p{$re}) )* \e)}x;
+.sp
+The (?p{...}) item interpolates Perl code at run time, and in this case refers
+recursively to the pattern in which it appears.
+.P
+Obviously, PCRE cannot support the interpolation of Perl code. Instead, it
+supports special syntax for recursion of the entire pattern, and also for
+individual subpattern recursion. After its introduction in PCRE and Python,
+this kind of recursion was subsequently introduced into Perl at release 5.10.
+.P
+A special item that consists of (? followed by a number greater than zero and a
+closing parenthesis is a recursive subroutine call of the subpattern of the
+given number, provided that it occurs inside that subpattern. (If not, it is a
+.\" HTML
+.\"
+non-recursive subroutine
+.\"
+call, which is described in the next section.) The special item (?R) or (?0) is
+a recursive call of the entire regular expression.
+.P
+This PCRE pattern solves the nested parentheses problem (assume the
+PCRE_EXTENDED option is set so that white space is ignored):
+.sp
+ \e( ( [^()]++ | (?R) )* \e)
+.sp
+First it matches an opening parenthesis. Then it matches any number of
+substrings which can either be a sequence of non-parentheses, or a recursive
+match of the pattern itself (that is, a correctly parenthesized substring).
+Finally there is a closing parenthesis. Note the use of a possessive quantifier
+to avoid backtracking into sequences of non-parentheses.
+.P
+If this were part of a larger pattern, you would not want to recurse the entire
+pattern, so instead you could use this:
+.sp
+ ( \e( ( [^()]++ | (?1) )* \e) )
+.sp
+We have put the pattern into parentheses, and caused the recursion to refer to
+them instead of the whole pattern.
+.P
+In a larger pattern, keeping track of parenthesis numbers can be tricky. This
+is made easier by the use of relative references. Instead of (?1) in the
+pattern above you can write (?-2) to refer to the second most recently opened
+parentheses preceding the recursion. In other words, a negative number counts
+capturing parentheses leftwards from the point at which it is encountered.
+.P
+It is also possible to refer to subsequently opened parentheses, by writing
+references such as (?+2). However, these cannot be recursive because the
+reference is not inside the parentheses that are referenced. They are always
+.\" HTML
+.\"
+non-recursive subroutine
+.\"
+calls, as described in the next section.
+.P
+An alternative approach is to use named parentheses instead. The Perl syntax
+for this is (?&name); PCRE's earlier syntax (?P>name) is also supported. We
+could rewrite the above example as follows:
+.sp
+ (? \e( ( [^()]++ | (?&pn) )* \e) )
+.sp
+If there is more than one subpattern with the same name, the earliest one is
+used.
+.P
+This particular example pattern that we have been looking at contains nested
+unlimited repeats, and so the use of a possessive quantifier for matching
+strings of non-parentheses is important when applying the pattern to strings
+that do not match. For example, when this pattern is applied to
+.sp
+ (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()
+.sp
+it yields "no match" quickly. However, if a possessive quantifier is not used,
+the match runs for a very long time indeed because there are so many different
+ways the + and * repeats can carve up the subject, and all have to be tested
+before failure can be reported.
+.P
+At the end of a match, the values of capturing parentheses are those from
+the outermost level. If you want to obtain intermediate values, a callout
+function can be used (see below and the
+.\" HREF
+\fBpcrecallout\fP
+.\"
+documentation). If the pattern above is matched against
+.sp
+ (ab(cd)ef)
+.sp
+the value for the inner capturing parentheses (numbered 2) is "ef", which is
+the last value taken on at the top level. If a capturing subpattern is not
+matched at the top level, its final captured value is unset, even if it was
+(temporarily) set at a deeper level during the matching process.
+.P
+If there are more than 15 capturing parentheses in a pattern, PCRE has to
+obtain extra memory to store data during a recursion, which it does by using
+\fBpcre_malloc\fP, freeing it via \fBpcre_free\fP afterwards. If no memory can
+be obtained, the match fails with the PCRE_ERROR_NOMEMORY error.
+.P
+Do not confuse the (?R) item with the condition (R), which tests for recursion.
+Consider this pattern, which matches text in angle brackets, allowing for
+arbitrary nesting. Only digits are allowed in nested brackets (that is, when
+recursing), whereas any characters are permitted at the outer level.
+.sp
+ < (?: (?(R) \ed++ | [^<>]*+) | (?R)) * >
+.sp
+In this pattern, (?(R) is the start of a conditional subpattern, with two
+different alternatives for the recursive and non-recursive cases. The (?R) item
+is the actual recursive call.
+.
+.
+.\" HTML
+.SS "Differences in recursion processing between PCRE and Perl"
+.rs
+.sp
+Recursion processing in PCRE differs from Perl in two important ways. In PCRE
+(like Python, but unlike Perl), a recursive subpattern call is always treated
+as an atomic group. That is, once it has matched some of the subject string, it
+is never re-entered, even if it contains untried alternatives and there is a
+subsequent matching failure. This can be illustrated by the following pattern,
+which purports to match a palindromic string that contains an odd number of
+characters (for example, "a", "aba", "abcba", "abcdcba"):
+.sp
+ ^(.|(.)(?1)\e2)$
+.sp
+The idea is that it either matches a single character, or two identical
+characters surrounding a sub-palindrome. In Perl, this pattern works; in PCRE
+it does not if the pattern is longer than three characters. Consider the
+subject string "abcba":
+.P
+At the top level, the first character is matched, but as it is not at the end
+of the string, the first alternative fails; the second alternative is taken
+and the recursion kicks in. The recursive call to subpattern 1 successfully
+matches the next character ("b"). (Note that the beginning and end of line
+tests are not part of the recursion).
+.P
+Back at the top level, the next character ("c") is compared with what
+subpattern 2 matched, which was "a". This fails. Because the recursion is
+treated as an atomic group, there are now no backtracking points, and so the
+entire match fails. (Perl is able, at this point, to re-enter the recursion and
+try the second alternative.) However, if the pattern is written with the
+alternatives in the other order, things are different:
+.sp
+ ^((.)(?1)\e2|.)$
+.sp
+This time, the recursing alternative is tried first, and continues to recurse
+until it runs out of characters, at which point the recursion fails. But this
+time we do have another alternative to try at the higher level. That is the big
+difference: in the previous case the remaining alternative is at a deeper
+recursion level, which PCRE cannot use.
+.P
+To change the pattern so that it matches all palindromic strings, not just
+those with an odd number of characters, it is tempting to change the pattern to
+this:
+.sp
+ ^((.)(?1)\e2|.?)$
+.sp
+Again, this works in Perl, but not in PCRE, and for the same reason. When a
+deeper recursion has matched a single character, it cannot be entered again in
+order to match an empty string. The solution is to separate the two cases, and
+write out the odd and even cases as alternatives at the higher level:
+.sp
+ ^(?:((.)(?1)\e2|)|((.)(?3)\e4|.))
+.sp
+If you want to match typical palindromic phrases, the pattern has to ignore all
+non-word characters, which can be done like this:
+.sp
+ ^\eW*+(?:((.)\eW*+(?1)\eW*+\e2|)|((.)\eW*+(?3)\eW*+\e4|\eW*+.\eW*+))\eW*+$
+.sp
+If run with the PCRE_CASELESS option, this pattern matches phrases such as "A
+man, a plan, a canal: Panama!" and it works well in both PCRE and Perl. Note
+the use of the possessive quantifier *+ to avoid backtracking into sequences of
+non-word characters. Without this, PCRE takes a great deal longer (ten times or
+more) to match typical phrases, and Perl takes so long that you think it has
+gone into a loop.
+.P
+\fBWARNING\fP: The palindrome-matching patterns above work only if the subject
+string does not start with a palindrome that is shorter than the entire string.
+For example, although "abcba" is correctly matched, if the subject is "ababa",
+PCRE finds the palindrome "aba" at the start, then fails at top level because
+the end of the string does not follow. Once again, it cannot jump back into the
+recursion to try other alternatives, so the entire match fails.
+.P
+The second way in which PCRE and Perl differ in their recursion processing is
+in the handling of captured values. In Perl, when a subpattern is called
+recursively or as a subpattern (see the next section), it has no access to any
+values that were captured outside the recursion, whereas in PCRE these values
+can be referenced. Consider this pattern:
+.sp
+ ^(.)(\e1|a(?2))
+.sp
+In PCRE, this pattern matches "bab". The first capturing parentheses match "b",
+then in the second group, when the back reference \e1 fails to match "b", the
+second alternative matches "a" and then recurses. In the recursion, \e1 does
+now match "b" and so the whole match succeeds. In Perl, the pattern fails to
+match because inside the recursive call \e1 cannot access the externally set
+value.
+.
+.
+.\" HTML
+.SH "SUBPATTERNS AS SUBROUTINES"
+.rs
+.sp
+If the syntax for a recursive subpattern call (either by number or by
+name) is used outside the parentheses to which it refers, it operates like a
+subroutine in a programming language. The called subpattern may be defined
+before or after the reference. A numbered reference can be absolute or
+relative, as in these examples:
+.sp
+ (...(absolute)...)...(?2)...
+ (...(relative)...)...(?-1)...
+ (...(?+1)...(relative)...
+.sp
+An earlier example pointed out that the pattern
+.sp
+ (sens|respons)e and \e1ibility
+.sp
+matches "sense and sensibility" and "response and responsibility", but not
+"sense and responsibility". If instead the pattern
+.sp
+ (sens|respons)e and (?1)ibility
+.sp
+is used, it does match "sense and responsibility" as well as the other two
+strings. Another example is given in the discussion of DEFINE above.
+.P
+All subroutine calls, whether recursive or not, are always treated as atomic
+groups. That is, once a subroutine has matched some of the subject string, it
+is never re-entered, even if it contains untried alternatives and there is a
+subsequent matching failure. Any capturing parentheses that are set during the
+subroutine call revert to their previous values afterwards.
+.P
+Processing options such as case-independence are fixed when a subpattern is
+defined, so if it is used as a subroutine, such options cannot be changed for
+different calls. For example, consider this pattern:
+.sp
+ (abc)(?i:(?-1))
+.sp
+It matches "abcabc". It does not match "abcABC" because the change of
+processing option does not affect the called subpattern.
+.
+.
+.\" HTML
+.SH "ONIGURUMA SUBROUTINE SYNTAX"
+.rs
+.sp
+For compatibility with Oniguruma, the non-Perl syntax \eg followed by a name or
+a number enclosed either in angle brackets or single quotes, is an alternative
+syntax for referencing a subpattern as a subroutine, possibly recursively. Here
+are two of the examples used above, rewritten using this syntax:
+.sp
+ (? \e( ( (?>[^()]+) | \eg )* \e) )
+ (sens|respons)e and \eg'1'ibility
+.sp
+PCRE supports an extension to Oniguruma: if a number is preceded by a
+plus or a minus sign it is taken as a relative reference. For example:
+.sp
+ (abc)(?i:\eg<-1>)
+.sp
+Note that \eg{...} (Perl syntax) and \eg<...> (Oniguruma syntax) are \fInot\fP
+synonymous. The former is a back reference; the latter is a subroutine call.
+.
+.
+.SH CALLOUTS
+.rs
+.sp
+Perl has a feature whereby using the sequence (?{...}) causes arbitrary Perl
+code to be obeyed in the middle of matching a regular expression. This makes it
+possible, amongst other things, to extract different substrings that match the
+same pair of parentheses when there is a repetition.
+.P
+PCRE provides a similar feature, but of course it cannot obey arbitrary Perl
+code. The feature is called "callout". The caller of PCRE provides an external
+function by putting its entry point in the global variable \fIpcre_callout\fP
+(8-bit library) or \fIpcre[16|32]_callout\fP (16-bit or 32-bit library).
+By default, this variable contains NULL, which disables all calling out.
+.P
+Within a regular expression, (?C) indicates the points at which the external
+function is to be called. If you want to identify different callout points, you
+can put a number less than 256 after the letter C. The default value is zero.
+For example, this pattern has two callout points:
+.sp
+ (?C1)abc(?C2)def
+.sp
+If the PCRE_AUTO_CALLOUT flag is passed to a compiling function, callouts are
+automatically installed before each item in the pattern. They are all numbered
+255. If there is a conditional group in the pattern whose condition is an
+assertion, an additional callout is inserted just before the condition. An
+explicit callout may also be set at this position, as in this example:
+.sp
+ (?(?C9)(?=a)abc|def)
+.sp
+Note that this applies only to assertion conditions, not to other types of
+condition.
+.P
+During matching, when PCRE reaches a callout point, the external function is
+called. It is provided with the number of the callout, the position in the
+pattern, and, optionally, one item of data originally supplied by the caller of
+the matching function. The callout function may cause matching to proceed, to
+backtrack, or to fail altogether. A complete description of the interface to
+the callout function is given in the
+.\" HREF
+\fBpcrecallout\fP
+.\"
+documentation.
+.
+.
+.\" HTML
+.SH "BACKTRACKING CONTROL"
+.rs
+.sp
+Perl 5.10 introduced a number of "Special Backtracking Control Verbs", which
+are still described in the Perl documentation as "experimental and subject to
+change or removal in a future version of Perl". It goes on to say: "Their usage
+in production code should be noted to avoid problems during upgrades." The same
+remarks apply to the PCRE features described in this section.
+.P
+The new verbs make use of what was previously invalid syntax: an opening
+parenthesis followed by an asterisk. They are generally of the form
+(*VERB) or (*VERB:NAME). Some may take either form, possibly behaving
+differently depending on whether or not a name is present. A name is any
+sequence of characters that does not include a closing parenthesis. The maximum
+length of name is 255 in the 8-bit library and 65535 in the 16-bit and 32-bit
+libraries. If the name is empty, that is, if the closing parenthesis
+immediately follows the colon, the effect is as if the colon were not there.
+Any number of these verbs may occur in a pattern.
+.P
+Since these verbs are specifically related to backtracking, most of them can be
+used only when the pattern is to be matched using one of the traditional
+matching functions, because these use a backtracking algorithm. With the
+exception of (*FAIL), which behaves like a failing negative assertion, the
+backtracking control verbs cause an error if encountered by a DFA matching
+function.
+.P
+The behaviour of these verbs in
+.\" HTML
+.\"
+repeated groups,
+.\"
+.\" HTML
+.\"
+assertions,
+.\"
+and in
+.\" HTML
+.\"
+subpatterns called as subroutines
+.\"
+(whether or not recursively) is documented below.
+.
+.
+.\" HTML
+.SS "Optimizations that affect backtracking verbs"
+.rs
+.sp
+PCRE contains some optimizations that are used to speed up matching by running
+some checks at the start of each match attempt. For example, it may know the
+minimum length of matching subject, or that a particular character must be
+present. When one of these optimizations bypasses the running of a match, any
+included backtracking verbs will not, of course, be processed. You can suppress
+the start-of-match optimizations by setting the PCRE_NO_START_OPTIMIZE option
+when calling \fBpcre_compile()\fP or \fBpcre_exec()\fP, or by starting the
+pattern with (*NO_START_OPT). There is more discussion of this option in the
+section entitled
+.\" HTML
+.\"
+"Option bits for \fBpcre_exec()\fP"
+.\"
+in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+documentation.
+.P
+Experiments with Perl suggest that it too has similar optimizations, sometimes
+leading to anomalous results.
+.
+.
+.SS "Verbs that act immediately"
+.rs
+.sp
+The following verbs act as soon as they are encountered. They may not be
+followed by a name.
+.sp
+ (*ACCEPT)
+.sp
+This verb causes the match to end successfully, skipping the remainder of the
+pattern. However, when it is inside a subpattern that is called as a
+subroutine, only that subpattern is ended successfully. Matching then continues
+at the outer level. If (*ACCEPT) in triggered in a positive assertion, the
+assertion succeeds; in a negative assertion, the assertion fails.
+.P
+If (*ACCEPT) is inside capturing parentheses, the data so far is captured. For
+example:
+.sp
+ A((?:A|B(*ACCEPT)|C)D)
+.sp
+This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" is captured by
+the outer parentheses.
+.sp
+ (*FAIL) or (*F)
+.sp
+This verb causes a matching failure, forcing backtracking to occur. It is
+equivalent to (?!) but easier to read. The Perl documentation notes that it is
+probably useful only when combined with (?{}) or (??{}). Those are, of course,
+Perl features that are not present in PCRE. The nearest equivalent is the
+callout feature, as for example in this pattern:
+.sp
+ a+(?C)(*FAIL)
+.sp
+A match with the string "aaaa" always fails, but the callout is taken before
+each backtrack happens (in this example, 10 times).
+.
+.
+.SS "Recording which path was taken"
+.rs
+.sp
+There is one verb whose main purpose is to track how a match was arrived at,
+though it also has a secondary use in conjunction with advancing the match
+starting point (see (*SKIP) below).
+.sp
+ (*MARK:NAME) or (*:NAME)
+.sp
+A name is always required with this verb. There may be as many instances of
+(*MARK) as you like in a pattern, and their names do not have to be unique.
+.P
+When a match succeeds, the name of the last-encountered (*MARK:NAME),
+(*PRUNE:NAME), or (*THEN:NAME) on the matching path is passed back to the
+caller as described in the section entitled
+.\" HTML
+.\"
+"Extra data for \fBpcre_exec()\fP"
+.\"
+in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+documentation. Here is an example of \fBpcretest\fP output, where the /K
+modifier requests the retrieval and outputting of (*MARK) data:
+.sp
+ re> /X(*MARK:A)Y|X(*MARK:B)Z/K
+ data> XY
+ 0: XY
+ MK: A
+ XZ
+ 0: XZ
+ MK: B
+.sp
+The (*MARK) name is tagged with "MK:" in this output, and in this example it
+indicates which of the two alternatives matched. This is a more efficient way
+of obtaining this information than putting each alternative in its own
+capturing parentheses.
+.P
+If a verb with a name is encountered in a positive assertion that is true, the
+name is recorded and passed back if it is the last-encountered. This does not
+happen for negative assertions or failing positive assertions.
+.P
+After a partial match or a failed match, the last encountered name in the
+entire match process is returned. For example:
+.sp
+ re> /X(*MARK:A)Y|X(*MARK:B)Z/K
+ data> XP
+ No match, mark = B
+.sp
+Note that in this unanchored example the mark is retained from the match
+attempt that started at the letter "X" in the subject. Subsequent match
+attempts starting at "P" and then with an empty string do not get as far as the
+(*MARK) item, but nevertheless do not reset it.
+.P
+If you are interested in (*MARK) values after failed matches, you should
+probably set the PCRE_NO_START_OPTIMIZE option
+.\" HTML
+.\"
+(see above)
+.\"
+to ensure that the match is always attempted.
+.
+.
+.SS "Verbs that act after backtracking"
+.rs
+.sp
+The following verbs do nothing when they are encountered. Matching continues
+with what follows, but if there is no subsequent match, causing a backtrack to
+the verb, a failure is forced. That is, backtracking cannot pass to the left of
+the verb. However, when one of these verbs appears inside an atomic group or an
+assertion that is true, its effect is confined to that group, because once the
+group has been matched, there is never any backtracking into it. In this
+situation, backtracking can "jump back" to the left of the entire atomic group
+or assertion. (Remember also, as stated above, that this localization also
+applies in subroutine calls.)
+.P
+These verbs differ in exactly what kind of failure occurs when backtracking
+reaches them. The behaviour described below is what happens when the verb is
+not in a subroutine or an assertion. Subsequent sections cover these special
+cases.
+.sp
+ (*COMMIT)
+.sp
+This verb, which may not be followed by a name, causes the whole match to fail
+outright if there is a later matching failure that causes backtracking to reach
+it. Even if the pattern is unanchored, no further attempts to find a match by
+advancing the starting point take place. If (*COMMIT) is the only backtracking
+verb that is encountered, once it has been passed \fBpcre_exec()\fP is
+committed to finding a match at the current starting point, or not at all. For
+example:
+.sp
+ a+(*COMMIT)b
+.sp
+This matches "xxaab" but not "aacaab". It can be thought of as a kind of
+dynamic anchor, or "I've started, so I must finish." The name of the most
+recently passed (*MARK) in the path is passed back when (*COMMIT) forces a
+match failure.
+.P
+If there is more than one backtracking verb in a pattern, a different one that
+follows (*COMMIT) may be triggered first, so merely passing (*COMMIT) during a
+match does not always guarantee that a match must be at this starting point.
+.P
+Note that (*COMMIT) at the start of a pattern is not the same as an anchor,
+unless PCRE's start-of-match optimizations are turned off, as shown in this
+\fBpcretest\fP example:
+.sp
+ re> /(*COMMIT)abc/
+ data> xyzabc
+ 0: abc
+ xyzabc\eY
+ No match
+.sp
+PCRE knows that any match must start with "a", so the optimization skips along
+the subject to "a" before running the first match attempt, which succeeds. When
+the optimization is disabled by the \eY escape in the second subject, the match
+starts at "x" and so the (*COMMIT) causes it to fail without trying any other
+starting points.
+.sp
+ (*PRUNE) or (*PRUNE:NAME)
+.sp
+This verb causes the match to fail at the current starting position in the
+subject if there is a later matching failure that causes backtracking to reach
+it. If the pattern is unanchored, the normal "bumpalong" advance to the next
+starting character then happens. Backtracking can occur as usual to the left of
+(*PRUNE), before it is reached, or when matching to the right of (*PRUNE), but
+if there is no match to the right, backtracking cannot cross (*PRUNE). In
+simple cases, the use of (*PRUNE) is just an alternative to an atomic group or
+possessive quantifier, but there are some uses of (*PRUNE) that cannot be
+expressed in any other way. In an anchored pattern (*PRUNE) has the same effect
+as (*COMMIT).
+.P
+The behaviour of (*PRUNE:NAME) is the not the same as (*MARK:NAME)(*PRUNE).
+It is like (*MARK:NAME) in that the name is remembered for passing back to the
+caller. However, (*SKIP:NAME) searches only for names set with (*MARK).
+.sp
+ (*SKIP)
+.sp
+This verb, when given without a name, is like (*PRUNE), except that if the
+pattern is unanchored, the "bumpalong" advance is not to the next character,
+but to the position in the subject where (*SKIP) was encountered. (*SKIP)
+signifies that whatever text was matched leading up to it cannot be part of a
+successful match. Consider:
+.sp
+ a+(*SKIP)b
+.sp
+If the subject is "aaaac...", after the first match attempt fails (starting at
+the first character in the string), the starting point skips on to start the
+next attempt at "c". Note that a possessive quantifer does not have the same
+effect as this example; although it would suppress backtracking during the
+first match attempt, the second attempt would start at the second character
+instead of skipping on to "c".
+.sp
+ (*SKIP:NAME)
+.sp
+When (*SKIP) has an associated name, its behaviour is modified. When it is
+triggered, the previous path through the pattern is searched for the most
+recent (*MARK) that has the same name. If one is found, the "bumpalong" advance
+is to the subject position that corresponds to that (*MARK) instead of to where
+(*SKIP) was encountered. If no (*MARK) with a matching name is found, the
+(*SKIP) is ignored.
+.P
+Note that (*SKIP:NAME) searches only for names set by (*MARK:NAME). It ignores
+names that are set by (*PRUNE:NAME) or (*THEN:NAME).
+.sp
+ (*THEN) or (*THEN:NAME)
+.sp
+This verb causes a skip to the next innermost alternative when backtracking
+reaches it. That is, it cancels any further backtracking within the current
+alternative. Its name comes from the observation that it can be used for a
+pattern-based if-then-else block:
+.sp
+ ( COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ ) ...
+.sp
+If the COND1 pattern matches, FOO is tried (and possibly further items after
+the end of the group if FOO succeeds); on failure, the matcher skips to the
+second alternative and tries COND2, without backtracking into COND1. If that
+succeeds and BAR fails, COND3 is tried. If subsequently BAZ fails, there are no
+more alternatives, so there is a backtrack to whatever came before the entire
+group. If (*THEN) is not inside an alternation, it acts like (*PRUNE).
+.P
+The behaviour of (*THEN:NAME) is the not the same as (*MARK:NAME)(*THEN).
+It is like (*MARK:NAME) in that the name is remembered for passing back to the
+caller. However, (*SKIP:NAME) searches only for names set with (*MARK).
+.P
+A subpattern that does not contain a | character is just a part of the
+enclosing alternative; it is not a nested alternation with only one
+alternative. The effect of (*THEN) extends beyond such a subpattern to the
+enclosing alternative. Consider this pattern, where A, B, etc. are complex
+pattern fragments that do not contain any | characters at this level:
+.sp
+ A (B(*THEN)C) | D
+.sp
+If A and B are matched, but there is a failure in C, matching does not
+backtrack into A; instead it moves to the next alternative, that is, D.
+However, if the subpattern containing (*THEN) is given an alternative, it
+behaves differently:
+.sp
+ A (B(*THEN)C | (*FAIL)) | D
+.sp
+The effect of (*THEN) is now confined to the inner subpattern. After a failure
+in C, matching moves to (*FAIL), which causes the whole subpattern to fail
+because there are no more alternatives to try. In this case, matching does now
+backtrack into A.
+.P
+Note that a conditional subpattern is not considered as having two
+alternatives, because only one is ever used. In other words, the | character in
+a conditional subpattern has a different meaning. Ignoring white space,
+consider:
+.sp
+ ^.*? (?(?=a) a | b(*THEN)c )
+.sp
+If the subject is "ba", this pattern does not match. Because .*? is ungreedy,
+it initially matches zero characters. The condition (?=a) then fails, the
+character "b" is matched, but "c" is not. At this point, matching does not
+backtrack to .*? as might perhaps be expected from the presence of the |
+character. The conditional subpattern is part of the single alternative that
+comprises the whole pattern, and so the match fails. (If there was a backtrack
+into .*?, allowing it to match "b", the match would succeed.)
+.P
+The verbs just described provide four different "strengths" of control when
+subsequent matching fails. (*THEN) is the weakest, carrying on the match at the
+next alternative. (*PRUNE) comes next, failing the match at the current
+starting position, but allowing an advance to the next character (for an
+unanchored pattern). (*SKIP) is similar, except that the advance may be more
+than one character. (*COMMIT) is the strongest, causing the entire match to
+fail.
+.
+.
+.SS "More than one backtracking verb"
+.rs
+.sp
+If more than one backtracking verb is present in a pattern, the one that is
+backtracked onto first acts. For example, consider this pattern, where A, B,
+etc. are complex pattern fragments:
+.sp
+ (A(*COMMIT)B(*THEN)C|ABD)
+.sp
+If A matches but B fails, the backtrack to (*COMMIT) causes the entire match to
+fail. However, if A and B match, but C fails, the backtrack to (*THEN) causes
+the next alternative (ABD) to be tried. This behaviour is consistent, but is
+not always the same as Perl's. It means that if two or more backtracking verbs
+appear in succession, all the the last of them has no effect. Consider this
+example:
+.sp
+ ...(*COMMIT)(*PRUNE)...
+.sp
+If there is a matching failure to the right, backtracking onto (*PRUNE) cases
+it to be triggered, and its action is taken. There can never be a backtrack
+onto (*COMMIT).
+.
+.
+.\" HTML
+.SS "Backtracking verbs in repeated groups"
+.rs
+.sp
+PCRE differs from Perl in its handling of backtracking verbs in repeated
+groups. For example, consider:
+.sp
+ /(a(*COMMIT)b)+ac/
+.sp
+If the subject is "abac", Perl matches, but PCRE fails because the (*COMMIT) in
+the second repeat of the group acts.
+.
+.
+.\" HTML
+.SS "Backtracking verbs in assertions"
+.rs
+.sp
+(*FAIL) in an assertion has its normal effect: it forces an immediate backtrack.
+.P
+(*ACCEPT) in a positive assertion causes the assertion to succeed without any
+further processing. In a negative assertion, (*ACCEPT) causes the assertion to
+fail without any further processing.
+.P
+The other backtracking verbs are not treated specially if they appear in a
+positive assertion. In particular, (*THEN) skips to the next alternative in the
+innermost enclosing group that has alternations, whether or not this is within
+the assertion.
+.P
+Negative assertions are, however, different, in order to ensure that changing a
+positive assertion into a negative assertion changes its result. Backtracking
+into (*COMMIT), (*SKIP), or (*PRUNE) causes a negative assertion to be true,
+without considering any further alternative branches in the assertion.
+Backtracking into (*THEN) causes it to skip to the next enclosing alternative
+within the assertion (the normal behaviour), but if the assertion does not have
+such an alternative, (*THEN) behaves like (*PRUNE).
+.
+.
+.\" HTML
+.SS "Backtracking verbs in subroutines"
+.rs
+.sp
+These behaviours occur whether or not the subpattern is called recursively.
+Perl's treatment of subroutines is different in some cases.
+.P
+(*FAIL) in a subpattern called as a subroutine has its normal effect: it forces
+an immediate backtrack.
+.P
+(*ACCEPT) in a subpattern called as a subroutine causes the subroutine match to
+succeed without any further processing. Matching then continues after the
+subroutine call.
+.P
+(*COMMIT), (*SKIP), and (*PRUNE) in a subpattern called as a subroutine cause
+the subroutine match to fail.
+.P
+(*THEN) skips to the next alternative in the innermost enclosing group within
+the subpattern that has alternatives. If there is no such group within the
+subpattern, (*THEN) causes the subroutine match to fail.
+.
+.
+.SH "SEE ALSO"
+.rs
+.sp
+\fBpcreapi\fP(3), \fBpcrecallout\fP(3), \fBpcrematching\fP(3),
+\fBpcresyntax\fP(3), \fBpcre\fP(3), \fBpcre16(3)\fP, \fBpcre32(3)\fP.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 26 April 2013
+Copyright (c) 1997-2013 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcreperform.3 b/pcre/doc/pcreperform.3
new file mode 100644
index 00000000000..fb2aa95926a
--- /dev/null
+++ b/pcre/doc/pcreperform.3
@@ -0,0 +1,177 @@
+.TH PCREPERFORM 3 "09 January 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH "PCRE PERFORMANCE"
+.rs
+.sp
+Two aspects of performance are discussed below: memory usage and processing
+time. The way you express your pattern as a regular expression can affect both
+of them.
+.
+.SH "COMPILED PATTERN MEMORY USAGE"
+.rs
+.sp
+Patterns are compiled by PCRE into a reasonably efficient interpretive code, so
+that most simple patterns do not use much memory. However, there is one case
+where the memory usage of a compiled pattern can be unexpectedly large. If a
+parenthesized subpattern has a quantifier with a minimum greater than 1 and/or
+a limited maximum, the whole subpattern is repeated in the compiled code. For
+example, the pattern
+.sp
+ (abc|def){2,4}
+.sp
+is compiled as if it were
+.sp
+ (abc|def)(abc|def)((abc|def)(abc|def)?)?
+.sp
+(Technical aside: It is done this way so that backtrack points within each of
+the repetitions can be independently maintained.)
+.P
+For regular expressions whose quantifiers use only small numbers, this is not
+usually a problem. However, if the numbers are large, and particularly if such
+repetitions are nested, the memory usage can become an embarrassment. For
+example, the very simple pattern
+.sp
+ ((ab){1,1000}c){1,3}
+.sp
+uses 51K bytes when compiled using the 8-bit library. When PCRE is compiled
+with its default internal pointer size of two bytes, the size limit on a
+compiled pattern is 64K data units, and this is reached with the above pattern
+if the outer repetition is increased from 3 to 4. PCRE can be compiled to use
+larger internal pointers and thus handle larger compiled patterns, but it is
+better to try to rewrite your pattern to use less memory if you can.
+.P
+One way of reducing the memory usage for such patterns is to make use of PCRE's
+.\" HTML
+.\"
+"subroutine"
+.\"
+facility. Re-writing the above pattern as
+.sp
+ ((ab)(?2){0,999}c)(?1){0,2}
+.sp
+reduces the memory requirements to 18K, and indeed it remains under 20K even
+with the outer repetition increased to 100. However, this pattern is not
+exactly equivalent, because the "subroutine" calls are treated as
+.\" HTML
+.\"
+atomic groups
+.\"
+into which there can be no backtracking if there is a subsequent matching
+failure. Therefore, PCRE cannot do this kind of rewriting automatically.
+Furthermore, there is a noticeable loss of speed when executing the modified
+pattern. Nevertheless, if the atomic grouping is not a problem and the loss of
+speed is acceptable, this kind of rewriting will allow you to process patterns
+that PCRE cannot otherwise handle.
+.
+.
+.SH "STACK USAGE AT RUN TIME"
+.rs
+.sp
+When \fBpcre_exec()\fP or \fBpcre[16|32]_exec()\fP is used for matching, certain
+kinds of pattern can cause it to use large amounts of the process stack. In
+some environments the default process stack is quite small, and if it runs out
+the result is often SIGSEGV. This issue is probably the most frequently raised
+problem with PCRE. Rewriting your pattern can often help. The
+.\" HREF
+\fBpcrestack\fP
+.\"
+documentation discusses this issue in detail.
+.
+.
+.SH "PROCESSING TIME"
+.rs
+.sp
+Certain items in regular expression patterns are processed more efficiently
+than others. It is more efficient to use a character class like [aeiou] than a
+set of single-character alternatives such as (a|e|i|o|u). In general, the
+simplest construction that provides the required behaviour is usually the most
+efficient. Jeffrey Friedl's book contains a lot of useful general discussion
+about optimizing regular expressions for efficient performance. This document
+contains a few observations about PCRE.
+.P
+Using Unicode character properties (the \ep, \eP, and \eX escapes) is slow,
+because PCRE has to use a multi-stage table lookup whenever it needs a
+character's property. If you can find an alternative pattern that does not use
+character properties, it will probably be faster.
+.P
+By default, the escape sequences \eb, \ed, \es, and \ew, and the POSIX
+character classes such as [:alpha:] do not use Unicode properties, partly for
+backwards compatibility, and partly for performance reasons. However, you can
+set PCRE_UCP if you want Unicode character properties to be used. This can
+double the matching time for items such as \ed, when matched with
+a traditional matching function; the performance loss is less with
+a DFA matching function, and in both cases there is not much difference for
+\eb.
+.P
+When a pattern begins with .* not in parentheses, or in parentheses that are
+not the subject of a backreference, and the PCRE_DOTALL option is set, the
+pattern is implicitly anchored by PCRE, since it can match only at the start of
+a subject string. However, if PCRE_DOTALL is not set, PCRE cannot make this
+optimization, because the . metacharacter does not then match a newline, and if
+the subject string contains newlines, the pattern may match from the character
+immediately following one of them instead of from the very start. For example,
+the pattern
+.sp
+ .*second
+.sp
+matches the subject "first\enand second" (where \en stands for a newline
+character), with the match starting at the seventh character. In order to do
+this, PCRE has to retry the match starting after every newline in the subject.
+.P
+If you are using such a pattern with subject strings that do not contain
+newlines, the best performance is obtained by setting PCRE_DOTALL, or starting
+the pattern with ^.* or ^.*? to indicate explicit anchoring. That saves PCRE
+from having to scan along the subject looking for a newline to restart at.
+.P
+Beware of patterns that contain nested indefinite repeats. These can take a
+long time to run when applied to a string that does not match. Consider the
+pattern fragment
+.sp
+ ^(a+)*
+.sp
+This can match "aaaa" in 16 different ways, and this number increases very
+rapidly as the string gets longer. (The * repeat can match 0, 1, 2, 3, or 4
+times, and for each of those cases other than 0 or 4, the + repeats can match
+different numbers of times.) When the remainder of the pattern is such that the
+entire match is going to fail, PCRE has in principle to try every possible
+variation, and this can take an extremely long time, even for relatively short
+strings.
+.P
+An optimization catches some of the more simple cases such as
+.sp
+ (a+)*b
+.sp
+where a literal character follows. Before embarking on the standard matching
+procedure, PCRE checks that there is a "b" later in the subject string, and if
+there is not, it fails the match immediately. However, when there is no
+following literal this optimization cannot be used. You can see the difference
+by comparing the behaviour of
+.sp
+ (a+)*\ed
+.sp
+with the pattern above. The former gives a failure almost instantly when
+applied to a whole line of "a" characters, whereas the latter takes an
+appreciable time with strings longer than about 20 characters.
+.P
+In many cases, the solution to this kind of performance issue is to use an
+atomic group or a possessive quantifier.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 25 August 2012
+Copyright (c) 1997-2012 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcreposix.3 b/pcre/doc/pcreposix.3
new file mode 100644
index 00000000000..b25a89193c9
--- /dev/null
+++ b/pcre/doc/pcreposix.3
@@ -0,0 +1,270 @@
+.TH PCREPOSIX 3 "09 January 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions.
+.SH "SYNOPSIS OF POSIX API"
+.rs
+.sp
+.B #include
+.PP
+.SM
+.B int regcomp(regex_t *\fIpreg\fP, const char *\fIpattern\fP,
+.ti +5n
+.B int \fIcflags\fP);
+.PP
+.B int regexec(regex_t *\fIpreg\fP, const char *\fIstring\fP,
+.ti +5n
+.B size_t \fInmatch\fP, regmatch_t \fIpmatch\fP[], int \fIeflags\fP);
+.PP
+.B size_t regerror(int \fIerrcode\fP, const regex_t *\fIpreg\fP,
+.ti +5n
+.B char *\fIerrbuf\fP, size_t \fIerrbuf_size\fP);
+.PP
+.B void regfree(regex_t *\fIpreg\fP);
+.
+.SH DESCRIPTION
+.rs
+.sp
+This set of functions provides a POSIX-style API for the PCRE regular
+expression 8-bit library. See the
+.\" HREF
+\fBpcreapi\fP
+.\"
+documentation for a description of PCRE's native API, which contains much
+additional functionality. There is no POSIX-style wrapper for PCRE's 16-bit
+and 32-bit library.
+.P
+The functions described here are just wrapper functions that ultimately call
+the PCRE native API. Their prototypes are defined in the \fBpcreposix.h\fP
+header file, and on Unix systems the library itself is called
+\fBpcreposix.a\fP, so can be accessed by adding \fB-lpcreposix\fP to the
+command for linking an application that uses them. Because the POSIX functions
+call the native ones, it is also necessary to add \fB-lpcre\fP.
+.P
+I have implemented only those POSIX option bits that can be reasonably mapped
+to PCRE native options. In addition, the option REG_EXTENDED is defined with
+the value zero. This has no effect, but since programs that are written to the
+POSIX interface often use it, this makes it easier to slot in PCRE as a
+replacement library. Other POSIX options are not even defined.
+.P
+There are also some other options that are not defined by POSIX. These have
+been added at the request of users who want to make use of certain
+PCRE-specific features via the POSIX calling interface.
+.P
+When PCRE is called via these functions, it is only the API that is POSIX-like
+in style. The syntax and semantics of the regular expressions themselves are
+still those of Perl, subject to the setting of various PCRE options, as
+described below. "POSIX-like in style" means that the API approximates to the
+POSIX definition; it is not fully POSIX-compatible, and in multi-byte encoding
+domains it is probably even less compatible.
+.P
+The header for these functions is supplied as \fBpcreposix.h\fP to avoid any
+potential clash with other POSIX libraries. It can, of course, be renamed or
+aliased as \fBregex.h\fP, which is the "correct" name. It provides two
+structure types, \fIregex_t\fP for compiled internal forms, and
+\fIregmatch_t\fP for returning captured substrings. It also defines some
+constants whose names start with "REG_"; these are used for setting options and
+identifying error codes.
+.
+.
+.SH "COMPILING A PATTERN"
+.rs
+.sp
+The function \fBregcomp()\fP is called to compile a pattern into an
+internal form. The pattern is a C string terminated by a binary zero, and
+is passed in the argument \fIpattern\fP. The \fIpreg\fP argument is a pointer
+to a \fBregex_t\fP structure that is used as a base for storing information
+about the compiled regular expression.
+.P
+The argument \fIcflags\fP is either zero, or contains one or more of the bits
+defined by the following macros:
+.sp
+ REG_DOTALL
+.sp
+The PCRE_DOTALL option is set when the regular expression is passed for
+compilation to the native function. Note that REG_DOTALL is not part of the
+POSIX standard.
+.sp
+ REG_ICASE
+.sp
+The PCRE_CASELESS option is set when the regular expression is passed for
+compilation to the native function.
+.sp
+ REG_NEWLINE
+.sp
+The PCRE_MULTILINE option is set when the regular expression is passed for
+compilation to the native function. Note that this does \fInot\fP mimic the
+defined POSIX behaviour for REG_NEWLINE (see the following section).
+.sp
+ REG_NOSUB
+.sp
+The PCRE_NO_AUTO_CAPTURE option is set when the regular expression is passed
+for compilation to the native function. In addition, when a pattern that is
+compiled with this flag is passed to \fBregexec()\fP for matching, the
+\fInmatch\fP and \fIpmatch\fP arguments are ignored, and no captured strings
+are returned.
+.sp
+ REG_UCP
+.sp
+The PCRE_UCP option is set when the regular expression is passed for
+compilation to the native function. This causes PCRE to use Unicode properties
+when matchine \ed, \ew, etc., instead of just recognizing ASCII values. Note
+that REG_UTF8 is not part of the POSIX standard.
+.sp
+ REG_UNGREEDY
+.sp
+The PCRE_UNGREEDY option is set when the regular expression is passed for
+compilation to the native function. Note that REG_UNGREEDY is not part of the
+POSIX standard.
+.sp
+ REG_UTF8
+.sp
+The PCRE_UTF8 option is set when the regular expression is passed for
+compilation to the native function. This causes the pattern itself and all data
+strings used for matching it to be treated as UTF-8 strings. Note that REG_UTF8
+is not part of the POSIX standard.
+.P
+In the absence of these flags, no options are passed to the native function.
+This means the the regex is compiled with PCRE default semantics. In
+particular, the way it handles newline characters in the subject string is the
+Perl way, not the POSIX way. Note that setting PCRE_MULTILINE has only
+\fIsome\fP of the effects specified for REG_NEWLINE. It does not affect the way
+newlines are matched by . (they are not) or by a negative class such as [^a]
+(they are).
+.P
+The yield of \fBregcomp()\fP is zero on success, and non-zero otherwise. The
+\fIpreg\fP structure is filled in on success, and one member of the structure
+is public: \fIre_nsub\fP contains the number of capturing subpatterns in
+the regular expression. Various error codes are defined in the header file.
+.P
+NOTE: If the yield of \fBregcomp()\fP is non-zero, you must not attempt to
+use the contents of the \fIpreg\fP structure. If, for example, you pass it to
+\fBregexec()\fP, the result is undefined and your program is likely to crash.
+.
+.
+.SH "MATCHING NEWLINE CHARACTERS"
+.rs
+.sp
+This area is not simple, because POSIX and Perl take different views of things.
+It is not possible to get PCRE to obey POSIX semantics, but then PCRE was never
+intended to be a POSIX engine. The following table lists the different
+possibilities for matching newline characters in PCRE:
+.sp
+ Default Change with
+.sp
+ . matches newline no PCRE_DOTALL
+ newline matches [^a] yes not changeable
+ $ matches \en at end yes PCRE_DOLLARENDONLY
+ $ matches \en in middle no PCRE_MULTILINE
+ ^ matches \en in middle no PCRE_MULTILINE
+.sp
+This is the equivalent table for POSIX:
+.sp
+ Default Change with
+.sp
+ . matches newline yes REG_NEWLINE
+ newline matches [^a] yes REG_NEWLINE
+ $ matches \en at end no REG_NEWLINE
+ $ matches \en in middle no REG_NEWLINE
+ ^ matches \en in middle no REG_NEWLINE
+.sp
+PCRE's behaviour is the same as Perl's, except that there is no equivalent for
+PCRE_DOLLAR_ENDONLY in Perl. In both PCRE and Perl, there is no way to stop
+newline from matching [^a].
+.P
+The default POSIX newline handling can be obtained by setting PCRE_DOTALL and
+PCRE_DOLLAR_ENDONLY, but there is no way to make PCRE behave exactly as for the
+REG_NEWLINE action.
+.
+.
+.SH "MATCHING A PATTERN"
+.rs
+.sp
+The function \fBregexec()\fP is called to match a compiled pattern \fIpreg\fP
+against a given \fIstring\fP, which is by default terminated by a zero byte
+(but see REG_STARTEND below), subject to the options in \fIeflags\fP. These can
+be:
+.sp
+ REG_NOTBOL
+.sp
+The PCRE_NOTBOL option is set when calling the underlying PCRE matching
+function.
+.sp
+ REG_NOTEMPTY
+.sp
+The PCRE_NOTEMPTY option is set when calling the underlying PCRE matching
+function. Note that REG_NOTEMPTY is not part of the POSIX standard. However,
+setting this option can give more POSIX-like behaviour in some situations.
+.sp
+ REG_NOTEOL
+.sp
+The PCRE_NOTEOL option is set when calling the underlying PCRE matching
+function.
+.sp
+ REG_STARTEND
+.sp
+The string is considered to start at \fIstring\fP + \fIpmatch[0].rm_so\fP and
+to have a terminating NUL located at \fIstring\fP + \fIpmatch[0].rm_eo\fP
+(there need not actually be a NUL at that location), regardless of the value of
+\fInmatch\fP. This is a BSD extension, compatible with but not specified by
+IEEE Standard 1003.2 (POSIX.2), and should be used with caution in software
+intended to be portable to other systems. Note that a non-zero \fIrm_so\fP does
+not imply REG_NOTBOL; REG_STARTEND affects only the location of the string, not
+how it is matched.
+.P
+If the pattern was compiled with the REG_NOSUB flag, no data about any matched
+strings is returned. The \fInmatch\fP and \fIpmatch\fP arguments of
+\fBregexec()\fP are ignored.
+.P
+If the value of \fInmatch\fP is zero, or if the value \fIpmatch\fP is NULL,
+no data about any matched strings is returned.
+.P
+Otherwise,the portion of the string that was matched, and also any captured
+substrings, are returned via the \fIpmatch\fP argument, which points to an
+array of \fInmatch\fP structures of type \fIregmatch_t\fP, containing the
+members \fIrm_so\fP and \fIrm_eo\fP. These contain the offset to the first
+character of each substring and the offset to the first character after the end
+of each substring, respectively. The 0th element of the vector relates to the
+entire portion of \fIstring\fP that was matched; subsequent elements relate to
+the capturing subpatterns of the regular expression. Unused entries in the
+array have both structure members set to -1.
+.P
+A successful match yields a zero return; various error codes are defined in the
+header file, of which REG_NOMATCH is the "expected" failure code.
+.
+.
+.SH "ERROR MESSAGES"
+.rs
+.sp
+The \fBregerror()\fP function maps a non-zero errorcode from either
+\fBregcomp()\fP or \fBregexec()\fP to a printable message. If \fIpreg\fP is not
+NULL, the error should have arisen from the use of that structure. A message
+terminated by a binary zero is placed in \fIerrbuf\fP. The length of the
+message, including the zero, is limited to \fIerrbuf_size\fP. The yield of the
+function is the size of buffer needed to hold the whole message.
+.
+.
+.SH MEMORY USAGE
+.rs
+.sp
+Compiling a regular expression causes memory to be allocated and associated
+with the \fIpreg\fP structure. The function \fBregfree()\fP frees all such
+memory, after which \fIpreg\fP may no longer be used as a compiled expression.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 09 January 2012
+Copyright (c) 1997-2012 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcreprecompile.3 b/pcre/doc/pcreprecompile.3
new file mode 100644
index 00000000000..39eb82b02cc
--- /dev/null
+++ b/pcre/doc/pcreprecompile.3
@@ -0,0 +1,151 @@
+.TH PCREPRECOMPILE 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH "SAVING AND RE-USING PRECOMPILED PCRE PATTERNS"
+.rs
+.sp
+If you are running an application that uses a large number of regular
+expression patterns, it may be useful to store them in a precompiled form
+instead of having to compile them every time the application is run.
+If you are not using any private character tables (see the
+.\" HREF
+\fBpcre_maketables()\fP
+.\"
+documentation), this is relatively straightforward. If you are using private
+tables, it is a little bit more complicated. However, if you are using the
+just-in-time optimization feature, it is not possible to save and reload the
+JIT data.
+.P
+If you save compiled patterns to a file, you can copy them to a different host
+and run them there. If the two hosts have different endianness (byte order),
+you should run the \fBpcre[16|32]_pattern_to_host_byte_order()\fP function on the
+new host before trying to match the pattern. The matching functions return
+PCRE_ERROR_BADENDIANNESS if they detect a pattern with the wrong endianness.
+.P
+Compiling regular expressions with one version of PCRE for use with a different
+version is not guaranteed to work and may cause crashes, and saving and
+restoring a compiled pattern loses any JIT optimization data.
+.
+.
+.SH "SAVING A COMPILED PATTERN"
+.rs
+.sp
+The value returned by \fBpcre[16|32]_compile()\fP points to a single block of
+memory that holds the compiled pattern and associated data. You can find the
+length of this block in bytes by calling \fBpcre[16|32]_fullinfo()\fP with an
+argument of PCRE_INFO_SIZE. You can then save the data in any appropriate
+manner. Here is sample code for the 8-bit library that compiles a pattern and
+writes it to a file. It assumes that the variable \fIfd\fP refers to a file
+that is open for output:
+.sp
+ int erroroffset, rc, size;
+ char *error;
+ pcre *re;
+.sp
+ re = pcre_compile("my pattern", 0, &error, &erroroffset, NULL);
+ if (re == NULL) { ... handle errors ... }
+ rc = pcre_fullinfo(re, NULL, PCRE_INFO_SIZE, &size);
+ if (rc < 0) { ... handle errors ... }
+ rc = fwrite(re, 1, size, fd);
+ if (rc != size) { ... handle errors ... }
+.sp
+In this example, the bytes that comprise the compiled pattern are copied
+exactly. Note that this is binary data that may contain any of the 256 possible
+byte values. On systems that make a distinction between binary and non-binary
+data, be sure that the file is opened for binary output.
+.P
+If you want to write more than one pattern to a file, you will have to devise a
+way of separating them. For binary data, preceding each pattern with its length
+is probably the most straightforward approach. Another possibility is to write
+out the data in hexadecimal instead of binary, one pattern to a line.
+.P
+Saving compiled patterns in a file is only one possible way of storing them for
+later use. They could equally well be saved in a database, or in the memory of
+some daemon process that passes them via sockets to the processes that want
+them.
+.P
+If the pattern has been studied, it is also possible to save the normal study
+data in a similar way to the compiled pattern itself. However, if the
+PCRE_STUDY_JIT_COMPILE was used, the just-in-time data that is created cannot
+be saved because it is too dependent on the current environment. When studying
+generates additional information, \fBpcre[16|32]_study()\fP returns a pointer to a
+\fBpcre[16|32]_extra\fP data block. Its format is defined in the
+.\" HTML
+.\"
+section on matching a pattern
+.\"
+in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+documentation. The \fIstudy_data\fP field points to the binary study data, and
+this is what you must save (not the \fBpcre[16|32]_extra\fP block itself). The
+length of the study data can be obtained by calling \fBpcre[16|32]_fullinfo()\fP
+with an argument of PCRE_INFO_STUDYSIZE. Remember to check that
+\fBpcre[16|32]_study()\fP did return a non-NULL value before trying to save the
+study data.
+.
+.
+.SH "RE-USING A PRECOMPILED PATTERN"
+.rs
+.sp
+Re-using a precompiled pattern is straightforward. Having reloaded it into main
+memory, called \fBpcre[16|32]_pattern_to_host_byte_order()\fP if necessary,
+you pass its pointer to \fBpcre[16|32]_exec()\fP or \fBpcre[16|32]_dfa_exec()\fP in
+the usual way.
+.P
+However, if you passed a pointer to custom character tables when the pattern
+was compiled (the \fItableptr\fP argument of \fBpcre[16|32]_compile()\fP), you
+must now pass a similar pointer to \fBpcre[16|32]_exec()\fP or
+\fBpcre[16|32]_dfa_exec()\fP, because the value saved with the compiled pattern
+will obviously be nonsense. A field in a \fBpcre[16|32]_extra()\fP block is used
+to pass this data, as described in the
+.\" HTML
+.\"
+section on matching a pattern
+.\"
+in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+documentation.
+.P
+If you did not provide custom character tables when the pattern was compiled,
+the pointer in the compiled pattern is NULL, which causes the matching
+functions to use PCRE's internal tables. Thus, you do not need to take any
+special action at run time in this case.
+.P
+If you saved study data with the compiled pattern, you need to create your own
+\fBpcre[16|32]_extra\fP data block and set the \fIstudy_data\fP field to point to the
+reloaded study data. You must also set the PCRE_EXTRA_STUDY_DATA bit in the
+\fIflags\fP field to indicate that study data is present. Then pass the
+\fBpcre[16|32]_extra\fP block to the matching function in the usual way. If the
+pattern was studied for just-in-time optimization, that data cannot be saved,
+and so is lost by a save/restore cycle.
+.
+.
+.SH "COMPATIBILITY WITH DIFFERENT PCRE RELEASES"
+.rs
+.sp
+In general, it is safest to recompile all saved patterns when you update to a
+new PCRE release, though not all updates actually require this.
+.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 24 June 2012
+Copyright (c) 1997-2012 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcresample.3 b/pcre/doc/pcresample.3
new file mode 100644
index 00000000000..d7fe7ec546b
--- /dev/null
+++ b/pcre/doc/pcresample.3
@@ -0,0 +1,99 @@
+.TH PCRESAMPLE 3 "10 January 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH "PCRE SAMPLE PROGRAM"
+.rs
+.sp
+A simple, complete demonstration program, to get you started with using PCRE,
+is supplied in the file \fIpcredemo.c\fP in the PCRE distribution. A listing of
+this program is given in the
+.\" HREF
+\fBpcredemo\fP
+.\"
+documentation. If you do not have a copy of the PCRE distribution, you can save
+this listing to re-create \fIpcredemo.c\fP.
+.P
+The demonstration program, which uses the original PCRE 8-bit library, compiles
+the regular expression that is its first argument, and matches it against the
+subject string in its second argument. No PCRE options are set, and default
+character tables are used. If matching succeeds, the program outputs the
+portion of the subject that matched, together with the contents of any captured
+substrings.
+.P
+If the -g option is given on the command line, the program then goes on to
+check for further matches of the same regular expression in the same subject
+string. The logic is a little bit tricky because of the possibility of matching
+an empty string. Comments in the code explain what is going on.
+.P
+If PCRE is installed in the standard include and library directories for your
+operating system, you should be able to compile the demonstration program using
+this command:
+.sp
+ gcc -o pcredemo pcredemo.c -lpcre
+.sp
+If PCRE is installed elsewhere, you may need to add additional options to the
+command line. For example, on a Unix-like system that has PCRE installed in
+\fI/usr/local\fP, you can compile the demonstration program using a command
+like this:
+.sp
+.\" JOINSH
+ gcc -o pcredemo -I/usr/local/include pcredemo.c \e
+ -L/usr/local/lib -lpcre
+.sp
+In a Windows environment, if you want to statically link the program against a
+non-dll \fBpcre.a\fP file, you must uncomment the line that defines PCRE_STATIC
+before including \fBpcre.h\fP, because otherwise the \fBpcre_malloc()\fP and
+\fBpcre_free()\fP exported functions will be declared
+\fB__declspec(dllimport)\fP, with unwanted results.
+.P
+Once you have compiled and linked the demonstration program, you can run simple
+tests like this:
+.sp
+ ./pcredemo 'cat|dog' 'the cat sat on the mat'
+ ./pcredemo -g 'cat|dog' 'the dog sat on the cat'
+.sp
+Note that there is a much more comprehensive test program, called
+.\" HREF
+\fBpcretest\fP,
+.\"
+which supports many more facilities for testing regular expressions and both
+PCRE libraries. The
+.\" HREF
+\fBpcredemo\fP
+.\"
+program is provided as a simple coding example.
+.P
+If you try to run
+.\" HREF
+\fBpcredemo\fP
+.\"
+when PCRE is not installed in the standard library directory, you may get an
+error like this on some operating systems (e.g. Solaris):
+.sp
+ ld.so.1: a.out: fatal: libpcre.so.0: open failed: No such file or directory
+.sp
+This is caused by the way shared library support works on those systems. You
+need to add
+.sp
+ -R/usr/local/lib
+.sp
+(for example) to the compile command to get round this problem.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 10 January 2012
+Copyright (c) 1997-2012 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcrestack.3 b/pcre/doc/pcrestack.3
new file mode 100644
index 00000000000..798f0bca63e
--- /dev/null
+++ b/pcre/doc/pcrestack.3
@@ -0,0 +1,215 @@
+.TH PCRESTACK 3 "24 June 2012" "PCRE 8.30"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH "PCRE DISCUSSION OF STACK USAGE"
+.rs
+.sp
+When you call \fBpcre[16|32]_exec()\fP, it makes use of an internal function
+called \fBmatch()\fP. This calls itself recursively at branch points in the
+pattern, in order to remember the state of the match so that it can back up and
+try a different alternative if the first one fails. As matching proceeds deeper
+and deeper into the tree of possibilities, the recursion depth increases. The
+\fBmatch()\fP function is also called in other circumstances, for example,
+whenever a parenthesized sub-pattern is entered, and in certain cases of
+repetition.
+.P
+Not all calls of \fBmatch()\fP increase the recursion depth; for an item such
+as a* it may be called several times at the same level, after matching
+different numbers of a's. Furthermore, in a number of cases where the result of
+the recursive call would immediately be passed back as the result of the
+current call (a "tail recursion"), the function is just restarted instead.
+.P
+The above comments apply when \fBpcre[16|32]_exec()\fP is run in its normal
+interpretive manner. If the pattern was studied with the
+PCRE_STUDY_JIT_COMPILE option, and just-in-time compiling was successful, and
+the options passed to \fBpcre[16|32]_exec()\fP were not incompatible, the matching
+process uses the JIT-compiled code instead of the \fBmatch()\fP function. In
+this case, the memory requirements are handled entirely differently. See the
+.\" HREF
+\fBpcrejit\fP
+.\"
+documentation for details.
+.P
+The \fBpcre[16|32]_dfa_exec()\fP function operates in an entirely different way,
+and uses recursion only when there is a regular expression recursion or
+subroutine call in the pattern. This includes the processing of assertion and
+"once-only" subpatterns, which are handled like subroutine calls. Normally,
+these are never very deep, and the limit on the complexity of
+\fBpcre[16|32]_dfa_exec()\fP is controlled by the amount of workspace it is given.
+However, it is possible to write patterns with runaway infinite recursions;
+such patterns will cause \fBpcre[16|32]_dfa_exec()\fP to run out of stack. At
+present, there is no protection against this.
+.P
+The comments that follow do NOT apply to \fBpcre[16|32]_dfa_exec()\fP; they are
+relevant only for \fBpcre[16|32]_exec()\fP without the JIT optimization.
+.
+.
+.SS "Reducing \fBpcre[16|32]_exec()\fP's stack usage"
+.rs
+.sp
+Each time that \fBmatch()\fP is actually called recursively, it uses memory
+from the process stack. For certain kinds of pattern and data, very large
+amounts of stack may be needed, despite the recognition of "tail recursion".
+You can often reduce the amount of recursion, and therefore the amount of stack
+used, by modifying the pattern that is being matched. Consider, for example,
+this pattern:
+.sp
+ ([^<]|<(?!inet))+
+.sp
+It matches from wherever it starts until it encounters "
+.\"
+section on extra data for \fBpcre[16|32]_exec()\fP
+.\"
+in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+documentation.
+.P
+As a very rough rule of thumb, you should reckon on about 500 bytes per
+recursion. Thus, if you want to limit your stack usage to 8Mb, you should set
+the limit at 16000 recursions. A 64Mb stack, on the other hand, can support
+around 128000 recursions.
+.P
+In Unix-like environments, the \fBpcretest\fP test program has a command line
+option (\fB-S\fP) that can be used to increase the size of its stack. As long
+as the stack is large enough, another option (\fB-M\fP) can be used to find the
+smallest limits that allow a particular pattern to match a given subject
+string. This is done by calling \fBpcre[16|32]_exec()\fP repeatedly with different
+limits.
+.
+.
+.SS "Obtaining an estimate of stack usage"
+.rs
+.sp
+The actual amount of stack used per recursion can vary quite a lot, depending
+on the compiler that was used to build PCRE and the optimization or debugging
+options that were set for it. The rule of thumb value of 500 bytes mentioned
+above may be larger or smaller than what is actually needed. A better
+approximation can be obtained by running this command:
+.sp
+ pcretest -m -C
+.sp
+The \fB-C\fP option causes \fBpcretest\fP to output information about the
+options with which PCRE was compiled. When \fB-m\fP is also given (before
+\fB-C\fP), information about stack use is given in a line like this:
+.sp
+ Match recursion uses stack: approximate frame size = 640 bytes
+.sp
+The value is approximate because some recursions need a bit more (up to perhaps
+16 more bytes).
+.P
+If the above command is given when PCRE is compiled to use the heap instead of
+the stack for recursion, the value that is output is the size of each block
+that is obtained from the heap.
+.
+.
+.SS "Changing stack size in Unix-like systems"
+.rs
+.sp
+In Unix-like environments, there is not often a problem with the stack unless
+very long strings are involved, though the default limit on stack size varies
+from system to system. Values from 8Mb to 64Mb are common. You can find your
+default limit by running the command:
+.sp
+ ulimit -s
+.sp
+Unfortunately, the effect of running out of stack is often SIGSEGV, though
+sometimes a more explicit error message is given. You can normally increase the
+limit on stack size by code such as this:
+.sp
+ struct rlimit rlim;
+ getrlimit(RLIMIT_STACK, &rlim);
+ rlim.rlim_cur = 100*1024*1024;
+ setrlimit(RLIMIT_STACK, &rlim);
+.sp
+This reads the current limits (soft and hard) using \fBgetrlimit()\fP, then
+attempts to increase the soft limit to 100Mb using \fBsetrlimit()\fP. You must
+do this before calling \fBpcre[16|32]_exec()\fP.
+.
+.
+.SS "Changing stack size in Mac OS X"
+.rs
+.sp
+Using \fBsetrlimit()\fP, as described above, should also work on Mac OS X. It
+is also possible to set a stack size when linking a program. There is a
+discussion about stack sizes in Mac OS X at this web site:
+.\" HTML
+.\"
+http://developer.apple.com/qa/qa2005/qa1419.html.
+.\"
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 24 June 2012
+Copyright (c) 1997-2012 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcresyntax.3 b/pcre/doc/pcresyntax.3
new file mode 100644
index 00000000000..399bbe2535a
--- /dev/null
+++ b/pcre/doc/pcresyntax.3
@@ -0,0 +1,500 @@
+.TH PCRESYNTAX 3 "26 April 2013" "PCRE 8.33"
+.SH NAME
+PCRE - Perl-compatible regular expressions
+.SH "PCRE REGULAR EXPRESSION SYNTAX SUMMARY"
+.rs
+.sp
+The full syntax and semantics of the regular expressions that are supported by
+PCRE are described in the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+documentation. This document contains a quick-reference summary of the syntax.
+.
+.
+.SH "QUOTING"
+.rs
+.sp
+ \ex where x is non-alphanumeric is a literal x
+ \eQ...\eE treat enclosed characters as literal
+.
+.
+.SH "CHARACTERS"
+.rs
+.sp
+ \ea alarm, that is, the BEL character (hex 07)
+ \ecx "control-x", where x is any ASCII character
+ \ee escape (hex 1B)
+ \ef form feed (hex 0C)
+ \en newline (hex 0A)
+ \er carriage return (hex 0D)
+ \et tab (hex 09)
+ \eddd character with octal code ddd, or backreference
+ \exhh character with hex code hh
+ \ex{hhh..} character with hex code hhh..
+.
+.
+.SH "CHARACTER TYPES"
+.rs
+.sp
+ . any character except newline;
+ in dotall mode, any character whatsoever
+ \eC one data unit, even in UTF mode (best avoided)
+ \ed a decimal digit
+ \eD a character that is not a decimal digit
+ \eh a horizontal white space character
+ \eH a character that is not a horizontal white space character
+ \eN a character that is not a newline
+ \ep{\fIxx\fP} a character with the \fIxx\fP property
+ \eP{\fIxx\fP} a character without the \fIxx\fP property
+ \eR a newline sequence
+ \es a white space character
+ \eS a character that is not a white space character
+ \ev a vertical white space character
+ \eV a character that is not a vertical white space character
+ \ew a "word" character
+ \eW a "non-word" character
+ \eX a Unicode extended grapheme cluster
+.sp
+In PCRE, by default, \ed, \eD, \es, \eS, \ew, and \eW recognize only ASCII
+characters, even in a UTF mode. However, this can be changed by setting the
+PCRE_UCP option.
+.
+.
+.SH "GENERAL CATEGORY PROPERTIES FOR \ep and \eP"
+.rs
+.sp
+ C Other
+ Cc Control
+ Cf Format
+ Cn Unassigned
+ Co Private use
+ Cs Surrogate
+.sp
+ L Letter
+ Ll Lower case letter
+ Lm Modifier letter
+ Lo Other letter
+ Lt Title case letter
+ Lu Upper case letter
+ L& Ll, Lu, or Lt
+.sp
+ M Mark
+ Mc Spacing mark
+ Me Enclosing mark
+ Mn Non-spacing mark
+.sp
+ N Number
+ Nd Decimal number
+ Nl Letter number
+ No Other number
+.sp
+ P Punctuation
+ Pc Connector punctuation
+ Pd Dash punctuation
+ Pe Close punctuation
+ Pf Final punctuation
+ Pi Initial punctuation
+ Po Other punctuation
+ Ps Open punctuation
+.sp
+ S Symbol
+ Sc Currency symbol
+ Sk Modifier symbol
+ Sm Mathematical symbol
+ So Other symbol
+.sp
+ Z Separator
+ Zl Line separator
+ Zp Paragraph separator
+ Zs Space separator
+.
+.
+.SH "PCRE SPECIAL CATEGORY PROPERTIES FOR \ep and \eP"
+.rs
+.sp
+ Xan Alphanumeric: union of properties L and N
+ Xps POSIX space: property Z or tab, NL, VT, FF, CR
+ Xsp Perl space: property Z or tab, NL, FF, CR
+ Xuc Univerally-named character: one that can be
+ represented by a Universal Character Name
+ Xwd Perl word: property Xan or underscore
+.
+.
+.SH "SCRIPT NAMES FOR \ep AND \eP"
+.rs
+.sp
+Arabic,
+Armenian,
+Avestan,
+Balinese,
+Bamum,
+Batak,
+Bengali,
+Bopomofo,
+Brahmi,
+Braille,
+Buginese,
+Buhid,
+Canadian_Aboriginal,
+Carian,
+Chakma,
+Cham,
+Cherokee,
+Common,
+Coptic,
+Cuneiform,
+Cypriot,
+Cyrillic,
+Deseret,
+Devanagari,
+Egyptian_Hieroglyphs,
+Ethiopic,
+Georgian,
+Glagolitic,
+Gothic,
+Greek,
+Gujarati,
+Gurmukhi,
+Han,
+Hangul,
+Hanunoo,
+Hebrew,
+Hiragana,
+Imperial_Aramaic,
+Inherited,
+Inscriptional_Pahlavi,
+Inscriptional_Parthian,
+Javanese,
+Kaithi,
+Kannada,
+Katakana,
+Kayah_Li,
+Kharoshthi,
+Khmer,
+Lao,
+Latin,
+Lepcha,
+Limbu,
+Linear_B,
+Lisu,
+Lycian,
+Lydian,
+Malayalam,
+Mandaic,
+Meetei_Mayek,
+Meroitic_Cursive,
+Meroitic_Hieroglyphs,
+Miao,
+Mongolian,
+Myanmar,
+New_Tai_Lue,
+Nko,
+Ogham,
+Old_Italic,
+Old_Persian,
+Old_South_Arabian,
+Old_Turkic,
+Ol_Chiki,
+Oriya,
+Osmanya,
+Phags_Pa,
+Phoenician,
+Rejang,
+Runic,
+Samaritan,
+Saurashtra,
+Sharada,
+Shavian,
+Sinhala,
+Sora_Sompeng,
+Sundanese,
+Syloti_Nagri,
+Syriac,
+Tagalog,
+Tagbanwa,
+Tai_Le,
+Tai_Tham,
+Tai_Viet,
+Takri,
+Tamil,
+Telugu,
+Thaana,
+Thai,
+Tibetan,
+Tifinagh,
+Ugaritic,
+Vai,
+Yi.
+.
+.
+.SH "CHARACTER CLASSES"
+.rs
+.sp
+ [...] positive character class
+ [^...] negative character class
+ [x-y] range (can be used for hex characters)
+ [[:xxx:]] positive POSIX named set
+ [[:^xxx:]] negative POSIX named set
+.sp
+ alnum alphanumeric
+ alpha alphabetic
+ ascii 0-127
+ blank space or tab
+ cntrl control character
+ digit decimal digit
+ graph printing, excluding space
+ lower lower case letter
+ print printing, including space
+ punct printing, excluding alphanumeric
+ space white space
+ upper upper case letter
+ word same as \ew
+ xdigit hexadecimal digit
+.sp
+In PCRE, POSIX character set names recognize only ASCII characters by default,
+but some of them use Unicode properties if PCRE_UCP is set. You can use
+\eQ...\eE inside a character class.
+.
+.
+.SH "QUANTIFIERS"
+.rs
+.sp
+ ? 0 or 1, greedy
+ ?+ 0 or 1, possessive
+ ?? 0 or 1, lazy
+ * 0 or more, greedy
+ *+ 0 or more, possessive
+ *? 0 or more, lazy
+ + 1 or more, greedy
+ ++ 1 or more, possessive
+ +? 1 or more, lazy
+ {n} exactly n
+ {n,m} at least n, no more than m, greedy
+ {n,m}+ at least n, no more than m, possessive
+ {n,m}? at least n, no more than m, lazy
+ {n,} n or more, greedy
+ {n,}+ n or more, possessive
+ {n,}? n or more, lazy
+.
+.
+.SH "ANCHORS AND SIMPLE ASSERTIONS"
+.rs
+.sp
+ \eb word boundary
+ \eB not a word boundary
+ ^ start of subject
+ also after internal newline in multiline mode
+ \eA start of subject
+ $ end of subject
+ also before newline at end of subject
+ also before internal newline in multiline mode
+ \eZ end of subject
+ also before newline at end of subject
+ \ez end of subject
+ \eG first matching position in subject
+.
+.
+.SH "MATCH POINT RESET"
+.rs
+.sp
+ \eK reset start of match
+.
+.
+.SH "ALTERNATION"
+.rs
+.sp
+ expr|expr|expr...
+.
+.
+.SH "CAPTURING"
+.rs
+.sp
+ (...) capturing group
+ (?...) named capturing group (Perl)
+ (?'name'...) named capturing group (Perl)
+ (?P...) named capturing group (Python)
+ (?:...) non-capturing group
+ (?|...) non-capturing group; reset group numbers for
+ capturing groups in each alternative
+.
+.
+.SH "ATOMIC GROUPS"
+.rs
+.sp
+ (?>...) atomic, non-capturing group
+.
+.
+.
+.
+.SH "COMMENT"
+.rs
+.sp
+ (?#....) comment (not nestable)
+.
+.
+.SH "OPTION SETTING"
+.rs
+.sp
+ (?i) caseless
+ (?J) allow duplicate names
+ (?m) multiline
+ (?s) single line (dotall)
+ (?U) default ungreedy (lazy)
+ (?x) extended (ignore white space)
+ (?-...) unset option(s)
+.sp
+The following are recognized only at the start of a pattern or after one of the
+newline-setting options with similar syntax:
+.sp
+ (*LIMIT_MATCH=d) set the match limit to d (decimal number)
+ (*LIMIT_RECURSION=d) set the recursion limit to d (decimal number)
+ (*NO_START_OPT) no start-match optimization (PCRE_NO_START_OPTIMIZE)
+ (*UTF8) set UTF-8 mode: 8-bit library (PCRE_UTF8)
+ (*UTF16) set UTF-16 mode: 16-bit library (PCRE_UTF16)
+ (*UTF32) set UTF-32 mode: 32-bit library (PCRE_UTF32)
+ (*UTF) set appropriate UTF mode for the library in use
+ (*UCP) set PCRE_UCP (use Unicode properties for \ed etc)
+.
+.
+.SH "LOOKAHEAD AND LOOKBEHIND ASSERTIONS"
+.rs
+.sp
+ (?=...) positive look ahead
+ (?!...) negative look ahead
+ (?<=...) positive look behind
+ (? reference by name (Perl)
+ \ek'name' reference by name (Perl)
+ \eg{name} reference by name (Perl)
+ \ek{name} reference by name (.NET)
+ (?P=name) reference by name (Python)
+.
+.
+.SH "SUBROUTINE REFERENCES (POSSIBLY RECURSIVE)"
+.rs
+.sp
+ (?R) recurse whole pattern
+ (?n) call subpattern by absolute number
+ (?+n) call subpattern by relative number
+ (?-n) call subpattern by relative number
+ (?&name) call subpattern by name (Perl)
+ (?P>name) call subpattern by name (Python)
+ \eg call subpattern by name (Oniguruma)
+ \eg'name' call subpattern by name (Oniguruma)
+ \eg call subpattern by absolute number (Oniguruma)
+ \eg'n' call subpattern by absolute number (Oniguruma)
+ \eg<+n> call subpattern by relative number (PCRE extension)
+ \eg'+n' call subpattern by relative number (PCRE extension)
+ \eg<-n> call subpattern by relative number (PCRE extension)
+ \eg'-n' call subpattern by relative number (PCRE extension)
+.
+.
+.SH "CONDITIONAL PATTERNS"
+.rs
+.sp
+ (?(condition)yes-pattern)
+ (?(condition)yes-pattern|no-pattern)
+.sp
+ (?(n)... absolute reference condition
+ (?(+n)... relative reference condition
+ (?(-n)... relative reference condition
+ (?()... named reference condition (Perl)
+ (?('name')... named reference condition (Perl)
+ (?(name)... named reference condition (PCRE)
+ (?(R)... overall recursion condition
+ (?(Rn)... specific group recursion condition
+ (?(R&name)... specific recursion condition
+ (?(DEFINE)... define subpattern for reference
+ (?(assert)... assertion condition
+.
+.
+.SH "BACKTRACKING CONTROL"
+.rs
+.sp
+The following act immediately they are reached:
+.sp
+ (*ACCEPT) force successful match
+ (*FAIL) force backtrack; synonym (*F)
+ (*MARK:NAME) set name to be passed back; synonym (*:NAME)
+.sp
+The following act only when a subsequent match failure causes a backtrack to
+reach them. They all force a match failure, but they differ in what happens
+afterwards. Those that advance the start-of-match point do so only if the
+pattern is not anchored.
+.sp
+ (*COMMIT) overall failure, no advance of starting point
+ (*PRUNE) advance to next starting character
+ (*PRUNE:NAME) equivalent to (*MARK:NAME)(*PRUNE)
+ (*SKIP) advance to current matching position
+ (*SKIP:NAME) advance to position corresponding to an earlier
+ (*MARK:NAME); if not found, the (*SKIP) is ignored
+ (*THEN) local failure, backtrack to next alternation
+ (*THEN:NAME) equivalent to (*MARK:NAME)(*THEN)
+.
+.
+.SH "NEWLINE CONVENTIONS"
+.rs
+.sp
+These are recognized only at the very start of the pattern or after a
+(*BSR_...), (*UTF8), (*UTF16), (*UTF32) or (*UCP) option.
+.sp
+ (*CR) carriage return only
+ (*LF) linefeed only
+ (*CRLF) carriage return followed by linefeed
+ (*ANYCRLF) all three of the above
+ (*ANY) any Unicode newline sequence
+.
+.
+.SH "WHAT \eR MATCHES"
+.rs
+.sp
+These are recognized only at the very start of the pattern or after a
+(*...) option that sets the newline convention or a UTF or UCP mode.
+.sp
+ (*BSR_ANYCRLF) CR, LF, or CRLF
+ (*BSR_UNICODE) any Unicode newline sequence
+.
+.
+.SH "CALLOUTS"
+.rs
+.sp
+ (?C) callout
+ (?Cn) callout with data n
+.
+.
+.SH "SEE ALSO"
+.rs
+.sp
+\fBpcrepattern\fP(3), \fBpcreapi\fP(3), \fBpcrecallout\fP(3),
+\fBpcrematching\fP(3), \fBpcre\fP(3).
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 26 April 2013
+Copyright (c) 1997-2013 University of Cambridge.
+.fi
diff --git a/pcre/doc/pcretest.1 b/pcre/doc/pcretest.1
new file mode 100644
index 00000000000..b71c897f2bb
--- /dev/null
+++ b/pcre/doc/pcretest.1
@@ -0,0 +1,1099 @@
+.TH PCRETEST 1 "26 April 2013" "PCRE 8.33"
+.SH NAME
+pcretest - a program for testing Perl-compatible regular expressions.
+.SH SYNOPSIS
+.rs
+.sp
+.B pcretest "[options] [input file [output file]]"
+.sp
+\fBpcretest\fP was written as a test program for the PCRE regular expression
+library itself, but it can also be used for experimenting with regular
+expressions. This document describes the features of the test program; for
+details of the regular expressions themselves, see the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+documentation. For details of the PCRE library function calls and their
+options, see the
+.\" HREF
+\fBpcreapi\fP
+.\"
+,
+.\" HREF
+\fBpcre16\fP
+and
+.\" HREF
+\fBpcre32\fP
+.\"
+documentation.
+.P
+The input for \fBpcretest\fP is a sequence of regular expression patterns and
+strings to be matched, as described below. The output shows the result of each
+match. Options on the command line and the patterns control PCRE options and
+exactly what is output.
+.P
+As PCRE has evolved, it has acquired many different features, and as a result,
+\fBpcretest\fP now has rather a lot of obscure options for testing every
+possible feature. Some of these options are specifically designed for use in
+conjunction with the test script and data files that are distributed as part of
+PCRE, and are unlikely to be of use otherwise. They are all documented here,
+but without much justification.
+.
+.
+.SH "INPUT DATA FORMAT"
+.rs
+.sp
+Input to \fBpcretest\fP is processed line by line, either by calling the C
+library's \fBfgets()\fP function, or via the \fBlibreadline\fP library (see
+below). In Unix-like environments, \fBfgets()\fP treats any bytes other than
+newline as data characters. However, in some Windows environments character 26
+(hex 1A) causes an immediate end of file, and no further data is read. For
+maximum portability, therefore, it is safest to use only ASCII characters in
+\fBpcretest\fP input files.
+.
+.
+.SH "PCRE's 8-BIT, 16-BIT AND 32-BIT LIBRARIES"
+.rs
+.sp
+From release 8.30, two separate PCRE libraries can be built. The original one
+supports 8-bit character strings, whereas the newer 16-bit library supports
+character strings encoded in 16-bit units. From release 8.32, a third library
+can be built, supporting character strings encoded in 32-bit units. The
+\fBpcretest\fP program can be used to test all three libraries. However, it is
+itself still an 8-bit program, reading 8-bit input and writing 8-bit output.
+When testing the 16-bit or 32-bit library, the patterns and data strings are
+converted to 16- or 32-bit format before being passed to the PCRE library
+functions. Results are converted to 8-bit for output.
+.P
+References to functions and structures of the form \fBpcre[16|32]_xx\fP below
+mean "\fBpcre_xx\fP when using the 8-bit library, \fBpcre16_xx\fP when using
+the 16-bit library, or \fBpcre32_xx\fP when using the 32-bit library".
+.
+.
+.SH "COMMAND LINE OPTIONS"
+.rs
+.TP 10
+\fB-8\fP
+If both the 8-bit library has been built, this option causes the 8-bit library
+to be used (which is the default); if the 8-bit library has not been built,
+this option causes an error.
+.TP 10
+\fB-16\fP
+If both the 8-bit or the 32-bit, and the 16-bit libraries have been built, this
+option causes the 16-bit library to be used. If only the 16-bit library has been
+built, this is the default (so has no effect). If only the 8-bit or the 32-bit
+library has been built, this option causes an error.
+.TP 10
+\fB-32\fP
+If both the 8-bit or the 16-bit, and the 32-bit libraries have been built, this
+option causes the 32-bit library to be used. If only the 32-bit library has been
+built, this is the default (so has no effect). If only the 8-bit or the 16-bit
+library has been built, this option causes an error.
+.TP 10
+\fB-b\fP
+Behave as if each pattern has the \fB/B\fP (show byte code) modifier; the
+internal form is output after compilation.
+.TP 10
+\fB-C\fP
+Output the version number of the PCRE library, and all available information
+about the optional features that are included, and then exit with zero exit
+code. All other options are ignored.
+.TP 10
+\fB-C\fP \fIoption\fP
+Output information about a specific build-time option, then exit. This
+functionality is intended for use in scripts such as \fBRunTest\fP. The
+following options output the value and set the exit code as indicated:
+.sp
+ ebcdic-nl the code for LF (= NL) in an EBCDIC environment:
+ 0x15 or 0x25
+ 0 if used in an ASCII environment
+ exit code is always 0
+ linksize the configured internal link size (2, 3, or 4)
+ exit code is set to the link size
+ newline the default newline setting:
+ CR, LF, CRLF, ANYCRLF, or ANY
+ exit code is always 0
+.sp
+The following options output 1 for true or 0 for false, and set the exit code
+to the same value:
+.sp
+ ebcdic compiled for an EBCDIC environment
+ jit just-in-time support is available
+ pcre16 the 16-bit library was built
+ pcre32 the 32-bit library was built
+ pcre8 the 8-bit library was built
+ ucp Unicode property support is available
+ utf UTF-8 and/or UTF-16 and/or UTF-32 support
+ is available
+.sp
+If an unknown option is given, an error message is output; the exit code is 0.
+.TP 10
+\fB-d\fP
+Behave as if each pattern has the \fB/D\fP (debug) modifier; the internal
+form and information about the compiled pattern is output after compilation;
+\fB-d\fP is equivalent to \fB-b -i\fP.
+.TP 10
+\fB-dfa\fP
+Behave as if each data line contains the \eD escape sequence; this causes the
+alternative matching function, \fBpcre[16|32]_dfa_exec()\fP, to be used instead
+of the standard \fBpcre[16|32]_exec()\fP function (more detail is given below).
+.TP 10
+\fB-help\fP
+Output a brief summary these options and then exit.
+.TP 10
+\fB-i\fP
+Behave as if each pattern has the \fB/I\fP modifier; information about the
+compiled pattern is given after compilation.
+.TP 10
+\fB-M\fP
+Behave as if each data line contains the \eM escape sequence; this causes
+PCRE to discover the minimum MATCH_LIMIT and MATCH_LIMIT_RECURSION settings by
+calling \fBpcre[16|32]_exec()\fP repeatedly with different limits.
+.TP 10
+\fB-m\fP
+Output the size of each compiled pattern after it has been compiled. This is
+equivalent to adding \fB/M\fP to each regular expression. The size is given in
+bytes for both libraries.
+.TP 10
+\fB-o\fP \fIosize\fP
+Set the number of elements in the output vector that is used when calling
+\fBpcre[16|32]_exec()\fP or \fBpcre[16|32]_dfa_exec()\fP to be \fIosize\fP. The
+default value is 45, which is enough for 14 capturing subexpressions for
+\fBpcre[16|32]_exec()\fP or 22 different matches for
+\fBpcre[16|32]_dfa_exec()\fP.
+The vector size can be changed for individual matching calls by including \eO
+in the data line (see below).
+.TP 10
+\fB-p\fP
+Behave as if each pattern has the \fB/P\fP modifier; the POSIX wrapper API is
+used to call PCRE. None of the other options has any effect when \fB-p\fP is
+set. This option can be used only with the 8-bit library.
+.TP 10
+\fB-q\fP
+Do not output the version number of \fBpcretest\fP at the start of execution.
+.TP 10
+\fB-S\fP \fIsize\fP
+On Unix-like systems, set the size of the run-time stack to \fIsize\fP
+megabytes.
+.TP 10
+\fB-s\fP or \fB-s+\fP
+Behave as if each pattern has the \fB/S\fP modifier; in other words, force each
+pattern to be studied. If \fB-s+\fP is used, all the JIT compile options are
+passed to \fBpcre[16|32]_study()\fP, causing just-in-time optimization to be set
+up if it is available, for both full and partial matching. Specific JIT compile
+options can be selected by following \fB-s+\fP with a digit in the range 1 to
+7, which selects the JIT compile modes as follows:
+.sp
+ 1 normal match only
+ 2 soft partial match only
+ 3 normal match and soft partial match
+ 4 hard partial match only
+ 6 soft and hard partial match
+ 7 all three modes (default)
+.sp
+If \fB-s++\fP is used instead of \fB-s+\fP (with or without a following digit),
+the text "(JIT)" is added to the first output line after a match or no match
+when JIT-compiled code was actually used.
+.sp
+Note that there are pattern options that can override \fB-s\fP, either
+specifying no studying at all, or suppressing JIT compilation.
+.sp
+If the \fB/I\fP or \fB/D\fP option is present on a pattern (requesting output
+about the compiled pattern), information about the result of studying is not
+included when studying is caused only by \fB-s\fP and neither \fB-i\fP nor
+\fB-d\fP is present on the command line. This behaviour means that the output
+from tests that are run with and without \fB-s\fP should be identical, except
+when options that output information about the actual running of a match are
+set.
+.sp
+The \fB-M\fP, \fB-t\fP, and \fB-tm\fP options, which give information about
+resources used, are likely to produce different output with and without
+\fB-s\fP. Output may also differ if the \fB/C\fP option is present on an
+individual pattern. This uses callouts to trace the the matching process, and
+this may be different between studied and non-studied patterns. If the pattern
+contains (*MARK) items there may also be differences, for the same reason. The
+\fB-s\fP command line option can be overridden for specific patterns that
+should never be studied (see the \fB/S\fP pattern modifier below).
+.TP 10
+\fB-t\fP
+Run each compile, study, and match many times with a timer, and output
+resulting time per compile or match (in milliseconds). Do not set \fB-m\fP with
+\fB-t\fP, because you will then get the size output a zillion times, and the
+timing will be distorted. You can control the number of iterations that are
+used for timing by following \fB-t\fP with a number (as a separate item on the
+command line). For example, "-t 1000" would iterate 1000 times. The default is
+to iterate 500000 times.
+.TP 10
+\fB-tm\fP
+This is like \fB-t\fP except that it times only the matching phase, not the
+compile or study phases.
+.
+.
+.SH DESCRIPTION
+.rs
+.sp
+If \fBpcretest\fP is given two filename arguments, it reads from the first and
+writes to the second. If it is given only one filename argument, it reads from
+that file and writes to stdout. Otherwise, it reads from stdin and writes to
+stdout, and prompts for each line of input, using "re>" to prompt for regular
+expressions, and "data>" to prompt for data lines.
+.P
+When \fBpcretest\fP is built, a configuration option can specify that it should
+be linked with the \fBlibreadline\fP library. When this is done, if the input
+is from a terminal, it is read using the \fBreadline()\fP function. This
+provides line-editing and history facilities. The output from the \fB-help\fP
+option states whether or not \fBreadline()\fP will be used.
+.P
+The program handles any number of sets of input on a single input file. Each
+set starts with a regular expression, and continues with any number of data
+lines to be matched against the pattern.
+.P
+Each data line is matched separately and independently. If you want to do
+multi-line matches, you have to use the \en escape sequence (or \er or \er\en,
+etc., depending on the newline setting) in a single line of input to encode the
+newline sequences. There is no limit on the length of data lines; the input
+buffer is automatically extended if it is too small.
+.P
+An empty line signals the end of the data lines, at which point a new regular
+expression is read. The regular expressions are given enclosed in any
+non-alphanumeric delimiters other than backslash, for example:
+.sp
+ /(a|bc)x+yz/
+.sp
+White space before the initial delimiter is ignored. A regular expression may
+be continued over several input lines, in which case the newline characters are
+included within it. It is possible to include the delimiter within the pattern
+by escaping it, for example
+.sp
+ /abc\e/def/
+.sp
+If you do so, the escape and the delimiter form part of the pattern, but since
+delimiters are always non-alphanumeric, this does not affect its interpretation.
+If the terminating delimiter is immediately followed by a backslash, for
+example,
+.sp
+ /abc/\e
+.sp
+then a backslash is added to the end of the pattern. This is done to provide a
+way of testing the error condition that arises if a pattern finishes with a
+backslash, because
+.sp
+ /abc\e/
+.sp
+is interpreted as the first line of a pattern that starts with "abc/", causing
+pcretest to read the next line as a continuation of the regular expression.
+.
+.
+.SH "PATTERN MODIFIERS"
+.rs
+.sp
+A pattern may be followed by any number of modifiers, which are mostly single
+characters, though some of these can be qualified by further characters.
+Following Perl usage, these are referred to below as, for example, "the
+\fB/i\fP modifier", even though the delimiter of the pattern need not always be
+a slash, and no slash is used when writing modifiers. White space may appear
+between the final pattern delimiter and the first modifier, and between the
+modifiers themselves. For reference, here is a complete list of modifiers. They
+fall into several groups that are described in detail in the following
+sections.
+.sp
+ \fB/8\fP set UTF mode
+ \fB/9\fP set PCRE_NEVER_UTF (locks out UTF mode)
+ \fB/?\fP disable UTF validity check
+ \fB/+\fP show remainder of subject after match
+ \fB/=\fP show all captures (not just those that are set)
+.sp
+ \fB/A\fP set PCRE_ANCHORED
+ \fB/B\fP show compiled code
+ \fB/C\fP set PCRE_AUTO_CALLOUT
+ \fB/D\fP same as \fB/B\fP plus \fB/I\fP
+ \fB/E\fP set PCRE_DOLLAR_ENDONLY
+ \fB/F\fP flip byte order in compiled pattern
+ \fB/f\fP set PCRE_FIRSTLINE
+ \fB/G\fP find all matches (shorten string)
+ \fB/g\fP find all matches (use startoffset)
+ \fB/I\fP show information about pattern
+ \fB/i\fP set PCRE_CASELESS
+ \fB/J\fP set PCRE_DUPNAMES
+ \fB/K\fP show backtracking control names
+ \fB/L\fP set locale
+ \fB/M\fP show compiled memory size
+ \fB/m\fP set PCRE_MULTILINE
+ \fB/N\fP set PCRE_NO_AUTO_CAPTURE
+ \fB/P\fP use the POSIX wrapper
+ \fB/S\fP study the pattern after compilation
+ \fB/s\fP set PCRE_DOTALL
+ \fB/T\fP select character tables
+ \fB/U\fP set PCRE_UNGREEDY
+ \fB/W\fP set PCRE_UCP
+ \fB/X\fP set PCRE_EXTRA
+ \fB/x\fP set PCRE_EXTENDED
+ \fB/Y\fP set PCRE_NO_START_OPTIMIZE
+ \fB/Z\fP don't show lengths in \fB/B\fP output
+.sp
+ \fB/\fP set PCRE_NEWLINE_ANY
+ \fB/\fP set PCRE_NEWLINE_ANYCRLF
+ \fB/\fP set PCRE_NEWLINE_CR
+ \fB/\fP set PCRE_NEWLINE_CRLF
+ \fB/\fP set PCRE_NEWLINE_LF
+ \fB/\fP set PCRE_BSR_ANYCRLF
+ \fB/\fP set PCRE_BSR_UNICODE
+ \fB/\fP set PCRE_JAVASCRIPT_COMPAT
+.sp
+.
+.
+.SS "Perl-compatible modifiers"
+.rs
+.sp
+The \fB/i\fP, \fB/m\fP, \fB/s\fP, and \fB/x\fP modifiers set the PCRE_CASELESS,
+PCRE_MULTILINE, PCRE_DOTALL, or PCRE_EXTENDED options, respectively, when
+\fBpcre[16|32]_compile()\fP is called. These four modifier letters have the same
+effect as they do in Perl. For example:
+.sp
+ /caseless/i
+.sp
+.
+.
+.SS "Modifiers for other PCRE options"
+.rs
+.sp
+The following table shows additional modifiers for setting PCRE compile-time
+options that do not correspond to anything in Perl:
+.sp
+ \fB/8\fP PCRE_UTF8 ) when using the 8-bit
+ \fB/?\fP PCRE_NO_UTF8_CHECK ) library
+.sp
+ \fB/8\fP PCRE_UTF16 ) when using the 16-bit
+ \fB/?\fP PCRE_NO_UTF16_CHECK ) library
+.sp
+ \fB/8\fP PCRE_UTF32 ) when using the 32-bit
+ \fB/?\fP PCRE_NO_UTF32_CHECK ) library
+.sp
+ \fB/9\fP PCRE_NEVER_UTF
+ \fB/A\fP PCRE_ANCHORED
+ \fB/C\fP PCRE_AUTO_CALLOUT
+ \fB/E\fP PCRE_DOLLAR_ENDONLY
+ \fB/f\fP PCRE_FIRSTLINE
+ \fB/J\fP PCRE_DUPNAMES
+ \fB/N\fP PCRE_NO_AUTO_CAPTURE
+ \fB/U\fP PCRE_UNGREEDY
+ \fB/W\fP PCRE_UCP
+ \fB/X\fP PCRE_EXTRA
+ \fB/Y\fP PCRE_NO_START_OPTIMIZE
+ \fB/\fP PCRE_NEWLINE_ANY
+ \fB/\fP PCRE_NEWLINE_ANYCRLF
+ \fB/\fP PCRE_NEWLINE_CR
+ \fB/\fP PCRE_NEWLINE_CRLF
+ \fB/\fP PCRE_NEWLINE_LF
+ \fB/\fP PCRE_BSR_ANYCRLF
+ \fB/\fP PCRE_BSR_UNICODE
+ \fB/\fP PCRE_JAVASCRIPT_COMPAT
+.sp
+The modifiers that are enclosed in angle brackets are literal strings as shown,
+including the angle brackets, but the letters within can be in either case.
+This example sets multiline matching with CRLF as the line ending sequence:
+.sp
+ /^abc/m
+.sp
+As well as turning on the PCRE_UTF8/16/32 option, the \fB/8\fP modifier causes
+all non-printing characters in output strings to be printed using the
+\ex{hh...} notation. Otherwise, those less than 0x100 are output in hex without
+the curly brackets.
+.P
+Full details of the PCRE options are given in the
+.\" HREF
+\fBpcreapi\fP
+.\"
+documentation.
+.
+.
+.SS "Finding all matches in a string"
+.rs
+.sp
+Searching for all possible matches within each subject string can be requested
+by the \fB/g\fP or \fB/G\fP modifier. After finding a match, PCRE is called
+again to search the remainder of the subject string. The difference between
+\fB/g\fP and \fB/G\fP is that the former uses the \fIstartoffset\fP argument to
+\fBpcre[16|32]_exec()\fP to start searching at a new point within the entire
+string (which is in effect what Perl does), whereas the latter passes over a
+shortened substring. This makes a difference to the matching process if the
+pattern begins with a lookbehind assertion (including \eb or \eB).
+.P
+If any call to \fBpcre[16|32]_exec()\fP in a \fB/g\fP or \fB/G\fP sequence matches
+an empty string, the next call is done with the PCRE_NOTEMPTY_ATSTART and
+PCRE_ANCHORED flags set in order to search for another, non-empty, match at the
+same point. If this second match fails, the start offset is advanced, and the
+normal match is retried. This imitates the way Perl handles such cases when
+using the \fB/g\fP modifier or the \fBsplit()\fP function. Normally, the start
+offset is advanced by one character, but if the newline convention recognizes
+CRLF as a newline, and the current character is CR followed by LF, an advance
+of two is used.
+.
+.
+.SS "Other modifiers"
+.rs
+.sp
+There are yet more modifiers for controlling the way \fBpcretest\fP
+operates.
+.P
+The \fB/+\fP modifier requests that as well as outputting the substring that
+matched the entire pattern, \fBpcretest\fP should in addition output the
+remainder of the subject string. This is useful for tests where the subject
+contains multiple copies of the same substring. If the \fB+\fP modifier appears
+twice, the same action is taken for captured substrings. In each case the
+remainder is output on the following line with a plus character following the
+capture number. Note that this modifier must not immediately follow the /S
+modifier because /S+ and /S++ have other meanings.
+.P
+The \fB/=\fP modifier requests that the values of all potential captured
+parentheses be output after a match. By default, only those up to the highest
+one actually used in the match are output (corresponding to the return code
+from \fBpcre[16|32]_exec()\fP). Values in the offsets vector corresponding to
+higher numbers should be set to -1, and these are output as "". This
+modifier gives a way of checking that this is happening.
+.P
+The \fB/B\fP modifier is a debugging feature. It requests that \fBpcretest\fP
+output a representation of the compiled code after compilation. Normally this
+information contains length and offset values; however, if \fB/Z\fP is also
+present, this data is replaced by spaces. This is a special feature for use in
+the automatic test scripts; it ensures that the same output is generated for
+different internal link sizes.
+.P
+The \fB/D\fP modifier is a PCRE debugging feature, and is equivalent to
+\fB/BI\fP, that is, both the \fB/B\fP and the \fB/I\fP modifiers.
+.P
+The \fB/F\fP modifier causes \fBpcretest\fP to flip the byte order of the
+2-byte and 4-byte fields in the compiled pattern. This facility is for testing
+the feature in PCRE that allows it to execute patterns that were compiled on a
+host with a different endianness. This feature is not available when the POSIX
+interface to PCRE is being used, that is, when the \fB/P\fP pattern modifier is
+specified. See also the section about saving and reloading compiled patterns
+below.
+.P
+The \fB/I\fP modifier requests that \fBpcretest\fP output information about the
+compiled pattern (whether it is anchored, has a fixed first character, and
+so on). It does this by calling \fBpcre[16|32]_fullinfo()\fP after compiling a
+pattern. If the pattern is studied, the results of that are also output.
+.P
+The \fB/K\fP modifier requests \fBpcretest\fP to show names from backtracking
+control verbs that are returned from calls to \fBpcre[16|32]_exec()\fP. It causes
+\fBpcretest\fP to create a \fBpcre[16|32]_extra\fP block if one has not already
+been created by a call to \fBpcre[16|32]_study()\fP, and to set the
+PCRE_EXTRA_MARK flag and the \fBmark\fP field within it, every time that
+\fBpcre[16|32]_exec()\fP is called. If the variable that the \fBmark\fP field
+points to is non-NULL for a match, non-match, or partial match, \fBpcretest\fP
+prints the string to which it points. For a match, this is shown on a line by
+itself, tagged with "MK:". For a non-match it is added to the message.
+.P
+The \fB/L\fP modifier must be followed directly by the name of a locale, for
+example,
+.sp
+ /pattern/Lfr_FR
+.sp
+For this reason, it must be the last modifier. The given locale is set,
+\fBpcre[16|32]_maketables()\fP is called to build a set of character tables for
+the locale, and this is then passed to \fBpcre[16|32]_compile()\fP when compiling
+the regular expression. Without an \fB/L\fP (or \fB/T\fP) modifier, NULL is
+passed as the tables pointer; that is, \fB/L\fP applies only to the expression
+on which it appears.
+.P
+The \fB/M\fP modifier causes the size in bytes of the memory block used to hold
+the compiled pattern to be output. This does not include the size of the
+\fBpcre[16|32]\fP block; it is just the actual compiled data. If the pattern is
+successfully studied with the PCRE_STUDY_JIT_COMPILE option, the size of the
+JIT compiled code is also output.
+.P
+The \fB/S\fP modifier causes \fBpcre[16|32]_study()\fP to be called after the
+expression has been compiled, and the results used when the expression is
+matched. There are a number of qualifying characters that may follow \fB/S\fP.
+They may appear in any order.
+.P
+If \fBS\fP is followed by an exclamation mark, \fBpcre[16|32]_study()\fP is called
+with the PCRE_STUDY_EXTRA_NEEDED option, causing it always to return a
+\fBpcre_extra\fP block, even when studying discovers no useful information.
+.P
+If \fB/S\fP is followed by a second S character, it suppresses studying, even
+if it was requested externally by the \fB-s\fP command line option. This makes
+it possible to specify that certain patterns are always studied, and others are
+never studied, independently of \fB-s\fP. This feature is used in the test
+files in a few cases where the output is different when the pattern is studied.
+.P
+If the \fB/S\fP modifier is followed by a + character, the call to
+\fBpcre[16|32]_study()\fP is made with all the JIT study options, requesting
+just-in-time optimization support if it is available, for both normal and
+partial matching. If you want to restrict the JIT compiling modes, you can
+follow \fB/S+\fP with a digit in the range 1 to 7:
+.sp
+ 1 normal match only
+ 2 soft partial match only
+ 3 normal match and soft partial match
+ 4 hard partial match only
+ 6 soft and hard partial match
+ 7 all three modes (default)
+.sp
+If \fB/S++\fP is used instead of \fB/S+\fP (with or without a following digit),
+the text "(JIT)" is added to the first output line after a match or no match
+when JIT-compiled code was actually used.
+.P
+Note that there is also an independent \fB/+\fP modifier; it must not be given
+immediately after \fB/S\fP or \fB/S+\fP because this will be misinterpreted.
+.P
+If JIT studying is successful, the compiled JIT code will automatically be used
+when \fBpcre[16|32]_exec()\fP is run, except when incompatible run-time options
+are specified. For more details, see the
+.\" HREF
+\fBpcrejit\fP
+.\"
+documentation. See also the \fB\eJ\fP escape sequence below for a way of
+setting the size of the JIT stack.
+.P
+Finally, if \fB/S\fP is followed by a minus character, JIT compilation is
+suppressed, even if it was requested externally by the \fB-s\fP command line
+option. This makes it possible to specify that JIT is never to be used for
+certain patterns.
+.P
+The \fB/T\fP modifier must be followed by a single digit. It causes a specific
+set of built-in character tables to be passed to \fBpcre[16|32]_compile()\fP. It
+is used in the standard PCRE tests to check behaviour with different character
+tables. The digit specifies the tables as follows:
+.sp
+ 0 the default ASCII tables, as distributed in
+ pcre_chartables.c.dist
+ 1 a set of tables defining ISO 8859 characters
+.sp
+In table 1, some characters whose codes are greater than 128 are identified as
+letters, digits, spaces, etc.
+.
+.
+.SS "Using the POSIX wrapper API"
+.rs
+.sp
+The \fB/P\fP modifier causes \fBpcretest\fP to call PCRE via the POSIX wrapper
+API rather than its native API. This supports only the 8-bit library. When
+\fB/P\fP is set, the following modifiers set options for the \fBregcomp()\fP
+function:
+.sp
+ /i REG_ICASE
+ /m REG_NEWLINE
+ /N REG_NOSUB
+ /s REG_DOTALL )
+ /U REG_UNGREEDY ) These options are not part of
+ /W REG_UCP ) the POSIX standard
+ /8 REG_UTF8 )
+.sp
+The \fB/+\fP modifier works as described above. All other modifiers are
+ignored.
+.
+.
+.SH "DATA LINES"
+.rs
+.sp
+Before each data line is passed to \fBpcre[16|32]_exec()\fP, leading and trailing
+white space is removed, and it is then scanned for \e escapes. Some of these
+are pretty esoteric features, intended for checking out some of the more
+complicated features of PCRE. If you are just testing "ordinary" regular
+expressions, you probably don't need any of these. The following escapes are
+recognized:
+.sp
+ \ea alarm (BEL, \ex07)
+ \eb backspace (\ex08)
+ \ee escape (\ex27)
+ \ef form feed (\ex0c)
+ \en newline (\ex0a)
+.\" JOIN
+ \eqdd set the PCRE_MATCH_LIMIT limit to dd
+ (any number of digits)
+ \er carriage return (\ex0d)
+ \et tab (\ex09)
+ \ev vertical tab (\ex0b)
+ \ennn octal character (up to 3 octal digits); always
+ a byte unless > 255 in UTF-8 or 16-bit or 32-bit mode
+ \exhh hexadecimal byte (up to 2 hex digits)
+ \ex{hh...} hexadecimal character (any number of hex digits)
+.\" JOIN
+ \eA pass the PCRE_ANCHORED option to \fBpcre[16|32]_exec()\fP
+ or \fBpcre[16|32]_dfa_exec()\fP
+.\" JOIN
+ \eB pass the PCRE_NOTBOL option to \fBpcre[16|32]_exec()\fP
+ or \fBpcre[16|32]_dfa_exec()\fP
+.\" JOIN
+ \eCdd call pcre[16|32]_copy_substring() for substring dd
+ after a successful match (number less than 32)
+.\" JOIN
+ \eCname call pcre[16|32]_copy_named_substring() for substring
+ "name" after a successful match (name termin-
+ ated by next non alphanumeric character)
+.\" JOIN
+ \eC+ show the current captured substrings at callout
+ time
+ \eC- do not supply a callout function
+.\" JOIN
+ \eC!n return 1 instead of 0 when callout number n is
+ reached
+.\" JOIN
+ \eC!n!m return 1 instead of 0 when callout number n is
+ reached for the nth time
+.\" JOIN
+ \eC*n pass the number n (may be negative) as callout
+ data; this is used as the callout return value
+ \eD use the \fBpcre[16|32]_dfa_exec()\fP match function
+ \eF only shortest match for \fBpcre[16|32]_dfa_exec()\fP
+.\" JOIN
+ \eGdd call pcre[16|32]_get_substring() for substring dd
+ after a successful match (number less than 32)
+.\" JOIN
+ \eGname call pcre[16|32]_get_named_substring() for substring
+ "name" after a successful match (name termin-
+ ated by next non-alphanumeric character)
+.\" JOIN
+ \eJdd set up a JIT stack of dd kilobytes maximum (any
+ number of digits)
+.\" JOIN
+ \eL call pcre[16|32]_get_substringlist() after a
+ successful match
+.\" JOIN
+ \eM discover the minimum MATCH_LIMIT and
+ MATCH_LIMIT_RECURSION settings
+.\" JOIN
+ \eN pass the PCRE_NOTEMPTY option to \fBpcre[16|32]_exec()\fP
+ or \fBpcre[16|32]_dfa_exec()\fP; if used twice, pass the
+ PCRE_NOTEMPTY_ATSTART option
+.\" JOIN
+ \eOdd set the size of the output vector passed to
+ \fBpcre[16|32]_exec()\fP to dd (any number of digits)
+.\" JOIN
+ \eP pass the PCRE_PARTIAL_SOFT option to \fBpcre[16|32]_exec()\fP
+ or \fBpcre[16|32]_dfa_exec()\fP; if used twice, pass the
+ PCRE_PARTIAL_HARD option
+.\" JOIN
+ \eQdd set the PCRE_MATCH_LIMIT_RECURSION limit to dd
+ (any number of digits)
+ \eR pass the PCRE_DFA_RESTART option to \fBpcre[16|32]_dfa_exec()\fP
+ \eS output details of memory get/free calls during matching
+.\" JOIN
+ \eY pass the PCRE_NO_START_OPTIMIZE option to \fBpcre[16|32]_exec()\fP
+ or \fBpcre[16|32]_dfa_exec()\fP
+.\" JOIN
+ \eZ pass the PCRE_NOTEOL option to \fBpcre[16|32]_exec()\fP
+ or \fBpcre[16|32]_dfa_exec()\fP
+.\" JOIN
+ \e? pass the PCRE_NO_UTF[8|16|32]_CHECK option to
+ \fBpcre[16|32]_exec()\fP or \fBpcre[16|32]_dfa_exec()\fP
+.\" JOIN
+ \e>dd start the match at offset dd (optional "-"; then
+ any number of digits); this sets the \fIstartoffset\fP
+ argument for \fBpcre[16|32]_exec()\fP or \fBpcre[16|32]_dfa_exec()\fP
+.\" JOIN
+ \e pass the PCRE_NEWLINE_CR option to \fBpcre[16|32]_exec()\fP
+ or \fBpcre[16|32]_dfa_exec()\fP
+.\" JOIN
+ \e pass the PCRE_NEWLINE_LF option to \fBpcre[16|32]_exec()\fP
+ or \fBpcre[16|32]_dfa_exec()\fP
+.\" JOIN
+ \e pass the PCRE_NEWLINE_CRLF option to \fBpcre[16|32]_exec()\fP
+ or \fBpcre[16|32]_dfa_exec()\fP
+.\" JOIN
+ \e pass the PCRE_NEWLINE_ANYCRLF option to \fBpcre[16|32]_exec()\fP
+ or \fBpcre[16|32]_dfa_exec()\fP
+.\" JOIN
+ \e pass the PCRE_NEWLINE_ANY option to \fBpcre[16|32]_exec()\fP
+ or \fBpcre[16|32]_dfa_exec()\fP
+.sp
+The use of \ex{hh...} is not dependent on the use of the \fB/8\fP modifier on
+the pattern. It is recognized always. There may be any number of hexadecimal
+digits inside the braces; invalid values provoke error messages.
+.P
+Note that \exhh specifies one byte rather than one character in UTF-8 mode;
+this makes it possible to construct invalid UTF-8 sequences for testing
+purposes. On the other hand, \ex{hh} is interpreted as a UTF-8 character in
+UTF-8 mode, generating more than one byte if the value is greater than 127.
+When testing the 8-bit library not in UTF-8 mode, \ex{hh} generates one byte
+for values less than 256, and causes an error for greater values.
+.P
+In UTF-16 mode, all 4-digit \ex{hhhh} values are accepted. This makes it
+possible to construct invalid UTF-16 sequences for testing purposes.
+.P
+In UTF-32 mode, all 4- to 8-digit \ex{...} values are accepted. This makes it
+possible to construct invalid UTF-32 sequences for testing purposes.
+.P
+The escapes that specify line ending sequences are literal strings, exactly as
+shown. No more than one newline setting should be present in any data line.
+.P
+A backslash followed by anything else just escapes the anything else. If
+the very last character is a backslash, it is ignored. This gives a way of
+passing an empty line as data, since a real empty line terminates the data
+input.
+.P
+The \fB\eJ\fP escape provides a way of setting the maximum stack size that is
+used by the just-in-time optimization code. It is ignored if JIT optimization
+is not being used. Providing a stack that is larger than the default 32K is
+necessary only for very complicated patterns.
+.P
+If \eM is present, \fBpcretest\fP calls \fBpcre[16|32]_exec()\fP several times,
+with different values in the \fImatch_limit\fP and \fImatch_limit_recursion\fP
+fields of the \fBpcre[16|32]_extra\fP data structure, until it finds the minimum
+numbers for each parameter that allow \fBpcre[16|32]_exec()\fP to complete without
+error. Because this is testing a specific feature of the normal interpretive
+\fBpcre[16|32]_exec()\fP execution, the use of any JIT optimization that might
+have been set up by the \fB/S+\fP qualifier of \fB-s+\fP option is disabled.
+.P
+The \fImatch_limit\fP number is a measure of the amount of backtracking
+that takes place, and checking it out can be instructive. For most simple
+matches, the number is quite small, but for patterns with very large numbers of
+matching possibilities, it can become large very quickly with increasing length
+of subject string. The \fImatch_limit_recursion\fP number is a measure of how
+much stack (or, if PCRE is compiled with NO_RECURSE, how much heap) memory is
+needed to complete the match attempt.
+.P
+When \eO is used, the value specified may be higher or lower than the size set
+by the \fB-O\fP command line option (or defaulted to 45); \eO applies only to
+the call of \fBpcre[16|32]_exec()\fP for the line in which it appears.
+.P
+If the \fB/P\fP modifier was present on the pattern, causing the POSIX wrapper
+API to be used, the only option-setting sequences that have any effect are \eB,
+\eN, and \eZ, causing REG_NOTBOL, REG_NOTEMPTY, and REG_NOTEOL, respectively,
+to be passed to \fBregexec()\fP.
+.
+.
+.SH "THE ALTERNATIVE MATCHING FUNCTION"
+.rs
+.sp
+By default, \fBpcretest\fP uses the standard PCRE matching function,
+\fBpcre[16|32]_exec()\fP to match each data line. PCRE also supports an
+alternative matching function, \fBpcre[16|32]_dfa_test()\fP, which operates in a
+different way, and has some restrictions. The differences between the two
+functions are described in the
+.\" HREF
+\fBpcrematching\fP
+.\"
+documentation.
+.P
+If a data line contains the \eD escape sequence, or if the command line
+contains the \fB-dfa\fP option, the alternative matching function is used.
+This function finds all possible matches at a given point. If, however, the \eF
+escape sequence is present in the data line, it stops after the first match is
+found. This is always the shortest possible match.
+.
+.
+.SH "DEFAULT OUTPUT FROM PCRETEST"
+.rs
+.sp
+This section describes the output when the normal matching function,
+\fBpcre[16|32]_exec()\fP, is being used.
+.P
+When a match succeeds, \fBpcretest\fP outputs the list of captured substrings
+that \fBpcre[16|32]_exec()\fP returns, starting with number 0 for the string that
+matched the whole pattern. Otherwise, it outputs "No match" when the return is
+PCRE_ERROR_NOMATCH, and "Partial match:" followed by the partially matching
+substring when \fBpcre[16|32]_exec()\fP returns PCRE_ERROR_PARTIAL. (Note that
+this is the entire substring that was inspected during the partial match; it
+may include characters before the actual match start if a lookbehind assertion,
+\eK, \eb, or \eB was involved.) For any other return, \fBpcretest\fP outputs
+the PCRE negative error number and a short descriptive phrase. If the error is
+a failed UTF string check, the offset of the start of the failing character and
+the reason code are also output, provided that the size of the output vector is
+at least two. Here is an example of an interactive \fBpcretest\fP run.
+.sp
+ $ pcretest
+ PCRE version 8.13 2011-04-30
+.sp
+ re> /^abc(\ed+)/
+ data> abc123
+ 0: abc123
+ 1: 123
+ data> xyz
+ No match
+.sp
+Unset capturing substrings that are not followed by one that is set are not
+returned by \fBpcre[16|32]_exec()\fP, and are not shown by \fBpcretest\fP. In the
+following example, there are two capturing substrings, but when the first data
+line is matched, the second, unset substring is not shown. An "internal" unset
+substring is shown as "", as for the second data line.
+.sp
+ re> /(a)|(b)/
+ data> a
+ 0: a
+ 1: a
+ data> b
+ 0: b
+ 1:
+ 2: b
+.sp
+If the strings contain any non-printing characters, they are output as \exhh
+escapes if the value is less than 256 and UTF mode is not set. Otherwise they
+are output as \ex{hh...} escapes. See below for the definition of non-printing
+characters. If the pattern has the \fB/+\fP modifier, the output for substring
+0 is followed by the the rest of the subject string, identified by "0+" like
+this:
+.sp
+ re> /cat/+
+ data> cataract
+ 0: cat
+ 0+ aract
+.sp
+If the pattern has the \fB/g\fP or \fB/G\fP modifier, the results of successive
+matching attempts are output in sequence, like this:
+.sp
+ re> /\eBi(\ew\ew)/g
+ data> Mississippi
+ 0: iss
+ 1: ss
+ 0: iss
+ 1: ss
+ 0: ipp
+ 1: pp
+.sp
+"No match" is output only if the first match attempt fails. Here is an example
+of a failure message (the offset 4 that is specified by \e>4 is past the end of
+the subject string):
+.sp
+ re> /xyz/
+ data> xyz\e>4
+ Error -24 (bad offset value)
+.P
+If any of the sequences \fB\eC\fP, \fB\eG\fP, or \fB\eL\fP are present in a
+data line that is successfully matched, the substrings extracted by the
+convenience functions are output with C, G, or L after the string number
+instead of a colon. This is in addition to the normal full list. The string
+length (that is, the return from the extraction function) is given in
+parentheses after each string for \fB\eC\fP and \fB\eG\fP.
+.P
+Note that whereas patterns can be continued over several lines (a plain ">"
+prompt is used for continuations), data lines may not. However newlines can be
+included in data by means of the \en escape (or \er, \er\en, etc., depending on
+the newline sequence setting).
+.
+.
+.
+.SH "OUTPUT FROM THE ALTERNATIVE MATCHING FUNCTION"
+.rs
+.sp
+When the alternative matching function, \fBpcre[16|32]_dfa_exec()\fP, is used (by
+means of the \eD escape sequence or the \fB-dfa\fP command line option), the
+output consists of a list of all the matches that start at the first point in
+the subject where there is at least one match. For example:
+.sp
+ re> /(tang|tangerine|tan)/
+ data> yellow tangerine\eD
+ 0: tangerine
+ 1: tang
+ 2: tan
+.sp
+(Using the normal matching function on this data finds only "tang".) The
+longest matching string is always given first (and numbered zero). After a
+PCRE_ERROR_PARTIAL return, the output is "Partial match:", followed by the
+partially matching substring. (Note that this is the entire substring that was
+inspected during the partial match; it may include characters before the actual
+match start if a lookbehind assertion, \eK, \eb, or \eB was involved.)
+.P
+If \fB/g\fP is present on the pattern, the search for further matches resumes
+at the end of the longest match. For example:
+.sp
+ re> /(tang|tangerine|tan)/g
+ data> yellow tangerine and tangy sultana\eD
+ 0: tangerine
+ 1: tang
+ 2: tan
+ 0: tang
+ 1: tan
+ 0: tan
+.sp
+Since the matching function does not support substring capture, the escape
+sequences that are concerned with captured substrings are not relevant.
+.
+.
+.SH "RESTARTING AFTER A PARTIAL MATCH"
+.rs
+.sp
+When the alternative matching function has given the PCRE_ERROR_PARTIAL return,
+indicating that the subject partially matched the pattern, you can restart the
+match with additional subject data by means of the \eR escape sequence. For
+example:
+.sp
+ re> /^\ed?\ed(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\ed\ed$/
+ data> 23ja\eP\eD
+ Partial match: 23ja
+ data> n05\eR\eD
+ 0: n05
+.sp
+For further information about partial matching, see the
+.\" HREF
+\fBpcrepartial\fP
+.\"
+documentation.
+.
+.
+.SH CALLOUTS
+.rs
+.sp
+If the pattern contains any callout requests, \fBpcretest\fP's callout function
+is called during matching. This works with both matching functions. By default,
+the called function displays the callout number, the start and current
+positions in the text at the callout time, and the next pattern item to be
+tested. For example:
+.sp
+ --->pqrabcdef
+ 0 ^ ^ \ed
+.sp
+This output indicates that callout number 0 occurred for a match attempt
+starting at the fourth character of the subject string, when the pointer was at
+the seventh character of the data, and when the next pattern item was \ed. Just
+one circumflex is output if the start and current positions are the same.
+.P
+Callouts numbered 255 are assumed to be automatic callouts, inserted as a
+result of the \fB/C\fP pattern modifier. In this case, instead of showing the
+callout number, the offset in the pattern, preceded by a plus, is output. For
+example:
+.sp
+ re> /\ed?[A-E]\e*/C
+ data> E*
+ --->E*
+ +0 ^ \ed?
+ +3 ^ [A-E]
+ +8 ^^ \e*
+ +10 ^ ^
+ 0: E*
+.sp
+If a pattern contains (*MARK) items, an additional line is output whenever
+a change of latest mark is passed to the callout function. For example:
+.sp
+ re> /a(*MARK:X)bc/C
+ data> abc
+ --->abc
+ +0 ^ a
+ +1 ^^ (*MARK:X)
+ +10 ^^ b
+ Latest Mark: X
+ +11 ^ ^ c
+ +12 ^ ^
+ 0: abc
+.sp
+The mark changes between matching "a" and "b", but stays the same for the rest
+of the match, so nothing more is output. If, as a result of backtracking, the
+mark reverts to being unset, the text "" is output.
+.P
+The callout function in \fBpcretest\fP returns zero (carry on matching) by
+default, but you can use a \eC item in a data line (as described above) to
+change this and other parameters of the callout.
+.P
+Inserting callouts can be helpful when using \fBpcretest\fP to check
+complicated regular expressions. For further information about callouts, see
+the
+.\" HREF
+\fBpcrecallout\fP
+.\"
+documentation.
+.
+.
+.
+.SH "NON-PRINTING CHARACTERS"
+.rs
+.sp
+When \fBpcretest\fP is outputting text in the compiled version of a pattern,
+bytes other than 32-126 are always treated as non-printing characters are are
+therefore shown as hex escapes.
+.P
+When \fBpcretest\fP is outputting text that is a matched part of a subject
+string, it behaves in the same way, unless a different locale has been set for
+the pattern (using the \fB/L\fP modifier). In this case, the \fBisprint()\fP
+function to distinguish printing and non-printing characters.
+.
+.
+.
+.SH "SAVING AND RELOADING COMPILED PATTERNS"
+.rs
+.sp
+The facilities described in this section are not available when the POSIX
+interface to PCRE is being used, that is, when the \fB/P\fP pattern modifier is
+specified.
+.P
+When the POSIX interface is not in use, you can cause \fBpcretest\fP to write a
+compiled pattern to a file, by following the modifiers with > and a file name.
+For example:
+.sp
+ /pattern/im >/some/file
+.sp
+See the
+.\" HREF
+\fBpcreprecompile\fP
+.\"
+documentation for a discussion about saving and re-using compiled patterns.
+Note that if the pattern was successfully studied with JIT optimization, the
+JIT data cannot be saved.
+.P
+The data that is written is binary. The first eight bytes are the length of the
+compiled pattern data followed by the length of the optional study data, each
+written as four bytes in big-endian order (most significant byte first). If
+there is no study data (either the pattern was not studied, or studying did not
+return any data), the second length is zero. The lengths are followed by an
+exact copy of the compiled pattern. If there is additional study data, this
+(excluding any JIT data) follows immediately after the compiled pattern. After
+writing the file, \fBpcretest\fP expects to read a new pattern.
+.P
+A saved pattern can be reloaded into \fBpcretest\fP by specifying < and a file
+name instead of a pattern. The name of the file must not contain a < character,
+as otherwise \fBpcretest\fP will interpret the line as a pattern delimited by <
+characters.
+For example:
+.sp
+ re> " to prompt for regular expressions, and "data>" to prompt for data
+ lines.
+
+ When pcretest is built, a configuration option can specify that it
+ should be linked with the libreadline library. When this is done, if
+ the input is from a terminal, it is read using the readline() function.
+ This provides line-editing and history facilities. The output from the
+ -help option states whether or not readline() will be used.
+
+ The program handles any number of sets of input on a single input file.
+ Each set starts with a regular expression, and continues with any num-
+ ber of data lines to be matched against the pattern.
+
+ Each data line is matched separately and independently. If you want to
+ do multi-line matches, you have to use the \n escape sequence (or \r or
+ \r\n, etc., depending on the newline setting) in a single line of input
+ to encode the newline sequences. There is no limit on the length of
+ data lines; the input buffer is automatically extended if it is too
+ small.
+
+ An empty line signals the end of the data lines, at which point a new
+ regular expression is read. The regular expressions are given enclosed
+ in any non-alphanumeric delimiters other than backslash, for example:
+
+ /(a|bc)x+yz/
+
+ White space before the initial delimiter is ignored. A regular expres-
+ sion may be continued over several input lines, in which case the new-
+ line characters are included within it. It is possible to include the
+ delimiter within the pattern by escaping it, for example
+
+ /abc\/def/
+
+ If you do so, the escape and the delimiter form part of the pattern,
+ but since delimiters are always non-alphanumeric, this does not affect
+ its interpretation. If the terminating delimiter is immediately fol-
+ lowed by a backslash, for example,
+
+ /abc/\
+
+ then a backslash is added to the end of the pattern. This is done to
+ provide a way of testing the error condition that arises if a pattern
+ finishes with a backslash, because
+
+ /abc\/
+
+ is interpreted as the first line of a pattern that starts with "abc/",
+ causing pcretest to read the next line as a continuation of the regular
+ expression.
+
+
+PATTERN MODIFIERS
+
+ A pattern may be followed by any number of modifiers, which are mostly
+ single characters, though some of these can be qualified by further
+ characters. Following Perl usage, these are referred to below as, for
+ example, "the /i modifier", even though the delimiter of the pattern
+ need not always be a slash, and no slash is used when writing modi-
+ fiers. White space may appear between the final pattern delimiter and
+ the first modifier, and between the modifiers themselves. For refer-
+ ence, here is a complete list of modifiers. They fall into several
+ groups that are described in detail in the following sections.
+
+ /8 set UTF mode
+ /9 set PCRE_NEVER_UTF (locks out UTF mode)
+ /? disable UTF validity check
+ /+ show remainder of subject after match
+ /= show all captures (not just those that are set)
+
+ /A set PCRE_ANCHORED
+ /B show compiled code
+ /C set PCRE_AUTO_CALLOUT
+ /D same as /B plus /I
+ /E set PCRE_DOLLAR_ENDONLY
+ /F flip byte order in compiled pattern
+ /f set PCRE_FIRSTLINE
+ /G find all matches (shorten string)
+ /g find all matches (use startoffset)
+ /I show information about pattern
+ /i set PCRE_CASELESS
+ /J set PCRE_DUPNAMES
+ /K show backtracking control names
+ /L set locale
+ /M show compiled memory size
+ /m set PCRE_MULTILINE
+ /N set PCRE_NO_AUTO_CAPTURE
+ /P use the POSIX wrapper
+ /S study the pattern after compilation
+ /s set PCRE_DOTALL
+ /T select character tables
+ /U set PCRE_UNGREEDY
+ /W set PCRE_UCP
+ /X set PCRE_EXTRA
+ /x set PCRE_EXTENDED
+ /Y set PCRE_NO_START_OPTIMIZE
+ /Z don't show lengths in /B output
+
+ / set PCRE_NEWLINE_ANY
+ / set PCRE_NEWLINE_ANYCRLF
+ / set PCRE_NEWLINE_CR
+ / set PCRE_NEWLINE_CRLF
+ / set PCRE_NEWLINE_LF
+ / set PCRE_BSR_ANYCRLF
+ / set PCRE_BSR_UNICODE
+ / set PCRE_JAVASCRIPT_COMPAT
+
+
+ Perl-compatible modifiers
+
+ The /i, /m, /s, and /x modifiers set the PCRE_CASELESS, PCRE_MULTILINE,
+ PCRE_DOTALL, or PCRE_EXTENDED options, respectively, when
+ pcre[16|32]_compile() is called. These four modifier letters have the
+ same effect as they do in Perl. For example:
+
+ /caseless/i
+
+
+ Modifiers for other PCRE options
+
+ The following table shows additional modifiers for setting PCRE com-
+ pile-time options that do not correspond to anything in Perl:
+
+ /8 PCRE_UTF8 ) when using the 8-bit
+ /? PCRE_NO_UTF8_CHECK ) library
+
+ /8 PCRE_UTF16 ) when using the 16-bit
+ /? PCRE_NO_UTF16_CHECK ) library
+
+ /8 PCRE_UTF32 ) when using the 32-bit
+ /? PCRE_NO_UTF32_CHECK ) library
+
+ /9 PCRE_NEVER_UTF
+ /A PCRE_ANCHORED
+ /C PCRE_AUTO_CALLOUT
+ /E PCRE_DOLLAR_ENDONLY
+ /f PCRE_FIRSTLINE
+ /J PCRE_DUPNAMES
+ /N PCRE_NO_AUTO_CAPTURE
+ /U PCRE_UNGREEDY
+ /W PCRE_UCP
+ /X PCRE_EXTRA
+ /Y PCRE_NO_START_OPTIMIZE
+ / PCRE_NEWLINE_ANY
+ / PCRE_NEWLINE_ANYCRLF
+ / PCRE_NEWLINE_CR
+ / PCRE_NEWLINE_CRLF
+ / PCRE_NEWLINE_LF
+ / PCRE_BSR_ANYCRLF
+ / PCRE_BSR_UNICODE
+ / PCRE_JAVASCRIPT_COMPAT
+
+ The modifiers that are enclosed in angle brackets are literal strings
+ as shown, including the angle brackets, but the letters within can be
+ in either case. This example sets multiline matching with CRLF as the
+ line ending sequence:
+
+ /^abc/m
+
+ As well as turning on the PCRE_UTF8/16/32 option, the /8 modifier
+ causes all non-printing characters in output strings to be printed
+ using the \x{hh...} notation. Otherwise, those less than 0x100 are out-
+ put in hex without the curly brackets.
+
+ Full details of the PCRE options are given in the pcreapi documenta-
+ tion.
+
+ Finding all matches in a string
+
+ Searching for all possible matches within each subject string can be
+ requested by the /g or /G modifier. After finding a match, PCRE is
+ called again to search the remainder of the subject string. The differ-
+ ence between /g and /G is that the former uses the startoffset argument
+ to pcre[16|32]_exec() to start searching at a new point within the
+ entire string (which is in effect what Perl does), whereas the latter
+ passes over a shortened substring. This makes a difference to the
+ matching process if the pattern begins with a lookbehind assertion
+ (including \b or \B).
+
+ If any call to pcre[16|32]_exec() in a /g or /G sequence matches an
+ empty string, the next call is done with the PCRE_NOTEMPTY_ATSTART and
+ PCRE_ANCHORED flags set in order to search for another, non-empty,
+ match at the same point. If this second match fails, the start offset
+ is advanced, and the normal match is retried. This imitates the way
+ Perl handles such cases when using the /g modifier or the split() func-
+ tion. Normally, the start offset is advanced by one character, but if
+ the newline convention recognizes CRLF as a newline, and the current
+ character is CR followed by LF, an advance of two is used.
+
+ Other modifiers
+
+ There are yet more modifiers for controlling the way pcretest operates.
+
+ The /+ modifier requests that as well as outputting the substring that
+ matched the entire pattern, pcretest should in addition output the
+ remainder of the subject string. This is useful for tests where the
+ subject contains multiple copies of the same substring. If the + modi-
+ fier appears twice, the same action is taken for captured substrings.
+ In each case the remainder is output on the following line with a plus
+ character following the capture number. Note that this modifier must
+ not immediately follow the /S modifier because /S+ and /S++ have other
+ meanings.
+
+ The /= modifier requests that the values of all potential captured
+ parentheses be output after a match. By default, only those up to the
+ highest one actually used in the match are output (corresponding to the
+ return code from pcre[16|32]_exec()). Values in the offsets vector cor-
+ responding to higher numbers should be set to -1, and these are output
+ as "". This modifier gives a way of checking that this is hap-
+ pening.
+
+ The /B modifier is a debugging feature. It requests that pcretest out-
+ put a representation of the compiled code after compilation. Normally
+ this information contains length and offset values; however, if /Z is
+ also present, this data is replaced by spaces. This is a special fea-
+ ture for use in the automatic test scripts; it ensures that the same
+ output is generated for different internal link sizes.
+
+ The /D modifier is a PCRE debugging feature, and is equivalent to /BI,
+ that is, both the /B and the /I modifiers.
+
+ The /F modifier causes pcretest to flip the byte order of the 2-byte
+ and 4-byte fields in the compiled pattern. This facility is for testing
+ the feature in PCRE that allows it to execute patterns that were com-
+ piled on a host with a different endianness. This feature is not avail-
+ able when the POSIX interface to PCRE is being used, that is, when the
+ /P pattern modifier is specified. See also the section about saving and
+ reloading compiled patterns below.
+
+ The /I modifier requests that pcretest output information about the
+ compiled pattern (whether it is anchored, has a fixed first character,
+ and so on). It does this by calling pcre[16|32]_fullinfo() after com-
+ piling a pattern. If the pattern is studied, the results of that are
+ also output.
+
+ The /K modifier requests pcretest to show names from backtracking con-
+ trol verbs that are returned from calls to pcre[16|32]_exec(). It
+ causes pcretest to create a pcre[16|32]_extra block if one has not
+ already been created by a call to pcre[16|32]_study(), and to set the
+ PCRE_EXTRA_MARK flag and the mark field within it, every time that
+ pcre[16|32]_exec() is called. If the variable that the mark field
+ points to is non-NULL for a match, non-match, or partial match,
+ pcretest prints the string to which it points. For a match, this is
+ shown on a line by itself, tagged with "MK:". For a non-match it is
+ added to the message.
+
+ The /L modifier must be followed directly by the name of a locale, for
+ example,
+
+ /pattern/Lfr_FR
+
+ For this reason, it must be the last modifier. The given locale is set,
+ pcre[16|32]_maketables() is called to build a set of character tables
+ for the locale, and this is then passed to pcre[16|32]_compile() when
+ compiling the regular expression. Without an /L (or /T) modifier, NULL
+ is passed as the tables pointer; that is, /L applies only to the
+ expression on which it appears.
+
+ The /M modifier causes the size in bytes of the memory block used to
+ hold the compiled pattern to be output. This does not include the size
+ of the pcre[16|32] block; it is just the actual compiled data. If the
+ pattern is successfully studied with the PCRE_STUDY_JIT_COMPILE option,
+ the size of the JIT compiled code is also output.
+
+ The /S modifier causes pcre[16|32]_study() to be called after the
+ expression has been compiled, and the results used when the expression
+ is matched. There are a number of qualifying characters that may follow
+ /S. They may appear in any order.
+
+ If S is followed by an exclamation mark, pcre[16|32]_study() is called
+ with the PCRE_STUDY_EXTRA_NEEDED option, causing it always to return a
+ pcre_extra block, even when studying discovers no useful information.
+
+ If /S is followed by a second S character, it suppresses studying, even
+ if it was requested externally by the -s command line option. This
+ makes it possible to specify that certain patterns are always studied,
+ and others are never studied, independently of -s. This feature is used
+ in the test files in a few cases where the output is different when the
+ pattern is studied.
+
+ If the /S modifier is followed by a + character, the call to
+ pcre[16|32]_study() is made with all the JIT study options, requesting
+ just-in-time optimization support if it is available, for both normal
+ and partial matching. If you want to restrict the JIT compiling modes,
+ you can follow /S+ with a digit in the range 1 to 7:
+
+ 1 normal match only
+ 2 soft partial match only
+ 3 normal match and soft partial match
+ 4 hard partial match only
+ 6 soft and hard partial match
+ 7 all three modes (default)
+
+ If /S++ is used instead of /S+ (with or without a following digit), the
+ text "(JIT)" is added to the first output line after a match or no
+ match when JIT-compiled code was actually used.
+
+ Note that there is also an independent /+ modifier; it must not be
+ given immediately after /S or /S+ because this will be misinterpreted.
+
+ If JIT studying is successful, the compiled JIT code will automatically
+ be used when pcre[16|32]_exec() is run, except when incompatible run-
+ time options are specified. For more details, see the pcrejit documen-
+ tation. See also the \J escape sequence below for a way of setting the
+ size of the JIT stack.
+
+ Finally, if /S is followed by a minus character, JIT compilation is
+ suppressed, even if it was requested externally by the -s command line
+ option. This makes it possible to specify that JIT is never to be used
+ for certain patterns.
+
+ The /T modifier must be followed by a single digit. It causes a spe-
+ cific set of built-in character tables to be passed to pcre[16|32]_com-
+ pile(). It is used in the standard PCRE tests to check behaviour with
+ different character tables. The digit specifies the tables as follows:
+
+ 0 the default ASCII tables, as distributed in
+ pcre_chartables.c.dist
+ 1 a set of tables defining ISO 8859 characters
+
+ In table 1, some characters whose codes are greater than 128 are iden-
+ tified as letters, digits, spaces, etc.
+
+ Using the POSIX wrapper API
+
+ The /P modifier causes pcretest to call PCRE via the POSIX wrapper API
+ rather than its native API. This supports only the 8-bit library. When
+ /P is set, the following modifiers set options for the regcomp() func-
+ tion:
+
+ /i REG_ICASE
+ /m REG_NEWLINE
+ /N REG_NOSUB
+ /s REG_DOTALL )
+ /U REG_UNGREEDY ) These options are not part of
+ /W REG_UCP ) the POSIX standard
+ /8 REG_UTF8 )
+
+ The /+ modifier works as described above. All other modifiers are
+ ignored.
+
+
+DATA LINES
+
+ Before each data line is passed to pcre[16|32]_exec(), leading and
+ trailing white space is removed, and it is then scanned for \ escapes.
+ Some of these are pretty esoteric features, intended for checking out
+ some of the more complicated features of PCRE. If you are just testing
+ "ordinary" regular expressions, you probably don't need any of these.
+ The following escapes are recognized:
+
+ \a alarm (BEL, \x07)
+ \b backspace (\x08)
+ \e escape (\x27)
+ \f form feed (\x0c)
+ \n newline (\x0a)
+ \qdd set the PCRE_MATCH_LIMIT limit to dd
+ (any number of digits)
+ \r carriage return (\x0d)
+ \t tab (\x09)
+ \v vertical tab (\x0b)
+ \nnn octal character (up to 3 octal digits); always
+ a byte unless > 255 in UTF-8 or 16-bit or 32-bit mode
+ \xhh hexadecimal byte (up to 2 hex digits)
+ \x{hh...} hexadecimal character (any number of hex digits)
+ \A pass the PCRE_ANCHORED option to pcre[16|32]_exec()
+ or pcre[16|32]_dfa_exec()
+ \B pass the PCRE_NOTBOL option to pcre[16|32]_exec()
+ or pcre[16|32]_dfa_exec()
+ \Cdd call pcre[16|32]_copy_substring() for substring dd
+ after a successful match (number less than 32)
+ \Cname call pcre[16|32]_copy_named_substring() for substring
+ "name" after a successful match (name termin-
+ ated by next non alphanumeric character)
+ \C+ show the current captured substrings at callout
+ time
+ \C- do not supply a callout function
+ \C!n return 1 instead of 0 when callout number n is
+ reached
+ \C!n!m return 1 instead of 0 when callout number n is
+ reached for the nth time
+ \C*n pass the number n (may be negative) as callout
+ data; this is used as the callout return value
+ \D use the pcre[16|32]_dfa_exec() match function
+ \F only shortest match for pcre[16|32]_dfa_exec()
+ \Gdd call pcre[16|32]_get_substring() for substring dd
+ after a successful match (number less than 32)
+ \Gname call pcre[16|32]_get_named_substring() for substring
+ "name" after a successful match (name termin-
+ ated by next non-alphanumeric character)
+ \Jdd set up a JIT stack of dd kilobytes maximum (any
+ number of digits)
+ \L call pcre[16|32]_get_substringlist() after a
+ successful match
+ \M discover the minimum MATCH_LIMIT and
+ MATCH_LIMIT_RECURSION settings
+ \N pass the PCRE_NOTEMPTY option to pcre[16|32]_exec()
+ or pcre[16|32]_dfa_exec(); if used twice, pass the
+ PCRE_NOTEMPTY_ATSTART option
+ \Odd set the size of the output vector passed to
+ pcre[16|32]_exec() to dd (any number of digits)
+ \P pass the PCRE_PARTIAL_SOFT option to pcre[16|32]_exec()
+ or pcre[16|32]_dfa_exec(); if used twice, pass the
+ PCRE_PARTIAL_HARD option
+ \Qdd set the PCRE_MATCH_LIMIT_RECURSION limit to dd
+ (any number of digits)
+ \R pass the PCRE_DFA_RESTART option to pcre[16|32]_dfa_exec()
+ \S output details of memory get/free calls during matching
+ \Y pass the PCRE_NO_START_OPTIMIZE option to
+ pcre[16|32]_exec()
+ or pcre[16|32]_dfa_exec()
+ \Z pass the PCRE_NOTEOL option to pcre[16|32]_exec()
+ or pcre[16|32]_dfa_exec()
+ \? pass the PCRE_NO_UTF[8|16|32]_CHECK option to
+ pcre[16|32]_exec() or pcre[16|32]_dfa_exec()
+ \>dd start the match at offset dd (optional "-"; then
+ any number of digits); this sets the startoffset
+ argument for pcre[16|32]_exec() or
+ pcre[16|32]_dfa_exec()
+ \ pass the PCRE_NEWLINE_CR option to pcre[16|32]_exec()
+ or pcre[16|32]_dfa_exec()
+ \ pass the PCRE_NEWLINE_LF option to pcre[16|32]_exec()
+ or pcre[16|32]_dfa_exec()
+ \ pass the PCRE_NEWLINE_CRLF option to pcre[16|32]_exec()
+ or pcre[16|32]_dfa_exec()
+ \ pass the PCRE_NEWLINE_ANYCRLF option to pcre[16|32]_exec()
+ or pcre[16|32]_dfa_exec()
+ \ pass the PCRE_NEWLINE_ANY option to pcre[16|32]_exec()
+ or pcre[16|32]_dfa_exec()
+
+ The use of \x{hh...} is not dependent on the use of the /8 modifier on
+ the pattern. It is recognized always. There may be any number of hexa-
+ decimal digits inside the braces; invalid values provoke error mes-
+ sages.
+
+ Note that \xhh specifies one byte rather than one character in UTF-8
+ mode; this makes it possible to construct invalid UTF-8 sequences for
+ testing purposes. On the other hand, \x{hh} is interpreted as a UTF-8
+ character in UTF-8 mode, generating more than one byte if the value is
+ greater than 127. When testing the 8-bit library not in UTF-8 mode,
+ \x{hh} generates one byte for values less than 256, and causes an error
+ for greater values.
+
+ In UTF-16 mode, all 4-digit \x{hhhh} values are accepted. This makes it
+ possible to construct invalid UTF-16 sequences for testing purposes.
+
+ In UTF-32 mode, all 4- to 8-digit \x{...} values are accepted. This
+ makes it possible to construct invalid UTF-32 sequences for testing
+ purposes.
+
+ The escapes that specify line ending sequences are literal strings,
+ exactly as shown. No more than one newline setting should be present in
+ any data line.
+
+ A backslash followed by anything else just escapes the anything else.
+ If the very last character is a backslash, it is ignored. This gives a
+ way of passing an empty line as data, since a real empty line termi-
+ nates the data input.
+
+ The \J escape provides a way of setting the maximum stack size that is
+ used by the just-in-time optimization code. It is ignored if JIT opti-
+ mization is not being used. Providing a stack that is larger than the
+ default 32K is necessary only for very complicated patterns.
+
+ If \M is present, pcretest calls pcre[16|32]_exec() several times, with
+ different values in the match_limit and match_limit_recursion fields of
+ the pcre[16|32]_extra data structure, until it finds the minimum num-
+ bers for each parameter that allow pcre[16|32]_exec() to complete with-
+ out error. Because this is testing a specific feature of the normal
+ interpretive pcre[16|32]_exec() execution, the use of any JIT optimiza-
+ tion that might have been set up by the /S+ qualifier of -s+ option is
+ disabled.
+
+ The match_limit number is a measure of the amount of backtracking that
+ takes place, and checking it out can be instructive. For most simple
+ matches, the number is quite small, but for patterns with very large
+ numbers of matching possibilities, it can become large very quickly
+ with increasing length of subject string. The match_limit_recursion
+ number is a measure of how much stack (or, if PCRE is compiled with
+ NO_RECURSE, how much heap) memory is needed to complete the match
+ attempt.
+
+ When \O is used, the value specified may be higher or lower than the
+ size set by the -O command line option (or defaulted to 45); \O applies
+ only to the call of pcre[16|32]_exec() for the line in which it
+ appears.
+
+ If the /P modifier was present on the pattern, causing the POSIX wrap-
+ per API to be used, the only option-setting sequences that have any
+ effect are \B, \N, and \Z, causing REG_NOTBOL, REG_NOTEMPTY, and
+ REG_NOTEOL, respectively, to be passed to regexec().
+
+
+THE ALTERNATIVE MATCHING FUNCTION
+
+ By default, pcretest uses the standard PCRE matching function,
+ pcre[16|32]_exec() to match each data line. PCRE also supports an
+ alternative matching function, pcre[16|32]_dfa_test(), which operates
+ in a different way, and has some restrictions. The differences between
+ the two functions are described in the pcrematching documentation.
+
+ If a data line contains the \D escape sequence, or if the command line
+ contains the -dfa option, the alternative matching function is used.
+ This function finds all possible matches at a given point. If, however,
+ the \F escape sequence is present in the data line, it stops after the
+ first match is found. This is always the shortest possible match.
+
+
+DEFAULT OUTPUT FROM PCRETEST
+
+ This section describes the output when the normal matching function,
+ pcre[16|32]_exec(), is being used.
+
+ When a match succeeds, pcretest outputs the list of captured substrings
+ that pcre[16|32]_exec() returns, starting with number 0 for the string
+ that matched the whole pattern. Otherwise, it outputs "No match" when
+ the return is PCRE_ERROR_NOMATCH, and "Partial match:" followed by the
+ partially matching substring when pcre[16|32]_exec() returns
+ PCRE_ERROR_PARTIAL. (Note that this is the entire substring that was
+ inspected during the partial match; it may include characters before
+ the actual match start if a lookbehind assertion, \K, \b, or \B was
+ involved.) For any other return, pcretest outputs the PCRE negative
+ error number and a short descriptive phrase. If the error is a failed
+ UTF string check, the offset of the start of the failing character and
+ the reason code are also output, provided that the size of the output
+ vector is at least two. Here is an example of an interactive pcretest
+ run.
+
+ $ pcretest
+ PCRE version 8.13 2011-04-30
+
+ re> /^abc(\d+)/
+ data> abc123
+ 0: abc123
+ 1: 123
+ data> xyz
+ No match
+
+ Unset capturing substrings that are not followed by one that is set are
+ not returned by pcre[16|32]_exec(), and are not shown by pcretest. In
+ the following example, there are two capturing substrings, but when the
+ first data line is matched, the second, unset substring is not shown.
+ An "internal" unset substring is shown as "", as for the second
+ data line.
+
+ re> /(a)|(b)/
+ data> a
+ 0: a
+ 1: a
+ data> b
+ 0: b
+ 1:
+ 2: b
+
+ If the strings contain any non-printing characters, they are output as
+ \xhh escapes if the value is less than 256 and UTF mode is not set.
+ Otherwise they are output as \x{hh...} escapes. See below for the defi-
+ nition of non-printing characters. If the pattern has the /+ modifier,
+ the output for substring 0 is followed by the the rest of the subject
+ string, identified by "0+" like this:
+
+ re> /cat/+
+ data> cataract
+ 0: cat
+ 0+ aract
+
+ If the pattern has the /g or /G modifier, the results of successive
+ matching attempts are output in sequence, like this:
+
+ re> /\Bi(\w\w)/g
+ data> Mississippi
+ 0: iss
+ 1: ss
+ 0: iss
+ 1: ss
+ 0: ipp
+ 1: pp
+
+ "No match" is output only if the first match attempt fails. Here is an
+ example of a failure message (the offset 4 that is specified by \>4 is
+ past the end of the subject string):
+
+ re> /xyz/
+ data> xyz\>4
+ Error -24 (bad offset value)
+
+ If any of the sequences \C, \G, or \L are present in a data line that
+ is successfully matched, the substrings extracted by the convenience
+ functions are output with C, G, or L after the string number instead of
+ a colon. This is in addition to the normal full list. The string length
+ (that is, the return from the extraction function) is given in paren-
+ theses after each string for \C and \G.
+
+ Note that whereas patterns can be continued over several lines (a plain
+ ">" prompt is used for continuations), data lines may not. However new-
+ lines can be included in data by means of the \n escape (or \r, \r\n,
+ etc., depending on the newline sequence setting).
+
+
+OUTPUT FROM THE ALTERNATIVE MATCHING FUNCTION
+
+ When the alternative matching function, pcre[16|32]_dfa_exec(), is used
+ (by means of the \D escape sequence or the -dfa command line option),
+ the output consists of a list of all the matches that start at the
+ first point in the subject where there is at least one match. For exam-
+ ple:
+
+ re> /(tang|tangerine|tan)/
+ data> yellow tangerine\D
+ 0: tangerine
+ 1: tang
+ 2: tan
+
+ (Using the normal matching function on this data finds only "tang".)
+ The longest matching string is always given first (and numbered zero).
+ After a PCRE_ERROR_PARTIAL return, the output is "Partial match:", fol-
+ lowed by the partially matching substring. (Note that this is the
+ entire substring that was inspected during the partial match; it may
+ include characters before the actual match start if a lookbehind asser-
+ tion, \K, \b, or \B was involved.)
+
+ If /g is present on the pattern, the search for further matches resumes
+ at the end of the longest match. For example:
+
+ re> /(tang|tangerine|tan)/g
+ data> yellow tangerine and tangy sultana\D
+ 0: tangerine
+ 1: tang
+ 2: tan
+ 0: tang
+ 1: tan
+ 0: tan
+
+ Since the matching function does not support substring capture, the
+ escape sequences that are concerned with captured substrings are not
+ relevant.
+
+
+RESTARTING AFTER A PARTIAL MATCH
+
+ When the alternative matching function has given the PCRE_ERROR_PARTIAL
+ return, indicating that the subject partially matched the pattern, you
+ can restart the match with additional subject data by means of the \R
+ escape sequence. For example:
+
+ re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
+ data> 23ja\P\D
+ Partial match: 23ja
+ data> n05\R\D
+ 0: n05
+
+ For further information about partial matching, see the pcrepartial
+ documentation.
+
+
+CALLOUTS
+
+ If the pattern contains any callout requests, pcretest's callout func-
+ tion is called during matching. This works with both matching func-
+ tions. By default, the called function displays the callout number, the
+ start and current positions in the text at the callout time, and the
+ next pattern item to be tested. For example:
+
+ --->pqrabcdef
+ 0 ^ ^ \d
+
+ This output indicates that callout number 0 occurred for a match
+ attempt starting at the fourth character of the subject string, when
+ the pointer was at the seventh character of the data, and when the next
+ pattern item was \d. Just one circumflex is output if the start and
+ current positions are the same.
+
+ Callouts numbered 255 are assumed to be automatic callouts, inserted as
+ a result of the /C pattern modifier. In this case, instead of showing
+ the callout number, the offset in the pattern, preceded by a plus, is
+ output. For example:
+
+ re> /\d?[A-E]\*/C
+ data> E*
+ --->E*
+ +0 ^ \d?
+ +3 ^ [A-E]
+ +8 ^^ \*
+ +10 ^ ^
+ 0: E*
+
+ If a pattern contains (*MARK) items, an additional line is output when-
+ ever a change of latest mark is passed to the callout function. For
+ example:
+
+ re> /a(*MARK:X)bc/C
+ data> abc
+ --->abc
+ +0 ^ a
+ +1 ^^ (*MARK:X)
+ +10 ^^ b
+ Latest Mark: X
+ +11 ^ ^ c
+ +12 ^ ^
+ 0: abc
+
+ The mark changes between matching "a" and "b", but stays the same for
+ the rest of the match, so nothing more is output. If, as a result of
+ backtracking, the mark reverts to being unset, the text "" is
+ output.
+
+ The callout function in pcretest returns zero (carry on matching) by
+ default, but you can use a \C item in a data line (as described above)
+ to change this and other parameters of the callout.
+
+ Inserting callouts can be helpful when using pcretest to check compli-
+ cated regular expressions. For further information about callouts, see
+ the pcrecallout documentation.
+
+
+NON-PRINTING CHARACTERS
+
+ When pcretest is outputting text in the compiled version of a pattern,
+ bytes other than 32-126 are always treated as non-printing characters
+ are are therefore shown as hex escapes.
+
+ When pcretest is outputting text that is a matched part of a subject
+ string, it behaves in the same way, unless a different locale has been
+ set for the pattern (using the /L modifier). In this case, the
+ isprint() function to distinguish printing and non-printing characters.
+
+
+SAVING AND RELOADING COMPILED PATTERNS
+
+ The facilities described in this section are not available when the
+ POSIX interface to PCRE is being used, that is, when the /P pattern
+ modifier is specified.
+
+ When the POSIX interface is not in use, you can cause pcretest to write
+ a compiled pattern to a file, by following the modifiers with > and a
+ file name. For example:
+
+ /pattern/im >/some/file
+
+ See the pcreprecompile documentation for a discussion about saving and
+ re-using compiled patterns. Note that if the pattern was successfully
+ studied with JIT optimization, the JIT data cannot be saved.
+
+ The data that is written is binary. The first eight bytes are the
+ length of the compiled pattern data followed by the length of the
+ optional study data, each written as four bytes in big-endian order
+ (most significant byte first). If there is no study data (either the
+ pattern was not studied, or studying did not return any data), the sec-
+ ond length is zero. The lengths are followed by an exact copy of the
+ compiled pattern. If there is additional study data, this (excluding
+ any JIT data) follows immediately after the compiled pattern. After
+ writing the file, pcretest expects to read a new pattern.
+
+ A saved pattern can be reloaded into pcretest by specifying < and a
+ file name instead of a pattern. The name of the file must not contain a
+ < character, as otherwise pcretest will interpret the line as a pattern
+ delimited by < characters. For example:
+
+ re>
+.SS "Validity of UTF-8 strings"
+.rs
+.sp
+When you set the PCRE_UTF8 flag, the byte strings passed as patterns and
+subjects are (by default) checked for validity on entry to the relevant
+functions. The entire string is checked before any other processing takes
+place. From release 7.3 of PCRE, the check is according the rules of RFC 3629,
+which are themselves derived from the Unicode specification. Earlier releases
+of PCRE followed the rules of RFC 2279, which allows the full range of 31-bit
+values (0 to 0x7FFFFFFF). The current check allows only values in the range U+0
+to U+10FFFF, excluding the surrogate area. (From release 8.33 the so-called
+"non-character" code points are no longer excluded because Unicode corrigendum
+#9 makes it clear that they should not be.)
+.P
+Characters in the "Surrogate Area" of Unicode are reserved for use by UTF-16,
+where they are used in pairs to encode codepoints with values greater than
+0xFFFF. The code points that are encoded by UTF-16 pairs are available
+independently in the UTF-8 and UTF-32 encodings. (In other words, the whole
+surrogate thing is a fudge for UTF-16 which unfortunately messes up UTF-8 and
+UTF-32.)
+.P
+If an invalid UTF-8 string is passed to PCRE, an error return is given. At
+compile time, the only additional information is the offset to the first byte
+of the failing character. The run-time functions \fBpcre_exec()\fP and
+\fBpcre_dfa_exec()\fP also pass back this information, as well as a more
+detailed reason code if the caller has provided memory in which to do this.
+.P
+In some situations, you may already know that your strings are valid, and
+therefore want to skip these checks in order to improve performance, for
+example in the case of a long subject string that is being scanned repeatedly.
+If you set the PCRE_NO_UTF8_CHECK flag at compile time or at run time, PCRE
+assumes that the pattern or subject it is given (respectively) contains only
+valid UTF-8 codes. In this case, it does not diagnose an invalid UTF-8 string.
+.P
+Note that passing PCRE_NO_UTF8_CHECK to \fBpcre_compile()\fP just disables the
+check for the pattern; it does not also apply to subject strings. If you want
+to disable the check for a subject string you must pass this option to
+\fBpcre_exec()\fP or \fBpcre_dfa_exec()\fP.
+.P
+If you pass an invalid UTF-8 string when PCRE_NO_UTF8_CHECK is set, the result
+is undefined and your program may crash.
+.
+.
+.\" HTML
+.SS "Validity of UTF-16 strings"
+.rs
+.sp
+When you set the PCRE_UTF16 flag, the strings of 16-bit data units that are
+passed as patterns and subjects are (by default) checked for validity on entry
+to the relevant functions. Values other than those in the surrogate range
+U+D800 to U+DFFF are independent code points. Values in the surrogate range
+must be used in pairs in the correct manner.
+.P
+If an invalid UTF-16 string is passed to PCRE, an error return is given. At
+compile time, the only additional information is the offset to the first data
+unit of the failing character. The run-time functions \fBpcre16_exec()\fP and
+\fBpcre16_dfa_exec()\fP also pass back this information, as well as a more
+detailed reason code if the caller has provided memory in which to do this.
+.P
+In some situations, you may already know that your strings are valid, and
+therefore want to skip these checks in order to improve performance. If you set
+the PCRE_NO_UTF16_CHECK flag at compile time or at run time, PCRE assumes that
+the pattern or subject it is given (respectively) contains only valid UTF-16
+sequences. In this case, it does not diagnose an invalid UTF-16 string.
+However, if an invalid string is passed, the result is undefined.
+.
+.
+.\" HTML
+.SS "Validity of UTF-32 strings"
+.rs
+.sp
+When you set the PCRE_UTF32 flag, the strings of 32-bit data units that are
+passed as patterns and subjects are (by default) checked for validity on entry
+to the relevant functions. This check allows only values in the range U+0
+to U+10FFFF, excluding the surrogate area U+D800 to U+DFFF.
+.P
+If an invalid UTF-32 string is passed to PCRE, an error return is given. At
+compile time, the only additional information is the offset to the first data
+unit of the failing character. The run-time functions \fBpcre32_exec()\fP and
+\fBpcre32_dfa_exec()\fP also pass back this information, as well as a more
+detailed reason code if the caller has provided memory in which to do this.
+.P
+In some situations, you may already know that your strings are valid, and
+therefore want to skip these checks in order to improve performance. If you set
+the PCRE_NO_UTF32_CHECK flag at compile time or at run time, PCRE assumes that
+the pattern or subject it is given (respectively) contains only valid UTF-32
+sequences. In this case, it does not diagnose an invalid UTF-32 string.
+However, if an invalid string is passed, the result is undefined.
+.
+.
+.SS "General comments about UTF modes"
+.rs
+.sp
+1. Codepoints less than 256 can be specified in patterns by either braced or
+unbraced hexadecimal escape sequences (for example, \ex{b3} or \exb3). Larger
+values have to use braced sequences.
+.P
+2. Octal numbers up to \e777 are recognized, and in UTF-8 mode they match
+two-byte characters for values greater than \e177.
+.P
+3. Repeat quantifiers apply to complete UTF characters, not to individual
+data units, for example: \ex{100}{3}.
+.P
+4. The dot metacharacter matches one UTF character instead of a single data
+unit.
+.P
+5. The escape sequence \eC can be used to match a single byte in UTF-8 mode, or
+a single 16-bit data unit in UTF-16 mode, or a single 32-bit data unit in
+UTF-32 mode, but its use can lead to some strange effects because it breaks up
+multi-unit characters (see the description of \eC in the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+documentation). The use of \eC is not supported in the alternative matching
+function \fBpcre[16|32]_dfa_exec()\fP, nor is it supported in UTF mode by the
+JIT optimization of \fBpcre[16|32]_exec()\fP. If JIT optimization is requested
+for a UTF pattern that contains \eC, it will not succeed, and so the matching
+will be carried out by the normal interpretive function.
+.P
+6. The character escapes \eb, \eB, \ed, \eD, \es, \eS, \ew, and \eW correctly
+test characters of any code value, but, by default, the characters that PCRE
+recognizes as digits, spaces, or word characters remain the same set as in
+non-UTF mode, all with values less than 256. This remains true even when PCRE
+is built to include Unicode property support, because to do otherwise would
+slow down PCRE in many common cases. Note in particular that this applies to
+\eb and \eB, because they are defined in terms of \ew and \eW. If you really
+want to test for a wider sense of, say, "digit", you can use explicit Unicode
+property tests such as \ep{Nd}. Alternatively, if you set the PCRE_UCP option,
+the way that the character escapes work is changed so that Unicode properties
+are used to determine which characters match. There are more details in the
+section on
+.\" HTML
+.\"
+generic character types
+.\"
+in the
+.\" HREF
+\fBpcrepattern\fP
+.\"
+documentation.
+.P
+7. Similarly, characters that match the POSIX named character classes are all
+low-valued characters, unless the PCRE_UCP option is set.
+.P
+8. However, the horizontal and vertical white space matching escapes (\eh, \eH,
+\ev, and \eV) do match all the appropriate Unicode characters, whether or not
+PCRE_UCP is set.
+.P
+9. Case-insensitive matching applies only to characters whose values are less
+than 128, unless PCRE is built with Unicode property support. A few Unicode
+characters such as Greek sigma have more than two codepoints that are
+case-equivalent. Up to and including PCRE release 8.31, only one-to-one case
+mappings were supported, but later releases (with Unicode property support) do
+treat as case-equivalent all versions of characters such as Greek sigma.
+.
+.
+.SH AUTHOR
+.rs
+.sp
+.nf
+Philip Hazel
+University Computing Service
+Cambridge CB2 3QH, England.
+.fi
+.
+.
+.SH REVISION
+.rs
+.sp
+.nf
+Last updated: 27 February 2013
+Copyright (c) 1997-2013 University of Cambridge.
+.fi
diff --git a/pcre/doc/perltest.txt b/pcre/doc/perltest.txt
new file mode 100644
index 00000000000..bb1a52a48e1
--- /dev/null
+++ b/pcre/doc/perltest.txt
@@ -0,0 +1,42 @@
+The perltest program
+--------------------
+
+The perltest.pl script tests Perl's regular expressions; it has the same
+specification as pcretest, and so can be given identical input, except that
+input patterns can be followed only by Perl's lower case modifiers and certain
+other pcretest modifiers that are either handled or ignored:
+
+ /+ recognized and handled by perltest
+ /++ the second + is ignored
+ /8 recognized and handled by perltest
+ /J ignored
+ /K ignored
+ /W ignored
+ /S ignored
+ /SS ignored
+ /Y ignored
+
+The pcretest \Y escape in data lines is removed before matching. The data lines
+are processed as Perl double-quoted strings, so if they contain " $ or @
+characters, these have to be escaped. For this reason, all such characters in
+the Perl-compatible testinput1 file are escaped so that they can be used for
+perltest as well as for pcretest. The special upper case pattern modifiers such
+as /A that pcretest recognizes, and its special data line escapes, are not used
+in the Perl-compatible test file. The output should be identical, apart from
+the initial identifying banner.
+
+The perltest.pl script can also test UTF-8 features. It recognizes the special
+modifier /8 that pcretest uses to invoke UTF-8 functionality. The testinput4
+and testinput6 files can be fed to perltest to run compatible UTF-8 tests.
+However, it is necessary to add "use utf8; require Encode" to the script to
+make this work correctly. I have not managed to find a way to handle this
+automatically.
+
+The other testinput files are not suitable for feeding to perltest.pl, since
+they make use of the special upper case modifiers and escapes that pcretest
+uses to test certain features of PCRE. Some of these files also contain
+malformed regular expressions, in order to check that PCRE diagnoses them
+correctly.
+
+Philip Hazel
+January 2012
diff --git a/pcre/pcre.h b/pcre/pcre.h
new file mode 100644
index 00000000000..0e479667672
--- /dev/null
+++ b/pcre/pcre.h
@@ -0,0 +1,663 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* This is the public header file for the PCRE library, to be #included by
+applications that call the PCRE functions.
+
+ Copyright (c) 1997-2013 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+#ifndef _PCRE_H
+#define _PCRE_H
+
+/* The current PCRE version information. */
+
+#define PCRE_MAJOR 8
+#define PCRE_MINOR 33
+#define PCRE_PRERELEASE
+#define PCRE_DATE 2013-05-28
+
+/* When an application links to a PCRE DLL in Windows, the symbols that are
+imported have to be identified as such. When building PCRE, the appropriate
+export setting is defined in pcre_internal.h, which includes this file. So we
+don't change existing definitions of PCRE_EXP_DECL and PCRECPP_EXP_DECL. */
+
+#if defined(_WIN32) && !defined(PCRE_STATIC)
+# ifndef PCRE_EXP_DECL
+# define PCRE_EXP_DECL extern __declspec(dllimport)
+# endif
+# ifdef __cplusplus
+# ifndef PCRECPP_EXP_DECL
+# define PCRECPP_EXP_DECL extern __declspec(dllimport)
+# endif
+# ifndef PCRECPP_EXP_DEFN
+# define PCRECPP_EXP_DEFN __declspec(dllimport)
+# endif
+# endif
+#endif
+
+/* By default, we use the standard "extern" declarations. */
+
+#ifndef PCRE_EXP_DECL
+# ifdef __cplusplus
+# define PCRE_EXP_DECL extern "C"
+# else
+# define PCRE_EXP_DECL extern
+# endif
+#endif
+
+#ifdef __cplusplus
+# ifndef PCRECPP_EXP_DECL
+# define PCRECPP_EXP_DECL extern
+# endif
+# ifndef PCRECPP_EXP_DEFN
+# define PCRECPP_EXP_DEFN
+# endif
+#endif
+
+/* Have to include stdlib.h in order to ensure that size_t is defined;
+it is needed here for malloc. */
+
+#include
+
+/* Allow for C++ users */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Public options. Some are compile-time only, some are run-time only, and some
+are both. Most of the compile-time options are saved with the compiled regex so
+that they can be inspected during studying (and therefore JIT compiling). Note
+that pcre_study() has its own set of options. Originally, all the options
+defined here used distinct bits. However, almost all the bits in a 32-bit word
+are now used, so in order to conserve them, option bits that were previously
+only recognized at matching time (i.e. by pcre_exec() or pcre_dfa_exec()) may
+also be used for compile-time options that affect only compiling and are not
+relevant for studying or JIT compiling.
+
+Some options for pcre_compile() change its behaviour but do not affect the
+behaviour of the execution functions. Other options are passed through to the
+execution functions and affect their behaviour, with or without affecting the
+behaviour of pcre_compile().
+
+Options that can be passed to pcre_compile() are tagged Cx below, with these
+variants:
+
+C1 Affects compile only
+C2 Does not affect compile; affects exec, dfa_exec
+C3 Affects compile, exec, dfa_exec
+C4 Affects compile, exec, dfa_exec, study
+C5 Affects compile, exec, study
+
+Options that can be set for pcre_exec() and/or pcre_dfa_exec() are flagged with
+E and D, respectively. They take precedence over C3, C4, and C5 settings passed
+from pcre_compile(). Those that are compatible with JIT execution are flagged
+with J. */
+
+#define PCRE_CASELESS 0x00000001 /* C1 */
+#define PCRE_MULTILINE 0x00000002 /* C1 */
+#define PCRE_DOTALL 0x00000004 /* C1 */
+#define PCRE_EXTENDED 0x00000008 /* C1 */
+#define PCRE_ANCHORED 0x00000010 /* C4 E D */
+#define PCRE_DOLLAR_ENDONLY 0x00000020 /* C2 */
+#define PCRE_EXTRA 0x00000040 /* C1 */
+#define PCRE_NOTBOL 0x00000080 /* E D J */
+#define PCRE_NOTEOL 0x00000100 /* E D J */
+#define PCRE_UNGREEDY 0x00000200 /* C1 */
+#define PCRE_NOTEMPTY 0x00000400 /* E D J */
+#define PCRE_UTF8 0x00000800 /* C4 ) */
+#define PCRE_UTF16 0x00000800 /* C4 ) Synonyms */
+#define PCRE_UTF32 0x00000800 /* C4 ) */
+#define PCRE_NO_AUTO_CAPTURE 0x00001000 /* C1 */
+#define PCRE_NO_UTF8_CHECK 0x00002000 /* C1 E D J ) */
+#define PCRE_NO_UTF16_CHECK 0x00002000 /* C1 E D J ) Synonyms */
+#define PCRE_NO_UTF32_CHECK 0x00002000 /* C1 E D J ) */
+#define PCRE_AUTO_CALLOUT 0x00004000 /* C1 */
+#define PCRE_PARTIAL_SOFT 0x00008000 /* E D J ) Synonyms */
+#define PCRE_PARTIAL 0x00008000 /* E D J ) */
+
+/* This pair use the same bit. */
+#define PCRE_NEVER_UTF 0x00010000 /* C1 ) Overlaid */
+#define PCRE_DFA_SHORTEST 0x00010000 /* D ) Overlaid */
+
+#define PCRE_DFA_RESTART 0x00020000 /* D */
+#define PCRE_FIRSTLINE 0x00040000 /* C3 */
+#define PCRE_DUPNAMES 0x00080000 /* C1 */
+#define PCRE_NEWLINE_CR 0x00100000 /* C3 E D */
+#define PCRE_NEWLINE_LF 0x00200000 /* C3 E D */
+#define PCRE_NEWLINE_CRLF 0x00300000 /* C3 E D */
+#define PCRE_NEWLINE_ANY 0x00400000 /* C3 E D */
+#define PCRE_NEWLINE_ANYCRLF 0x00500000 /* C3 E D */
+#define PCRE_BSR_ANYCRLF 0x00800000 /* C3 E D */
+#define PCRE_BSR_UNICODE 0x01000000 /* C3 E D */
+#define PCRE_JAVASCRIPT_COMPAT 0x02000000 /* C5 */
+#define PCRE_NO_START_OPTIMIZE 0x04000000 /* C2 E D ) Synonyms */
+#define PCRE_NO_START_OPTIMISE 0x04000000 /* C2 E D ) */
+#define PCRE_PARTIAL_HARD 0x08000000 /* E D J */
+#define PCRE_NOTEMPTY_ATSTART 0x10000000 /* E D J */
+#define PCRE_UCP 0x20000000 /* C3 */
+
+/* Exec-time and get/set-time error codes */
+
+#define PCRE_ERROR_NOMATCH (-1)
+#define PCRE_ERROR_NULL (-2)
+#define PCRE_ERROR_BADOPTION (-3)
+#define PCRE_ERROR_BADMAGIC (-4)
+#define PCRE_ERROR_UNKNOWN_OPCODE (-5)
+#define PCRE_ERROR_UNKNOWN_NODE (-5) /* For backward compatibility */
+#define PCRE_ERROR_NOMEMORY (-6)
+#define PCRE_ERROR_NOSUBSTRING (-7)
+#define PCRE_ERROR_MATCHLIMIT (-8)
+#define PCRE_ERROR_CALLOUT (-9) /* Never used by PCRE itself */
+#define PCRE_ERROR_BADUTF8 (-10) /* Same for 8/16/32 */
+#define PCRE_ERROR_BADUTF16 (-10) /* Same for 8/16/32 */
+#define PCRE_ERROR_BADUTF32 (-10) /* Same for 8/16/32 */
+#define PCRE_ERROR_BADUTF8_OFFSET (-11) /* Same for 8/16 */
+#define PCRE_ERROR_BADUTF16_OFFSET (-11) /* Same for 8/16 */
+#define PCRE_ERROR_PARTIAL (-12)
+#define PCRE_ERROR_BADPARTIAL (-13)
+#define PCRE_ERROR_INTERNAL (-14)
+#define PCRE_ERROR_BADCOUNT (-15)
+#define PCRE_ERROR_DFA_UITEM (-16)
+#define PCRE_ERROR_DFA_UCOND (-17)
+#define PCRE_ERROR_DFA_UMLIMIT (-18)
+#define PCRE_ERROR_DFA_WSSIZE (-19)
+#define PCRE_ERROR_DFA_RECURSE (-20)
+#define PCRE_ERROR_RECURSIONLIMIT (-21)
+#define PCRE_ERROR_NULLWSLIMIT (-22) /* No longer actually used */
+#define PCRE_ERROR_BADNEWLINE (-23)
+#define PCRE_ERROR_BADOFFSET (-24)
+#define PCRE_ERROR_SHORTUTF8 (-25)
+#define PCRE_ERROR_SHORTUTF16 (-25) /* Same for 8/16 */
+#define PCRE_ERROR_RECURSELOOP (-26)
+#define PCRE_ERROR_JIT_STACKLIMIT (-27)
+#define PCRE_ERROR_BADMODE (-28)
+#define PCRE_ERROR_BADENDIANNESS (-29)
+#define PCRE_ERROR_DFA_BADRESTART (-30)
+#define PCRE_ERROR_JIT_BADOPTION (-31)
+#define PCRE_ERROR_BADLENGTH (-32)
+#define PCRE_ERROR_UNSET (-33)
+
+/* Specific error codes for UTF-8 validity checks */
+
+#define PCRE_UTF8_ERR0 0
+#define PCRE_UTF8_ERR1 1
+#define PCRE_UTF8_ERR2 2
+#define PCRE_UTF8_ERR3 3
+#define PCRE_UTF8_ERR4 4
+#define PCRE_UTF8_ERR5 5
+#define PCRE_UTF8_ERR6 6
+#define PCRE_UTF8_ERR7 7
+#define PCRE_UTF8_ERR8 8
+#define PCRE_UTF8_ERR9 9
+#define PCRE_UTF8_ERR10 10
+#define PCRE_UTF8_ERR11 11
+#define PCRE_UTF8_ERR12 12
+#define PCRE_UTF8_ERR13 13
+#define PCRE_UTF8_ERR14 14
+#define PCRE_UTF8_ERR15 15
+#define PCRE_UTF8_ERR16 16
+#define PCRE_UTF8_ERR17 17
+#define PCRE_UTF8_ERR18 18
+#define PCRE_UTF8_ERR19 19
+#define PCRE_UTF8_ERR20 20
+#define PCRE_UTF8_ERR21 21
+#define PCRE_UTF8_ERR22 22 /* Unused (was non-character) */
+
+/* Specific error codes for UTF-16 validity checks */
+
+#define PCRE_UTF16_ERR0 0
+#define PCRE_UTF16_ERR1 1
+#define PCRE_UTF16_ERR2 2
+#define PCRE_UTF16_ERR3 3
+#define PCRE_UTF16_ERR4 4 /* Unused (was non-character) */
+
+/* Specific error codes for UTF-32 validity checks */
+
+#define PCRE_UTF32_ERR0 0
+#define PCRE_UTF32_ERR1 1
+#define PCRE_UTF32_ERR2 2 /* Unused (was non-character) */
+#define PCRE_UTF32_ERR3 3
+
+/* Request types for pcre_fullinfo() */
+
+#define PCRE_INFO_OPTIONS 0
+#define PCRE_INFO_SIZE 1
+#define PCRE_INFO_CAPTURECOUNT 2
+#define PCRE_INFO_BACKREFMAX 3
+#define PCRE_INFO_FIRSTBYTE 4
+#define PCRE_INFO_FIRSTCHAR 4 /* For backwards compatibility */
+#define PCRE_INFO_FIRSTTABLE 5
+#define PCRE_INFO_LASTLITERAL 6
+#define PCRE_INFO_NAMEENTRYSIZE 7
+#define PCRE_INFO_NAMECOUNT 8
+#define PCRE_INFO_NAMETABLE 9
+#define PCRE_INFO_STUDYSIZE 10
+#define PCRE_INFO_DEFAULT_TABLES 11
+#define PCRE_INFO_OKPARTIAL 12
+#define PCRE_INFO_JCHANGED 13
+#define PCRE_INFO_HASCRORLF 14
+#define PCRE_INFO_MINLENGTH 15
+#define PCRE_INFO_JIT 16
+#define PCRE_INFO_JITSIZE 17
+#define PCRE_INFO_MAXLOOKBEHIND 18
+#define PCRE_INFO_FIRSTCHARACTER 19
+#define PCRE_INFO_FIRSTCHARACTERFLAGS 20
+#define PCRE_INFO_REQUIREDCHAR 21
+#define PCRE_INFO_REQUIREDCHARFLAGS 22
+#define PCRE_INFO_MATCHLIMIT 23
+#define PCRE_INFO_RECURSIONLIMIT 24
+
+/* Request types for pcre_config(). Do not re-arrange, in order to remain
+compatible. */
+
+#define PCRE_CONFIG_UTF8 0
+#define PCRE_CONFIG_NEWLINE 1
+#define PCRE_CONFIG_LINK_SIZE 2
+#define PCRE_CONFIG_POSIX_MALLOC_THRESHOLD 3
+#define PCRE_CONFIG_MATCH_LIMIT 4
+#define PCRE_CONFIG_STACKRECURSE 5
+#define PCRE_CONFIG_UNICODE_PROPERTIES 6
+#define PCRE_CONFIG_MATCH_LIMIT_RECURSION 7
+#define PCRE_CONFIG_BSR 8
+#define PCRE_CONFIG_JIT 9
+#define PCRE_CONFIG_UTF16 10
+#define PCRE_CONFIG_JITTARGET 11
+#define PCRE_CONFIG_UTF32 12
+
+/* Request types for pcre_study(). Do not re-arrange, in order to remain
+compatible. */
+
+#define PCRE_STUDY_JIT_COMPILE 0x0001
+#define PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE 0x0002
+#define PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE 0x0004
+#define PCRE_STUDY_EXTRA_NEEDED 0x0008
+
+/* Bit flags for the pcre[16|32]_extra structure. Do not re-arrange or redefine
+these bits, just add new ones on the end, in order to remain compatible. */
+
+#define PCRE_EXTRA_STUDY_DATA 0x0001
+#define PCRE_EXTRA_MATCH_LIMIT 0x0002
+#define PCRE_EXTRA_CALLOUT_DATA 0x0004
+#define PCRE_EXTRA_TABLES 0x0008
+#define PCRE_EXTRA_MATCH_LIMIT_RECURSION 0x0010
+#define PCRE_EXTRA_MARK 0x0020
+#define PCRE_EXTRA_EXECUTABLE_JIT 0x0040
+
+/* Types */
+
+struct real_pcre; /* declaration; the definition is private */
+typedef struct real_pcre pcre;
+
+struct real_pcre16; /* declaration; the definition is private */
+typedef struct real_pcre16 pcre16;
+
+struct real_pcre32; /* declaration; the definition is private */
+typedef struct real_pcre32 pcre32;
+
+struct real_pcre_jit_stack; /* declaration; the definition is private */
+typedef struct real_pcre_jit_stack pcre_jit_stack;
+
+struct real_pcre16_jit_stack; /* declaration; the definition is private */
+typedef struct real_pcre16_jit_stack pcre16_jit_stack;
+
+struct real_pcre32_jit_stack; /* declaration; the definition is private */
+typedef struct real_pcre32_jit_stack pcre32_jit_stack;
+
+/* If PCRE is compiled with 16 bit character support, PCRE_UCHAR16 must contain
+a 16 bit wide signed data type. Otherwise it can be a dummy data type since
+pcre16 functions are not implemented. There is a check for this in pcre_internal.h. */
+#ifndef PCRE_UCHAR16
+#define PCRE_UCHAR16 unsigned short
+#endif
+
+#ifndef PCRE_SPTR16
+#define PCRE_SPTR16 const PCRE_UCHAR16 *
+#endif
+
+/* If PCRE is compiled with 32 bit character support, PCRE_UCHAR32 must contain
+a 32 bit wide signed data type. Otherwise it can be a dummy data type since
+pcre32 functions are not implemented. There is a check for this in pcre_internal.h. */
+#ifndef PCRE_UCHAR32
+#define PCRE_UCHAR32 unsigned int
+#endif
+
+#ifndef PCRE_SPTR32
+#define PCRE_SPTR32 const PCRE_UCHAR32 *
+#endif
+
+/* When PCRE is compiled as a C++ library, the subject pointer type can be
+replaced with a custom type. For conventional use, the public interface is a
+const char *. */
+
+#ifndef PCRE_SPTR
+#define PCRE_SPTR const char *
+#endif
+
+/* The structure for passing additional data to pcre_exec(). This is defined in
+such as way as to be extensible. Always add new fields at the end, in order to
+remain compatible. */
+
+typedef struct pcre_extra {
+ unsigned long int flags; /* Bits for which fields are set */
+ void *study_data; /* Opaque data from pcre_study() */
+ unsigned long int match_limit; /* Maximum number of calls to match() */
+ void *callout_data; /* Data passed back in callouts */
+ const unsigned char *tables; /* Pointer to character tables */
+ unsigned long int match_limit_recursion; /* Max recursive calls to match() */
+ unsigned char **mark; /* For passing back a mark pointer */
+ void *executable_jit; /* Contains a pointer to a compiled jit code */
+} pcre_extra;
+
+/* Same structure as above, but with 16 bit char pointers. */
+
+typedef struct pcre16_extra {
+ unsigned long int flags; /* Bits for which fields are set */
+ void *study_data; /* Opaque data from pcre_study() */
+ unsigned long int match_limit; /* Maximum number of calls to match() */
+ void *callout_data; /* Data passed back in callouts */
+ const unsigned char *tables; /* Pointer to character tables */
+ unsigned long int match_limit_recursion; /* Max recursive calls to match() */
+ PCRE_UCHAR16 **mark; /* For passing back a mark pointer */
+ void *executable_jit; /* Contains a pointer to a compiled jit code */
+} pcre16_extra;
+
+/* Same structure as above, but with 32 bit char pointers. */
+
+typedef struct pcre32_extra {
+ unsigned long int flags; /* Bits for which fields are set */
+ void *study_data; /* Opaque data from pcre_study() */
+ unsigned long int match_limit; /* Maximum number of calls to match() */
+ void *callout_data; /* Data passed back in callouts */
+ const unsigned char *tables; /* Pointer to character tables */
+ unsigned long int match_limit_recursion; /* Max recursive calls to match() */
+ PCRE_UCHAR32 **mark; /* For passing back a mark pointer */
+ void *executable_jit; /* Contains a pointer to a compiled jit code */
+} pcre32_extra;
+
+/* The structure for passing out data via the pcre_callout_function. We use a
+structure so that new fields can be added on the end in future versions,
+without changing the API of the function, thereby allowing old clients to work
+without modification. */
+
+typedef struct pcre_callout_block {
+ int version; /* Identifies version of block */
+ /* ------------------------ Version 0 ------------------------------- */
+ int callout_number; /* Number compiled into pattern */
+ int *offset_vector; /* The offset vector */
+ PCRE_SPTR subject; /* The subject being matched */
+ int subject_length; /* The length of the subject */
+ int start_match; /* Offset to start of this match attempt */
+ int current_position; /* Where we currently are in the subject */
+ int capture_top; /* Max current capture */
+ int capture_last; /* Most recently closed capture */
+ void *callout_data; /* Data passed in with the call */
+ /* ------------------- Added for Version 1 -------------------------- */
+ int pattern_position; /* Offset to next item in the pattern */
+ int next_item_length; /* Length of next item in the pattern */
+ /* ------------------- Added for Version 2 -------------------------- */
+ const unsigned char *mark; /* Pointer to current mark or NULL */
+ /* ------------------------------------------------------------------ */
+} pcre_callout_block;
+
+/* Same structure as above, but with 16 bit char pointers. */
+
+typedef struct pcre16_callout_block {
+ int version; /* Identifies version of block */
+ /* ------------------------ Version 0 ------------------------------- */
+ int callout_number; /* Number compiled into pattern */
+ int *offset_vector; /* The offset vector */
+ PCRE_SPTR16 subject; /* The subject being matched */
+ int subject_length; /* The length of the subject */
+ int start_match; /* Offset to start of this match attempt */
+ int current_position; /* Where we currently are in the subject */
+ int capture_top; /* Max current capture */
+ int capture_last; /* Most recently closed capture */
+ void *callout_data; /* Data passed in with the call */
+ /* ------------------- Added for Version 1 -------------------------- */
+ int pattern_position; /* Offset to next item in the pattern */
+ int next_item_length; /* Length of next item in the pattern */
+ /* ------------------- Added for Version 2 -------------------------- */
+ const PCRE_UCHAR16 *mark; /* Pointer to current mark or NULL */
+ /* ------------------------------------------------------------------ */
+} pcre16_callout_block;
+
+/* Same structure as above, but with 32 bit char pointers. */
+
+typedef struct pcre32_callout_block {
+ int version; /* Identifies version of block */
+ /* ------------------------ Version 0 ------------------------------- */
+ int callout_number; /* Number compiled into pattern */
+ int *offset_vector; /* The offset vector */
+ PCRE_SPTR32 subject; /* The subject being matched */
+ int subject_length; /* The length of the subject */
+ int start_match; /* Offset to start of this match attempt */
+ int current_position; /* Where we currently are in the subject */
+ int capture_top; /* Max current capture */
+ int capture_last; /* Most recently closed capture */
+ void *callout_data; /* Data passed in with the call */
+ /* ------------------- Added for Version 1 -------------------------- */
+ int pattern_position; /* Offset to next item in the pattern */
+ int next_item_length; /* Length of next item in the pattern */
+ /* ------------------- Added for Version 2 -------------------------- */
+ const PCRE_UCHAR32 *mark; /* Pointer to current mark or NULL */
+ /* ------------------------------------------------------------------ */
+} pcre32_callout_block;
+
+/* Indirection for store get and free functions. These can be set to
+alternative malloc/free functions if required. Special ones are used in the
+non-recursive case for "frames". There is also an optional callout function
+that is triggered by the (?) regex item. For Virtual Pascal, these definitions
+have to take another form. */
+
+#ifndef VPCOMPAT
+PCRE_EXP_DECL void *(*pcre_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre_free)(void *);
+PCRE_EXP_DECL void *(*pcre_stack_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre_stack_free)(void *);
+PCRE_EXP_DECL int (*pcre_callout)(pcre_callout_block *);
+
+PCRE_EXP_DECL void *(*pcre16_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre16_free)(void *);
+PCRE_EXP_DECL void *(*pcre16_stack_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre16_stack_free)(void *);
+PCRE_EXP_DECL int (*pcre16_callout)(pcre16_callout_block *);
+
+PCRE_EXP_DECL void *(*pcre32_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre32_free)(void *);
+PCRE_EXP_DECL void *(*pcre32_stack_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre32_stack_free)(void *);
+PCRE_EXP_DECL int (*pcre32_callout)(pcre32_callout_block *);
+#else /* VPCOMPAT */
+PCRE_EXP_DECL void *pcre_malloc(size_t);
+PCRE_EXP_DECL void pcre_free(void *);
+PCRE_EXP_DECL void *pcre_stack_malloc(size_t);
+PCRE_EXP_DECL void pcre_stack_free(void *);
+PCRE_EXP_DECL int pcre_callout(pcre_callout_block *);
+
+PCRE_EXP_DECL void *pcre16_malloc(size_t);
+PCRE_EXP_DECL void pcre16_free(void *);
+PCRE_EXP_DECL void *pcre16_stack_malloc(size_t);
+PCRE_EXP_DECL void pcre16_stack_free(void *);
+PCRE_EXP_DECL int pcre16_callout(pcre16_callout_block *);
+
+PCRE_EXP_DECL void *pcre32_malloc(size_t);
+PCRE_EXP_DECL void pcre32_free(void *);
+PCRE_EXP_DECL void *pcre32_stack_malloc(size_t);
+PCRE_EXP_DECL void pcre32_stack_free(void *);
+PCRE_EXP_DECL int pcre32_callout(pcre32_callout_block *);
+#endif /* VPCOMPAT */
+
+/* User defined callback which provides a stack just before the match starts. */
+
+typedef pcre_jit_stack *(*pcre_jit_callback)(void *);
+typedef pcre16_jit_stack *(*pcre16_jit_callback)(void *);
+typedef pcre32_jit_stack *(*pcre32_jit_callback)(void *);
+
+/* Exported PCRE functions */
+
+PCRE_EXP_DECL pcre *pcre_compile(const char *, int, const char **, int *,
+ const unsigned char *);
+PCRE_EXP_DECL pcre16 *pcre16_compile(PCRE_SPTR16, int, const char **, int *,
+ const unsigned char *);
+PCRE_EXP_DECL pcre32 *pcre32_compile(PCRE_SPTR32, int, const char **, int *,
+ const unsigned char *);
+PCRE_EXP_DECL pcre *pcre_compile2(const char *, int, int *, const char **,
+ int *, const unsigned char *);
+PCRE_EXP_DECL pcre16 *pcre16_compile2(PCRE_SPTR16, int, int *, const char **,
+ int *, const unsigned char *);
+PCRE_EXP_DECL pcre32 *pcre32_compile2(PCRE_SPTR32, int, int *, const char **,
+ int *, const unsigned char *);
+PCRE_EXP_DECL int pcre_config(int, void *);
+PCRE_EXP_DECL int pcre16_config(int, void *);
+PCRE_EXP_DECL int pcre32_config(int, void *);
+PCRE_EXP_DECL int pcre_copy_named_substring(const pcre *, const char *,
+ int *, int, const char *, char *, int);
+PCRE_EXP_DECL int pcre16_copy_named_substring(const pcre16 *, PCRE_SPTR16,
+ int *, int, PCRE_SPTR16, PCRE_UCHAR16 *, int);
+PCRE_EXP_DECL int pcre32_copy_named_substring(const pcre32 *, PCRE_SPTR32,
+ int *, int, PCRE_SPTR32, PCRE_UCHAR32 *, int);
+PCRE_EXP_DECL int pcre_copy_substring(const char *, int *, int, int,
+ char *, int);
+PCRE_EXP_DECL int pcre16_copy_substring(PCRE_SPTR16, int *, int, int,
+ PCRE_UCHAR16 *, int);
+PCRE_EXP_DECL int pcre32_copy_substring(PCRE_SPTR32, int *, int, int,
+ PCRE_UCHAR32 *, int);
+PCRE_EXP_DECL int pcre_dfa_exec(const pcre *, const pcre_extra *,
+ const char *, int, int, int, int *, int , int *, int);
+PCRE_EXP_DECL int pcre16_dfa_exec(const pcre16 *, const pcre16_extra *,
+ PCRE_SPTR16, int, int, int, int *, int , int *, int);
+PCRE_EXP_DECL int pcre32_dfa_exec(const pcre32 *, const pcre32_extra *,
+ PCRE_SPTR32, int, int, int, int *, int , int *, int);
+PCRE_EXP_DECL int pcre_exec(const pcre *, const pcre_extra *, PCRE_SPTR,
+ int, int, int, int *, int);
+PCRE_EXP_DECL int pcre16_exec(const pcre16 *, const pcre16_extra *,
+ PCRE_SPTR16, int, int, int, int *, int);
+PCRE_EXP_DECL int pcre32_exec(const pcre32 *, const pcre32_extra *,
+ PCRE_SPTR32, int, int, int, int *, int);
+PCRE_EXP_DECL int pcre_jit_exec(const pcre *, const pcre_extra *,
+ PCRE_SPTR, int, int, int, int *, int,
+ pcre_jit_stack *);
+PCRE_EXP_DECL int pcre16_jit_exec(const pcre16 *, const pcre16_extra *,
+ PCRE_SPTR16, int, int, int, int *, int,
+ pcre16_jit_stack *);
+PCRE_EXP_DECL int pcre32_jit_exec(const pcre32 *, const pcre32_extra *,
+ PCRE_SPTR32, int, int, int, int *, int,
+ pcre32_jit_stack *);
+PCRE_EXP_DECL void pcre_free_substring(const char *);
+PCRE_EXP_DECL void pcre16_free_substring(PCRE_SPTR16);
+PCRE_EXP_DECL void pcre32_free_substring(PCRE_SPTR32);
+PCRE_EXP_DECL void pcre_free_substring_list(const char **);
+PCRE_EXP_DECL void pcre16_free_substring_list(PCRE_SPTR16 *);
+PCRE_EXP_DECL void pcre32_free_substring_list(PCRE_SPTR32 *);
+PCRE_EXP_DECL int pcre_fullinfo(const pcre *, const pcre_extra *, int,
+ void *);
+PCRE_EXP_DECL int pcre16_fullinfo(const pcre16 *, const pcre16_extra *, int,
+ void *);
+PCRE_EXP_DECL int pcre32_fullinfo(const pcre32 *, const pcre32_extra *, int,
+ void *);
+PCRE_EXP_DECL int pcre_get_named_substring(const pcre *, const char *,
+ int *, int, const char *, const char **);
+PCRE_EXP_DECL int pcre16_get_named_substring(const pcre16 *, PCRE_SPTR16,
+ int *, int, PCRE_SPTR16, PCRE_SPTR16 *);
+PCRE_EXP_DECL int pcre32_get_named_substring(const pcre32 *, PCRE_SPTR32,
+ int *, int, PCRE_SPTR32, PCRE_SPTR32 *);
+PCRE_EXP_DECL int pcre_get_stringnumber(const pcre *, const char *);
+PCRE_EXP_DECL int pcre16_get_stringnumber(const pcre16 *, PCRE_SPTR16);
+PCRE_EXP_DECL int pcre32_get_stringnumber(const pcre32 *, PCRE_SPTR32);
+PCRE_EXP_DECL int pcre_get_stringtable_entries(const pcre *, const char *,
+ char **, char **);
+PCRE_EXP_DECL int pcre16_get_stringtable_entries(const pcre16 *, PCRE_SPTR16,
+ PCRE_UCHAR16 **, PCRE_UCHAR16 **);
+PCRE_EXP_DECL int pcre32_get_stringtable_entries(const pcre32 *, PCRE_SPTR32,
+ PCRE_UCHAR32 **, PCRE_UCHAR32 **);
+PCRE_EXP_DECL int pcre_get_substring(const char *, int *, int, int,
+ const char **);
+PCRE_EXP_DECL int pcre16_get_substring(PCRE_SPTR16, int *, int, int,
+ PCRE_SPTR16 *);
+PCRE_EXP_DECL int pcre32_get_substring(PCRE_SPTR32, int *, int, int,
+ PCRE_SPTR32 *);
+PCRE_EXP_DECL int pcre_get_substring_list(const char *, int *, int,
+ const char ***);
+PCRE_EXP_DECL int pcre16_get_substring_list(PCRE_SPTR16, int *, int,
+ PCRE_SPTR16 **);
+PCRE_EXP_DECL int pcre32_get_substring_list(PCRE_SPTR32, int *, int,
+ PCRE_SPTR32 **);
+PCRE_EXP_DECL const unsigned char *pcre_maketables(void);
+PCRE_EXP_DECL const unsigned char *pcre16_maketables(void);
+PCRE_EXP_DECL const unsigned char *pcre32_maketables(void);
+PCRE_EXP_DECL int pcre_refcount(pcre *, int);
+PCRE_EXP_DECL int pcre16_refcount(pcre16 *, int);
+PCRE_EXP_DECL int pcre32_refcount(pcre32 *, int);
+PCRE_EXP_DECL pcre_extra *pcre_study(const pcre *, int, const char **);
+PCRE_EXP_DECL pcre16_extra *pcre16_study(const pcre16 *, int, const char **);
+PCRE_EXP_DECL pcre32_extra *pcre32_study(const pcre32 *, int, const char **);
+PCRE_EXP_DECL void pcre_free_study(pcre_extra *);
+PCRE_EXP_DECL void pcre16_free_study(pcre16_extra *);
+PCRE_EXP_DECL void pcre32_free_study(pcre32_extra *);
+PCRE_EXP_DECL const char *pcre_version(void);
+PCRE_EXP_DECL const char *pcre16_version(void);
+PCRE_EXP_DECL const char *pcre32_version(void);
+
+/* Utility functions for byte order swaps. */
+PCRE_EXP_DECL int pcre_pattern_to_host_byte_order(pcre *, pcre_extra *,
+ const unsigned char *);
+PCRE_EXP_DECL int pcre16_pattern_to_host_byte_order(pcre16 *, pcre16_extra *,
+ const unsigned char *);
+PCRE_EXP_DECL int pcre32_pattern_to_host_byte_order(pcre32 *, pcre32_extra *,
+ const unsigned char *);
+PCRE_EXP_DECL int pcre16_utf16_to_host_byte_order(PCRE_UCHAR16 *,
+ PCRE_SPTR16, int, int *, int);
+PCRE_EXP_DECL int pcre32_utf32_to_host_byte_order(PCRE_UCHAR32 *,
+ PCRE_SPTR32, int, int *, int);
+
+/* JIT compiler related functions. */
+
+PCRE_EXP_DECL pcre_jit_stack *pcre_jit_stack_alloc(int, int);
+PCRE_EXP_DECL pcre16_jit_stack *pcre16_jit_stack_alloc(int, int);
+PCRE_EXP_DECL pcre32_jit_stack *pcre32_jit_stack_alloc(int, int);
+PCRE_EXP_DECL void pcre_jit_stack_free(pcre_jit_stack *);
+PCRE_EXP_DECL void pcre16_jit_stack_free(pcre16_jit_stack *);
+PCRE_EXP_DECL void pcre32_jit_stack_free(pcre32_jit_stack *);
+PCRE_EXP_DECL void pcre_assign_jit_stack(pcre_extra *,
+ pcre_jit_callback, void *);
+PCRE_EXP_DECL void pcre16_assign_jit_stack(pcre16_extra *,
+ pcre16_jit_callback, void *);
+PCRE_EXP_DECL void pcre32_assign_jit_stack(pcre32_extra *,
+ pcre32_jit_callback, void *);
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif
+
+#endif /* End of pcre.h */
diff --git a/pcre/pcre.h.in b/pcre/pcre.h.in
new file mode 100644
index 00000000000..d6766339090
--- /dev/null
+++ b/pcre/pcre.h.in
@@ -0,0 +1,663 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* This is the public header file for the PCRE library, to be #included by
+applications that call the PCRE functions.
+
+ Copyright (c) 1997-2013 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+#ifndef _PCRE_H
+#define _PCRE_H
+
+/* The current PCRE version information. */
+
+#define PCRE_MAJOR @PCRE_MAJOR@
+#define PCRE_MINOR @PCRE_MINOR@
+#define PCRE_PRERELEASE @PCRE_PRERELEASE@
+#define PCRE_DATE @PCRE_DATE@
+
+/* When an application links to a PCRE DLL in Windows, the symbols that are
+imported have to be identified as such. When building PCRE, the appropriate
+export setting is defined in pcre_internal.h, which includes this file. So we
+don't change existing definitions of PCRE_EXP_DECL and PCRECPP_EXP_DECL. */
+
+#if defined(_WIN32) && !defined(PCRE_STATIC)
+# ifndef PCRE_EXP_DECL
+# define PCRE_EXP_DECL extern __declspec(dllimport)
+# endif
+# ifdef __cplusplus
+# ifndef PCRECPP_EXP_DECL
+# define PCRECPP_EXP_DECL extern __declspec(dllimport)
+# endif
+# ifndef PCRECPP_EXP_DEFN
+# define PCRECPP_EXP_DEFN __declspec(dllimport)
+# endif
+# endif
+#endif
+
+/* By default, we use the standard "extern" declarations. */
+
+#ifndef PCRE_EXP_DECL
+# ifdef __cplusplus
+# define PCRE_EXP_DECL extern "C"
+# else
+# define PCRE_EXP_DECL extern
+# endif
+#endif
+
+#ifdef __cplusplus
+# ifndef PCRECPP_EXP_DECL
+# define PCRECPP_EXP_DECL extern
+# endif
+# ifndef PCRECPP_EXP_DEFN
+# define PCRECPP_EXP_DEFN
+# endif
+#endif
+
+/* Have to include stdlib.h in order to ensure that size_t is defined;
+it is needed here for malloc. */
+
+#include
+
+/* Allow for C++ users */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Public options. Some are compile-time only, some are run-time only, and some
+are both. Most of the compile-time options are saved with the compiled regex so
+that they can be inspected during studying (and therefore JIT compiling). Note
+that pcre_study() has its own set of options. Originally, all the options
+defined here used distinct bits. However, almost all the bits in a 32-bit word
+are now used, so in order to conserve them, option bits that were previously
+only recognized at matching time (i.e. by pcre_exec() or pcre_dfa_exec()) may
+also be used for compile-time options that affect only compiling and are not
+relevant for studying or JIT compiling.
+
+Some options for pcre_compile() change its behaviour but do not affect the
+behaviour of the execution functions. Other options are passed through to the
+execution functions and affect their behaviour, with or without affecting the
+behaviour of pcre_compile().
+
+Options that can be passed to pcre_compile() are tagged Cx below, with these
+variants:
+
+C1 Affects compile only
+C2 Does not affect compile; affects exec, dfa_exec
+C3 Affects compile, exec, dfa_exec
+C4 Affects compile, exec, dfa_exec, study
+C5 Affects compile, exec, study
+
+Options that can be set for pcre_exec() and/or pcre_dfa_exec() are flagged with
+E and D, respectively. They take precedence over C3, C4, and C5 settings passed
+from pcre_compile(). Those that are compatible with JIT execution are flagged
+with J. */
+
+#define PCRE_CASELESS 0x00000001 /* C1 */
+#define PCRE_MULTILINE 0x00000002 /* C1 */
+#define PCRE_DOTALL 0x00000004 /* C1 */
+#define PCRE_EXTENDED 0x00000008 /* C1 */
+#define PCRE_ANCHORED 0x00000010 /* C4 E D */
+#define PCRE_DOLLAR_ENDONLY 0x00000020 /* C2 */
+#define PCRE_EXTRA 0x00000040 /* C1 */
+#define PCRE_NOTBOL 0x00000080 /* E D J */
+#define PCRE_NOTEOL 0x00000100 /* E D J */
+#define PCRE_UNGREEDY 0x00000200 /* C1 */
+#define PCRE_NOTEMPTY 0x00000400 /* E D J */
+#define PCRE_UTF8 0x00000800 /* C4 ) */
+#define PCRE_UTF16 0x00000800 /* C4 ) Synonyms */
+#define PCRE_UTF32 0x00000800 /* C4 ) */
+#define PCRE_NO_AUTO_CAPTURE 0x00001000 /* C1 */
+#define PCRE_NO_UTF8_CHECK 0x00002000 /* C1 E D J ) */
+#define PCRE_NO_UTF16_CHECK 0x00002000 /* C1 E D J ) Synonyms */
+#define PCRE_NO_UTF32_CHECK 0x00002000 /* C1 E D J ) */
+#define PCRE_AUTO_CALLOUT 0x00004000 /* C1 */
+#define PCRE_PARTIAL_SOFT 0x00008000 /* E D J ) Synonyms */
+#define PCRE_PARTIAL 0x00008000 /* E D J ) */
+
+/* This pair use the same bit. */
+#define PCRE_NEVER_UTF 0x00010000 /* C1 ) Overlaid */
+#define PCRE_DFA_SHORTEST 0x00010000 /* D ) Overlaid */
+
+#define PCRE_DFA_RESTART 0x00020000 /* D */
+#define PCRE_FIRSTLINE 0x00040000 /* C3 */
+#define PCRE_DUPNAMES 0x00080000 /* C1 */
+#define PCRE_NEWLINE_CR 0x00100000 /* C3 E D */
+#define PCRE_NEWLINE_LF 0x00200000 /* C3 E D */
+#define PCRE_NEWLINE_CRLF 0x00300000 /* C3 E D */
+#define PCRE_NEWLINE_ANY 0x00400000 /* C3 E D */
+#define PCRE_NEWLINE_ANYCRLF 0x00500000 /* C3 E D */
+#define PCRE_BSR_ANYCRLF 0x00800000 /* C3 E D */
+#define PCRE_BSR_UNICODE 0x01000000 /* C3 E D */
+#define PCRE_JAVASCRIPT_COMPAT 0x02000000 /* C5 */
+#define PCRE_NO_START_OPTIMIZE 0x04000000 /* C2 E D ) Synonyms */
+#define PCRE_NO_START_OPTIMISE 0x04000000 /* C2 E D ) */
+#define PCRE_PARTIAL_HARD 0x08000000 /* E D J */
+#define PCRE_NOTEMPTY_ATSTART 0x10000000 /* E D J */
+#define PCRE_UCP 0x20000000 /* C3 */
+
+/* Exec-time and get/set-time error codes */
+
+#define PCRE_ERROR_NOMATCH (-1)
+#define PCRE_ERROR_NULL (-2)
+#define PCRE_ERROR_BADOPTION (-3)
+#define PCRE_ERROR_BADMAGIC (-4)
+#define PCRE_ERROR_UNKNOWN_OPCODE (-5)
+#define PCRE_ERROR_UNKNOWN_NODE (-5) /* For backward compatibility */
+#define PCRE_ERROR_NOMEMORY (-6)
+#define PCRE_ERROR_NOSUBSTRING (-7)
+#define PCRE_ERROR_MATCHLIMIT (-8)
+#define PCRE_ERROR_CALLOUT (-9) /* Never used by PCRE itself */
+#define PCRE_ERROR_BADUTF8 (-10) /* Same for 8/16/32 */
+#define PCRE_ERROR_BADUTF16 (-10) /* Same for 8/16/32 */
+#define PCRE_ERROR_BADUTF32 (-10) /* Same for 8/16/32 */
+#define PCRE_ERROR_BADUTF8_OFFSET (-11) /* Same for 8/16 */
+#define PCRE_ERROR_BADUTF16_OFFSET (-11) /* Same for 8/16 */
+#define PCRE_ERROR_PARTIAL (-12)
+#define PCRE_ERROR_BADPARTIAL (-13)
+#define PCRE_ERROR_INTERNAL (-14)
+#define PCRE_ERROR_BADCOUNT (-15)
+#define PCRE_ERROR_DFA_UITEM (-16)
+#define PCRE_ERROR_DFA_UCOND (-17)
+#define PCRE_ERROR_DFA_UMLIMIT (-18)
+#define PCRE_ERROR_DFA_WSSIZE (-19)
+#define PCRE_ERROR_DFA_RECURSE (-20)
+#define PCRE_ERROR_RECURSIONLIMIT (-21)
+#define PCRE_ERROR_NULLWSLIMIT (-22) /* No longer actually used */
+#define PCRE_ERROR_BADNEWLINE (-23)
+#define PCRE_ERROR_BADOFFSET (-24)
+#define PCRE_ERROR_SHORTUTF8 (-25)
+#define PCRE_ERROR_SHORTUTF16 (-25) /* Same for 8/16 */
+#define PCRE_ERROR_RECURSELOOP (-26)
+#define PCRE_ERROR_JIT_STACKLIMIT (-27)
+#define PCRE_ERROR_BADMODE (-28)
+#define PCRE_ERROR_BADENDIANNESS (-29)
+#define PCRE_ERROR_DFA_BADRESTART (-30)
+#define PCRE_ERROR_JIT_BADOPTION (-31)
+#define PCRE_ERROR_BADLENGTH (-32)
+#define PCRE_ERROR_UNSET (-33)
+
+/* Specific error codes for UTF-8 validity checks */
+
+#define PCRE_UTF8_ERR0 0
+#define PCRE_UTF8_ERR1 1
+#define PCRE_UTF8_ERR2 2
+#define PCRE_UTF8_ERR3 3
+#define PCRE_UTF8_ERR4 4
+#define PCRE_UTF8_ERR5 5
+#define PCRE_UTF8_ERR6 6
+#define PCRE_UTF8_ERR7 7
+#define PCRE_UTF8_ERR8 8
+#define PCRE_UTF8_ERR9 9
+#define PCRE_UTF8_ERR10 10
+#define PCRE_UTF8_ERR11 11
+#define PCRE_UTF8_ERR12 12
+#define PCRE_UTF8_ERR13 13
+#define PCRE_UTF8_ERR14 14
+#define PCRE_UTF8_ERR15 15
+#define PCRE_UTF8_ERR16 16
+#define PCRE_UTF8_ERR17 17
+#define PCRE_UTF8_ERR18 18
+#define PCRE_UTF8_ERR19 19
+#define PCRE_UTF8_ERR20 20
+#define PCRE_UTF8_ERR21 21
+#define PCRE_UTF8_ERR22 22 /* Unused (was non-character) */
+
+/* Specific error codes for UTF-16 validity checks */
+
+#define PCRE_UTF16_ERR0 0
+#define PCRE_UTF16_ERR1 1
+#define PCRE_UTF16_ERR2 2
+#define PCRE_UTF16_ERR3 3
+#define PCRE_UTF16_ERR4 4 /* Unused (was non-character) */
+
+/* Specific error codes for UTF-32 validity checks */
+
+#define PCRE_UTF32_ERR0 0
+#define PCRE_UTF32_ERR1 1
+#define PCRE_UTF32_ERR2 2 /* Unused (was non-character) */
+#define PCRE_UTF32_ERR3 3
+
+/* Request types for pcre_fullinfo() */
+
+#define PCRE_INFO_OPTIONS 0
+#define PCRE_INFO_SIZE 1
+#define PCRE_INFO_CAPTURECOUNT 2
+#define PCRE_INFO_BACKREFMAX 3
+#define PCRE_INFO_FIRSTBYTE 4
+#define PCRE_INFO_FIRSTCHAR 4 /* For backwards compatibility */
+#define PCRE_INFO_FIRSTTABLE 5
+#define PCRE_INFO_LASTLITERAL 6
+#define PCRE_INFO_NAMEENTRYSIZE 7
+#define PCRE_INFO_NAMECOUNT 8
+#define PCRE_INFO_NAMETABLE 9
+#define PCRE_INFO_STUDYSIZE 10
+#define PCRE_INFO_DEFAULT_TABLES 11
+#define PCRE_INFO_OKPARTIAL 12
+#define PCRE_INFO_JCHANGED 13
+#define PCRE_INFO_HASCRORLF 14
+#define PCRE_INFO_MINLENGTH 15
+#define PCRE_INFO_JIT 16
+#define PCRE_INFO_JITSIZE 17
+#define PCRE_INFO_MAXLOOKBEHIND 18
+#define PCRE_INFO_FIRSTCHARACTER 19
+#define PCRE_INFO_FIRSTCHARACTERFLAGS 20
+#define PCRE_INFO_REQUIREDCHAR 21
+#define PCRE_INFO_REQUIREDCHARFLAGS 22
+#define PCRE_INFO_MATCHLIMIT 23
+#define PCRE_INFO_RECURSIONLIMIT 24
+
+/* Request types for pcre_config(). Do not re-arrange, in order to remain
+compatible. */
+
+#define PCRE_CONFIG_UTF8 0
+#define PCRE_CONFIG_NEWLINE 1
+#define PCRE_CONFIG_LINK_SIZE 2
+#define PCRE_CONFIG_POSIX_MALLOC_THRESHOLD 3
+#define PCRE_CONFIG_MATCH_LIMIT 4
+#define PCRE_CONFIG_STACKRECURSE 5
+#define PCRE_CONFIG_UNICODE_PROPERTIES 6
+#define PCRE_CONFIG_MATCH_LIMIT_RECURSION 7
+#define PCRE_CONFIG_BSR 8
+#define PCRE_CONFIG_JIT 9
+#define PCRE_CONFIG_UTF16 10
+#define PCRE_CONFIG_JITTARGET 11
+#define PCRE_CONFIG_UTF32 12
+
+/* Request types for pcre_study(). Do not re-arrange, in order to remain
+compatible. */
+
+#define PCRE_STUDY_JIT_COMPILE 0x0001
+#define PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE 0x0002
+#define PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE 0x0004
+#define PCRE_STUDY_EXTRA_NEEDED 0x0008
+
+/* Bit flags for the pcre[16|32]_extra structure. Do not re-arrange or redefine
+these bits, just add new ones on the end, in order to remain compatible. */
+
+#define PCRE_EXTRA_STUDY_DATA 0x0001
+#define PCRE_EXTRA_MATCH_LIMIT 0x0002
+#define PCRE_EXTRA_CALLOUT_DATA 0x0004
+#define PCRE_EXTRA_TABLES 0x0008
+#define PCRE_EXTRA_MATCH_LIMIT_RECURSION 0x0010
+#define PCRE_EXTRA_MARK 0x0020
+#define PCRE_EXTRA_EXECUTABLE_JIT 0x0040
+
+/* Types */
+
+struct real_pcre; /* declaration; the definition is private */
+typedef struct real_pcre pcre;
+
+struct real_pcre16; /* declaration; the definition is private */
+typedef struct real_pcre16 pcre16;
+
+struct real_pcre32; /* declaration; the definition is private */
+typedef struct real_pcre32 pcre32;
+
+struct real_pcre_jit_stack; /* declaration; the definition is private */
+typedef struct real_pcre_jit_stack pcre_jit_stack;
+
+struct real_pcre16_jit_stack; /* declaration; the definition is private */
+typedef struct real_pcre16_jit_stack pcre16_jit_stack;
+
+struct real_pcre32_jit_stack; /* declaration; the definition is private */
+typedef struct real_pcre32_jit_stack pcre32_jit_stack;
+
+/* If PCRE is compiled with 16 bit character support, PCRE_UCHAR16 must contain
+a 16 bit wide signed data type. Otherwise it can be a dummy data type since
+pcre16 functions are not implemented. There is a check for this in pcre_internal.h. */
+#ifndef PCRE_UCHAR16
+#define PCRE_UCHAR16 unsigned short
+#endif
+
+#ifndef PCRE_SPTR16
+#define PCRE_SPTR16 const PCRE_UCHAR16 *
+#endif
+
+/* If PCRE is compiled with 32 bit character support, PCRE_UCHAR32 must contain
+a 32 bit wide signed data type. Otherwise it can be a dummy data type since
+pcre32 functions are not implemented. There is a check for this in pcre_internal.h. */
+#ifndef PCRE_UCHAR32
+#define PCRE_UCHAR32 unsigned int
+#endif
+
+#ifndef PCRE_SPTR32
+#define PCRE_SPTR32 const PCRE_UCHAR32 *
+#endif
+
+/* When PCRE is compiled as a C++ library, the subject pointer type can be
+replaced with a custom type. For conventional use, the public interface is a
+const char *. */
+
+#ifndef PCRE_SPTR
+#define PCRE_SPTR const char *
+#endif
+
+/* The structure for passing additional data to pcre_exec(). This is defined in
+such as way as to be extensible. Always add new fields at the end, in order to
+remain compatible. */
+
+typedef struct pcre_extra {
+ unsigned long int flags; /* Bits for which fields are set */
+ void *study_data; /* Opaque data from pcre_study() */
+ unsigned long int match_limit; /* Maximum number of calls to match() */
+ void *callout_data; /* Data passed back in callouts */
+ const unsigned char *tables; /* Pointer to character tables */
+ unsigned long int match_limit_recursion; /* Max recursive calls to match() */
+ unsigned char **mark; /* For passing back a mark pointer */
+ void *executable_jit; /* Contains a pointer to a compiled jit code */
+} pcre_extra;
+
+/* Same structure as above, but with 16 bit char pointers. */
+
+typedef struct pcre16_extra {
+ unsigned long int flags; /* Bits for which fields are set */
+ void *study_data; /* Opaque data from pcre_study() */
+ unsigned long int match_limit; /* Maximum number of calls to match() */
+ void *callout_data; /* Data passed back in callouts */
+ const unsigned char *tables; /* Pointer to character tables */
+ unsigned long int match_limit_recursion; /* Max recursive calls to match() */
+ PCRE_UCHAR16 **mark; /* For passing back a mark pointer */
+ void *executable_jit; /* Contains a pointer to a compiled jit code */
+} pcre16_extra;
+
+/* Same structure as above, but with 32 bit char pointers. */
+
+typedef struct pcre32_extra {
+ unsigned long int flags; /* Bits for which fields are set */
+ void *study_data; /* Opaque data from pcre_study() */
+ unsigned long int match_limit; /* Maximum number of calls to match() */
+ void *callout_data; /* Data passed back in callouts */
+ const unsigned char *tables; /* Pointer to character tables */
+ unsigned long int match_limit_recursion; /* Max recursive calls to match() */
+ PCRE_UCHAR32 **mark; /* For passing back a mark pointer */
+ void *executable_jit; /* Contains a pointer to a compiled jit code */
+} pcre32_extra;
+
+/* The structure for passing out data via the pcre_callout_function. We use a
+structure so that new fields can be added on the end in future versions,
+without changing the API of the function, thereby allowing old clients to work
+without modification. */
+
+typedef struct pcre_callout_block {
+ int version; /* Identifies version of block */
+ /* ------------------------ Version 0 ------------------------------- */
+ int callout_number; /* Number compiled into pattern */
+ int *offset_vector; /* The offset vector */
+ PCRE_SPTR subject; /* The subject being matched */
+ int subject_length; /* The length of the subject */
+ int start_match; /* Offset to start of this match attempt */
+ int current_position; /* Where we currently are in the subject */
+ int capture_top; /* Max current capture */
+ int capture_last; /* Most recently closed capture */
+ void *callout_data; /* Data passed in with the call */
+ /* ------------------- Added for Version 1 -------------------------- */
+ int pattern_position; /* Offset to next item in the pattern */
+ int next_item_length; /* Length of next item in the pattern */
+ /* ------------------- Added for Version 2 -------------------------- */
+ const unsigned char *mark; /* Pointer to current mark or NULL */
+ /* ------------------------------------------------------------------ */
+} pcre_callout_block;
+
+/* Same structure as above, but with 16 bit char pointers. */
+
+typedef struct pcre16_callout_block {
+ int version; /* Identifies version of block */
+ /* ------------------------ Version 0 ------------------------------- */
+ int callout_number; /* Number compiled into pattern */
+ int *offset_vector; /* The offset vector */
+ PCRE_SPTR16 subject; /* The subject being matched */
+ int subject_length; /* The length of the subject */
+ int start_match; /* Offset to start of this match attempt */
+ int current_position; /* Where we currently are in the subject */
+ int capture_top; /* Max current capture */
+ int capture_last; /* Most recently closed capture */
+ void *callout_data; /* Data passed in with the call */
+ /* ------------------- Added for Version 1 -------------------------- */
+ int pattern_position; /* Offset to next item in the pattern */
+ int next_item_length; /* Length of next item in the pattern */
+ /* ------------------- Added for Version 2 -------------------------- */
+ const PCRE_UCHAR16 *mark; /* Pointer to current mark or NULL */
+ /* ------------------------------------------------------------------ */
+} pcre16_callout_block;
+
+/* Same structure as above, but with 32 bit char pointers. */
+
+typedef struct pcre32_callout_block {
+ int version; /* Identifies version of block */
+ /* ------------------------ Version 0 ------------------------------- */
+ int callout_number; /* Number compiled into pattern */
+ int *offset_vector; /* The offset vector */
+ PCRE_SPTR32 subject; /* The subject being matched */
+ int subject_length; /* The length of the subject */
+ int start_match; /* Offset to start of this match attempt */
+ int current_position; /* Where we currently are in the subject */
+ int capture_top; /* Max current capture */
+ int capture_last; /* Most recently closed capture */
+ void *callout_data; /* Data passed in with the call */
+ /* ------------------- Added for Version 1 -------------------------- */
+ int pattern_position; /* Offset to next item in the pattern */
+ int next_item_length; /* Length of next item in the pattern */
+ /* ------------------- Added for Version 2 -------------------------- */
+ const PCRE_UCHAR32 *mark; /* Pointer to current mark or NULL */
+ /* ------------------------------------------------------------------ */
+} pcre32_callout_block;
+
+/* Indirection for store get and free functions. These can be set to
+alternative malloc/free functions if required. Special ones are used in the
+non-recursive case for "frames". There is also an optional callout function
+that is triggered by the (?) regex item. For Virtual Pascal, these definitions
+have to take another form. */
+
+#ifndef VPCOMPAT
+PCRE_EXP_DECL void *(*pcre_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre_free)(void *);
+PCRE_EXP_DECL void *(*pcre_stack_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre_stack_free)(void *);
+PCRE_EXP_DECL int (*pcre_callout)(pcre_callout_block *);
+
+PCRE_EXP_DECL void *(*pcre16_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre16_free)(void *);
+PCRE_EXP_DECL void *(*pcre16_stack_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre16_stack_free)(void *);
+PCRE_EXP_DECL int (*pcre16_callout)(pcre16_callout_block *);
+
+PCRE_EXP_DECL void *(*pcre32_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre32_free)(void *);
+PCRE_EXP_DECL void *(*pcre32_stack_malloc)(size_t);
+PCRE_EXP_DECL void (*pcre32_stack_free)(void *);
+PCRE_EXP_DECL int (*pcre32_callout)(pcre32_callout_block *);
+#else /* VPCOMPAT */
+PCRE_EXP_DECL void *pcre_malloc(size_t);
+PCRE_EXP_DECL void pcre_free(void *);
+PCRE_EXP_DECL void *pcre_stack_malloc(size_t);
+PCRE_EXP_DECL void pcre_stack_free(void *);
+PCRE_EXP_DECL int pcre_callout(pcre_callout_block *);
+
+PCRE_EXP_DECL void *pcre16_malloc(size_t);
+PCRE_EXP_DECL void pcre16_free(void *);
+PCRE_EXP_DECL void *pcre16_stack_malloc(size_t);
+PCRE_EXP_DECL void pcre16_stack_free(void *);
+PCRE_EXP_DECL int pcre16_callout(pcre16_callout_block *);
+
+PCRE_EXP_DECL void *pcre32_malloc(size_t);
+PCRE_EXP_DECL void pcre32_free(void *);
+PCRE_EXP_DECL void *pcre32_stack_malloc(size_t);
+PCRE_EXP_DECL void pcre32_stack_free(void *);
+PCRE_EXP_DECL int pcre32_callout(pcre32_callout_block *);
+#endif /* VPCOMPAT */
+
+/* User defined callback which provides a stack just before the match starts. */
+
+typedef pcre_jit_stack *(*pcre_jit_callback)(void *);
+typedef pcre16_jit_stack *(*pcre16_jit_callback)(void *);
+typedef pcre32_jit_stack *(*pcre32_jit_callback)(void *);
+
+/* Exported PCRE functions */
+
+PCRE_EXP_DECL pcre *pcre_compile(const char *, int, const char **, int *,
+ const unsigned char *);
+PCRE_EXP_DECL pcre16 *pcre16_compile(PCRE_SPTR16, int, const char **, int *,
+ const unsigned char *);
+PCRE_EXP_DECL pcre32 *pcre32_compile(PCRE_SPTR32, int, const char **, int *,
+ const unsigned char *);
+PCRE_EXP_DECL pcre *pcre_compile2(const char *, int, int *, const char **,
+ int *, const unsigned char *);
+PCRE_EXP_DECL pcre16 *pcre16_compile2(PCRE_SPTR16, int, int *, const char **,
+ int *, const unsigned char *);
+PCRE_EXP_DECL pcre32 *pcre32_compile2(PCRE_SPTR32, int, int *, const char **,
+ int *, const unsigned char *);
+PCRE_EXP_DECL int pcre_config(int, void *);
+PCRE_EXP_DECL int pcre16_config(int, void *);
+PCRE_EXP_DECL int pcre32_config(int, void *);
+PCRE_EXP_DECL int pcre_copy_named_substring(const pcre *, const char *,
+ int *, int, const char *, char *, int);
+PCRE_EXP_DECL int pcre16_copy_named_substring(const pcre16 *, PCRE_SPTR16,
+ int *, int, PCRE_SPTR16, PCRE_UCHAR16 *, int);
+PCRE_EXP_DECL int pcre32_copy_named_substring(const pcre32 *, PCRE_SPTR32,
+ int *, int, PCRE_SPTR32, PCRE_UCHAR32 *, int);
+PCRE_EXP_DECL int pcre_copy_substring(const char *, int *, int, int,
+ char *, int);
+PCRE_EXP_DECL int pcre16_copy_substring(PCRE_SPTR16, int *, int, int,
+ PCRE_UCHAR16 *, int);
+PCRE_EXP_DECL int pcre32_copy_substring(PCRE_SPTR32, int *, int, int,
+ PCRE_UCHAR32 *, int);
+PCRE_EXP_DECL int pcre_dfa_exec(const pcre *, const pcre_extra *,
+ const char *, int, int, int, int *, int , int *, int);
+PCRE_EXP_DECL int pcre16_dfa_exec(const pcre16 *, const pcre16_extra *,
+ PCRE_SPTR16, int, int, int, int *, int , int *, int);
+PCRE_EXP_DECL int pcre32_dfa_exec(const pcre32 *, const pcre32_extra *,
+ PCRE_SPTR32, int, int, int, int *, int , int *, int);
+PCRE_EXP_DECL int pcre_exec(const pcre *, const pcre_extra *, PCRE_SPTR,
+ int, int, int, int *, int);
+PCRE_EXP_DECL int pcre16_exec(const pcre16 *, const pcre16_extra *,
+ PCRE_SPTR16, int, int, int, int *, int);
+PCRE_EXP_DECL int pcre32_exec(const pcre32 *, const pcre32_extra *,
+ PCRE_SPTR32, int, int, int, int *, int);
+PCRE_EXP_DECL int pcre_jit_exec(const pcre *, const pcre_extra *,
+ PCRE_SPTR, int, int, int, int *, int,
+ pcre_jit_stack *);
+PCRE_EXP_DECL int pcre16_jit_exec(const pcre16 *, const pcre16_extra *,
+ PCRE_SPTR16, int, int, int, int *, int,
+ pcre16_jit_stack *);
+PCRE_EXP_DECL int pcre32_jit_exec(const pcre32 *, const pcre32_extra *,
+ PCRE_SPTR32, int, int, int, int *, int,
+ pcre32_jit_stack *);
+PCRE_EXP_DECL void pcre_free_substring(const char *);
+PCRE_EXP_DECL void pcre16_free_substring(PCRE_SPTR16);
+PCRE_EXP_DECL void pcre32_free_substring(PCRE_SPTR32);
+PCRE_EXP_DECL void pcre_free_substring_list(const char **);
+PCRE_EXP_DECL void pcre16_free_substring_list(PCRE_SPTR16 *);
+PCRE_EXP_DECL void pcre32_free_substring_list(PCRE_SPTR32 *);
+PCRE_EXP_DECL int pcre_fullinfo(const pcre *, const pcre_extra *, int,
+ void *);
+PCRE_EXP_DECL int pcre16_fullinfo(const pcre16 *, const pcre16_extra *, int,
+ void *);
+PCRE_EXP_DECL int pcre32_fullinfo(const pcre32 *, const pcre32_extra *, int,
+ void *);
+PCRE_EXP_DECL int pcre_get_named_substring(const pcre *, const char *,
+ int *, int, const char *, const char **);
+PCRE_EXP_DECL int pcre16_get_named_substring(const pcre16 *, PCRE_SPTR16,
+ int *, int, PCRE_SPTR16, PCRE_SPTR16 *);
+PCRE_EXP_DECL int pcre32_get_named_substring(const pcre32 *, PCRE_SPTR32,
+ int *, int, PCRE_SPTR32, PCRE_SPTR32 *);
+PCRE_EXP_DECL int pcre_get_stringnumber(const pcre *, const char *);
+PCRE_EXP_DECL int pcre16_get_stringnumber(const pcre16 *, PCRE_SPTR16);
+PCRE_EXP_DECL int pcre32_get_stringnumber(const pcre32 *, PCRE_SPTR32);
+PCRE_EXP_DECL int pcre_get_stringtable_entries(const pcre *, const char *,
+ char **, char **);
+PCRE_EXP_DECL int pcre16_get_stringtable_entries(const pcre16 *, PCRE_SPTR16,
+ PCRE_UCHAR16 **, PCRE_UCHAR16 **);
+PCRE_EXP_DECL int pcre32_get_stringtable_entries(const pcre32 *, PCRE_SPTR32,
+ PCRE_UCHAR32 **, PCRE_UCHAR32 **);
+PCRE_EXP_DECL int pcre_get_substring(const char *, int *, int, int,
+ const char **);
+PCRE_EXP_DECL int pcre16_get_substring(PCRE_SPTR16, int *, int, int,
+ PCRE_SPTR16 *);
+PCRE_EXP_DECL int pcre32_get_substring(PCRE_SPTR32, int *, int, int,
+ PCRE_SPTR32 *);
+PCRE_EXP_DECL int pcre_get_substring_list(const char *, int *, int,
+ const char ***);
+PCRE_EXP_DECL int pcre16_get_substring_list(PCRE_SPTR16, int *, int,
+ PCRE_SPTR16 **);
+PCRE_EXP_DECL int pcre32_get_substring_list(PCRE_SPTR32, int *, int,
+ PCRE_SPTR32 **);
+PCRE_EXP_DECL const unsigned char *pcre_maketables(void);
+PCRE_EXP_DECL const unsigned char *pcre16_maketables(void);
+PCRE_EXP_DECL const unsigned char *pcre32_maketables(void);
+PCRE_EXP_DECL int pcre_refcount(pcre *, int);
+PCRE_EXP_DECL int pcre16_refcount(pcre16 *, int);
+PCRE_EXP_DECL int pcre32_refcount(pcre32 *, int);
+PCRE_EXP_DECL pcre_extra *pcre_study(const pcre *, int, const char **);
+PCRE_EXP_DECL pcre16_extra *pcre16_study(const pcre16 *, int, const char **);
+PCRE_EXP_DECL pcre32_extra *pcre32_study(const pcre32 *, int, const char **);
+PCRE_EXP_DECL void pcre_free_study(pcre_extra *);
+PCRE_EXP_DECL void pcre16_free_study(pcre16_extra *);
+PCRE_EXP_DECL void pcre32_free_study(pcre32_extra *);
+PCRE_EXP_DECL const char *pcre_version(void);
+PCRE_EXP_DECL const char *pcre16_version(void);
+PCRE_EXP_DECL const char *pcre32_version(void);
+
+/* Utility functions for byte order swaps. */
+PCRE_EXP_DECL int pcre_pattern_to_host_byte_order(pcre *, pcre_extra *,
+ const unsigned char *);
+PCRE_EXP_DECL int pcre16_pattern_to_host_byte_order(pcre16 *, pcre16_extra *,
+ const unsigned char *);
+PCRE_EXP_DECL int pcre32_pattern_to_host_byte_order(pcre32 *, pcre32_extra *,
+ const unsigned char *);
+PCRE_EXP_DECL int pcre16_utf16_to_host_byte_order(PCRE_UCHAR16 *,
+ PCRE_SPTR16, int, int *, int);
+PCRE_EXP_DECL int pcre32_utf32_to_host_byte_order(PCRE_UCHAR32 *,
+ PCRE_SPTR32, int, int *, int);
+
+/* JIT compiler related functions. */
+
+PCRE_EXP_DECL pcre_jit_stack *pcre_jit_stack_alloc(int, int);
+PCRE_EXP_DECL pcre16_jit_stack *pcre16_jit_stack_alloc(int, int);
+PCRE_EXP_DECL pcre32_jit_stack *pcre32_jit_stack_alloc(int, int);
+PCRE_EXP_DECL void pcre_jit_stack_free(pcre_jit_stack *);
+PCRE_EXP_DECL void pcre16_jit_stack_free(pcre16_jit_stack *);
+PCRE_EXP_DECL void pcre32_jit_stack_free(pcre32_jit_stack *);
+PCRE_EXP_DECL void pcre_assign_jit_stack(pcre_extra *,
+ pcre_jit_callback, void *);
+PCRE_EXP_DECL void pcre16_assign_jit_stack(pcre16_extra *,
+ pcre16_jit_callback, void *);
+PCRE_EXP_DECL void pcre32_assign_jit_stack(pcre32_extra *,
+ pcre32_jit_callback, void *);
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif
+
+#endif /* End of pcre.h */
diff --git a/pcre/pcre16_byte_order.c b/pcre/pcre16_byte_order.c
new file mode 100644
index 00000000000..11d2973a3db
--- /dev/null
+++ b/pcre/pcre16_byte_order.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_byte_order.c"
+
+/* End of pcre16_byte_order.c */
diff --git a/pcre/pcre16_chartables.c b/pcre/pcre16_chartables.c
new file mode 100644
index 00000000000..7c0ff35f5e0
--- /dev/null
+++ b/pcre/pcre16_chartables.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_chartables.c"
+
+/* End of pcre16_chartables.c */
diff --git a/pcre/pcre16_compile.c b/pcre/pcre16_compile.c
new file mode 100644
index 00000000000..e499b670877
--- /dev/null
+++ b/pcre/pcre16_compile.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_compile.c"
+
+/* End of pcre16_compile.c */
diff --git a/pcre/pcre16_config.c b/pcre/pcre16_config.c
new file mode 100644
index 00000000000..b52138764f6
--- /dev/null
+++ b/pcre/pcre16_config.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_config.c"
+
+/* End of pcre16_config.c */
diff --git a/pcre/pcre16_dfa_exec.c b/pcre/pcre16_dfa_exec.c
new file mode 100644
index 00000000000..2ba740e972b
--- /dev/null
+++ b/pcre/pcre16_dfa_exec.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_dfa_exec.c"
+
+/* End of pcre16_dfa_exec.c */
diff --git a/pcre/pcre16_exec.c b/pcre/pcre16_exec.c
new file mode 100644
index 00000000000..7417b1770c6
--- /dev/null
+++ b/pcre/pcre16_exec.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_exec.c"
+
+/* End of pcre16_exec.c */
diff --git a/pcre/pcre16_fullinfo.c b/pcre/pcre16_fullinfo.c
new file mode 100644
index 00000000000..544dca6ed5c
--- /dev/null
+++ b/pcre/pcre16_fullinfo.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_fullinfo.c"
+
+/* End of pcre16_fullinfo.c */
diff --git a/pcre/pcre16_get.c b/pcre/pcre16_get.c
new file mode 100644
index 00000000000..3ded08c622c
--- /dev/null
+++ b/pcre/pcre16_get.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_get.c"
+
+/* End of pcre16_get.c */
diff --git a/pcre/pcre16_globals.c b/pcre/pcre16_globals.c
new file mode 100644
index 00000000000..a136b3d8c22
--- /dev/null
+++ b/pcre/pcre16_globals.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_globals.c"
+
+/* End of pcre16_globals.c */
diff --git a/pcre/pcre16_jit_compile.c b/pcre/pcre16_jit_compile.c
new file mode 100644
index 00000000000..ab0cacd7646
--- /dev/null
+++ b/pcre/pcre16_jit_compile.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_jit_compile.c"
+
+/* End of pcre16_jit_compile.c */
diff --git a/pcre/pcre16_maketables.c b/pcre/pcre16_maketables.c
new file mode 100644
index 00000000000..b1cd1c579d6
--- /dev/null
+++ b/pcre/pcre16_maketables.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_maketables.c"
+
+/* End of pcre16_maketables.c */
diff --git a/pcre/pcre16_newline.c b/pcre/pcre16_newline.c
new file mode 100644
index 00000000000..7fe201400f5
--- /dev/null
+++ b/pcre/pcre16_newline.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_newline.c"
+
+/* End of pcre16_newline.c */
diff --git a/pcre/pcre16_ord2utf16.c b/pcre/pcre16_ord2utf16.c
new file mode 100644
index 00000000000..8e2ce5ea6c5
--- /dev/null
+++ b/pcre/pcre16_ord2utf16.c
@@ -0,0 +1,90 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This file contains a private PCRE function that converts an ordinal
+character value into a UTF16 string. */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_internal.h"
+
+/*************************************************
+* Convert character value to UTF-16 *
+*************************************************/
+
+/* This function takes an integer value in the range 0 - 0x10ffff
+and encodes it as a UTF-16 character in 1 to 2 pcre_uchars.
+
+Arguments:
+ cvalue the character value
+ buffer pointer to buffer for result - at least 2 pcre_uchars long
+
+Returns: number of characters placed in the buffer
+*/
+
+unsigned int
+PRIV(ord2utf)(pcre_uint32 cvalue, pcre_uchar *buffer)
+{
+#ifdef SUPPORT_UTF
+
+if (cvalue <= 0xffff)
+ {
+ *buffer = (pcre_uchar)cvalue;
+ return 1;
+ }
+
+cvalue -= 0x10000;
+*buffer++ = 0xd800 | (cvalue >> 10);
+*buffer = 0xdc00 | (cvalue & 0x3ff);
+return 2;
+
+#else /* SUPPORT_UTF */
+(void)(cvalue); /* Keep compiler happy; this function won't ever be */
+(void)(buffer); /* called when SUPPORT_UTF is not defined. */
+return 0;
+#endif /* SUPPORT_UTF */
+}
+
+/* End of pcre16_ord2utf16.c */
diff --git a/pcre/pcre16_printint.c b/pcre/pcre16_printint.c
new file mode 100644
index 00000000000..33d8c340200
--- /dev/null
+++ b/pcre/pcre16_printint.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_printint.c"
+
+/* End of pcre16_printint.c */
diff --git a/pcre/pcre16_refcount.c b/pcre/pcre16_refcount.c
new file mode 100644
index 00000000000..d3d15439737
--- /dev/null
+++ b/pcre/pcre16_refcount.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_refcount.c"
+
+/* End of pcre16_refcount.c */
diff --git a/pcre/pcre16_string_utils.c b/pcre/pcre16_string_utils.c
new file mode 100644
index 00000000000..382c40799fb
--- /dev/null
+++ b/pcre/pcre16_string_utils.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_string_utils.c"
+
+/* End of pcre16_string_utils.c */
diff --git a/pcre/pcre16_study.c b/pcre/pcre16_study.c
new file mode 100644
index 00000000000..f87de081fc4
--- /dev/null
+++ b/pcre/pcre16_study.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_study.c"
+
+/* End of pcre16_study.c */
diff --git a/pcre/pcre16_tables.c b/pcre/pcre16_tables.c
new file mode 100644
index 00000000000..d84297093a4
--- /dev/null
+++ b/pcre/pcre16_tables.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_tables.c"
+
+/* End of pcre16_tables.c */
diff --git a/pcre/pcre16_ucd.c b/pcre/pcre16_ucd.c
new file mode 100644
index 00000000000..ee23439a013
--- /dev/null
+++ b/pcre/pcre16_ucd.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_ucd.c"
+
+/* End of pcre16_ucd.c */
diff --git a/pcre/pcre16_utf16_utils.c b/pcre/pcre16_utf16_utils.c
new file mode 100644
index 00000000000..49ced0c0b1c
--- /dev/null
+++ b/pcre/pcre16_utf16_utils.c
@@ -0,0 +1,130 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains a function for converting any UTF-16 character
+strings to host byte order. */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_internal.h"
+
+/*************************************************
+* Convert any UTF-16 string to host byte order *
+*************************************************/
+
+/* This function takes an UTF-16 string and converts
+it to host byte order. The length can be explicitly set,
+or automatically detected for zero terminated strings.
+BOMs can be kept or discarded during the conversion.
+Conversion can be done in place (output == input).
+
+Arguments:
+ output the output buffer, its size must be greater
+ or equal than the input string
+ input any UTF-16 string
+ length the number of 16-bit units in the input string
+ can be less than zero for zero terminated strings
+ host_byte_order
+ A non-zero value means the input is in host byte
+ order, which can be dynamically changed by BOMs later.
+ Initially it contains the starting byte order and returns
+ with the last byte order so it can be used for stream
+ processing. It can be NULL, which set the host byte
+ order mode by default.
+ keep_boms for a non-zero value, the BOM (0xfeff) characters
+ are copied as well
+
+Returns: the number of 16-bit units placed into the output buffer,
+ including the zero-terminator
+*/
+
+int
+pcre16_utf16_to_host_byte_order(PCRE_UCHAR16 *output, PCRE_SPTR16 input,
+ int length, int *host_byte_order, int keep_boms)
+{
+#ifdef SUPPORT_UTF
+/* This function converts any UTF-16 string to host byte order and optionally
+removes any Byte Order Marks (BOMS). Returns with the remainig length. */
+int host_bo = host_byte_order != NULL ? *host_byte_order : 1;
+pcre_uchar *optr = (pcre_uchar *)output;
+const pcre_uchar *iptr = (const pcre_uchar *)input;
+const pcre_uchar *end;
+/* The c variable must be unsigned. */
+register pcre_uchar c;
+
+if (length < 0)
+ length = STRLEN_UC(iptr) + 1;
+end = iptr + length;
+
+while (iptr < end)
+ {
+ c = *iptr++;
+ if (c == 0xfeff || c == 0xfffe)
+ {
+ /* Detecting the byte order of the machine is unnecessary, it is
+ enough to know that the UTF-16 string has the same byte order or not. */
+ host_bo = c == 0xfeff;
+ if (keep_boms != 0)
+ *optr++ = 0xfeff;
+ else
+ length--;
+ }
+ else
+ *optr++ = host_bo ? c : ((c >> 8) | (c << 8)); /* Flip bytes if needed. */
+ }
+if (host_byte_order != NULL)
+ *host_byte_order = host_bo;
+
+#else /* Not SUPPORT_UTF */
+(void)(output); /* Keep picky compilers happy */
+(void)(input);
+(void)(keep_boms);
+(void)(host_byte_order);
+#endif /* SUPPORT_UTF */
+return length;
+}
+
+/* End of pcre16_utf16_utils.c */
diff --git a/pcre/pcre16_valid_utf16.c b/pcre/pcre16_valid_utf16.c
new file mode 100644
index 00000000000..09076539d09
--- /dev/null
+++ b/pcre/pcre16_valid_utf16.c
@@ -0,0 +1,137 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2013 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains an internal function for validating UTF-16 character
+strings. */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_internal.h"
+
+
+/*************************************************
+* Validate a UTF-16 string *
+*************************************************/
+
+/* This function is called (optionally) at the start of compile or match, to
+check that a supposed UTF-16 string is actually valid. The early check means
+that subsequent code can assume it is dealing with a valid string. The check
+can be turned off for maximum performance, but the consequences of supplying an
+invalid string are then undefined.
+
+From release 8.21 more information about the details of the error are passed
+back in the returned value:
+
+PCRE_UTF16_ERR0 No error
+PCRE_UTF16_ERR1 Missing low surrogate at the end of the string
+PCRE_UTF16_ERR2 Invalid low surrogate
+PCRE_UTF16_ERR3 Isolated low surrogate
+PCRE_UTF16_ERR4 Unused (was non-character)
+
+Arguments:
+ string points to the string
+ length length of string, or -1 if the string is zero-terminated
+ errp pointer to an error position offset variable
+
+Returns: = 0 if the string is a valid UTF-16 string
+ > 0 otherwise, setting the offset of the bad character
+*/
+
+int
+PRIV(valid_utf)(PCRE_PUCHAR string, int length, int *erroroffset)
+{
+#ifdef SUPPORT_UTF
+register PCRE_PUCHAR p;
+register pcre_uint32 c;
+
+if (length < 0)
+ {
+ for (p = string; *p != 0; p++);
+ length = p - string;
+ }
+
+for (p = string; length-- > 0; p++)
+ {
+ c = *p;
+
+ if ((c & 0xf800) != 0xd800)
+ {
+ /* Normal UTF-16 code point. Neither high nor low surrogate. */
+ }
+ else if ((c & 0x0400) == 0)
+ {
+ /* High surrogate. Must be a followed by a low surrogate. */
+ if (length == 0)
+ {
+ *erroroffset = p - string;
+ return PCRE_UTF16_ERR1;
+ }
+ p++;
+ length--;
+ if ((*p & 0xfc00) != 0xdc00)
+ {
+ *erroroffset = p - string;
+ return PCRE_UTF16_ERR2;
+ }
+ }
+ else
+ {
+ /* Isolated low surrogate. Always an error. */
+ *erroroffset = p - string;
+ return PCRE_UTF16_ERR3;
+ }
+ }
+
+#else /* SUPPORT_UTF */
+(void)(string); /* Keep picky compilers happy */
+(void)(length);
+(void)(erroroffset);
+#endif /* SUPPORT_UTF */
+
+return PCRE_UTF16_ERR0; /* This indicates success */
+}
+
+/* End of pcre16_valid_utf16.c */
diff --git a/pcre/pcre16_version.c b/pcre/pcre16_version.c
new file mode 100644
index 00000000000..e991b1a8cfd
--- /dev/null
+++ b/pcre/pcre16_version.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_version.c"
+
+/* End of pcre16_version.c */
diff --git a/pcre/pcre16_xclass.c b/pcre/pcre16_xclass.c
new file mode 100644
index 00000000000..5aac2a36c68
--- /dev/null
+++ b/pcre/pcre16_xclass.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 16 bit character support. */
+#define COMPILE_PCRE16
+
+#include "pcre_xclass.c"
+
+/* End of pcre16_xclass.c */
diff --git a/pcre/pcre32_byte_order.c b/pcre/pcre32_byte_order.c
new file mode 100644
index 00000000000..9cf5362730a
--- /dev/null
+++ b/pcre/pcre32_byte_order.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_byte_order.c"
+
+/* End of pcre32_byte_order.c */
diff --git a/pcre/pcre32_chartables.c b/pcre/pcre32_chartables.c
new file mode 100644
index 00000000000..b5d8c23dbf1
--- /dev/null
+++ b/pcre/pcre32_chartables.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_chartables.c"
+
+/* End of pcre32_chartables.c */
diff --git a/pcre/pcre32_compile.c b/pcre/pcre32_compile.c
new file mode 100644
index 00000000000..d781eb377e0
--- /dev/null
+++ b/pcre/pcre32_compile.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_compile.c"
+
+/* End of pcre32_compile.c */
diff --git a/pcre/pcre32_config.c b/pcre/pcre32_config.c
new file mode 100644
index 00000000000..d63f3e9ea23
--- /dev/null
+++ b/pcre/pcre32_config.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_config.c"
+
+/* End of pcre32_config.c */
diff --git a/pcre/pcre32_dfa_exec.c b/pcre/pcre32_dfa_exec.c
new file mode 100644
index 00000000000..b0bfd34f04d
--- /dev/null
+++ b/pcre/pcre32_dfa_exec.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_dfa_exec.c"
+
+/* End of pcre32_dfa_exec.c */
diff --git a/pcre/pcre32_exec.c b/pcre/pcre32_exec.c
new file mode 100644
index 00000000000..8170ed77d35
--- /dev/null
+++ b/pcre/pcre32_exec.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_exec.c"
+
+/* End of pcre32_exec.c */
diff --git a/pcre/pcre32_fullinfo.c b/pcre/pcre32_fullinfo.c
new file mode 100644
index 00000000000..6ecc5209a08
--- /dev/null
+++ b/pcre/pcre32_fullinfo.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_fullinfo.c"
+
+/* End of pcre32_fullinfo.c */
diff --git a/pcre/pcre32_get.c b/pcre/pcre32_get.c
new file mode 100644
index 00000000000..d35deee0cd4
--- /dev/null
+++ b/pcre/pcre32_get.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_get.c"
+
+/* End of pcre32_get.c */
diff --git a/pcre/pcre32_globals.c b/pcre/pcre32_globals.c
new file mode 100644
index 00000000000..32e0914ca6d
--- /dev/null
+++ b/pcre/pcre32_globals.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_globals.c"
+
+/* End of pcre32_globals.c */
diff --git a/pcre/pcre32_jit_compile.c b/pcre/pcre32_jit_compile.c
new file mode 100644
index 00000000000..2e7c6f97c96
--- /dev/null
+++ b/pcre/pcre32_jit_compile.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_jit_compile.c"
+
+/* End of pcre32_jit_compile.c */
diff --git a/pcre/pcre32_maketables.c b/pcre/pcre32_maketables.c
new file mode 100644
index 00000000000..5d1b1c64c96
--- /dev/null
+++ b/pcre/pcre32_maketables.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_maketables.c"
+
+/* End of pcre32_maketables.c */
diff --git a/pcre/pcre32_newline.c b/pcre/pcre32_newline.c
new file mode 100644
index 00000000000..7f8d5360cdc
--- /dev/null
+++ b/pcre/pcre32_newline.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_newline.c"
+
+/* End of pcre32_newline.c */
diff --git a/pcre/pcre32_ord2utf32.c b/pcre/pcre32_ord2utf32.c
new file mode 100644
index 00000000000..606bcb3d7ba
--- /dev/null
+++ b/pcre/pcre32_ord2utf32.c
@@ -0,0 +1,82 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This file contains a private PCRE function that converts an ordinal
+character value into a UTF32 string. */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_internal.h"
+
+/*************************************************
+* Convert character value to UTF-32 *
+*************************************************/
+
+/* This function takes an integer value in the range 0 - 0x10ffff
+and encodes it as a UTF-32 character in 1 pcre_uchars.
+
+Arguments:
+ cvalue the character value
+ buffer pointer to buffer for result - at least 1 pcre_uchars long
+
+Returns: number of characters placed in the buffer
+*/
+
+unsigned int
+PRIV(ord2utf)(pcre_uint32 cvalue, pcre_uchar *buffer)
+{
+#ifdef SUPPORT_UTF
+
+*buffer = (pcre_uchar)cvalue;
+return 1;
+
+#else /* SUPPORT_UTF */
+(void)(cvalue); /* Keep compiler happy; this function won't ever be */
+(void)(buffer); /* called when SUPPORT_UTF is not defined. */
+return 0;
+#endif /* SUPPORT_UTF */
+}
+
+/* End of pcre32_ord2utf32.c */
diff --git a/pcre/pcre32_printint.c b/pcre/pcre32_printint.c
new file mode 100644
index 00000000000..f3fd7b25e2c
--- /dev/null
+++ b/pcre/pcre32_printint.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_printint.c"
+
+/* End of pcre32_printint.c */
diff --git a/pcre/pcre32_refcount.c b/pcre/pcre32_refcount.c
new file mode 100644
index 00000000000..dbdf432d82a
--- /dev/null
+++ b/pcre/pcre32_refcount.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_refcount.c"
+
+/* End of pcre32_refcount.c */
diff --git a/pcre/pcre32_string_utils.c b/pcre/pcre32_string_utils.c
new file mode 100644
index 00000000000..e37b3d4805f
--- /dev/null
+++ b/pcre/pcre32_string_utils.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_string_utils.c"
+
+/* End of pcre32_string_utils.c */
diff --git a/pcre/pcre32_study.c b/pcre/pcre32_study.c
new file mode 100644
index 00000000000..d3a3afed791
--- /dev/null
+++ b/pcre/pcre32_study.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_study.c"
+
+/* End of pcre32_study.c */
diff --git a/pcre/pcre32_tables.c b/pcre/pcre32_tables.c
new file mode 100644
index 00000000000..3d94cca33a1
--- /dev/null
+++ b/pcre/pcre32_tables.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_tables.c"
+
+/* End of pcre32_tables.c */
diff --git a/pcre/pcre32_ucd.c b/pcre/pcre32_ucd.c
new file mode 100644
index 00000000000..befe22d3435
--- /dev/null
+++ b/pcre/pcre32_ucd.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_ucd.c"
+
+/* End of pcre32_ucd.c */
diff --git a/pcre/pcre32_utf32_utils.c b/pcre/pcre32_utf32_utils.c
new file mode 100644
index 00000000000..f844e237165
--- /dev/null
+++ b/pcre/pcre32_utf32_utils.c
@@ -0,0 +1,141 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains a function for converting any UTF-32 character
+strings to host byte order. */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_internal.h"
+
+#ifdef SUPPORT_UTF
+static pcre_uint32
+swap_uint32(pcre_uint32 value)
+{
+return ((value & 0x000000ff) << 24) |
+ ((value & 0x0000ff00) << 8) |
+ ((value & 0x00ff0000) >> 8) |
+ (value >> 24);
+}
+#endif
+
+
+/*************************************************
+* Convert any UTF-32 string to host byte order *
+*************************************************/
+
+/* This function takes an UTF-32 string and converts
+it to host byte order. The length can be explicitly set,
+or automatically detected for zero terminated strings.
+BOMs can be kept or discarded during the conversion.
+Conversion can be done in place (output == input).
+
+Arguments:
+ output the output buffer, its size must be greater
+ or equal than the input string
+ input any UTF-32 string
+ length the number of 32-bit units in the input string
+ can be less than zero for zero terminated strings
+ host_byte_order
+ A non-zero value means the input is in host byte
+ order, which can be dynamically changed by BOMs later.
+ Initially it contains the starting byte order and returns
+ with the last byte order so it can be used for stream
+ processing. It can be NULL, which set the host byte
+ order mode by default.
+ keep_boms for a non-zero value, the BOM (0xfeff) characters
+ are copied as well
+
+Returns: the number of 32-bit units placed into the output buffer,
+ including the zero-terminator
+*/
+
+int
+pcre32_utf32_to_host_byte_order(PCRE_UCHAR32 *output, PCRE_SPTR32 input,
+ int length, int *host_byte_order, int keep_boms)
+{
+#ifdef SUPPORT_UTF
+/* This function converts any UTF-32 string to host byte order and optionally
+removes any Byte Order Marks (BOMS). Returns with the remainig length. */
+int host_bo = host_byte_order != NULL ? *host_byte_order : 1;
+pcre_uchar *optr = (pcre_uchar *)output;
+const pcre_uchar *iptr = (const pcre_uchar *)input;
+const pcre_uchar *end;
+/* The c variable must be unsigned. */
+register pcre_uchar c;
+
+if (length < 0)
+ end = iptr + STRLEN_UC(iptr) + 1;
+else
+ end = iptr + length;
+
+while (iptr < end)
+ {
+ c = *iptr++;
+ if (c == 0x0000feffu || c == 0xfffe0000u)
+ {
+ /* Detecting the byte order of the machine is unnecessary, it is
+ enough to know that the UTF-32 string has the same byte order or not. */
+ host_bo = c == 0x0000feffu;
+ if (keep_boms != 0)
+ *optr++ = 0x0000feffu;
+ }
+ else
+ *optr++ = host_bo ? c : swap_uint32(c);
+ }
+if (host_byte_order != NULL)
+ *host_byte_order = host_bo;
+
+#else /* SUPPORT_UTF */
+(void)(output); /* Keep picky compilers happy */
+(void)(input);
+(void)(keep_boms);
+(void)(host_byte_order);
+#endif /* SUPPORT_UTF */
+return length;
+}
+
+/* End of pcre32_utf32_utils.c */
diff --git a/pcre/pcre32_valid_utf32.c b/pcre/pcre32_valid_utf32.c
new file mode 100644
index 00000000000..94cda1a2c4c
--- /dev/null
+++ b/pcre/pcre32_valid_utf32.c
@@ -0,0 +1,124 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2013 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains an internal function for validating UTF-32 character
+strings. */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_internal.h"
+
+/*************************************************
+* Validate a UTF-32 string *
+*************************************************/
+
+/* This function is called (optionally) at the start of compile or match, to
+check that a supposed UTF-32 string is actually valid. The early check means
+that subsequent code can assume it is dealing with a valid string. The check
+can be turned off for maximum performance, but the consequences of supplying an
+invalid string are then undefined.
+
+More information about the details of the error are passed
+back in the returned value:
+
+PCRE_UTF32_ERR0 No error
+PCRE_UTF32_ERR1 Surrogate character
+PCRE_UTF32_ERR2 Unused (was non-character)
+PCRE_UTF32_ERR3 Character > 0x10ffff
+
+Arguments:
+ string points to the string
+ length length of string, or -1 if the string is zero-terminated
+ errp pointer to an error position offset variable
+
+Returns: = 0 if the string is a valid UTF-32 string
+ > 0 otherwise, setting the offset of the bad character
+*/
+
+int
+PRIV(valid_utf)(PCRE_PUCHAR string, int length, int *erroroffset)
+{
+#ifdef SUPPORT_UTF
+register PCRE_PUCHAR p;
+register pcre_uchar c;
+
+if (length < 0)
+ {
+ for (p = string; *p != 0; p++);
+ length = p - string;
+ }
+
+for (p = string; length-- > 0; p++)
+ {
+ c = *p;
+
+ if ((c & 0xfffff800u) != 0xd800u)
+ {
+ /* Normal UTF-32 code point. Neither high nor low surrogate. */
+ if (c > 0x10ffffu)
+ {
+ *erroroffset = p - string;
+ return PCRE_UTF32_ERR3;
+ }
+ }
+ else
+ {
+ /* A surrogate */
+ *erroroffset = p - string;
+ return PCRE_UTF32_ERR1;
+ }
+ }
+
+#else /* SUPPORT_UTF */
+(void)(string); /* Keep picky compilers happy */
+(void)(length);
+(void)(erroroffset);
+#endif /* SUPPORT_UTF */
+
+return PCRE_UTF32_ERR0; /* This indicates success */
+}
+
+/* End of pcre32_valid_utf32.c */
diff --git a/pcre/pcre32_version.c b/pcre/pcre32_version.c
new file mode 100644
index 00000000000..fdaad9b0859
--- /dev/null
+++ b/pcre/pcre32_version.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_version.c"
+
+/* End of pcre32_version.c */
diff --git a/pcre/pcre32_xclass.c b/pcre/pcre32_xclass.c
new file mode 100644
index 00000000000..5662408ad5f
--- /dev/null
+++ b/pcre/pcre32_xclass.c
@@ -0,0 +1,45 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* Generate code with 32 bit character support. */
+#define COMPILE_PCRE32
+
+#include "pcre_xclass.c"
+
+/* End of pcre32_xclass.c */
diff --git a/pcre/pcre_byte_order.c b/pcre/pcre_byte_order.c
new file mode 100644
index 00000000000..01cbca36ffe
--- /dev/null
+++ b/pcre/pcre_byte_order.c
@@ -0,0 +1,319 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2013 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains an internal function that tests a compiled pattern to
+see if it was compiled with the opposite endianness. If so, it uses an
+auxiliary local function to flip the appropriate bytes. */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "pcre_internal.h"
+
+
+/*************************************************
+* Swap byte functions *
+*************************************************/
+
+/* The following functions swap the bytes of a pcre_uint16
+and pcre_uint32 value.
+
+Arguments:
+ value any number
+
+Returns: the byte swapped value
+*/
+
+static pcre_uint32
+swap_uint32(pcre_uint32 value)
+{
+return ((value & 0x000000ff) << 24) |
+ ((value & 0x0000ff00) << 8) |
+ ((value & 0x00ff0000) >> 8) |
+ (value >> 24);
+}
+
+static pcre_uint16
+swap_uint16(pcre_uint16 value)
+{
+return (value >> 8) | (value << 8);
+}
+
+
+/*************************************************
+* Test for a byte-flipped compiled regex *
+*************************************************/
+
+/* This function swaps the bytes of a compiled pattern usually
+loaded form the disk. It also sets the tables pointer, which
+is likely an invalid pointer after reload.
+
+Arguments:
+ argument_re points to the compiled expression
+ extra_data points to extra data or is NULL
+ tables points to the character tables or NULL
+
+Returns: 0 if the swap is successful, negative on error
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DECL int pcre_pattern_to_host_byte_order(pcre *argument_re,
+ pcre_extra *extra_data, const unsigned char *tables)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DECL int pcre16_pattern_to_host_byte_order(pcre16 *argument_re,
+ pcre16_extra *extra_data, const unsigned char *tables)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DECL int pcre32_pattern_to_host_byte_order(pcre32 *argument_re,
+ pcre32_extra *extra_data, const unsigned char *tables)
+#endif
+{
+REAL_PCRE *re = (REAL_PCRE *)argument_re;
+pcre_study_data *study;
+#ifndef COMPILE_PCRE8
+pcre_uchar *ptr;
+int length;
+#if defined SUPPORT_UTF && defined COMPILE_PCRE16
+BOOL utf;
+BOOL utf16_char;
+#endif /* SUPPORT_UTF && COMPILE_PCRE16 */
+#endif /* !COMPILE_PCRE8 */
+
+if (re == NULL) return PCRE_ERROR_NULL;
+if (re->magic_number == MAGIC_NUMBER)
+ {
+ if ((re->flags & PCRE_MODE) == 0) return PCRE_ERROR_BADMODE;
+ re->tables = tables;
+ return 0;
+ }
+
+if (re->magic_number != REVERSED_MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC;
+if ((swap_uint32(re->flags) & PCRE_MODE) == 0) return PCRE_ERROR_BADMODE;
+
+re->magic_number = MAGIC_NUMBER;
+re->size = swap_uint32(re->size);
+re->options = swap_uint32(re->options);
+re->flags = swap_uint32(re->flags);
+re->limit_match = swap_uint32(re->limit_match);
+re->limit_recursion = swap_uint32(re->limit_recursion);
+
+#if defined COMPILE_PCRE8 || defined COMPILE_PCRE16
+re->first_char = swap_uint16(re->first_char);
+re->req_char = swap_uint16(re->req_char);
+#elif defined COMPILE_PCRE32
+re->first_char = swap_uint32(re->first_char);
+re->req_char = swap_uint32(re->req_char);
+#endif
+
+re->max_lookbehind = swap_uint16(re->max_lookbehind);
+re->top_bracket = swap_uint16(re->top_bracket);
+re->top_backref = swap_uint16(re->top_backref);
+re->name_table_offset = swap_uint16(re->name_table_offset);
+re->name_entry_size = swap_uint16(re->name_entry_size);
+re->name_count = swap_uint16(re->name_count);
+re->ref_count = swap_uint16(re->ref_count);
+re->tables = tables;
+
+if (extra_data != NULL && (extra_data->flags & PCRE_EXTRA_STUDY_DATA) != 0)
+ {
+ study = (pcre_study_data *)extra_data->study_data;
+ study->size = swap_uint32(study->size);
+ study->flags = swap_uint32(study->flags);
+ study->minlength = swap_uint32(study->minlength);
+ }
+
+#ifndef COMPILE_PCRE8
+ptr = (pcre_uchar *)re + re->name_table_offset;
+length = re->name_count * re->name_entry_size;
+#if defined SUPPORT_UTF && defined COMPILE_PCRE16
+utf = (re->options & PCRE_UTF16) != 0;
+utf16_char = FALSE;
+#endif /* SUPPORT_UTF && COMPILE_PCRE16 */
+
+while(TRUE)
+ {
+ /* Swap previous characters. */
+ while (length-- > 0)
+ {
+#if defined COMPILE_PCRE16
+ *ptr = swap_uint16(*ptr);
+#elif defined COMPILE_PCRE32
+ *ptr = swap_uint32(*ptr);
+#endif
+ ptr++;
+ }
+#if defined SUPPORT_UTF && defined COMPILE_PCRE16
+ if (utf16_char)
+ {
+ if (HAS_EXTRALEN(ptr[-1]))
+ {
+ /* We know that there is only one extra character in UTF-16. */
+ *ptr = swap_uint16(*ptr);
+ ptr++;
+ }
+ }
+ utf16_char = FALSE;
+#endif /* SUPPORT_UTF */
+
+ /* Get next opcode. */
+ length = 0;
+#if defined COMPILE_PCRE16
+ *ptr = swap_uint16(*ptr);
+#elif defined COMPILE_PCRE32
+ *ptr = swap_uint32(*ptr);
+#endif
+ switch (*ptr)
+ {
+ case OP_END:
+ return 0;
+
+#if defined SUPPORT_UTF && defined COMPILE_PCRE16
+ case OP_CHAR:
+ case OP_CHARI:
+ case OP_NOT:
+ case OP_NOTI:
+ case OP_STAR:
+ case OP_MINSTAR:
+ case OP_PLUS:
+ case OP_MINPLUS:
+ case OP_QUERY:
+ case OP_MINQUERY:
+ case OP_UPTO:
+ case OP_MINUPTO:
+ case OP_EXACT:
+ case OP_POSSTAR:
+ case OP_POSPLUS:
+ case OP_POSQUERY:
+ case OP_POSUPTO:
+ case OP_STARI:
+ case OP_MINSTARI:
+ case OP_PLUSI:
+ case OP_MINPLUSI:
+ case OP_QUERYI:
+ case OP_MINQUERYI:
+ case OP_UPTOI:
+ case OP_MINUPTOI:
+ case OP_EXACTI:
+ case OP_POSSTARI:
+ case OP_POSPLUSI:
+ case OP_POSQUERYI:
+ case OP_POSUPTOI:
+ case OP_NOTSTAR:
+ case OP_NOTMINSTAR:
+ case OP_NOTPLUS:
+ case OP_NOTMINPLUS:
+ case OP_NOTQUERY:
+ case OP_NOTMINQUERY:
+ case OP_NOTUPTO:
+ case OP_NOTMINUPTO:
+ case OP_NOTEXACT:
+ case OP_NOTPOSSTAR:
+ case OP_NOTPOSPLUS:
+ case OP_NOTPOSQUERY:
+ case OP_NOTPOSUPTO:
+ case OP_NOTSTARI:
+ case OP_NOTMINSTARI:
+ case OP_NOTPLUSI:
+ case OP_NOTMINPLUSI:
+ case OP_NOTQUERYI:
+ case OP_NOTMINQUERYI:
+ case OP_NOTUPTOI:
+ case OP_NOTMINUPTOI:
+ case OP_NOTEXACTI:
+ case OP_NOTPOSSTARI:
+ case OP_NOTPOSPLUSI:
+ case OP_NOTPOSQUERYI:
+ case OP_NOTPOSUPTOI:
+ if (utf) utf16_char = TRUE;
+#endif
+ /* Fall through. */
+
+ default:
+ length = PRIV(OP_lengths)[*ptr] - 1;
+ break;
+
+ case OP_CLASS:
+ case OP_NCLASS:
+ /* Skip the character bit map. */
+ ptr += 32/sizeof(pcre_uchar);
+ length = 0;
+ break;
+
+ case OP_XCLASS:
+ /* Reverse the size of the XCLASS instance. */
+ ptr++;
+#if defined COMPILE_PCRE16
+ *ptr = swap_uint16(*ptr);
+#elif defined COMPILE_PCRE32
+ *ptr = swap_uint32(*ptr);
+#endif
+#ifndef COMPILE_PCRE32
+ if (LINK_SIZE > 1)
+ {
+ /* LINK_SIZE can be 1 or 2 in 16 bit mode. */
+ ptr++;
+ *ptr = swap_uint16(*ptr);
+ }
+#endif
+ ptr++;
+ length = (GET(ptr, -LINK_SIZE)) - (1 + LINK_SIZE + 1);
+#if defined COMPILE_PCRE16
+ *ptr = swap_uint16(*ptr);
+#elif defined COMPILE_PCRE32
+ *ptr = swap_uint32(*ptr);
+#endif
+ if ((*ptr & XCL_MAP) != 0)
+ {
+ /* Skip the character bit map. */
+ ptr += 32/sizeof(pcre_uchar);
+ length -= 32/sizeof(pcre_uchar);
+ }
+ break;
+ }
+ ptr++;
+ }
+/* Control should never reach here in 16/32 bit mode. */
+#endif /* !COMPILE_PCRE8 */
+
+return 0;
+}
+
+/* End of pcre_byte_order.c */
diff --git a/pcre/pcre_chartables.c b/pcre/pcre_chartables.c
new file mode 100644
index 00000000000..2a39e9ff33a
--- /dev/null
+++ b/pcre/pcre_chartables.c
@@ -0,0 +1,198 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* This file contains character tables that are used when no external tables
+are passed to PCRE by the application that calls it. The tables are used only
+for characters whose code values are less than 256.
+
+This is a default version of the tables that assumes ASCII encoding. A program
+called dftables (which is distributed with PCRE) can be used to build
+alternative versions of this file. This is necessary if you are running in an
+EBCDIC environment, or if you want to default to a different encoding, for
+example ISO-8859-1. When dftables is run, it creates these tables in the
+current locale. If PCRE is configured with --enable-rebuild-chartables, this
+happens automatically.
+
+The following #includes are present because without them gcc 4.x may remove the
+array definition from the final binary if PCRE is built into a static library
+and dead code stripping is activated. This leads to link errors. Pulling in the
+header ensures that the array gets flagged as "someone outside this compilation
+unit might reference this" and so it will always be supplied to the linker. */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "pcre_internal.h"
+
+const pcre_uint8 PRIV(default_tables)[] = {
+
+/* This table is a lower casing table. */
+
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,
+ 112,113,114,115,116,117,118,119,
+ 120,121,122, 91, 92, 93, 94, 95,
+ 96, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,
+ 112,113,114,115,116,117,118,119,
+ 120,121,122,123,124,125,126,127,
+ 128,129,130,131,132,133,134,135,
+ 136,137,138,139,140,141,142,143,
+ 144,145,146,147,148,149,150,151,
+ 152,153,154,155,156,157,158,159,
+ 160,161,162,163,164,165,166,167,
+ 168,169,170,171,172,173,174,175,
+ 176,177,178,179,180,181,182,183,
+ 184,185,186,187,188,189,190,191,
+ 192,193,194,195,196,197,198,199,
+ 200,201,202,203,204,205,206,207,
+ 208,209,210,211,212,213,214,215,
+ 216,217,218,219,220,221,222,223,
+ 224,225,226,227,228,229,230,231,
+ 232,233,234,235,236,237,238,239,
+ 240,241,242,243,244,245,246,247,
+ 248,249,250,251,252,253,254,255,
+
+/* This table is a case flipping table. */
+
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,
+ 112,113,114,115,116,117,118,119,
+ 120,121,122, 91, 92, 93, 94, 95,
+ 96, 65, 66, 67, 68, 69, 70, 71,
+ 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87,
+ 88, 89, 90,123,124,125,126,127,
+ 128,129,130,131,132,133,134,135,
+ 136,137,138,139,140,141,142,143,
+ 144,145,146,147,148,149,150,151,
+ 152,153,154,155,156,157,158,159,
+ 160,161,162,163,164,165,166,167,
+ 168,169,170,171,172,173,174,175,
+ 176,177,178,179,180,181,182,183,
+ 184,185,186,187,188,189,190,191,
+ 192,193,194,195,196,197,198,199,
+ 200,201,202,203,204,205,206,207,
+ 208,209,210,211,212,213,214,215,
+ 216,217,218,219,220,221,222,223,
+ 224,225,226,227,228,229,230,231,
+ 232,233,234,235,236,237,238,239,
+ 240,241,242,243,244,245,246,247,
+ 248,249,250,251,252,253,254,255,
+
+/* This table contains bit maps for various character classes. Each map is 32
+bytes long and the bits run from the least significant end of each byte. The
+classes that have their own maps are: space, xdigit, digit, upper, lower, word,
+graph, print, punct, and cntrl. Other classes are built from combinations. */
+
+ 0x00,0x3e,0x00,0x00,0x01,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0x00,0x00,0xff,0x03,
+ 0x7e,0x00,0x00,0x00,0x7e,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0x00,0x00,0xff,0x03,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0xfe,0xff,0xff,0x07,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0xfe,0xff,0xff,0x07,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0x00,0x00,0xff,0x03,
+ 0xfe,0xff,0xff,0x87,0xfe,0xff,0xff,0x07,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0xfe,0xff,0xff,0xff,
+ 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x7f,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0xff,0xff,0xff,0xff,
+ 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x7f,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0xfe,0xff,0x00,0xfc,
+ 0x01,0x00,0x00,0xf8,0x01,0x00,0x00,0x78,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0xff,0xff,0xff,0xff,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+/* This table identifies various classes of character by individual bits:
+ 0x01 white space character
+ 0x02 letter
+ 0x04 decimal digit
+ 0x08 hexadecimal digit
+ 0x10 alphanumeric or '_'
+ 0x80 regular expression metacharacter or binary zero
+*/
+
+ 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
+ 0x00,0x01,0x01,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
+ 0x01,0x00,0x00,0x00,0x80,0x00,0x00,0x00, /* - ' */
+ 0x80,0x80,0x80,0x80,0x00,0x00,0x80,0x00, /* ( - / */
+ 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
+ 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x80, /* 8 - ? */
+ 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* @ - G */
+ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* H - O */
+ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* P - W */
+ 0x12,0x12,0x12,0x80,0x80,0x00,0x80,0x10, /* X - _ */
+ 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* ` - g */
+ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* h - o */
+ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* p - w */
+ 0x12,0x12,0x12,0x80,0x80,0x00,0x00,0x00, /* x -127 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
+
+/* End of pcre_chartables.c */
diff --git a/pcre/pcre_chartables.c.dist b/pcre/pcre_chartables.c.dist
new file mode 100644
index 00000000000..2a39e9ff33a
--- /dev/null
+++ b/pcre/pcre_chartables.c.dist
@@ -0,0 +1,198 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* This file contains character tables that are used when no external tables
+are passed to PCRE by the application that calls it. The tables are used only
+for characters whose code values are less than 256.
+
+This is a default version of the tables that assumes ASCII encoding. A program
+called dftables (which is distributed with PCRE) can be used to build
+alternative versions of this file. This is necessary if you are running in an
+EBCDIC environment, or if you want to default to a different encoding, for
+example ISO-8859-1. When dftables is run, it creates these tables in the
+current locale. If PCRE is configured with --enable-rebuild-chartables, this
+happens automatically.
+
+The following #includes are present because without them gcc 4.x may remove the
+array definition from the final binary if PCRE is built into a static library
+and dead code stripping is activated. This leads to link errors. Pulling in the
+header ensures that the array gets flagged as "someone outside this compilation
+unit might reference this" and so it will always be supplied to the linker. */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "pcre_internal.h"
+
+const pcre_uint8 PRIV(default_tables)[] = {
+
+/* This table is a lower casing table. */
+
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,
+ 112,113,114,115,116,117,118,119,
+ 120,121,122, 91, 92, 93, 94, 95,
+ 96, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,
+ 112,113,114,115,116,117,118,119,
+ 120,121,122,123,124,125,126,127,
+ 128,129,130,131,132,133,134,135,
+ 136,137,138,139,140,141,142,143,
+ 144,145,146,147,148,149,150,151,
+ 152,153,154,155,156,157,158,159,
+ 160,161,162,163,164,165,166,167,
+ 168,169,170,171,172,173,174,175,
+ 176,177,178,179,180,181,182,183,
+ 184,185,186,187,188,189,190,191,
+ 192,193,194,195,196,197,198,199,
+ 200,201,202,203,204,205,206,207,
+ 208,209,210,211,212,213,214,215,
+ 216,217,218,219,220,221,222,223,
+ 224,225,226,227,228,229,230,231,
+ 232,233,234,235,236,237,238,239,
+ 240,241,242,243,244,245,246,247,
+ 248,249,250,251,252,253,254,255,
+
+/* This table is a case flipping table. */
+
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31,
+ 32, 33, 34, 35, 36, 37, 38, 39,
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63,
+ 64, 97, 98, 99,100,101,102,103,
+ 104,105,106,107,108,109,110,111,
+ 112,113,114,115,116,117,118,119,
+ 120,121,122, 91, 92, 93, 94, 95,
+ 96, 65, 66, 67, 68, 69, 70, 71,
+ 72, 73, 74, 75, 76, 77, 78, 79,
+ 80, 81, 82, 83, 84, 85, 86, 87,
+ 88, 89, 90,123,124,125,126,127,
+ 128,129,130,131,132,133,134,135,
+ 136,137,138,139,140,141,142,143,
+ 144,145,146,147,148,149,150,151,
+ 152,153,154,155,156,157,158,159,
+ 160,161,162,163,164,165,166,167,
+ 168,169,170,171,172,173,174,175,
+ 176,177,178,179,180,181,182,183,
+ 184,185,186,187,188,189,190,191,
+ 192,193,194,195,196,197,198,199,
+ 200,201,202,203,204,205,206,207,
+ 208,209,210,211,212,213,214,215,
+ 216,217,218,219,220,221,222,223,
+ 224,225,226,227,228,229,230,231,
+ 232,233,234,235,236,237,238,239,
+ 240,241,242,243,244,245,246,247,
+ 248,249,250,251,252,253,254,255,
+
+/* This table contains bit maps for various character classes. Each map is 32
+bytes long and the bits run from the least significant end of each byte. The
+classes that have their own maps are: space, xdigit, digit, upper, lower, word,
+graph, print, punct, and cntrl. Other classes are built from combinations. */
+
+ 0x00,0x3e,0x00,0x00,0x01,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0x00,0x00,0xff,0x03,
+ 0x7e,0x00,0x00,0x00,0x7e,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0x00,0x00,0xff,0x03,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0xfe,0xff,0xff,0x07,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0xfe,0xff,0xff,0x07,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0x00,0x00,0xff,0x03,
+ 0xfe,0xff,0xff,0x87,0xfe,0xff,0xff,0x07,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0xfe,0xff,0xff,0xff,
+ 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x7f,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0xff,0xff,0xff,0xff,
+ 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x7f,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0x00,0x00,0x00,0x00,0xfe,0xff,0x00,0xfc,
+ 0x01,0x00,0x00,0xf8,0x01,0x00,0x00,0x78,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+ 0xff,0xff,0xff,0xff,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x80,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
+
+/* This table identifies various classes of character by individual bits:
+ 0x01 white space character
+ 0x02 letter
+ 0x04 decimal digit
+ 0x08 hexadecimal digit
+ 0x10 alphanumeric or '_'
+ 0x80 regular expression metacharacter or binary zero
+*/
+
+ 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
+ 0x00,0x01,0x01,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
+ 0x01,0x00,0x00,0x00,0x80,0x00,0x00,0x00, /* - ' */
+ 0x80,0x80,0x80,0x80,0x00,0x00,0x80,0x00, /* ( - / */
+ 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
+ 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x80, /* 8 - ? */
+ 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* @ - G */
+ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* H - O */
+ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* P - W */
+ 0x12,0x12,0x12,0x80,0x80,0x00,0x80,0x10, /* X - _ */
+ 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* ` - g */
+ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* h - o */
+ 0x12,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* p - w */
+ 0x12,0x12,0x12,0x80,0x80,0x00,0x00,0x00, /* x -127 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
+
+/* End of pcre_chartables.c */
diff --git a/pcre/pcre_compile.c b/pcre/pcre_compile.c
new file mode 100644
index 00000000000..1f7bdb40b19
--- /dev/null
+++ b/pcre/pcre_compile.c
@@ -0,0 +1,8432 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2013 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains the external function pcre_compile(), along with
+supporting internal functions that are not used by other modules. */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#define NLBLOCK cd /* Block containing newline information */
+#define PSSTART start_pattern /* Field containing processed string start */
+#define PSEND end_pattern /* Field containing processed string end */
+
+#include "pcre_internal.h"
+
+
+/* When PCRE_DEBUG is defined, we need the pcre(16|32)_printint() function, which
+is also used by pcretest. PCRE_DEBUG is not defined when building a production
+library. We do not need to select pcre16_printint.c specially, because the
+COMPILE_PCREx macro will already be appropriately set. */
+
+#ifdef PCRE_DEBUG
+/* pcre_printint.c should not include any headers */
+#define PCRE_INCLUDED
+#include "pcre_printint.c"
+#undef PCRE_INCLUDED
+#endif
+
+
+/* Macro for setting individual bits in class bitmaps. */
+
+#define SETBIT(a,b) a[(b)/8] |= (1 << ((b)&7))
+
+/* Maximum length value to check against when making sure that the integer that
+holds the compiled pattern length does not overflow. We make it a bit less than
+INT_MAX to allow for adding in group terminating bytes, so that we don't have
+to check them every time. */
+
+#define OFLOW_MAX (INT_MAX - 20)
+
+/* Definitions to allow mutual recursion */
+
+static int
+ add_list_to_class(pcre_uint8 *, pcre_uchar **, int, compile_data *,
+ const pcre_uint32 *, unsigned int);
+
+static BOOL
+ compile_regex(int, pcre_uchar **, const pcre_uchar **, int *, BOOL, BOOL, int, int,
+ pcre_uint32 *, pcre_int32 *, pcre_uint32 *, pcre_int32 *, branch_chain *,
+ compile_data *, int *);
+
+
+
+/*************************************************
+* Code parameters and static tables *
+*************************************************/
+
+/* This value specifies the size of stack workspace that is used during the
+first pre-compile phase that determines how much memory is required. The regex
+is partly compiled into this space, but the compiled parts are discarded as
+soon as they can be, so that hopefully there will never be an overrun. The code
+does, however, check for an overrun. The largest amount I've seen used is 218,
+so this number is very generous.
+
+The same workspace is used during the second, actual compile phase for
+remembering forward references to groups so that they can be filled in at the
+end. Each entry in this list occupies LINK_SIZE bytes, so even when LINK_SIZE
+is 4 there is plenty of room for most patterns. However, the memory can get
+filled up by repetitions of forward references, for example patterns like
+/(?1){0,1999}(b)/, and one user did hit the limit. The code has been changed so
+that the workspace is expanded using malloc() in this situation. The value
+below is therefore a minimum, and we put a maximum on it for safety. The
+minimum is now also defined in terms of LINK_SIZE so that the use of malloc()
+kicks in at the same number of forward references in all cases. */
+
+#define COMPILE_WORK_SIZE (2048*LINK_SIZE)
+#define COMPILE_WORK_SIZE_MAX (100*COMPILE_WORK_SIZE)
+
+/* The overrun tests check for a slightly smaller size so that they detect the
+overrun before it actually does run off the end of the data block. */
+
+#define WORK_SIZE_SAFETY_MARGIN (100)
+
+/* Private flags added to firstchar and reqchar. */
+
+#define REQ_CASELESS (1 << 0) /* Indicates caselessness */
+#define REQ_VARY (1 << 1) /* Reqchar followed non-literal item */
+/* Negative values for the firstchar and reqchar flags */
+#define REQ_UNSET (-2)
+#define REQ_NONE (-1)
+
+/* Repeated character flags. */
+
+#define UTF_LENGTH 0x10000000l /* The char contains its length. */
+
+/* Table for handling escaped characters in the range '0'-'z'. Positive returns
+are simple data values; negative values are for special things like \d and so
+on. Zero means further processing is needed (for things like \x), or the escape
+is invalid. */
+
+#ifndef EBCDIC
+
+/* This is the "normal" table for ASCII systems or for EBCDIC systems running
+in UTF-8 mode. */
+
+static const short int escapes[] = {
+ 0, 0,
+ 0, 0,
+ 0, 0,
+ 0, 0,
+ 0, 0,
+ CHAR_COLON, CHAR_SEMICOLON,
+ CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN,
+ CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK,
+ CHAR_COMMERCIAL_AT, -ESC_A,
+ -ESC_B, -ESC_C,
+ -ESC_D, -ESC_E,
+ 0, -ESC_G,
+ -ESC_H, 0,
+ 0, -ESC_K,
+ 0, 0,
+ -ESC_N, 0,
+ -ESC_P, -ESC_Q,
+ -ESC_R, -ESC_S,
+ 0, 0,
+ -ESC_V, -ESC_W,
+ -ESC_X, 0,
+ -ESC_Z, CHAR_LEFT_SQUARE_BRACKET,
+ CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET,
+ CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE,
+ CHAR_GRAVE_ACCENT, 7,
+ -ESC_b, 0,
+ -ESC_d, ESC_e,
+ ESC_f, 0,
+ -ESC_h, 0,
+ 0, -ESC_k,
+ 0, 0,
+ ESC_n, 0,
+ -ESC_p, 0,
+ ESC_r, -ESC_s,
+ ESC_tee, 0,
+ -ESC_v, -ESC_w,
+ 0, 0,
+ -ESC_z
+};
+
+#else
+
+/* This is the "abnormal" table for EBCDIC systems without UTF-8 support. */
+
+static const short int escapes[] = {
+/* 48 */ 0, 0, 0, '.', '<', '(', '+', '|',
+/* 50 */ '&', 0, 0, 0, 0, 0, 0, 0,
+/* 58 */ 0, 0, '!', '$', '*', ')', ';', '~',
+/* 60 */ '-', '/', 0, 0, 0, 0, 0, 0,
+/* 68 */ 0, 0, '|', ',', '%', '_', '>', '?',
+/* 70 */ 0, 0, 0, 0, 0, 0, 0, 0,
+/* 78 */ 0, '`', ':', '#', '@', '\'', '=', '"',
+/* 80 */ 0, 7, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
+/* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
+/* 90 */ 0, 0, -ESC_k, 'l', 0, ESC_n, 0, -ESC_p,
+/* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
+/* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
+/* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
+/* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
+/* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
+/* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
+/* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
+/* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P,
+/* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
+/* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
+/* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
+/* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
+/* F8 */ 0, 0, 0, 0, 0, 0, 0, 0
+};
+#endif
+
+
+/* Table of special "verbs" like (*PRUNE). This is a short table, so it is
+searched linearly. Put all the names into a single string, in order to reduce
+the number of relocations when a shared library is dynamically linked. The
+string is built from string macros so that it works in UTF-8 mode on EBCDIC
+platforms. */
+
+typedef struct verbitem {
+ int len; /* Length of verb name */
+ int op; /* Op when no arg, or -1 if arg mandatory */
+ int op_arg; /* Op when arg present, or -1 if not allowed */
+} verbitem;
+
+static const char verbnames[] =
+ "\0" /* Empty name is a shorthand for MARK */
+ STRING_MARK0
+ STRING_ACCEPT0
+ STRING_COMMIT0
+ STRING_F0
+ STRING_FAIL0
+ STRING_PRUNE0
+ STRING_SKIP0
+ STRING_THEN;
+
+static const verbitem verbs[] = {
+ { 0, -1, OP_MARK },
+ { 4, -1, OP_MARK },
+ { 6, OP_ACCEPT, -1 },
+ { 6, OP_COMMIT, -1 },
+ { 1, OP_FAIL, -1 },
+ { 4, OP_FAIL, -1 },
+ { 5, OP_PRUNE, OP_PRUNE_ARG },
+ { 4, OP_SKIP, OP_SKIP_ARG },
+ { 4, OP_THEN, OP_THEN_ARG }
+};
+
+static const int verbcount = sizeof(verbs)/sizeof(verbitem);
+
+
+/* Tables of names of POSIX character classes and their lengths. The names are
+now all in a single string, to reduce the number of relocations when a shared
+library is dynamically loaded. The list of lengths is terminated by a zero
+length entry. The first three must be alpha, lower, upper, as this is assumed
+for handling case independence. */
+
+static const char posix_names[] =
+ STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0
+ STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0
+ STRING_graph0 STRING_print0 STRING_punct0 STRING_space0
+ STRING_word0 STRING_xdigit;
+
+static const pcre_uint8 posix_name_lengths[] = {
+ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
+
+/* Table of class bit maps for each POSIX class. Each class is formed from a
+base map, with an optional addition or removal of another map. Then, for some
+classes, there is some additional tweaking: for [:blank:] the vertical space
+characters are removed, and for [:alpha:] and [:alnum:] the underscore
+character is removed. The triples in the table consist of the base map offset,
+second map offset or -1 if no second map, and a non-negative value for map
+addition or a negative value for map subtraction (if there are two maps). The
+absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
+remove vertical space characters, 2 => remove underscore. */
+
+static const int posix_class_maps[] = {
+ cbit_word, cbit_digit, -2, /* alpha */
+ cbit_lower, -1, 0, /* lower */
+ cbit_upper, -1, 0, /* upper */
+ cbit_word, -1, 2, /* alnum - word without underscore */
+ cbit_print, cbit_cntrl, 0, /* ascii */
+ cbit_space, -1, 1, /* blank - a GNU extension */
+ cbit_cntrl, -1, 0, /* cntrl */
+ cbit_digit, -1, 0, /* digit */
+ cbit_graph, -1, 0, /* graph */
+ cbit_print, -1, 0, /* print */
+ cbit_punct, -1, 0, /* punct */
+ cbit_space, -1, 0, /* space */
+ cbit_word, -1, 0, /* word - a Perl extension */
+ cbit_xdigit,-1, 0 /* xdigit */
+};
+
+/* Table of substitutes for \d etc when PCRE_UCP is set. The POSIX class
+substitutes must be in the order of the names, defined above, and there are
+both positive and negative cases. NULL means no substitute. */
+
+#ifdef SUPPORT_UCP
+static const pcre_uchar string_PNd[] = {
+ CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_pNd[] = {
+ CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_PXsp[] = {
+ CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_pXsp[] = {
+ CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_PXwd[] = {
+ CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_pXwd[] = {
+ CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+
+static const pcre_uchar *substitutes[] = {
+ string_PNd, /* \D */
+ string_pNd, /* \d */
+ string_PXsp, /* \S */ /* NOTE: Xsp is Perl space */
+ string_pXsp, /* \s */
+ string_PXwd, /* \W */
+ string_pXwd /* \w */
+};
+
+static const pcre_uchar string_pL[] = {
+ CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_pLl[] = {
+ CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_pLu[] = {
+ CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_pXan[] = {
+ CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_h[] = {
+ CHAR_BACKSLASH, CHAR_h, '\0' };
+static const pcre_uchar string_pXps[] = {
+ CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_PL[] = {
+ CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_PLl[] = {
+ CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_PLu[] = {
+ CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_PXan[] = {
+ CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+static const pcre_uchar string_H[] = {
+ CHAR_BACKSLASH, CHAR_H, '\0' };
+static const pcre_uchar string_PXps[] = {
+ CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
+ CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
+
+static const pcre_uchar *posix_substitutes[] = {
+ string_pL, /* alpha */
+ string_pLl, /* lower */
+ string_pLu, /* upper */
+ string_pXan, /* alnum */
+ NULL, /* ascii */
+ string_h, /* blank */
+ NULL, /* cntrl */
+ string_pNd, /* digit */
+ NULL, /* graph */
+ NULL, /* print */
+ NULL, /* punct */
+ string_pXps, /* space */ /* NOTE: Xps is POSIX space */
+ string_pXwd, /* word */
+ NULL, /* xdigit */
+ /* Negated cases */
+ string_PL, /* ^alpha */
+ string_PLl, /* ^lower */
+ string_PLu, /* ^upper */
+ string_PXan, /* ^alnum */
+ NULL, /* ^ascii */
+ string_H, /* ^blank */
+ NULL, /* ^cntrl */
+ string_PNd, /* ^digit */
+ NULL, /* ^graph */
+ NULL, /* ^print */
+ NULL, /* ^punct */
+ string_PXps, /* ^space */ /* NOTE: Xps is POSIX space */
+ string_PXwd, /* ^word */
+ NULL /* ^xdigit */
+};
+#define POSIX_SUBSIZE (sizeof(posix_substitutes) / sizeof(pcre_uchar *))
+#endif
+
+#define STRING(a) # a
+#define XSTRING(s) STRING(s)
+
+/* The texts of compile-time error messages. These are "char *" because they
+are passed to the outside world. Do not ever re-use any error number, because
+they are documented. Always add a new error instead. Messages marked DEAD below
+are no longer used. This used to be a table of strings, but in order to reduce
+the number of relocations needed when a shared library is loaded dynamically,
+it is now one long string. We cannot use a table of offsets, because the
+lengths of inserts such as XSTRING(MAX_NAME_SIZE) are not known. Instead, we
+simply count through to the one we want - this isn't a performance issue
+because these strings are used only when there is a compilation error.
+
+Each substring ends with \0 to insert a null character. This includes the final
+substring, so that the whole string ends with \0\0, which can be detected when
+counting through. */
+
+static const char error_texts[] =
+ "no error\0"
+ "\\ at end of pattern\0"
+ "\\c at end of pattern\0"
+ "unrecognized character follows \\\0"
+ "numbers out of order in {} quantifier\0"
+ /* 5 */
+ "number too big in {} quantifier\0"
+ "missing terminating ] for character class\0"
+ "invalid escape sequence in character class\0"
+ "range out of order in character class\0"
+ "nothing to repeat\0"
+ /* 10 */
+ "operand of unlimited repeat could match the empty string\0" /** DEAD **/
+ "internal error: unexpected repeat\0"
+ "unrecognized character after (? or (?-\0"
+ "POSIX named classes are supported only within a class\0"
+ "missing )\0"
+ /* 15 */
+ "reference to non-existent subpattern\0"
+ "erroffset passed as NULL\0"
+ "unknown option bit(s) set\0"
+ "missing ) after comment\0"
+ "parentheses nested too deeply\0" /** DEAD **/
+ /* 20 */
+ "regular expression is too large\0"
+ "failed to get memory\0"
+ "unmatched parentheses\0"
+ "internal error: code overflow\0"
+ "unrecognized character after (?<\0"
+ /* 25 */
+ "lookbehind assertion is not fixed length\0"
+ "malformed number or name after (?(\0"
+ "conditional group contains more than two branches\0"
+ "assertion expected after (?(\0"
+ "(?R or (?[+-]digits must be followed by )\0"
+ /* 30 */
+ "unknown POSIX class name\0"
+ "POSIX collating elements are not supported\0"
+ "this version of PCRE is compiled without UTF support\0"
+ "spare error\0" /** DEAD **/
+ "character value in \\x{...} sequence is too large\0"
+ /* 35 */
+ "invalid condition (?(0)\0"
+ "\\C not allowed in lookbehind assertion\0"
+ "PCRE does not support \\L, \\l, \\N{name}, \\U, or \\u\0"
+ "number after (?C is > 255\0"
+ "closing ) for (?C expected\0"
+ /* 40 */
+ "recursive call could loop indefinitely\0"
+ "unrecognized character after (?P\0"
+ "syntax error in subpattern name (missing terminator)\0"
+ "two named subpatterns have the same name\0"
+ "invalid UTF-8 string\0"
+ /* 45 */
+ "support for \\P, \\p, and \\X has not been compiled\0"
+ "malformed \\P or \\p sequence\0"
+ "unknown property name after \\P or \\p\0"
+ "subpattern name is too long (maximum " XSTRING(MAX_NAME_SIZE) " characters)\0"
+ "too many named subpatterns (maximum " XSTRING(MAX_NAME_COUNT) ")\0"
+ /* 50 */
+ "repeated subpattern is too long\0" /** DEAD **/
+ "octal value is greater than \\377 in 8-bit non-UTF-8 mode\0"
+ "internal error: overran compiling workspace\0"
+ "internal error: previously-checked referenced subpattern not found\0"
+ "DEFINE group contains more than one branch\0"
+ /* 55 */
+ "repeating a DEFINE group is not allowed\0" /** DEAD **/
+ "inconsistent NEWLINE options\0"
+ "\\g is not followed by a braced, angle-bracketed, or quoted name/number or by a plain number\0"
+ "a numbered reference must not be zero\0"
+ "an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)\0"
+ /* 60 */
+ "(*VERB) not recognized or malformed\0"
+ "number is too big\0"
+ "subpattern name expected\0"
+ "digit expected after (?+\0"
+ "] is an invalid data character in JavaScript compatibility mode\0"
+ /* 65 */
+ "different names for subpatterns of the same number are not allowed\0"
+ "(*MARK) must have an argument\0"
+ "this version of PCRE is not compiled with Unicode property support\0"
+ "\\c must be followed by an ASCII character\0"
+ "\\k is not followed by a braced, angle-bracketed, or quoted name\0"
+ /* 70 */
+ "internal error: unknown opcode in find_fixedlength()\0"
+ "\\N is not supported in a class\0"
+ "too many forward references\0"
+ "disallowed Unicode code point (>= 0xd800 && <= 0xdfff)\0"
+ "invalid UTF-16 string\0"
+ /* 75 */
+ "name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)\0"
+ "character value in \\u.... sequence is too large\0"
+ "invalid UTF-32 string\0"
+ "setting UTF is disabled by the application\0"
+ ;
+
+/* Table to identify digits and hex digits. This is used when compiling
+patterns. Note that the tables in chartables are dependent on the locale, and
+may mark arbitrary characters as digits - but the PCRE compiling code expects
+to handle only 0-9, a-z, and A-Z as digits when compiling. That is why we have
+a private table here. It costs 256 bytes, but it is a lot faster than doing
+character value tests (at least in some simple cases I timed), and in some
+applications one wants PCRE to compile efficiently as well as match
+efficiently.
+
+For convenience, we use the same bit definitions as in chartables:
+
+ 0x04 decimal digit
+ 0x08 hexadecimal digit
+
+Then we can use ctype_digit and ctype_xdigit in the code. */
+
+/* Using a simple comparison for decimal numbers rather than a memory read
+is much faster, and the resulting code is simpler (the compiler turns it
+into a subtraction and unsigned comparison). */
+
+#define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9)
+
+#ifndef EBCDIC
+
+/* This is the "normal" case, for ASCII systems, and EBCDIC systems running in
+UTF-8 mode. */
+
+static const pcre_uint8 digitab[] =
+ {
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - ' */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ( - / */
+ 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 */
+ 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00, /* 8 - ? */
+ 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* @ - G */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H - O */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* P - W */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* X - _ */
+ 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* ` - g */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h - o */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* p - w */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* x -127 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 128-135 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 136-143 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144-151 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 152-159 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160-167 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 168-175 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 176-183 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 192-199 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 200-207 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 208-215 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 216-223 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 224-231 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 232-239 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 240-247 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};/* 248-255 */
+
+#else
+
+/* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */
+
+static const pcre_uint8 digitab[] =
+ {
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 0- 7 0 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 8- 15 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 16- 23 10 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 32- 39 20 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 30 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 40 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 72- | */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 50 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 88- 95 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 60 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 104- ? */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 70 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
+ 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* 128- g 80 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 144- p 90 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 160- x A0 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 B0 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
+ 0x00,0x08,0x08,0x08,0x08,0x08,0x08,0x00, /* { - G C0 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* } - P D0 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* \ - X E0 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
+ 0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c,0x0c, /* 0 - 7 F0 */
+ 0x0c,0x0c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
+
+static const pcre_uint8 ebcdic_chartab[] = { /* chartable partial dup */
+ 0x80,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 0- 7 */
+ 0x00,0x00,0x00,0x00,0x01,0x01,0x00,0x00, /* 8- 15 */
+ 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 16- 23 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 24- 31 */
+ 0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00, /* 32- 39 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 40- 47 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 48- 55 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 56- 63 */
+ 0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - 71 */
+ 0x00,0x00,0x00,0x80,0x00,0x80,0x80,0x80, /* 72- | */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* & - 87 */
+ 0x00,0x00,0x00,0x80,0x80,0x80,0x00,0x00, /* 88- 95 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* - -103 */
+ 0x00,0x00,0x00,0x00,0x00,0x10,0x00,0x80, /* 104- ? */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 112-119 */
+ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* 120- " */
+ 0x00,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* 128- g */
+ 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* h -143 */
+ 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* 144- p */
+ 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* q -159 */
+ 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* 160- x */
+ 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* y -175 */
+ 0x80,0x00,0x00,0x00,0x00,0x00,0x00,0x00, /* ^ -183 */
+ 0x00,0x00,0x80,0x00,0x00,0x00,0x00,0x00, /* 184-191 */
+ 0x80,0x1a,0x1a,0x1a,0x1a,0x1a,0x1a,0x12, /* { - G */
+ 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* H -207 */
+ 0x00,0x12,0x12,0x12,0x12,0x12,0x12,0x12, /* } - P */
+ 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Q -223 */
+ 0x00,0x00,0x12,0x12,0x12,0x12,0x12,0x12, /* \ - X */
+ 0x12,0x12,0x00,0x00,0x00,0x00,0x00,0x00, /* Y -239 */
+ 0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c,0x1c, /* 0 - 7 */
+ 0x1c,0x1c,0x00,0x00,0x00,0x00,0x00,0x00};/* 8 -255 */
+#endif
+
+
+
+/*************************************************
+* Find an error text *
+*************************************************/
+
+/* The error texts are now all in one long string, to save on relocations. As
+some of the text is of unknown length, we can't use a table of offsets.
+Instead, just count through the strings. This is not a performance issue
+because it happens only when there has been a compilation error.
+
+Argument: the error number
+Returns: pointer to the error string
+*/
+
+static const char *
+find_error_text(int n)
+{
+const char *s = error_texts;
+for (; n > 0; n--)
+ {
+ while (*s++ != CHAR_NULL) {};
+ if (*s == CHAR_NULL) return "Error text not found (please report)";
+ }
+return s;
+}
+
+
+/*************************************************
+* Expand the workspace *
+*************************************************/
+
+/* This function is called during the second compiling phase, if the number of
+forward references fills the existing workspace, which is originally a block on
+the stack. A larger block is obtained from malloc() unless the ultimate limit
+has been reached or the increase will be rather small.
+
+Argument: pointer to the compile data block
+Returns: 0 if all went well, else an error number
+*/
+
+static int
+expand_workspace(compile_data *cd)
+{
+pcre_uchar *newspace;
+int newsize = cd->workspace_size * 2;
+
+if (newsize > COMPILE_WORK_SIZE_MAX) newsize = COMPILE_WORK_SIZE_MAX;
+if (cd->workspace_size >= COMPILE_WORK_SIZE_MAX ||
+ newsize - cd->workspace_size < WORK_SIZE_SAFETY_MARGIN)
+ return ERR72;
+
+newspace = (PUBL(malloc))(IN_UCHARS(newsize));
+if (newspace == NULL) return ERR21;
+memcpy(newspace, cd->start_workspace, cd->workspace_size * sizeof(pcre_uchar));
+cd->hwm = (pcre_uchar *)newspace + (cd->hwm - cd->start_workspace);
+if (cd->workspace_size > COMPILE_WORK_SIZE)
+ (PUBL(free))((void *)cd->start_workspace);
+cd->start_workspace = newspace;
+cd->workspace_size = newsize;
+return 0;
+}
+
+
+
+/*************************************************
+* Check for counted repeat *
+*************************************************/
+
+/* This function is called when a '{' is encountered in a place where it might
+start a quantifier. It looks ahead to see if it really is a quantifier or not.
+It is only a quantifier if it is one of the forms {ddd} {ddd,} or {ddd,ddd}
+where the ddds are digits.
+
+Arguments:
+ p pointer to the first char after '{'
+
+Returns: TRUE or FALSE
+*/
+
+static BOOL
+is_counted_repeat(const pcre_uchar *p)
+{
+if (!IS_DIGIT(*p)) return FALSE;
+p++;
+while (IS_DIGIT(*p)) p++;
+if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
+
+if (*p++ != CHAR_COMMA) return FALSE;
+if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
+
+if (!IS_DIGIT(*p)) return FALSE;
+p++;
+while (IS_DIGIT(*p)) p++;
+
+return (*p == CHAR_RIGHT_CURLY_BRACKET);
+}
+
+
+
+/*************************************************
+* Handle escapes *
+*************************************************/
+
+/* This function is called when a \ has been encountered. It either returns a
+positive value for a simple escape such as \n, or 0 for a data character
+which will be placed in chptr. A backreference to group n is returned as
+negative n. When UTF-8 is enabled, a positive value greater than 255 may
+be returned in chptr.
+On entry,ptr is pointing at the \. On exit, it is on the final character of the
+escape sequence.
+
+Arguments:
+ ptrptr points to the pattern position pointer
+ chptr points to the data character
+ errorcodeptr points to the errorcode variable
+ bracount number of previous extracting brackets
+ options the options bits
+ isclass TRUE if inside a character class
+
+Returns: zero => a data character
+ positive => a special escape sequence
+ negative => a back reference
+ on error, errorcodeptr is set
+*/
+
+static int
+check_escape(const pcre_uchar **ptrptr, pcre_uint32 *chptr, int *errorcodeptr,
+ int bracount, int options, BOOL isclass)
+{
+/* PCRE_UTF16 has the same value as PCRE_UTF8. */
+BOOL utf = (options & PCRE_UTF8) != 0;
+const pcre_uchar *ptr = *ptrptr + 1;
+pcre_uint32 c;
+int escape = 0;
+int i;
+
+GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
+ptr--; /* Set pointer back to the last byte */
+
+/* If backslash is at the end of the pattern, it's an error. */
+
+if (c == CHAR_NULL) *errorcodeptr = ERR1;
+
+/* Non-alphanumerics are literals. For digits or letters, do an initial lookup
+in a table. A non-zero result is something that can be returned immediately.
+Otherwise further processing may be required. */
+
+#ifndef EBCDIC /* ASCII/UTF-8 coding */
+/* Not alphanumeric */
+else if (c < CHAR_0 || c > CHAR_z) {}
+else if ((i = escapes[c - CHAR_0]) != 0)
+ { if (i > 0) c = (pcre_uint32)i; else escape = -i; }
+
+#else /* EBCDIC coding */
+/* Not alphanumeric */
+else if (c < CHAR_a || (!MAX_255(c) || (ebcdic_chartab[c] & 0x0E) == 0)) {}
+else if ((i = escapes[c - 0x48]) != 0) { if (i > 0) c = (pcre_uint32)i; else escape = -i; }
+#endif
+
+/* Escapes that need further processing, or are illegal. */
+
+else
+ {
+ const pcre_uchar *oldptr;
+ BOOL braced, negated, overflow;
+ int s;
+
+ switch (c)
+ {
+ /* A number of Perl escapes are not handled by PCRE. We give an explicit
+ error. */
+
+ case CHAR_l:
+ case CHAR_L:
+ *errorcodeptr = ERR37;
+ break;
+
+ case CHAR_u:
+ if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
+ {
+ /* In JavaScript, \u must be followed by four hexadecimal numbers.
+ Otherwise it is a lowercase u letter. */
+ if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0
+ && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0
+ && MAX_255(ptr[3]) && (digitab[ptr[3]] & ctype_xdigit) != 0
+ && MAX_255(ptr[4]) && (digitab[ptr[4]] & ctype_xdigit) != 0)
+ {
+ c = 0;
+ for (i = 0; i < 4; ++i)
+ {
+ register pcre_uint32 cc = *(++ptr);
+#ifndef EBCDIC /* ASCII/UTF-8 coding */
+ if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
+ c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
+#else /* EBCDIC coding */
+ if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
+ c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
+#endif
+ }
+
+#if defined COMPILE_PCRE8
+ if (c > (utf ? 0x10ffffU : 0xffU))
+#elif defined COMPILE_PCRE16
+ if (c > (utf ? 0x10ffffU : 0xffffU))
+#elif defined COMPILE_PCRE32
+ if (utf && c > 0x10ffffU)
+#endif
+ {
+ *errorcodeptr = ERR76;
+ }
+ else if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
+ }
+ }
+ else
+ *errorcodeptr = ERR37;
+ break;
+
+ case CHAR_U:
+ /* In JavaScript, \U is an uppercase U letter. */
+ if ((options & PCRE_JAVASCRIPT_COMPAT) == 0) *errorcodeptr = ERR37;
+ break;
+
+ /* In a character class, \g is just a literal "g". Outside a character
+ class, \g must be followed by one of a number of specific things:
+
+ (1) A number, either plain or braced. If positive, it is an absolute
+ backreference. If negative, it is a relative backreference. This is a Perl
+ 5.10 feature.
+
+ (2) Perl 5.10 also supports \g{name} as a reference to a named group. This
+ is part of Perl's movement towards a unified syntax for back references. As
+ this is synonymous with \k{name}, we fudge it up by pretending it really
+ was \k.
+
+ (3) For Oniguruma compatibility we also support \g followed by a name or a
+ number either in angle brackets or in single quotes. However, these are
+ (possibly recursive) subroutine calls, _not_ backreferences. Just return
+ the ESC_g code (cf \k). */
+
+ case CHAR_g:
+ if (isclass) break;
+ if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE)
+ {
+ escape = ESC_g;
+ break;
+ }
+
+ /* Handle the Perl-compatible cases */
+
+ if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
+ {
+ const pcre_uchar *p;
+ for (p = ptr+2; *p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET; p++)
+ if (*p != CHAR_MINUS && !IS_DIGIT(*p)) break;
+ if (*p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET)
+ {
+ escape = ESC_k;
+ break;
+ }
+ braced = TRUE;
+ ptr++;
+ }
+ else braced = FALSE;
+
+ if (ptr[1] == CHAR_MINUS)
+ {
+ negated = TRUE;
+ ptr++;
+ }
+ else negated = FALSE;
+
+ /* The integer range is limited by the machine's int representation. */
+ s = 0;
+ overflow = FALSE;
+ while (IS_DIGIT(ptr[1]))
+ {
+ if (s > INT_MAX / 10 - 1) /* Integer overflow */
+ {
+ overflow = TRUE;
+ break;
+ }
+ s = s * 10 + (int)(*(++ptr) - CHAR_0);
+ }
+ if (overflow) /* Integer overflow */
+ {
+ while (IS_DIGIT(ptr[1]))
+ ptr++;
+ *errorcodeptr = ERR61;
+ break;
+ }
+
+ if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET)
+ {
+ *errorcodeptr = ERR57;
+ break;
+ }
+
+ if (s == 0)
+ {
+ *errorcodeptr = ERR58;
+ break;
+ }
+
+ if (negated)
+ {
+ if (s > bracount)
+ {
+ *errorcodeptr = ERR15;
+ break;
+ }
+ s = bracount - (s - 1);
+ }
+
+ escape = -s;
+ break;
+
+ /* The handling of escape sequences consisting of a string of digits
+ starting with one that is not zero is not straightforward. By experiment,
+ the way Perl works seems to be as follows:
+
+ Outside a character class, the digits are read as a decimal number. If the
+ number is less than 10, or if there are that many previous extracting
+ left brackets, then it is a back reference. Otherwise, up to three octal
+ digits are read to form an escaped byte. Thus \123 is likely to be octal
+ 123 (cf \0123, which is octal 012 followed by the literal 3). If the octal
+ value is greater than 377, the least significant 8 bits are taken. Inside a
+ character class, \ followed by a digit is always an octal number. */
+
+ case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5:
+ case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
+
+ if (!isclass)
+ {
+ oldptr = ptr;
+ /* The integer range is limited by the machine's int representation. */
+ s = (int)(c -CHAR_0);
+ overflow = FALSE;
+ while (IS_DIGIT(ptr[1]))
+ {
+ if (s > INT_MAX / 10 - 1) /* Integer overflow */
+ {
+ overflow = TRUE;
+ break;
+ }
+ s = s * 10 + (int)(*(++ptr) - CHAR_0);
+ }
+ if (overflow) /* Integer overflow */
+ {
+ while (IS_DIGIT(ptr[1]))
+ ptr++;
+ *errorcodeptr = ERR61;
+ break;
+ }
+ if (s < 10 || s <= bracount)
+ {
+ escape = -s;
+ break;
+ }
+ ptr = oldptr; /* Put the pointer back and fall through */
+ }
+
+ /* Handle an octal number following \. If the first digit is 8 or 9, Perl
+ generates a binary zero byte and treats the digit as a following literal.
+ Thus we have to pull back the pointer by one. */
+
+ if ((c = *ptr) >= CHAR_8)
+ {
+ ptr--;
+ c = 0;
+ break;
+ }
+
+ /* \0 always starts an octal number, but we may drop through to here with a
+ larger first octal digit. The original code used just to take the least
+ significant 8 bits of octal numbers (I think this is what early Perls used
+ to do). Nowadays we allow for larger numbers in UTF-8 mode and 16-bit mode,
+ but no more than 3 octal digits. */
+
+ case CHAR_0:
+ c -= CHAR_0;
+ while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7)
+ c = c * 8 + *(++ptr) - CHAR_0;
+#ifdef COMPILE_PCRE8
+ if (!utf && c > 0xff) *errorcodeptr = ERR51;
+#endif
+ break;
+
+ /* \x is complicated. \x{ddd} is a character number which can be greater
+ than 0xff in utf or non-8bit mode, but only if the ddd are hex digits.
+ If not, { is treated as a data character. */
+
+ case CHAR_x:
+ if ((options & PCRE_JAVASCRIPT_COMPAT) != 0)
+ {
+ /* In JavaScript, \x must be followed by two hexadecimal numbers.
+ Otherwise it is a lowercase x letter. */
+ if (MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0
+ && MAX_255(ptr[2]) && (digitab[ptr[2]] & ctype_xdigit) != 0)
+ {
+ c = 0;
+ for (i = 0; i < 2; ++i)
+ {
+ register pcre_uint32 cc = *(++ptr);
+#ifndef EBCDIC /* ASCII/UTF-8 coding */
+ if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
+ c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
+#else /* EBCDIC coding */
+ if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
+ c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
+#endif
+ }
+ }
+ break;
+ }
+
+ if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
+ {
+ const pcre_uchar *pt = ptr + 2;
+
+ c = 0;
+ overflow = FALSE;
+ while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0)
+ {
+ register pcre_uint32 cc = *pt++;
+ if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */
+
+#ifdef COMPILE_PCRE32
+ if (c >= 0x10000000l) { overflow = TRUE; break; }
+#endif
+
+#ifndef EBCDIC /* ASCII/UTF-8 coding */
+ if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
+ c = (c << 4) + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
+#else /* EBCDIC coding */
+ if (cc >= CHAR_a && cc <= CHAR_z) cc += 64; /* Convert to upper case */
+ c = (c << 4) + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
+#endif
+
+#if defined COMPILE_PCRE8
+ if (c > (utf ? 0x10ffffU : 0xffU)) { overflow = TRUE; break; }
+#elif defined COMPILE_PCRE16
+ if (c > (utf ? 0x10ffffU : 0xffffU)) { overflow = TRUE; break; }
+#elif defined COMPILE_PCRE32
+ if (utf && c > 0x10ffffU) { overflow = TRUE; break; }
+#endif
+ }
+
+ if (overflow)
+ {
+ while (MAX_255(*pt) && (digitab[*pt] & ctype_xdigit) != 0) pt++;
+ *errorcodeptr = ERR34;
+ }
+
+ if (*pt == CHAR_RIGHT_CURLY_BRACKET)
+ {
+ if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
+ ptr = pt;
+ break;
+ }
+
+ /* If the sequence of hex digits does not end with '}', then we don't
+ recognize this construct; fall through to the normal \x handling. */
+ }
+
+ /* Read just a single-byte hex-defined char */
+
+ c = 0;
+ while (i++ < 2 && MAX_255(ptr[1]) && (digitab[ptr[1]] & ctype_xdigit) != 0)
+ {
+ pcre_uint32 cc; /* Some compilers don't like */
+ cc = *(++ptr); /* ++ in initializers */
+#ifndef EBCDIC /* ASCII/UTF-8 coding */
+ if (cc >= CHAR_a) cc -= 32; /* Convert to upper case */
+ c = c * 16 + cc - ((cc < CHAR_A)? CHAR_0 : (CHAR_A - 10));
+#else /* EBCDIC coding */
+ if (cc <= CHAR_z) cc += 64; /* Convert to upper case */
+ c = c * 16 + cc - ((cc >= CHAR_0)? CHAR_0 : (CHAR_A - 10));
+#endif
+ }
+ break;
+
+ /* For \c, a following letter is upper-cased; then the 0x40 bit is flipped.
+ An error is given if the byte following \c is not an ASCII character. This
+ coding is ASCII-specific, but then the whole concept of \cx is
+ ASCII-specific. (However, an EBCDIC equivalent has now been added.) */
+
+ case CHAR_c:
+ c = *(++ptr);
+ if (c == CHAR_NULL)
+ {
+ *errorcodeptr = ERR2;
+ break;
+ }
+#ifndef EBCDIC /* ASCII/UTF-8 coding */
+ if (c > 127) /* Excludes all non-ASCII in either mode */
+ {
+ *errorcodeptr = ERR68;
+ break;
+ }
+ if (c >= CHAR_a && c <= CHAR_z) c -= 32;
+ c ^= 0x40;
+#else /* EBCDIC coding */
+ if (c >= CHAR_a && c <= CHAR_z) c += 64;
+ c ^= 0xC0;
+#endif
+ break;
+
+ /* PCRE_EXTRA enables extensions to Perl in the matter of escapes. Any
+ other alphanumeric following \ is an error if PCRE_EXTRA was set;
+ otherwise, for Perl compatibility, it is a literal. This code looks a bit
+ odd, but there used to be some cases other than the default, and there may
+ be again in future, so I haven't "optimized" it. */
+
+ default:
+ if ((options & PCRE_EXTRA) != 0) switch(c)
+ {
+ default:
+ *errorcodeptr = ERR3;
+ break;
+ }
+ break;
+ }
+ }
+
+/* Perl supports \N{name} for character names, as well as plain \N for "not
+newline". PCRE does not support \N{name}. However, it does support
+quantification such as \N{2,3}. */
+
+if (escape == ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET &&
+ !is_counted_repeat(ptr+2))
+ *errorcodeptr = ERR37;
+
+/* If PCRE_UCP is set, we change the values for \d etc. */
+
+if ((options & PCRE_UCP) != 0 && escape >= ESC_D && escape <= ESC_w)
+ escape += (ESC_DU - ESC_D);
+
+/* Set the pointer to the final character before returning. */
+
+*ptrptr = ptr;
+*chptr = c;
+return escape;
+}
+
+#ifdef SUPPORT_UCP
+/*************************************************
+* Handle \P and \p *
+*************************************************/
+
+/* This function is called after \P or \p has been encountered, provided that
+PCRE is compiled with support for Unicode properties. On entry, ptrptr is
+pointing at the P or p. On exit, it is pointing at the final character of the
+escape sequence.
+
+Argument:
+ ptrptr points to the pattern position pointer
+ negptr points to a boolean that is set TRUE for negation else FALSE
+ ptypeptr points to an unsigned int that is set to the type value
+ pdataptr points to an unsigned int that is set to the detailed property value
+ errorcodeptr points to the error code variable
+
+Returns: TRUE if the type value was found, or FALSE for an invalid type
+*/
+
+static BOOL
+get_ucp(const pcre_uchar **ptrptr, BOOL *negptr, unsigned int *ptypeptr,
+ unsigned int *pdataptr, int *errorcodeptr)
+{
+pcre_uchar c;
+int i, bot, top;
+const pcre_uchar *ptr = *ptrptr;
+pcre_uchar name[32];
+
+c = *(++ptr);
+if (c == CHAR_NULL) goto ERROR_RETURN;
+
+*negptr = FALSE;
+
+/* \P or \p can be followed by a name in {}, optionally preceded by ^ for
+negation. */
+
+if (c == CHAR_LEFT_CURLY_BRACKET)
+ {
+ if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
+ {
+ *negptr = TRUE;
+ ptr++;
+ }
+ for (i = 0; i < (int)(sizeof(name) / sizeof(pcre_uchar)) - 1; i++)
+ {
+ c = *(++ptr);
+ if (c == CHAR_NULL) goto ERROR_RETURN;
+ if (c == CHAR_RIGHT_CURLY_BRACKET) break;
+ name[i] = c;
+ }
+ if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN;
+ name[i] = 0;
+ }
+
+/* Otherwise there is just one following character */
+
+else
+ {
+ name[0] = c;
+ name[1] = 0;
+ }
+
+*ptrptr = ptr;
+
+/* Search for a recognized property name using binary chop */
+
+bot = 0;
+top = PRIV(utt_size);
+
+while (bot < top)
+ {
+ int r;
+ i = (bot + top) >> 1;
+ r = STRCMP_UC_C8(name, PRIV(utt_names) + PRIV(utt)[i].name_offset);
+ if (r == 0)
+ {
+ *ptypeptr = PRIV(utt)[i].type;
+ *pdataptr = PRIV(utt)[i].value;
+ return TRUE;
+ }
+ if (r > 0) bot = i + 1; else top = i;
+ }
+
+*errorcodeptr = ERR47;
+*ptrptr = ptr;
+return FALSE;
+
+ERROR_RETURN:
+*errorcodeptr = ERR46;
+*ptrptr = ptr;
+return FALSE;
+}
+#endif
+
+
+
+
+/*************************************************
+* Read repeat counts *
+*************************************************/
+
+/* Read an item of the form {n,m} and return the values. This is called only
+after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
+so the syntax is guaranteed to be correct, but we need to check the values.
+
+Arguments:
+ p pointer to first char after '{'
+ minp pointer to int for min
+ maxp pointer to int for max
+ returned as -1 if no max
+ errorcodeptr points to error code variable
+
+Returns: pointer to '}' on success;
+ current ptr on error, with errorcodeptr set non-zero
+*/
+
+static const pcre_uchar *
+read_repeat_counts(const pcre_uchar *p, int *minp, int *maxp, int *errorcodeptr)
+{
+int min = 0;
+int max = -1;
+
+/* Read the minimum value and do a paranoid check: a negative value indicates
+an integer overflow. */
+
+while (IS_DIGIT(*p)) min = min * 10 + (int)(*p++ - CHAR_0);
+if (min < 0 || min > 65535)
+ {
+ *errorcodeptr = ERR5;
+ return p;
+ }
+
+/* Read the maximum value if there is one, and again do a paranoid on its size.
+Also, max must not be less than min. */
+
+if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else
+ {
+ if (*(++p) != CHAR_RIGHT_CURLY_BRACKET)
+ {
+ max = 0;
+ while(IS_DIGIT(*p)) max = max * 10 + (int)(*p++ - CHAR_0);
+ if (max < 0 || max > 65535)
+ {
+ *errorcodeptr = ERR5;
+ return p;
+ }
+ if (max < min)
+ {
+ *errorcodeptr = ERR4;
+ return p;
+ }
+ }
+ }
+
+/* Fill in the required variables, and pass back the pointer to the terminating
+'}'. */
+
+*minp = min;
+*maxp = max;
+return p;
+}
+
+
+
+/*************************************************
+* Subroutine for finding forward reference *
+*************************************************/
+
+/* This recursive function is called only from find_parens() below. The
+top-level call starts at the beginning of the pattern. All other calls must
+start at a parenthesis. It scans along a pattern's text looking for capturing
+subpatterns, and counting them. If it finds a named pattern that matches the
+name it is given, it returns its number. Alternatively, if the name is NULL, it
+returns when it reaches a given numbered subpattern. Recursion is used to keep
+track of subpatterns that reset the capturing group numbers - the (?| feature.
+
+This function was originally called only from the second pass, in which we know
+that if (?< or (?' or (?P< is encountered, the name will be correctly
+terminated because that is checked in the first pass. There is now one call to
+this function in the first pass, to check for a recursive back reference by
+name (so that we can make the whole group atomic). In this case, we need check
+only up to the current position in the pattern, and that is still OK because
+and previous occurrences will have been checked. To make this work, the test
+for "end of pattern" is a check against cd->end_pattern in the main loop,
+instead of looking for a binary zero. This means that the special first-pass
+call can adjust cd->end_pattern temporarily. (Checks for binary zero while
+processing items within the loop are OK, because afterwards the main loop will
+terminate.)
+
+Arguments:
+ ptrptr address of the current character pointer (updated)
+ cd compile background data
+ name name to seek, or NULL if seeking a numbered subpattern
+ lorn name length, or subpattern number if name is NULL
+ xmode TRUE if we are in /x mode
+ utf TRUE if we are in UTF-8 / UTF-16 / UTF-32 mode
+ count pointer to the current capturing subpattern number (updated)
+
+Returns: the number of the named subpattern, or -1 if not found
+*/
+
+static int
+find_parens_sub(pcre_uchar **ptrptr, compile_data *cd, const pcre_uchar *name, int lorn,
+ BOOL xmode, BOOL utf, int *count)
+{
+pcre_uchar *ptr = *ptrptr;
+int start_count = *count;
+int hwm_count = start_count;
+BOOL dup_parens = FALSE;
+
+/* If the first character is a parenthesis, check on the type of group we are
+dealing with. The very first call may not start with a parenthesis. */
+
+if (ptr[0] == CHAR_LEFT_PARENTHESIS)
+ {
+ /* Handle specials such as (*SKIP) or (*UTF8) etc. */
+
+ if (ptr[1] == CHAR_ASTERISK)
+ {
+ ptr += 2;
+ while (ptr < cd->end_pattern && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
+ }
+
+ /* Handle a normal, unnamed capturing parenthesis. */
+
+ else if (ptr[1] != CHAR_QUESTION_MARK)
+ {
+ *count += 1;
+ if (name == NULL && *count == lorn) return *count;
+ ptr++;
+ }
+
+ /* All cases now have (? at the start. Remember when we are in a group
+ where the parenthesis numbers are duplicated. */
+
+ else if (ptr[2] == CHAR_VERTICAL_LINE)
+ {
+ ptr += 3;
+ dup_parens = TRUE;
+ }
+
+ /* Handle comments; all characters are allowed until a ket is reached. */
+
+ else if (ptr[2] == CHAR_NUMBER_SIGN)
+ {
+ for (ptr += 3; *ptr != CHAR_NULL; ptr++)
+ if (*ptr == CHAR_RIGHT_PARENTHESIS) break;
+ goto FAIL_EXIT;
+ }
+
+ /* Handle a condition. If it is an assertion, just carry on so that it
+ is processed as normal. If not, skip to the closing parenthesis of the
+ condition (there can't be any nested parens). */
+
+ else if (ptr[2] == CHAR_LEFT_PARENTHESIS)
+ {
+ ptr += 2;
+ if (ptr[1] != CHAR_QUESTION_MARK)
+ {
+ while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
+ if (*ptr != CHAR_NULL) ptr++;
+ }
+ }
+
+ /* Start with (? but not a condition. */
+
+ else
+ {
+ ptr += 2;
+ if (*ptr == CHAR_P) ptr++; /* Allow optional P */
+
+ /* We have to disambiguate (? for named groups */
+
+ if ((*ptr == CHAR_LESS_THAN_SIGN && ptr[1] != CHAR_EXCLAMATION_MARK &&
+ ptr[1] != CHAR_EQUALS_SIGN) || *ptr == CHAR_APOSTROPHE)
+ {
+ pcre_uchar term;
+ const pcre_uchar *thisname;
+ *count += 1;
+ if (name == NULL && *count == lorn) return *count;
+ term = *ptr++;
+ if (term == CHAR_LESS_THAN_SIGN) term = CHAR_GREATER_THAN_SIGN;
+ thisname = ptr;
+ while (*ptr != term) ptr++;
+ if (name != NULL && lorn == (int)(ptr - thisname) &&
+ STRNCMP_UC_UC(name, thisname, (unsigned int)lorn) == 0)
+ return *count;
+ term++;
+ }
+ }
+ }
+
+/* Past any initial parenthesis handling, scan for parentheses or vertical
+bars. Stop if we get to cd->end_pattern. Note that this is important for the
+first-pass call when this value is temporarily adjusted to stop at the current
+position. So DO NOT change this to a test for binary zero. */
+
+for (; ptr < cd->end_pattern; ptr++)
+ {
+ /* Skip over backslashed characters and also entire \Q...\E */
+
+ if (*ptr == CHAR_BACKSLASH)
+ {
+ if (*(++ptr) == CHAR_NULL) goto FAIL_EXIT;
+ if (*ptr == CHAR_Q) for (;;)
+ {
+ while (*(++ptr) != CHAR_NULL && *ptr != CHAR_BACKSLASH) {};
+ if (*ptr == CHAR_NULL) goto FAIL_EXIT;
+ if (*(++ptr) == CHAR_E) break;
+ }
+ continue;
+ }
+
+ /* Skip over character classes; this logic must be similar to the way they
+ are handled for real. If the first character is '^', skip it. Also, if the
+ first few characters (either before or after ^) are \Q\E or \E we skip them
+ too. This makes for compatibility with Perl. Note the use of STR macros to
+ encode "Q\\E" so that it works in UTF-8 on EBCDIC platforms. */
+
+ if (*ptr == CHAR_LEFT_SQUARE_BRACKET)
+ {
+ BOOL negate_class = FALSE;
+ for (;;)
+ {
+ if (ptr[1] == CHAR_BACKSLASH)
+ {
+ if (ptr[2] == CHAR_E)
+ ptr+= 2;
+ else if (STRNCMP_UC_C8(ptr + 2,
+ STR_Q STR_BACKSLASH STR_E, 3) == 0)
+ ptr += 4;
+ else
+ break;
+ }
+ else if (!negate_class && ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
+ {
+ negate_class = TRUE;
+ ptr++;
+ }
+ else break;
+ }
+
+ /* If the next character is ']', it is a data character that must be
+ skipped, except in JavaScript compatibility mode. */
+
+ if (ptr[1] == CHAR_RIGHT_SQUARE_BRACKET &&
+ (cd->external_options & PCRE_JAVASCRIPT_COMPAT) == 0)
+ ptr++;
+
+ while (*(++ptr) != CHAR_RIGHT_SQUARE_BRACKET)
+ {
+ if (*ptr == CHAR_NULL) return -1;
+ if (*ptr == CHAR_BACKSLASH)
+ {
+ if (*(++ptr) == CHAR_NULL) goto FAIL_EXIT;
+ if (*ptr == CHAR_Q) for (;;)
+ {
+ while (*(++ptr) != CHAR_NULL && *ptr != CHAR_BACKSLASH) {};
+ if (*ptr == CHAR_NULL) goto FAIL_EXIT;
+ if (*(++ptr) == CHAR_E) break;
+ }
+ continue;
+ }
+ }
+ continue;
+ }
+
+ /* Skip comments in /x mode */
+
+ if (xmode && *ptr == CHAR_NUMBER_SIGN)
+ {
+ ptr++;
+ while (*ptr != CHAR_NULL)
+ {
+ if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
+ ptr++;
+#ifdef SUPPORT_UTF
+ if (utf) FORWARDCHAR(ptr);
+#endif
+ }
+ if (*ptr == CHAR_NULL) goto FAIL_EXIT;
+ continue;
+ }
+
+ /* Check for the special metacharacters */
+
+ if (*ptr == CHAR_LEFT_PARENTHESIS)
+ {
+ int rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, count);
+ if (rc > 0) return rc;
+ if (*ptr == CHAR_NULL) goto FAIL_EXIT;
+ }
+
+ else if (*ptr == CHAR_RIGHT_PARENTHESIS)
+ {
+ if (dup_parens && *count < hwm_count) *count = hwm_count;
+ goto FAIL_EXIT;
+ }
+
+ else if (*ptr == CHAR_VERTICAL_LINE && dup_parens)
+ {
+ if (*count > hwm_count) hwm_count = *count;
+ *count = start_count;
+ }
+ }
+
+FAIL_EXIT:
+*ptrptr = ptr;
+return -1;
+}
+
+
+
+
+/*************************************************
+* Find forward referenced subpattern *
+*************************************************/
+
+/* This function scans along a pattern's text looking for capturing
+subpatterns, and counting them. If it finds a named pattern that matches the
+name it is given, it returns its number. Alternatively, if the name is NULL, it
+returns when it reaches a given numbered subpattern. This is used for forward
+references to subpatterns. We used to be able to start this scan from the
+current compiling point, using the current count value from cd->bracount, and
+do it all in a single loop, but the addition of the possibility of duplicate
+subpattern numbers means that we have to scan from the very start, in order to
+take account of such duplicates, and to use a recursive function to keep track
+of the different types of group.
+
+Arguments:
+ cd compile background data
+ name name to seek, or NULL if seeking a numbered subpattern
+ lorn name length, or subpattern number if name is NULL
+ xmode TRUE if we are in /x mode
+ utf TRUE if we are in UTF-8 / UTF-16 / UTF-32 mode
+
+Returns: the number of the found subpattern, or -1 if not found
+*/
+
+static int
+find_parens(compile_data *cd, const pcre_uchar *name, int lorn, BOOL xmode,
+ BOOL utf)
+{
+pcre_uchar *ptr = (pcre_uchar *)cd->start_pattern;
+int count = 0;
+int rc;
+
+/* If the pattern does not start with an opening parenthesis, the first call
+to find_parens_sub() will scan right to the end (if necessary). However, if it
+does start with a parenthesis, find_parens_sub() will return when it hits the
+matching closing parens. That is why we have to have a loop. */
+
+for (;;)
+ {
+ rc = find_parens_sub(&ptr, cd, name, lorn, xmode, utf, &count);
+ if (rc > 0 || *ptr++ == CHAR_NULL) break;
+ }
+
+return rc;
+}
+
+
+
+
+/*************************************************
+* Find first significant op code *
+*************************************************/
+
+/* This is called by several functions that scan a compiled expression looking
+for a fixed first character, or an anchoring op code etc. It skips over things
+that do not influence this. For some calls, it makes sense to skip negative
+forward and all backward assertions, and also the \b assertion; for others it
+does not.
+
+Arguments:
+ code pointer to the start of the group
+ skipassert TRUE if certain assertions are to be skipped
+
+Returns: pointer to the first significant opcode
+*/
+
+static const pcre_uchar*
+first_significant_code(const pcre_uchar *code, BOOL skipassert)
+{
+for (;;)
+ {
+ switch ((int)*code)
+ {
+ case OP_ASSERT_NOT:
+ case OP_ASSERTBACK:
+ case OP_ASSERTBACK_NOT:
+ if (!skipassert) return code;
+ do code += GET(code, 1); while (*code == OP_ALT);
+ code += PRIV(OP_lengths)[*code];
+ break;
+
+ case OP_WORD_BOUNDARY:
+ case OP_NOT_WORD_BOUNDARY:
+ if (!skipassert) return code;
+ /* Fall through */
+
+ case OP_CALLOUT:
+ case OP_CREF:
+ case OP_NCREF:
+ case OP_RREF:
+ case OP_NRREF:
+ case OP_DEF:
+ code += PRIV(OP_lengths)[*code];
+ break;
+
+ default:
+ return code;
+ }
+ }
+/* Control never reaches here */
+}
+
+
+
+
+/*************************************************
+* Find the fixed length of a branch *
+*************************************************/
+
+/* Scan a branch and compute the fixed length of subject that will match it,
+if the length is fixed. This is needed for dealing with backward assertions.
+In UTF8 mode, the result is in characters rather than bytes. The branch is
+temporarily terminated with OP_END when this function is called.
+
+This function is called when a backward assertion is encountered, so that if it
+fails, the error message can point to the correct place in the pattern.
+However, we cannot do this when the assertion contains subroutine calls,
+because they can be forward references. We solve this by remembering this case
+and doing the check at the end; a flag specifies which mode we are running in.
+
+Arguments:
+ code points to the start of the pattern (the bracket)
+ utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
+ atend TRUE if called when the pattern is complete
+ cd the "compile data" structure
+
+Returns: the fixed length,
+ or -1 if there is no fixed length,
+ or -2 if \C was encountered (in UTF-8 mode only)
+ or -3 if an OP_RECURSE item was encountered and atend is FALSE
+ or -4 if an unknown opcode was encountered (internal error)
+*/
+
+static int
+find_fixedlength(pcre_uchar *code, BOOL utf, BOOL atend, compile_data *cd)
+{
+int length = -1;
+
+register int branchlength = 0;
+register pcre_uchar *cc = code + 1 + LINK_SIZE;
+
+/* Scan along the opcodes for this branch. If we get to the end of the
+branch, check the length against that of the other branches. */
+
+for (;;)
+ {
+ int d;
+ pcre_uchar *ce, *cs;
+ register pcre_uchar op = *cc;
+
+ switch (op)
+ {
+ /* We only need to continue for OP_CBRA (normal capturing bracket) and
+ OP_BRA (normal non-capturing bracket) because the other variants of these
+ opcodes are all concerned with unlimited repeated groups, which of course
+ are not of fixed length. */
+
+ case OP_CBRA:
+ case OP_BRA:
+ case OP_ONCE:
+ case OP_ONCE_NC:
+ case OP_COND:
+ d = find_fixedlength(cc + ((op == OP_CBRA)? IMM2_SIZE : 0), utf, atend, cd);
+ if (d < 0) return d;
+ branchlength += d;
+ do cc += GET(cc, 1); while (*cc == OP_ALT);
+ cc += 1 + LINK_SIZE;
+ break;
+
+ /* Reached end of a branch; if it's a ket it is the end of a nested call.
+ If it's ALT it is an alternation in a nested call. An ACCEPT is effectively
+ an ALT. If it is END it's the end of the outer call. All can be handled by
+ the same code. Note that we must not include the OP_KETRxxx opcodes here,
+ because they all imply an unlimited repeat. */
+
+ case OP_ALT:
+ case OP_KET:
+ case OP_END:
+ case OP_ACCEPT:
+ case OP_ASSERT_ACCEPT:
+ if (length < 0) length = branchlength;
+ else if (length != branchlength) return -1;
+ if (*cc != OP_ALT) return length;
+ cc += 1 + LINK_SIZE;
+ branchlength = 0;
+ break;
+
+ /* A true recursion implies not fixed length, but a subroutine call may
+ be OK. If the subroutine is a forward reference, we can't deal with
+ it until the end of the pattern, so return -3. */
+
+ case OP_RECURSE:
+ if (!atend) return -3;
+ cs = ce = (pcre_uchar *)cd->start_code + GET(cc, 1); /* Start subpattern */
+ do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */
+ if (cc > cs && cc < ce) return -1; /* Recursion */
+ d = find_fixedlength(cs + IMM2_SIZE, utf, atend, cd);
+ if (d < 0) return d;
+ branchlength += d;
+ cc += 1 + LINK_SIZE;
+ break;
+
+ /* Skip over assertive subpatterns */
+
+ case OP_ASSERT:
+ case OP_ASSERT_NOT:
+ case OP_ASSERTBACK:
+ case OP_ASSERTBACK_NOT:
+ do cc += GET(cc, 1); while (*cc == OP_ALT);
+ cc += PRIV(OP_lengths)[*cc];
+ break;
+
+ /* Skip over things that don't match chars */
+
+ case OP_MARK:
+ case OP_PRUNE_ARG:
+ case OP_SKIP_ARG:
+ case OP_THEN_ARG:
+ cc += cc[1] + PRIV(OP_lengths)[*cc];
+ break;
+
+ case OP_CALLOUT:
+ case OP_CIRC:
+ case OP_CIRCM:
+ case OP_CLOSE:
+ case OP_COMMIT:
+ case OP_CREF:
+ case OP_DEF:
+ case OP_DOLL:
+ case OP_DOLLM:
+ case OP_EOD:
+ case OP_EODN:
+ case OP_FAIL:
+ case OP_NCREF:
+ case OP_NRREF:
+ case OP_NOT_WORD_BOUNDARY:
+ case OP_PRUNE:
+ case OP_REVERSE:
+ case OP_RREF:
+ case OP_SET_SOM:
+ case OP_SKIP:
+ case OP_SOD:
+ case OP_SOM:
+ case OP_THEN:
+ case OP_WORD_BOUNDARY:
+ cc += PRIV(OP_lengths)[*cc];
+ break;
+
+ /* Handle literal characters */
+
+ case OP_CHAR:
+ case OP_CHARI:
+ case OP_NOT:
+ case OP_NOTI:
+ branchlength++;
+ cc += 2;
+#ifdef SUPPORT_UTF
+ if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+ break;
+
+ /* Handle exact repetitions. The count is already in characters, but we
+ need to skip over a multibyte character in UTF8 mode. */
+
+ case OP_EXACT:
+ case OP_EXACTI:
+ case OP_NOTEXACT:
+ case OP_NOTEXACTI:
+ branchlength += (int)GET2(cc,1);
+ cc += 2 + IMM2_SIZE;
+#ifdef SUPPORT_UTF
+ if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+ break;
+
+ case OP_TYPEEXACT:
+ branchlength += GET2(cc,1);
+ if (cc[1 + IMM2_SIZE] == OP_PROP || cc[1 + IMM2_SIZE] == OP_NOTPROP)
+ cc += 2;
+ cc += 1 + IMM2_SIZE + 1;
+ break;
+
+ /* Handle single-char matchers */
+
+ case OP_PROP:
+ case OP_NOTPROP:
+ cc += 2;
+ /* Fall through */
+
+ case OP_HSPACE:
+ case OP_VSPACE:
+ case OP_NOT_HSPACE:
+ case OP_NOT_VSPACE:
+ case OP_NOT_DIGIT:
+ case OP_DIGIT:
+ case OP_NOT_WHITESPACE:
+ case OP_WHITESPACE:
+ case OP_NOT_WORDCHAR:
+ case OP_WORDCHAR:
+ case OP_ANY:
+ case OP_ALLANY:
+ branchlength++;
+ cc++;
+ break;
+
+ /* The single-byte matcher isn't allowed. This only happens in UTF-8 mode;
+ otherwise \C is coded as OP_ALLANY. */
+
+ case OP_ANYBYTE:
+ return -2;
+
+ /* Check a class for variable quantification */
+
+ case OP_CLASS:
+ case OP_NCLASS:
+#if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ case OP_XCLASS:
+ /* The original code caused an unsigned overflow in 64 bit systems,
+ so now we use a conditional statement. */
+ if (op == OP_XCLASS)
+ cc += GET(cc, 1);
+ else
+ cc += PRIV(OP_lengths)[OP_CLASS];
+#else
+ cc += PRIV(OP_lengths)[OP_CLASS];
+#endif
+
+ switch (*cc)
+ {
+ case OP_CRPLUS:
+ case OP_CRMINPLUS:
+ case OP_CRSTAR:
+ case OP_CRMINSTAR:
+ case OP_CRQUERY:
+ case OP_CRMINQUERY:
+ return -1;
+
+ case OP_CRRANGE:
+ case OP_CRMINRANGE:
+ if (GET2(cc,1) != GET2(cc,1+IMM2_SIZE)) return -1;
+ branchlength += (int)GET2(cc,1);
+ cc += 1 + 2 * IMM2_SIZE;
+ break;
+
+ default:
+ branchlength++;
+ }
+ break;
+
+ /* Anything else is variable length */
+
+ case OP_ANYNL:
+ case OP_BRAMINZERO:
+ case OP_BRAPOS:
+ case OP_BRAPOSZERO:
+ case OP_BRAZERO:
+ case OP_CBRAPOS:
+ case OP_EXTUNI:
+ case OP_KETRMAX:
+ case OP_KETRMIN:
+ case OP_KETRPOS:
+ case OP_MINPLUS:
+ case OP_MINPLUSI:
+ case OP_MINQUERY:
+ case OP_MINQUERYI:
+ case OP_MINSTAR:
+ case OP_MINSTARI:
+ case OP_MINUPTO:
+ case OP_MINUPTOI:
+ case OP_NOTMINPLUS:
+ case OP_NOTMINPLUSI:
+ case OP_NOTMINQUERY:
+ case OP_NOTMINQUERYI:
+ case OP_NOTMINSTAR:
+ case OP_NOTMINSTARI:
+ case OP_NOTMINUPTO:
+ case OP_NOTMINUPTOI:
+ case OP_NOTPLUS:
+ case OP_NOTPLUSI:
+ case OP_NOTPOSPLUS:
+ case OP_NOTPOSPLUSI:
+ case OP_NOTPOSQUERY:
+ case OP_NOTPOSQUERYI:
+ case OP_NOTPOSSTAR:
+ case OP_NOTPOSSTARI:
+ case OP_NOTPOSUPTO:
+ case OP_NOTPOSUPTOI:
+ case OP_NOTQUERY:
+ case OP_NOTQUERYI:
+ case OP_NOTSTAR:
+ case OP_NOTSTARI:
+ case OP_NOTUPTO:
+ case OP_NOTUPTOI:
+ case OP_PLUS:
+ case OP_PLUSI:
+ case OP_POSPLUS:
+ case OP_POSPLUSI:
+ case OP_POSQUERY:
+ case OP_POSQUERYI:
+ case OP_POSSTAR:
+ case OP_POSSTARI:
+ case OP_POSUPTO:
+ case OP_POSUPTOI:
+ case OP_QUERY:
+ case OP_QUERYI:
+ case OP_REF:
+ case OP_REFI:
+ case OP_SBRA:
+ case OP_SBRAPOS:
+ case OP_SCBRA:
+ case OP_SCBRAPOS:
+ case OP_SCOND:
+ case OP_SKIPZERO:
+ case OP_STAR:
+ case OP_STARI:
+ case OP_TYPEMINPLUS:
+ case OP_TYPEMINQUERY:
+ case OP_TYPEMINSTAR:
+ case OP_TYPEMINUPTO:
+ case OP_TYPEPLUS:
+ case OP_TYPEPOSPLUS:
+ case OP_TYPEPOSQUERY:
+ case OP_TYPEPOSSTAR:
+ case OP_TYPEPOSUPTO:
+ case OP_TYPEQUERY:
+ case OP_TYPESTAR:
+ case OP_TYPEUPTO:
+ case OP_UPTO:
+ case OP_UPTOI:
+ return -1;
+
+ /* Catch unrecognized opcodes so that when new ones are added they
+ are not forgotten, as has happened in the past. */
+
+ default:
+ return -4;
+ }
+ }
+/* Control never gets here */
+}
+
+
+
+
+/*************************************************
+* Scan compiled regex for specific bracket *
+*************************************************/
+
+/* This little function scans through a compiled pattern until it finds a
+capturing bracket with the given number, or, if the number is negative, an
+instance of OP_REVERSE for a lookbehind. The function is global in the C sense
+so that it can be called from pcre_study() when finding the minimum matching
+length.
+
+Arguments:
+ code points to start of expression
+ utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
+ number the required bracket number or negative to find a lookbehind
+
+Returns: pointer to the opcode for the bracket, or NULL if not found
+*/
+
+const pcre_uchar *
+PRIV(find_bracket)(const pcre_uchar *code, BOOL utf, int number)
+{
+for (;;)
+ {
+ register pcre_uchar c = *code;
+
+ if (c == OP_END) return NULL;
+
+ /* XCLASS is used for classes that cannot be represented just by a bit
+ map. This includes negated single high-valued characters. The length in
+ the table is zero; the actual length is stored in the compiled code. */
+
+ if (c == OP_XCLASS) code += GET(code, 1);
+
+ /* Handle recursion */
+
+ else if (c == OP_REVERSE)
+ {
+ if (number < 0) return (pcre_uchar *)code;
+ code += PRIV(OP_lengths)[c];
+ }
+
+ /* Handle capturing bracket */
+
+ else if (c == OP_CBRA || c == OP_SCBRA ||
+ c == OP_CBRAPOS || c == OP_SCBRAPOS)
+ {
+ int n = (int)GET2(code, 1+LINK_SIZE);
+ if (n == number) return (pcre_uchar *)code;
+ code += PRIV(OP_lengths)[c];
+ }
+
+ /* Otherwise, we can get the item's length from the table, except that for
+ repeated character types, we have to test for \p and \P, which have an extra
+ two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
+ must add in its length. */
+
+ else
+ {
+ switch(c)
+ {
+ case OP_TYPESTAR:
+ case OP_TYPEMINSTAR:
+ case OP_TYPEPLUS:
+ case OP_TYPEMINPLUS:
+ case OP_TYPEQUERY:
+ case OP_TYPEMINQUERY:
+ case OP_TYPEPOSSTAR:
+ case OP_TYPEPOSPLUS:
+ case OP_TYPEPOSQUERY:
+ if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
+ break;
+
+ case OP_TYPEUPTO:
+ case OP_TYPEMINUPTO:
+ case OP_TYPEEXACT:
+ case OP_TYPEPOSUPTO:
+ if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
+ code += 2;
+ break;
+
+ case OP_MARK:
+ case OP_PRUNE_ARG:
+ case OP_SKIP_ARG:
+ case OP_THEN_ARG:
+ code += code[1];
+ break;
+ }
+
+ /* Add in the fixed length from the table */
+
+ code += PRIV(OP_lengths)[c];
+
+ /* In UTF-8 mode, opcodes that are followed by a character may be followed by
+ a multi-byte character. The length in the table is a minimum, so we have to
+ arrange to skip the extra bytes. */
+
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf) switch(c)
+ {
+ case OP_CHAR:
+ case OP_CHARI:
+ case OP_EXACT:
+ case OP_EXACTI:
+ case OP_UPTO:
+ case OP_UPTOI:
+ case OP_MINUPTO:
+ case OP_MINUPTOI:
+ case OP_POSUPTO:
+ case OP_POSUPTOI:
+ case OP_STAR:
+ case OP_STARI:
+ case OP_MINSTAR:
+ case OP_MINSTARI:
+ case OP_POSSTAR:
+ case OP_POSSTARI:
+ case OP_PLUS:
+ case OP_PLUSI:
+ case OP_MINPLUS:
+ case OP_MINPLUSI:
+ case OP_POSPLUS:
+ case OP_POSPLUSI:
+ case OP_QUERY:
+ case OP_QUERYI:
+ case OP_MINQUERY:
+ case OP_MINQUERYI:
+ case OP_POSQUERY:
+ case OP_POSQUERYI:
+ if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
+ break;
+ }
+#else
+ (void)(utf); /* Keep compiler happy by referencing function argument */
+#endif
+ }
+ }
+}
+
+
+
+/*************************************************
+* Scan compiled regex for recursion reference *
+*************************************************/
+
+/* This little function scans through a compiled pattern until it finds an
+instance of OP_RECURSE.
+
+Arguments:
+ code points to start of expression
+ utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
+
+Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
+*/
+
+static const pcre_uchar *
+find_recurse(const pcre_uchar *code, BOOL utf)
+{
+for (;;)
+ {
+ register pcre_uchar c = *code;
+ if (c == OP_END) return NULL;
+ if (c == OP_RECURSE) return code;
+
+ /* XCLASS is used for classes that cannot be represented just by a bit
+ map. This includes negated single high-valued characters. The length in
+ the table is zero; the actual length is stored in the compiled code. */
+
+ if (c == OP_XCLASS) code += GET(code, 1);
+
+ /* Otherwise, we can get the item's length from the table, except that for
+ repeated character types, we have to test for \p and \P, which have an extra
+ two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
+ must add in its length. */
+
+ else
+ {
+ switch(c)
+ {
+ case OP_TYPESTAR:
+ case OP_TYPEMINSTAR:
+ case OP_TYPEPLUS:
+ case OP_TYPEMINPLUS:
+ case OP_TYPEQUERY:
+ case OP_TYPEMINQUERY:
+ case OP_TYPEPOSSTAR:
+ case OP_TYPEPOSPLUS:
+ case OP_TYPEPOSQUERY:
+ if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
+ break;
+
+ case OP_TYPEPOSUPTO:
+ case OP_TYPEUPTO:
+ case OP_TYPEMINUPTO:
+ case OP_TYPEEXACT:
+ if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
+ code += 2;
+ break;
+
+ case OP_MARK:
+ case OP_PRUNE_ARG:
+ case OP_SKIP_ARG:
+ case OP_THEN_ARG:
+ code += code[1];
+ break;
+ }
+
+ /* Add in the fixed length from the table */
+
+ code += PRIV(OP_lengths)[c];
+
+ /* In UTF-8 mode, opcodes that are followed by a character may be followed
+ by a multi-byte character. The length in the table is a minimum, so we have
+ to arrange to skip the extra bytes. */
+
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf) switch(c)
+ {
+ case OP_CHAR:
+ case OP_CHARI:
+ case OP_NOT:
+ case OP_NOTI:
+ case OP_EXACT:
+ case OP_EXACTI:
+ case OP_NOTEXACT:
+ case OP_NOTEXACTI:
+ case OP_UPTO:
+ case OP_UPTOI:
+ case OP_NOTUPTO:
+ case OP_NOTUPTOI:
+ case OP_MINUPTO:
+ case OP_MINUPTOI:
+ case OP_NOTMINUPTO:
+ case OP_NOTMINUPTOI:
+ case OP_POSUPTO:
+ case OP_POSUPTOI:
+ case OP_NOTPOSUPTO:
+ case OP_NOTPOSUPTOI:
+ case OP_STAR:
+ case OP_STARI:
+ case OP_NOTSTAR:
+ case OP_NOTSTARI:
+ case OP_MINSTAR:
+ case OP_MINSTARI:
+ case OP_NOTMINSTAR:
+ case OP_NOTMINSTARI:
+ case OP_POSSTAR:
+ case OP_POSSTARI:
+ case OP_NOTPOSSTAR:
+ case OP_NOTPOSSTARI:
+ case OP_PLUS:
+ case OP_PLUSI:
+ case OP_NOTPLUS:
+ case OP_NOTPLUSI:
+ case OP_MINPLUS:
+ case OP_MINPLUSI:
+ case OP_NOTMINPLUS:
+ case OP_NOTMINPLUSI:
+ case OP_POSPLUS:
+ case OP_POSPLUSI:
+ case OP_NOTPOSPLUS:
+ case OP_NOTPOSPLUSI:
+ case OP_QUERY:
+ case OP_QUERYI:
+ case OP_NOTQUERY:
+ case OP_NOTQUERYI:
+ case OP_MINQUERY:
+ case OP_MINQUERYI:
+ case OP_NOTMINQUERY:
+ case OP_NOTMINQUERYI:
+ case OP_POSQUERY:
+ case OP_POSQUERYI:
+ case OP_NOTPOSQUERY:
+ case OP_NOTPOSQUERYI:
+ if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
+ break;
+ }
+#else
+ (void)(utf); /* Keep compiler happy by referencing function argument */
+#endif
+ }
+ }
+}
+
+
+
+/*************************************************
+* Scan compiled branch for non-emptiness *
+*************************************************/
+
+/* This function scans through a branch of a compiled pattern to see whether it
+can match the empty string or not. It is called from could_be_empty()
+below and from compile_branch() when checking for an unlimited repeat of a
+group that can match nothing. Note that first_significant_code() skips over
+backward and negative forward assertions when its final argument is TRUE. If we
+hit an unclosed bracket, we return "empty" - this means we've struck an inner
+bracket whose current branch will already have been scanned.
+
+Arguments:
+ code points to start of search
+ endcode points to where to stop
+ utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode
+ cd contains pointers to tables etc.
+
+Returns: TRUE if what is matched could be empty
+*/
+
+static BOOL
+could_be_empty_branch(const pcre_uchar *code, const pcre_uchar *endcode,
+ BOOL utf, compile_data *cd)
+{
+register pcre_uchar c;
+for (code = first_significant_code(code + PRIV(OP_lengths)[*code], TRUE);
+ code < endcode;
+ code = first_significant_code(code + PRIV(OP_lengths)[c], TRUE))
+ {
+ const pcre_uchar *ccode;
+
+ c = *code;
+
+ /* Skip over forward assertions; the other assertions are skipped by
+ first_significant_code() with a TRUE final argument. */
+
+ if (c == OP_ASSERT)
+ {
+ do code += GET(code, 1); while (*code == OP_ALT);
+ c = *code;
+ continue;
+ }
+
+ /* For a recursion/subroutine call, if its end has been reached, which
+ implies a backward reference subroutine call, we can scan it. If it's a
+ forward reference subroutine call, we can't. To detect forward reference
+ we have to scan up the list that is kept in the workspace. This function is
+ called only when doing the real compile, not during the pre-compile that
+ measures the size of the compiled pattern. */
+
+ if (c == OP_RECURSE)
+ {
+ const pcre_uchar *scode;
+ BOOL empty_branch;
+
+ /* Test for forward reference */
+
+ for (scode = cd->start_workspace; scode < cd->hwm; scode += LINK_SIZE)
+ if ((int)GET(scode, 0) == (int)(code + 1 - cd->start_code)) return TRUE;
+
+ /* Not a forward reference, test for completed backward reference */
+
+ empty_branch = FALSE;
+ scode = cd->start_code + GET(code, 1);
+ if (GET(scode, 1) == 0) return TRUE; /* Unclosed */
+
+ /* Completed backwards reference */
+
+ do
+ {
+ if (could_be_empty_branch(scode, endcode, utf, cd))
+ {
+ empty_branch = TRUE;
+ break;
+ }
+ scode += GET(scode, 1);
+ }
+ while (*scode == OP_ALT);
+
+ if (!empty_branch) return FALSE; /* All branches are non-empty */
+ continue;
+ }
+
+ /* Groups with zero repeats can of course be empty; skip them. */
+
+ if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO ||
+ c == OP_BRAPOSZERO)
+ {
+ code += PRIV(OP_lengths)[c];
+ do code += GET(code, 1); while (*code == OP_ALT);
+ c = *code;
+ continue;
+ }
+
+ /* A nested group that is already marked as "could be empty" can just be
+ skipped. */
+
+ if (c == OP_SBRA || c == OP_SBRAPOS ||
+ c == OP_SCBRA || c == OP_SCBRAPOS)
+ {
+ do code += GET(code, 1); while (*code == OP_ALT);
+ c = *code;
+ continue;
+ }
+
+ /* For other groups, scan the branches. */
+
+ if (c == OP_BRA || c == OP_BRAPOS ||
+ c == OP_CBRA || c == OP_CBRAPOS ||
+ c == OP_ONCE || c == OP_ONCE_NC ||
+ c == OP_COND)
+ {
+ BOOL empty_branch;
+ if (GET(code, 1) == 0) return TRUE; /* Hit unclosed bracket */
+
+ /* If a conditional group has only one branch, there is a second, implied,
+ empty branch, so just skip over the conditional, because it could be empty.
+ Otherwise, scan the individual branches of the group. */
+
+ if (c == OP_COND && code[GET(code, 1)] != OP_ALT)
+ code += GET(code, 1);
+ else
+ {
+ empty_branch = FALSE;
+ do
+ {
+ if (!empty_branch && could_be_empty_branch(code, endcode, utf, cd))
+ empty_branch = TRUE;
+ code += GET(code, 1);
+ }
+ while (*code == OP_ALT);
+ if (!empty_branch) return FALSE; /* All branches are non-empty */
+ }
+
+ c = *code;
+ continue;
+ }
+
+ /* Handle the other opcodes */
+
+ switch (c)
+ {
+ /* Check for quantifiers after a class. XCLASS is used for classes that
+ cannot be represented just by a bit map. This includes negated single
+ high-valued characters. The length in PRIV(OP_lengths)[] is zero; the
+ actual length is stored in the compiled code, so we must update "code"
+ here. */
+
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ case OP_XCLASS:
+ ccode = code += GET(code, 1);
+ goto CHECK_CLASS_REPEAT;
+#endif
+
+ case OP_CLASS:
+ case OP_NCLASS:
+ ccode = code + PRIV(OP_lengths)[OP_CLASS];
+
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ CHECK_CLASS_REPEAT:
+#endif
+
+ switch (*ccode)
+ {
+ case OP_CRSTAR: /* These could be empty; continue */
+ case OP_CRMINSTAR:
+ case OP_CRQUERY:
+ case OP_CRMINQUERY:
+ break;
+
+ default: /* Non-repeat => class must match */
+ case OP_CRPLUS: /* These repeats aren't empty */
+ case OP_CRMINPLUS:
+ return FALSE;
+
+ case OP_CRRANGE:
+ case OP_CRMINRANGE:
+ if (GET2(ccode, 1) > 0) return FALSE; /* Minimum > 0 */
+ break;
+ }
+ break;
+
+ /* Opcodes that must match a character */
+
+ case OP_PROP:
+ case OP_NOTPROP:
+ case OP_EXTUNI:
+ case OP_NOT_DIGIT:
+ case OP_DIGIT:
+ case OP_NOT_WHITESPACE:
+ case OP_WHITESPACE:
+ case OP_NOT_WORDCHAR:
+ case OP_WORDCHAR:
+ case OP_ANY:
+ case OP_ALLANY:
+ case OP_ANYBYTE:
+ case OP_CHAR:
+ case OP_CHARI:
+ case OP_NOT:
+ case OP_NOTI:
+ case OP_PLUS:
+ case OP_MINPLUS:
+ case OP_POSPLUS:
+ case OP_EXACT:
+ case OP_NOTPLUS:
+ case OP_NOTMINPLUS:
+ case OP_NOTPOSPLUS:
+ case OP_NOTEXACT:
+ case OP_TYPEPLUS:
+ case OP_TYPEMINPLUS:
+ case OP_TYPEPOSPLUS:
+ case OP_TYPEEXACT:
+ return FALSE;
+
+ /* These are going to continue, as they may be empty, but we have to
+ fudge the length for the \p and \P cases. */
+
+ case OP_TYPESTAR:
+ case OP_TYPEMINSTAR:
+ case OP_TYPEPOSSTAR:
+ case OP_TYPEQUERY:
+ case OP_TYPEMINQUERY:
+ case OP_TYPEPOSQUERY:
+ if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
+ break;
+
+ /* Same for these */
+
+ case OP_TYPEUPTO:
+ case OP_TYPEMINUPTO:
+ case OP_TYPEPOSUPTO:
+ if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
+ code += 2;
+ break;
+
+ /* End of branch */
+
+ case OP_KET:
+ case OP_KETRMAX:
+ case OP_KETRMIN:
+ case OP_KETRPOS:
+ case OP_ALT:
+ return TRUE;
+
+ /* In UTF-8 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY, POSQUERY, UPTO,
+ MINUPTO, and POSUPTO may be followed by a multibyte character */
+
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ case OP_STAR:
+ case OP_STARI:
+ case OP_MINSTAR:
+ case OP_MINSTARI:
+ case OP_POSSTAR:
+ case OP_POSSTARI:
+ case OP_QUERY:
+ case OP_QUERYI:
+ case OP_MINQUERY:
+ case OP_MINQUERYI:
+ case OP_POSQUERY:
+ case OP_POSQUERYI:
+ if (utf && HAS_EXTRALEN(code[1])) code += GET_EXTRALEN(code[1]);
+ break;
+
+ case OP_UPTO:
+ case OP_UPTOI:
+ case OP_MINUPTO:
+ case OP_MINUPTOI:
+ case OP_POSUPTO:
+ case OP_POSUPTOI:
+ if (utf && HAS_EXTRALEN(code[1 + IMM2_SIZE])) code += GET_EXTRALEN(code[1 + IMM2_SIZE]);
+ break;
+#endif
+
+ /* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument
+ string. */
+
+ case OP_MARK:
+ case OP_PRUNE_ARG:
+ case OP_SKIP_ARG:
+ case OP_THEN_ARG:
+ code += code[1];
+ break;
+
+ /* None of the remaining opcodes are required to match a character. */
+
+ default:
+ break;
+ }
+ }
+
+return TRUE;
+}
+
+
+
+/*************************************************
+* Scan compiled regex for non-emptiness *
+*************************************************/
+
+/* This function is called to check for left recursive calls. We want to check
+the current branch of the current pattern to see if it could match the empty
+string. If it could, we must look outwards for branches at other levels,
+stopping when we pass beyond the bracket which is the subject of the recursion.
+This function is called only during the real compile, not during the
+pre-compile.
+
+Arguments:
+ code points to start of the recursion
+ endcode points to where to stop (current RECURSE item)
+ bcptr points to the chain of current (unclosed) branch starts
+ utf TRUE if in UTF-8 / UTF-16 / UTF-32 mode
+ cd pointers to tables etc
+
+Returns: TRUE if what is matched could be empty
+*/
+
+static BOOL
+could_be_empty(const pcre_uchar *code, const pcre_uchar *endcode,
+ branch_chain *bcptr, BOOL utf, compile_data *cd)
+{
+while (bcptr != NULL && bcptr->current_branch >= code)
+ {
+ if (!could_be_empty_branch(bcptr->current_branch, endcode, utf, cd))
+ return FALSE;
+ bcptr = bcptr->outer;
+ }
+return TRUE;
+}
+
+
+
+/*************************************************
+* Check for POSIX class syntax *
+*************************************************/
+
+/* This function is called when the sequence "[:" or "[." or "[=" is
+encountered in a character class. It checks whether this is followed by a
+sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
+reach an unescaped ']' without the special preceding character, return FALSE.
+
+Originally, this function only recognized a sequence of letters between the
+terminators, but it seems that Perl recognizes any sequence of characters,
+though of course unknown POSIX names are subsequently rejected. Perl gives an
+"Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
+didn't consider this to be a POSIX class. Likewise for [:1234:].
+
+The problem in trying to be exactly like Perl is in the handling of escapes. We
+have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
+class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
+below handles the special case of \], but does not try to do any other escape
+processing. This makes it different from Perl for cases such as [:l\ower:]
+where Perl recognizes it as the POSIX class "lower" but PCRE does not recognize
+"l\ower". This is a lesser evil that not diagnosing bad classes when Perl does,
+I think.
+
+A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not.
+It seems that the appearance of a nested POSIX class supersedes an apparent
+external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or
+a digit.
+
+In Perl, unescaped square brackets may also appear as part of class names. For
+example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for
+[:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not
+seem right at all. PCRE does not allow closing square brackets in POSIX class
+names.
+
+Arguments:
+ ptr pointer to the initial [
+ endptr where to return the end pointer
+
+Returns: TRUE or FALSE
+*/
+
+static BOOL
+check_posix_syntax(const pcre_uchar *ptr, const pcre_uchar **endptr)
+{
+pcre_uchar terminator; /* Don't combine these lines; the Solaris cc */
+terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
+for (++ptr; *ptr != CHAR_NULL; ptr++)
+ {
+ if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
+ ptr++;
+ else if (*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE;
+ else
+ {
+ if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
+ {
+ *endptr = ptr;
+ return TRUE;
+ }
+ if (*ptr == CHAR_LEFT_SQUARE_BRACKET &&
+ (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
+ ptr[1] == CHAR_EQUALS_SIGN) &&
+ check_posix_syntax(ptr, endptr))
+ return FALSE;
+ }
+ }
+return FALSE;
+}
+
+
+
+
+/*************************************************
+* Check POSIX class name *
+*************************************************/
+
+/* This function is called to check the name given in a POSIX-style class entry
+such as [:alnum:].
+
+Arguments:
+ ptr points to the first letter
+ len the length of the name
+
+Returns: a value representing the name, or -1 if unknown
+*/
+
+static int
+check_posix_name(const pcre_uchar *ptr, int len)
+{
+const char *pn = posix_names;
+register int yield = 0;
+while (posix_name_lengths[yield] != 0)
+ {
+ if (len == posix_name_lengths[yield] &&
+ STRNCMP_UC_C8(ptr, pn, (unsigned int)len) == 0) return yield;
+ pn += posix_name_lengths[yield] + 1;
+ yield++;
+ }
+return -1;
+}
+
+
+/*************************************************
+* Adjust OP_RECURSE items in repeated group *
+*************************************************/
+
+/* OP_RECURSE items contain an offset from the start of the regex to the group
+that is referenced. This means that groups can be replicated for fixed
+repetition simply by copying (because the recursion is allowed to refer to
+earlier groups that are outside the current group). However, when a group is
+optional (i.e. the minimum quantifier is zero), OP_BRAZERO or OP_SKIPZERO is
+inserted before it, after it has been compiled. This means that any OP_RECURSE
+items within it that refer to the group itself or any contained groups have to
+have their offsets adjusted. That one of the jobs of this function. Before it
+is called, the partially compiled regex must be temporarily terminated with
+OP_END.
+
+This function has been extended with the possibility of forward references for
+recursions and subroutine calls. It must also check the list of such references
+for the group we are dealing with. If it finds that one of the recursions in
+the current group is on this list, it adjusts the offset in the list, not the
+value in the reference (which is a group number).
+
+Arguments:
+ group points to the start of the group
+ adjust the amount by which the group is to be moved
+ utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
+ cd contains pointers to tables etc.
+ save_hwm the hwm forward reference pointer at the start of the group
+
+Returns: nothing
+*/
+
+static void
+adjust_recurse(pcre_uchar *group, int adjust, BOOL utf, compile_data *cd,
+ pcre_uchar *save_hwm)
+{
+pcre_uchar *ptr = group;
+
+while ((ptr = (pcre_uchar *)find_recurse(ptr, utf)) != NULL)
+ {
+ int offset;
+ pcre_uchar *hc;
+
+ /* See if this recursion is on the forward reference list. If so, adjust the
+ reference. */
+
+ for (hc = save_hwm; hc < cd->hwm; hc += LINK_SIZE)
+ {
+ offset = (int)GET(hc, 0);
+ if (cd->start_code + offset == ptr + 1)
+ {
+ PUT(hc, 0, offset + adjust);
+ break;
+ }
+ }
+
+ /* Otherwise, adjust the recursion offset if it's after the start of this
+ group. */
+
+ if (hc >= cd->hwm)
+ {
+ offset = (int)GET(ptr, 1);
+ if (cd->start_code + offset >= group) PUT(ptr, 1, offset + adjust);
+ }
+
+ ptr += 1 + LINK_SIZE;
+ }
+}
+
+
+
+/*************************************************
+* Insert an automatic callout point *
+*************************************************/
+
+/* This function is called when the PCRE_AUTO_CALLOUT option is set, to insert
+callout points before each pattern item.
+
+Arguments:
+ code current code pointer
+ ptr current pattern pointer
+ cd pointers to tables etc
+
+Returns: new code pointer
+*/
+
+static pcre_uchar *
+auto_callout(pcre_uchar *code, const pcre_uchar *ptr, compile_data *cd)
+{
+*code++ = OP_CALLOUT;
+*code++ = 255;
+PUT(code, 0, (int)(ptr - cd->start_pattern)); /* Pattern offset */
+PUT(code, LINK_SIZE, 0); /* Default length */
+return code + 2 * LINK_SIZE;
+}
+
+
+
+/*************************************************
+* Complete a callout item *
+*************************************************/
+
+/* A callout item contains the length of the next item in the pattern, which
+we can't fill in till after we have reached the relevant point. This is used
+for both automatic and manual callouts.
+
+Arguments:
+ previous_callout points to previous callout item
+ ptr current pattern pointer
+ cd pointers to tables etc
+
+Returns: nothing
+*/
+
+static void
+complete_callout(pcre_uchar *previous_callout, const pcre_uchar *ptr, compile_data *cd)
+{
+int length = (int)(ptr - cd->start_pattern - GET(previous_callout, 2));
+PUT(previous_callout, 2 + LINK_SIZE, length);
+}
+
+
+
+#ifdef SUPPORT_UCP
+/*************************************************
+* Get othercase range *
+*************************************************/
+
+/* This function is passed the start and end of a class range, in UTF-8 mode
+with UCP support. It searches up the characters, looking for ranges of
+characters in the "other" case. Each call returns the next one, updating the
+start address. A character with multiple other cases is returned on its own
+with a special return value.
+
+Arguments:
+ cptr points to starting character value; updated
+ d end value
+ ocptr where to put start of othercase range
+ odptr where to put end of othercase range
+
+Yield: -1 when no more
+ 0 when a range is returned
+ >0 the CASESET offset for char with multiple other cases
+ in this case, ocptr contains the original
+*/
+
+static int
+get_othercase_range(pcre_uint32 *cptr, pcre_uint32 d, pcre_uint32 *ocptr,
+ pcre_uint32 *odptr)
+{
+pcre_uint32 c, othercase, next;
+unsigned int co;
+
+/* Find the first character that has an other case. If it has multiple other
+cases, return its case offset value. */
+
+for (c = *cptr; c <= d; c++)
+ {
+ if ((co = UCD_CASESET(c)) != 0)
+ {
+ *ocptr = c++; /* Character that has the set */
+ *cptr = c; /* Rest of input range */
+ return (int)co;
+ }
+ if ((othercase = UCD_OTHERCASE(c)) != c) break;
+ }
+
+if (c > d) return -1; /* Reached end of range */
+
+*ocptr = othercase;
+next = othercase + 1;
+
+for (++c; c <= d; c++)
+ {
+ if (UCD_OTHERCASE(c) != next) break;
+ next++;
+ }
+
+*odptr = next - 1; /* End of othercase range */
+*cptr = c; /* Rest of input range */
+return 0;
+}
+
+
+
+/*************************************************
+* Check a character and a property *
+*************************************************/
+
+/* This function is called by check_auto_possessive() when a property item
+is adjacent to a fixed character.
+
+Arguments:
+ c the character
+ ptype the property type
+ pdata the data for the type
+ negated TRUE if it's a negated property (\P or \p{^)
+
+Returns: TRUE if auto-possessifying is OK
+*/
+
+static BOOL
+check_char_prop(pcre_uint32 c, unsigned int ptype, unsigned int pdata, BOOL negated)
+{
+#ifdef SUPPORT_UCP
+const pcre_uint32 *p;
+#endif
+
+const ucd_record *prop = GET_UCD(c);
+
+switch(ptype)
+ {
+ case PT_LAMP:
+ return (prop->chartype == ucp_Lu ||
+ prop->chartype == ucp_Ll ||
+ prop->chartype == ucp_Lt) == negated;
+
+ case PT_GC:
+ return (pdata == PRIV(ucp_gentype)[prop->chartype]) == negated;
+
+ case PT_PC:
+ return (pdata == prop->chartype) == negated;
+
+ case PT_SC:
+ return (pdata == prop->script) == negated;
+
+ /* These are specials */
+
+ case PT_ALNUM:
+ return (PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N) == negated;
+
+ case PT_SPACE: /* Perl space */
+ return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR)
+ == negated;
+
+ case PT_PXSPACE: /* POSIX space */
+ return (PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
+ c == CHAR_FF || c == CHAR_CR)
+ == negated;
+
+ case PT_WORD:
+ return (PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N ||
+ c == CHAR_UNDERSCORE) == negated;
+
+#ifdef SUPPORT_UCP
+ case PT_CLIST:
+ p = PRIV(ucd_caseless_sets) + prop->caseset;
+ for (;;)
+ {
+ if (c < *p) return !negated;
+ if (c == *p++) return negated;
+ }
+ break; /* Control never reaches here */
+#endif
+ }
+
+return FALSE;
+}
+#endif /* SUPPORT_UCP */
+
+
+
+/*************************************************
+* Check if auto-possessifying is possible *
+*************************************************/
+
+/* This function is called for unlimited repeats of certain items, to see
+whether the next thing could possibly match the repeated item. If not, it makes
+sense to automatically possessify the repeated item.
+
+Arguments:
+ previous pointer to the repeated opcode
+ utf TRUE in UTF-8 / UTF-16 / UTF-32 mode
+ ptr next character in pattern
+ options options bits
+ cd contains pointers to tables etc.
+
+Returns: TRUE if possessifying is wanted
+*/
+
+static BOOL
+check_auto_possessive(const pcre_uchar *previous, BOOL utf,
+ const pcre_uchar *ptr, int options, compile_data *cd)
+{
+pcre_uint32 c = NOTACHAR;
+pcre_uint32 next;
+int escape;
+pcre_uchar op_code = *previous++;
+
+/* Skip whitespace and comments in extended mode */
+
+if ((options & PCRE_EXTENDED) != 0)
+ {
+ for (;;)
+ {
+ while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
+ if (*ptr == CHAR_NUMBER_SIGN)
+ {
+ ptr++;
+ while (*ptr != CHAR_NULL)
+ {
+ if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
+ ptr++;
+#ifdef SUPPORT_UTF
+ if (utf) FORWARDCHAR(ptr);
+#endif
+ }
+ }
+ else break;
+ }
+ }
+
+/* If the next item is one that we can handle, get its value. A non-negative
+value is a character, a negative value is an escape value. */
+
+if (*ptr == CHAR_BACKSLASH)
+ {
+ int temperrorcode = 0;
+ escape = check_escape(&ptr, &next, &temperrorcode, cd->bracount, options,
+ FALSE);
+ if (temperrorcode != 0) return FALSE;
+ ptr++; /* Point after the escape sequence */
+ }
+else if (!MAX_255(*ptr) || (cd->ctypes[*ptr] & ctype_meta) == 0)
+ {
+ escape = 0;
+#ifdef SUPPORT_UTF
+ if (utf) { GETCHARINC(next, ptr); } else
+#endif
+ next = *ptr++;
+ }
+else return FALSE;
+
+/* Skip whitespace and comments in extended mode */
+
+if ((options & PCRE_EXTENDED) != 0)
+ {
+ for (;;)
+ {
+ while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_space) != 0) ptr++;
+ if (*ptr == CHAR_NUMBER_SIGN)
+ {
+ ptr++;
+ while (*ptr != CHAR_NULL)
+ {
+ if (IS_NEWLINE(ptr)) { ptr += cd->nllen; break; }
+ ptr++;
+#ifdef SUPPORT_UTF
+ if (utf) FORWARDCHAR(ptr);
+#endif
+ }
+ }
+ else break;
+ }
+ }
+
+/* If the next thing is itself optional, we have to give up. */
+
+if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
+ STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
+ return FALSE;
+
+/* If the previous item is a character, get its value. */
+
+if (op_code == OP_CHAR || op_code == OP_CHARI ||
+ op_code == OP_NOT || op_code == OP_NOTI)
+ {
+#ifdef SUPPORT_UTF
+ GETCHARTEST(c, previous);
+#else
+ c = *previous;
+#endif
+ }
+
+/* Now compare the next item with the previous opcode. First, handle cases when
+the next item is a character. */
+
+if (escape == 0)
+ {
+ /* For a caseless UTF match, the next character may have more than one other
+ case, which maps to the special PT_CLIST property. Check this first. */
+
+#ifdef SUPPORT_UCP
+ if (utf && c != NOTACHAR && (options & PCRE_CASELESS) != 0)
+ {
+ unsigned int ocs = UCD_CASESET(next);
+ if (ocs > 0) return check_char_prop(c, PT_CLIST, ocs, op_code >= OP_NOT);
+ }
+#endif
+
+ switch(op_code)
+ {
+ case OP_CHAR:
+ return c != next;
+
+ /* For CHARI (caseless character) we must check the other case. If we have
+ Unicode property support, we can use it to test the other case of
+ high-valued characters. We know that next can have only one other case,
+ because multi-other-case characters are dealt with above. */
+
+ case OP_CHARI:
+ if (c == next) return FALSE;
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ pcre_uint32 othercase;
+ if (next < 128) othercase = cd->fcc[next]; else
+#ifdef SUPPORT_UCP
+ othercase = UCD_OTHERCASE(next);
+#else
+ othercase = NOTACHAR;
+#endif
+ return c != othercase;
+ }
+ else
+#endif /* SUPPORT_UTF */
+ return (c != TABLE_GET(next, cd->fcc, next)); /* Not UTF */
+
+ case OP_NOT:
+ return c == next;
+
+ case OP_NOTI:
+ if (c == next) return TRUE;
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ pcre_uint32 othercase;
+ if (next < 128) othercase = cd->fcc[next]; else
+#ifdef SUPPORT_UCP
+ othercase = UCD_OTHERCASE(next);
+#else
+ othercase = NOTACHAR;
+#endif
+ return c == othercase;
+ }
+ else
+#endif /* SUPPORT_UTF */
+ return (c == TABLE_GET(next, cd->fcc, next)); /* Not UTF */
+
+ /* Note that OP_DIGIT etc. are generated only when PCRE_UCP is *not* set.
+ When it is set, \d etc. are converted into OP_(NOT_)PROP codes. */
+
+ case OP_DIGIT:
+ return next > 255 || (cd->ctypes[next] & ctype_digit) == 0;
+
+ case OP_NOT_DIGIT:
+ return next <= 255 && (cd->ctypes[next] & ctype_digit) != 0;
+
+ case OP_WHITESPACE:
+ return next > 255 || (cd->ctypes[next] & ctype_space) == 0;
+
+ case OP_NOT_WHITESPACE:
+ return next <= 255 && (cd->ctypes[next] & ctype_space) != 0;
+
+ case OP_WORDCHAR:
+ return next > 255 || (cd->ctypes[next] & ctype_word) == 0;
+
+ case OP_NOT_WORDCHAR:
+ return next <= 255 && (cd->ctypes[next] & ctype_word) != 0;
+
+ case OP_HSPACE:
+ case OP_NOT_HSPACE:
+ switch(next)
+ {
+ HSPACE_CASES:
+ return op_code == OP_NOT_HSPACE;
+
+ default:
+ return op_code != OP_NOT_HSPACE;
+ }
+
+ case OP_ANYNL:
+ case OP_VSPACE:
+ case OP_NOT_VSPACE:
+ switch(next)
+ {
+ VSPACE_CASES:
+ return op_code == OP_NOT_VSPACE;
+
+ default:
+ return op_code != OP_NOT_VSPACE;
+ }
+
+#ifdef SUPPORT_UCP
+ case OP_PROP:
+ return check_char_prop(next, previous[0], previous[1], FALSE);
+
+ case OP_NOTPROP:
+ return check_char_prop(next, previous[0], previous[1], TRUE);
+#endif
+
+ default:
+ return FALSE;
+ }
+ }
+
+/* Handle the case when the next item is \d, \s, etc. Note that when PCRE_UCP
+is set, \d turns into ESC_du rather than ESC_d, etc., so ESC_d etc. are
+generated only when PCRE_UCP is *not* set, that is, when only ASCII
+characteristics are recognized. Similarly, the opcodes OP_DIGIT etc. are
+replaced by OP_PROP codes when PCRE_UCP is set. */
+
+switch(op_code)
+ {
+ case OP_CHAR:
+ case OP_CHARI:
+ switch(escape)
+ {
+ case ESC_d:
+ return c > 255 || (cd->ctypes[c] & ctype_digit) == 0;
+
+ case ESC_D:
+ return c <= 255 && (cd->ctypes[c] & ctype_digit) != 0;
+
+ case ESC_s:
+ return c > 255 || (cd->ctypes[c] & ctype_space) == 0;
+
+ case ESC_S:
+ return c <= 255 && (cd->ctypes[c] & ctype_space) != 0;
+
+ case ESC_w:
+ return c > 255 || (cd->ctypes[c] & ctype_word) == 0;
+
+ case ESC_W:
+ return c <= 255 && (cd->ctypes[c] & ctype_word) != 0;
+
+ case ESC_h:
+ case ESC_H:
+ switch(c)
+ {
+ HSPACE_CASES:
+ return escape != ESC_h;
+
+ default:
+ return escape == ESC_h;
+ }
+
+ case ESC_v:
+ case ESC_V:
+ switch(c)
+ {
+ VSPACE_CASES:
+ return escape != ESC_v;
+
+ default:
+ return escape == ESC_v;
+ }
+
+ /* When PCRE_UCP is set, these values get generated for \d etc. Find
+ their substitutions and process them. The result will always be either
+ ESC_p or ESC_P. Then fall through to process those values. */
+
+#ifdef SUPPORT_UCP
+ case ESC_du:
+ case ESC_DU:
+ case ESC_wu:
+ case ESC_WU:
+ case ESC_su:
+ case ESC_SU:
+ {
+ int temperrorcode = 0;
+ ptr = substitutes[escape - ESC_DU];
+ escape = check_escape(&ptr, &next, &temperrorcode, 0, options, FALSE);
+ if (temperrorcode != 0) return FALSE;
+ ptr++; /* For compatibility */
+ }
+ /* Fall through */
+
+ case ESC_p:
+ case ESC_P:
+ {
+ unsigned int ptype = 0, pdata = 0;
+ int errorcodeptr;
+ BOOL negated;
+
+ ptr--; /* Make ptr point at the p or P */
+ if (!get_ucp(&ptr, &negated, &ptype, &pdata, &errorcodeptr))
+ return FALSE;
+ ptr++; /* Point past the final curly ket */
+
+ /* If the property item is optional, we have to give up. (When generated
+ from \d etc by PCRE_UCP, this test will have been applied much earlier,
+ to the original \d etc. At this point, ptr will point to a zero byte. */
+
+ if (*ptr == CHAR_ASTERISK || *ptr == CHAR_QUESTION_MARK ||
+ STRNCMP_UC_C8(ptr, STR_LEFT_CURLY_BRACKET STR_0 STR_COMMA, 3) == 0)
+ return FALSE;
+
+ /* Do the property check. */
+
+ return check_char_prop(c, ptype, pdata, (escape == ESC_P) != negated);
+ }
+#endif
+
+ default:
+ return FALSE;
+ }
+
+ /* In principle, support for Unicode properties should be integrated here as
+ well. It means re-organizing the above code so as to get hold of the property
+ values before switching on the op-code. However, I wonder how many patterns
+ combine ASCII \d etc with Unicode properties? (Note that if PCRE_UCP is set,
+ these op-codes are never generated.) */
+
+ case OP_DIGIT:
+ return escape == ESC_D || escape == ESC_s || escape == ESC_W ||
+ escape == ESC_h || escape == ESC_v || escape == ESC_R;
+
+ case OP_NOT_DIGIT:
+ return escape == ESC_d;
+
+ case OP_WHITESPACE:
+ return escape == ESC_S || escape == ESC_d || escape == ESC_w;
+
+ case OP_NOT_WHITESPACE:
+ return escape == ESC_s || escape == ESC_h || escape == ESC_v || escape == ESC_R;
+
+ case OP_HSPACE:
+ return escape == ESC_S || escape == ESC_H || escape == ESC_d ||
+ escape == ESC_w || escape == ESC_v || escape == ESC_R;
+
+ case OP_NOT_HSPACE:
+ return escape == ESC_h;
+
+ /* Can't have \S in here because VT matches \S (Perl anomaly) */
+ case OP_ANYNL:
+ case OP_VSPACE:
+ return escape == ESC_V || escape == ESC_d || escape == ESC_w;
+
+ case OP_NOT_VSPACE:
+ return escape == ESC_v || escape == ESC_R;
+
+ case OP_WORDCHAR:
+ return escape == ESC_W || escape == ESC_s || escape == ESC_h ||
+ escape == ESC_v || escape == ESC_R;
+
+ case OP_NOT_WORDCHAR:
+ return escape == ESC_w || escape == ESC_d;
+
+ default:
+ return FALSE;
+ }
+
+/* Control does not reach here */
+}
+
+
+
+/*************************************************
+* Add a character or range to a class *
+*************************************************/
+
+/* This function packages up the logic of adding a character or range of
+characters to a class. The character values in the arguments will be within the
+valid values for the current mode (8-bit, 16-bit, UTF, etc). This function is
+mutually recursive with the function immediately below.
+
+Arguments:
+ classbits the bit map for characters < 256
+ uchardptr points to the pointer for extra data
+ options the options word
+ cd contains pointers to tables etc.
+ start start of range character
+ end end of range character
+
+Returns: the number of < 256 characters added
+ the pointer to extra data is updated
+*/
+
+static int
+add_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options,
+ compile_data *cd, pcre_uint32 start, pcre_uint32 end)
+{
+pcre_uint32 c;
+int n8 = 0;
+
+/* If caseless matching is required, scan the range and process alternate
+cases. In Unicode, there are 8-bit characters that have alternate cases that
+are greater than 255 and vice-versa. Sometimes we can just extend the original
+range. */
+
+if ((options & PCRE_CASELESS) != 0)
+ {
+#ifdef SUPPORT_UCP
+ if ((options & PCRE_UTF8) != 0)
+ {
+ int rc;
+ pcre_uint32 oc, od;
+
+ options &= ~PCRE_CASELESS; /* Remove for recursive calls */
+ c = start;
+
+ while ((rc = get_othercase_range(&c, end, &oc, &od)) >= 0)
+ {
+ /* Handle a single character that has more than one other case. */
+
+ if (rc > 0) n8 += add_list_to_class(classbits, uchardptr, options, cd,
+ PRIV(ucd_caseless_sets) + rc, oc);
+
+ /* Do nothing if the other case range is within the original range. */
+
+ else if (oc >= start && od <= end) continue;
+
+ /* Extend the original range if there is overlap, noting that if oc < c, we
+ can't have od > end because a subrange is always shorter than the basic
+ range. Otherwise, use a recursive call to add the additional range. */
+
+ else if (oc < start && od >= start - 1) start = oc; /* Extend downwards */
+ else if (od > end && oc <= end + 1) end = od; /* Extend upwards */
+ else n8 += add_to_class(classbits, uchardptr, options, cd, oc, od);
+ }
+ }
+ else
+#endif /* SUPPORT_UCP */
+
+ /* Not UTF-mode, or no UCP */
+
+ for (c = start; c <= end && c < 256; c++)
+ {
+ SETBIT(classbits, cd->fcc[c]);
+ n8++;
+ }
+ }
+
+/* Now handle the original range. Adjust the final value according to the bit
+length - this means that the same lists of (e.g.) horizontal spaces can be used
+in all cases. */
+
+#if defined COMPILE_PCRE8
+#ifdef SUPPORT_UTF
+ if ((options & PCRE_UTF8) == 0)
+#endif
+ if (end > 0xff) end = 0xff;
+
+#elif defined COMPILE_PCRE16
+#ifdef SUPPORT_UTF
+ if ((options & PCRE_UTF16) == 0)
+#endif
+ if (end > 0xffff) end = 0xffff;
+
+#endif /* COMPILE_PCRE[8|16] */
+
+/* If all characters are less than 256, use the bit map. Otherwise use extra
+data. */
+
+if (end < 0x100)
+ {
+ for (c = start; c <= end; c++)
+ {
+ n8++;
+ SETBIT(classbits, c);
+ }
+ }
+
+else
+ {
+ pcre_uchar *uchardata = *uchardptr;
+
+#ifdef SUPPORT_UTF
+ if ((options & PCRE_UTF8) != 0) /* All UTFs use the same flag bit */
+ {
+ if (start < end)
+ {
+ *uchardata++ = XCL_RANGE;
+ uchardata += PRIV(ord2utf)(start, uchardata);
+ uchardata += PRIV(ord2utf)(end, uchardata);
+ }
+ else if (start == end)
+ {
+ *uchardata++ = XCL_SINGLE;
+ uchardata += PRIV(ord2utf)(start, uchardata);
+ }
+ }
+ else
+#endif /* SUPPORT_UTF */
+
+ /* Without UTF support, character values are constrained by the bit length,
+ and can only be > 256 for 16-bit and 32-bit libraries. */
+
+#ifdef COMPILE_PCRE8
+ {}
+#else
+ if (start < end)
+ {
+ *uchardata++ = XCL_RANGE;
+ *uchardata++ = start;
+ *uchardata++ = end;
+ }
+ else if (start == end)
+ {
+ *uchardata++ = XCL_SINGLE;
+ *uchardata++ = start;
+ }
+#endif
+
+ *uchardptr = uchardata; /* Updata extra data pointer */
+ }
+
+return n8; /* Number of 8-bit characters */
+}
+
+
+
+
+/*************************************************
+* Add a list of characters to a class *
+*************************************************/
+
+/* This function is used for adding a list of case-equivalent characters to a
+class, and also for adding a list of horizontal or vertical whitespace. If the
+list is in order (which it should be), ranges of characters are detected and
+handled appropriately. This function is mutually recursive with the function
+above.
+
+Arguments:
+ classbits the bit map for characters < 256
+ uchardptr points to the pointer for extra data
+ options the options word
+ cd contains pointers to tables etc.
+ p points to row of 32-bit values, terminated by NOTACHAR
+ except character to omit; this is used when adding lists of
+ case-equivalent characters to avoid including the one we
+ already know about
+
+Returns: the number of < 256 characters added
+ the pointer to extra data is updated
+*/
+
+static int
+add_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr, int options,
+ compile_data *cd, const pcre_uint32 *p, unsigned int except)
+{
+int n8 = 0;
+while (p[0] < NOTACHAR)
+ {
+ int n = 0;
+ if (p[0] != except)
+ {
+ while(p[n+1] == p[0] + n + 1) n++;
+ n8 += add_to_class(classbits, uchardptr, options, cd, p[0], p[n]);
+ }
+ p += n + 1;
+ }
+return n8;
+}
+
+
+
+/*************************************************
+* Add characters not in a list to a class *
+*************************************************/
+
+/* This function is used for adding the complement of a list of horizontal or
+vertical whitespace to a class. The list must be in order.
+
+Arguments:
+ classbits the bit map for characters < 256
+ uchardptr points to the pointer for extra data
+ options the options word
+ cd contains pointers to tables etc.
+ p points to row of 32-bit values, terminated by NOTACHAR
+
+Returns: the number of < 256 characters added
+ the pointer to extra data is updated
+*/
+
+static int
+add_not_list_to_class(pcre_uint8 *classbits, pcre_uchar **uchardptr,
+ int options, compile_data *cd, const pcre_uint32 *p)
+{
+BOOL utf = (options & PCRE_UTF8) != 0;
+int n8 = 0;
+if (p[0] > 0)
+ n8 += add_to_class(classbits, uchardptr, options, cd, 0, p[0] - 1);
+while (p[0] < NOTACHAR)
+ {
+ while (p[1] == p[0] + 1) p++;
+ n8 += add_to_class(classbits, uchardptr, options, cd, p[0] + 1,
+ (p[1] == NOTACHAR) ? (utf ? 0x10ffffu : 0xffffffffu) : p[1] - 1);
+ p++;
+ }
+return n8;
+}
+
+
+
+/*************************************************
+* Compile one branch *
+*************************************************/
+
+/* Scan the pattern, compiling it into the a vector. If the options are
+changed during the branch, the pointer is used to change the external options
+bits. This function is used during the pre-compile phase when we are trying
+to find out the amount of memory needed, as well as during the real compile
+phase. The value of lengthptr distinguishes the two phases.
+
+Arguments:
+ optionsptr pointer to the option bits
+ codeptr points to the pointer to the current code point
+ ptrptr points to the current pattern pointer
+ errorcodeptr points to error code variable
+ firstcharptr place to put the first required character
+ firstcharflagsptr place to put the first character flags, or a negative number
+ reqcharptr place to put the last required character
+ reqcharflagsptr place to put the last required character flags, or a negative number
+ bcptr points to current branch chain
+ cond_depth conditional nesting depth
+ cd contains pointers to tables etc.
+ lengthptr NULL during the real compile phase
+ points to length accumulator during pre-compile phase
+
+Returns: TRUE on success
+ FALSE, with *errorcodeptr set non-zero on error
+*/
+
+static BOOL
+compile_branch(int *optionsptr, pcre_uchar **codeptr,
+ const pcre_uchar **ptrptr, int *errorcodeptr,
+ pcre_uint32 *firstcharptr, pcre_int32 *firstcharflagsptr,
+ pcre_uint32 *reqcharptr, pcre_int32 *reqcharflagsptr,
+ branch_chain *bcptr, int cond_depth,
+ compile_data *cd, int *lengthptr)
+{
+int repeat_type, op_type;
+int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
+int bravalue = 0;
+int greedy_default, greedy_non_default;
+pcre_uint32 firstchar, reqchar;
+pcre_int32 firstcharflags, reqcharflags;
+pcre_uint32 zeroreqchar, zerofirstchar;
+pcre_int32 zeroreqcharflags, zerofirstcharflags;
+pcre_int32 req_caseopt, reqvary, tempreqvary;
+int options = *optionsptr; /* May change dynamically */
+int after_manual_callout = 0;
+int length_prevgroup = 0;
+register pcre_uint32 c;
+int escape;
+register pcre_uchar *code = *codeptr;
+pcre_uchar *last_code = code;
+pcre_uchar *orig_code = code;
+pcre_uchar *tempcode;
+BOOL inescq = FALSE;
+BOOL groupsetfirstchar = FALSE;
+const pcre_uchar *ptr = *ptrptr;
+const pcre_uchar *tempptr;
+const pcre_uchar *nestptr = NULL;
+pcre_uchar *previous = NULL;
+pcre_uchar *previous_callout = NULL;
+pcre_uchar *save_hwm = NULL;
+pcre_uint8 classbits[32];
+
+/* We can fish out the UTF-8 setting once and for all into a BOOL, but we
+must not do this for other options (e.g. PCRE_EXTENDED) because they may change
+dynamically as we process the pattern. */
+
+#ifdef SUPPORT_UTF
+/* PCRE_UTF[16|32] have the same value as PCRE_UTF8. */
+BOOL utf = (options & PCRE_UTF8) != 0;
+#ifndef COMPILE_PCRE32
+pcre_uchar utf_chars[6];
+#endif
+#else
+BOOL utf = FALSE;
+#endif
+
+/* Helper variables for OP_XCLASS opcode (for characters > 255). We define
+class_uchardata always so that it can be passed to add_to_class() always,
+though it will not be used in non-UTF 8-bit cases. This avoids having to supply
+alternative calls for the different cases. */
+
+pcre_uchar *class_uchardata;
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+BOOL xclass;
+pcre_uchar *class_uchardata_base;
+#endif
+
+#ifdef PCRE_DEBUG
+if (lengthptr != NULL) DPRINTF((">> start branch\n"));
+#endif
+
+/* Set up the default and non-default settings for greediness */
+
+greedy_default = ((options & PCRE_UNGREEDY) != 0);
+greedy_non_default = greedy_default ^ 1;
+
+/* Initialize no first byte, no required byte. REQ_UNSET means "no char
+matching encountered yet". It gets changed to REQ_NONE if we hit something that
+matches a non-fixed char first char; reqchar just remains unset if we never
+find one.
+
+When we hit a repeat whose minimum is zero, we may have to adjust these values
+to take the zero repeat into account. This is implemented by setting them to
+zerofirstbyte and zeroreqchar when such a repeat is encountered. The individual
+item types that can be repeated set these backoff variables appropriately. */
+
+firstchar = reqchar = zerofirstchar = zeroreqchar = 0;
+firstcharflags = reqcharflags = zerofirstcharflags = zeroreqcharflags = REQ_UNSET;
+
+/* The variable req_caseopt contains either the REQ_CASELESS value
+or zero, according to the current setting of the caseless flag. The
+REQ_CASELESS leaves the lower 28 bit empty. It is added into the
+firstchar or reqchar variables to record the case status of the
+value. This is used only for ASCII characters. */
+
+req_caseopt = ((options & PCRE_CASELESS) != 0)? REQ_CASELESS:0;
+
+/* Switch on next character until the end of the branch */
+
+for (;; ptr++)
+ {
+ BOOL negate_class;
+ BOOL should_flip_negation;
+ BOOL possessive_quantifier;
+ BOOL is_quantifier;
+ BOOL is_recurse;
+ BOOL reset_bracount;
+ int class_has_8bitchar;
+ int class_one_char;
+ int newoptions;
+ int recno;
+ int refsign;
+ int skipbytes;
+ pcre_uint32 subreqchar, subfirstchar;
+ pcre_int32 subreqcharflags, subfirstcharflags;
+ int terminator;
+ unsigned int mclength;
+ unsigned int tempbracount;
+ pcre_uint32 ec;
+ pcre_uchar mcbuffer[8];
+
+ /* Get next character in the pattern */
+
+ c = *ptr;
+
+ /* If we are at the end of a nested substitution, revert to the outer level
+ string. Nesting only happens one level deep. */
+
+ if (c == CHAR_NULL && nestptr != NULL)
+ {
+ ptr = nestptr;
+ nestptr = NULL;
+ c = *ptr;
+ }
+
+ /* If we are in the pre-compile phase, accumulate the length used for the
+ previous cycle of this loop. */
+
+ if (lengthptr != NULL)
+ {
+#ifdef PCRE_DEBUG
+ if (code > cd->hwm) cd->hwm = code; /* High water info */
+#endif
+ if (code > cd->start_workspace + cd->workspace_size -
+ WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */
+ {
+ *errorcodeptr = ERR52;
+ goto FAILED;
+ }
+
+ /* There is at least one situation where code goes backwards: this is the
+ case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
+ the class is simply eliminated. However, it is created first, so we have to
+ allow memory for it. Therefore, don't ever reduce the length at this point.
+ */
+
+ if (code < last_code) code = last_code;
+
+ /* Paranoid check for integer overflow */
+
+ if (OFLOW_MAX - *lengthptr < code - last_code)
+ {
+ *errorcodeptr = ERR20;
+ goto FAILED;
+ }
+
+ *lengthptr += (int)(code - last_code);
+ DPRINTF(("length=%d added %d c=%c (0x%x)\n", *lengthptr,
+ (int)(code - last_code), c, c));
+
+ /* If "previous" is set and it is not at the start of the work space, move
+ it back to there, in order to avoid filling up the work space. Otherwise,
+ if "previous" is NULL, reset the current code pointer to the start. */
+
+ if (previous != NULL)
+ {
+ if (previous > orig_code)
+ {
+ memmove(orig_code, previous, IN_UCHARS(code - previous));
+ code -= previous - orig_code;
+ previous = orig_code;
+ }
+ }
+ else code = orig_code;
+
+ /* Remember where this code item starts so we can pick up the length
+ next time round. */
+
+ last_code = code;
+ }
+
+ /* In the real compile phase, just check the workspace used by the forward
+ reference list. */
+
+ else if (cd->hwm > cd->start_workspace + cd->workspace_size -
+ WORK_SIZE_SAFETY_MARGIN)
+ {
+ *errorcodeptr = ERR52;
+ goto FAILED;
+ }
+
+ /* If in \Q...\E, check for the end; if not, we have a literal */
+
+ if (inescq && c != CHAR_NULL)
+ {
+ if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E)
+ {
+ inescq = FALSE;
+ ptr++;
+ continue;
+ }
+ else
+ {
+ if (previous_callout != NULL)
+ {
+ if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
+ complete_callout(previous_callout, ptr, cd);
+ previous_callout = NULL;
+ }
+ if ((options & PCRE_AUTO_CALLOUT) != 0)
+ {
+ previous_callout = code;
+ code = auto_callout(code, ptr, cd);
+ }
+ goto NORMAL_CHAR;
+ }
+ }
+
+ /* Fill in length of a previous callout, except when the next thing is
+ a quantifier. */
+
+ is_quantifier =
+ c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK ||
+ (c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1));
+
+ if (!is_quantifier && previous_callout != NULL &&
+ after_manual_callout-- <= 0)
+ {
+ if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
+ complete_callout(previous_callout, ptr, cd);
+ previous_callout = NULL;
+ }
+
+ /* In extended mode, skip white space and comments. */
+
+ if ((options & PCRE_EXTENDED) != 0)
+ {
+ if (MAX_255(*ptr) && (cd->ctypes[c] & ctype_space) != 0) continue;
+ if (c == CHAR_NUMBER_SIGN)
+ {
+ ptr++;
+ while (*ptr != CHAR_NULL)
+ {
+ if (IS_NEWLINE(ptr)) { ptr += cd->nllen - 1; break; }
+ ptr++;
+#ifdef SUPPORT_UTF
+ if (utf) FORWARDCHAR(ptr);
+#endif
+ }
+ if (*ptr != CHAR_NULL) continue;
+
+ /* Else fall through to handle end of string */
+ c = 0;
+ }
+ }
+
+ /* No auto callout for quantifiers. */
+
+ if ((options & PCRE_AUTO_CALLOUT) != 0 && !is_quantifier)
+ {
+ previous_callout = code;
+ code = auto_callout(code, ptr, cd);
+ }
+
+ switch(c)
+ {
+ /* ===================================================================*/
+ case 0: /* The branch terminates at string end */
+ case CHAR_VERTICAL_LINE: /* or | or ) */
+ case CHAR_RIGHT_PARENTHESIS:
+ *firstcharptr = firstchar;
+ *firstcharflagsptr = firstcharflags;
+ *reqcharptr = reqchar;
+ *reqcharflagsptr = reqcharflags;
+ *codeptr = code;
+ *ptrptr = ptr;
+ if (lengthptr != NULL)
+ {
+ if (OFLOW_MAX - *lengthptr < code - last_code)
+ {
+ *errorcodeptr = ERR20;
+ goto FAILED;
+ }
+ *lengthptr += (int)(code - last_code); /* To include callout length */
+ DPRINTF((">> end branch\n"));
+ }
+ return TRUE;
+
+
+ /* ===================================================================*/
+ /* Handle single-character metacharacters. In multiline mode, ^ disables
+ the setting of any following char as a first character. */
+
+ case CHAR_CIRCUMFLEX_ACCENT:
+ previous = NULL;
+ if ((options & PCRE_MULTILINE) != 0)
+ {
+ if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
+ *code++ = OP_CIRCM;
+ }
+ else *code++ = OP_CIRC;
+ break;
+
+ case CHAR_DOLLAR_SIGN:
+ previous = NULL;
+ *code++ = ((options & PCRE_MULTILINE) != 0)? OP_DOLLM : OP_DOLL;
+ break;
+
+ /* There can never be a first char if '.' is first, whatever happens about
+ repeats. The value of reqchar doesn't change either. */
+
+ case CHAR_DOT:
+ if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
+ zerofirstchar = firstchar;
+ zerofirstcharflags = firstcharflags;
+ zeroreqchar = reqchar;
+ zeroreqcharflags = reqcharflags;
+ previous = code;
+ *code++ = ((options & PCRE_DOTALL) != 0)? OP_ALLANY: OP_ANY;
+ break;
+
+
+ /* ===================================================================*/
+ /* Character classes. If the included characters are all < 256, we build a
+ 32-byte bitmap of the permitted characters, except in the special case
+ where there is only one such character. For negated classes, we build the
+ map as usual, then invert it at the end. However, we use a different opcode
+ so that data characters > 255 can be handled correctly.
+
+ If the class contains characters outside the 0-255 range, a different
+ opcode is compiled. It may optionally have a bit map for characters < 256,
+ but those above are are explicitly listed afterwards. A flag byte tells
+ whether the bitmap is present, and whether this is a negated class or not.
+
+ In JavaScript compatibility mode, an isolated ']' causes an error. In
+ default (Perl) mode, it is treated as a data character. */
+
+ case CHAR_RIGHT_SQUARE_BRACKET:
+ if ((cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
+ {
+ *errorcodeptr = ERR64;
+ goto FAILED;
+ }
+ goto NORMAL_CHAR;
+
+ case CHAR_LEFT_SQUARE_BRACKET:
+ previous = code;
+
+ /* PCRE supports POSIX class stuff inside a class. Perl gives an error if
+ they are encountered at the top level, so we'll do that too. */
+
+ if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
+ ptr[1] == CHAR_EQUALS_SIGN) &&
+ check_posix_syntax(ptr, &tempptr))
+ {
+ *errorcodeptr = (ptr[1] == CHAR_COLON)? ERR13 : ERR31;
+ goto FAILED;
+ }
+
+ /* If the first character is '^', set the negation flag and skip it. Also,
+ if the first few characters (either before or after ^) are \Q\E or \E we
+ skip them too. This makes for compatibility with Perl. */
+
+ negate_class = FALSE;
+ for (;;)
+ {
+ c = *(++ptr);
+ if (c == CHAR_BACKSLASH)
+ {
+ if (ptr[1] == CHAR_E)
+ ptr++;
+ else if (STRNCMP_UC_C8(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0)
+ ptr += 3;
+ else
+ break;
+ }
+ else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT)
+ negate_class = TRUE;
+ else break;
+ }
+
+ /* Empty classes are allowed in JavaScript compatibility mode. Otherwise,
+ an initial ']' is taken as a data character -- the code below handles
+ that. In JS mode, [] must always fail, so generate OP_FAIL, whereas
+ [^] must match any character, so generate OP_ALLANY. */
+
+ if (c == CHAR_RIGHT_SQUARE_BRACKET &&
+ (cd->external_options & PCRE_JAVASCRIPT_COMPAT) != 0)
+ {
+ *code++ = negate_class? OP_ALLANY : OP_FAIL;
+ if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
+ zerofirstchar = firstchar;
+ zerofirstcharflags = firstcharflags;
+ break;
+ }
+
+ /* If a class contains a negative special such as \S, we need to flip the
+ negation flag at the end, so that support for characters > 255 works
+ correctly (they are all included in the class). */
+
+ should_flip_negation = FALSE;
+
+ /* For optimization purposes, we track some properties of the class:
+ class_has_8bitchar will be non-zero if the class contains at least one <
+ 256 character; class_one_char will be 1 if the class contains just one
+ character. */
+
+ class_has_8bitchar = 0;
+ class_one_char = 0;
+
+ /* Initialize the 32-char bit map to all zeros. We build the map in a
+ temporary bit of memory, in case the class contains fewer than two
+ 8-bit characters because in that case the compiled code doesn't use the bit
+ map. */
+
+ memset(classbits, 0, 32 * sizeof(pcre_uint8));
+
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ xclass = FALSE;
+ class_uchardata = code + LINK_SIZE + 2; /* For XCLASS items */
+ class_uchardata_base = class_uchardata; /* Save the start */
+#endif
+
+ /* Process characters until ] is reached. By writing this as a "do" it
+ means that an initial ] is taken as a data character. At the start of the
+ loop, c contains the first byte of the character. */
+
+ if (c != CHAR_NULL) do
+ {
+ const pcre_uchar *oldptr;
+
+#ifdef SUPPORT_UTF
+ if (utf && HAS_EXTRALEN(c))
+ { /* Braces are required because the */
+ GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
+ }
+#endif
+
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ /* In the pre-compile phase, accumulate the length of any extra
+ data and reset the pointer. This is so that very large classes that
+ contain a zillion > 255 characters no longer overwrite the work space
+ (which is on the stack). We have to remember that there was XCLASS data,
+ however. */
+
+ if (lengthptr != NULL && class_uchardata > class_uchardata_base)
+ {
+ xclass = TRUE;
+ *lengthptr += class_uchardata - class_uchardata_base;
+ class_uchardata = class_uchardata_base;
+ }
+#endif
+
+ /* Inside \Q...\E everything is literal except \E */
+
+ if (inescq)
+ {
+ if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */
+ {
+ inescq = FALSE; /* Reset literal state */
+ ptr++; /* Skip the 'E' */
+ continue; /* Carry on with next */
+ }
+ goto CHECK_RANGE; /* Could be range if \E follows */
+ }
+
+ /* Handle POSIX class names. Perl allows a negation extension of the
+ form [:^name:]. A square bracket that doesn't match the syntax is
+ treated as a literal. We also recognize the POSIX constructions
+ [.ch.] and [=ch=] ("collating elements") and fault them, as Perl
+ 5.6 and 5.8 do. */
+
+ if (c == CHAR_LEFT_SQUARE_BRACKET &&
+ (ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
+ ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr))
+ {
+ BOOL local_negate = FALSE;
+ int posix_class, taboffset, tabopt;
+ register const pcre_uint8 *cbits = cd->cbits;
+ pcre_uint8 pbits[32];
+
+ if (ptr[1] != CHAR_COLON)
+ {
+ *errorcodeptr = ERR31;
+ goto FAILED;
+ }
+
+ ptr += 2;
+ if (*ptr == CHAR_CIRCUMFLEX_ACCENT)
+ {
+ local_negate = TRUE;
+ should_flip_negation = TRUE; /* Note negative special */
+ ptr++;
+ }
+
+ posix_class = check_posix_name(ptr, (int)(tempptr - ptr));
+ if (posix_class < 0)
+ {
+ *errorcodeptr = ERR30;
+ goto FAILED;
+ }
+
+ /* If matching is caseless, upper and lower are converted to
+ alpha. This relies on the fact that the class table starts with
+ alpha, lower, upper as the first 3 entries. */
+
+ if ((options & PCRE_CASELESS) != 0 && posix_class <= 2)
+ posix_class = 0;
+
+ /* When PCRE_UCP is set, some of the POSIX classes are converted to
+ different escape sequences that use Unicode properties. */
+
+#ifdef SUPPORT_UCP
+ if ((options & PCRE_UCP) != 0)
+ {
+ int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0);
+ if (posix_substitutes[pc] != NULL)
+ {
+ nestptr = tempptr + 1;
+ ptr = posix_substitutes[pc] - 1;
+ continue;
+ }
+ }
+#endif
+ /* In the non-UCP case, we build the bit map for the POSIX class in a
+ chunk of local store because we may be adding and subtracting from it,
+ and we don't want to subtract bits that may be in the main map already.
+ At the end we or the result into the bit map that is being built. */
+
+ posix_class *= 3;
+
+ /* Copy in the first table (always present) */
+
+ memcpy(pbits, cbits + posix_class_maps[posix_class],
+ 32 * sizeof(pcre_uint8));
+
+ /* If there is a second table, add or remove it as required. */
+
+ taboffset = posix_class_maps[posix_class + 1];
+ tabopt = posix_class_maps[posix_class + 2];
+
+ if (taboffset >= 0)
+ {
+ if (tabopt >= 0)
+ for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
+ else
+ for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
+ }
+
+ /* Now see if we need to remove any special characters. An option
+ value of 1 removes vertical space and 2 removes underscore. */
+
+ if (tabopt < 0) tabopt = -tabopt;
+ if (tabopt == 1) pbits[1] &= ~0x3c;
+ else if (tabopt == 2) pbits[11] &= 0x7f;
+
+ /* Add the POSIX table or its complement into the main table that is
+ being built and we are done. */
+
+ if (local_negate)
+ for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
+ else
+ for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
+
+ ptr = tempptr + 1;
+ /* Every class contains at least one < 256 character. */
+ class_has_8bitchar = 1;
+ /* Every class contains at least two characters. */
+ class_one_char = 2;
+ continue; /* End of POSIX syntax handling */
+ }
+
+ /* Backslash may introduce a single character, or it may introduce one
+ of the specials, which just set a flag. The sequence \b is a special
+ case. Inside a class (and only there) it is treated as backspace. We
+ assume that other escapes have more than one character in them, so
+ speculatively set both class_has_8bitchar and class_one_char bigger
+ than one. Unrecognized escapes fall through and are either treated
+ as literal characters (by default), or are faulted if
+ PCRE_EXTRA is set. */
+
+ if (c == CHAR_BACKSLASH)
+ {
+ escape = check_escape(&ptr, &ec, errorcodeptr, cd->bracount, options,
+ TRUE);
+ if (*errorcodeptr != 0) goto FAILED;
+ if (escape == 0) c = ec;
+ else if (escape == ESC_b) c = CHAR_BS; /* \b is backspace in a class */
+ else if (escape == ESC_N) /* \N is not supported in a class */
+ {
+ *errorcodeptr = ERR71;
+ goto FAILED;
+ }
+ else if (escape == ESC_Q) /* Handle start of quoted string */
+ {
+ if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
+ {
+ ptr += 2; /* avoid empty string */
+ }
+ else inescq = TRUE;
+ continue;
+ }
+ else if (escape == ESC_E) continue; /* Ignore orphan \E */
+
+ else
+ {
+ register const pcre_uint8 *cbits = cd->cbits;
+ /* Every class contains at least two < 256 characters. */
+ class_has_8bitchar++;
+ /* Every class contains at least two characters. */
+ class_one_char += 2;
+
+ switch (escape)
+ {
+#ifdef SUPPORT_UCP
+ case ESC_du: /* These are the values given for \d etc */
+ case ESC_DU: /* when PCRE_UCP is set. We replace the */
+ case ESC_wu: /* escape sequence with an appropriate \p */
+ case ESC_WU: /* or \P to test Unicode properties instead */
+ case ESC_su: /* of the default ASCII testing. */
+ case ESC_SU:
+ nestptr = ptr;
+ ptr = substitutes[escape - ESC_DU] - 1; /* Just before substitute */
+ class_has_8bitchar--; /* Undo! */
+ continue;
+#endif
+ case ESC_d:
+ for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
+ continue;
+
+ case ESC_D:
+ should_flip_negation = TRUE;
+ for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
+ continue;
+
+ case ESC_w:
+ for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
+ continue;
+
+ case ESC_W:
+ should_flip_negation = TRUE;
+ for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
+ continue;
+
+ /* Perl 5.004 onwards omits VT from \s, but we must preserve it
+ if it was previously set by something earlier in the character
+ class. Luckily, the value of CHAR_VT is 0x0b in both ASCII and
+ EBCDIC, so we lazily just adjust the appropriate bit. */
+
+ case ESC_s:
+ classbits[0] |= cbits[cbit_space];
+ classbits[1] |= cbits[cbit_space+1] & ~0x08;
+ for (c = 2; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
+ continue;
+
+ case ESC_S:
+ should_flip_negation = TRUE;
+ for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
+ classbits[1] |= 0x08; /* Perl 5.004 onwards omits VT from \s */
+ continue;
+
+ /* The rest apply in both UCP and non-UCP cases. */
+
+ case ESC_h:
+ (void)add_list_to_class(classbits, &class_uchardata, options, cd,
+ PRIV(hspace_list), NOTACHAR);
+ continue;
+
+ case ESC_H:
+ (void)add_not_list_to_class(classbits, &class_uchardata, options,
+ cd, PRIV(hspace_list));
+ continue;
+
+ case ESC_v:
+ (void)add_list_to_class(classbits, &class_uchardata, options, cd,
+ PRIV(vspace_list), NOTACHAR);
+ continue;
+
+ case ESC_V:
+ (void)add_not_list_to_class(classbits, &class_uchardata, options,
+ cd, PRIV(vspace_list));
+ continue;
+
+#ifdef SUPPORT_UCP
+ case ESC_p:
+ case ESC_P:
+ {
+ BOOL negated;
+ unsigned int ptype = 0, pdata = 0;
+ if (!get_ucp(&ptr, &negated, &ptype, &pdata, errorcodeptr))
+ goto FAILED;
+ *class_uchardata++ = ((escape == ESC_p) != negated)?
+ XCL_PROP : XCL_NOTPROP;
+ *class_uchardata++ = ptype;
+ *class_uchardata++ = pdata;
+ class_has_8bitchar--; /* Undo! */
+ continue;
+ }
+#endif
+ /* Unrecognized escapes are faulted if PCRE is running in its
+ strict mode. By default, for compatibility with Perl, they are
+ treated as literals. */
+
+ default:
+ if ((options & PCRE_EXTRA) != 0)
+ {
+ *errorcodeptr = ERR7;
+ goto FAILED;
+ }
+ class_has_8bitchar--; /* Undo the speculative increase. */
+ class_one_char -= 2; /* Undo the speculative increase. */
+ c = *ptr; /* Get the final character and fall through */
+ break;
+ }
+ }
+
+ /* Fall through if the escape just defined a single character (c >= 0).
+ This may be greater than 256. */
+
+ escape = 0;
+
+ } /* End of backslash handling */
+
+ /* A character may be followed by '-' to form a range. However, Perl does
+ not permit ']' to be the end of the range. A '-' character at the end is
+ treated as a literal. Perl ignores orphaned \E sequences entirely. The
+ code for handling \Q and \E is messy. */
+
+ CHECK_RANGE:
+ while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
+ {
+ inescq = FALSE;
+ ptr += 2;
+ }
+ oldptr = ptr;
+
+ /* Remember if \r or \n were explicitly used */
+
+ if (c == CHAR_CR || c == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
+
+ /* Check for range */
+
+ if (!inescq && ptr[1] == CHAR_MINUS)
+ {
+ pcre_uint32 d;
+ ptr += 2;
+ while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2;
+
+ /* If we hit \Q (not followed by \E) at this point, go into escaped
+ mode. */
+
+ while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q)
+ {
+ ptr += 2;
+ if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E)
+ { ptr += 2; continue; }
+ inescq = TRUE;
+ break;
+ }
+
+ /* Minus (hyphen) at the end of a class is treated as a literal, so put
+ back the pointer and jump to handle the character that preceded it. */
+
+ if (*ptr == CHAR_NULL || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET))
+ {
+ ptr = oldptr;
+ goto CLASS_SINGLE_CHARACTER;
+ }
+
+ /* Otherwise, we have a potential range; pick up the next character */
+
+#ifdef SUPPORT_UTF
+ if (utf)
+ { /* Braces are required because the */
+ GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
+ }
+ else
+#endif
+ d = *ptr; /* Not UTF-8 mode */
+
+ /* The second part of a range can be a single-character escape, but
+ not any of the other escapes. Perl 5.6 treats a hyphen as a literal
+ in such circumstances. */
+
+ if (!inescq && d == CHAR_BACKSLASH)
+ {
+ int descape;
+ descape = check_escape(&ptr, &d, errorcodeptr, cd->bracount, options, TRUE);
+ if (*errorcodeptr != 0) goto FAILED;
+
+ /* \b is backspace; any other special means the '-' was literal. */
+
+ if (descape != 0)
+ {
+ if (descape == ESC_b) d = CHAR_BS; else
+ {
+ ptr = oldptr;
+ goto CLASS_SINGLE_CHARACTER; /* A few lines below */
+ }
+ }
+ }
+
+ /* Check that the two values are in the correct order. Optimize
+ one-character ranges. */
+
+ if (d < c)
+ {
+ *errorcodeptr = ERR8;
+ goto FAILED;
+ }
+ if (d == c) goto CLASS_SINGLE_CHARACTER; /* A few lines below */
+
+ /* We have found a character range, so single character optimizations
+ cannot be done anymore. Any value greater than 1 indicates that there
+ is more than one character. */
+
+ class_one_char = 2;
+
+ /* Remember an explicit \r or \n, and add the range to the class. */
+
+ if (d == CHAR_CR || d == CHAR_NL) cd->external_flags |= PCRE_HASCRORLF;
+
+ class_has_8bitchar +=
+ add_to_class(classbits, &class_uchardata, options, cd, c, d);
+
+ continue; /* Go get the next char in the class */
+ }
+
+ /* Handle a single character - we can get here for a normal non-escape
+ char, or after \ that introduces a single character or for an apparent
+ range that isn't. Only the value 1 matters for class_one_char, so don't
+ increase it if it is already 2 or more ... just in case there's a class
+ with a zillion characters in it. */
+
+ CLASS_SINGLE_CHARACTER:
+ if (class_one_char < 2) class_one_char++;
+
+ /* If class_one_char is 1, we have the first single character in the
+ class, and there have been no prior ranges, or XCLASS items generated by
+ escapes. If this is the final character in the class, we can optimize by
+ turning the item into a 1-character OP_CHAR[I] if it's positive, or
+ OP_NOT[I] if it's negative. In the positive case, it can cause firstchar
+ to be set. Otherwise, there can be no first char if this item is first,
+ whatever repeat count may follow. In the case of reqchar, save the
+ previous value for reinstating. */
+
+ if (class_one_char == 1 && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
+ {
+ ptr++;
+ zeroreqchar = reqchar;
+ zeroreqcharflags = reqcharflags;
+
+ if (negate_class)
+ {
+#ifdef SUPPORT_UCP
+ int d;
+#endif
+ if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
+ zerofirstchar = firstchar;
+ zerofirstcharflags = firstcharflags;
+
+ /* For caseless UTF-8 mode when UCP support is available, check
+ whether this character has more than one other case. If so, generate
+ a special OP_NOTPROP item instead of OP_NOTI. */
+
+#ifdef SUPPORT_UCP
+ if (utf && (options & PCRE_CASELESS) != 0 &&
+ (d = UCD_CASESET(c)) != 0)
+ {
+ *code++ = OP_NOTPROP;
+ *code++ = PT_CLIST;
+ *code++ = d;
+ }
+ else
+#endif
+ /* Char has only one other case, or UCP not available */
+
+ {
+ *code++ = ((options & PCRE_CASELESS) != 0)? OP_NOTI: OP_NOT;
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
+ code += PRIV(ord2utf)(c, code);
+ else
+#endif
+ *code++ = c;
+ }
+
+ /* We are finished with this character class */
+
+ goto END_CLASS;
+ }
+
+ /* For a single, positive character, get the value into mcbuffer, and
+ then we can handle this with the normal one-character code. */
+
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
+ mclength = PRIV(ord2utf)(c, mcbuffer);
+ else
+#endif
+ {
+ mcbuffer[0] = c;
+ mclength = 1;
+ }
+ goto ONE_CHAR;
+ } /* End of 1-char optimization */
+
+ /* There is more than one character in the class, or an XCLASS item
+ has been generated. Add this character to the class. */
+
+ class_has_8bitchar +=
+ add_to_class(classbits, &class_uchardata, options, cd, c, c);
+ }
+
+ /* Loop until ']' reached. This "while" is the end of the "do" far above.
+ If we are at the end of an internal nested string, revert to the outer
+ string. */
+
+ while (((c = *(++ptr)) != CHAR_NULL ||
+ (nestptr != NULL &&
+ (ptr = nestptr, nestptr = NULL, c = *(++ptr)) != CHAR_NULL)) &&
+ (c != CHAR_RIGHT_SQUARE_BRACKET || inescq));
+
+ /* Check for missing terminating ']' */
+
+ if (c == CHAR_NULL)
+ {
+ *errorcodeptr = ERR6;
+ goto FAILED;
+ }
+
+ /* We will need an XCLASS if data has been placed in class_uchardata. In
+ the second phase this is a sufficient test. However, in the pre-compile
+ phase, class_uchardata gets emptied to prevent workspace overflow, so it
+ only if the very last character in the class needs XCLASS will it contain
+ anything at this point. For this reason, xclass gets set TRUE above when
+ uchar_classdata is emptied, and that's why this code is the way it is here
+ instead of just doing a test on class_uchardata below. */
+
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ if (class_uchardata > class_uchardata_base) xclass = TRUE;
+#endif
+
+ /* If this is the first thing in the branch, there can be no first char
+ setting, whatever the repeat count. Any reqchar setting must remain
+ unchanged after any kind of repeat. */
+
+ if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
+ zerofirstchar = firstchar;
+ zerofirstcharflags = firstcharflags;
+ zeroreqchar = reqchar;
+ zeroreqcharflags = reqcharflags;
+
+ /* If there are characters with values > 255, we have to compile an
+ extended class, with its own opcode, unless there was a negated special
+ such as \S in the class, and PCRE_UCP is not set, because in that case all
+ characters > 255 are in the class, so any that were explicitly given as
+ well can be ignored. If (when there are explicit characters > 255 that must
+ be listed) there are no characters < 256, we can omit the bitmap in the
+ actual compiled code. */
+
+#ifdef SUPPORT_UTF
+ if (xclass && (!should_flip_negation || (options & PCRE_UCP) != 0))
+#elif !defined COMPILE_PCRE8
+ if (xclass && !should_flip_negation)
+#endif
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ {
+ *class_uchardata++ = XCL_END; /* Marks the end of extra data */
+ *code++ = OP_XCLASS;
+ code += LINK_SIZE;
+ *code = negate_class? XCL_NOT:0;
+
+ /* If the map is required, move up the extra data to make room for it;
+ otherwise just move the code pointer to the end of the extra data. */
+
+ if (class_has_8bitchar > 0)
+ {
+ *code++ |= XCL_MAP;
+ memmove(code + (32 / sizeof(pcre_uchar)), code,
+ IN_UCHARS(class_uchardata - code));
+ memcpy(code, classbits, 32);
+ code = class_uchardata + (32 / sizeof(pcre_uchar));
+ }
+ else code = class_uchardata;
+
+ /* Now fill in the complete length of the item */
+
+ PUT(previous, 1, (int)(code - previous));
+ break; /* End of class handling */
+ }
+#endif
+
+ /* If there are no characters > 255, or they are all to be included or
+ excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the
+ whole class was negated and whether there were negative specials such as \S
+ (non-UCP) in the class. Then copy the 32-byte map into the code vector,
+ negating it if necessary. */
+
+ *code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
+ if (lengthptr == NULL) /* Save time in the pre-compile phase */
+ {
+ if (negate_class)
+ for (c = 0; c < 32; c++) classbits[c] = ~classbits[c];
+ memcpy(code, classbits, 32);
+ }
+ code += 32 / sizeof(pcre_uchar);
+
+ END_CLASS:
+ break;
+
+
+ /* ===================================================================*/
+ /* Various kinds of repeat; '{' is not necessarily a quantifier, but this
+ has been tested above. */
+
+ case CHAR_LEFT_CURLY_BRACKET:
+ if (!is_quantifier) goto NORMAL_CHAR;
+ ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
+ if (*errorcodeptr != 0) goto FAILED;
+ goto REPEAT;
+
+ case CHAR_ASTERISK:
+ repeat_min = 0;
+ repeat_max = -1;
+ goto REPEAT;
+
+ case CHAR_PLUS:
+ repeat_min = 1;
+ repeat_max = -1;
+ goto REPEAT;
+
+ case CHAR_QUESTION_MARK:
+ repeat_min = 0;
+ repeat_max = 1;
+
+ REPEAT:
+ if (previous == NULL)
+ {
+ *errorcodeptr = ERR9;
+ goto FAILED;
+ }
+
+ if (repeat_min == 0)
+ {
+ firstchar = zerofirstchar; /* Adjust for zero repeat */
+ firstcharflags = zerofirstcharflags;
+ reqchar = zeroreqchar; /* Ditto */
+ reqcharflags = zeroreqcharflags;
+ }
+
+ /* Remember whether this is a variable length repeat */
+
+ reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
+
+ op_type = 0; /* Default single-char op codes */
+ possessive_quantifier = FALSE; /* Default not possessive quantifier */
+
+ /* Save start of previous item, in case we have to move it up in order to
+ insert something before it. */
+
+ tempcode = previous;
+
+ /* If the next character is '+', we have a possessive quantifier. This
+ implies greediness, whatever the setting of the PCRE_UNGREEDY option.
+ If the next character is '?' this is a minimizing repeat, by default,
+ but if PCRE_UNGREEDY is set, it works the other way round. We change the
+ repeat type to the non-default. */
+
+ if (ptr[1] == CHAR_PLUS)
+ {
+ repeat_type = 0; /* Force greedy */
+ possessive_quantifier = TRUE;
+ ptr++;
+ }
+ else if (ptr[1] == CHAR_QUESTION_MARK)
+ {
+ repeat_type = greedy_non_default;
+ ptr++;
+ }
+ else repeat_type = greedy_default;
+
+ /* If previous was a recursion call, wrap it in atomic brackets so that
+ previous becomes the atomic group. All recursions were so wrapped in the
+ past, but it no longer happens for non-repeated recursions. In fact, the
+ repeated ones could be re-implemented independently so as not to need this,
+ but for the moment we rely on the code for repeating groups. */
+
+ if (*previous == OP_RECURSE)
+ {
+ memmove(previous + 1 + LINK_SIZE, previous, IN_UCHARS(1 + LINK_SIZE));
+ *previous = OP_ONCE;
+ PUT(previous, 1, 2 + 2*LINK_SIZE);
+ previous[2 + 2*LINK_SIZE] = OP_KET;
+ PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE);
+ code += 2 + 2 * LINK_SIZE;
+ length_prevgroup = 3 + 3*LINK_SIZE;
+
+ /* When actually compiling, we need to check whether this was a forward
+ reference, and if so, adjust the offset. */
+
+ if (lengthptr == NULL && cd->hwm >= cd->start_workspace + LINK_SIZE)
+ {
+ int offset = GET(cd->hwm, -LINK_SIZE);
+ if (offset == previous + 1 - cd->start_code)
+ PUT(cd->hwm, -LINK_SIZE, offset + 1 + LINK_SIZE);
+ }
+ }
+
+ /* Now handle repetition for the different types of item. */
+
+ /* If previous was a character or negated character match, abolish the item
+ and generate a repeat item instead. If a char item has a minimum of more
+ than one, ensure that it is set in reqchar - it might not be if a sequence
+ such as x{3} is the first thing in a branch because the x will have gone
+ into firstchar instead. */
+
+ if (*previous == OP_CHAR || *previous == OP_CHARI
+ || *previous == OP_NOT || *previous == OP_NOTI)
+ {
+ switch (*previous)
+ {
+ default: /* Make compiler happy. */
+ case OP_CHAR: op_type = OP_STAR - OP_STAR; break;
+ case OP_CHARI: op_type = OP_STARI - OP_STAR; break;
+ case OP_NOT: op_type = OP_NOTSTAR - OP_STAR; break;
+ case OP_NOTI: op_type = OP_NOTSTARI - OP_STAR; break;
+ }
+
+ /* Deal with UTF characters that take up more than one character. It's
+ easier to write this out separately than try to macrify it. Use c to
+ hold the length of the character in bytes, plus UTF_LENGTH to flag that
+ it's a length rather than a small character. */
+
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf && NOT_FIRSTCHAR(code[-1]))
+ {
+ pcre_uchar *lastchar = code - 1;
+ BACKCHAR(lastchar);
+ c = (int)(code - lastchar); /* Length of UTF-8 character */
+ memcpy(utf_chars, lastchar, IN_UCHARS(c)); /* Save the char */
+ c |= UTF_LENGTH; /* Flag c as a length */
+ }
+ else
+#endif /* SUPPORT_UTF */
+
+ /* Handle the case of a single charater - either with no UTF support, or
+ with UTF disabled, or for a single character UTF character. */
+ {
+ c = code[-1];
+ if (*previous <= OP_CHARI && repeat_min > 1)
+ {
+ reqchar = c;
+ reqcharflags = req_caseopt | cd->req_varyopt;
+ }
+ }
+
+ /* If the repetition is unlimited, it pays to see if the next thing on
+ the line is something that cannot possibly match this character. If so,
+ automatically possessifying this item gains some performance in the case
+ where the match fails. */
+
+ if (!possessive_quantifier &&
+ repeat_max < 0 &&
+ check_auto_possessive(previous, utf, ptr + 1, options, cd))
+ {
+ repeat_type = 0; /* Force greedy */
+ possessive_quantifier = TRUE;
+ }
+
+ goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
+ }
+
+ /* If previous was a character type match (\d or similar), abolish it and
+ create a suitable repeat item. The code is shared with single-character
+ repeats by setting op_type to add a suitable offset into repeat_type. Note
+ the the Unicode property types will be present only when SUPPORT_UCP is
+ defined, but we don't wrap the little bits of code here because it just
+ makes it horribly messy. */
+
+ else if (*previous < OP_EODN)
+ {
+ pcre_uchar *oldcode;
+ int prop_type, prop_value;
+ op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
+ c = *previous;
+
+ if (!possessive_quantifier &&
+ repeat_max < 0 &&
+ check_auto_possessive(previous, utf, ptr + 1, options, cd))
+ {
+ repeat_type = 0; /* Force greedy */
+ possessive_quantifier = TRUE;
+ }
+
+ OUTPUT_SINGLE_REPEAT:
+ if (*previous == OP_PROP || *previous == OP_NOTPROP)
+ {
+ prop_type = previous[1];
+ prop_value = previous[2];
+ }
+ else prop_type = prop_value = -1;
+
+ oldcode = code;
+ code = previous; /* Usually overwrite previous item */
+
+ /* If the maximum is zero then the minimum must also be zero; Perl allows
+ this case, so we do too - by simply omitting the item altogether. */
+
+ if (repeat_max == 0) goto END_REPEAT;
+
+ /* Combine the op_type with the repeat_type */
+
+ repeat_type += op_type;
+
+ /* A minimum of zero is handled either as the special case * or ?, or as
+ an UPTO, with the maximum given. */
+
+ if (repeat_min == 0)
+ {
+ if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
+ else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
+ else
+ {
+ *code++ = OP_UPTO + repeat_type;
+ PUT2INC(code, 0, repeat_max);
+ }
+ }
+
+ /* A repeat minimum of 1 is optimized into some special cases. If the
+ maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
+ left in place and, if the maximum is greater than 1, we use OP_UPTO with
+ one less than the maximum. */
+
+ else if (repeat_min == 1)
+ {
+ if (repeat_max == -1)
+ *code++ = OP_PLUS + repeat_type;
+ else
+ {
+ code = oldcode; /* leave previous item in place */
+ if (repeat_max == 1) goto END_REPEAT;
+ *code++ = OP_UPTO + repeat_type;
+ PUT2INC(code, 0, repeat_max - 1);
+ }
+ }
+
+ /* The case {n,n} is just an EXACT, while the general case {n,m} is
+ handled as an EXACT followed by an UPTO. */
+
+ else
+ {
+ *code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
+ PUT2INC(code, 0, repeat_min);
+
+ /* If the maximum is unlimited, insert an OP_STAR. Before doing so,
+ we have to insert the character for the previous code. For a repeated
+ Unicode property match, there are two extra bytes that define the
+ required property. In UTF-8 mode, long characters have their length in
+ c, with the UTF_LENGTH bit as a flag. */
+
+ if (repeat_max < 0)
+ {
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf && (c & UTF_LENGTH) != 0)
+ {
+ memcpy(code, utf_chars, IN_UCHARS(c & 7));
+ code += c & 7;
+ }
+ else
+#endif
+ {
+ *code++ = c;
+ if (prop_type >= 0)
+ {
+ *code++ = prop_type;
+ *code++ = prop_value;
+ }
+ }
+ *code++ = OP_STAR + repeat_type;
+ }
+
+ /* Else insert an UPTO if the max is greater than the min, again
+ preceded by the character, for the previously inserted code. If the
+ UPTO is just for 1 instance, we can use QUERY instead. */
+
+ else if (repeat_max != repeat_min)
+ {
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf && (c & UTF_LENGTH) != 0)
+ {
+ memcpy(code, utf_chars, IN_UCHARS(c & 7));
+ code += c & 7;
+ }
+ else
+#endif
+ *code++ = c;
+ if (prop_type >= 0)
+ {
+ *code++ = prop_type;
+ *code++ = prop_value;
+ }
+ repeat_max -= repeat_min;
+
+ if (repeat_max == 1)
+ {
+ *code++ = OP_QUERY + repeat_type;
+ }
+ else
+ {
+ *code++ = OP_UPTO + repeat_type;
+ PUT2INC(code, 0, repeat_max);
+ }
+ }
+ }
+
+ /* The character or character type itself comes last in all cases. */
+
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf && (c & UTF_LENGTH) != 0)
+ {
+ memcpy(code, utf_chars, IN_UCHARS(c & 7));
+ code += c & 7;
+ }
+ else
+#endif
+ *code++ = c;
+
+ /* For a repeated Unicode property match, there are two extra bytes that
+ define the required property. */
+
+#ifdef SUPPORT_UCP
+ if (prop_type >= 0)
+ {
+ *code++ = prop_type;
+ *code++ = prop_value;
+ }
+#endif
+ }
+
+ /* If previous was a character class or a back reference, we put the repeat
+ stuff after it, but just skip the item if the repeat was {0,0}. */
+
+ else if (*previous == OP_CLASS ||
+ *previous == OP_NCLASS ||
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ *previous == OP_XCLASS ||
+#endif
+ *previous == OP_REF ||
+ *previous == OP_REFI)
+ {
+ if (repeat_max == 0)
+ {
+ code = previous;
+ goto END_REPEAT;
+ }
+
+ if (repeat_min == 0 && repeat_max == -1)
+ *code++ = OP_CRSTAR + repeat_type;
+ else if (repeat_min == 1 && repeat_max == -1)
+ *code++ = OP_CRPLUS + repeat_type;
+ else if (repeat_min == 0 && repeat_max == 1)
+ *code++ = OP_CRQUERY + repeat_type;
+ else
+ {
+ *code++ = OP_CRRANGE + repeat_type;
+ PUT2INC(code, 0, repeat_min);
+ if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
+ PUT2INC(code, 0, repeat_max);
+ }
+ }
+
+ /* If previous was a bracket group, we may have to replicate it in certain
+ cases. Note that at this point we can encounter only the "basic" bracket
+ opcodes such as BRA and CBRA, as this is the place where they get converted
+ into the more special varieties such as BRAPOS and SBRA. A test for >=
+ OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK,
+ ASSERTBACK_NOT, ONCE, BRA, CBRA, and COND. Originally, PCRE did not allow
+ repetition of assertions, but now it does, for Perl compatibility. */
+
+ else if (*previous >= OP_ASSERT && *previous <= OP_COND)
+ {
+ register int i;
+ int len = (int)(code - previous);
+ pcre_uchar *bralink = NULL;
+ pcre_uchar *brazeroptr = NULL;
+
+ /* Repeating a DEFINE group is pointless, but Perl allows the syntax, so
+ we just ignore the repeat. */
+
+ if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_DEF)
+ goto END_REPEAT;
+
+ /* There is no sense in actually repeating assertions. The only potential
+ use of repetition is in cases when the assertion is optional. Therefore,
+ if the minimum is greater than zero, just ignore the repeat. If the
+ maximum is not not zero or one, set it to 1. */
+
+ if (*previous < OP_ONCE) /* Assertion */
+ {
+ if (repeat_min > 0) goto END_REPEAT;
+ if (repeat_max < 0 || repeat_max > 1) repeat_max = 1;
+ }
+
+ /* The case of a zero minimum is special because of the need to stick
+ OP_BRAZERO in front of it, and because the group appears once in the
+ data, whereas in other cases it appears the minimum number of times. For
+ this reason, it is simplest to treat this case separately, as otherwise
+ the code gets far too messy. There are several special subcases when the
+ minimum is zero. */
+
+ if (repeat_min == 0)
+ {
+ /* If the maximum is also zero, we used to just omit the group from the
+ output altogether, like this:
+
+ ** if (repeat_max == 0)
+ ** {
+ ** code = previous;
+ ** goto END_REPEAT;
+ ** }
+
+ However, that fails when a group or a subgroup within it is referenced
+ as a subroutine from elsewhere in the pattern, so now we stick in
+ OP_SKIPZERO in front of it so that it is skipped on execution. As we
+ don't have a list of which groups are referenced, we cannot do this
+ selectively.
+
+ If the maximum is 1 or unlimited, we just have to stick in the BRAZERO
+ and do no more at this point. However, we do need to adjust any
+ OP_RECURSE calls inside the group that refer to the group itself or any
+ internal or forward referenced group, because the offset is from the
+ start of the whole regex. Temporarily terminate the pattern while doing
+ this. */
+
+ if (repeat_max <= 1) /* Covers 0, 1, and unlimited */
+ {
+ *code = OP_END;
+ adjust_recurse(previous, 1, utf, cd, save_hwm);
+ memmove(previous + 1, previous, IN_UCHARS(len));
+ code++;
+ if (repeat_max == 0)
+ {
+ *previous++ = OP_SKIPZERO;
+ goto END_REPEAT;
+ }
+ brazeroptr = previous; /* Save for possessive optimizing */
+ *previous++ = OP_BRAZERO + repeat_type;
+ }
+
+ /* If the maximum is greater than 1 and limited, we have to replicate
+ in a nested fashion, sticking OP_BRAZERO before each set of brackets.
+ The first one has to be handled carefully because it's the original
+ copy, which has to be moved up. The remainder can be handled by code
+ that is common with the non-zero minimum case below. We have to
+ adjust the value or repeat_max, since one less copy is required. Once
+ again, we may have to adjust any OP_RECURSE calls inside the group. */
+
+ else
+ {
+ int offset;
+ *code = OP_END;
+ adjust_recurse(previous, 2 + LINK_SIZE, utf, cd, save_hwm);
+ memmove(previous + 2 + LINK_SIZE, previous, IN_UCHARS(len));
+ code += 2 + LINK_SIZE;
+ *previous++ = OP_BRAZERO + repeat_type;
+ *previous++ = OP_BRA;
+
+ /* We chain together the bracket offset fields that have to be
+ filled in later when the ends of the brackets are reached. */
+
+ offset = (bralink == NULL)? 0 : (int)(previous - bralink);
+ bralink = previous;
+ PUTINC(previous, 0, offset);
+ }
+
+ repeat_max--;
+ }
+
+ /* If the minimum is greater than zero, replicate the group as many
+ times as necessary, and adjust the maximum to the number of subsequent
+ copies that we need. If we set a first char from the group, and didn't
+ set a required char, copy the latter from the former. If there are any
+ forward reference subroutine calls in the group, there will be entries on
+ the workspace list; replicate these with an appropriate increment. */
+
+ else
+ {
+ if (repeat_min > 1)
+ {
+ /* In the pre-compile phase, we don't actually do the replication. We
+ just adjust the length as if we had. Do some paranoid checks for
+ potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit
+ integer type when available, otherwise double. */
+
+ if (lengthptr != NULL)
+ {
+ int delta = (repeat_min - 1)*length_prevgroup;
+ if ((INT64_OR_DOUBLE)(repeat_min - 1)*
+ (INT64_OR_DOUBLE)length_prevgroup >
+ (INT64_OR_DOUBLE)INT_MAX ||
+ OFLOW_MAX - *lengthptr < delta)
+ {
+ *errorcodeptr = ERR20;
+ goto FAILED;
+ }
+ *lengthptr += delta;
+ }
+
+ /* This is compiling for real. If there is a set first byte for
+ the group, and we have not yet set a "required byte", set it. Make
+ sure there is enough workspace for copying forward references before
+ doing the copy. */
+
+ else
+ {
+ if (groupsetfirstchar && reqcharflags < 0)
+ {
+ reqchar = firstchar;
+ reqcharflags = firstcharflags;
+ }
+
+ for (i = 1; i < repeat_min; i++)
+ {
+ pcre_uchar *hc;
+ pcre_uchar *this_hwm = cd->hwm;
+ memcpy(code, previous, IN_UCHARS(len));
+
+ while (cd->hwm > cd->start_workspace + cd->workspace_size -
+ WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
+ {
+ int save_offset = save_hwm - cd->start_workspace;
+ int this_offset = this_hwm - cd->start_workspace;
+ *errorcodeptr = expand_workspace(cd);
+ if (*errorcodeptr != 0) goto FAILED;
+ save_hwm = (pcre_uchar *)cd->start_workspace + save_offset;
+ this_hwm = (pcre_uchar *)cd->start_workspace + this_offset;
+ }
+
+ for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
+ {
+ PUT(cd->hwm, 0, GET(hc, 0) + len);
+ cd->hwm += LINK_SIZE;
+ }
+ save_hwm = this_hwm;
+ code += len;
+ }
+ }
+ }
+
+ if (repeat_max > 0) repeat_max -= repeat_min;
+ }
+
+ /* This code is common to both the zero and non-zero minimum cases. If
+ the maximum is limited, it replicates the group in a nested fashion,
+ remembering the bracket starts on a stack. In the case of a zero minimum,
+ the first one was set up above. In all cases the repeat_max now specifies
+ the number of additional copies needed. Again, we must remember to
+ replicate entries on the forward reference list. */
+
+ if (repeat_max >= 0)
+ {
+ /* In the pre-compile phase, we don't actually do the replication. We
+ just adjust the length as if we had. For each repetition we must add 1
+ to the length for BRAZERO and for all but the last repetition we must
+ add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
+ paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is
+ a 64-bit integer type when available, otherwise double. */
+
+ if (lengthptr != NULL && repeat_max > 0)
+ {
+ int delta = repeat_max * (length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
+ 2 - 2*LINK_SIZE; /* Last one doesn't nest */
+ if ((INT64_OR_DOUBLE)repeat_max *
+ (INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
+ > (INT64_OR_DOUBLE)INT_MAX ||
+ OFLOW_MAX - *lengthptr < delta)
+ {
+ *errorcodeptr = ERR20;
+ goto FAILED;
+ }
+ *lengthptr += delta;
+ }
+
+ /* This is compiling for real */
+
+ else for (i = repeat_max - 1; i >= 0; i--)
+ {
+ pcre_uchar *hc;
+ pcre_uchar *this_hwm = cd->hwm;
+
+ *code++ = OP_BRAZERO + repeat_type;
+
+ /* All but the final copy start a new nesting, maintaining the
+ chain of brackets outstanding. */
+
+ if (i != 0)
+ {
+ int offset;
+ *code++ = OP_BRA;
+ offset = (bralink == NULL)? 0 : (int)(code - bralink);
+ bralink = code;
+ PUTINC(code, 0, offset);
+ }
+
+ memcpy(code, previous, IN_UCHARS(len));
+
+ /* Ensure there is enough workspace for forward references before
+ copying them. */
+
+ while (cd->hwm > cd->start_workspace + cd->workspace_size -
+ WORK_SIZE_SAFETY_MARGIN - (this_hwm - save_hwm))
+ {
+ int save_offset = save_hwm - cd->start_workspace;
+ int this_offset = this_hwm - cd->start_workspace;
+ *errorcodeptr = expand_workspace(cd);
+ if (*errorcodeptr != 0) goto FAILED;
+ save_hwm = (pcre_uchar *)cd->start_workspace + save_offset;
+ this_hwm = (pcre_uchar *)cd->start_workspace + this_offset;
+ }
+
+ for (hc = save_hwm; hc < this_hwm; hc += LINK_SIZE)
+ {
+ PUT(cd->hwm, 0, GET(hc, 0) + len + ((i != 0)? 2+LINK_SIZE : 1));
+ cd->hwm += LINK_SIZE;
+ }
+ save_hwm = this_hwm;
+ code += len;
+ }
+
+ /* Now chain through the pending brackets, and fill in their length
+ fields (which are holding the chain links pro tem). */
+
+ while (bralink != NULL)
+ {
+ int oldlinkoffset;
+ int offset = (int)(code - bralink + 1);
+ pcre_uchar *bra = code - offset;
+ oldlinkoffset = GET(bra, 1);
+ bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
+ *code++ = OP_KET;
+ PUTINC(code, 0, offset);
+ PUT(bra, 1, offset);
+ }
+ }
+
+ /* If the maximum is unlimited, set a repeater in the final copy. For
+ ONCE brackets, that's all we need to do. However, possessively repeated
+ ONCE brackets can be converted into non-capturing brackets, as the
+ behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to
+ deal with possessive ONCEs specially.
+
+ Otherwise, when we are doing the actual compile phase, check to see
+ whether this group is one that could match an empty string. If so,
+ convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
+ that runtime checking can be done. [This check is also applied to ONCE
+ groups at runtime, but in a different way.]
+
+ Then, if the quantifier was possessive and the bracket is not a
+ conditional, we convert the BRA code to the POS form, and the KET code to
+ KETRPOS. (It turns out to be convenient at runtime to detect this kind of
+ subpattern at both the start and at the end.) The use of special opcodes
+ makes it possible to reduce greatly the stack usage in pcre_exec(). If
+ the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO.
+
+ Then, if the minimum number of matches is 1 or 0, cancel the possessive
+ flag so that the default action below, of wrapping everything inside
+ atomic brackets, does not happen. When the minimum is greater than 1,
+ there will be earlier copies of the group, and so we still have to wrap
+ the whole thing. */
+
+ else
+ {
+ pcre_uchar *ketcode = code - 1 - LINK_SIZE;
+ pcre_uchar *bracode = ketcode - GET(ketcode, 1);
+
+ /* Convert possessive ONCE brackets to non-capturing */
+
+ if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) &&
+ possessive_quantifier) *bracode = OP_BRA;
+
+ /* For non-possessive ONCE brackets, all we need to do is to
+ set the KET. */
+
+ if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC)
+ *ketcode = OP_KETRMAX + repeat_type;
+
+ /* Handle non-ONCE brackets and possessive ONCEs (which have been
+ converted to non-capturing above). */
+
+ else
+ {
+ /* In the compile phase, check for empty string matching. */
+
+ if (lengthptr == NULL)
+ {
+ pcre_uchar *scode = bracode;
+ do
+ {
+ if (could_be_empty_branch(scode, ketcode, utf, cd))
+ {
+ *bracode += OP_SBRA - OP_BRA;
+ break;
+ }
+ scode += GET(scode, 1);
+ }
+ while (*scode == OP_ALT);
+ }
+
+ /* Handle possessive quantifiers. */
+
+ if (possessive_quantifier)
+ {
+ /* For COND brackets, we wrap the whole thing in a possessively
+ repeated non-capturing bracket, because we have not invented POS
+ versions of the COND opcodes. Because we are moving code along, we
+ must ensure that any pending recursive references are updated. */
+
+ if (*bracode == OP_COND || *bracode == OP_SCOND)
+ {
+ int nlen = (int)(code - bracode);
+ *code = OP_END;
+ adjust_recurse(bracode, 1 + LINK_SIZE, utf, cd, save_hwm);
+ memmove(bracode + 1 + LINK_SIZE, bracode, IN_UCHARS(nlen));
+ code += 1 + LINK_SIZE;
+ nlen += 1 + LINK_SIZE;
+ *bracode = OP_BRAPOS;
+ *code++ = OP_KETRPOS;
+ PUTINC(code, 0, nlen);
+ PUT(bracode, 1, nlen);
+ }
+
+ /* For non-COND brackets, we modify the BRA code and use KETRPOS. */
+
+ else
+ {
+ *bracode += 1; /* Switch to xxxPOS opcodes */
+ *ketcode = OP_KETRPOS;
+ }
+
+ /* If the minimum is zero, mark it as possessive, then unset the
+ possessive flag when the minimum is 0 or 1. */
+
+ if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO;
+ if (repeat_min < 2) possessive_quantifier = FALSE;
+ }
+
+ /* Non-possessive quantifier */
+
+ else *ketcode = OP_KETRMAX + repeat_type;
+ }
+ }
+ }
+
+ /* If previous is OP_FAIL, it was generated by an empty class [] in
+ JavaScript mode. The other ways in which OP_FAIL can be generated, that is
+ by (*FAIL) or (?!) set previous to NULL, which gives a "nothing to repeat"
+ error above. We can just ignore the repeat in JS case. */
+
+ else if (*previous == OP_FAIL) goto END_REPEAT;
+
+ /* Else there's some kind of shambles */
+
+ else
+ {
+ *errorcodeptr = ERR11;
+ goto FAILED;
+ }
+
+ /* If the character following a repeat is '+', or if certain optimization
+ tests above succeeded, possessive_quantifier is TRUE. For some opcodes,
+ there are special alternative opcodes for this case. For anything else, we
+ wrap the entire repeated item inside OP_ONCE brackets. Logically, the '+'
+ notation is just syntactic sugar, taken from Sun's Java package, but the
+ special opcodes can optimize it.
+
+ Some (but not all) possessively repeated subpatterns have already been
+ completely handled in the code just above. For them, possessive_quantifier
+ is always FALSE at this stage.
+
+ Note that the repeated item starts at tempcode, not at previous, which
+ might be the first part of a string whose (former) last char we repeated.
+
+ Possessifying an 'exact' quantifier has no effect, so we can ignore it. But
+ an 'upto' may follow. We skip over an 'exact' item, and then test the
+ length of what remains before proceeding. */
+
+ if (possessive_quantifier)
+ {
+ int len;
+
+ if (*tempcode == OP_TYPEEXACT)
+ tempcode += PRIV(OP_lengths)[*tempcode] +
+ ((tempcode[1 + IMM2_SIZE] == OP_PROP
+ || tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0);
+
+ else if (*tempcode == OP_EXACT || *tempcode == OP_NOTEXACT)
+ {
+ tempcode += PRIV(OP_lengths)[*tempcode];
+#ifdef SUPPORT_UTF
+ if (utf && HAS_EXTRALEN(tempcode[-1]))
+ tempcode += GET_EXTRALEN(tempcode[-1]);
+#endif
+ }
+
+ len = (int)(code - tempcode);
+ if (len > 0) switch (*tempcode)
+ {
+ case OP_STAR: *tempcode = OP_POSSTAR; break;
+ case OP_PLUS: *tempcode = OP_POSPLUS; break;
+ case OP_QUERY: *tempcode = OP_POSQUERY; break;
+ case OP_UPTO: *tempcode = OP_POSUPTO; break;
+
+ case OP_STARI: *tempcode = OP_POSSTARI; break;
+ case OP_PLUSI: *tempcode = OP_POSPLUSI; break;
+ case OP_QUERYI: *tempcode = OP_POSQUERYI; break;
+ case OP_UPTOI: *tempcode = OP_POSUPTOI; break;
+
+ case OP_NOTSTAR: *tempcode = OP_NOTPOSSTAR; break;
+ case OP_NOTPLUS: *tempcode = OP_NOTPOSPLUS; break;
+ case OP_NOTQUERY: *tempcode = OP_NOTPOSQUERY; break;
+ case OP_NOTUPTO: *tempcode = OP_NOTPOSUPTO; break;
+
+ case OP_NOTSTARI: *tempcode = OP_NOTPOSSTARI; break;
+ case OP_NOTPLUSI: *tempcode = OP_NOTPOSPLUSI; break;
+ case OP_NOTQUERYI: *tempcode = OP_NOTPOSQUERYI; break;
+ case OP_NOTUPTOI: *tempcode = OP_NOTPOSUPTOI; break;
+
+ case OP_TYPESTAR: *tempcode = OP_TYPEPOSSTAR; break;
+ case OP_TYPEPLUS: *tempcode = OP_TYPEPOSPLUS; break;
+ case OP_TYPEQUERY: *tempcode = OP_TYPEPOSQUERY; break;
+ case OP_TYPEUPTO: *tempcode = OP_TYPEPOSUPTO; break;
+
+ /* Because we are moving code along, we must ensure that any
+ pending recursive references are updated. */
+
+ default:
+ *code = OP_END;
+ adjust_recurse(tempcode, 1 + LINK_SIZE, utf, cd, save_hwm);
+ memmove(tempcode + 1 + LINK_SIZE, tempcode, IN_UCHARS(len));
+ code += 1 + LINK_SIZE;
+ len += 1 + LINK_SIZE;
+ tempcode[0] = OP_ONCE;
+ *code++ = OP_KET;
+ PUTINC(code, 0, len);
+ PUT(tempcode, 1, len);
+ break;
+ }
+ }
+
+ /* In all case we no longer have a previous item. We also set the
+ "follows varying string" flag for subsequently encountered reqchars if
+ it isn't already set and we have just passed a varying length item. */
+
+ END_REPEAT:
+ previous = NULL;
+ cd->req_varyopt |= reqvary;
+ break;
+
+
+ /* ===================================================================*/
+ /* Start of nested parenthesized sub-expression, or comment or lookahead or
+ lookbehind or option setting or condition or all the other extended
+ parenthesis forms. */
+
+ case CHAR_LEFT_PARENTHESIS:
+ newoptions = options;
+ skipbytes = 0;
+ bravalue = OP_CBRA;
+ save_hwm = cd->hwm;
+ reset_bracount = FALSE;
+
+ /* First deal with various "verbs" that can be introduced by '*'. */
+
+ ptr++;
+ if (ptr[0] == CHAR_ASTERISK && (ptr[1] == ':'
+ || (MAX_255(ptr[1]) && ((cd->ctypes[ptr[1]] & ctype_letter) != 0))))
+ {
+ int i, namelen;
+ int arglen = 0;
+ const char *vn = verbnames;
+ const pcre_uchar *name = ptr + 1;
+ const pcre_uchar *arg = NULL;
+ previous = NULL;
+ ptr++;
+ while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_letter) != 0) ptr++;
+ namelen = (int)(ptr - name);
+
+ /* It appears that Perl allows any characters whatsoever, other than
+ a closing parenthesis, to appear in arguments, so we no longer insist on
+ letters, digits, and underscores. */
+
+ if (*ptr == CHAR_COLON)
+ {
+ arg = ++ptr;
+ while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
+ arglen = (int)(ptr - arg);
+ if ((unsigned int)arglen > MAX_MARK)
+ {
+ *errorcodeptr = ERR75;
+ goto FAILED;
+ }
+ }
+
+ if (*ptr != CHAR_RIGHT_PARENTHESIS)
+ {
+ *errorcodeptr = ERR60;
+ goto FAILED;
+ }
+
+ /* Scan the table of verb names */
+
+ for (i = 0; i < verbcount; i++)
+ {
+ if (namelen == verbs[i].len &&
+ STRNCMP_UC_C8(name, vn, namelen) == 0)
+ {
+ int setverb;
+
+ /* Check for open captures before ACCEPT and convert it to
+ ASSERT_ACCEPT if in an assertion. */
+
+ if (verbs[i].op == OP_ACCEPT)
+ {
+ open_capitem *oc;
+ if (arglen != 0)
+ {
+ *errorcodeptr = ERR59;
+ goto FAILED;
+ }
+ cd->had_accept = TRUE;
+ for (oc = cd->open_caps; oc != NULL; oc = oc->next)
+ {
+ *code++ = OP_CLOSE;
+ PUT2INC(code, 0, oc->number);
+ }
+ setverb = *code++ =
+ (cd->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT;
+
+ /* Do not set firstchar after *ACCEPT */
+ if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
+ }
+
+ /* Handle other cases with/without an argument */
+
+ else if (arglen == 0)
+ {
+ if (verbs[i].op < 0) /* Argument is mandatory */
+ {
+ *errorcodeptr = ERR66;
+ goto FAILED;
+ }
+ setverb = *code++ = verbs[i].op;
+ }
+
+ else
+ {
+ if (verbs[i].op_arg < 0) /* Argument is forbidden */
+ {
+ *errorcodeptr = ERR59;
+ goto FAILED;
+ }
+ setverb = *code++ = verbs[i].op_arg;
+ *code++ = arglen;
+ memcpy(code, arg, IN_UCHARS(arglen));
+ code += arglen;
+ *code++ = 0;
+ }
+
+ switch (setverb)
+ {
+ case OP_THEN:
+ case OP_THEN_ARG:
+ cd->external_flags |= PCRE_HASTHEN;
+ break;
+
+ case OP_PRUNE:
+ case OP_PRUNE_ARG:
+ case OP_SKIP:
+ case OP_SKIP_ARG:
+ cd->had_pruneorskip = TRUE;
+ break;
+ }
+
+ break; /* Found verb, exit loop */
+ }
+
+ vn += verbs[i].len + 1;
+ }
+
+ if (i < verbcount) continue; /* Successfully handled a verb */
+ *errorcodeptr = ERR60; /* Verb not recognized */
+ goto FAILED;
+ }
+
+ /* Deal with the extended parentheses; all are introduced by '?', and the
+ appearance of any of them means that this is not a capturing group. */
+
+ else if (*ptr == CHAR_QUESTION_MARK)
+ {
+ int i, set, unset, namelen;
+ int *optset;
+ const pcre_uchar *name;
+ pcre_uchar *slot;
+
+ switch (*(++ptr))
+ {
+ case CHAR_NUMBER_SIGN: /* Comment; skip to ket */
+ ptr++;
+ while (*ptr != CHAR_NULL && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
+ if (*ptr == CHAR_NULL)
+ {
+ *errorcodeptr = ERR18;
+ goto FAILED;
+ }
+ continue;
+
+
+ /* ------------------------------------------------------------ */
+ case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */
+ reset_bracount = TRUE;
+ /* Fall through */
+
+ /* ------------------------------------------------------------ */
+ case CHAR_COLON: /* Non-capturing bracket */
+ bravalue = OP_BRA;
+ ptr++;
+ break;
+
+
+ /* ------------------------------------------------------------ */
+ case CHAR_LEFT_PARENTHESIS:
+ bravalue = OP_COND; /* Conditional group */
+ tempptr = ptr;
+
+ /* A condition can be an assertion, a number (referring to a numbered
+ group), a name (referring to a named group), or 'R', referring to
+ recursion. R and R&name are also permitted for recursion tests.
+
+ There are several syntaxes for testing a named group: (?(name)) is used
+ by Python; Perl 5.10 onwards uses (?() or (?('name')).
+
+ There are two unfortunate ambiguities, caused by history. (a) 'R' can
+ be the recursive thing or the name 'R' (and similarly for 'R' followed
+ by digits), and (b) a number could be a name that consists of digits.
+ In both cases, we look for a name first; if not found, we try the other
+ cases.
+
+ For compatibility with auto-callouts, we allow a callout to be
+ specified before a condition that is an assertion. First, check for the
+ syntax of a callout; if found, adjust the temporary pointer that is
+ used to check for an assertion condition. That's all that is needed! */
+
+ if (ptr[1] == CHAR_QUESTION_MARK && ptr[2] == CHAR_C)
+ {
+ for (i = 3;; i++) if (!IS_DIGIT(ptr[i])) break;
+ if (ptr[i] == CHAR_RIGHT_PARENTHESIS)
+ tempptr += i + 1;
+ }
+
+ /* For conditions that are assertions, check the syntax, and then exit
+ the switch. This will take control down to where bracketed groups,
+ including assertions, are processed. */
+
+ if (tempptr[1] == CHAR_QUESTION_MARK &&
+ (tempptr[2] == CHAR_EQUALS_SIGN ||
+ tempptr[2] == CHAR_EXCLAMATION_MARK ||
+ tempptr[2] == CHAR_LESS_THAN_SIGN))
+ break;
+
+ /* Most other conditions use OP_CREF (a couple change to OP_RREF
+ below), and all need to skip 1+IMM2_SIZE bytes at the start of the group. */
+
+ code[1+LINK_SIZE] = OP_CREF;
+ skipbytes = 1+IMM2_SIZE;
+ refsign = -1;
+
+ /* Check for a test for recursion in a named group. */
+
+ if (ptr[1] == CHAR_R && ptr[2] == CHAR_AMPERSAND)
+ {
+ terminator = -1;
+ ptr += 2;
+ code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
+ }
+
+ /* Check for a test for a named group's having been set, using the Perl
+ syntax (?() or (?('name') */
+
+ else if (ptr[1] == CHAR_LESS_THAN_SIGN)
+ {
+ terminator = CHAR_GREATER_THAN_SIGN;
+ ptr++;
+ }
+ else if (ptr[1] == CHAR_APOSTROPHE)
+ {
+ terminator = CHAR_APOSTROPHE;
+ ptr++;
+ }
+ else
+ {
+ terminator = CHAR_NULL;
+ if (ptr[1] == CHAR_MINUS || ptr[1] == CHAR_PLUS) refsign = *(++ptr);
+ }
+
+ /* We now expect to read a name; any thing else is an error */
+
+ if (!MAX_255(ptr[1]) || (cd->ctypes[ptr[1]] & ctype_word) == 0)
+ {
+ ptr += 1; /* To get the right offset */
+ *errorcodeptr = ERR28;
+ goto FAILED;
+ }
+
+ /* Read the name, but also get it as a number if it's all digits */
+
+ recno = 0;
+ name = ++ptr;
+ while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0)
+ {
+ if (recno >= 0)
+ recno = (IS_DIGIT(*ptr))? recno * 10 + (int)(*ptr - CHAR_0) : -1;
+ ptr++;
+ }
+ namelen = (int)(ptr - name);
+
+ if ((terminator > 0 && *ptr++ != (pcre_uchar)terminator) ||
+ *ptr++ != CHAR_RIGHT_PARENTHESIS)
+ {
+ ptr--; /* Error offset */
+ *errorcodeptr = ERR26;
+ goto FAILED;
+ }
+
+ /* Do no further checking in the pre-compile phase. */
+
+ if (lengthptr != NULL) break;
+
+ /* In the real compile we do the work of looking for the actual
+ reference. If the string started with "+" or "-" we require the rest to
+ be digits, in which case recno will be set. */
+
+ if (refsign > 0)
+ {
+ if (recno <= 0)
+ {
+ *errorcodeptr = ERR58;
+ goto FAILED;
+ }
+ recno = (refsign == CHAR_MINUS)?
+ cd->bracount - recno + 1 : recno +cd->bracount;
+ if (recno <= 0 || recno > cd->final_bracount)
+ {
+ *errorcodeptr = ERR15;
+ goto FAILED;
+ }
+ PUT2(code, 2+LINK_SIZE, recno);
+ break;
+ }
+
+ /* Otherwise (did not start with "+" or "-"), start by looking for the
+ name. If we find a name, add one to the opcode to change OP_CREF or
+ OP_RREF into OP_NCREF or OP_NRREF. These behave exactly the same,
+ except they record that the reference was originally to a name. The
+ information is used to check duplicate names. */
+
+ slot = cd->name_table;
+ for (i = 0; i < cd->names_found; i++)
+ {
+ if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0) break;
+ slot += cd->name_entry_size;
+ }
+
+ /* Found a previous named subpattern */
+
+ if (i < cd->names_found)
+ {
+ recno = GET2(slot, 0);
+ PUT2(code, 2+LINK_SIZE, recno);
+ code[1+LINK_SIZE]++;
+ }
+
+ /* Search the pattern for a forward reference */
+
+ else if ((i = find_parens(cd, name, namelen,
+ (options & PCRE_EXTENDED) != 0, utf)) > 0)
+ {
+ PUT2(code, 2+LINK_SIZE, i);
+ code[1+LINK_SIZE]++;
+ }
+
+ /* If terminator == CHAR_NULL it means that the name followed directly
+ after the opening parenthesis [e.g. (?(abc)...] and in this case there
+ are some further alternatives to try. For the cases where terminator !=
+ 0 [things like (?(... or (?('name')... or (?(R&name)... ] we have
+ now checked all the possibilities, so give an error. */
+
+ else if (terminator != CHAR_NULL)
+ {
+ *errorcodeptr = ERR15;
+ goto FAILED;
+ }
+
+ /* Check for (?(R) for recursion. Allow digits after R to specify a
+ specific group number. */
+
+ else if (*name == CHAR_R)
+ {
+ recno = 0;
+ for (i = 1; i < namelen; i++)
+ {
+ if (!IS_DIGIT(name[i]))
+ {
+ *errorcodeptr = ERR15;
+ goto FAILED;
+ }
+ recno = recno * 10 + name[i] - CHAR_0;
+ }
+ if (recno == 0) recno = RREF_ANY;
+ code[1+LINK_SIZE] = OP_RREF; /* Change test type */
+ PUT2(code, 2+LINK_SIZE, recno);
+ }
+
+ /* Similarly, check for the (?(DEFINE) "condition", which is always
+ false. */
+
+ else if (namelen == 6 && STRNCMP_UC_C8(name, STRING_DEFINE, 6) == 0)
+ {
+ code[1+LINK_SIZE] = OP_DEF;
+ skipbytes = 1;
+ }
+
+ /* Check for the "name" actually being a subpattern number. We are
+ in the second pass here, so final_bracount is set. */
+
+ else if (recno > 0 && recno <= cd->final_bracount)
+ {
+ PUT2(code, 2+LINK_SIZE, recno);
+ }
+
+ /* Either an unidentified subpattern, or a reference to (?(0) */
+
+ else
+ {
+ *errorcodeptr = (recno == 0)? ERR35: ERR15;
+ goto FAILED;
+ }
+ break;
+
+
+ /* ------------------------------------------------------------ */
+ case CHAR_EQUALS_SIGN: /* Positive lookahead */
+ bravalue = OP_ASSERT;
+ cd->assert_depth += 1;
+ ptr++;
+ break;
+
+
+ /* ------------------------------------------------------------ */
+ case CHAR_EXCLAMATION_MARK: /* Negative lookahead */
+ ptr++;
+ if (*ptr == CHAR_RIGHT_PARENTHESIS) /* Optimize (?!) */
+ {
+ *code++ = OP_FAIL;
+ previous = NULL;
+ continue;
+ }
+ bravalue = OP_ASSERT_NOT;
+ cd->assert_depth += 1;
+ break;
+
+
+ /* ------------------------------------------------------------ */
+ case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */
+ switch (ptr[1])
+ {
+ case CHAR_EQUALS_SIGN: /* Positive lookbehind */
+ bravalue = OP_ASSERTBACK;
+ cd->assert_depth += 1;
+ ptr += 2;
+ break;
+
+ case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */
+ bravalue = OP_ASSERTBACK_NOT;
+ cd->assert_depth += 1;
+ ptr += 2;
+ break;
+
+ default: /* Could be name define, else bad */
+ if (MAX_255(ptr[1]) && (cd->ctypes[ptr[1]] & ctype_word) != 0)
+ goto DEFINE_NAME;
+ ptr++; /* Correct offset for error */
+ *errorcodeptr = ERR24;
+ goto FAILED;
+ }
+ break;
+
+
+ /* ------------------------------------------------------------ */
+ case CHAR_GREATER_THAN_SIGN: /* One-time brackets */
+ bravalue = OP_ONCE;
+ ptr++;
+ break;
+
+
+ /* ------------------------------------------------------------ */
+ case CHAR_C: /* Callout - may be followed by digits; */
+ previous_callout = code; /* Save for later completion */
+ after_manual_callout = 1; /* Skip one item before completing */
+ *code++ = OP_CALLOUT;
+ {
+ int n = 0;
+ ptr++;
+ while(IS_DIGIT(*ptr))
+ n = n * 10 + *ptr++ - CHAR_0;
+ if (*ptr != CHAR_RIGHT_PARENTHESIS)
+ {
+ *errorcodeptr = ERR39;
+ goto FAILED;
+ }
+ if (n > 255)
+ {
+ *errorcodeptr = ERR38;
+ goto FAILED;
+ }
+ *code++ = n;
+ PUT(code, 0, (int)(ptr - cd->start_pattern + 1)); /* Pattern offset */
+ PUT(code, LINK_SIZE, 0); /* Default length */
+ code += 2 * LINK_SIZE;
+ }
+ previous = NULL;
+ continue;
+
+
+ /* ------------------------------------------------------------ */
+ case CHAR_P: /* Python-style named subpattern handling */
+ if (*(++ptr) == CHAR_EQUALS_SIGN ||
+ *ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */
+ {
+ is_recurse = *ptr == CHAR_GREATER_THAN_SIGN;
+ terminator = CHAR_RIGHT_PARENTHESIS;
+ goto NAMED_REF_OR_RECURSE;
+ }
+ else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */
+ {
+ *errorcodeptr = ERR41;
+ goto FAILED;
+ }
+ /* Fall through to handle (?P< as (?< is handled */
+
+
+ /* ------------------------------------------------------------ */
+ DEFINE_NAME: /* Come here from (?< handling */
+ case CHAR_APOSTROPHE:
+ {
+ terminator = (*ptr == CHAR_LESS_THAN_SIGN)?
+ CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
+ name = ++ptr;
+
+ while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
+ namelen = (int)(ptr - name);
+
+ /* In the pre-compile phase, just do a syntax check. */
+
+ if (lengthptr != NULL)
+ {
+ if (*ptr != (pcre_uchar)terminator)
+ {
+ *errorcodeptr = ERR42;
+ goto FAILED;
+ }
+ if (cd->names_found >= MAX_NAME_COUNT)
+ {
+ *errorcodeptr = ERR49;
+ goto FAILED;
+ }
+ if (namelen + IMM2_SIZE + 1 > cd->name_entry_size)
+ {
+ cd->name_entry_size = namelen + IMM2_SIZE + 1;
+ if (namelen > MAX_NAME_SIZE)
+ {
+ *errorcodeptr = ERR48;
+ goto FAILED;
+ }
+ }
+ }
+
+ /* In the real compile, create the entry in the table, maintaining
+ alphabetical order. Duplicate names for different numbers are
+ permitted only if PCRE_DUPNAMES is set. Duplicate names for the same
+ number are always OK. (An existing number can be re-used if (?|
+ appears in the pattern.) In either event, a duplicate name results in
+ a duplicate entry in the table, even if the number is the same. This
+ is because the number of names, and hence the table size, is computed
+ in the pre-compile, and it affects various numbers and pointers which
+ would all have to be modified, and the compiled code moved down, if
+ duplicates with the same number were omitted from the table. This
+ doesn't seem worth the hassle. However, *different* names for the
+ same number are not permitted. */
+
+ else
+ {
+ BOOL dupname = FALSE;
+ slot = cd->name_table;
+
+ for (i = 0; i < cd->names_found; i++)
+ {
+ int crc = memcmp(name, slot+IMM2_SIZE, IN_UCHARS(namelen));
+ if (crc == 0)
+ {
+ if (slot[IMM2_SIZE+namelen] == 0)
+ {
+ if (GET2(slot, 0) != cd->bracount + 1 &&
+ (options & PCRE_DUPNAMES) == 0)
+ {
+ *errorcodeptr = ERR43;
+ goto FAILED;
+ }
+ else dupname = TRUE;
+ }
+ else crc = -1; /* Current name is a substring */
+ }
+
+ /* Make space in the table and break the loop for an earlier
+ name. For a duplicate or later name, carry on. We do this for
+ duplicates so that in the simple case (when ?(| is not used) they
+ are in order of their numbers. */
+
+ if (crc < 0)
+ {
+ memmove(slot + cd->name_entry_size, slot,
+ IN_UCHARS((cd->names_found - i) * cd->name_entry_size));
+ break;
+ }
+
+ /* Continue the loop for a later or duplicate name */
+
+ slot += cd->name_entry_size;
+ }
+
+ /* For non-duplicate names, check for a duplicate number before
+ adding the new name. */
+
+ if (!dupname)
+ {
+ pcre_uchar *cslot = cd->name_table;
+ for (i = 0; i < cd->names_found; i++)
+ {
+ if (cslot != slot)
+ {
+ if (GET2(cslot, 0) == cd->bracount + 1)
+ {
+ *errorcodeptr = ERR65;
+ goto FAILED;
+ }
+ }
+ else i--;
+ cslot += cd->name_entry_size;
+ }
+ }
+
+ PUT2(slot, 0, cd->bracount + 1);
+ memcpy(slot + IMM2_SIZE, name, IN_UCHARS(namelen));
+ slot[IMM2_SIZE + namelen] = 0;
+ }
+ }
+
+ /* In both pre-compile and compile, count the number of names we've
+ encountered. */
+
+ cd->names_found++;
+ ptr++; /* Move past > or ' */
+ goto NUMBERED_GROUP;
+
+
+ /* ------------------------------------------------------------ */
+ case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */
+ terminator = CHAR_RIGHT_PARENTHESIS;
+ is_recurse = TRUE;
+ /* Fall through */
+
+ /* We come here from the Python syntax above that handles both
+ references (?P=name) and recursion (?P>name), as well as falling
+ through from the Perl recursion syntax (?&name). We also come here from
+ the Perl \k or \k'name' back reference syntax and the \k{name}
+ .NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */
+
+ NAMED_REF_OR_RECURSE:
+ name = ++ptr;
+ while (MAX_255(*ptr) && (cd->ctypes[*ptr] & ctype_word) != 0) ptr++;
+ namelen = (int)(ptr - name);
+
+ /* In the pre-compile phase, do a syntax check. We used to just set
+ a dummy reference number, because it was not used in the first pass.
+ However, with the change of recursive back references to be atomic,
+ we have to look for the number so that this state can be identified, as
+ otherwise the incorrect length is computed. If it's not a backwards
+ reference, the dummy number will do. */
+
+ if (lengthptr != NULL)
+ {
+ const pcre_uchar *temp;
+
+ if (namelen == 0)
+ {
+ *errorcodeptr = ERR62;
+ goto FAILED;
+ }
+ if (*ptr != (pcre_uchar)terminator)
+ {
+ *errorcodeptr = ERR42;
+ goto FAILED;
+ }
+ if (namelen > MAX_NAME_SIZE)
+ {
+ *errorcodeptr = ERR48;
+ goto FAILED;
+ }
+
+ /* The name table does not exist in the first pass, so we cannot
+ do a simple search as in the code below. Instead, we have to scan the
+ pattern to find the number. It is important that we scan it only as
+ far as we have got because the syntax of named subpatterns has not
+ been checked for the rest of the pattern, and find_parens() assumes
+ correct syntax. In any case, it's a waste of resources to scan
+ further. We stop the scan at the current point by temporarily
+ adjusting the value of cd->endpattern. */
+
+ temp = cd->end_pattern;
+ cd->end_pattern = ptr;
+ recno = find_parens(cd, name, namelen,
+ (options & PCRE_EXTENDED) != 0, utf);
+ cd->end_pattern = temp;
+ if (recno < 0) recno = 0; /* Forward ref; set dummy number */
+ }
+
+ /* In the real compile, seek the name in the table. We check the name
+ first, and then check that we have reached the end of the name in the
+ table. That way, if the name that is longer than any in the table,
+ the comparison will fail without reading beyond the table entry. */
+
+ else
+ {
+ slot = cd->name_table;
+ for (i = 0; i < cd->names_found; i++)
+ {
+ if (STRNCMP_UC_UC(name, slot+IMM2_SIZE, namelen) == 0 &&
+ slot[IMM2_SIZE+namelen] == 0)
+ break;
+ slot += cd->name_entry_size;
+ }
+
+ if (i < cd->names_found) /* Back reference */
+ {
+ recno = GET2(slot, 0);
+ }
+ else if ((recno = /* Forward back reference */
+ find_parens(cd, name, namelen,
+ (options & PCRE_EXTENDED) != 0, utf)) <= 0)
+ {
+ *errorcodeptr = ERR15;
+ goto FAILED;
+ }
+ }
+
+ /* In both phases, we can now go to the code than handles numerical
+ recursion or backreferences. */
+
+ if (is_recurse) goto HANDLE_RECURSION;
+ else goto HANDLE_REFERENCE;
+
+
+ /* ------------------------------------------------------------ */
+ case CHAR_R: /* Recursion */
+ ptr++; /* Same as (?0) */
+ /* Fall through */
+
+
+ /* ------------------------------------------------------------ */
+ case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */
+ case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4:
+ case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
+ {
+ const pcre_uchar *called;
+ terminator = CHAR_RIGHT_PARENTHESIS;
+
+ /* Come here from the \g<...> and \g'...' code (Oniguruma
+ compatibility). However, the syntax has been checked to ensure that
+ the ... are a (signed) number, so that neither ERR63 nor ERR29 will
+ be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY
+ ever be taken. */
+
+ HANDLE_NUMERICAL_RECURSION:
+
+ if ((refsign = *ptr) == CHAR_PLUS)
+ {
+ ptr++;
+ if (!IS_DIGIT(*ptr))
+ {
+ *errorcodeptr = ERR63;
+ goto FAILED;
+ }
+ }
+ else if (refsign == CHAR_MINUS)
+ {
+ if (!IS_DIGIT(ptr[1]))
+ goto OTHER_CHAR_AFTER_QUERY;
+ ptr++;
+ }
+
+ recno = 0;
+ while(IS_DIGIT(*ptr))
+ recno = recno * 10 + *ptr++ - CHAR_0;
+
+ if (*ptr != (pcre_uchar)terminator)
+ {
+ *errorcodeptr = ERR29;
+ goto FAILED;
+ }
+
+ if (refsign == CHAR_MINUS)
+ {
+ if (recno == 0)
+ {
+ *errorcodeptr = ERR58;
+ goto FAILED;
+ }
+ recno = cd->bracount - recno + 1;
+ if (recno <= 0)
+ {
+ *errorcodeptr = ERR15;
+ goto FAILED;
+ }
+ }
+ else if (refsign == CHAR_PLUS)
+ {
+ if (recno == 0)
+ {
+ *errorcodeptr = ERR58;
+ goto FAILED;
+ }
+ recno += cd->bracount;
+ }
+
+ /* Come here from code above that handles a named recursion */
+
+ HANDLE_RECURSION:
+
+ previous = code;
+ called = cd->start_code;
+
+ /* When we are actually compiling, find the bracket that is being
+ referenced. Temporarily end the regex in case it doesn't exist before
+ this point. If we end up with a forward reference, first check that
+ the bracket does occur later so we can give the error (and position)
+ now. Then remember this forward reference in the workspace so it can
+ be filled in at the end. */
+
+ if (lengthptr == NULL)
+ {
+ *code = OP_END;
+ if (recno != 0)
+ called = PRIV(find_bracket)(cd->start_code, utf, recno);
+
+ /* Forward reference */
+
+ if (called == NULL)
+ {
+ if (find_parens(cd, NULL, recno,
+ (options & PCRE_EXTENDED) != 0, utf) < 0)
+ {
+ *errorcodeptr = ERR15;
+ goto FAILED;
+ }
+
+ /* Fudge the value of "called" so that when it is inserted as an
+ offset below, what it actually inserted is the reference number
+ of the group. Then remember the forward reference. */
+
+ called = cd->start_code + recno;
+ if (cd->hwm >= cd->start_workspace + cd->workspace_size -
+ WORK_SIZE_SAFETY_MARGIN)
+ {
+ *errorcodeptr = expand_workspace(cd);
+ if (*errorcodeptr != 0) goto FAILED;
+ }
+ PUTINC(cd->hwm, 0, (int)(code + 1 - cd->start_code));
+ }
+
+ /* If not a forward reference, and the subpattern is still open,
+ this is a recursive call. We check to see if this is a left
+ recursion that could loop for ever, and diagnose that case. We
+ must not, however, do this check if we are in a conditional
+ subpattern because the condition might be testing for recursion in
+ a pattern such as /(?(R)a+|(?R)b)/, which is perfectly valid.
+ Forever loops are also detected at runtime, so those that occur in
+ conditional subpatterns will be picked up then. */
+
+ else if (GET(called, 1) == 0 && cond_depth <= 0 &&
+ could_be_empty(called, code, bcptr, utf, cd))
+ {
+ *errorcodeptr = ERR40;
+ goto FAILED;
+ }
+ }
+
+ /* Insert the recursion/subroutine item. It does not have a set first
+ character (relevant if it is repeated, because it will then be
+ wrapped with ONCE brackets). */
+
+ *code = OP_RECURSE;
+ PUT(code, 1, (int)(called - cd->start_code));
+ code += 1 + LINK_SIZE;
+ groupsetfirstchar = FALSE;
+ }
+
+ /* Can't determine a first byte now */
+
+ if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
+ continue;
+
+
+ /* ------------------------------------------------------------ */
+ default: /* Other characters: check option setting */
+ OTHER_CHAR_AFTER_QUERY:
+ set = unset = 0;
+ optset = &set;
+
+ while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON)
+ {
+ switch (*ptr++)
+ {
+ case CHAR_MINUS: optset = &unset; break;
+
+ case CHAR_J: /* Record that it changed in the external options */
+ *optset |= PCRE_DUPNAMES;
+ cd->external_flags |= PCRE_JCHANGED;
+ break;
+
+ case CHAR_i: *optset |= PCRE_CASELESS; break;
+ case CHAR_m: *optset |= PCRE_MULTILINE; break;
+ case CHAR_s: *optset |= PCRE_DOTALL; break;
+ case CHAR_x: *optset |= PCRE_EXTENDED; break;
+ case CHAR_U: *optset |= PCRE_UNGREEDY; break;
+ case CHAR_X: *optset |= PCRE_EXTRA; break;
+
+ default: *errorcodeptr = ERR12;
+ ptr--; /* Correct the offset */
+ goto FAILED;
+ }
+ }
+
+ /* Set up the changed option bits, but don't change anything yet. */
+
+ newoptions = (options | set) & (~unset);
+
+ /* If the options ended with ')' this is not the start of a nested
+ group with option changes, so the options change at this level. If this
+ item is right at the start of the pattern, the options can be
+ abstracted and made external in the pre-compile phase, and ignored in
+ the compile phase. This can be helpful when matching -- for instance in
+ caseless checking of required bytes.
+
+ If the code pointer is not (cd->start_code + 1 + LINK_SIZE), we are
+ definitely *not* at the start of the pattern because something has been
+ compiled. In the pre-compile phase, however, the code pointer can have
+ that value after the start, because it gets reset as code is discarded
+ during the pre-compile. However, this can happen only at top level - if
+ we are within parentheses, the starting BRA will still be present. At
+ any parenthesis level, the length value can be used to test if anything
+ has been compiled at that level. Thus, a test for both these conditions
+ is necessary to ensure we correctly detect the start of the pattern in
+ both phases.
+
+ If we are not at the pattern start, reset the greedy defaults and the
+ case value for firstchar and reqchar. */
+
+ if (*ptr == CHAR_RIGHT_PARENTHESIS)
+ {
+ if (code == cd->start_code + 1 + LINK_SIZE &&
+ (lengthptr == NULL || *lengthptr == 2 + 2*LINK_SIZE))
+ {
+ cd->external_options = newoptions;
+ }
+ else
+ {
+ greedy_default = ((newoptions & PCRE_UNGREEDY) != 0);
+ greedy_non_default = greedy_default ^ 1;
+ req_caseopt = ((newoptions & PCRE_CASELESS) != 0)? REQ_CASELESS:0;
+ }
+
+ /* Change options at this level, and pass them back for use
+ in subsequent branches. */
+
+ *optionsptr = options = newoptions;
+ previous = NULL; /* This item can't be repeated */
+ continue; /* It is complete */
+ }
+
+ /* If the options ended with ':' we are heading into a nested group
+ with possible change of options. Such groups are non-capturing and are
+ not assertions of any kind. All we need to do is skip over the ':';
+ the newoptions value is handled below. */
+
+ bravalue = OP_BRA;
+ ptr++;
+ } /* End of switch for character following (? */
+ } /* End of (? handling */
+
+ /* Opening parenthesis not followed by '*' or '?'. If PCRE_NO_AUTO_CAPTURE
+ is set, all unadorned brackets become non-capturing and behave like (?:...)
+ brackets. */
+
+ else if ((options & PCRE_NO_AUTO_CAPTURE) != 0)
+ {
+ bravalue = OP_BRA;
+ }
+
+ /* Else we have a capturing group. */
+
+ else
+ {
+ NUMBERED_GROUP:
+ cd->bracount += 1;
+ PUT2(code, 1+LINK_SIZE, cd->bracount);
+ skipbytes = IMM2_SIZE;
+ }
+
+ /* Process nested bracketed regex. Assertions used not to be repeatable,
+ but this was changed for Perl compatibility, so all kinds can now be
+ repeated. We copy code into a non-register variable (tempcode) in order to
+ be able to pass its address because some compilers complain otherwise. */
+
+ previous = code; /* For handling repetition */
+ *code = bravalue;
+ tempcode = code;
+ tempreqvary = cd->req_varyopt; /* Save value before bracket */
+ tempbracount = cd->bracount; /* Save value before bracket */
+ length_prevgroup = 0; /* Initialize for pre-compile phase */
+
+ if (!compile_regex(
+ newoptions, /* The complete new option state */
+ &tempcode, /* Where to put code (updated) */
+ &ptr, /* Input pointer (updated) */
+ errorcodeptr, /* Where to put an error message */
+ (bravalue == OP_ASSERTBACK ||
+ bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
+ reset_bracount, /* True if (?| group */
+ skipbytes, /* Skip over bracket number */
+ cond_depth +
+ ((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */
+ &subfirstchar, /* For possible first char */
+ &subfirstcharflags,
+ &subreqchar, /* For possible last char */
+ &subreqcharflags,
+ bcptr, /* Current branch chain */
+ cd, /* Tables block */
+ (lengthptr == NULL)? NULL : /* Actual compile phase */
+ &length_prevgroup /* Pre-compile phase */
+ ))
+ goto FAILED;
+
+ /* If this was an atomic group and there are no capturing groups within it,
+ generate OP_ONCE_NC instead of OP_ONCE. */
+
+ if (bravalue == OP_ONCE && cd->bracount <= tempbracount)
+ *code = OP_ONCE_NC;
+
+ if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT)
+ cd->assert_depth -= 1;
+
+ /* At the end of compiling, code is still pointing to the start of the
+ group, while tempcode has been updated to point past the end of the group.
+ The pattern pointer (ptr) is on the bracket.
+
+ If this is a conditional bracket, check that there are no more than
+ two branches in the group, or just one if it's a DEFINE group. We do this
+ in the real compile phase, not in the pre-pass, where the whole group may
+ not be available. */
+
+ if (bravalue == OP_COND && lengthptr == NULL)
+ {
+ pcre_uchar *tc = code;
+ int condcount = 0;
+
+ do {
+ condcount++;
+ tc += GET(tc,1);
+ }
+ while (*tc != OP_KET);
+
+ /* A DEFINE group is never obeyed inline (the "condition" is always
+ false). It must have only one branch. */
+
+ if (code[LINK_SIZE+1] == OP_DEF)
+ {
+ if (condcount > 1)
+ {
+ *errorcodeptr = ERR54;
+ goto FAILED;
+ }
+ bravalue = OP_DEF; /* Just a flag to suppress char handling below */
+ }
+
+ /* A "normal" conditional group. If there is just one branch, we must not
+ make use of its firstchar or reqchar, because this is equivalent to an
+ empty second branch. */
+
+ else
+ {
+ if (condcount > 2)
+ {
+ *errorcodeptr = ERR27;
+ goto FAILED;
+ }
+ if (condcount == 1) subfirstcharflags = subreqcharflags = REQ_NONE;
+ }
+ }
+
+ /* Error if hit end of pattern */
+
+ if (*ptr != CHAR_RIGHT_PARENTHESIS)
+ {
+ *errorcodeptr = ERR14;
+ goto FAILED;
+ }
+
+ /* In the pre-compile phase, update the length by the length of the group,
+ less the brackets at either end. Then reduce the compiled code to just a
+ set of non-capturing brackets so that it doesn't use much memory if it is
+ duplicated by a quantifier.*/
+
+ if (lengthptr != NULL)
+ {
+ if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
+ {
+ *errorcodeptr = ERR20;
+ goto FAILED;
+ }
+ *lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
+ code++; /* This already contains bravalue */
+ PUTINC(code, 0, 1 + LINK_SIZE);
+ *code++ = OP_KET;
+ PUTINC(code, 0, 1 + LINK_SIZE);
+ break; /* No need to waste time with special character handling */
+ }
+
+ /* Otherwise update the main code pointer to the end of the group. */
+
+ code = tempcode;
+
+ /* For a DEFINE group, required and first character settings are not
+ relevant. */
+
+ if (bravalue == OP_DEF) break;
+
+ /* Handle updating of the required and first characters for other types of
+ group. Update for normal brackets of all kinds, and conditions with two
+ branches (see code above). If the bracket is followed by a quantifier with
+ zero repeat, we have to back off. Hence the definition of zeroreqchar and
+ zerofirstchar outside the main loop so that they can be accessed for the
+ back off. */
+
+ zeroreqchar = reqchar;
+ zeroreqcharflags = reqcharflags;
+ zerofirstchar = firstchar;
+ zerofirstcharflags = firstcharflags;
+ groupsetfirstchar = FALSE;
+
+ if (bravalue >= OP_ONCE)
+ {
+ /* If we have not yet set a firstchar in this branch, take it from the
+ subpattern, remembering that it was set here so that a repeat of more
+ than one can replicate it as reqchar if necessary. If the subpattern has
+ no firstchar, set "none" for the whole branch. In both cases, a zero
+ repeat forces firstchar to "none". */
+
+ if (firstcharflags == REQ_UNSET)
+ {
+ if (subfirstcharflags >= 0)
+ {
+ firstchar = subfirstchar;
+ firstcharflags = subfirstcharflags;
+ groupsetfirstchar = TRUE;
+ }
+ else firstcharflags = REQ_NONE;
+ zerofirstcharflags = REQ_NONE;
+ }
+
+ /* If firstchar was previously set, convert the subpattern's firstchar
+ into reqchar if there wasn't one, using the vary flag that was in
+ existence beforehand. */
+
+ else if (subfirstcharflags >= 0 && subreqcharflags < 0)
+ {
+ subreqchar = subfirstchar;
+ subreqcharflags = subfirstcharflags | tempreqvary;
+ }
+
+ /* If the subpattern set a required byte (or set a first byte that isn't
+ really the first byte - see above), set it. */
+
+ if (subreqcharflags >= 0)
+ {
+ reqchar = subreqchar;
+ reqcharflags = subreqcharflags;
+ }
+ }
+
+ /* For a forward assertion, we take the reqchar, if set. This can be
+ helpful if the pattern that follows the assertion doesn't set a different
+ char. For example, it's useful for /(?=abcde).+/. We can't set firstchar
+ for an assertion, however because it leads to incorrect effect for patterns
+ such as /(?=a)a.+/ when the "real" "a" would then become a reqchar instead
+ of a firstchar. This is overcome by a scan at the end if there's no
+ firstchar, looking for an asserted first char. */
+
+ else if (bravalue == OP_ASSERT && subreqcharflags >= 0)
+ {
+ reqchar = subreqchar;
+ reqcharflags = subreqcharflags;
+ }
+ break; /* End of processing '(' */
+
+
+ /* ===================================================================*/
+ /* Handle metasequences introduced by \. For ones like \d, the ESC_ values
+ are arranged to be the negation of the corresponding OP_values in the
+ default case when PCRE_UCP is not set. For the back references, the values
+ are negative the reference number. Only back references and those types
+ that consume a character may be repeated. We can test for values between
+ ESC_b and ESC_Z for the latter; this may have to change if any new ones are
+ ever created. */
+
+ case CHAR_BACKSLASH:
+ tempptr = ptr;
+ escape = check_escape(&ptr, &ec, errorcodeptr, cd->bracount, options, FALSE);
+ if (*errorcodeptr != 0) goto FAILED;
+
+ if (escape == 0) /* The escape coded a single character */
+ c = ec;
+ else
+ {
+ if (escape == ESC_Q) /* Handle start of quoted string */
+ {
+ if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
+ ptr += 2; /* avoid empty string */
+ else inescq = TRUE;
+ continue;
+ }
+
+ if (escape == ESC_E) continue; /* Perl ignores an orphan \E */
+
+ /* For metasequences that actually match a character, we disable the
+ setting of a first character if it hasn't already been set. */
+
+ if (firstcharflags == REQ_UNSET && escape > ESC_b && escape < ESC_Z)
+ firstcharflags = REQ_NONE;
+
+ /* Set values to reset to if this is followed by a zero repeat. */
+
+ zerofirstchar = firstchar;
+ zerofirstcharflags = firstcharflags;
+ zeroreqchar = reqchar;
+ zeroreqcharflags = reqcharflags;
+
+ /* \g or \g'name' is a subroutine call by name and \g or \g'n'
+ is a subroutine call by number (Oniguruma syntax). In fact, the value
+ ESC_g is returned only for these cases. So we don't need to check for <
+ or ' if the value is ESC_g. For the Perl syntax \g{n} the value is
+ -n, and for the Perl syntax \g{name} the result is ESC_k (as
+ that is a synonym for a named back reference). */
+
+ if (escape == ESC_g)
+ {
+ const pcre_uchar *p;
+ save_hwm = cd->hwm; /* Normally this is set when '(' is read */
+ terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
+ CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
+
+ /* These two statements stop the compiler for warning about possibly
+ unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In
+ fact, because we actually check for a number below, the paths that
+ would actually be in error are never taken. */
+
+ skipbytes = 0;
+ reset_bracount = FALSE;
+
+ /* Test for a name */
+
+ if (ptr[1] != CHAR_PLUS && ptr[1] != CHAR_MINUS)
+ {
+ BOOL is_a_number = TRUE;
+ for (p = ptr + 1; *p != CHAR_NULL && *p != (pcre_uchar)terminator; p++)
+ {
+ if (!MAX_255(*p)) { is_a_number = FALSE; break; }
+ if ((cd->ctypes[*p] & ctype_digit) == 0) is_a_number = FALSE;
+ if ((cd->ctypes[*p] & ctype_word) == 0) break;
+ }
+ if (*p != (pcre_uchar)terminator)
+ {
+ *errorcodeptr = ERR57;
+ break;
+ }
+ if (is_a_number)
+ {
+ ptr++;
+ goto HANDLE_NUMERICAL_RECURSION;
+ }
+ is_recurse = TRUE;
+ goto NAMED_REF_OR_RECURSE;
+ }
+
+ /* Test a signed number in angle brackets or quotes. */
+
+ p = ptr + 2;
+ while (IS_DIGIT(*p)) p++;
+ if (*p != (pcre_uchar)terminator)
+ {
+ *errorcodeptr = ERR57;
+ break;
+ }
+ ptr++;
+ goto HANDLE_NUMERICAL_RECURSION;
+ }
+
+ /* \k or \k'name' is a back reference by name (Perl syntax).
+ We also support \k{name} (.NET syntax). */
+
+ if (escape == ESC_k)
+ {
+ if ((ptr[1] != CHAR_LESS_THAN_SIGN &&
+ ptr[1] != CHAR_APOSTROPHE && ptr[1] != CHAR_LEFT_CURLY_BRACKET))
+ {
+ *errorcodeptr = ERR69;
+ break;
+ }
+ is_recurse = FALSE;
+ terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
+ CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)?
+ CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET;
+ goto NAMED_REF_OR_RECURSE;
+ }
+
+ /* Back references are handled specially; must disable firstchar if
+ not set to cope with cases like (?=(\w+))\1: which would otherwise set
+ ':' later. */
+
+ if (escape < 0)
+ {
+ open_capitem *oc;
+ recno = -escape;
+
+ HANDLE_REFERENCE: /* Come here from named backref handling */
+ if (firstcharflags == REQ_UNSET) firstcharflags = REQ_NONE;
+ previous = code;
+ *code++ = ((options & PCRE_CASELESS) != 0)? OP_REFI : OP_REF;
+ PUT2INC(code, 0, recno);
+ cd->backref_map |= (recno < 32)? (1 << recno) : 1;
+ if (recno > cd->top_backref) cd->top_backref = recno;
+
+ /* Check to see if this back reference is recursive, that it, it
+ is inside the group that it references. A flag is set so that the
+ group can be made atomic. */
+
+ for (oc = cd->open_caps; oc != NULL; oc = oc->next)
+ {
+ if (oc->number == recno)
+ {
+ oc->flag = TRUE;
+ break;
+ }
+ }
+ }
+
+ /* So are Unicode property matches, if supported. */
+
+#ifdef SUPPORT_UCP
+ else if (escape == ESC_P || escape == ESC_p)
+ {
+ BOOL negated;
+ unsigned int ptype = 0, pdata = 0;
+ if (!get_ucp(&ptr, &negated, &ptype, &pdata, errorcodeptr))
+ goto FAILED;
+ previous = code;
+ *code++ = ((escape == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
+ *code++ = ptype;
+ *code++ = pdata;
+ }
+#else
+
+ /* If Unicode properties are not supported, \X, \P, and \p are not
+ allowed. */
+
+ else if (escape == ESC_X || escape == ESC_P || escape == ESC_p)
+ {
+ *errorcodeptr = ERR45;
+ goto FAILED;
+ }
+#endif
+
+ /* For the rest (including \X when Unicode properties are supported), we
+ can obtain the OP value by negating the escape value in the default
+ situation when PCRE_UCP is not set. When it *is* set, we substitute
+ Unicode property tests. Note that \b and \B do a one-character
+ lookbehind, and \A also behaves as if it does. */
+
+ else
+ {
+ if ((escape == ESC_b || escape == ESC_B || escape == ESC_A) &&
+ cd->max_lookbehind == 0)
+ cd->max_lookbehind = 1;
+#ifdef SUPPORT_UCP
+ if (escape >= ESC_DU && escape <= ESC_wu)
+ {
+ nestptr = ptr + 1; /* Where to resume */
+ ptr = substitutes[escape - ESC_DU] - 1; /* Just before substitute */
+ }
+ else
+#endif
+ /* In non-UTF-8 mode, we turn \C into OP_ALLANY instead of OP_ANYBYTE
+ so that it works in DFA mode and in lookbehinds. */
+
+ {
+ previous = (escape > ESC_b && escape < ESC_Z)? code : NULL;
+ *code++ = (!utf && escape == ESC_C)? OP_ALLANY : escape;
+ }
+ }
+ continue;
+ }
+
+ /* We have a data character whose value is in c. In UTF-8 mode it may have
+ a value > 127. We set its representation in the length/buffer, and then
+ handle it as a data character. */
+
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf && c > MAX_VALUE_FOR_SINGLE_CHAR)
+ mclength = PRIV(ord2utf)(c, mcbuffer);
+ else
+#endif
+
+ {
+ mcbuffer[0] = c;
+ mclength = 1;
+ }
+ goto ONE_CHAR;
+
+
+ /* ===================================================================*/
+ /* Handle a literal character. It is guaranteed not to be whitespace or #
+ when the extended flag is set. If we are in UTF-8 mode, it may be a
+ multi-byte literal character. */
+
+ default:
+ NORMAL_CHAR:
+ mclength = 1;
+ mcbuffer[0] = c;
+
+#ifdef SUPPORT_UTF
+ if (utf && HAS_EXTRALEN(c))
+ ACROSSCHAR(TRUE, ptr[1], mcbuffer[mclength++] = *(++ptr));
+#endif
+
+ /* At this point we have the character's bytes in mcbuffer, and the length
+ in mclength. When not in UTF-8 mode, the length is always 1. */
+
+ ONE_CHAR:
+ previous = code;
+
+ /* For caseless UTF-8 mode when UCP support is available, check whether
+ this character has more than one other case. If so, generate a special
+ OP_PROP item instead of OP_CHARI. */
+
+#ifdef SUPPORT_UCP
+ if (utf && (options & PCRE_CASELESS) != 0)
+ {
+ GETCHAR(c, mcbuffer);
+ if ((c = UCD_CASESET(c)) != 0)
+ {
+ *code++ = OP_PROP;
+ *code++ = PT_CLIST;
+ *code++ = c;
+ if (firstcharflags == REQ_UNSET) firstcharflags = zerofirstcharflags = REQ_NONE;
+ break;
+ }
+ }
+#endif
+
+ /* Caseful matches, or not one of the multicase characters. */
+
+ *code++ = ((options & PCRE_CASELESS) != 0)? OP_CHARI : OP_CHAR;
+ for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
+
+ /* Remember if \r or \n were seen */
+
+ if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL)
+ cd->external_flags |= PCRE_HASCRORLF;
+
+ /* Set the first and required bytes appropriately. If no previous first
+ byte, set it from this character, but revert to none on a zero repeat.
+ Otherwise, leave the firstchar value alone, and don't change it on a zero
+ repeat. */
+
+ if (firstcharflags == REQ_UNSET)
+ {
+ zerofirstcharflags = REQ_NONE;
+ zeroreqchar = reqchar;
+ zeroreqcharflags = reqcharflags;
+
+ /* If the character is more than one byte long, we can set firstchar
+ only if it is not to be matched caselessly. */
+
+ if (mclength == 1 || req_caseopt == 0)
+ {
+ firstchar = mcbuffer[0] | req_caseopt;
+ firstchar = mcbuffer[0];
+ firstcharflags = req_caseopt;
+
+ if (mclength != 1)
+ {
+ reqchar = code[-1];
+ reqcharflags = cd->req_varyopt;
+ }
+ }
+ else firstcharflags = reqcharflags = REQ_NONE;
+ }
+
+ /* firstchar was previously set; we can set reqchar only if the length is
+ 1 or the matching is caseful. */
+
+ else
+ {
+ zerofirstchar = firstchar;
+ zerofirstcharflags = firstcharflags;
+ zeroreqchar = reqchar;
+ zeroreqcharflags = reqcharflags;
+ if (mclength == 1 || req_caseopt == 0)
+ {
+ reqchar = code[-1];
+ reqcharflags = req_caseopt | cd->req_varyopt;
+ }
+ }
+
+ break; /* End of literal character handling */
+ }
+ } /* end of big loop */
+
+
+/* Control never reaches here by falling through, only by a goto for all the
+error states. Pass back the position in the pattern so that it can be displayed
+to the user for diagnosing the error. */
+
+FAILED:
+*ptrptr = ptr;
+return FALSE;
+}
+
+
+
+/*************************************************
+* Compile sequence of alternatives *
+*************************************************/
+
+/* On entry, ptr is pointing past the bracket character, but on return it
+points to the closing bracket, or vertical bar, or end of string. The code
+variable is pointing at the byte into which the BRA operator has been stored.
+This function is used during the pre-compile phase when we are trying to find
+out the amount of memory needed, as well as during the real compile phase. The
+value of lengthptr distinguishes the two phases.
+
+Arguments:
+ options option bits, including any changes for this subpattern
+ codeptr -> the address of the current code pointer
+ ptrptr -> the address of the current pattern pointer
+ errorcodeptr -> pointer to error code variable
+ lookbehind TRUE if this is a lookbehind assertion
+ reset_bracount TRUE to reset the count for each branch
+ skipbytes skip this many bytes at start (for brackets and OP_COND)
+ cond_depth depth of nesting for conditional subpatterns
+ firstcharptr place to put the first required character
+ firstcharflagsptr place to put the first character flags, or a negative number
+ reqcharptr place to put the last required character
+ reqcharflagsptr place to put the last required character flags, or a negative number
+ bcptr pointer to the chain of currently open branches
+ cd points to the data block with tables pointers etc.
+ lengthptr NULL during the real compile phase
+ points to length accumulator during pre-compile phase
+
+Returns: TRUE on success
+*/
+
+static BOOL
+compile_regex(int options, pcre_uchar **codeptr, const pcre_uchar **ptrptr,
+ int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, int skipbytes,
+ int cond_depth,
+ pcre_uint32 *firstcharptr, pcre_int32 *firstcharflagsptr,
+ pcre_uint32 *reqcharptr, pcre_int32 *reqcharflagsptr,
+ branch_chain *bcptr, compile_data *cd, int *lengthptr)
+{
+const pcre_uchar *ptr = *ptrptr;
+pcre_uchar *code = *codeptr;
+pcre_uchar *last_branch = code;
+pcre_uchar *start_bracket = code;
+pcre_uchar *reverse_count = NULL;
+open_capitem capitem;
+int capnumber = 0;
+pcre_uint32 firstchar, reqchar;
+pcre_int32 firstcharflags, reqcharflags;
+pcre_uint32 branchfirstchar, branchreqchar;
+pcre_int32 branchfirstcharflags, branchreqcharflags;
+int length;
+unsigned int orig_bracount;
+unsigned int max_bracount;
+branch_chain bc;
+
+bc.outer = bcptr;
+bc.current_branch = code;
+
+firstchar = reqchar = 0;
+firstcharflags = reqcharflags = REQ_UNSET;
+
+/* Accumulate the length for use in the pre-compile phase. Start with the
+length of the BRA and KET and any extra bytes that are required at the
+beginning. We accumulate in a local variable to save frequent testing of
+lenthptr for NULL. We cannot do this by looking at the value of code at the
+start and end of each alternative, because compiled items are discarded during
+the pre-compile phase so that the work space is not exceeded. */
+
+length = 2 + 2*LINK_SIZE + skipbytes;
+
+/* WARNING: If the above line is changed for any reason, you must also change
+the code that abstracts option settings at the start of the pattern and makes
+them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
+pre-compile phase to find out whether anything has yet been compiled or not. */
+
+/* If this is a capturing subpattern, add to the chain of open capturing items
+so that we can detect them if (*ACCEPT) is encountered. This is also used to
+detect groups that contain recursive back references to themselves. Note that
+only OP_CBRA need be tested here; changing this opcode to one of its variants,
+e.g. OP_SCBRAPOS, happens later, after the group has been compiled. */
+
+if (*code == OP_CBRA)
+ {
+ capnumber = GET2(code, 1 + LINK_SIZE);
+ capitem.number = capnumber;
+ capitem.next = cd->open_caps;
+ capitem.flag = FALSE;
+ cd->open_caps = &capitem;
+ }
+
+/* Offset is set zero to mark that this bracket is still open */
+
+PUT(code, 1, 0);
+code += 1 + LINK_SIZE + skipbytes;
+
+/* Loop for each alternative branch */
+
+orig_bracount = max_bracount = cd->bracount;
+for (;;)
+ {
+ /* For a (?| group, reset the capturing bracket count so that each branch
+ uses the same numbers. */
+
+ if (reset_bracount) cd->bracount = orig_bracount;
+
+ /* Set up dummy OP_REVERSE if lookbehind assertion */
+
+ if (lookbehind)
+ {
+ *code++ = OP_REVERSE;
+ reverse_count = code;
+ PUTINC(code, 0, 0);
+ length += 1 + LINK_SIZE;
+ }
+
+ /* Now compile the branch; in the pre-compile phase its length gets added
+ into the length. */
+
+ if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstchar,
+ &branchfirstcharflags, &branchreqchar, &branchreqcharflags, &bc,
+ cond_depth, cd, (lengthptr == NULL)? NULL : &length))
+ {
+ *ptrptr = ptr;
+ return FALSE;
+ }
+
+ /* Keep the highest bracket count in case (?| was used and some branch
+ has fewer than the rest. */
+
+ if (cd->bracount > max_bracount) max_bracount = cd->bracount;
+
+ /* In the real compile phase, there is some post-processing to be done. */
+
+ if (lengthptr == NULL)
+ {
+ /* If this is the first branch, the firstchar and reqchar values for the
+ branch become the values for the regex. */
+
+ if (*last_branch != OP_ALT)
+ {
+ firstchar = branchfirstchar;
+ firstcharflags = branchfirstcharflags;
+ reqchar = branchreqchar;
+ reqcharflags = branchreqcharflags;
+ }
+
+ /* If this is not the first branch, the first char and reqchar have to
+ match the values from all the previous branches, except that if the
+ previous value for reqchar didn't have REQ_VARY set, it can still match,
+ and we set REQ_VARY for the regex. */
+
+ else
+ {
+ /* If we previously had a firstchar, but it doesn't match the new branch,
+ we have to abandon the firstchar for the regex, but if there was
+ previously no reqchar, it takes on the value of the old firstchar. */
+
+ if (firstcharflags >= 0 &&
+ (firstcharflags != branchfirstcharflags || firstchar != branchfirstchar))
+ {
+ if (reqcharflags < 0)
+ {
+ reqchar = firstchar;
+ reqcharflags = firstcharflags;
+ }
+ firstcharflags = REQ_NONE;
+ }
+
+ /* If we (now or from before) have no firstchar, a firstchar from the
+ branch becomes a reqchar if there isn't a branch reqchar. */
+
+ if (firstcharflags < 0 && branchfirstcharflags >= 0 && branchreqcharflags < 0)
+ {
+ branchreqchar = branchfirstchar;
+ branchreqcharflags = branchfirstcharflags;
+ }
+
+ /* Now ensure that the reqchars match */
+
+ if (((reqcharflags & ~REQ_VARY) != (branchreqcharflags & ~REQ_VARY)) ||
+ reqchar != branchreqchar)
+ reqcharflags = REQ_NONE;
+ else
+ {
+ reqchar = branchreqchar;
+ reqcharflags |= branchreqcharflags; /* To "or" REQ_VARY */
+ }
+ }
+
+ /* If lookbehind, check that this branch matches a fixed-length string, and
+ put the length into the OP_REVERSE item. Temporarily mark the end of the
+ branch with OP_END. If the branch contains OP_RECURSE, the result is -3
+ because there may be forward references that we can't check here. Set a
+ flag to cause another lookbehind check at the end. Why not do it all at the
+ end? Because common, erroneous checks are picked up here and the offset of
+ the problem can be shown. */
+
+ if (lookbehind)
+ {
+ int fixed_length;
+ *code = OP_END;
+ fixed_length = find_fixedlength(last_branch, (options & PCRE_UTF8) != 0,
+ FALSE, cd);
+ DPRINTF(("fixed length = %d\n", fixed_length));
+ if (fixed_length == -3)
+ {
+ cd->check_lookbehind = TRUE;
+ }
+ else if (fixed_length < 0)
+ {
+ *errorcodeptr = (fixed_length == -2)? ERR36 :
+ (fixed_length == -4)? ERR70: ERR25;
+ *ptrptr = ptr;
+ return FALSE;
+ }
+ else
+ {
+ if (fixed_length > cd->max_lookbehind)
+ cd->max_lookbehind = fixed_length;
+ PUT(reverse_count, 0, fixed_length);
+ }
+ }
+ }
+
+ /* Reached end of expression, either ')' or end of pattern. In the real
+ compile phase, go back through the alternative branches and reverse the chain
+ of offsets, with the field in the BRA item now becoming an offset to the
+ first alternative. If there are no alternatives, it points to the end of the
+ group. The length in the terminating ket is always the length of the whole
+ bracketed item. Return leaving the pointer at the terminating char. */
+
+ if (*ptr != CHAR_VERTICAL_LINE)
+ {
+ if (lengthptr == NULL)
+ {
+ int branch_length = (int)(code - last_branch);
+ do
+ {
+ int prev_length = GET(last_branch, 1);
+ PUT(last_branch, 1, branch_length);
+ branch_length = prev_length;
+ last_branch -= branch_length;
+ }
+ while (branch_length > 0);
+ }
+
+ /* Fill in the ket */
+
+ *code = OP_KET;
+ PUT(code, 1, (int)(code - start_bracket));
+ code += 1 + LINK_SIZE;
+
+ /* If it was a capturing subpattern, check to see if it contained any
+ recursive back references. If so, we must wrap it in atomic brackets.
+ In any event, remove the block from the chain. */
+
+ if (capnumber > 0)
+ {
+ if (cd->open_caps->flag)
+ {
+ memmove(start_bracket + 1 + LINK_SIZE, start_bracket,
+ IN_UCHARS(code - start_bracket));
+ *start_bracket = OP_ONCE;
+ code += 1 + LINK_SIZE;
+ PUT(start_bracket, 1, (int)(code - start_bracket));
+ *code = OP_KET;
+ PUT(code, 1, (int)(code - start_bracket));
+ code += 1 + LINK_SIZE;
+ length += 2 + 2*LINK_SIZE;
+ }
+ cd->open_caps = cd->open_caps->next;
+ }
+
+ /* Retain the highest bracket number, in case resetting was used. */
+
+ cd->bracount = max_bracount;
+
+ /* Set values to pass back */
+
+ *codeptr = code;
+ *ptrptr = ptr;
+ *firstcharptr = firstchar;
+ *firstcharflagsptr = firstcharflags;
+ *reqcharptr = reqchar;
+ *reqcharflagsptr = reqcharflags;
+ if (lengthptr != NULL)
+ {
+ if (OFLOW_MAX - *lengthptr < length)
+ {
+ *errorcodeptr = ERR20;
+ return FALSE;
+ }
+ *lengthptr += length;
+ }
+ return TRUE;
+ }
+
+ /* Another branch follows. In the pre-compile phase, we can move the code
+ pointer back to where it was for the start of the first branch. (That is,
+ pretend that each branch is the only one.)
+
+ In the real compile phase, insert an ALT node. Its length field points back
+ to the previous branch while the bracket remains open. At the end the chain
+ is reversed. It's done like this so that the start of the bracket has a
+ zero offset until it is closed, making it possible to detect recursion. */
+
+ if (lengthptr != NULL)
+ {
+ code = *codeptr + 1 + LINK_SIZE + skipbytes;
+ length += 1 + LINK_SIZE;
+ }
+ else
+ {
+ *code = OP_ALT;
+ PUT(code, 1, (int)(code - last_branch));
+ bc.current_branch = last_branch = code;
+ code += 1 + LINK_SIZE;
+ }
+
+ ptr++;
+ }
+/* Control never reaches here */
+}
+
+
+
+
+/*************************************************
+* Check for anchored expression *
+*************************************************/
+
+/* Try to find out if this is an anchored regular expression. Consider each
+alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
+all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
+it's anchored. However, if this is a multiline pattern, then only OP_SOD will
+be found, because ^ generates OP_CIRCM in that mode.
+
+We can also consider a regex to be anchored if OP_SOM starts all its branches.
+This is the code for \G, which means "match at start of match position, taking
+into account the match offset".
+
+A branch is also implicitly anchored if it starts with .* and DOTALL is set,
+because that will try the rest of the pattern at all possible matching points,
+so there is no point trying again.... er ....
+
+.... except when the .* appears inside capturing parentheses, and there is a
+subsequent back reference to those parentheses. We haven't enough information
+to catch that case precisely.
+
+At first, the best we could do was to detect when .* was in capturing brackets
+and the highest back reference was greater than or equal to that level.
+However, by keeping a bitmap of the first 31 back references, we can catch some
+of the more common cases more precisely.
+
+... A second exception is when the .* appears inside an atomic group, because
+this prevents the number of characters it matches from being adjusted.
+
+Arguments:
+ code points to start of expression (the bracket)
+ bracket_map a bitmap of which brackets we are inside while testing; this
+ handles up to substring 31; after that we just have to take
+ the less precise approach
+ cd points to the compile data block
+ atomcount atomic group level
+
+Returns: TRUE or FALSE
+*/
+
+static BOOL
+is_anchored(register const pcre_uchar *code, unsigned int bracket_map,
+ compile_data *cd, int atomcount)
+{
+do {
+ const pcre_uchar *scode = first_significant_code(
+ code + PRIV(OP_lengths)[*code], FALSE);
+ register int op = *scode;
+
+ /* Non-capturing brackets */
+
+ if (op == OP_BRA || op == OP_BRAPOS ||
+ op == OP_SBRA || op == OP_SBRAPOS)
+ {
+ if (!is_anchored(scode, bracket_map, cd, atomcount)) return FALSE;
+ }
+
+ /* Capturing brackets */
+
+ else if (op == OP_CBRA || op == OP_CBRAPOS ||
+ op == OP_SCBRA || op == OP_SCBRAPOS)
+ {
+ int n = GET2(scode, 1+LINK_SIZE);
+ int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
+ if (!is_anchored(scode, new_map, cd, atomcount)) return FALSE;
+ }
+
+ /* Positive forward assertions and conditions */
+
+ else if (op == OP_ASSERT || op == OP_COND)
+ {
+ if (!is_anchored(scode, bracket_map, cd, atomcount)) return FALSE;
+ }
+
+ /* Atomic groups */
+
+ else if (op == OP_ONCE || op == OP_ONCE_NC)
+ {
+ if (!is_anchored(scode, bracket_map, cd, atomcount + 1))
+ return FALSE;
+ }
+
+ /* .* is not anchored unless DOTALL is set (which generates OP_ALLANY) and
+ it isn't in brackets that are or may be referenced or inside an atomic
+ group. */
+
+ else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR ||
+ op == OP_TYPEPOSSTAR))
+ {
+ if (scode[1] != OP_ALLANY || (bracket_map & cd->backref_map) != 0 ||
+ atomcount > 0 || cd->had_pruneorskip)
+ return FALSE;
+ }
+
+ /* Check for explicit anchoring */
+
+ else if (op != OP_SOD && op != OP_SOM && op != OP_CIRC) return FALSE;
+
+ code += GET(code, 1);
+ }
+while (*code == OP_ALT); /* Loop for each alternative */
+return TRUE;
+}
+
+
+
+/*************************************************
+* Check for starting with ^ or .* *
+*************************************************/
+
+/* This is called to find out if every branch starts with ^ or .* so that
+"first char" processing can be done to speed things up in multiline
+matching and for non-DOTALL patterns that start with .* (which must start at
+the beginning or after \n). As in the case of is_anchored() (see above), we
+have to take account of back references to capturing brackets that contain .*
+because in that case we can't make the assumption. Also, the appearance of .*
+inside atomic brackets or in a pattern that contains *PRUNE or *SKIP does not
+count, because once again the assumption no longer holds.
+
+Arguments:
+ code points to start of expression (the bracket)
+ bracket_map a bitmap of which brackets we are inside while testing; this
+ handles up to substring 31; after that we just have to take
+ the less precise approach
+ cd points to the compile data
+ atomcount atomic group level
+
+Returns: TRUE or FALSE
+*/
+
+static BOOL
+is_startline(const pcre_uchar *code, unsigned int bracket_map,
+ compile_data *cd, int atomcount)
+{
+do {
+ const pcre_uchar *scode = first_significant_code(
+ code + PRIV(OP_lengths)[*code], FALSE);
+ register int op = *scode;
+
+ /* If we are at the start of a conditional assertion group, *both* the
+ conditional assertion *and* what follows the condition must satisfy the test
+ for start of line. Other kinds of condition fail. Note that there may be an
+ auto-callout at the start of a condition. */
+
+ if (op == OP_COND)
+ {
+ scode += 1 + LINK_SIZE;
+ if (*scode == OP_CALLOUT) scode += PRIV(OP_lengths)[OP_CALLOUT];
+ switch (*scode)
+ {
+ case OP_CREF:
+ case OP_NCREF:
+ case OP_RREF:
+ case OP_NRREF:
+ case OP_DEF:
+ return FALSE;
+
+ default: /* Assertion */
+ if (!is_startline(scode, bracket_map, cd, atomcount)) return FALSE;
+ do scode += GET(scode, 1); while (*scode == OP_ALT);
+ scode += 1 + LINK_SIZE;
+ break;
+ }
+ scode = first_significant_code(scode, FALSE);
+ op = *scode;
+ }
+
+ /* Non-capturing brackets */
+
+ if (op == OP_BRA || op == OP_BRAPOS ||
+ op == OP_SBRA || op == OP_SBRAPOS)
+ {
+ if (!is_startline(scode, bracket_map, cd, atomcount)) return FALSE;
+ }
+
+ /* Capturing brackets */
+
+ else if (op == OP_CBRA || op == OP_CBRAPOS ||
+ op == OP_SCBRA || op == OP_SCBRAPOS)
+ {
+ int n = GET2(scode, 1+LINK_SIZE);
+ int new_map = bracket_map | ((n < 32)? (1 << n) : 1);
+ if (!is_startline(scode, new_map, cd, atomcount)) return FALSE;
+ }
+
+ /* Positive forward assertions */
+
+ else if (op == OP_ASSERT)
+ {
+ if (!is_startline(scode, bracket_map, cd, atomcount)) return FALSE;
+ }
+
+ /* Atomic brackets */
+
+ else if (op == OP_ONCE || op == OP_ONCE_NC)
+ {
+ if (!is_startline(scode, bracket_map, cd, atomcount + 1)) return FALSE;
+ }
+
+ /* .* means "start at start or after \n" if it isn't in atomic brackets or
+ brackets that may be referenced, as long as the pattern does not contain
+ *PRUNE or *SKIP, because these break the feature. Consider, for example,
+ /.*?a(*PRUNE)b/ with the subject "aab", which matches "ab", i.e. not at the
+ start of a line. */
+
+ else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR)
+ {
+ if (scode[1] != OP_ANY || (bracket_map & cd->backref_map) != 0 ||
+ atomcount > 0 || cd->had_pruneorskip)
+ return FALSE;
+ }
+
+ /* Check for explicit circumflex; anything else gives a FALSE result. Note
+ in particular that this includes atomic brackets OP_ONCE and OP_ONCE_NC
+ because the number of characters matched by .* cannot be adjusted inside
+ them. */
+
+ else if (op != OP_CIRC && op != OP_CIRCM) return FALSE;
+
+ /* Move on to the next alternative */
+
+ code += GET(code, 1);
+ }
+while (*code == OP_ALT); /* Loop for each alternative */
+return TRUE;
+}
+
+
+
+/*************************************************
+* Check for asserted fixed first char *
+*************************************************/
+
+/* During compilation, the "first char" settings from forward assertions are
+discarded, because they can cause conflicts with actual literals that follow.
+However, if we end up without a first char setting for an unanchored pattern,
+it is worth scanning the regex to see if there is an initial asserted first
+char. If all branches start with the same asserted char, or with a bracket all
+of whose alternatives start with the same asserted char (recurse ad lib), then
+we return that char, otherwise -1.
+
+Arguments:
+ code points to start of expression (the bracket)
+ flags points to the first char flags, or to REQ_NONE
+ inassert TRUE if in an assertion
+
+Returns: the fixed first char, or 0 with REQ_NONE in flags
+*/
+
+static pcre_uint32
+find_firstassertedchar(const pcre_uchar *code, pcre_int32 *flags,
+ BOOL inassert)
+{
+register pcre_uint32 c = 0;
+int cflags = REQ_NONE;
+
+*flags = REQ_NONE;
+do {
+ pcre_uint32 d;
+ int dflags;
+ int xl = (*code == OP_CBRA || *code == OP_SCBRA ||
+ *code == OP_CBRAPOS || *code == OP_SCBRAPOS)? IMM2_SIZE:0;
+ const pcre_uchar *scode = first_significant_code(code + 1+LINK_SIZE + xl,
+ TRUE);
+ register pcre_uchar op = *scode;
+
+ switch(op)
+ {
+ default:
+ return 0;
+
+ case OP_BRA:
+ case OP_BRAPOS:
+ case OP_CBRA:
+ case OP_SCBRA:
+ case OP_CBRAPOS:
+ case OP_SCBRAPOS:
+ case OP_ASSERT:
+ case OP_ONCE:
+ case OP_ONCE_NC:
+ case OP_COND:
+ d = find_firstassertedchar(scode, &dflags, op == OP_ASSERT);
+ if (dflags < 0)
+ return 0;
+ if (cflags < 0) { c = d; cflags = dflags; } else if (c != d || cflags != dflags) return 0;
+ break;
+
+ case OP_EXACT:
+ scode += IMM2_SIZE;
+ /* Fall through */
+
+ case OP_CHAR:
+ case OP_PLUS:
+ case OP_MINPLUS:
+ case OP_POSPLUS:
+ if (!inassert) return 0;
+ if (cflags < 0) { c = scode[1]; cflags = 0; }
+ else if (c != scode[1]) return 0;
+ break;
+
+ case OP_EXACTI:
+ scode += IMM2_SIZE;
+ /* Fall through */
+
+ case OP_CHARI:
+ case OP_PLUSI:
+ case OP_MINPLUSI:
+ case OP_POSPLUSI:
+ if (!inassert) return 0;
+ if (cflags < 0) { c = scode[1]; cflags = REQ_CASELESS; }
+ else if (c != scode[1]) return 0;
+ break;
+ }
+
+ code += GET(code, 1);
+ }
+while (*code == OP_ALT);
+
+*flags = cflags;
+return c;
+}
+
+
+
+/*************************************************
+* Compile a Regular Expression *
+*************************************************/
+
+/* This function takes a string and returns a pointer to a block of store
+holding a compiled version of the expression. The original API for this
+function had no error code return variable; it is retained for backwards
+compatibility. The new function is given a new name.
+
+Arguments:
+ pattern the regular expression
+ options various option bits
+ errorcodeptr pointer to error code variable (pcre_compile2() only)
+ can be NULL if you don't want a code value
+ errorptr pointer to pointer to error text
+ erroroffset ptr offset in pattern where error was detected
+ tables pointer to character tables or NULL
+
+Returns: pointer to compiled data block, or NULL on error,
+ with errorptr and erroroffset set
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION
+pcre_compile(const char *pattern, int options, const char **errorptr,
+ int *erroroffset, const unsigned char *tables)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN pcre16 * PCRE_CALL_CONVENTION
+pcre16_compile(PCRE_SPTR16 pattern, int options, const char **errorptr,
+ int *erroroffset, const unsigned char *tables)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN pcre32 * PCRE_CALL_CONVENTION
+pcre32_compile(PCRE_SPTR32 pattern, int options, const char **errorptr,
+ int *erroroffset, const unsigned char *tables)
+#endif
+{
+#if defined COMPILE_PCRE8
+return pcre_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
+#elif defined COMPILE_PCRE16
+return pcre16_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
+#elif defined COMPILE_PCRE32
+return pcre32_compile2(pattern, options, NULL, errorptr, erroroffset, tables);
+#endif
+}
+
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN pcre * PCRE_CALL_CONVENTION
+pcre_compile2(const char *pattern, int options, int *errorcodeptr,
+ const char **errorptr, int *erroroffset, const unsigned char *tables)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN pcre16 * PCRE_CALL_CONVENTION
+pcre16_compile2(PCRE_SPTR16 pattern, int options, int *errorcodeptr,
+ const char **errorptr, int *erroroffset, const unsigned char *tables)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN pcre32 * PCRE_CALL_CONVENTION
+pcre32_compile2(PCRE_SPTR32 pattern, int options, int *errorcodeptr,
+ const char **errorptr, int *erroroffset, const unsigned char *tables)
+#endif
+{
+REAL_PCRE *re;
+int length = 1; /* For final END opcode */
+pcre_int32 firstcharflags, reqcharflags;
+pcre_uint32 firstchar, reqchar;
+pcre_uint32 limit_match = PCRE_UINT32_MAX;
+pcre_uint32 limit_recursion = PCRE_UINT32_MAX;
+int newline;
+int errorcode = 0;
+int skipatstart = 0;
+BOOL utf;
+BOOL never_utf = FALSE;
+size_t size;
+pcre_uchar *code;
+const pcre_uchar *codestart;
+const pcre_uchar *ptr;
+compile_data compile_block;
+compile_data *cd = &compile_block;
+
+/* This space is used for "compiling" into during the first phase, when we are
+computing the amount of memory that is needed. Compiled items are thrown away
+as soon as possible, so that a fairly large buffer should be sufficient for
+this purpose. The same space is used in the second phase for remembering where
+to fill in forward references to subpatterns. That may overflow, in which case
+new memory is obtained from malloc(). */
+
+pcre_uchar cworkspace[COMPILE_WORK_SIZE];
+
+/* Set this early so that early errors get offset 0. */
+
+ptr = (const pcre_uchar *)pattern;
+
+/* We can't pass back an error message if errorptr is NULL; I guess the best we
+can do is just return NULL, but we can set a code value if there is a code
+pointer. */
+
+if (errorptr == NULL)
+ {
+ if (errorcodeptr != NULL) *errorcodeptr = 99;
+ return NULL;
+ }
+
+*errorptr = NULL;
+if (errorcodeptr != NULL) *errorcodeptr = ERR0;
+
+/* However, we can give a message for this error */
+
+if (erroroffset == NULL)
+ {
+ errorcode = ERR16;
+ goto PCRE_EARLY_ERROR_RETURN2;
+ }
+
+*erroroffset = 0;
+
+/* Set up pointers to the individual character tables */
+
+if (tables == NULL) tables = PRIV(default_tables);
+cd->lcc = tables + lcc_offset;
+cd->fcc = tables + fcc_offset;
+cd->cbits = tables + cbits_offset;
+cd->ctypes = tables + ctypes_offset;
+
+/* Check that all undefined public option bits are zero */
+
+if ((options & ~PUBLIC_COMPILE_OPTIONS) != 0)
+ {
+ errorcode = ERR17;
+ goto PCRE_EARLY_ERROR_RETURN;
+ }
+
+/* If PCRE_NEVER_UTF is set, remember it. */
+
+if ((options & PCRE_NEVER_UTF) != 0) never_utf = TRUE;
+
+/* Check for global one-time settings at the start of the pattern, and remember
+the offset for later. */
+
+cd->external_flags = 0; /* Initialize here for LIMIT_MATCH/RECURSION */
+
+while (ptr[skipatstart] == CHAR_LEFT_PARENTHESIS &&
+ ptr[skipatstart+1] == CHAR_ASTERISK)
+ {
+ int newnl = 0;
+ int newbsr = 0;
+
+/* For completeness and backward compatibility, (*UTFn) is supported in the
+relevant libraries, but (*UTF) is generic and always supported. Note that
+PCRE_UTF8 == PCRE_UTF16 == PCRE_UTF32. */
+
+#ifdef COMPILE_PCRE8
+ if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UTF8_RIGHTPAR, 5) == 0)
+ { skipatstart += 7; options |= PCRE_UTF8; continue; }
+#endif
+#ifdef COMPILE_PCRE16
+ if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UTF16_RIGHTPAR, 6) == 0)
+ { skipatstart += 8; options |= PCRE_UTF16; continue; }
+#endif
+#ifdef COMPILE_PCRE32
+ if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UTF32_RIGHTPAR, 6) == 0)
+ { skipatstart += 8; options |= PCRE_UTF32; continue; }
+#endif
+
+ else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UTF_RIGHTPAR, 4) == 0)
+ { skipatstart += 6; options |= PCRE_UTF8; continue; }
+ else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_UCP_RIGHTPAR, 4) == 0)
+ { skipatstart += 6; options |= PCRE_UCP; continue; }
+ else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_NO_START_OPT_RIGHTPAR, 13) == 0)
+ { skipatstart += 15; options |= PCRE_NO_START_OPTIMIZE; continue; }
+
+ else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_LIMIT_MATCH_EQ, 12) == 0)
+ {
+ pcre_uint32 c = 0;
+ int p = skipatstart + 14;
+ while (isdigit(ptr[p]))
+ {
+ if (c > PCRE_UINT32_MAX / 10 - 1) break; /* Integer overflow */
+ c = c*10 + ptr[p++] - CHAR_0;
+ }
+ if (ptr[p++] != CHAR_RIGHT_PARENTHESIS) break;
+ if (c < limit_match)
+ {
+ limit_match = c;
+ cd->external_flags |= PCRE_MLSET;
+ }
+ skipatstart = p;
+ continue;
+ }
+
+ else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_LIMIT_RECURSION_EQ, 16) == 0)
+ {
+ pcre_uint32 c = 0;
+ int p = skipatstart + 18;
+ while (isdigit(ptr[p]))
+ {
+ if (c > PCRE_UINT32_MAX / 10 - 1) break; /* Integer overflow check */
+ c = c*10 + ptr[p++] - CHAR_0;
+ }
+ if (ptr[p++] != CHAR_RIGHT_PARENTHESIS) break;
+ if (c < limit_recursion)
+ {
+ limit_recursion = c;
+ cd->external_flags |= PCRE_RLSET;
+ }
+ skipatstart = p;
+ continue;
+ }
+
+ if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_CR_RIGHTPAR, 3) == 0)
+ { skipatstart += 5; newnl = PCRE_NEWLINE_CR; }
+ else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_LF_RIGHTPAR, 3) == 0)
+ { skipatstart += 5; newnl = PCRE_NEWLINE_LF; }
+ else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_CRLF_RIGHTPAR, 5) == 0)
+ { skipatstart += 7; newnl = PCRE_NEWLINE_CR + PCRE_NEWLINE_LF; }
+ else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_ANY_RIGHTPAR, 4) == 0)
+ { skipatstart += 6; newnl = PCRE_NEWLINE_ANY; }
+ else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_ANYCRLF_RIGHTPAR, 8) == 0)
+ { skipatstart += 10; newnl = PCRE_NEWLINE_ANYCRLF; }
+
+ else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_BSR_ANYCRLF_RIGHTPAR, 12) == 0)
+ { skipatstart += 14; newbsr = PCRE_BSR_ANYCRLF; }
+ else if (STRNCMP_UC_C8(ptr+skipatstart+2, STRING_BSR_UNICODE_RIGHTPAR, 12) == 0)
+ { skipatstart += 14; newbsr = PCRE_BSR_UNICODE; }
+
+ if (newnl != 0)
+ options = (options & ~PCRE_NEWLINE_BITS) | newnl;
+ else if (newbsr != 0)
+ options = (options & ~(PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) | newbsr;
+ else break;
+ }
+
+/* PCRE_UTF(16|32) have the same value as PCRE_UTF8. */
+utf = (options & PCRE_UTF8) != 0;
+if (utf && never_utf)
+ {
+ errorcode = ERR78;
+ goto PCRE_EARLY_ERROR_RETURN2;
+ }
+
+/* Can't support UTF unless PCRE has been compiled to include the code. The
+return of an error code from PRIV(valid_utf)() is a new feature, introduced in
+release 8.13. It is passed back from pcre_[dfa_]exec(), but at the moment is
+not used here. */
+
+#ifdef SUPPORT_UTF
+if (utf && (options & PCRE_NO_UTF8_CHECK) == 0 &&
+ (errorcode = PRIV(valid_utf)((PCRE_PUCHAR)pattern, -1, erroroffset)) != 0)
+ {
+#if defined COMPILE_PCRE8
+ errorcode = ERR44;
+#elif defined COMPILE_PCRE16
+ errorcode = ERR74;
+#elif defined COMPILE_PCRE32
+ errorcode = ERR77;
+#endif
+ goto PCRE_EARLY_ERROR_RETURN2;
+ }
+#else
+if (utf)
+ {
+ errorcode = ERR32;
+ goto PCRE_EARLY_ERROR_RETURN;
+ }
+#endif
+
+/* Can't support UCP unless PCRE has been compiled to include the code. */
+
+#ifndef SUPPORT_UCP
+if ((options & PCRE_UCP) != 0)
+ {
+ errorcode = ERR67;
+ goto PCRE_EARLY_ERROR_RETURN;
+ }
+#endif
+
+/* Check validity of \R options. */
+
+if ((options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) ==
+ (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE))
+ {
+ errorcode = ERR56;
+ goto PCRE_EARLY_ERROR_RETURN;
+ }
+
+/* Handle different types of newline. The three bits give seven cases. The
+current code allows for fixed one- or two-byte sequences, plus "any" and
+"anycrlf". */
+
+switch (options & PCRE_NEWLINE_BITS)
+ {
+ case 0: newline = NEWLINE; break; /* Build-time default */
+ case PCRE_NEWLINE_CR: newline = CHAR_CR; break;
+ case PCRE_NEWLINE_LF: newline = CHAR_NL; break;
+ case PCRE_NEWLINE_CR+
+ PCRE_NEWLINE_LF: newline = (CHAR_CR << 8) | CHAR_NL; break;
+ case PCRE_NEWLINE_ANY: newline = -1; break;
+ case PCRE_NEWLINE_ANYCRLF: newline = -2; break;
+ default: errorcode = ERR56; goto PCRE_EARLY_ERROR_RETURN;
+ }
+
+if (newline == -2)
+ {
+ cd->nltype = NLTYPE_ANYCRLF;
+ }
+else if (newline < 0)
+ {
+ cd->nltype = NLTYPE_ANY;
+ }
+else
+ {
+ cd->nltype = NLTYPE_FIXED;
+ if (newline > 255)
+ {
+ cd->nllen = 2;
+ cd->nl[0] = (newline >> 8) & 255;
+ cd->nl[1] = newline & 255;
+ }
+ else
+ {
+ cd->nllen = 1;
+ cd->nl[0] = newline;
+ }
+ }
+
+/* Maximum back reference and backref bitmap. The bitmap records up to 31 back
+references to help in deciding whether (.*) can be treated as anchored or not.
+*/
+
+cd->top_backref = 0;
+cd->backref_map = 0;
+
+/* Reflect pattern for debugging output */
+
+DPRINTF(("------------------------------------------------------------------\n"));
+#ifdef PCRE_DEBUG
+print_puchar(stdout, (PCRE_PUCHAR)pattern);
+#endif
+DPRINTF(("\n"));
+
+/* Pretend to compile the pattern while actually just accumulating the length
+of memory required. This behaviour is triggered by passing a non-NULL final
+argument to compile_regex(). We pass a block of workspace (cworkspace) for it
+to compile parts of the pattern into; the compiled code is discarded when it is
+no longer needed, so hopefully this workspace will never overflow, though there
+is a test for its doing so. */
+
+cd->bracount = cd->final_bracount = 0;
+cd->names_found = 0;
+cd->name_entry_size = 0;
+cd->name_table = NULL;
+cd->start_code = cworkspace;
+cd->hwm = cworkspace;
+cd->start_workspace = cworkspace;
+cd->workspace_size = COMPILE_WORK_SIZE;
+cd->start_pattern = (const pcre_uchar *)pattern;
+cd->end_pattern = (const pcre_uchar *)(pattern + STRLEN_UC((const pcre_uchar *)pattern));
+cd->req_varyopt = 0;
+cd->assert_depth = 0;
+cd->max_lookbehind = 0;
+cd->external_options = options;
+cd->open_caps = NULL;
+
+/* Now do the pre-compile. On error, errorcode will be set non-zero, so we
+don't need to look at the result of the function here. The initial options have
+been put into the cd block so that they can be changed if an option setting is
+found within the regex right at the beginning. Bringing initial option settings
+outside can help speed up starting point checks. */
+
+ptr += skipatstart;
+code = cworkspace;
+*code = OP_BRA;
+(void)compile_regex(cd->external_options, &code, &ptr, &errorcode, FALSE,
+ FALSE, 0, 0, &firstchar, &firstcharflags, &reqchar, &reqcharflags, NULL,
+ cd, &length);
+if (errorcode != 0) goto PCRE_EARLY_ERROR_RETURN;
+
+DPRINTF(("end pre-compile: length=%d workspace=%d\n", length,
+ (int)(cd->hwm - cworkspace)));
+
+if (length > MAX_PATTERN_SIZE)
+ {
+ errorcode = ERR20;
+ goto PCRE_EARLY_ERROR_RETURN;
+ }
+
+/* Compute the size of data block needed and get it, either from malloc or
+externally provided function. Integer overflow should no longer be possible
+because nowadays we limit the maximum value of cd->names_found and
+cd->name_entry_size. */
+
+size = sizeof(REAL_PCRE) + (length + cd->names_found * cd->name_entry_size) * sizeof(pcre_uchar);
+re = (REAL_PCRE *)(PUBL(malloc))(size);
+
+if (re == NULL)
+ {
+ errorcode = ERR21;
+ goto PCRE_EARLY_ERROR_RETURN;
+ }
+
+/* Put in the magic number, and save the sizes, initial options, internal
+flags, and character table pointer. NULL is used for the default character
+tables. The nullpad field is at the end; it's there to help in the case when a
+regex compiled on a system with 4-byte pointers is run on another with 8-byte
+pointers. */
+
+re->magic_number = MAGIC_NUMBER;
+re->size = (int)size;
+re->options = cd->external_options;
+re->flags = cd->external_flags;
+re->limit_match = limit_match;
+re->limit_recursion = limit_recursion;
+re->first_char = 0;
+re->req_char = 0;
+re->name_table_offset = sizeof(REAL_PCRE) / sizeof(pcre_uchar);
+re->name_entry_size = cd->name_entry_size;
+re->name_count = cd->names_found;
+re->ref_count = 0;
+re->tables = (tables == PRIV(default_tables))? NULL : tables;
+re->nullpad = NULL;
+#ifdef COMPILE_PCRE32
+re->dummy = 0;
+#else
+re->dummy1 = re->dummy2 = re->dummy3 = 0;
+#endif
+
+/* The starting points of the name/number translation table and of the code are
+passed around in the compile data block. The start/end pattern and initial
+options are already set from the pre-compile phase, as is the name_entry_size
+field. Reset the bracket count and the names_found field. Also reset the hwm
+field; this time it's used for remembering forward references to subpatterns.
+*/
+
+cd->final_bracount = cd->bracount; /* Save for checking forward references */
+cd->assert_depth = 0;
+cd->bracount = 0;
+cd->max_lookbehind = 0;
+cd->names_found = 0;
+cd->name_table = (pcre_uchar *)re + re->name_table_offset;
+codestart = cd->name_table + re->name_entry_size * re->name_count;
+cd->start_code = codestart;
+cd->hwm = (pcre_uchar *)(cd->start_workspace);
+cd->req_varyopt = 0;
+cd->had_accept = FALSE;
+cd->had_pruneorskip = FALSE;
+cd->check_lookbehind = FALSE;
+cd->open_caps = NULL;
+
+/* Set up a starting, non-extracting bracket, then compile the expression. On
+error, errorcode will be set non-zero, so we don't need to look at the result
+of the function here. */
+
+ptr = (const pcre_uchar *)pattern + skipatstart;
+code = (pcre_uchar *)codestart;
+*code = OP_BRA;
+(void)compile_regex(re->options, &code, &ptr, &errorcode, FALSE, FALSE, 0, 0,
+ &firstchar, &firstcharflags, &reqchar, &reqcharflags, NULL, cd, NULL);
+re->top_bracket = cd->bracount;
+re->top_backref = cd->top_backref;
+re->max_lookbehind = cd->max_lookbehind;
+re->flags = cd->external_flags | PCRE_MODE;
+
+if (cd->had_accept)
+ {
+ reqchar = 0; /* Must disable after (*ACCEPT) */
+ reqcharflags = REQ_NONE;
+ }
+
+/* If not reached end of pattern on success, there's an excess bracket. */
+
+if (errorcode == 0 && *ptr != CHAR_NULL) errorcode = ERR22;
+
+/* Fill in the terminating state and check for disastrous overflow, but
+if debugging, leave the test till after things are printed out. */
+
+*code++ = OP_END;
+
+#ifndef PCRE_DEBUG
+if (code - codestart > length) errorcode = ERR23;
+#endif
+
+#ifdef SUPPORT_VALGRIND
+/* If the estimated length exceeds the really used length, mark the extra
+allocated memory as unaddressable, so that any out-of-bound reads can be
+detected. */
+VALGRIND_MAKE_MEM_NOACCESS(code, (length - (code - codestart)) * sizeof(pcre_uchar));
+#endif
+
+/* Fill in any forward references that are required. There may be repeated
+references; optimize for them, as searching a large regex takes time. */
+
+if (cd->hwm > cd->start_workspace)
+ {
+ int prev_recno = -1;
+ const pcre_uchar *groupptr = NULL;
+ while (errorcode == 0 && cd->hwm > cd->start_workspace)
+ {
+ int offset, recno;
+ cd->hwm -= LINK_SIZE;
+ offset = GET(cd->hwm, 0);
+ recno = GET(codestart, offset);
+ if (recno != prev_recno)
+ {
+ groupptr = PRIV(find_bracket)(codestart, utf, recno);
+ prev_recno = recno;
+ }
+ if (groupptr == NULL) errorcode = ERR53;
+ else PUT(((pcre_uchar *)codestart), offset, (int)(groupptr - codestart));
+ }
+ }
+
+/* If the workspace had to be expanded, free the new memory. */
+
+if (cd->workspace_size > COMPILE_WORK_SIZE)
+ (PUBL(free))((void *)cd->start_workspace);
+
+/* Give an error if there's back reference to a non-existent capturing
+subpattern. */
+
+if (errorcode == 0 && re->top_backref > re->top_bracket) errorcode = ERR15;
+
+/* If there were any lookbehind assertions that contained OP_RECURSE
+(recursions or subroutine calls), a flag is set for them to be checked here,
+because they may contain forward references. Actual recursions cannot be fixed
+length, but subroutine calls can. It is done like this so that those without
+OP_RECURSE that are not fixed length get a diagnosic with a useful offset. The
+exceptional ones forgo this. We scan the pattern to check that they are fixed
+length, and set their lengths. */
+
+if (cd->check_lookbehind)
+ {
+ pcre_uchar *cc = (pcre_uchar *)codestart;
+
+ /* Loop, searching for OP_REVERSE items, and process those that do not have
+ their length set. (Actually, it will also re-process any that have a length
+ of zero, but that is a pathological case, and it does no harm.) When we find
+ one, we temporarily terminate the branch it is in while we scan it. */
+
+ for (cc = (pcre_uchar *)PRIV(find_bracket)(codestart, utf, -1);
+ cc != NULL;
+ cc = (pcre_uchar *)PRIV(find_bracket)(cc, utf, -1))
+ {
+ if (GET(cc, 1) == 0)
+ {
+ int fixed_length;
+ pcre_uchar *be = cc - 1 - LINK_SIZE + GET(cc, -LINK_SIZE);
+ int end_op = *be;
+ *be = OP_END;
+ fixed_length = find_fixedlength(cc, (re->options & PCRE_UTF8) != 0, TRUE,
+ cd);
+ *be = end_op;
+ DPRINTF(("fixed length = %d\n", fixed_length));
+ if (fixed_length < 0)
+ {
+ errorcode = (fixed_length == -2)? ERR36 :
+ (fixed_length == -4)? ERR70 : ERR25;
+ break;
+ }
+ if (fixed_length > cd->max_lookbehind) cd->max_lookbehind = fixed_length;
+ PUT(cc, 1, fixed_length);
+ }
+ cc += 1 + LINK_SIZE;
+ }
+ }
+
+/* Failed to compile, or error while post-processing */
+
+if (errorcode != 0)
+ {
+ (PUBL(free))(re);
+ PCRE_EARLY_ERROR_RETURN:
+ *erroroffset = (int)(ptr - (const pcre_uchar *)pattern);
+ PCRE_EARLY_ERROR_RETURN2:
+ *errorptr = find_error_text(errorcode);
+ if (errorcodeptr != NULL) *errorcodeptr = errorcode;
+ return NULL;
+ }
+
+/* If the anchored option was not passed, set the flag if we can determine that
+the pattern is anchored by virtue of ^ characters or \A or anything else, such
+as starting with non-atomic .* when DOTALL is set and there are no occurrences
+of *PRUNE or *SKIP.
+
+Otherwise, if we know what the first byte has to be, save it, because that
+speeds up unanchored matches no end. If not, see if we can set the
+PCRE_STARTLINE flag. This is helpful for multiline matches when all branches
+start with ^. and also when all branches start with non-atomic .* for
+non-DOTALL matches when *PRUNE and SKIP are not present. */
+
+if ((re->options & PCRE_ANCHORED) == 0)
+ {
+ if (is_anchored(codestart, 0, cd, 0)) re->options |= PCRE_ANCHORED;
+ else
+ {
+ if (firstcharflags < 0)
+ firstchar = find_firstassertedchar(codestart, &firstcharflags, FALSE);
+ if (firstcharflags >= 0) /* Remove caseless flag for non-caseable chars */
+ {
+#if defined COMPILE_PCRE8
+ re->first_char = firstchar & 0xff;
+#elif defined COMPILE_PCRE16
+ re->first_char = firstchar & 0xffff;
+#elif defined COMPILE_PCRE32
+ re->first_char = firstchar;
+#endif
+ if ((firstcharflags & REQ_CASELESS) != 0)
+ {
+#if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
+ /* We ignore non-ASCII first chars in 8 bit mode. */
+ if (utf)
+ {
+ if (re->first_char < 128)
+ {
+ if (cd->fcc[re->first_char] != re->first_char)
+ re->flags |= PCRE_FCH_CASELESS;
+ }
+ else if (UCD_OTHERCASE(re->first_char) != re->first_char)
+ re->flags |= PCRE_FCH_CASELESS;
+ }
+ else
+#endif
+ if (MAX_255(re->first_char)
+ && cd->fcc[re->first_char] != re->first_char)
+ re->flags |= PCRE_FCH_CASELESS;
+ }
+
+ re->flags |= PCRE_FIRSTSET;
+ }
+
+ else if (is_startline(codestart, 0, cd, 0)) re->flags |= PCRE_STARTLINE;
+ }
+ }
+
+/* For an anchored pattern, we use the "required byte" only if it follows a
+variable length item in the regex. Remove the caseless flag for non-caseable
+bytes. */
+
+if (reqcharflags >= 0 &&
+ ((re->options & PCRE_ANCHORED) == 0 || (reqcharflags & REQ_VARY) != 0))
+ {
+#if defined COMPILE_PCRE8
+ re->req_char = reqchar & 0xff;
+#elif defined COMPILE_PCRE16
+ re->req_char = reqchar & 0xffff;
+#elif defined COMPILE_PCRE32
+ re->req_char = reqchar;
+#endif
+ if ((reqcharflags & REQ_CASELESS) != 0)
+ {
+#if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
+ /* We ignore non-ASCII first chars in 8 bit mode. */
+ if (utf)
+ {
+ if (re->req_char < 128)
+ {
+ if (cd->fcc[re->req_char] != re->req_char)
+ re->flags |= PCRE_RCH_CASELESS;
+ }
+ else if (UCD_OTHERCASE(re->req_char) != re->req_char)
+ re->flags |= PCRE_RCH_CASELESS;
+ }
+ else
+#endif
+ if (MAX_255(re->req_char) && cd->fcc[re->req_char] != re->req_char)
+ re->flags |= PCRE_RCH_CASELESS;
+ }
+
+ re->flags |= PCRE_REQCHSET;
+ }
+
+/* Print out the compiled data if debugging is enabled. This is never the
+case when building a production library. */
+
+#ifdef PCRE_DEBUG
+printf("Length = %d top_bracket = %d top_backref = %d\n",
+ length, re->top_bracket, re->top_backref);
+
+printf("Options=%08x\n", re->options);
+
+if ((re->flags & PCRE_FIRSTSET) != 0)
+ {
+ pcre_uchar ch = re->first_char;
+ const char *caseless =
+ ((re->flags & PCRE_FCH_CASELESS) == 0)? "" : " (caseless)";
+ if (PRINTABLE(ch)) printf("First char = %c%s\n", ch, caseless);
+ else printf("First char = \\x%02x%s\n", ch, caseless);
+ }
+
+if ((re->flags & PCRE_REQCHSET) != 0)
+ {
+ pcre_uchar ch = re->req_char;
+ const char *caseless =
+ ((re->flags & PCRE_RCH_CASELESS) == 0)? "" : " (caseless)";
+ if (PRINTABLE(ch)) printf("Req char = %c%s\n", ch, caseless);
+ else printf("Req char = \\x%02x%s\n", ch, caseless);
+ }
+
+#if defined COMPILE_PCRE8
+pcre_printint((pcre *)re, stdout, TRUE);
+#elif defined COMPILE_PCRE16
+pcre16_printint((pcre *)re, stdout, TRUE);
+#elif defined COMPILE_PCRE32
+pcre32_printint((pcre *)re, stdout, TRUE);
+#endif
+
+/* This check is done here in the debugging case so that the code that
+was compiled can be seen. */
+
+if (code - codestart > length)
+ {
+ (PUBL(free))(re);
+ *errorptr = find_error_text(ERR23);
+ *erroroffset = ptr - (pcre_uchar *)pattern;
+ if (errorcodeptr != NULL) *errorcodeptr = ERR23;
+ return NULL;
+ }
+#endif /* PCRE_DEBUG */
+
+#if defined COMPILE_PCRE8
+return (pcre *)re;
+#elif defined COMPILE_PCRE16
+return (pcre16 *)re;
+#elif defined COMPILE_PCRE32
+return (pcre32 *)re;
+#endif
+}
+
+/* End of pcre_compile.c */
diff --git a/pcre/pcre_config.c b/pcre/pcre_config.c
new file mode 100644
index 00000000000..3d5689f62c3
--- /dev/null
+++ b/pcre/pcre_config.c
@@ -0,0 +1,186 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains the external function pcre_config(). */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+/* Keep the original link size. */
+static int real_link_size = LINK_SIZE;
+
+#include "pcre_internal.h"
+
+
+/*************************************************
+* Return info about what features are configured *
+*************************************************/
+
+/* This function has an extensible interface so that additional items can be
+added compatibly.
+
+Arguments:
+ what what information is required
+ where where to put the information
+
+Returns: 0 if data returned, negative on error
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_config(int what, void *where)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_config(int what, void *where)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_config(int what, void *where)
+#endif
+{
+switch (what)
+ {
+ case PCRE_CONFIG_UTF8:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ *((int *)where) = 0;
+ return PCRE_ERROR_BADOPTION;
+#else
+#if defined SUPPORT_UTF
+ *((int *)where) = 1;
+#else
+ *((int *)where) = 0;
+#endif
+ break;
+#endif
+
+ case PCRE_CONFIG_UTF16:
+#if defined COMPILE_PCRE8 || defined COMPILE_PCRE32
+ *((int *)where) = 0;
+ return PCRE_ERROR_BADOPTION;
+#else
+#if defined SUPPORT_UTF
+ *((int *)where) = 1;
+#else
+ *((int *)where) = 0;
+#endif
+ break;
+#endif
+
+ case PCRE_CONFIG_UTF32:
+#if defined COMPILE_PCRE8 || defined COMPILE_PCRE16
+ *((int *)where) = 0;
+ return PCRE_ERROR_BADOPTION;
+#else
+#if defined SUPPORT_UTF
+ *((int *)where) = 1;
+#else
+ *((int *)where) = 0;
+#endif
+ break;
+#endif
+
+ case PCRE_CONFIG_UNICODE_PROPERTIES:
+#ifdef SUPPORT_UCP
+ *((int *)where) = 1;
+#else
+ *((int *)where) = 0;
+#endif
+ break;
+
+ case PCRE_CONFIG_JIT:
+#ifdef SUPPORT_JIT
+ *((int *)where) = 1;
+#else
+ *((int *)where) = 0;
+#endif
+ break;
+
+ case PCRE_CONFIG_JITTARGET:
+#ifdef SUPPORT_JIT
+ *((const char **)where) = PRIV(jit_get_target)();
+#else
+ *((const char **)where) = NULL;
+#endif
+ break;
+
+ case PCRE_CONFIG_NEWLINE:
+ *((int *)where) = NEWLINE;
+ break;
+
+ case PCRE_CONFIG_BSR:
+#ifdef BSR_ANYCRLF
+ *((int *)where) = 1;
+#else
+ *((int *)where) = 0;
+#endif
+ break;
+
+ case PCRE_CONFIG_LINK_SIZE:
+ *((int *)where) = real_link_size;
+ break;
+
+ case PCRE_CONFIG_POSIX_MALLOC_THRESHOLD:
+ *((int *)where) = POSIX_MALLOC_THRESHOLD;
+ break;
+
+ case PCRE_CONFIG_MATCH_LIMIT:
+ *((unsigned long int *)where) = MATCH_LIMIT;
+ break;
+
+ case PCRE_CONFIG_MATCH_LIMIT_RECURSION:
+ *((unsigned long int *)where) = MATCH_LIMIT_RECURSION;
+ break;
+
+ case PCRE_CONFIG_STACKRECURSE:
+#ifdef NO_RECURSE
+ *((int *)where) = 0;
+#else
+ *((int *)where) = 1;
+#endif
+ break;
+
+ default: return PCRE_ERROR_BADOPTION;
+ }
+
+return 0;
+}
+
+/* End of pcre_config.c */
diff --git a/pcre/pcre_dfa_exec.c b/pcre/pcre_dfa_exec.c
new file mode 100644
index 00000000000..02bd3f05534
--- /dev/null
+++ b/pcre/pcre_dfa_exec.c
@@ -0,0 +1,3608 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language (but see
+below for why this module is different).
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2013 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* This module contains the external function pcre_dfa_exec(), which is an
+alternative matching function that uses a sort of DFA algorithm (not a true
+FSM). This is NOT Perl-compatible, but it has advantages in certain
+applications. */
+
+
+/* NOTE ABOUT PERFORMANCE: A user of this function sent some code that improved
+the performance of his patterns greatly. I could not use it as it stood, as it
+was not thread safe, and made assumptions about pattern sizes. Also, it caused
+test 7 to loop, and test 9 to crash with a segfault.
+
+The issue is the check for duplicate states, which is done by a simple linear
+search up the state list. (Grep for "duplicate" below to find the code.) For
+many patterns, there will never be many states active at one time, so a simple
+linear search is fine. In patterns that have many active states, it might be a
+bottleneck. The suggested code used an indexing scheme to remember which states
+had previously been used for each character, and avoided the linear search when
+it knew there was no chance of a duplicate. This was implemented when adding
+states to the state lists.
+
+I wrote some thread-safe, not-limited code to try something similar at the time
+of checking for duplicates (instead of when adding states), using index vectors
+on the stack. It did give a 13% improvement with one specially constructed
+pattern for certain subject strings, but on other strings and on many of the
+simpler patterns in the test suite it did worse. The major problem, I think,
+was the extra time to initialize the index. This had to be done for each call
+of internal_dfa_exec(). (The supplied patch used a static vector, initialized
+only once - I suspect this was the cause of the problems with the tests.)
+
+Overall, I concluded that the gains in some cases did not outweigh the losses
+in others, so I abandoned this code. */
+
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#define NLBLOCK md /* Block containing newline information */
+#define PSSTART start_subject /* Field containing processed string start */
+#define PSEND end_subject /* Field containing processed string end */
+
+#include "pcre_internal.h"
+
+
+/* For use to indent debugging output */
+
+#define SP " "
+
+
+/*************************************************
+* Code parameters and static tables *
+*************************************************/
+
+/* These are offsets that are used to turn the OP_TYPESTAR and friends opcodes
+into others, under special conditions. A gap of 20 between the blocks should be
+enough. The resulting opcodes don't have to be less than 256 because they are
+never stored, so we push them well clear of the normal opcodes. */
+
+#define OP_PROP_EXTRA 300
+#define OP_EXTUNI_EXTRA 320
+#define OP_ANYNL_EXTRA 340
+#define OP_HSPACE_EXTRA 360
+#define OP_VSPACE_EXTRA 380
+
+
+/* This table identifies those opcodes that are followed immediately by a
+character that is to be tested in some way. This makes it possible to
+centralize the loading of these characters. In the case of Type * etc, the
+"character" is the opcode for \D, \d, \S, \s, \W, or \w, which will always be a
+small value. Non-zero values in the table are the offsets from the opcode where
+the character is to be found. ***NOTE*** If the start of this table is
+modified, the three tables that follow must also be modified. */
+
+static const pcre_uint8 coptable[] = {
+ 0, /* End */
+ 0, 0, 0, 0, 0, /* \A, \G, \K, \B, \b */
+ 0, 0, 0, 0, 0, 0, /* \D, \d, \S, \s, \W, \w */
+ 0, 0, 0, /* Any, AllAny, Anybyte */
+ 0, 0, /* \P, \p */
+ 0, 0, 0, 0, 0, /* \R, \H, \h, \V, \v */
+ 0, /* \X */
+ 0, 0, 0, 0, 0, 0, /* \Z, \z, ^, ^M, $, $M */
+ 1, /* Char */
+ 1, /* Chari */
+ 1, /* not */
+ 1, /* noti */
+ /* Positive single-char repeats */
+ 1, 1, 1, 1, 1, 1, /* *, *?, +, +?, ?, ?? */
+ 1+IMM2_SIZE, 1+IMM2_SIZE, /* upto, minupto */
+ 1+IMM2_SIZE, /* exact */
+ 1, 1, 1, 1+IMM2_SIZE, /* *+, ++, ?+, upto+ */
+ 1, 1, 1, 1, 1, 1, /* *I, *?I, +I, +?I, ?I, ??I */
+ 1+IMM2_SIZE, 1+IMM2_SIZE, /* upto I, minupto I */
+ 1+IMM2_SIZE, /* exact I */
+ 1, 1, 1, 1+IMM2_SIZE, /* *+I, ++I, ?+I, upto+I */
+ /* Negative single-char repeats - only for chars < 256 */
+ 1, 1, 1, 1, 1, 1, /* NOT *, *?, +, +?, ?, ?? */
+ 1+IMM2_SIZE, 1+IMM2_SIZE, /* NOT upto, minupto */
+ 1+IMM2_SIZE, /* NOT exact */
+ 1, 1, 1, 1+IMM2_SIZE, /* NOT *+, ++, ?+, upto+ */
+ 1, 1, 1, 1, 1, 1, /* NOT *I, *?I, +I, +?I, ?I, ??I */
+ 1+IMM2_SIZE, 1+IMM2_SIZE, /* NOT upto I, minupto I */
+ 1+IMM2_SIZE, /* NOT exact I */
+ 1, 1, 1, 1+IMM2_SIZE, /* NOT *+I, ++I, ?+I, upto+I */
+ /* Positive type repeats */
+ 1, 1, 1, 1, 1, 1, /* Type *, *?, +, +?, ?, ?? */
+ 1+IMM2_SIZE, 1+IMM2_SIZE, /* Type upto, minupto */
+ 1+IMM2_SIZE, /* Type exact */
+ 1, 1, 1, 1+IMM2_SIZE, /* Type *+, ++, ?+, upto+ */
+ /* Character class & ref repeats */
+ 0, 0, 0, 0, 0, 0, /* *, *?, +, +?, ?, ?? */
+ 0, 0, /* CRRANGE, CRMINRANGE */
+ 0, /* CLASS */
+ 0, /* NCLASS */
+ 0, /* XCLASS - variable length */
+ 0, /* REF */
+ 0, /* REFI */
+ 0, /* RECURSE */
+ 0, /* CALLOUT */
+ 0, /* Alt */
+ 0, /* Ket */
+ 0, /* KetRmax */
+ 0, /* KetRmin */
+ 0, /* KetRpos */
+ 0, /* Reverse */
+ 0, /* Assert */
+ 0, /* Assert not */
+ 0, /* Assert behind */
+ 0, /* Assert behind not */
+ 0, 0, /* ONCE, ONCE_NC */
+ 0, 0, 0, 0, 0, /* BRA, BRAPOS, CBRA, CBRAPOS, COND */
+ 0, 0, 0, 0, 0, /* SBRA, SBRAPOS, SCBRA, SCBRAPOS, SCOND */
+ 0, 0, /* CREF, NCREF */
+ 0, 0, /* RREF, NRREF */
+ 0, /* DEF */
+ 0, 0, 0, /* BRAZERO, BRAMINZERO, BRAPOSZERO */
+ 0, 0, 0, /* MARK, PRUNE, PRUNE_ARG */
+ 0, 0, 0, 0, /* SKIP, SKIP_ARG, THEN, THEN_ARG */
+ 0, 0, 0, 0, /* COMMIT, FAIL, ACCEPT, ASSERT_ACCEPT */
+ 0, 0 /* CLOSE, SKIPZERO */
+};
+
+/* This table identifies those opcodes that inspect a character. It is used to
+remember the fact that a character could have been inspected when the end of
+the subject is reached. ***NOTE*** If the start of this table is modified, the
+two tables that follow must also be modified. */
+
+static const pcre_uint8 poptable[] = {
+ 0, /* End */
+ 0, 0, 0, 1, 1, /* \A, \G, \K, \B, \b */
+ 1, 1, 1, 1, 1, 1, /* \D, \d, \S, \s, \W, \w */
+ 1, 1, 1, /* Any, AllAny, Anybyte */
+ 1, 1, /* \P, \p */
+ 1, 1, 1, 1, 1, /* \R, \H, \h, \V, \v */
+ 1, /* \X */
+ 0, 0, 0, 0, 0, 0, /* \Z, \z, ^, ^M, $, $M */
+ 1, /* Char */
+ 1, /* Chari */
+ 1, /* not */
+ 1, /* noti */
+ /* Positive single-char repeats */
+ 1, 1, 1, 1, 1, 1, /* *, *?, +, +?, ?, ?? */
+ 1, 1, 1, /* upto, minupto, exact */
+ 1, 1, 1, 1, /* *+, ++, ?+, upto+ */
+ 1, 1, 1, 1, 1, 1, /* *I, *?I, +I, +?I, ?I, ??I */
+ 1, 1, 1, /* upto I, minupto I, exact I */
+ 1, 1, 1, 1, /* *+I, ++I, ?+I, upto+I */
+ /* Negative single-char repeats - only for chars < 256 */
+ 1, 1, 1, 1, 1, 1, /* NOT *, *?, +, +?, ?, ?? */
+ 1, 1, 1, /* NOT upto, minupto, exact */
+ 1, 1, 1, 1, /* NOT *+, ++, ?+, upto+ */
+ 1, 1, 1, 1, 1, 1, /* NOT *I, *?I, +I, +?I, ?I, ??I */
+ 1, 1, 1, /* NOT upto I, minupto I, exact I */
+ 1, 1, 1, 1, /* NOT *+I, ++I, ?+I, upto+I */
+ /* Positive type repeats */
+ 1, 1, 1, 1, 1, 1, /* Type *, *?, +, +?, ?, ?? */
+ 1, 1, 1, /* Type upto, minupto, exact */
+ 1, 1, 1, 1, /* Type *+, ++, ?+, upto+ */
+ /* Character class & ref repeats */
+ 1, 1, 1, 1, 1, 1, /* *, *?, +, +?, ?, ?? */
+ 1, 1, /* CRRANGE, CRMINRANGE */
+ 1, /* CLASS */
+ 1, /* NCLASS */
+ 1, /* XCLASS - variable length */
+ 0, /* REF */
+ 0, /* REFI */
+ 0, /* RECURSE */
+ 0, /* CALLOUT */
+ 0, /* Alt */
+ 0, /* Ket */
+ 0, /* KetRmax */
+ 0, /* KetRmin */
+ 0, /* KetRpos */
+ 0, /* Reverse */
+ 0, /* Assert */
+ 0, /* Assert not */
+ 0, /* Assert behind */
+ 0, /* Assert behind not */
+ 0, 0, /* ONCE, ONCE_NC */
+ 0, 0, 0, 0, 0, /* BRA, BRAPOS, CBRA, CBRAPOS, COND */
+ 0, 0, 0, 0, 0, /* SBRA, SBRAPOS, SCBRA, SCBRAPOS, SCOND */
+ 0, 0, /* CREF, NCREF */
+ 0, 0, /* RREF, NRREF */
+ 0, /* DEF */
+ 0, 0, 0, /* BRAZERO, BRAMINZERO, BRAPOSZERO */
+ 0, 0, 0, /* MARK, PRUNE, PRUNE_ARG */
+ 0, 0, 0, 0, /* SKIP, SKIP_ARG, THEN, THEN_ARG */
+ 0, 0, 0, 0, /* COMMIT, FAIL, ACCEPT, ASSERT_ACCEPT */
+ 0, 0 /* CLOSE, SKIPZERO */
+};
+
+/* These 2 tables allow for compact code for testing for \D, \d, \S, \s, \W,
+and \w */
+
+static const pcre_uint8 toptable1[] = {
+ 0, 0, 0, 0, 0, 0,
+ ctype_digit, ctype_digit,
+ ctype_space, ctype_space,
+ ctype_word, ctype_word,
+ 0, 0 /* OP_ANY, OP_ALLANY */
+};
+
+static const pcre_uint8 toptable2[] = {
+ 0, 0, 0, 0, 0, 0,
+ ctype_digit, 0,
+ ctype_space, 0,
+ ctype_word, 0,
+ 1, 1 /* OP_ANY, OP_ALLANY */
+};
+
+
+/* Structure for holding data about a particular state, which is in effect the
+current data for an active path through the match tree. It must consist
+entirely of ints because the working vector we are passed, and which we put
+these structures in, is a vector of ints. */
+
+typedef struct stateblock {
+ int offset; /* Offset to opcode */
+ int count; /* Count for repeats */
+ int data; /* Some use extra data */
+} stateblock;
+
+#define INTS_PER_STATEBLOCK (int)(sizeof(stateblock)/sizeof(int))
+
+
+#ifdef PCRE_DEBUG
+/*************************************************
+* Print character string *
+*************************************************/
+
+/* Character string printing function for debugging.
+
+Arguments:
+ p points to string
+ length number of bytes
+ f where to print
+
+Returns: nothing
+*/
+
+static void
+pchars(const pcre_uchar *p, int length, FILE *f)
+{
+pcre_uint32 c;
+while (length-- > 0)
+ {
+ if (isprint(c = *(p++)))
+ fprintf(f, "%c", c);
+ else
+ fprintf(f, "\\x{%02x}", c);
+ }
+}
+#endif
+
+
+
+/*************************************************
+* Execute a Regular Expression - DFA engine *
+*************************************************/
+
+/* This internal function applies a compiled pattern to a subject string,
+starting at a given point, using a DFA engine. This function is called from the
+external one, possibly multiple times if the pattern is not anchored. The
+function calls itself recursively for some kinds of subpattern.
+
+Arguments:
+ md the match_data block with fixed information
+ this_start_code the opening bracket of this subexpression's code
+ current_subject where we currently are in the subject string
+ start_offset start offset in the subject string
+ offsets vector to contain the matching string offsets
+ offsetcount size of same
+ workspace vector of workspace
+ wscount size of same
+ rlevel function call recursion level
+
+Returns: > 0 => number of match offset pairs placed in offsets
+ = 0 => offsets overflowed; longest matches are present
+ -1 => failed to match
+ < -1 => some kind of unexpected problem
+
+The following macros are used for adding states to the two state vectors (one
+for the current character, one for the following character). */
+
+#define ADD_ACTIVE(x,y) \
+ if (active_count++ < wscount) \
+ { \
+ next_active_state->offset = (x); \
+ next_active_state->count = (y); \
+ next_active_state++; \
+ DPRINTF(("%.*sADD_ACTIVE(%d,%d)\n", rlevel*2-2, SP, (x), (y))); \
+ } \
+ else return PCRE_ERROR_DFA_WSSIZE
+
+#define ADD_ACTIVE_DATA(x,y,z) \
+ if (active_count++ < wscount) \
+ { \
+ next_active_state->offset = (x); \
+ next_active_state->count = (y); \
+ next_active_state->data = (z); \
+ next_active_state++; \
+ DPRINTF(("%.*sADD_ACTIVE_DATA(%d,%d,%d)\n", rlevel*2-2, SP, (x), (y), (z))); \
+ } \
+ else return PCRE_ERROR_DFA_WSSIZE
+
+#define ADD_NEW(x,y) \
+ if (new_count++ < wscount) \
+ { \
+ next_new_state->offset = (x); \
+ next_new_state->count = (y); \
+ next_new_state++; \
+ DPRINTF(("%.*sADD_NEW(%d,%d)\n", rlevel*2-2, SP, (x), (y))); \
+ } \
+ else return PCRE_ERROR_DFA_WSSIZE
+
+#define ADD_NEW_DATA(x,y,z) \
+ if (new_count++ < wscount) \
+ { \
+ next_new_state->offset = (x); \
+ next_new_state->count = (y); \
+ next_new_state->data = (z); \
+ next_new_state++; \
+ DPRINTF(("%.*sADD_NEW_DATA(%d,%d,%d) line %d\n", rlevel*2-2, SP, \
+ (x), (y), (z), __LINE__)); \
+ } \
+ else return PCRE_ERROR_DFA_WSSIZE
+
+/* And now, here is the code */
+
+static int
+internal_dfa_exec(
+ dfa_match_data *md,
+ const pcre_uchar *this_start_code,
+ const pcre_uchar *current_subject,
+ int start_offset,
+ int *offsets,
+ int offsetcount,
+ int *workspace,
+ int wscount,
+ int rlevel)
+{
+stateblock *active_states, *new_states, *temp_states;
+stateblock *next_active_state, *next_new_state;
+
+const pcre_uint8 *ctypes, *lcc, *fcc;
+const pcre_uchar *ptr;
+const pcre_uchar *end_code, *first_op;
+
+dfa_recursion_info new_recursive;
+
+int active_count, new_count, match_count;
+
+/* Some fields in the md block are frequently referenced, so we load them into
+independent variables in the hope that this will perform better. */
+
+const pcre_uchar *start_subject = md->start_subject;
+const pcre_uchar *end_subject = md->end_subject;
+const pcre_uchar *start_code = md->start_code;
+
+#ifdef SUPPORT_UTF
+BOOL utf = (md->poptions & PCRE_UTF8) != 0;
+#else
+BOOL utf = FALSE;
+#endif
+
+BOOL reset_could_continue = FALSE;
+
+rlevel++;
+offsetcount &= (-2);
+
+wscount -= 2;
+wscount = (wscount - (wscount % (INTS_PER_STATEBLOCK * 2))) /
+ (2 * INTS_PER_STATEBLOCK);
+
+DPRINTF(("\n%.*s---------------------\n"
+ "%.*sCall to internal_dfa_exec f=%d\n",
+ rlevel*2-2, SP, rlevel*2-2, SP, rlevel));
+
+ctypes = md->tables + ctypes_offset;
+lcc = md->tables + lcc_offset;
+fcc = md->tables + fcc_offset;
+
+match_count = PCRE_ERROR_NOMATCH; /* A negative number */
+
+active_states = (stateblock *)(workspace + 2);
+next_new_state = new_states = active_states + wscount;
+new_count = 0;
+
+first_op = this_start_code + 1 + LINK_SIZE +
+ ((*this_start_code == OP_CBRA || *this_start_code == OP_SCBRA ||
+ *this_start_code == OP_CBRAPOS || *this_start_code == OP_SCBRAPOS)
+ ? IMM2_SIZE:0);
+
+/* The first thing in any (sub) pattern is a bracket of some sort. Push all
+the alternative states onto the list, and find out where the end is. This
+makes is possible to use this function recursively, when we want to stop at a
+matching internal ket rather than at the end.
+
+If the first opcode in the first alternative is OP_REVERSE, we are dealing with
+a backward assertion. In that case, we have to find out the maximum amount to
+move back, and set up each alternative appropriately. */
+
+if (*first_op == OP_REVERSE)
+ {
+ int max_back = 0;
+ int gone_back;
+
+ end_code = this_start_code;
+ do
+ {
+ int back = GET(end_code, 2+LINK_SIZE);
+ if (back > max_back) max_back = back;
+ end_code += GET(end_code, 1);
+ }
+ while (*end_code == OP_ALT);
+
+ /* If we can't go back the amount required for the longest lookbehind
+ pattern, go back as far as we can; some alternatives may still be viable. */
+
+#ifdef SUPPORT_UTF
+ /* In character mode we have to step back character by character */
+
+ if (utf)
+ {
+ for (gone_back = 0; gone_back < max_back; gone_back++)
+ {
+ if (current_subject <= start_subject) break;
+ current_subject--;
+ ACROSSCHAR(current_subject > start_subject, *current_subject, current_subject--);
+ }
+ }
+ else
+#endif
+
+ /* In byte-mode we can do this quickly. */
+
+ {
+ gone_back = (current_subject - max_back < start_subject)?
+ (int)(current_subject - start_subject) : max_back;
+ current_subject -= gone_back;
+ }
+
+ /* Save the earliest consulted character */
+
+ if (current_subject < md->start_used_ptr)
+ md->start_used_ptr = current_subject;
+
+ /* Now we can process the individual branches. */
+
+ end_code = this_start_code;
+ do
+ {
+ int back = GET(end_code, 2+LINK_SIZE);
+ if (back <= gone_back)
+ {
+ int bstate = (int)(end_code - start_code + 2 + 2*LINK_SIZE);
+ ADD_NEW_DATA(-bstate, 0, gone_back - back);
+ }
+ end_code += GET(end_code, 1);
+ }
+ while (*end_code == OP_ALT);
+ }
+
+/* This is the code for a "normal" subpattern (not a backward assertion). The
+start of a whole pattern is always one of these. If we are at the top level,
+we may be asked to restart matching from the same point that we reached for a
+previous partial match. We still have to scan through the top-level branches to
+find the end state. */
+
+else
+ {
+ end_code = this_start_code;
+
+ /* Restarting */
+
+ if (rlevel == 1 && (md->moptions & PCRE_DFA_RESTART) != 0)
+ {
+ do { end_code += GET(end_code, 1); } while (*end_code == OP_ALT);
+ new_count = workspace[1];
+ if (!workspace[0])
+ memcpy(new_states, active_states, new_count * sizeof(stateblock));
+ }
+
+ /* Not restarting */
+
+ else
+ {
+ int length = 1 + LINK_SIZE +
+ ((*this_start_code == OP_CBRA || *this_start_code == OP_SCBRA ||
+ *this_start_code == OP_CBRAPOS || *this_start_code == OP_SCBRAPOS)
+ ? IMM2_SIZE:0);
+ do
+ {
+ ADD_NEW((int)(end_code - start_code + length), 0);
+ end_code += GET(end_code, 1);
+ length = 1 + LINK_SIZE;
+ }
+ while (*end_code == OP_ALT);
+ }
+ }
+
+workspace[0] = 0; /* Bit indicating which vector is current */
+
+DPRINTF(("%.*sEnd state = %d\n", rlevel*2-2, SP, (int)(end_code - start_code)));
+
+/* Loop for scanning the subject */
+
+ptr = current_subject;
+for (;;)
+ {
+ int i, j;
+ int clen, dlen;
+ pcre_uint32 c, d;
+ int forced_fail = 0;
+ BOOL partial_newline = FALSE;
+ BOOL could_continue = reset_could_continue;
+ reset_could_continue = FALSE;
+
+ /* Make the new state list into the active state list and empty the
+ new state list. */
+
+ temp_states = active_states;
+ active_states = new_states;
+ new_states = temp_states;
+ active_count = new_count;
+ new_count = 0;
+
+ workspace[0] ^= 1; /* Remember for the restarting feature */
+ workspace[1] = active_count;
+
+#ifdef PCRE_DEBUG
+ printf("%.*sNext character: rest of subject = \"", rlevel*2-2, SP);
+ pchars(ptr, STRLEN_UC(ptr), stdout);
+ printf("\"\n");
+
+ printf("%.*sActive states: ", rlevel*2-2, SP);
+ for (i = 0; i < active_count; i++)
+ printf("%d/%d ", active_states[i].offset, active_states[i].count);
+ printf("\n");
+#endif
+
+ /* Set the pointers for adding new states */
+
+ next_active_state = active_states + active_count;
+ next_new_state = new_states;
+
+ /* Load the current character from the subject outside the loop, as many
+ different states may want to look at it, and we assume that at least one
+ will. */
+
+ if (ptr < end_subject)
+ {
+ clen = 1; /* Number of data items in the character */
+#ifdef SUPPORT_UTF
+ GETCHARLENTEST(c, ptr, clen);
+#else
+ c = *ptr;
+#endif /* SUPPORT_UTF */
+ }
+ else
+ {
+ clen = 0; /* This indicates the end of the subject */
+ c = NOTACHAR; /* This value should never actually be used */
+ }
+
+ /* Scan up the active states and act on each one. The result of an action
+ may be to add more states to the currently active list (e.g. on hitting a
+ parenthesis) or it may be to put states on the new list, for considering
+ when we move the character pointer on. */
+
+ for (i = 0; i < active_count; i++)
+ {
+ stateblock *current_state = active_states + i;
+ BOOL caseless = FALSE;
+ const pcre_uchar *code;
+ int state_offset = current_state->offset;
+ int codevalue, rrc;
+ int count;
+
+#ifdef PCRE_DEBUG
+ printf ("%.*sProcessing state %d c=", rlevel*2-2, SP, state_offset);
+ if (clen == 0) printf("EOL\n");
+ else if (c > 32 && c < 127) printf("'%c'\n", c);
+ else printf("0x%02x\n", c);
+#endif
+
+ /* A negative offset is a special case meaning "hold off going to this
+ (negated) state until the number of characters in the data field have
+ been skipped". If the could_continue flag was passed over from a previous
+ state, arrange for it to passed on. */
+
+ if (state_offset < 0)
+ {
+ if (current_state->data > 0)
+ {
+ DPRINTF(("%.*sSkipping this character\n", rlevel*2-2, SP));
+ ADD_NEW_DATA(state_offset, current_state->count,
+ current_state->data - 1);
+ if (could_continue) reset_could_continue = TRUE;
+ continue;
+ }
+ else
+ {
+ current_state->offset = state_offset = -state_offset;
+ }
+ }
+
+ /* Check for a duplicate state with the same count, and skip if found.
+ See the note at the head of this module about the possibility of improving
+ performance here. */
+
+ for (j = 0; j < i; j++)
+ {
+ if (active_states[j].offset == state_offset &&
+ active_states[j].count == current_state->count)
+ {
+ DPRINTF(("%.*sDuplicate state: skipped\n", rlevel*2-2, SP));
+ goto NEXT_ACTIVE_STATE;
+ }
+ }
+
+ /* The state offset is the offset to the opcode */
+
+ code = start_code + state_offset;
+ codevalue = *code;
+
+ /* If this opcode inspects a character, but we are at the end of the
+ subject, remember the fact for use when testing for a partial match. */
+
+ if (clen == 0 && poptable[codevalue] != 0)
+ could_continue = TRUE;
+
+ /* If this opcode is followed by an inline character, load it. It is
+ tempting to test for the presence of a subject character here, but that
+ is wrong, because sometimes zero repetitions of the subject are
+ permitted.
+
+ We also use this mechanism for opcodes such as OP_TYPEPLUS that take an
+ argument that is not a data character - but is always one byte long because
+ the values are small. We have to take special action to deal with \P, \p,
+ \H, \h, \V, \v and \X in this case. To keep the other cases fast, convert
+ these ones to new opcodes. */
+
+ if (coptable[codevalue] > 0)
+ {
+ dlen = 1;
+#ifdef SUPPORT_UTF
+ if (utf) { GETCHARLEN(d, (code + coptable[codevalue]), dlen); } else
+#endif /* SUPPORT_UTF */
+ d = code[coptable[codevalue]];
+ if (codevalue >= OP_TYPESTAR)
+ {
+ switch(d)
+ {
+ case OP_ANYBYTE: return PCRE_ERROR_DFA_UITEM;
+ case OP_NOTPROP:
+ case OP_PROP: codevalue += OP_PROP_EXTRA; break;
+ case OP_ANYNL: codevalue += OP_ANYNL_EXTRA; break;
+ case OP_EXTUNI: codevalue += OP_EXTUNI_EXTRA; break;
+ case OP_NOT_HSPACE:
+ case OP_HSPACE: codevalue += OP_HSPACE_EXTRA; break;
+ case OP_NOT_VSPACE:
+ case OP_VSPACE: codevalue += OP_VSPACE_EXTRA; break;
+ default: break;
+ }
+ }
+ }
+ else
+ {
+ dlen = 0; /* Not strictly necessary, but compilers moan */
+ d = NOTACHAR; /* if these variables are not set. */
+ }
+
+
+ /* Now process the individual opcodes */
+
+ switch (codevalue)
+ {
+/* ========================================================================== */
+ /* These cases are never obeyed. This is a fudge that causes a compile-
+ time error if the vectors coptable or poptable, which are indexed by
+ opcode, are not the correct length. It seems to be the only way to do
+ such a check at compile time, as the sizeof() operator does not work
+ in the C preprocessor. */
+
+ case OP_TABLE_LENGTH:
+ case OP_TABLE_LENGTH +
+ ((sizeof(coptable) == OP_TABLE_LENGTH) &&
+ (sizeof(poptable) == OP_TABLE_LENGTH)):
+ break;
+
+/* ========================================================================== */
+ /* Reached a closing bracket. If not at the end of the pattern, carry
+ on with the next opcode. For repeating opcodes, also add the repeat
+ state. Note that KETRPOS will always be encountered at the end of the
+ subpattern, because the possessive subpattern repeats are always handled
+ using recursive calls. Thus, it never adds any new states.
+
+ At the end of the (sub)pattern, unless we have an empty string and
+ PCRE_NOTEMPTY is set, or PCRE_NOTEMPTY_ATSTART is set and we are at the
+ start of the subject, save the match data, shifting up all previous
+ matches so we always have the longest first. */
+
+ case OP_KET:
+ case OP_KETRMIN:
+ case OP_KETRMAX:
+ case OP_KETRPOS:
+ if (code != end_code)
+ {
+ ADD_ACTIVE(state_offset + 1 + LINK_SIZE, 0);
+ if (codevalue != OP_KET)
+ {
+ ADD_ACTIVE(state_offset - GET(code, 1), 0);
+ }
+ }
+ else
+ {
+ if (ptr > current_subject ||
+ ((md->moptions & PCRE_NOTEMPTY) == 0 &&
+ ((md->moptions & PCRE_NOTEMPTY_ATSTART) == 0 ||
+ current_subject > start_subject + md->start_offset)))
+ {
+ if (match_count < 0) match_count = (offsetcount >= 2)? 1 : 0;
+ else if (match_count > 0 && ++match_count * 2 > offsetcount)
+ match_count = 0;
+ count = ((match_count == 0)? offsetcount : match_count * 2) - 2;
+ if (count > 0) memmove(offsets + 2, offsets, count * sizeof(int));
+ if (offsetcount >= 2)
+ {
+ offsets[0] = (int)(current_subject - start_subject);
+ offsets[1] = (int)(ptr - start_subject);
+ DPRINTF(("%.*sSet matched string = \"%.*s\"\n", rlevel*2-2, SP,
+ offsets[1] - offsets[0], (char *)current_subject));
+ }
+ if ((md->moptions & PCRE_DFA_SHORTEST) != 0)
+ {
+ DPRINTF(("%.*sEnd of internal_dfa_exec %d: returning %d\n"
+ "%.*s---------------------\n\n", rlevel*2-2, SP, rlevel,
+ match_count, rlevel*2-2, SP));
+ return match_count;
+ }
+ }
+ }
+ break;
+
+/* ========================================================================== */
+ /* These opcodes add to the current list of states without looking
+ at the current character. */
+
+ /*-----------------------------------------------------------------*/
+ case OP_ALT:
+ do { code += GET(code, 1); } while (*code == OP_ALT);
+ ADD_ACTIVE((int)(code - start_code), 0);
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_BRA:
+ case OP_SBRA:
+ do
+ {
+ ADD_ACTIVE((int)(code - start_code + 1 + LINK_SIZE), 0);
+ code += GET(code, 1);
+ }
+ while (*code == OP_ALT);
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_CBRA:
+ case OP_SCBRA:
+ ADD_ACTIVE((int)(code - start_code + 1 + LINK_SIZE + IMM2_SIZE), 0);
+ code += GET(code, 1);
+ while (*code == OP_ALT)
+ {
+ ADD_ACTIVE((int)(code - start_code + 1 + LINK_SIZE), 0);
+ code += GET(code, 1);
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_BRAZERO:
+ case OP_BRAMINZERO:
+ ADD_ACTIVE(state_offset + 1, 0);
+ code += 1 + GET(code, 2);
+ while (*code == OP_ALT) code += GET(code, 1);
+ ADD_ACTIVE((int)(code - start_code + 1 + LINK_SIZE), 0);
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_SKIPZERO:
+ code += 1 + GET(code, 2);
+ while (*code == OP_ALT) code += GET(code, 1);
+ ADD_ACTIVE((int)(code - start_code + 1 + LINK_SIZE), 0);
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_CIRC:
+ if (ptr == start_subject && (md->moptions & PCRE_NOTBOL) == 0)
+ { ADD_ACTIVE(state_offset + 1, 0); }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_CIRCM:
+ if ((ptr == start_subject && (md->moptions & PCRE_NOTBOL) == 0) ||
+ (ptr != end_subject && WAS_NEWLINE(ptr)))
+ { ADD_ACTIVE(state_offset + 1, 0); }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_EOD:
+ if (ptr >= end_subject)
+ {
+ if ((md->moptions & PCRE_PARTIAL_HARD) != 0)
+ could_continue = TRUE;
+ else { ADD_ACTIVE(state_offset + 1, 0); }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_SOD:
+ if (ptr == start_subject) { ADD_ACTIVE(state_offset + 1, 0); }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_SOM:
+ if (ptr == start_subject + start_offset) { ADD_ACTIVE(state_offset + 1, 0); }
+ break;
+
+
+/* ========================================================================== */
+ /* These opcodes inspect the next subject character, and sometimes
+ the previous one as well, but do not have an argument. The variable
+ clen contains the length of the current character and is zero if we are
+ at the end of the subject. */
+
+ /*-----------------------------------------------------------------*/
+ case OP_ANY:
+ if (clen > 0 && !IS_NEWLINE(ptr))
+ {
+ if (ptr + 1 >= md->end_subject &&
+ (md->moptions & (PCRE_PARTIAL_HARD)) != 0 &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ c == NLBLOCK->nl[0])
+ {
+ could_continue = partial_newline = TRUE;
+ }
+ else
+ {
+ ADD_NEW(state_offset + 1, 0);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_ALLANY:
+ if (clen > 0)
+ { ADD_NEW(state_offset + 1, 0); }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_EODN:
+ if (clen == 0 && (md->moptions & PCRE_PARTIAL_HARD) != 0)
+ could_continue = TRUE;
+ else if (clen == 0 || (IS_NEWLINE(ptr) && ptr == end_subject - md->nllen))
+ { ADD_ACTIVE(state_offset + 1, 0); }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_DOLL:
+ if ((md->moptions & PCRE_NOTEOL) == 0)
+ {
+ if (clen == 0 && (md->moptions & PCRE_PARTIAL_HARD) != 0)
+ could_continue = TRUE;
+ else if (clen == 0 ||
+ ((md->poptions & PCRE_DOLLAR_ENDONLY) == 0 && IS_NEWLINE(ptr) &&
+ (ptr == end_subject - md->nllen)
+ ))
+ { ADD_ACTIVE(state_offset + 1, 0); }
+ else if (ptr + 1 >= md->end_subject &&
+ (md->moptions & (PCRE_PARTIAL_HARD|PCRE_PARTIAL_SOFT)) != 0 &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ c == NLBLOCK->nl[0])
+ {
+ if ((md->moptions & PCRE_PARTIAL_HARD) != 0)
+ {
+ reset_could_continue = TRUE;
+ ADD_NEW_DATA(-(state_offset + 1), 0, 1);
+ }
+ else could_continue = partial_newline = TRUE;
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_DOLLM:
+ if ((md->moptions & PCRE_NOTEOL) == 0)
+ {
+ if (clen == 0 && (md->moptions & PCRE_PARTIAL_HARD) != 0)
+ could_continue = TRUE;
+ else if (clen == 0 ||
+ ((md->poptions & PCRE_DOLLAR_ENDONLY) == 0 && IS_NEWLINE(ptr)))
+ { ADD_ACTIVE(state_offset + 1, 0); }
+ else if (ptr + 1 >= md->end_subject &&
+ (md->moptions & (PCRE_PARTIAL_HARD|PCRE_PARTIAL_SOFT)) != 0 &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ c == NLBLOCK->nl[0])
+ {
+ if ((md->moptions & PCRE_PARTIAL_HARD) != 0)
+ {
+ reset_could_continue = TRUE;
+ ADD_NEW_DATA(-(state_offset + 1), 0, 1);
+ }
+ else could_continue = partial_newline = TRUE;
+ }
+ }
+ else if (IS_NEWLINE(ptr))
+ { ADD_ACTIVE(state_offset + 1, 0); }
+ break;
+
+ /*-----------------------------------------------------------------*/
+
+ case OP_DIGIT:
+ case OP_WHITESPACE:
+ case OP_WORDCHAR:
+ if (clen > 0 && c < 256 &&
+ ((ctypes[c] & toptable1[codevalue]) ^ toptable2[codevalue]) != 0)
+ { ADD_NEW(state_offset + 1, 0); }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_NOT_DIGIT:
+ case OP_NOT_WHITESPACE:
+ case OP_NOT_WORDCHAR:
+ if (clen > 0 && (c >= 256 ||
+ ((ctypes[c] & toptable1[codevalue]) ^ toptable2[codevalue]) != 0))
+ { ADD_NEW(state_offset + 1, 0); }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_WORD_BOUNDARY:
+ case OP_NOT_WORD_BOUNDARY:
+ {
+ int left_word, right_word;
+
+ if (ptr > start_subject)
+ {
+ const pcre_uchar *temp = ptr - 1;
+ if (temp < md->start_used_ptr) md->start_used_ptr = temp;
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf) { BACKCHAR(temp); }
+#endif
+ GETCHARTEST(d, temp);
+#ifdef SUPPORT_UCP
+ if ((md->poptions & PCRE_UCP) != 0)
+ {
+ if (d == '_') left_word = TRUE; else
+ {
+ int cat = UCD_CATEGORY(d);
+ left_word = (cat == ucp_L || cat == ucp_N);
+ }
+ }
+ else
+#endif
+ left_word = d < 256 && (ctypes[d] & ctype_word) != 0;
+ }
+ else left_word = FALSE;
+
+ if (clen > 0)
+ {
+#ifdef SUPPORT_UCP
+ if ((md->poptions & PCRE_UCP) != 0)
+ {
+ if (c == '_') right_word = TRUE; else
+ {
+ int cat = UCD_CATEGORY(c);
+ right_word = (cat == ucp_L || cat == ucp_N);
+ }
+ }
+ else
+#endif
+ right_word = c < 256 && (ctypes[c] & ctype_word) != 0;
+ }
+ else right_word = FALSE;
+
+ if ((left_word == right_word) == (codevalue == OP_NOT_WORD_BOUNDARY))
+ { ADD_ACTIVE(state_offset + 1, 0); }
+ }
+ break;
+
+
+ /*-----------------------------------------------------------------*/
+ /* Check the next character by Unicode property. We will get here only
+ if the support is in the binary; otherwise a compile-time error occurs.
+ */
+
+#ifdef SUPPORT_UCP
+ case OP_PROP:
+ case OP_NOTPROP:
+ if (clen > 0)
+ {
+ BOOL OK;
+ const pcre_uint32 *cp;
+ const ucd_record * prop = GET_UCD(c);
+ switch(code[1])
+ {
+ case PT_ANY:
+ OK = TRUE;
+ break;
+
+ case PT_LAMP:
+ OK = prop->chartype == ucp_Lu || prop->chartype == ucp_Ll ||
+ prop->chartype == ucp_Lt;
+ break;
+
+ case PT_GC:
+ OK = PRIV(ucp_gentype)[prop->chartype] == code[2];
+ break;
+
+ case PT_PC:
+ OK = prop->chartype == code[2];
+ break;
+
+ case PT_SC:
+ OK = prop->script == code[2];
+ break;
+
+ /* These are specials for combination cases. */
+
+ case PT_ALNUM:
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N;
+ break;
+
+ case PT_SPACE: /* Perl space */
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR;
+ break;
+
+ case PT_PXSPACE: /* POSIX space */
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
+ c == CHAR_FF || c == CHAR_CR;
+ break;
+
+ case PT_WORD:
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N ||
+ c == CHAR_UNDERSCORE;
+ break;
+
+ case PT_CLIST:
+ cp = PRIV(ucd_caseless_sets) + code[2];
+ for (;;)
+ {
+ if (c < *cp) { OK = FALSE; break; }
+ if (c == *cp++) { OK = TRUE; break; }
+ }
+ break;
+
+ case PT_UCNC:
+ OK = c == CHAR_DOLLAR_SIGN || c == CHAR_COMMERCIAL_AT ||
+ c == CHAR_GRAVE_ACCENT || (c >= 0xa0 && c <= 0xd7ff) ||
+ c >= 0xe000;
+ break;
+
+ /* Should never occur, but keep compilers from grumbling. */
+
+ default:
+ OK = codevalue != OP_PROP;
+ break;
+ }
+
+ if (OK == (codevalue == OP_PROP)) { ADD_NEW(state_offset + 3, 0); }
+ }
+ break;
+#endif
+
+
+
+/* ========================================================================== */
+ /* These opcodes likewise inspect the subject character, but have an
+ argument that is not a data character. It is one of these opcodes:
+ OP_ANY, OP_ALLANY, OP_DIGIT, OP_NOT_DIGIT, OP_WHITESPACE, OP_NOT_SPACE,
+ OP_WORDCHAR, OP_NOT_WORDCHAR. The value is loaded into d. */
+
+ case OP_TYPEPLUS:
+ case OP_TYPEMINPLUS:
+ case OP_TYPEPOSPLUS:
+ count = current_state->count; /* Already matched */
+ if (count > 0) { ADD_ACTIVE(state_offset + 2, 0); }
+ if (clen > 0)
+ {
+ if (d == OP_ANY && ptr + 1 >= md->end_subject &&
+ (md->moptions & (PCRE_PARTIAL_HARD)) != 0 &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ c == NLBLOCK->nl[0])
+ {
+ could_continue = partial_newline = TRUE;
+ }
+ else if ((c >= 256 && d != OP_DIGIT && d != OP_WHITESPACE && d != OP_WORDCHAR) ||
+ (c < 256 &&
+ (d != OP_ANY || !IS_NEWLINE(ptr)) &&
+ ((ctypes[c] & toptable1[d]) ^ toptable2[d]) != 0))
+ {
+ if (count > 0 && codevalue == OP_TYPEPOSPLUS)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ count++;
+ ADD_NEW(state_offset, count);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_TYPEQUERY:
+ case OP_TYPEMINQUERY:
+ case OP_TYPEPOSQUERY:
+ ADD_ACTIVE(state_offset + 2, 0);
+ if (clen > 0)
+ {
+ if (d == OP_ANY && ptr + 1 >= md->end_subject &&
+ (md->moptions & (PCRE_PARTIAL_HARD)) != 0 &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ c == NLBLOCK->nl[0])
+ {
+ could_continue = partial_newline = TRUE;
+ }
+ else if ((c >= 256 && d != OP_DIGIT && d != OP_WHITESPACE && d != OP_WORDCHAR) ||
+ (c < 256 &&
+ (d != OP_ANY || !IS_NEWLINE(ptr)) &&
+ ((ctypes[c] & toptable1[d]) ^ toptable2[d]) != 0))
+ {
+ if (codevalue == OP_TYPEPOSQUERY)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ ADD_NEW(state_offset + 2, 0);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_TYPESTAR:
+ case OP_TYPEMINSTAR:
+ case OP_TYPEPOSSTAR:
+ ADD_ACTIVE(state_offset + 2, 0);
+ if (clen > 0)
+ {
+ if (d == OP_ANY && ptr + 1 >= md->end_subject &&
+ (md->moptions & (PCRE_PARTIAL_HARD)) != 0 &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ c == NLBLOCK->nl[0])
+ {
+ could_continue = partial_newline = TRUE;
+ }
+ else if ((c >= 256 && d != OP_DIGIT && d != OP_WHITESPACE && d != OP_WORDCHAR) ||
+ (c < 256 &&
+ (d != OP_ANY || !IS_NEWLINE(ptr)) &&
+ ((ctypes[c] & toptable1[d]) ^ toptable2[d]) != 0))
+ {
+ if (codevalue == OP_TYPEPOSSTAR)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ ADD_NEW(state_offset, 0);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_TYPEEXACT:
+ count = current_state->count; /* Number already matched */
+ if (clen > 0)
+ {
+ if (d == OP_ANY && ptr + 1 >= md->end_subject &&
+ (md->moptions & (PCRE_PARTIAL_HARD)) != 0 &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ c == NLBLOCK->nl[0])
+ {
+ could_continue = partial_newline = TRUE;
+ }
+ else if ((c >= 256 && d != OP_DIGIT && d != OP_WHITESPACE && d != OP_WORDCHAR) ||
+ (c < 256 &&
+ (d != OP_ANY || !IS_NEWLINE(ptr)) &&
+ ((ctypes[c] & toptable1[d]) ^ toptable2[d]) != 0))
+ {
+ if (++count >= (int)GET2(code, 1))
+ { ADD_NEW(state_offset + 1 + IMM2_SIZE + 1, 0); }
+ else
+ { ADD_NEW(state_offset, count); }
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_TYPEUPTO:
+ case OP_TYPEMINUPTO:
+ case OP_TYPEPOSUPTO:
+ ADD_ACTIVE(state_offset + 2 + IMM2_SIZE, 0);
+ count = current_state->count; /* Number already matched */
+ if (clen > 0)
+ {
+ if (d == OP_ANY && ptr + 1 >= md->end_subject &&
+ (md->moptions & (PCRE_PARTIAL_HARD)) != 0 &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ c == NLBLOCK->nl[0])
+ {
+ could_continue = partial_newline = TRUE;
+ }
+ else if ((c >= 256 && d != OP_DIGIT && d != OP_WHITESPACE && d != OP_WORDCHAR) ||
+ (c < 256 &&
+ (d != OP_ANY || !IS_NEWLINE(ptr)) &&
+ ((ctypes[c] & toptable1[d]) ^ toptable2[d]) != 0))
+ {
+ if (codevalue == OP_TYPEPOSUPTO)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ if (++count >= (int)GET2(code, 1))
+ { ADD_NEW(state_offset + 2 + IMM2_SIZE, 0); }
+ else
+ { ADD_NEW(state_offset, count); }
+ }
+ }
+ break;
+
+/* ========================================================================== */
+ /* These are virtual opcodes that are used when something like
+ OP_TYPEPLUS has OP_PROP, OP_NOTPROP, OP_ANYNL, or OP_EXTUNI as its
+ argument. It keeps the code above fast for the other cases. The argument
+ is in the d variable. */
+
+#ifdef SUPPORT_UCP
+ case OP_PROP_EXTRA + OP_TYPEPLUS:
+ case OP_PROP_EXTRA + OP_TYPEMINPLUS:
+ case OP_PROP_EXTRA + OP_TYPEPOSPLUS:
+ count = current_state->count; /* Already matched */
+ if (count > 0) { ADD_ACTIVE(state_offset + 4, 0); }
+ if (clen > 0)
+ {
+ BOOL OK;
+ const pcre_uint32 *cp;
+ const ucd_record * prop = GET_UCD(c);
+ switch(code[2])
+ {
+ case PT_ANY:
+ OK = TRUE;
+ break;
+
+ case PT_LAMP:
+ OK = prop->chartype == ucp_Lu || prop->chartype == ucp_Ll ||
+ prop->chartype == ucp_Lt;
+ break;
+
+ case PT_GC:
+ OK = PRIV(ucp_gentype)[prop->chartype] == code[3];
+ break;
+
+ case PT_PC:
+ OK = prop->chartype == code[3];
+ break;
+
+ case PT_SC:
+ OK = prop->script == code[3];
+ break;
+
+ /* These are specials for combination cases. */
+
+ case PT_ALNUM:
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N;
+ break;
+
+ case PT_SPACE: /* Perl space */
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR;
+ break;
+
+ case PT_PXSPACE: /* POSIX space */
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
+ c == CHAR_FF || c == CHAR_CR;
+ break;
+
+ case PT_WORD:
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N ||
+ c == CHAR_UNDERSCORE;
+ break;
+
+ case PT_CLIST:
+ cp = PRIV(ucd_caseless_sets) + code[3];
+ for (;;)
+ {
+ if (c < *cp) { OK = FALSE; break; }
+ if (c == *cp++) { OK = TRUE; break; }
+ }
+ break;
+
+ case PT_UCNC:
+ OK = c == CHAR_DOLLAR_SIGN || c == CHAR_COMMERCIAL_AT ||
+ c == CHAR_GRAVE_ACCENT || (c >= 0xa0 && c <= 0xd7ff) ||
+ c >= 0xe000;
+ break;
+
+ /* Should never occur, but keep compilers from grumbling. */
+
+ default:
+ OK = codevalue != OP_PROP;
+ break;
+ }
+
+ if (OK == (d == OP_PROP))
+ {
+ if (count > 0 && codevalue == OP_PROP_EXTRA + OP_TYPEPOSPLUS)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ count++;
+ ADD_NEW(state_offset, count);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_EXTUNI_EXTRA + OP_TYPEPLUS:
+ case OP_EXTUNI_EXTRA + OP_TYPEMINPLUS:
+ case OP_EXTUNI_EXTRA + OP_TYPEPOSPLUS:
+ count = current_state->count; /* Already matched */
+ if (count > 0) { ADD_ACTIVE(state_offset + 2, 0); }
+ if (clen > 0)
+ {
+ int lgb, rgb;
+ const pcre_uchar *nptr = ptr + clen;
+ int ncount = 0;
+ if (count > 0 && codevalue == OP_EXTUNI_EXTRA + OP_TYPEPOSPLUS)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ lgb = UCD_GRAPHBREAK(c);
+ while (nptr < end_subject)
+ {
+ dlen = 1;
+ if (!utf) d = *nptr; else { GETCHARLEN(d, nptr, dlen); }
+ rgb = UCD_GRAPHBREAK(d);
+ if ((PRIV(ucp_gbtable)[lgb] & (1 << rgb)) == 0) break;
+ ncount++;
+ lgb = rgb;
+ nptr += dlen;
+ }
+ count++;
+ ADD_NEW_DATA(-state_offset, count, ncount);
+ }
+ break;
+#endif
+
+ /*-----------------------------------------------------------------*/
+ case OP_ANYNL_EXTRA + OP_TYPEPLUS:
+ case OP_ANYNL_EXTRA + OP_TYPEMINPLUS:
+ case OP_ANYNL_EXTRA + OP_TYPEPOSPLUS:
+ count = current_state->count; /* Already matched */
+ if (count > 0) { ADD_ACTIVE(state_offset + 2, 0); }
+ if (clen > 0)
+ {
+ int ncount = 0;
+ switch (c)
+ {
+ case CHAR_VT:
+ case CHAR_FF:
+ case CHAR_NEL:
+#ifndef EBCDIC
+ case 0x2028:
+ case 0x2029:
+#endif /* Not EBCDIC */
+ if ((md->moptions & PCRE_BSR_ANYCRLF) != 0) break;
+ goto ANYNL01;
+
+ case CHAR_CR:
+ if (ptr + 1 < end_subject && RAWUCHARTEST(ptr + 1) == CHAR_LF) ncount = 1;
+ /* Fall through */
+
+ ANYNL01:
+ case CHAR_LF:
+ if (count > 0 && codevalue == OP_ANYNL_EXTRA + OP_TYPEPOSPLUS)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ count++;
+ ADD_NEW_DATA(-state_offset, count, ncount);
+ break;
+
+ default:
+ break;
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_VSPACE_EXTRA + OP_TYPEPLUS:
+ case OP_VSPACE_EXTRA + OP_TYPEMINPLUS:
+ case OP_VSPACE_EXTRA + OP_TYPEPOSPLUS:
+ count = current_state->count; /* Already matched */
+ if (count > 0) { ADD_ACTIVE(state_offset + 2, 0); }
+ if (clen > 0)
+ {
+ BOOL OK;
+ switch (c)
+ {
+ VSPACE_CASES:
+ OK = TRUE;
+ break;
+
+ default:
+ OK = FALSE;
+ break;
+ }
+
+ if (OK == (d == OP_VSPACE))
+ {
+ if (count > 0 && codevalue == OP_VSPACE_EXTRA + OP_TYPEPOSPLUS)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ count++;
+ ADD_NEW_DATA(-state_offset, count, 0);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_HSPACE_EXTRA + OP_TYPEPLUS:
+ case OP_HSPACE_EXTRA + OP_TYPEMINPLUS:
+ case OP_HSPACE_EXTRA + OP_TYPEPOSPLUS:
+ count = current_state->count; /* Already matched */
+ if (count > 0) { ADD_ACTIVE(state_offset + 2, 0); }
+ if (clen > 0)
+ {
+ BOOL OK;
+ switch (c)
+ {
+ HSPACE_CASES:
+ OK = TRUE;
+ break;
+
+ default:
+ OK = FALSE;
+ break;
+ }
+
+ if (OK == (d == OP_HSPACE))
+ {
+ if (count > 0 && codevalue == OP_HSPACE_EXTRA + OP_TYPEPOSPLUS)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ count++;
+ ADD_NEW_DATA(-state_offset, count, 0);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+#ifdef SUPPORT_UCP
+ case OP_PROP_EXTRA + OP_TYPEQUERY:
+ case OP_PROP_EXTRA + OP_TYPEMINQUERY:
+ case OP_PROP_EXTRA + OP_TYPEPOSQUERY:
+ count = 4;
+ goto QS1;
+
+ case OP_PROP_EXTRA + OP_TYPESTAR:
+ case OP_PROP_EXTRA + OP_TYPEMINSTAR:
+ case OP_PROP_EXTRA + OP_TYPEPOSSTAR:
+ count = 0;
+
+ QS1:
+
+ ADD_ACTIVE(state_offset + 4, 0);
+ if (clen > 0)
+ {
+ BOOL OK;
+ const pcre_uint32 *cp;
+ const ucd_record * prop = GET_UCD(c);
+ switch(code[2])
+ {
+ case PT_ANY:
+ OK = TRUE;
+ break;
+
+ case PT_LAMP:
+ OK = prop->chartype == ucp_Lu || prop->chartype == ucp_Ll ||
+ prop->chartype == ucp_Lt;
+ break;
+
+ case PT_GC:
+ OK = PRIV(ucp_gentype)[prop->chartype] == code[3];
+ break;
+
+ case PT_PC:
+ OK = prop->chartype == code[3];
+ break;
+
+ case PT_SC:
+ OK = prop->script == code[3];
+ break;
+
+ /* These are specials for combination cases. */
+
+ case PT_ALNUM:
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N;
+ break;
+
+ case PT_SPACE: /* Perl space */
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR;
+ break;
+
+ case PT_PXSPACE: /* POSIX space */
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
+ c == CHAR_FF || c == CHAR_CR;
+ break;
+
+ case PT_WORD:
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N ||
+ c == CHAR_UNDERSCORE;
+ break;
+
+ case PT_CLIST:
+ cp = PRIV(ucd_caseless_sets) + code[3];
+ for (;;)
+ {
+ if (c < *cp) { OK = FALSE; break; }
+ if (c == *cp++) { OK = TRUE; break; }
+ }
+ break;
+
+ case PT_UCNC:
+ OK = c == CHAR_DOLLAR_SIGN || c == CHAR_COMMERCIAL_AT ||
+ c == CHAR_GRAVE_ACCENT || (c >= 0xa0 && c <= 0xd7ff) ||
+ c >= 0xe000;
+ break;
+
+ /* Should never occur, but keep compilers from grumbling. */
+
+ default:
+ OK = codevalue != OP_PROP;
+ break;
+ }
+
+ if (OK == (d == OP_PROP))
+ {
+ if (codevalue == OP_PROP_EXTRA + OP_TYPEPOSSTAR ||
+ codevalue == OP_PROP_EXTRA + OP_TYPEPOSQUERY)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ ADD_NEW(state_offset + count, 0);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_EXTUNI_EXTRA + OP_TYPEQUERY:
+ case OP_EXTUNI_EXTRA + OP_TYPEMINQUERY:
+ case OP_EXTUNI_EXTRA + OP_TYPEPOSQUERY:
+ count = 2;
+ goto QS2;
+
+ case OP_EXTUNI_EXTRA + OP_TYPESTAR:
+ case OP_EXTUNI_EXTRA + OP_TYPEMINSTAR:
+ case OP_EXTUNI_EXTRA + OP_TYPEPOSSTAR:
+ count = 0;
+
+ QS2:
+
+ ADD_ACTIVE(state_offset + 2, 0);
+ if (clen > 0)
+ {
+ int lgb, rgb;
+ const pcre_uchar *nptr = ptr + clen;
+ int ncount = 0;
+ if (codevalue == OP_EXTUNI_EXTRA + OP_TYPEPOSSTAR ||
+ codevalue == OP_EXTUNI_EXTRA + OP_TYPEPOSQUERY)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ lgb = UCD_GRAPHBREAK(c);
+ while (nptr < end_subject)
+ {
+ dlen = 1;
+ if (!utf) d = *nptr; else { GETCHARLEN(d, nptr, dlen); }
+ rgb = UCD_GRAPHBREAK(d);
+ if ((PRIV(ucp_gbtable)[lgb] & (1 << rgb)) == 0) break;
+ ncount++;
+ lgb = rgb;
+ nptr += dlen;
+ }
+ ADD_NEW_DATA(-(state_offset + count), 0, ncount);
+ }
+ break;
+#endif
+
+ /*-----------------------------------------------------------------*/
+ case OP_ANYNL_EXTRA + OP_TYPEQUERY:
+ case OP_ANYNL_EXTRA + OP_TYPEMINQUERY:
+ case OP_ANYNL_EXTRA + OP_TYPEPOSQUERY:
+ count = 2;
+ goto QS3;
+
+ case OP_ANYNL_EXTRA + OP_TYPESTAR:
+ case OP_ANYNL_EXTRA + OP_TYPEMINSTAR:
+ case OP_ANYNL_EXTRA + OP_TYPEPOSSTAR:
+ count = 0;
+
+ QS3:
+ ADD_ACTIVE(state_offset + 2, 0);
+ if (clen > 0)
+ {
+ int ncount = 0;
+ switch (c)
+ {
+ case CHAR_VT:
+ case CHAR_FF:
+ case CHAR_NEL:
+#ifndef EBCDIC
+ case 0x2028:
+ case 0x2029:
+#endif /* Not EBCDIC */
+ if ((md->moptions & PCRE_BSR_ANYCRLF) != 0) break;
+ goto ANYNL02;
+
+ case CHAR_CR:
+ if (ptr + 1 < end_subject && RAWUCHARTEST(ptr + 1) == CHAR_LF) ncount = 1;
+ /* Fall through */
+
+ ANYNL02:
+ case CHAR_LF:
+ if (codevalue == OP_ANYNL_EXTRA + OP_TYPEPOSSTAR ||
+ codevalue == OP_ANYNL_EXTRA + OP_TYPEPOSQUERY)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ ADD_NEW_DATA(-(state_offset + (int)count), 0, ncount);
+ break;
+
+ default:
+ break;
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_VSPACE_EXTRA + OP_TYPEQUERY:
+ case OP_VSPACE_EXTRA + OP_TYPEMINQUERY:
+ case OP_VSPACE_EXTRA + OP_TYPEPOSQUERY:
+ count = 2;
+ goto QS4;
+
+ case OP_VSPACE_EXTRA + OP_TYPESTAR:
+ case OP_VSPACE_EXTRA + OP_TYPEMINSTAR:
+ case OP_VSPACE_EXTRA + OP_TYPEPOSSTAR:
+ count = 0;
+
+ QS4:
+ ADD_ACTIVE(state_offset + 2, 0);
+ if (clen > 0)
+ {
+ BOOL OK;
+ switch (c)
+ {
+ VSPACE_CASES:
+ OK = TRUE;
+ break;
+
+ default:
+ OK = FALSE;
+ break;
+ }
+ if (OK == (d == OP_VSPACE))
+ {
+ if (codevalue == OP_VSPACE_EXTRA + OP_TYPEPOSSTAR ||
+ codevalue == OP_VSPACE_EXTRA + OP_TYPEPOSQUERY)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ ADD_NEW_DATA(-(state_offset + (int)count), 0, 0);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_HSPACE_EXTRA + OP_TYPEQUERY:
+ case OP_HSPACE_EXTRA + OP_TYPEMINQUERY:
+ case OP_HSPACE_EXTRA + OP_TYPEPOSQUERY:
+ count = 2;
+ goto QS5;
+
+ case OP_HSPACE_EXTRA + OP_TYPESTAR:
+ case OP_HSPACE_EXTRA + OP_TYPEMINSTAR:
+ case OP_HSPACE_EXTRA + OP_TYPEPOSSTAR:
+ count = 0;
+
+ QS5:
+ ADD_ACTIVE(state_offset + 2, 0);
+ if (clen > 0)
+ {
+ BOOL OK;
+ switch (c)
+ {
+ HSPACE_CASES:
+ OK = TRUE;
+ break;
+
+ default:
+ OK = FALSE;
+ break;
+ }
+
+ if (OK == (d == OP_HSPACE))
+ {
+ if (codevalue == OP_HSPACE_EXTRA + OP_TYPEPOSSTAR ||
+ codevalue == OP_HSPACE_EXTRA + OP_TYPEPOSQUERY)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ ADD_NEW_DATA(-(state_offset + (int)count), 0, 0);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+#ifdef SUPPORT_UCP
+ case OP_PROP_EXTRA + OP_TYPEEXACT:
+ case OP_PROP_EXTRA + OP_TYPEUPTO:
+ case OP_PROP_EXTRA + OP_TYPEMINUPTO:
+ case OP_PROP_EXTRA + OP_TYPEPOSUPTO:
+ if (codevalue != OP_PROP_EXTRA + OP_TYPEEXACT)
+ { ADD_ACTIVE(state_offset + 1 + IMM2_SIZE + 3, 0); }
+ count = current_state->count; /* Number already matched */
+ if (clen > 0)
+ {
+ BOOL OK;
+ const pcre_uint32 *cp;
+ const ucd_record * prop = GET_UCD(c);
+ switch(code[1 + IMM2_SIZE + 1])
+ {
+ case PT_ANY:
+ OK = TRUE;
+ break;
+
+ case PT_LAMP:
+ OK = prop->chartype == ucp_Lu || prop->chartype == ucp_Ll ||
+ prop->chartype == ucp_Lt;
+ break;
+
+ case PT_GC:
+ OK = PRIV(ucp_gentype)[prop->chartype] == code[1 + IMM2_SIZE + 2];
+ break;
+
+ case PT_PC:
+ OK = prop->chartype == code[1 + IMM2_SIZE + 2];
+ break;
+
+ case PT_SC:
+ OK = prop->script == code[1 + IMM2_SIZE + 2];
+ break;
+
+ /* These are specials for combination cases. */
+
+ case PT_ALNUM:
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N;
+ break;
+
+ case PT_SPACE: /* Perl space */
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR;
+ break;
+
+ case PT_PXSPACE: /* POSIX space */
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
+ c == CHAR_FF || c == CHAR_CR;
+ break;
+
+ case PT_WORD:
+ OK = PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N ||
+ c == CHAR_UNDERSCORE;
+ break;
+
+ case PT_CLIST:
+ cp = PRIV(ucd_caseless_sets) + code[1 + IMM2_SIZE + 2];
+ for (;;)
+ {
+ if (c < *cp) { OK = FALSE; break; }
+ if (c == *cp++) { OK = TRUE; break; }
+ }
+ break;
+
+ case PT_UCNC:
+ OK = c == CHAR_DOLLAR_SIGN || c == CHAR_COMMERCIAL_AT ||
+ c == CHAR_GRAVE_ACCENT || (c >= 0xa0 && c <= 0xd7ff) ||
+ c >= 0xe000;
+ break;
+
+ /* Should never occur, but keep compilers from grumbling. */
+
+ default:
+ OK = codevalue != OP_PROP;
+ break;
+ }
+
+ if (OK == (d == OP_PROP))
+ {
+ if (codevalue == OP_PROP_EXTRA + OP_TYPEPOSUPTO)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ if (++count >= (int)GET2(code, 1))
+ { ADD_NEW(state_offset + 1 + IMM2_SIZE + 3, 0); }
+ else
+ { ADD_NEW(state_offset, count); }
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_EXTUNI_EXTRA + OP_TYPEEXACT:
+ case OP_EXTUNI_EXTRA + OP_TYPEUPTO:
+ case OP_EXTUNI_EXTRA + OP_TYPEMINUPTO:
+ case OP_EXTUNI_EXTRA + OP_TYPEPOSUPTO:
+ if (codevalue != OP_EXTUNI_EXTRA + OP_TYPEEXACT)
+ { ADD_ACTIVE(state_offset + 2 + IMM2_SIZE, 0); }
+ count = current_state->count; /* Number already matched */
+ if (clen > 0)
+ {
+ int lgb, rgb;
+ const pcre_uchar *nptr = ptr + clen;
+ int ncount = 0;
+ if (codevalue == OP_EXTUNI_EXTRA + OP_TYPEPOSUPTO)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ lgb = UCD_GRAPHBREAK(c);
+ while (nptr < end_subject)
+ {
+ dlen = 1;
+ if (!utf) d = *nptr; else { GETCHARLEN(d, nptr, dlen); }
+ rgb = UCD_GRAPHBREAK(d);
+ if ((PRIV(ucp_gbtable)[lgb] & (1 << rgb)) == 0) break;
+ ncount++;
+ lgb = rgb;
+ nptr += dlen;
+ }
+ if (nptr >= end_subject && (md->moptions & PCRE_PARTIAL_HARD) != 0)
+ reset_could_continue = TRUE;
+ if (++count >= (int)GET2(code, 1))
+ { ADD_NEW_DATA(-(state_offset + 2 + IMM2_SIZE), 0, ncount); }
+ else
+ { ADD_NEW_DATA(-state_offset, count, ncount); }
+ }
+ break;
+#endif
+
+ /*-----------------------------------------------------------------*/
+ case OP_ANYNL_EXTRA + OP_TYPEEXACT:
+ case OP_ANYNL_EXTRA + OP_TYPEUPTO:
+ case OP_ANYNL_EXTRA + OP_TYPEMINUPTO:
+ case OP_ANYNL_EXTRA + OP_TYPEPOSUPTO:
+ if (codevalue != OP_ANYNL_EXTRA + OP_TYPEEXACT)
+ { ADD_ACTIVE(state_offset + 2 + IMM2_SIZE, 0); }
+ count = current_state->count; /* Number already matched */
+ if (clen > 0)
+ {
+ int ncount = 0;
+ switch (c)
+ {
+ case CHAR_VT:
+ case CHAR_FF:
+ case CHAR_NEL:
+#ifndef EBCDIC
+ case 0x2028:
+ case 0x2029:
+#endif /* Not EBCDIC */
+ if ((md->moptions & PCRE_BSR_ANYCRLF) != 0) break;
+ goto ANYNL03;
+
+ case CHAR_CR:
+ if (ptr + 1 < end_subject && RAWUCHARTEST(ptr + 1) == CHAR_LF) ncount = 1;
+ /* Fall through */
+
+ ANYNL03:
+ case CHAR_LF:
+ if (codevalue == OP_ANYNL_EXTRA + OP_TYPEPOSUPTO)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ if (++count >= (int)GET2(code, 1))
+ { ADD_NEW_DATA(-(state_offset + 2 + IMM2_SIZE), 0, ncount); }
+ else
+ { ADD_NEW_DATA(-state_offset, count, ncount); }
+ break;
+
+ default:
+ break;
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_VSPACE_EXTRA + OP_TYPEEXACT:
+ case OP_VSPACE_EXTRA + OP_TYPEUPTO:
+ case OP_VSPACE_EXTRA + OP_TYPEMINUPTO:
+ case OP_VSPACE_EXTRA + OP_TYPEPOSUPTO:
+ if (codevalue != OP_VSPACE_EXTRA + OP_TYPEEXACT)
+ { ADD_ACTIVE(state_offset + 2 + IMM2_SIZE, 0); }
+ count = current_state->count; /* Number already matched */
+ if (clen > 0)
+ {
+ BOOL OK;
+ switch (c)
+ {
+ VSPACE_CASES:
+ OK = TRUE;
+ break;
+
+ default:
+ OK = FALSE;
+ }
+
+ if (OK == (d == OP_VSPACE))
+ {
+ if (codevalue == OP_VSPACE_EXTRA + OP_TYPEPOSUPTO)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ if (++count >= (int)GET2(code, 1))
+ { ADD_NEW_DATA(-(state_offset + 2 + IMM2_SIZE), 0, 0); }
+ else
+ { ADD_NEW_DATA(-state_offset, count, 0); }
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_HSPACE_EXTRA + OP_TYPEEXACT:
+ case OP_HSPACE_EXTRA + OP_TYPEUPTO:
+ case OP_HSPACE_EXTRA + OP_TYPEMINUPTO:
+ case OP_HSPACE_EXTRA + OP_TYPEPOSUPTO:
+ if (codevalue != OP_HSPACE_EXTRA + OP_TYPEEXACT)
+ { ADD_ACTIVE(state_offset + 2 + IMM2_SIZE, 0); }
+ count = current_state->count; /* Number already matched */
+ if (clen > 0)
+ {
+ BOOL OK;
+ switch (c)
+ {
+ HSPACE_CASES:
+ OK = TRUE;
+ break;
+
+ default:
+ OK = FALSE;
+ break;
+ }
+
+ if (OK == (d == OP_HSPACE))
+ {
+ if (codevalue == OP_HSPACE_EXTRA + OP_TYPEPOSUPTO)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ if (++count >= (int)GET2(code, 1))
+ { ADD_NEW_DATA(-(state_offset + 2 + IMM2_SIZE), 0, 0); }
+ else
+ { ADD_NEW_DATA(-state_offset, count, 0); }
+ }
+ }
+ break;
+
+/* ========================================================================== */
+ /* These opcodes are followed by a character that is usually compared
+ to the current subject character; it is loaded into d. We still get
+ here even if there is no subject character, because in some cases zero
+ repetitions are permitted. */
+
+ /*-----------------------------------------------------------------*/
+ case OP_CHAR:
+ if (clen > 0 && c == d) { ADD_NEW(state_offset + dlen + 1, 0); }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_CHARI:
+ if (clen == 0) break;
+
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ if (c == d) { ADD_NEW(state_offset + dlen + 1, 0); } else
+ {
+ unsigned int othercase;
+ if (c < 128)
+ othercase = fcc[c];
+ else
+ /* If we have Unicode property support, we can use it to test the
+ other case of the character. */
+#ifdef SUPPORT_UCP
+ othercase = UCD_OTHERCASE(c);
+#else
+ othercase = NOTACHAR;
+#endif
+
+ if (d == othercase) { ADD_NEW(state_offset + dlen + 1, 0); }
+ }
+ }
+ else
+#endif /* SUPPORT_UTF */
+ /* Not UTF mode */
+ {
+ if (TABLE_GET(c, lcc, c) == TABLE_GET(d, lcc, d))
+ { ADD_NEW(state_offset + 2, 0); }
+ }
+ break;
+
+
+#ifdef SUPPORT_UCP
+ /*-----------------------------------------------------------------*/
+ /* This is a tricky one because it can match more than one character.
+ Find out how many characters to skip, and then set up a negative state
+ to wait for them to pass before continuing. */
+
+ case OP_EXTUNI:
+ if (clen > 0)
+ {
+ int lgb, rgb;
+ const pcre_uchar *nptr = ptr + clen;
+ int ncount = 0;
+ lgb = UCD_GRAPHBREAK(c);
+ while (nptr < end_subject)
+ {
+ dlen = 1;
+ if (!utf) d = *nptr; else { GETCHARLEN(d, nptr, dlen); }
+ rgb = UCD_GRAPHBREAK(d);
+ if ((PRIV(ucp_gbtable)[lgb] & (1 << rgb)) == 0) break;
+ ncount++;
+ lgb = rgb;
+ nptr += dlen;
+ }
+ if (nptr >= end_subject && (md->moptions & PCRE_PARTIAL_HARD) != 0)
+ reset_could_continue = TRUE;
+ ADD_NEW_DATA(-(state_offset + 1), 0, ncount);
+ }
+ break;
+#endif
+
+ /*-----------------------------------------------------------------*/
+ /* This is a tricky like EXTUNI because it too can match more than one
+ character (when CR is followed by LF). In this case, set up a negative
+ state to wait for one character to pass before continuing. */
+
+ case OP_ANYNL:
+ if (clen > 0) switch(c)
+ {
+ case CHAR_VT:
+ case CHAR_FF:
+ case CHAR_NEL:
+#ifndef EBCDIC
+ case 0x2028:
+ case 0x2029:
+#endif /* Not EBCDIC */
+ if ((md->moptions & PCRE_BSR_ANYCRLF) != 0) break;
+
+ case CHAR_LF:
+ ADD_NEW(state_offset + 1, 0);
+ break;
+
+ case CHAR_CR:
+ if (ptr + 1 >= end_subject)
+ {
+ ADD_NEW(state_offset + 1, 0);
+ if ((md->moptions & PCRE_PARTIAL_HARD) != 0)
+ reset_could_continue = TRUE;
+ }
+ else if (RAWUCHARTEST(ptr + 1) == CHAR_LF)
+ {
+ ADD_NEW_DATA(-(state_offset + 1), 0, 1);
+ }
+ else
+ {
+ ADD_NEW(state_offset + 1, 0);
+ }
+ break;
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_NOT_VSPACE:
+ if (clen > 0) switch(c)
+ {
+ VSPACE_CASES:
+ break;
+
+ default:
+ ADD_NEW(state_offset + 1, 0);
+ break;
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_VSPACE:
+ if (clen > 0) switch(c)
+ {
+ VSPACE_CASES:
+ ADD_NEW(state_offset + 1, 0);
+ break;
+
+ default:
+ break;
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_NOT_HSPACE:
+ if (clen > 0) switch(c)
+ {
+ HSPACE_CASES:
+ break;
+
+ default:
+ ADD_NEW(state_offset + 1, 0);
+ break;
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_HSPACE:
+ if (clen > 0) switch(c)
+ {
+ HSPACE_CASES:
+ ADD_NEW(state_offset + 1, 0);
+ break;
+
+ default:
+ break;
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ /* Match a negated single character casefully. */
+
+ case OP_NOT:
+ if (clen > 0 && c != d) { ADD_NEW(state_offset + dlen + 1, 0); }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ /* Match a negated single character caselessly. */
+
+ case OP_NOTI:
+ if (clen > 0)
+ {
+ unsigned int otherd;
+#ifdef SUPPORT_UTF
+ if (utf && d >= 128)
+ {
+#ifdef SUPPORT_UCP
+ otherd = UCD_OTHERCASE(d);
+#endif /* SUPPORT_UCP */
+ }
+ else
+#endif /* SUPPORT_UTF */
+ otherd = TABLE_GET(d, fcc, d);
+ if (c != d && c != otherd)
+ { ADD_NEW(state_offset + dlen + 1, 0); }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_PLUSI:
+ case OP_MINPLUSI:
+ case OP_POSPLUSI:
+ case OP_NOTPLUSI:
+ case OP_NOTMINPLUSI:
+ case OP_NOTPOSPLUSI:
+ caseless = TRUE;
+ codevalue -= OP_STARI - OP_STAR;
+
+ /* Fall through */
+ case OP_PLUS:
+ case OP_MINPLUS:
+ case OP_POSPLUS:
+ case OP_NOTPLUS:
+ case OP_NOTMINPLUS:
+ case OP_NOTPOSPLUS:
+ count = current_state->count; /* Already matched */
+ if (count > 0) { ADD_ACTIVE(state_offset + dlen + 1, 0); }
+ if (clen > 0)
+ {
+ pcre_uint32 otherd = NOTACHAR;
+ if (caseless)
+ {
+#ifdef SUPPORT_UTF
+ if (utf && d >= 128)
+ {
+#ifdef SUPPORT_UCP
+ otherd = UCD_OTHERCASE(d);
+#endif /* SUPPORT_UCP */
+ }
+ else
+#endif /* SUPPORT_UTF */
+ otherd = TABLE_GET(d, fcc, d);
+ }
+ if ((c == d || c == otherd) == (codevalue < OP_NOTSTAR))
+ {
+ if (count > 0 &&
+ (codevalue == OP_POSPLUS || codevalue == OP_NOTPOSPLUS))
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ count++;
+ ADD_NEW(state_offset, count);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_QUERYI:
+ case OP_MINQUERYI:
+ case OP_POSQUERYI:
+ case OP_NOTQUERYI:
+ case OP_NOTMINQUERYI:
+ case OP_NOTPOSQUERYI:
+ caseless = TRUE;
+ codevalue -= OP_STARI - OP_STAR;
+ /* Fall through */
+ case OP_QUERY:
+ case OP_MINQUERY:
+ case OP_POSQUERY:
+ case OP_NOTQUERY:
+ case OP_NOTMINQUERY:
+ case OP_NOTPOSQUERY:
+ ADD_ACTIVE(state_offset + dlen + 1, 0);
+ if (clen > 0)
+ {
+ pcre_uint32 otherd = NOTACHAR;
+ if (caseless)
+ {
+#ifdef SUPPORT_UTF
+ if (utf && d >= 128)
+ {
+#ifdef SUPPORT_UCP
+ otherd = UCD_OTHERCASE(d);
+#endif /* SUPPORT_UCP */
+ }
+ else
+#endif /* SUPPORT_UTF */
+ otherd = TABLE_GET(d, fcc, d);
+ }
+ if ((c == d || c == otherd) == (codevalue < OP_NOTSTAR))
+ {
+ if (codevalue == OP_POSQUERY || codevalue == OP_NOTPOSQUERY)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ ADD_NEW(state_offset + dlen + 1, 0);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_STARI:
+ case OP_MINSTARI:
+ case OP_POSSTARI:
+ case OP_NOTSTARI:
+ case OP_NOTMINSTARI:
+ case OP_NOTPOSSTARI:
+ caseless = TRUE;
+ codevalue -= OP_STARI - OP_STAR;
+ /* Fall through */
+ case OP_STAR:
+ case OP_MINSTAR:
+ case OP_POSSTAR:
+ case OP_NOTSTAR:
+ case OP_NOTMINSTAR:
+ case OP_NOTPOSSTAR:
+ ADD_ACTIVE(state_offset + dlen + 1, 0);
+ if (clen > 0)
+ {
+ pcre_uint32 otherd = NOTACHAR;
+ if (caseless)
+ {
+#ifdef SUPPORT_UTF
+ if (utf && d >= 128)
+ {
+#ifdef SUPPORT_UCP
+ otherd = UCD_OTHERCASE(d);
+#endif /* SUPPORT_UCP */
+ }
+ else
+#endif /* SUPPORT_UTF */
+ otherd = TABLE_GET(d, fcc, d);
+ }
+ if ((c == d || c == otherd) == (codevalue < OP_NOTSTAR))
+ {
+ if (codevalue == OP_POSSTAR || codevalue == OP_NOTPOSSTAR)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ ADD_NEW(state_offset, 0);
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_EXACTI:
+ case OP_NOTEXACTI:
+ caseless = TRUE;
+ codevalue -= OP_STARI - OP_STAR;
+ /* Fall through */
+ case OP_EXACT:
+ case OP_NOTEXACT:
+ count = current_state->count; /* Number already matched */
+ if (clen > 0)
+ {
+ pcre_uint32 otherd = NOTACHAR;
+ if (caseless)
+ {
+#ifdef SUPPORT_UTF
+ if (utf && d >= 128)
+ {
+#ifdef SUPPORT_UCP
+ otherd = UCD_OTHERCASE(d);
+#endif /* SUPPORT_UCP */
+ }
+ else
+#endif /* SUPPORT_UTF */
+ otherd = TABLE_GET(d, fcc, d);
+ }
+ if ((c == d || c == otherd) == (codevalue < OP_NOTSTAR))
+ {
+ if (++count >= (int)GET2(code, 1))
+ { ADD_NEW(state_offset + dlen + 1 + IMM2_SIZE, 0); }
+ else
+ { ADD_NEW(state_offset, count); }
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_UPTOI:
+ case OP_MINUPTOI:
+ case OP_POSUPTOI:
+ case OP_NOTUPTOI:
+ case OP_NOTMINUPTOI:
+ case OP_NOTPOSUPTOI:
+ caseless = TRUE;
+ codevalue -= OP_STARI - OP_STAR;
+ /* Fall through */
+ case OP_UPTO:
+ case OP_MINUPTO:
+ case OP_POSUPTO:
+ case OP_NOTUPTO:
+ case OP_NOTMINUPTO:
+ case OP_NOTPOSUPTO:
+ ADD_ACTIVE(state_offset + dlen + 1 + IMM2_SIZE, 0);
+ count = current_state->count; /* Number already matched */
+ if (clen > 0)
+ {
+ pcre_uint32 otherd = NOTACHAR;
+ if (caseless)
+ {
+#ifdef SUPPORT_UTF
+ if (utf && d >= 128)
+ {
+#ifdef SUPPORT_UCP
+ otherd = UCD_OTHERCASE(d);
+#endif /* SUPPORT_UCP */
+ }
+ else
+#endif /* SUPPORT_UTF */
+ otherd = TABLE_GET(d, fcc, d);
+ }
+ if ((c == d || c == otherd) == (codevalue < OP_NOTSTAR))
+ {
+ if (codevalue == OP_POSUPTO || codevalue == OP_NOTPOSUPTO)
+ {
+ active_count--; /* Remove non-match possibility */
+ next_active_state--;
+ }
+ if (++count >= (int)GET2(code, 1))
+ { ADD_NEW(state_offset + dlen + 1 + IMM2_SIZE, 0); }
+ else
+ { ADD_NEW(state_offset, count); }
+ }
+ }
+ break;
+
+
+/* ========================================================================== */
+ /* These are the class-handling opcodes */
+
+ case OP_CLASS:
+ case OP_NCLASS:
+ case OP_XCLASS:
+ {
+ BOOL isinclass = FALSE;
+ int next_state_offset;
+ const pcre_uchar *ecode;
+
+ /* For a simple class, there is always just a 32-byte table, and we
+ can set isinclass from it. */
+
+ if (codevalue != OP_XCLASS)
+ {
+ ecode = code + 1 + (32 / sizeof(pcre_uchar));
+ if (clen > 0)
+ {
+ isinclass = (c > 255)? (codevalue == OP_NCLASS) :
+ ((((pcre_uint8 *)(code + 1))[c/8] & (1 << (c&7))) != 0);
+ }
+ }
+
+ /* An extended class may have a table or a list of single characters,
+ ranges, or both, and it may be positive or negative. There's a
+ function that sorts all this out. */
+
+ else
+ {
+ ecode = code + GET(code, 1);
+ if (clen > 0) isinclass = PRIV(xclass)(c, code + 1 + LINK_SIZE, utf);
+ }
+
+ /* At this point, isinclass is set for all kinds of class, and ecode
+ points to the byte after the end of the class. If there is a
+ quantifier, this is where it will be. */
+
+ next_state_offset = (int)(ecode - start_code);
+
+ switch (*ecode)
+ {
+ case OP_CRSTAR:
+ case OP_CRMINSTAR:
+ ADD_ACTIVE(next_state_offset + 1, 0);
+ if (isinclass) { ADD_NEW(state_offset, 0); }
+ break;
+
+ case OP_CRPLUS:
+ case OP_CRMINPLUS:
+ count = current_state->count; /* Already matched */
+ if (count > 0) { ADD_ACTIVE(next_state_offset + 1, 0); }
+ if (isinclass) { count++; ADD_NEW(state_offset, count); }
+ break;
+
+ case OP_CRQUERY:
+ case OP_CRMINQUERY:
+ ADD_ACTIVE(next_state_offset + 1, 0);
+ if (isinclass) { ADD_NEW(next_state_offset + 1, 0); }
+ break;
+
+ case OP_CRRANGE:
+ case OP_CRMINRANGE:
+ count = current_state->count; /* Already matched */
+ if (count >= (int)GET2(ecode, 1))
+ { ADD_ACTIVE(next_state_offset + 1 + 2 * IMM2_SIZE, 0); }
+ if (isinclass)
+ {
+ int max = (int)GET2(ecode, 1 + IMM2_SIZE);
+ if (++count >= max && max != 0) /* Max 0 => no limit */
+ { ADD_NEW(next_state_offset + 1 + 2 * IMM2_SIZE, 0); }
+ else
+ { ADD_NEW(state_offset, count); }
+ }
+ break;
+
+ default:
+ if (isinclass) { ADD_NEW(next_state_offset, 0); }
+ break;
+ }
+ }
+ break;
+
+/* ========================================================================== */
+ /* These are the opcodes for fancy brackets of various kinds. We have
+ to use recursion in order to handle them. The "always failing" assertion
+ (?!) is optimised to OP_FAIL when compiling, so we have to support that,
+ though the other "backtracking verbs" are not supported. */
+
+ case OP_FAIL:
+ forced_fail++; /* Count FAILs for multiple states */
+ break;
+
+ case OP_ASSERT:
+ case OP_ASSERT_NOT:
+ case OP_ASSERTBACK:
+ case OP_ASSERTBACK_NOT:
+ {
+ int rc;
+ int local_offsets[2];
+ int local_workspace[1000];
+ const pcre_uchar *endasscode = code + GET(code, 1);
+
+ while (*endasscode == OP_ALT) endasscode += GET(endasscode, 1);
+
+ rc = internal_dfa_exec(
+ md, /* static match data */
+ code, /* this subexpression's code */
+ ptr, /* where we currently are */
+ (int)(ptr - start_subject), /* start offset */
+ local_offsets, /* offset vector */
+ sizeof(local_offsets)/sizeof(int), /* size of same */
+ local_workspace, /* workspace vector */
+ sizeof(local_workspace)/sizeof(int), /* size of same */
+ rlevel); /* function recursion level */
+
+ if (rc == PCRE_ERROR_DFA_UITEM) return rc;
+ if ((rc >= 0) == (codevalue == OP_ASSERT || codevalue == OP_ASSERTBACK))
+ { ADD_ACTIVE((int)(endasscode + LINK_SIZE + 1 - start_code), 0); }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_COND:
+ case OP_SCOND:
+ {
+ int local_offsets[1000];
+ int local_workspace[1000];
+ int codelink = GET(code, 1);
+ int condcode;
+
+ /* Because of the way auto-callout works during compile, a callout item
+ is inserted between OP_COND and an assertion condition. This does not
+ happen for the other conditions. */
+
+ if (code[LINK_SIZE+1] == OP_CALLOUT)
+ {
+ rrc = 0;
+ if (PUBL(callout) != NULL)
+ {
+ PUBL(callout_block) cb;
+ cb.version = 1; /* Version 1 of the callout block */
+ cb.callout_number = code[LINK_SIZE+2];
+ cb.offset_vector = offsets;
+#if defined COMPILE_PCRE8
+ cb.subject = (PCRE_SPTR)start_subject;
+#elif defined COMPILE_PCRE16
+ cb.subject = (PCRE_SPTR16)start_subject;
+#elif defined COMPILE_PCRE32
+ cb.subject = (PCRE_SPTR32)start_subject;
+#endif
+ cb.subject_length = (int)(end_subject - start_subject);
+ cb.start_match = (int)(current_subject - start_subject);
+ cb.current_position = (int)(ptr - start_subject);
+ cb.pattern_position = GET(code, LINK_SIZE + 3);
+ cb.next_item_length = GET(code, 3 + 2*LINK_SIZE);
+ cb.capture_top = 1;
+ cb.capture_last = -1;
+ cb.callout_data = md->callout_data;
+ cb.mark = NULL; /* No (*MARK) support */
+ if ((rrc = (*PUBL(callout))(&cb)) < 0) return rrc; /* Abandon */
+ }
+ if (rrc > 0) break; /* Fail this thread */
+ code += PRIV(OP_lengths)[OP_CALLOUT]; /* Skip callout data */
+ }
+
+ condcode = code[LINK_SIZE+1];
+
+ /* Back reference conditions are not supported */
+
+ if (condcode == OP_CREF || condcode == OP_NCREF)
+ return PCRE_ERROR_DFA_UCOND;
+
+ /* The DEFINE condition is always false */
+
+ if (condcode == OP_DEF)
+ { ADD_ACTIVE(state_offset + codelink + LINK_SIZE + 1, 0); }
+
+ /* The only supported version of OP_RREF is for the value RREF_ANY,
+ which means "test if in any recursion". We can't test for specifically
+ recursed groups. */
+
+ else if (condcode == OP_RREF || condcode == OP_NRREF)
+ {
+ int value = GET2(code, LINK_SIZE + 2);
+ if (value != RREF_ANY) return PCRE_ERROR_DFA_UCOND;
+ if (md->recursive != NULL)
+ { ADD_ACTIVE(state_offset + LINK_SIZE + 2 + IMM2_SIZE, 0); }
+ else { ADD_ACTIVE(state_offset + codelink + LINK_SIZE + 1, 0); }
+ }
+
+ /* Otherwise, the condition is an assertion */
+
+ else
+ {
+ int rc;
+ const pcre_uchar *asscode = code + LINK_SIZE + 1;
+ const pcre_uchar *endasscode = asscode + GET(asscode, 1);
+
+ while (*endasscode == OP_ALT) endasscode += GET(endasscode, 1);
+
+ rc = internal_dfa_exec(
+ md, /* fixed match data */
+ asscode, /* this subexpression's code */
+ ptr, /* where we currently are */
+ (int)(ptr - start_subject), /* start offset */
+ local_offsets, /* offset vector */
+ sizeof(local_offsets)/sizeof(int), /* size of same */
+ local_workspace, /* workspace vector */
+ sizeof(local_workspace)/sizeof(int), /* size of same */
+ rlevel); /* function recursion level */
+
+ if (rc == PCRE_ERROR_DFA_UITEM) return rc;
+ if ((rc >= 0) ==
+ (condcode == OP_ASSERT || condcode == OP_ASSERTBACK))
+ { ADD_ACTIVE((int)(endasscode + LINK_SIZE + 1 - start_code), 0); }
+ else
+ { ADD_ACTIVE(state_offset + codelink + LINK_SIZE + 1, 0); }
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_RECURSE:
+ {
+ dfa_recursion_info *ri;
+ int local_offsets[1000];
+ int local_workspace[1000];
+ const pcre_uchar *callpat = start_code + GET(code, 1);
+ int recno = (callpat == md->start_code)? 0 :
+ GET2(callpat, 1 + LINK_SIZE);
+ int rc;
+
+ DPRINTF(("%.*sStarting regex recursion\n", rlevel*2-2, SP));
+
+ /* Check for repeating a recursion without advancing the subject
+ pointer. This should catch convoluted mutual recursions. (Some simple
+ cases are caught at compile time.) */
+
+ for (ri = md->recursive; ri != NULL; ri = ri->prevrec)
+ if (recno == ri->group_num && ptr == ri->subject_position)
+ return PCRE_ERROR_RECURSELOOP;
+
+ /* Remember this recursion and where we started it so as to
+ catch infinite loops. */
+
+ new_recursive.group_num = recno;
+ new_recursive.subject_position = ptr;
+ new_recursive.prevrec = md->recursive;
+ md->recursive = &new_recursive;
+
+ rc = internal_dfa_exec(
+ md, /* fixed match data */
+ callpat, /* this subexpression's code */
+ ptr, /* where we currently are */
+ (int)(ptr - start_subject), /* start offset */
+ local_offsets, /* offset vector */
+ sizeof(local_offsets)/sizeof(int), /* size of same */
+ local_workspace, /* workspace vector */
+ sizeof(local_workspace)/sizeof(int), /* size of same */
+ rlevel); /* function recursion level */
+
+ md->recursive = new_recursive.prevrec; /* Done this recursion */
+
+ DPRINTF(("%.*sReturn from regex recursion: rc=%d\n", rlevel*2-2, SP,
+ rc));
+
+ /* Ran out of internal offsets */
+
+ if (rc == 0) return PCRE_ERROR_DFA_RECURSE;
+
+ /* For each successful matched substring, set up the next state with a
+ count of characters to skip before trying it. Note that the count is in
+ characters, not bytes. */
+
+ if (rc > 0)
+ {
+ for (rc = rc*2 - 2; rc >= 0; rc -= 2)
+ {
+ int charcount = local_offsets[rc+1] - local_offsets[rc];
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf)
+ {
+ const pcre_uchar *p = start_subject + local_offsets[rc];
+ const pcre_uchar *pp = start_subject + local_offsets[rc+1];
+ while (p < pp) if (NOT_FIRSTCHAR(*p++)) charcount--;
+ }
+#endif
+ if (charcount > 0)
+ {
+ ADD_NEW_DATA(-(state_offset + LINK_SIZE + 1), 0, (charcount - 1));
+ }
+ else
+ {
+ ADD_ACTIVE(state_offset + LINK_SIZE + 1, 0);
+ }
+ }
+ }
+ else if (rc != PCRE_ERROR_NOMATCH) return rc;
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_BRAPOS:
+ case OP_SBRAPOS:
+ case OP_CBRAPOS:
+ case OP_SCBRAPOS:
+ case OP_BRAPOSZERO:
+ {
+ int charcount, matched_count;
+ const pcre_uchar *local_ptr = ptr;
+ BOOL allow_zero;
+
+ if (codevalue == OP_BRAPOSZERO)
+ {
+ allow_zero = TRUE;
+ codevalue = *(++code); /* Codevalue will be one of above BRAs */
+ }
+ else allow_zero = FALSE;
+
+ /* Loop to match the subpattern as many times as possible as if it were
+ a complete pattern. */
+
+ for (matched_count = 0;; matched_count++)
+ {
+ int local_offsets[2];
+ int local_workspace[1000];
+
+ int rc = internal_dfa_exec(
+ md, /* fixed match data */
+ code, /* this subexpression's code */
+ local_ptr, /* where we currently are */
+ (int)(ptr - start_subject), /* start offset */
+ local_offsets, /* offset vector */
+ sizeof(local_offsets)/sizeof(int), /* size of same */
+ local_workspace, /* workspace vector */
+ sizeof(local_workspace)/sizeof(int), /* size of same */
+ rlevel); /* function recursion level */
+
+ /* Failed to match */
+
+ if (rc < 0)
+ {
+ if (rc != PCRE_ERROR_NOMATCH) return rc;
+ break;
+ }
+
+ /* Matched: break the loop if zero characters matched. */
+
+ charcount = local_offsets[1] - local_offsets[0];
+ if (charcount == 0) break;
+ local_ptr += charcount; /* Advance temporary position ptr */
+ }
+
+ /* At this point we have matched the subpattern matched_count
+ times, and local_ptr is pointing to the character after the end of the
+ last match. */
+
+ if (matched_count > 0 || allow_zero)
+ {
+ const pcre_uchar *end_subpattern = code;
+ int next_state_offset;
+
+ do { end_subpattern += GET(end_subpattern, 1); }
+ while (*end_subpattern == OP_ALT);
+ next_state_offset =
+ (int)(end_subpattern - start_code + LINK_SIZE + 1);
+
+ /* Optimization: if there are no more active states, and there
+ are no new states yet set up, then skip over the subject string
+ right here, to save looping. Otherwise, set up the new state to swing
+ into action when the end of the matched substring is reached. */
+
+ if (i + 1 >= active_count && new_count == 0)
+ {
+ ptr = local_ptr;
+ clen = 0;
+ ADD_NEW(next_state_offset, 0);
+ }
+ else
+ {
+ const pcre_uchar *p = ptr;
+ const pcre_uchar *pp = local_ptr;
+ charcount = (int)(pp - p);
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf) while (p < pp) if (NOT_FIRSTCHAR(*p++)) charcount--;
+#endif
+ ADD_NEW_DATA(-next_state_offset, 0, (charcount - 1));
+ }
+ }
+ }
+ break;
+
+ /*-----------------------------------------------------------------*/
+ case OP_ONCE:
+ case OP_ONCE_NC:
+ {
+ int local_offsets[2];
+ int local_workspace[1000];
+
+ int rc = internal_dfa_exec(
+ md, /* fixed match data */
+ code, /* this subexpression's code */
+ ptr, /* where we currently are */
+ (int)(ptr - start_subject), /* start offset */
+ local_offsets, /* offset vector */
+ sizeof(local_offsets)/sizeof(int), /* size of same */
+ local_workspace, /* workspace vector */
+ sizeof(local_workspace)/sizeof(int), /* size of same */
+ rlevel); /* function recursion level */
+
+ if (rc >= 0)
+ {
+ const pcre_uchar *end_subpattern = code;
+ int charcount = local_offsets[1] - local_offsets[0];
+ int next_state_offset, repeat_state_offset;
+
+ do { end_subpattern += GET(end_subpattern, 1); }
+ while (*end_subpattern == OP_ALT);
+ next_state_offset =
+ (int)(end_subpattern - start_code + LINK_SIZE + 1);
+
+ /* If the end of this subpattern is KETRMAX or KETRMIN, we must
+ arrange for the repeat state also to be added to the relevant list.
+ Calculate the offset, or set -1 for no repeat. */
+
+ repeat_state_offset = (*end_subpattern == OP_KETRMAX ||
+ *end_subpattern == OP_KETRMIN)?
+ (int)(end_subpattern - start_code - GET(end_subpattern, 1)) : -1;
+
+ /* If we have matched an empty string, add the next state at the
+ current character pointer. This is important so that the duplicate
+ checking kicks in, which is what breaks infinite loops that match an
+ empty string. */
+
+ if (charcount == 0)
+ {
+ ADD_ACTIVE(next_state_offset, 0);
+ }
+
+ /* Optimization: if there are no more active states, and there
+ are no new states yet set up, then skip over the subject string
+ right here, to save looping. Otherwise, set up the new state to swing
+ into action when the end of the matched substring is reached. */
+
+ else if (i + 1 >= active_count && new_count == 0)
+ {
+ ptr += charcount;
+ clen = 0;
+ ADD_NEW(next_state_offset, 0);
+
+ /* If we are adding a repeat state at the new character position,
+ we must fudge things so that it is the only current state.
+ Otherwise, it might be a duplicate of one we processed before, and
+ that would cause it to be skipped. */
+
+ if (repeat_state_offset >= 0)
+ {
+ next_active_state = active_states;
+ active_count = 0;
+ i = -1;
+ ADD_ACTIVE(repeat_state_offset, 0);
+ }
+ }
+ else
+ {
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+ if (utf)
+ {
+ const pcre_uchar *p = start_subject + local_offsets[0];
+ const pcre_uchar *pp = start_subject + local_offsets[1];
+ while (p < pp) if (NOT_FIRSTCHAR(*p++)) charcount--;
+ }
+#endif
+ ADD_NEW_DATA(-next_state_offset, 0, (charcount - 1));
+ if (repeat_state_offset >= 0)
+ { ADD_NEW_DATA(-repeat_state_offset, 0, (charcount - 1)); }
+ }
+ }
+ else if (rc != PCRE_ERROR_NOMATCH) return rc;
+ }
+ break;
+
+
+/* ========================================================================== */
+ /* Handle callouts */
+
+ case OP_CALLOUT:
+ rrc = 0;
+ if (PUBL(callout) != NULL)
+ {
+ PUBL(callout_block) cb;
+ cb.version = 1; /* Version 1 of the callout block */
+ cb.callout_number = code[1];
+ cb.offset_vector = offsets;
+#if defined COMPILE_PCRE8
+ cb.subject = (PCRE_SPTR)start_subject;
+#elif defined COMPILE_PCRE16
+ cb.subject = (PCRE_SPTR16)start_subject;
+#elif defined COMPILE_PCRE32
+ cb.subject = (PCRE_SPTR32)start_subject;
+#endif
+ cb.subject_length = (int)(end_subject - start_subject);
+ cb.start_match = (int)(current_subject - start_subject);
+ cb.current_position = (int)(ptr - start_subject);
+ cb.pattern_position = GET(code, 2);
+ cb.next_item_length = GET(code, 2 + LINK_SIZE);
+ cb.capture_top = 1;
+ cb.capture_last = -1;
+ cb.callout_data = md->callout_data;
+ cb.mark = NULL; /* No (*MARK) support */
+ if ((rrc = (*PUBL(callout))(&cb)) < 0) return rrc; /* Abandon */
+ }
+ if (rrc == 0)
+ { ADD_ACTIVE(state_offset + PRIV(OP_lengths)[OP_CALLOUT], 0); }
+ break;
+
+
+/* ========================================================================== */
+ default: /* Unsupported opcode */
+ return PCRE_ERROR_DFA_UITEM;
+ }
+
+ NEXT_ACTIVE_STATE: continue;
+
+ } /* End of loop scanning active states */
+
+ /* We have finished the processing at the current subject character. If no
+ new states have been set for the next character, we have found all the
+ matches that we are going to find. If we are at the top level and partial
+ matching has been requested, check for appropriate conditions.
+
+ The "forced_ fail" variable counts the number of (*F) encountered for the
+ character. If it is equal to the original active_count (saved in
+ workspace[1]) it means that (*F) was found on every active state. In this
+ case we don't want to give a partial match.
+
+ The "could_continue" variable is true if a state could have continued but
+ for the fact that the end of the subject was reached. */
+
+ if (new_count <= 0)
+ {
+ if (rlevel == 1 && /* Top level, and */
+ could_continue && /* Some could go on, and */
+ forced_fail != workspace[1] && /* Not all forced fail & */
+ ( /* either... */
+ (md->moptions & PCRE_PARTIAL_HARD) != 0 /* Hard partial */
+ || /* or... */
+ ((md->moptions & PCRE_PARTIAL_SOFT) != 0 && /* Soft partial and */
+ match_count < 0) /* no matches */
+ ) && /* And... */
+ (
+ partial_newline || /* Either partial NL */
+ ( /* or ... */
+ ptr >= end_subject && /* End of subject and */
+ ptr > md->start_used_ptr) /* Inspected non-empty string */
+ )
+ )
+ match_count = PCRE_ERROR_PARTIAL;
+ DPRINTF(("%.*sEnd of internal_dfa_exec %d: returning %d\n"
+ "%.*s---------------------\n\n", rlevel*2-2, SP, rlevel, match_count,
+ rlevel*2-2, SP));
+ break; /* In effect, "return", but see the comment below */
+ }
+
+ /* One or more states are active for the next character. */
+
+ ptr += clen; /* Advance to next subject character */
+ } /* Loop to move along the subject string */
+
+/* Control gets here from "break" a few lines above. We do it this way because
+if we use "return" above, we have compiler trouble. Some compilers warn if
+there's nothing here because they think the function doesn't return a value. On
+the other hand, if we put a dummy statement here, some more clever compilers
+complain that it can't be reached. Sigh. */
+
+return match_count;
+}
+
+
+
+
+/*************************************************
+* Execute a Regular Expression - DFA engine *
+*************************************************/
+
+/* This external function applies a compiled re to a subject string using a DFA
+engine. This function calls the internal function multiple times if the pattern
+is not anchored.
+
+Arguments:
+ argument_re points to the compiled expression
+ extra_data points to extra data or is NULL
+ subject points to the subject string
+ length length of subject string (may contain binary zeros)
+ start_offset where to start in the subject string
+ options option bits
+ offsets vector of match offsets
+ offsetcount size of same
+ workspace workspace vector
+ wscount size of same
+
+Returns: > 0 => number of match offset pairs placed in offsets
+ = 0 => offsets overflowed; longest matches are present
+ -1 => failed to match
+ < -1 => some kind of unexpected problem
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_dfa_exec(const pcre *argument_re, const pcre_extra *extra_data,
+ const char *subject, int length, int start_offset, int options, int *offsets,
+ int offsetcount, int *workspace, int wscount)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_dfa_exec(const pcre16 *argument_re, const pcre16_extra *extra_data,
+ PCRE_SPTR16 subject, int length, int start_offset, int options, int *offsets,
+ int offsetcount, int *workspace, int wscount)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_dfa_exec(const pcre32 *argument_re, const pcre32_extra *extra_data,
+ PCRE_SPTR32 subject, int length, int start_offset, int options, int *offsets,
+ int offsetcount, int *workspace, int wscount)
+#endif
+{
+REAL_PCRE *re = (REAL_PCRE *)argument_re;
+dfa_match_data match_block;
+dfa_match_data *md = &match_block;
+BOOL utf, anchored, startline, firstline;
+const pcre_uchar *current_subject, *end_subject;
+const pcre_study_data *study = NULL;
+
+const pcre_uchar *req_char_ptr;
+const pcre_uint8 *start_bits = NULL;
+BOOL has_first_char = FALSE;
+BOOL has_req_char = FALSE;
+pcre_uchar first_char = 0;
+pcre_uchar first_char2 = 0;
+pcre_uchar req_char = 0;
+pcre_uchar req_char2 = 0;
+int newline;
+
+/* Plausibility checks */
+
+if ((options & ~PUBLIC_DFA_EXEC_OPTIONS) != 0) return PCRE_ERROR_BADOPTION;
+if (re == NULL || subject == NULL || workspace == NULL ||
+ (offsets == NULL && offsetcount > 0)) return PCRE_ERROR_NULL;
+if (offsetcount < 0) return PCRE_ERROR_BADCOUNT;
+if (wscount < 20) return PCRE_ERROR_DFA_WSSIZE;
+if (length < 0) return PCRE_ERROR_BADLENGTH;
+if (start_offset < 0 || start_offset > length) return PCRE_ERROR_BADOFFSET;
+
+/* Check that the first field in the block is the magic number. If it is not,
+return with PCRE_ERROR_BADMAGIC. However, if the magic number is equal to
+REVERSED_MAGIC_NUMBER we return with PCRE_ERROR_BADENDIANNESS, which
+means that the pattern is likely compiled with different endianness. */
+
+if (re->magic_number != MAGIC_NUMBER)
+ return re->magic_number == REVERSED_MAGIC_NUMBER?
+ PCRE_ERROR_BADENDIANNESS:PCRE_ERROR_BADMAGIC;
+if ((re->flags & PCRE_MODE) == 0) return PCRE_ERROR_BADMODE;
+
+/* If restarting after a partial match, do some sanity checks on the contents
+of the workspace. */
+
+if ((options & PCRE_DFA_RESTART) != 0)
+ {
+ if ((workspace[0] & (-2)) != 0 || workspace[1] < 1 ||
+ workspace[1] > (wscount - 2)/INTS_PER_STATEBLOCK)
+ return PCRE_ERROR_DFA_BADRESTART;
+ }
+
+/* Set up study, callout, and table data */
+
+md->tables = re->tables;
+md->callout_data = NULL;
+
+if (extra_data != NULL)
+ {
+ unsigned int flags = extra_data->flags;
+ if ((flags & PCRE_EXTRA_STUDY_DATA) != 0)
+ study = (const pcre_study_data *)extra_data->study_data;
+ if ((flags & PCRE_EXTRA_MATCH_LIMIT) != 0) return PCRE_ERROR_DFA_UMLIMIT;
+ if ((flags & PCRE_EXTRA_MATCH_LIMIT_RECURSION) != 0)
+ return PCRE_ERROR_DFA_UMLIMIT;
+ if ((flags & PCRE_EXTRA_CALLOUT_DATA) != 0)
+ md->callout_data = extra_data->callout_data;
+ if ((flags & PCRE_EXTRA_TABLES) != 0)
+ md->tables = extra_data->tables;
+ }
+
+/* Set some local values */
+
+current_subject = (const pcre_uchar *)subject + start_offset;
+end_subject = (const pcre_uchar *)subject + length;
+req_char_ptr = current_subject - 1;
+
+#ifdef SUPPORT_UTF
+/* PCRE_UTF(16|32) have the same value as PCRE_UTF8. */
+utf = (re->options & PCRE_UTF8) != 0;
+#else
+utf = FALSE;
+#endif
+
+anchored = (options & (PCRE_ANCHORED|PCRE_DFA_RESTART)) != 0 ||
+ (re->options & PCRE_ANCHORED) != 0;
+
+/* The remaining fixed data for passing around. */
+
+md->start_code = (const pcre_uchar *)argument_re +
+ re->name_table_offset + re->name_count * re->name_entry_size;
+md->start_subject = (const pcre_uchar *)subject;
+md->end_subject = end_subject;
+md->start_offset = start_offset;
+md->moptions = options;
+md->poptions = re->options;
+
+/* If the BSR option is not set at match time, copy what was set
+at compile time. */
+
+if ((md->moptions & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) == 0)
+ {
+ if ((re->options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) != 0)
+ md->moptions |= re->options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE);
+#ifdef BSR_ANYCRLF
+ else md->moptions |= PCRE_BSR_ANYCRLF;
+#endif
+ }
+
+/* Handle different types of newline. The three bits give eight cases. If
+nothing is set at run time, whatever was used at compile time applies. */
+
+switch ((((options & PCRE_NEWLINE_BITS) == 0)? re->options : (pcre_uint32)options) &
+ PCRE_NEWLINE_BITS)
+ {
+ case 0: newline = NEWLINE; break; /* Compile-time default */
+ case PCRE_NEWLINE_CR: newline = CHAR_CR; break;
+ case PCRE_NEWLINE_LF: newline = CHAR_NL; break;
+ case PCRE_NEWLINE_CR+
+ PCRE_NEWLINE_LF: newline = (CHAR_CR << 8) | CHAR_NL; break;
+ case PCRE_NEWLINE_ANY: newline = -1; break;
+ case PCRE_NEWLINE_ANYCRLF: newline = -2; break;
+ default: return PCRE_ERROR_BADNEWLINE;
+ }
+
+if (newline == -2)
+ {
+ md->nltype = NLTYPE_ANYCRLF;
+ }
+else if (newline < 0)
+ {
+ md->nltype = NLTYPE_ANY;
+ }
+else
+ {
+ md->nltype = NLTYPE_FIXED;
+ if (newline > 255)
+ {
+ md->nllen = 2;
+ md->nl[0] = (newline >> 8) & 255;
+ md->nl[1] = newline & 255;
+ }
+ else
+ {
+ md->nllen = 1;
+ md->nl[0] = newline;
+ }
+ }
+
+/* Check a UTF-8 string if required. Unfortunately there's no way of passing
+back the character offset. */
+
+#ifdef SUPPORT_UTF
+if (utf && (options & PCRE_NO_UTF8_CHECK) == 0)
+ {
+ int erroroffset;
+ int errorcode = PRIV(valid_utf)((pcre_uchar *)subject, length, &erroroffset);
+ if (errorcode != 0)
+ {
+ if (offsetcount >= 2)
+ {
+ offsets[0] = erroroffset;
+ offsets[1] = errorcode;
+ }
+#if defined COMPILE_PCRE8
+ return (errorcode <= PCRE_UTF8_ERR5 && (options & PCRE_PARTIAL_HARD) != 0) ?
+ PCRE_ERROR_SHORTUTF8 : PCRE_ERROR_BADUTF8;
+#elif defined COMPILE_PCRE16
+ return (errorcode <= PCRE_UTF16_ERR1 && (options & PCRE_PARTIAL_HARD) != 0) ?
+ PCRE_ERROR_SHORTUTF16 : PCRE_ERROR_BADUTF16;
+#elif defined COMPILE_PCRE32
+ return PCRE_ERROR_BADUTF32;
+#endif
+ }
+#if defined COMPILE_PCRE8 || defined COMPILE_PCRE16
+ if (start_offset > 0 && start_offset < length &&
+ NOT_FIRSTCHAR(((PCRE_PUCHAR)subject)[start_offset]))
+ return PCRE_ERROR_BADUTF8_OFFSET;
+#endif
+ }
+#endif
+
+/* If the exec call supplied NULL for tables, use the inbuilt ones. This
+is a feature that makes it possible to save compiled regex and re-use them
+in other programs later. */
+
+if (md->tables == NULL) md->tables = PRIV(default_tables);
+
+/* The "must be at the start of a line" flags are used in a loop when finding
+where to start. */
+
+startline = (re->flags & PCRE_STARTLINE) != 0;
+firstline = (re->options & PCRE_FIRSTLINE) != 0;
+
+/* Set up the first character to match, if available. The first_byte value is
+never set for an anchored regular expression, but the anchoring may be forced
+at run time, so we have to test for anchoring. The first char may be unset for
+an unanchored pattern, of course. If there's no first char and the pattern was
+studied, there may be a bitmap of possible first characters. */
+
+if (!anchored)
+ {
+ if ((re->flags & PCRE_FIRSTSET) != 0)
+ {
+ has_first_char = TRUE;
+ first_char = first_char2 = (pcre_uchar)(re->first_char);
+ if ((re->flags & PCRE_FCH_CASELESS) != 0)
+ {
+ first_char2 = TABLE_GET(first_char, md->tables + fcc_offset, first_char);
+#if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
+ if (utf && first_char > 127)
+ first_char2 = UCD_OTHERCASE(first_char);
+#endif
+ }
+ }
+ else
+ {
+ if (!startline && study != NULL &&
+ (study->flags & PCRE_STUDY_MAPPED) != 0)
+ start_bits = study->start_bits;
+ }
+ }
+
+/* For anchored or unanchored matches, there may be a "last known required
+character" set. */
+
+if ((re->flags & PCRE_REQCHSET) != 0)
+ {
+ has_req_char = TRUE;
+ req_char = req_char2 = (pcre_uchar)(re->req_char);
+ if ((re->flags & PCRE_RCH_CASELESS) != 0)
+ {
+ req_char2 = TABLE_GET(req_char, md->tables + fcc_offset, req_char);
+#if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
+ if (utf && req_char > 127)
+ req_char2 = UCD_OTHERCASE(req_char);
+#endif
+ }
+ }
+
+/* Call the main matching function, looping for a non-anchored regex after a
+failed match. If not restarting, perform certain optimizations at the start of
+a match. */
+
+for (;;)
+ {
+ int rc;
+
+ if ((options & PCRE_DFA_RESTART) == 0)
+ {
+ const pcre_uchar *save_end_subject = end_subject;
+
+ /* If firstline is TRUE, the start of the match is constrained to the first
+ line of a multiline string. Implement this by temporarily adjusting
+ end_subject so that we stop scanning at a newline. If the match fails at
+ the newline, later code breaks this loop. */
+
+ if (firstline)
+ {
+ PCRE_PUCHAR t = current_subject;
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ while (t < md->end_subject && !IS_NEWLINE(t))
+ {
+ t++;
+ ACROSSCHAR(t < end_subject, *t, t++);
+ }
+ }
+ else
+#endif
+ while (t < md->end_subject && !IS_NEWLINE(t)) t++;
+ end_subject = t;
+ }
+
+ /* There are some optimizations that avoid running the match if a known
+ starting point is not found. However, there is an option that disables
+ these, for testing and for ensuring that all callouts do actually occur.
+ The option can be set in the regex by (*NO_START_OPT) or passed in
+ match-time options. */
+
+ if (((options | re->options) & PCRE_NO_START_OPTIMIZE) == 0)
+ {
+ /* Advance to a known first char. */
+
+ if (has_first_char)
+ {
+ if (first_char != first_char2)
+ {
+ pcre_uchar csc;
+ while (current_subject < end_subject &&
+ (csc = RAWUCHARTEST(current_subject)) != first_char && csc != first_char2)
+ current_subject++;
+ }
+ else
+ while (current_subject < end_subject &&
+ RAWUCHARTEST(current_subject) != first_char)
+ current_subject++;
+ }
+
+ /* Or to just after a linebreak for a multiline match if possible */
+
+ else if (startline)
+ {
+ if (current_subject > md->start_subject + start_offset)
+ {
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ while (current_subject < end_subject &&
+ !WAS_NEWLINE(current_subject))
+ {
+ current_subject++;
+ ACROSSCHAR(current_subject < end_subject, *current_subject,
+ current_subject++);
+ }
+ }
+ else
+#endif
+ while (current_subject < end_subject && !WAS_NEWLINE(current_subject))
+ current_subject++;
+
+ /* If we have just passed a CR and the newline option is ANY or
+ ANYCRLF, and we are now at a LF, advance the match position by one
+ more character. */
+
+ if (RAWUCHARTEST(current_subject - 1) == CHAR_CR &&
+ (md->nltype == NLTYPE_ANY || md->nltype == NLTYPE_ANYCRLF) &&
+ current_subject < end_subject &&
+ RAWUCHARTEST(current_subject) == CHAR_NL)
+ current_subject++;
+ }
+ }
+
+ /* Or to a non-unique first char after study */
+
+ else if (start_bits != NULL)
+ {
+ while (current_subject < end_subject)
+ {
+ register pcre_uint32 c = RAWUCHARTEST(current_subject);
+#ifndef COMPILE_PCRE8
+ if (c > 255) c = 255;
+#endif
+ if ((start_bits[c/8] & (1 << (c&7))) == 0)
+ {
+ current_subject++;
+#if defined SUPPORT_UTF && defined COMPILE_PCRE8
+ /* In non 8-bit mode, the iteration will stop for
+ characters > 255 at the beginning or not stop at all. */
+ if (utf)
+ ACROSSCHAR(current_subject < end_subject, *current_subject,
+ current_subject++);
+#endif
+ }
+ else break;
+ }
+ }
+ }
+
+ /* Restore fudged end_subject */
+
+ end_subject = save_end_subject;
+
+ /* The following two optimizations are disabled for partial matching or if
+ disabling is explicitly requested (and of course, by the test above, this
+ code is not obeyed when restarting after a partial match). */
+
+ if (((options | re->options) & PCRE_NO_START_OPTIMIZE) == 0 &&
+ (options & (PCRE_PARTIAL_HARD|PCRE_PARTIAL_SOFT)) == 0)
+ {
+ /* If the pattern was studied, a minimum subject length may be set. This
+ is a lower bound; no actual string of that length may actually match the
+ pattern. Although the value is, strictly, in characters, we treat it as
+ bytes to avoid spending too much time in this optimization. */
+
+ if (study != NULL && (study->flags & PCRE_STUDY_MINLEN) != 0 &&
+ (pcre_uint32)(end_subject - current_subject) < study->minlength)
+ return PCRE_ERROR_NOMATCH;
+
+ /* If req_char is set, we know that that character must appear in the
+ subject for the match to succeed. If the first character is set, req_char
+ must be later in the subject; otherwise the test starts at the match
+ point. This optimization can save a huge amount of work in patterns with
+ nested unlimited repeats that aren't going to match. Writing separate
+ code for cased/caseless versions makes it go faster, as does using an
+ autoincrement and backing off on a match.
+
+ HOWEVER: when the subject string is very, very long, searching to its end
+ can take a long time, and give bad performance on quite ordinary
+ patterns. This showed up when somebody was matching /^C/ on a 32-megabyte
+ string... so we don't do this when the string is sufficiently long. */
+
+ if (has_req_char && end_subject - current_subject < REQ_BYTE_MAX)
+ {
+ register PCRE_PUCHAR p = current_subject + (has_first_char? 1:0);
+
+ /* We don't need to repeat the search if we haven't yet reached the
+ place we found it at last time. */
+
+ if (p > req_char_ptr)
+ {
+ if (req_char != req_char2)
+ {
+ while (p < end_subject)
+ {
+ register pcre_uint32 pp = RAWUCHARINCTEST(p);
+ if (pp == req_char || pp == req_char2) { p--; break; }
+ }
+ }
+ else
+ {
+ while (p < end_subject)
+ {
+ if (RAWUCHARINCTEST(p) == req_char) { p--; break; }
+ }
+ }
+
+ /* If we can't find the required character, break the matching loop,
+ which will cause a return or PCRE_ERROR_NOMATCH. */
+
+ if (p >= end_subject) break;
+
+ /* If we have found the required character, save the point where we
+ found it, so that we don't search again next time round the loop if
+ the start hasn't passed this character yet. */
+
+ req_char_ptr = p;
+ }
+ }
+ }
+ } /* End of optimizations that are done when not restarting */
+
+ /* OK, now we can do the business */
+
+ md->start_used_ptr = current_subject;
+ md->recursive = NULL;
+
+ rc = internal_dfa_exec(
+ md, /* fixed match data */
+ md->start_code, /* this subexpression's code */
+ current_subject, /* where we currently are */
+ start_offset, /* start offset in subject */
+ offsets, /* offset vector */
+ offsetcount, /* size of same */
+ workspace, /* workspace vector */
+ wscount, /* size of same */
+ 0); /* function recurse level */
+
+ /* Anything other than "no match" means we are done, always; otherwise, carry
+ on only if not anchored. */
+
+ if (rc != PCRE_ERROR_NOMATCH || anchored)
+ {
+ if (rc == PCRE_ERROR_PARTIAL && offsetcount >= 2)
+ {
+ offsets[0] = (int)(md->start_used_ptr - (PCRE_PUCHAR)subject);
+ offsets[1] = (int)(end_subject - (PCRE_PUCHAR)subject);
+ if (offsetcount > 2)
+ offsets[2] = (int)(current_subject - (PCRE_PUCHAR)subject);
+ }
+ return rc;
+ }
+
+ /* Advance to the next subject character unless we are at the end of a line
+ and firstline is set. */
+
+ if (firstline && IS_NEWLINE(current_subject)) break;
+ current_subject++;
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ ACROSSCHAR(current_subject < end_subject, *current_subject,
+ current_subject++);
+ }
+#endif
+ if (current_subject > end_subject) break;
+
+ /* If we have just passed a CR and we are now at a LF, and the pattern does
+ not contain any explicit matches for \r or \n, and the newline option is CRLF
+ or ANY or ANYCRLF, advance the match position by one more character. */
+
+ if (RAWUCHARTEST(current_subject - 1) == CHAR_CR &&
+ current_subject < end_subject &&
+ RAWUCHARTEST(current_subject) == CHAR_NL &&
+ (re->flags & PCRE_HASCRORLF) == 0 &&
+ (md->nltype == NLTYPE_ANY ||
+ md->nltype == NLTYPE_ANYCRLF ||
+ md->nllen == 2))
+ current_subject++;
+
+ } /* "Bumpalong" loop */
+
+return PCRE_ERROR_NOMATCH;
+}
+
+/* End of pcre_dfa_exec.c */
diff --git a/pcre/pcre_exec.c b/pcre/pcre_exec.c
new file mode 100644
index 00000000000..ab76d020d16
--- /dev/null
+++ b/pcre/pcre_exec.c
@@ -0,0 +1,7213 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2013 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* This module contains pcre_exec(), the externally visible function that does
+pattern matching using an NFA algorithm, trying to mimic Perl as closely as
+possible. There are also some static supporting functions. */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#define NLBLOCK md /* Block containing newline information */
+#define PSSTART start_subject /* Field containing processed string start */
+#define PSEND end_subject /* Field containing processed string end */
+
+#include "pcre_internal.h"
+
+/* Undefine some potentially clashing cpp symbols */
+
+#undef min
+#undef max
+
+/* The md->capture_last field uses the lower 16 bits for the last captured
+substring (which can never be greater than 65535) and a bit in the top half
+to mean "capture vector overflowed". This odd way of doing things was
+implemented when it was realized that preserving and restoring the overflow bit
+whenever the last capture number was saved/restored made for a neater
+interface, and doing it this way saved on (a) another variable, which would
+have increased the stack frame size (a big NO-NO in PCRE) and (b) another
+separate set of save/restore instructions. The following defines are used in
+implementing this. */
+
+#define CAPLMASK 0x0000ffff /* The bits used for last_capture */
+#define OVFLMASK 0xffff0000 /* The bits used for the overflow flag */
+#define OVFLBIT 0x00010000 /* The bit that is set for overflow */
+
+/* Values for setting in md->match_function_type to indicate two special types
+of call to match(). We do it this way to save on using another stack variable,
+as stack usage is to be discouraged. */
+
+#define MATCH_CONDASSERT 1 /* Called to check a condition assertion */
+#define MATCH_CBEGROUP 2 /* Could-be-empty unlimited repeat group */
+
+/* Non-error returns from the match() function. Error returns are externally
+defined PCRE_ERROR_xxx codes, which are all negative. */
+
+#define MATCH_MATCH 1
+#define MATCH_NOMATCH 0
+
+/* Special internal returns from the match() function. Make them sufficiently
+negative to avoid the external error codes. */
+
+#define MATCH_ACCEPT (-999)
+#define MATCH_KETRPOS (-998)
+#define MATCH_ONCE (-997)
+/* The next 5 must be kept together and in sequence so that a test that checks
+for any one of them can use a range. */
+#define MATCH_COMMIT (-996)
+#define MATCH_PRUNE (-995)
+#define MATCH_SKIP (-994)
+#define MATCH_SKIP_ARG (-993)
+#define MATCH_THEN (-992)
+#define MATCH_BACKTRACK_MAX MATCH_THEN
+#define MATCH_BACKTRACK_MIN MATCH_COMMIT
+
+/* Maximum number of ints of offset to save on the stack for recursive calls.
+If the offset vector is bigger, malloc is used. This should be a multiple of 3,
+because the offset vector is always a multiple of 3 long. */
+
+#define REC_STACK_SAVE_MAX 30
+
+/* Min and max values for the common repeats; for the maxima, 0 => infinity */
+
+static const char rep_min[] = { 0, 0, 1, 1, 0, 0 };
+static const char rep_max[] = { 0, 0, 0, 0, 1, 1 };
+
+#ifdef PCRE_DEBUG
+/*************************************************
+* Debugging function to print chars *
+*************************************************/
+
+/* Print a sequence of chars in printable format, stopping at the end of the
+subject if the requested.
+
+Arguments:
+ p points to characters
+ length number to print
+ is_subject TRUE if printing from within md->start_subject
+ md pointer to matching data block, if is_subject is TRUE
+
+Returns: nothing
+*/
+
+static void
+pchars(const pcre_uchar *p, int length, BOOL is_subject, match_data *md)
+{
+pcre_uint32 c;
+BOOL utf = md->utf;
+if (is_subject && length > md->end_subject - p) length = md->end_subject - p;
+while (length-- > 0)
+ if (isprint(c = RAWUCHARINCTEST(p))) printf("%c", (char)c); else printf("\\x{%02x}", c);
+}
+#endif
+
+
+
+/*************************************************
+* Match a back-reference *
+*************************************************/
+
+/* Normally, if a back reference hasn't been set, the length that is passed is
+negative, so the match always fails. However, in JavaScript compatibility mode,
+the length passed is zero. Note that in caseless UTF-8 mode, the number of
+subject bytes matched may be different to the number of reference bytes.
+
+Arguments:
+ offset index into the offset vector
+ eptr pointer into the subject
+ length length of reference to be matched (number of bytes)
+ md points to match data block
+ caseless TRUE if caseless
+
+Returns: >= 0 the number of subject bytes matched
+ -1 no match
+ -2 partial match; always given if at end subject
+*/
+
+static int
+match_ref(int offset, register PCRE_PUCHAR eptr, int length, match_data *md,
+ BOOL caseless)
+{
+PCRE_PUCHAR eptr_start = eptr;
+register PCRE_PUCHAR p = md->start_subject + md->offset_vector[offset];
+#ifdef SUPPORT_UTF
+BOOL utf = md->utf;
+#endif
+
+#ifdef PCRE_DEBUG
+if (eptr >= md->end_subject)
+ printf("matching subject ");
+else
+ {
+ printf("matching subject ");
+ pchars(eptr, length, TRUE, md);
+ }
+printf(" against backref ");
+pchars(p, length, FALSE, md);
+printf("\n");
+#endif
+
+/* Always fail if reference not set (and not JavaScript compatible - in that
+case the length is passed as zero). */
+
+if (length < 0) return -1;
+
+/* Separate the caseless case for speed. In UTF-8 mode we can only do this
+properly if Unicode properties are supported. Otherwise, we can check only
+ASCII characters. */
+
+if (caseless)
+ {
+#ifdef SUPPORT_UTF
+#ifdef SUPPORT_UCP
+ if (utf)
+ {
+ /* Match characters up to the end of the reference. NOTE: the number of
+ data units matched may differ, because in UTF-8 there are some characters
+ whose upper and lower case versions code have different numbers of bytes.
+ For example, U+023A (2 bytes in UTF-8) is the upper case version of U+2C65
+ (3 bytes in UTF-8); a sequence of 3 of the former uses 6 bytes, as does a
+ sequence of two of the latter. It is important, therefore, to check the
+ length along the reference, not along the subject (earlier code did this
+ wrong). */
+
+ PCRE_PUCHAR endptr = p + length;
+ while (p < endptr)
+ {
+ pcre_uint32 c, d;
+ const ucd_record *ur;
+ if (eptr >= md->end_subject) return -2; /* Partial match */
+ GETCHARINC(c, eptr);
+ GETCHARINC(d, p);
+ ur = GET_UCD(d);
+ if (c != d && c != d + ur->other_case)
+ {
+ const pcre_uint32 *pp = PRIV(ucd_caseless_sets) + ur->caseset;
+ for (;;)
+ {
+ if (c < *pp) return -1;
+ if (c == *pp++) break;
+ }
+ }
+ }
+ }
+ else
+#endif
+#endif
+
+ /* The same code works when not in UTF-8 mode and in UTF-8 mode when there
+ is no UCP support. */
+ {
+ while (length-- > 0)
+ {
+ pcre_uint32 cc, cp;
+ if (eptr >= md->end_subject) return -2; /* Partial match */
+ cc = RAWUCHARTEST(eptr);
+ cp = RAWUCHARTEST(p);
+ if (TABLE_GET(cp, md->lcc, cp) != TABLE_GET(cc, md->lcc, cc)) return -1;
+ p++;
+ eptr++;
+ }
+ }
+ }
+
+/* In the caseful case, we can just compare the bytes, whether or not we
+are in UTF-8 mode. */
+
+else
+ {
+ while (length-- > 0)
+ {
+ if (eptr >= md->end_subject) return -2; /* Partial match */
+ if (RAWUCHARINCTEST(p) != RAWUCHARINCTEST(eptr)) return -1;
+ }
+ }
+
+return (int)(eptr - eptr_start);
+}
+
+
+
+/***************************************************************************
+****************************************************************************
+ RECURSION IN THE match() FUNCTION
+
+The match() function is highly recursive, though not every recursive call
+increases the recursive depth. Nevertheless, some regular expressions can cause
+it to recurse to a great depth. I was writing for Unix, so I just let it call
+itself recursively. This uses the stack for saving everything that has to be
+saved for a recursive call. On Unix, the stack can be large, and this works
+fine.
+
+It turns out that on some non-Unix-like systems there are problems with
+programs that use a lot of stack. (This despite the fact that every last chip
+has oodles of memory these days, and techniques for extending the stack have
+been known for decades.) So....
+
+There is a fudge, triggered by defining NO_RECURSE, which avoids recursive
+calls by keeping local variables that need to be preserved in blocks of memory
+obtained from malloc() instead instead of on the stack. Macros are used to
+achieve this so that the actual code doesn't look very different to what it
+always used to.
+
+The original heap-recursive code used longjmp(). However, it seems that this
+can be very slow on some operating systems. Following a suggestion from Stan
+Switzer, the use of longjmp() has been abolished, at the cost of having to
+provide a unique number for each call to RMATCH. There is no way of generating
+a sequence of numbers at compile time in C. I have given them names, to make
+them stand out more clearly.
+
+Crude tests on x86 Linux show a small speedup of around 5-8%. However, on
+FreeBSD, avoiding longjmp() more than halves the time taken to run the standard
+tests. Furthermore, not using longjmp() means that local dynamic variables
+don't have indeterminate values; this has meant that the frame size can be
+reduced because the result can be "passed back" by straight setting of the
+variable instead of being passed in the frame.
+****************************************************************************
+***************************************************************************/
+
+/* Numbers for RMATCH calls. When this list is changed, the code at HEAP_RETURN
+below must be updated in sync. */
+
+enum { RM1=1, RM2, RM3, RM4, RM5, RM6, RM7, RM8, RM9, RM10,
+ RM11, RM12, RM13, RM14, RM15, RM16, RM17, RM18, RM19, RM20,
+ RM21, RM22, RM23, RM24, RM25, RM26, RM27, RM28, RM29, RM30,
+ RM31, RM32, RM33, RM34, RM35, RM36, RM37, RM38, RM39, RM40,
+ RM41, RM42, RM43, RM44, RM45, RM46, RM47, RM48, RM49, RM50,
+ RM51, RM52, RM53, RM54, RM55, RM56, RM57, RM58, RM59, RM60,
+ RM61, RM62, RM63, RM64, RM65, RM66, RM67, RM68 };
+
+/* These versions of the macros use the stack, as normal. There are debugging
+versions and production versions. Note that the "rw" argument of RMATCH isn't
+actually used in this definition. */
+
+#ifndef NO_RECURSE
+#define REGISTER register
+
+#ifdef PCRE_DEBUG
+#define RMATCH(ra,rb,rc,rd,re,rw) \
+ { \
+ printf("match() called in line %d\n", __LINE__); \
+ rrc = match(ra,rb,mstart,rc,rd,re,rdepth+1); \
+ printf("to line %d\n", __LINE__); \
+ }
+#define RRETURN(ra) \
+ { \
+ printf("match() returned %d from line %d\n", ra, __LINE__); \
+ return ra; \
+ }
+#else
+#define RMATCH(ra,rb,rc,rd,re,rw) \
+ rrc = match(ra,rb,mstart,rc,rd,re,rdepth+1)
+#define RRETURN(ra) return ra
+#endif
+
+#else
+
+
+/* These versions of the macros manage a private stack on the heap. Note that
+the "rd" argument of RMATCH isn't actually used in this definition. It's the md
+argument of match(), which never changes. */
+
+#define REGISTER
+
+#define RMATCH(ra,rb,rc,rd,re,rw)\
+ {\
+ heapframe *newframe = frame->Xnextframe;\
+ if (newframe == NULL)\
+ {\
+ newframe = (heapframe *)(PUBL(stack_malloc))(sizeof(heapframe));\
+ if (newframe == NULL) RRETURN(PCRE_ERROR_NOMEMORY);\
+ newframe->Xnextframe = NULL;\
+ frame->Xnextframe = newframe;\
+ }\
+ frame->Xwhere = rw;\
+ newframe->Xeptr = ra;\
+ newframe->Xecode = rb;\
+ newframe->Xmstart = mstart;\
+ newframe->Xoffset_top = rc;\
+ newframe->Xeptrb = re;\
+ newframe->Xrdepth = frame->Xrdepth + 1;\
+ newframe->Xprevframe = frame;\
+ frame = newframe;\
+ DPRINTF(("restarting from line %d\n", __LINE__));\
+ goto HEAP_RECURSE;\
+ L_##rw:\
+ DPRINTF(("jumped back to line %d\n", __LINE__));\
+ }
+
+#define RRETURN(ra)\
+ {\
+ heapframe *oldframe = frame;\
+ frame = oldframe->Xprevframe;\
+ if (frame != NULL)\
+ {\
+ rrc = ra;\
+ goto HEAP_RETURN;\
+ }\
+ return ra;\
+ }
+
+
+/* Structure for remembering the local variables in a private frame */
+
+typedef struct heapframe {
+ struct heapframe *Xprevframe;
+ struct heapframe *Xnextframe;
+
+ /* Function arguments that may change */
+
+ PCRE_PUCHAR Xeptr;
+ const pcre_uchar *Xecode;
+ PCRE_PUCHAR Xmstart;
+ int Xoffset_top;
+ eptrblock *Xeptrb;
+ unsigned int Xrdepth;
+
+ /* Function local variables */
+
+ PCRE_PUCHAR Xcallpat;
+#ifdef SUPPORT_UTF
+ PCRE_PUCHAR Xcharptr;
+#endif
+ PCRE_PUCHAR Xdata;
+ PCRE_PUCHAR Xnext;
+ PCRE_PUCHAR Xpp;
+ PCRE_PUCHAR Xprev;
+ PCRE_PUCHAR Xsaved_eptr;
+
+ recursion_info Xnew_recursive;
+
+ BOOL Xcur_is_word;
+ BOOL Xcondition;
+ BOOL Xprev_is_word;
+
+#ifdef SUPPORT_UCP
+ int Xprop_type;
+ unsigned int Xprop_value;
+ int Xprop_fail_result;
+ int Xoclength;
+ pcre_uchar Xocchars[6];
+#endif
+
+ int Xcodelink;
+ int Xctype;
+ unsigned int Xfc;
+ int Xfi;
+ int Xlength;
+ int Xmax;
+ int Xmin;
+ unsigned int Xnumber;
+ int Xoffset;
+ unsigned int Xop;
+ pcre_int32 Xsave_capture_last;
+ int Xsave_offset1, Xsave_offset2, Xsave_offset3;
+ int Xstacksave[REC_STACK_SAVE_MAX];
+
+ eptrblock Xnewptrb;
+
+ /* Where to jump back to */
+
+ int Xwhere;
+
+} heapframe;
+
+#endif
+
+
+/***************************************************************************
+***************************************************************************/
+
+
+
+/*************************************************
+* Match from current position *
+*************************************************/
+
+/* This function is called recursively in many circumstances. Whenever it
+returns a negative (error) response, the outer incarnation must also return the
+same response. */
+
+/* These macros pack up tests that are used for partial matching, and which
+appear several times in the code. We set the "hit end" flag if the pointer is
+at the end of the subject and also past the start of the subject (i.e.
+something has been matched). For hard partial matching, we then return
+immediately. The second one is used when we already know we are past the end of
+the subject. */
+
+#define CHECK_PARTIAL()\
+ if (md->partial != 0 && eptr >= md->end_subject && \
+ eptr > md->start_used_ptr) \
+ { \
+ md->hitend = TRUE; \
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL); \
+ }
+
+#define SCHECK_PARTIAL()\
+ if (md->partial != 0 && eptr > md->start_used_ptr) \
+ { \
+ md->hitend = TRUE; \
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL); \
+ }
+
+
+/* Performance note: It might be tempting to extract commonly used fields from
+the md structure (e.g. utf, end_subject) into individual variables to improve
+performance. Tests using gcc on a SPARC disproved this; in the first case, it
+made performance worse.
+
+Arguments:
+ eptr pointer to current character in subject
+ ecode pointer to current position in compiled code
+ mstart pointer to the current match start position (can be modified
+ by encountering \K)
+ offset_top current top pointer
+ md pointer to "static" info for the match
+ eptrb pointer to chain of blocks containing eptr at start of
+ brackets - for testing for empty matches
+ rdepth the recursion depth
+
+Returns: MATCH_MATCH if matched ) these values are >= 0
+ MATCH_NOMATCH if failed to match )
+ a negative MATCH_xxx value for PRUNE, SKIP, etc
+ a negative PCRE_ERROR_xxx value if aborted by an error condition
+ (e.g. stopped by repeated call or recursion limit)
+*/
+
+static int
+match(REGISTER PCRE_PUCHAR eptr, REGISTER const pcre_uchar *ecode,
+ PCRE_PUCHAR mstart, int offset_top, match_data *md, eptrblock *eptrb,
+ unsigned int rdepth)
+{
+/* These variables do not need to be preserved over recursion in this function,
+so they can be ordinary variables in all cases. Mark some of them with
+"register" because they are used a lot in loops. */
+
+register int rrc; /* Returns from recursive calls */
+register int i; /* Used for loops not involving calls to RMATCH() */
+register pcre_uint32 c; /* Character values not kept over RMATCH() calls */
+register BOOL utf; /* Local copy of UTF flag for speed */
+
+BOOL minimize, possessive; /* Quantifier options */
+BOOL caseless;
+int condcode;
+
+/* When recursion is not being used, all "local" variables that have to be
+preserved over calls to RMATCH() are part of a "frame". We set up the top-level
+frame on the stack here; subsequent instantiations are obtained from the heap
+whenever RMATCH() does a "recursion". See the macro definitions above. Putting
+the top-level on the stack rather than malloc-ing them all gives a performance
+boost in many cases where there is not much "recursion". */
+
+#ifdef NO_RECURSE
+heapframe *frame = (heapframe *)md->match_frames_base;
+
+/* Copy in the original argument variables */
+
+frame->Xeptr = eptr;
+frame->Xecode = ecode;
+frame->Xmstart = mstart;
+frame->Xoffset_top = offset_top;
+frame->Xeptrb = eptrb;
+frame->Xrdepth = rdepth;
+
+/* This is where control jumps back to to effect "recursion" */
+
+HEAP_RECURSE:
+
+/* Macros make the argument variables come from the current frame */
+
+#define eptr frame->Xeptr
+#define ecode frame->Xecode
+#define mstart frame->Xmstart
+#define offset_top frame->Xoffset_top
+#define eptrb frame->Xeptrb
+#define rdepth frame->Xrdepth
+
+/* Ditto for the local variables */
+
+#ifdef SUPPORT_UTF
+#define charptr frame->Xcharptr
+#endif
+#define callpat frame->Xcallpat
+#define codelink frame->Xcodelink
+#define data frame->Xdata
+#define next frame->Xnext
+#define pp frame->Xpp
+#define prev frame->Xprev
+#define saved_eptr frame->Xsaved_eptr
+
+#define new_recursive frame->Xnew_recursive
+
+#define cur_is_word frame->Xcur_is_word
+#define condition frame->Xcondition
+#define prev_is_word frame->Xprev_is_word
+
+#ifdef SUPPORT_UCP
+#define prop_type frame->Xprop_type
+#define prop_value frame->Xprop_value
+#define prop_fail_result frame->Xprop_fail_result
+#define oclength frame->Xoclength
+#define occhars frame->Xocchars
+#endif
+
+#define ctype frame->Xctype
+#define fc frame->Xfc
+#define fi frame->Xfi
+#define length frame->Xlength
+#define max frame->Xmax
+#define min frame->Xmin
+#define number frame->Xnumber
+#define offset frame->Xoffset
+#define op frame->Xop
+#define save_capture_last frame->Xsave_capture_last
+#define save_offset1 frame->Xsave_offset1
+#define save_offset2 frame->Xsave_offset2
+#define save_offset3 frame->Xsave_offset3
+#define stacksave frame->Xstacksave
+
+#define newptrb frame->Xnewptrb
+
+/* When recursion is being used, local variables are allocated on the stack and
+get preserved during recursion in the normal way. In this environment, fi and
+i, and fc and c, can be the same variables. */
+
+#else /* NO_RECURSE not defined */
+#define fi i
+#define fc c
+
+/* Many of the following variables are used only in small blocks of the code.
+My normal style of coding would have declared them within each of those blocks.
+However, in order to accommodate the version of this code that uses an external
+"stack" implemented on the heap, it is easier to declare them all here, so the
+declarations can be cut out in a block. The only declarations within blocks
+below are for variables that do not have to be preserved over a recursive call
+to RMATCH(). */
+
+#ifdef SUPPORT_UTF
+const pcre_uchar *charptr;
+#endif
+const pcre_uchar *callpat;
+const pcre_uchar *data;
+const pcre_uchar *next;
+PCRE_PUCHAR pp;
+const pcre_uchar *prev;
+PCRE_PUCHAR saved_eptr;
+
+recursion_info new_recursive;
+
+BOOL cur_is_word;
+BOOL condition;
+BOOL prev_is_word;
+
+#ifdef SUPPORT_UCP
+int prop_type;
+unsigned int prop_value;
+int prop_fail_result;
+int oclength;
+pcre_uchar occhars[6];
+#endif
+
+int codelink;
+int ctype;
+int length;
+int max;
+int min;
+unsigned int number;
+int offset;
+unsigned int op;
+pcre_int32 save_capture_last;
+int save_offset1, save_offset2, save_offset3;
+int stacksave[REC_STACK_SAVE_MAX];
+
+eptrblock newptrb;
+
+/* There is a special fudge for calling match() in a way that causes it to
+measure the size of its basic stack frame when the stack is being used for
+recursion. The second argument (ecode) being NULL triggers this behaviour. It
+cannot normally ever be NULL. The return is the negated value of the frame
+size. */
+
+if (ecode == NULL)
+ {
+ if (rdepth == 0)
+ return match((PCRE_PUCHAR)&rdepth, NULL, NULL, 0, NULL, NULL, 1);
+ else
+ {
+ int len = (char *)&rdepth - (char *)eptr;
+ return (len > 0)? -len : len;
+ }
+ }
+#endif /* NO_RECURSE */
+
+/* To save space on the stack and in the heap frame, I have doubled up on some
+of the local variables that are used only in localised parts of the code, but
+still need to be preserved over recursive calls of match(). These macros define
+the alternative names that are used. */
+
+#define allow_zero cur_is_word
+#define cbegroup condition
+#define code_offset codelink
+#define condassert condition
+#define matched_once prev_is_word
+#define foc number
+#define save_mark data
+
+/* These statements are here to stop the compiler complaining about unitialized
+variables. */
+
+#ifdef SUPPORT_UCP
+prop_value = 0;
+prop_fail_result = 0;
+#endif
+
+
+/* This label is used for tail recursion, which is used in a few cases even
+when NO_RECURSE is not defined, in order to reduce the amount of stack that is
+used. Thanks to Ian Taylor for noticing this possibility and sending the
+original patch. */
+
+TAIL_RECURSE:
+
+/* OK, now we can get on with the real code of the function. Recursive calls
+are specified by the macro RMATCH and RRETURN is used to return. When
+NO_RECURSE is *not* defined, these just turn into a recursive call to match()
+and a "return", respectively (possibly with some debugging if PCRE_DEBUG is
+defined). However, RMATCH isn't like a function call because it's quite a
+complicated macro. It has to be used in one particular way. This shouldn't,
+however, impact performance when true recursion is being used. */
+
+#ifdef SUPPORT_UTF
+utf = md->utf; /* Local copy of the flag */
+#else
+utf = FALSE;
+#endif
+
+/* First check that we haven't called match() too many times, or that we
+haven't exceeded the recursive call limit. */
+
+if (md->match_call_count++ >= md->match_limit) RRETURN(PCRE_ERROR_MATCHLIMIT);
+if (rdepth >= md->match_limit_recursion) RRETURN(PCRE_ERROR_RECURSIONLIMIT);
+
+/* At the start of a group with an unlimited repeat that may match an empty
+string, the variable md->match_function_type is set to MATCH_CBEGROUP. It is
+done this way to save having to use another function argument, which would take
+up space on the stack. See also MATCH_CONDASSERT below.
+
+When MATCH_CBEGROUP is set, add the current subject pointer to the chain of
+such remembered pointers, to be checked when we hit the closing ket, in order
+to break infinite loops that match no characters. When match() is called in
+other circumstances, don't add to the chain. The MATCH_CBEGROUP feature must
+NOT be used with tail recursion, because the memory block that is used is on
+the stack, so a new one may be required for each match(). */
+
+if (md->match_function_type == MATCH_CBEGROUP)
+ {
+ newptrb.epb_saved_eptr = eptr;
+ newptrb.epb_prev = eptrb;
+ eptrb = &newptrb;
+ md->match_function_type = 0;
+ }
+
+/* Now start processing the opcodes. */
+
+for (;;)
+ {
+ minimize = possessive = FALSE;
+ op = *ecode;
+
+ switch(op)
+ {
+ case OP_MARK:
+ md->nomatch_mark = ecode + 2;
+ md->mark = NULL; /* In case previously set by assertion */
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode] + ecode[1], offset_top, md,
+ eptrb, RM55);
+ if ((rrc == MATCH_MATCH || rrc == MATCH_ACCEPT) &&
+ md->mark == NULL) md->mark = ecode + 2;
+
+ /* A return of MATCH_SKIP_ARG means that matching failed at SKIP with an
+ argument, and we must check whether that argument matches this MARK's
+ argument. It is passed back in md->start_match_ptr (an overloading of that
+ variable). If it does match, we reset that variable to the current subject
+ position and return MATCH_SKIP. Otherwise, pass back the return code
+ unaltered. */
+
+ else if (rrc == MATCH_SKIP_ARG &&
+ STRCMP_UC_UC_TEST(ecode + 2, md->start_match_ptr) == 0)
+ {
+ md->start_match_ptr = eptr;
+ RRETURN(MATCH_SKIP);
+ }
+ RRETURN(rrc);
+
+ case OP_FAIL:
+ RRETURN(MATCH_NOMATCH);
+
+ case OP_COMMIT:
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode], offset_top, md,
+ eptrb, RM52);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ RRETURN(MATCH_COMMIT);
+
+ case OP_PRUNE:
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode], offset_top, md,
+ eptrb, RM51);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ RRETURN(MATCH_PRUNE);
+
+ case OP_PRUNE_ARG:
+ md->nomatch_mark = ecode + 2;
+ md->mark = NULL; /* In case previously set by assertion */
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode] + ecode[1], offset_top, md,
+ eptrb, RM56);
+ if ((rrc == MATCH_MATCH || rrc == MATCH_ACCEPT) &&
+ md->mark == NULL) md->mark = ecode + 2;
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ RRETURN(MATCH_PRUNE);
+
+ case OP_SKIP:
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode], offset_top, md,
+ eptrb, RM53);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ md->start_match_ptr = eptr; /* Pass back current position */
+ RRETURN(MATCH_SKIP);
+
+ /* Note that, for Perl compatibility, SKIP with an argument does NOT set
+ nomatch_mark. When a pattern match ends with a SKIP_ARG for which there was
+ not a matching mark, we have to re-run the match, ignoring the SKIP_ARG
+ that failed and any that precede it (either they also failed, or were not
+ triggered). To do this, we maintain a count of executed SKIP_ARGs. If a
+ SKIP_ARG gets to top level, the match is re-run with md->ignore_skip_arg
+ set to the count of the one that failed. */
+
+ case OP_SKIP_ARG:
+ md->skip_arg_count++;
+ if (md->skip_arg_count <= md->ignore_skip_arg)
+ {
+ ecode += PRIV(OP_lengths)[*ecode] + ecode[1];
+ break;
+ }
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode] + ecode[1], offset_top, md,
+ eptrb, RM57);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+
+ /* Pass back the current skip name by overloading md->start_match_ptr and
+ returning the special MATCH_SKIP_ARG return code. This will either be
+ caught by a matching MARK, or get to the top, where it causes a rematch
+ with md->ignore_skip_arg set to the value of md->skip_arg_count. */
+
+ md->start_match_ptr = ecode + 2;
+ RRETURN(MATCH_SKIP_ARG);
+
+ /* For THEN (and THEN_ARG) we pass back the address of the opcode, so that
+ the branch in which it occurs can be determined. Overload the start of
+ match pointer to do this. */
+
+ case OP_THEN:
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode], offset_top, md,
+ eptrb, RM54);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ md->start_match_ptr = ecode;
+ RRETURN(MATCH_THEN);
+
+ case OP_THEN_ARG:
+ md->nomatch_mark = ecode + 2;
+ md->mark = NULL; /* In case previously set by assertion */
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode] + ecode[1], offset_top,
+ md, eptrb, RM58);
+ if ((rrc == MATCH_MATCH || rrc == MATCH_ACCEPT) &&
+ md->mark == NULL) md->mark = ecode + 2;
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ md->start_match_ptr = ecode;
+ RRETURN(MATCH_THEN);
+
+ /* Handle an atomic group that does not contain any capturing parentheses.
+ This can be handled like an assertion. Prior to 8.13, all atomic groups
+ were handled this way. In 8.13, the code was changed as below for ONCE, so
+ that backups pass through the group and thereby reset captured values.
+ However, this uses a lot more stack, so in 8.20, atomic groups that do not
+ contain any captures generate OP_ONCE_NC, which can be handled in the old,
+ less stack intensive way.
+
+ Check the alternative branches in turn - the matching won't pass the KET
+ for this kind of subpattern. If any one branch matches, we carry on as at
+ the end of a normal bracket, leaving the subject pointer, but resetting
+ the start-of-match value in case it was changed by \K. */
+
+ case OP_ONCE_NC:
+ prev = ecode;
+ saved_eptr = eptr;
+ save_mark = md->mark;
+ do
+ {
+ RMATCH(eptr, ecode + 1 + LINK_SIZE, offset_top, md, eptrb, RM64);
+ if (rrc == MATCH_MATCH) /* Note: _not_ MATCH_ACCEPT */
+ {
+ mstart = md->start_match_ptr;
+ break;
+ }
+ if (rrc == MATCH_THEN)
+ {
+ next = ecode + GET(ecode,1);
+ if (md->start_match_ptr < next &&
+ (*ecode == OP_ALT || *next == OP_ALT))
+ rrc = MATCH_NOMATCH;
+ }
+
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ ecode += GET(ecode,1);
+ md->mark = save_mark;
+ }
+ while (*ecode == OP_ALT);
+
+ /* If hit the end of the group (which could be repeated), fail */
+
+ if (*ecode != OP_ONCE_NC && *ecode != OP_ALT) RRETURN(MATCH_NOMATCH);
+
+ /* Continue as from after the group, updating the offsets high water
+ mark, since extracts may have been taken. */
+
+ do ecode += GET(ecode, 1); while (*ecode == OP_ALT);
+
+ offset_top = md->end_offset_top;
+ eptr = md->end_match_ptr;
+
+ /* For a non-repeating ket, just continue at this level. This also
+ happens for a repeating ket if no characters were matched in the group.
+ This is the forcible breaking of infinite loops as implemented in Perl
+ 5.005. */
+
+ if (*ecode == OP_KET || eptr == saved_eptr)
+ {
+ ecode += 1+LINK_SIZE;
+ break;
+ }
+
+ /* The repeating kets try the rest of the pattern or restart from the
+ preceding bracket, in the appropriate order. The second "call" of match()
+ uses tail recursion, to avoid using another stack frame. */
+
+ if (*ecode == OP_KETRMIN)
+ {
+ RMATCH(eptr, ecode + 1 + LINK_SIZE, offset_top, md, eptrb, RM65);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ ecode = prev;
+ goto TAIL_RECURSE;
+ }
+ else /* OP_KETRMAX */
+ {
+ RMATCH(eptr, prev, offset_top, md, eptrb, RM66);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ ecode += 1 + LINK_SIZE;
+ goto TAIL_RECURSE;
+ }
+ /* Control never gets here */
+
+ /* Handle a capturing bracket, other than those that are possessive with an
+ unlimited repeat. If there is space in the offset vector, save the current
+ subject position in the working slot at the top of the vector. We mustn't
+ change the current values of the data slot, because they may be set from a
+ previous iteration of this group, and be referred to by a reference inside
+ the group. A failure to match might occur after the group has succeeded,
+ if something later on doesn't match. For this reason, we need to restore
+ the working value and also the values of the final offsets, in case they
+ were set by a previous iteration of the same bracket.
+
+ If there isn't enough space in the offset vector, treat this as if it were
+ a non-capturing bracket. Don't worry about setting the flag for the error
+ case here; that is handled in the code for KET. */
+
+ case OP_CBRA:
+ case OP_SCBRA:
+ number = GET2(ecode, 1+LINK_SIZE);
+ offset = number << 1;
+
+#ifdef PCRE_DEBUG
+ printf("start bracket %d\n", number);
+ printf("subject=");
+ pchars(eptr, 16, TRUE, md);
+ printf("\n");
+#endif
+
+ if (offset < md->offset_max)
+ {
+ save_offset1 = md->offset_vector[offset];
+ save_offset2 = md->offset_vector[offset+1];
+ save_offset3 = md->offset_vector[md->offset_end - number];
+ save_capture_last = md->capture_last;
+ save_mark = md->mark;
+
+ DPRINTF(("saving %d %d %d\n", save_offset1, save_offset2, save_offset3));
+ md->offset_vector[md->offset_end - number] =
+ (int)(eptr - md->start_subject);
+
+ for (;;)
+ {
+ if (op >= OP_SBRA) md->match_function_type = MATCH_CBEGROUP;
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode], offset_top, md,
+ eptrb, RM1);
+ if (rrc == MATCH_ONCE) break; /* Backing up through an atomic group */
+
+ /* If we backed up to a THEN, check whether it is within the current
+ branch by comparing the address of the THEN that is passed back with
+ the end of the branch. If it is within the current branch, and the
+ branch is one of two or more alternatives (it either starts or ends
+ with OP_ALT), we have reached the limit of THEN's action, so convert
+ the return code to NOMATCH, which will cause normal backtracking to
+ happen from now on. Otherwise, THEN is passed back to an outer
+ alternative. This implements Perl's treatment of parenthesized groups,
+ where a group not containing | does not affect the current alternative,
+ that is, (X) is NOT the same as (X|(*F)). */
+
+ if (rrc == MATCH_THEN)
+ {
+ next = ecode + GET(ecode,1);
+ if (md->start_match_ptr < next &&
+ (*ecode == OP_ALT || *next == OP_ALT))
+ rrc = MATCH_NOMATCH;
+ }
+
+ /* Anything other than NOMATCH is passed back. */
+
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ md->capture_last = save_capture_last;
+ ecode += GET(ecode, 1);
+ md->mark = save_mark;
+ if (*ecode != OP_ALT) break;
+ }
+
+ DPRINTF(("bracket %d failed\n", number));
+ md->offset_vector[offset] = save_offset1;
+ md->offset_vector[offset+1] = save_offset2;
+ md->offset_vector[md->offset_end - number] = save_offset3;
+
+ /* At this point, rrc will be one of MATCH_ONCE or MATCH_NOMATCH. */
+
+ RRETURN(rrc);
+ }
+
+ /* FALL THROUGH ... Insufficient room for saving captured contents. Treat
+ as a non-capturing bracket. */
+
+ /* VVVVVVVVVVVVVVVVVVVVVVVVV */
+ /* VVVVVVVVVVVVVVVVVVVVVVVVV */
+
+ DPRINTF(("insufficient capture room: treat as non-capturing\n"));
+
+ /* VVVVVVVVVVVVVVVVVVVVVVVVV */
+ /* VVVVVVVVVVVVVVVVVVVVVVVVV */
+
+ /* Non-capturing or atomic group, except for possessive with unlimited
+ repeat and ONCE group with no captures. Loop for all the alternatives.
+
+ When we get to the final alternative within the brackets, we used to return
+ the result of a recursive call to match() whatever happened so it was
+ possible to reduce stack usage by turning this into a tail recursion,
+ except in the case of a possibly empty group. However, now that there is
+ the possiblity of (*THEN) occurring in the final alternative, this
+ optimization is no longer always possible.
+
+ We can optimize if we know there are no (*THEN)s in the pattern; at present
+ this is the best that can be done.
+
+ MATCH_ONCE is returned when the end of an atomic group is successfully
+ reached, but subsequent matching fails. It passes back up the tree (causing
+ captured values to be reset) until the original atomic group level is
+ reached. This is tested by comparing md->once_target with the start of the
+ group. At this point, the return is converted into MATCH_NOMATCH so that
+ previous backup points can be taken. */
+
+ case OP_ONCE:
+ case OP_BRA:
+ case OP_SBRA:
+ DPRINTF(("start non-capturing bracket\n"));
+
+ for (;;)
+ {
+ if (op >= OP_SBRA || op == OP_ONCE)
+ md->match_function_type = MATCH_CBEGROUP;
+
+ /* If this is not a possibly empty group, and there are no (*THEN)s in
+ the pattern, and this is the final alternative, optimize as described
+ above. */
+
+ else if (!md->hasthen && ecode[GET(ecode, 1)] != OP_ALT)
+ {
+ ecode += PRIV(OP_lengths)[*ecode];
+ goto TAIL_RECURSE;
+ }
+
+ /* In all other cases, we have to make another call to match(). */
+
+ save_mark = md->mark;
+ save_capture_last = md->capture_last;
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode], offset_top, md, eptrb,
+ RM2);
+
+ /* See comment in the code for capturing groups above about handling
+ THEN. */
+
+ if (rrc == MATCH_THEN)
+ {
+ next = ecode + GET(ecode,1);
+ if (md->start_match_ptr < next &&
+ (*ecode == OP_ALT || *next == OP_ALT))
+ rrc = MATCH_NOMATCH;
+ }
+
+ if (rrc != MATCH_NOMATCH)
+ {
+ if (rrc == MATCH_ONCE)
+ {
+ const pcre_uchar *scode = ecode;
+ if (*scode != OP_ONCE) /* If not at start, find it */
+ {
+ while (*scode == OP_ALT) scode += GET(scode, 1);
+ scode -= GET(scode, 1);
+ }
+ if (md->once_target == scode) rrc = MATCH_NOMATCH;
+ }
+ RRETURN(rrc);
+ }
+ ecode += GET(ecode, 1);
+ md->mark = save_mark;
+ if (*ecode != OP_ALT) break;
+ md->capture_last = save_capture_last;
+ }
+
+ RRETURN(MATCH_NOMATCH);
+
+ /* Handle possessive capturing brackets with an unlimited repeat. We come
+ here from BRAZERO with allow_zero set TRUE. The offset_vector values are
+ handled similarly to the normal case above. However, the matching is
+ different. The end of these brackets will always be OP_KETRPOS, which
+ returns MATCH_KETRPOS without going further in the pattern. By this means
+ we can handle the group by iteration rather than recursion, thereby
+ reducing the amount of stack needed. */
+
+ case OP_CBRAPOS:
+ case OP_SCBRAPOS:
+ allow_zero = FALSE;
+
+ POSSESSIVE_CAPTURE:
+ number = GET2(ecode, 1+LINK_SIZE);
+ offset = number << 1;
+
+#ifdef PCRE_DEBUG
+ printf("start possessive bracket %d\n", number);
+ printf("subject=");
+ pchars(eptr, 16, TRUE, md);
+ printf("\n");
+#endif
+
+ if (offset < md->offset_max)
+ {
+ matched_once = FALSE;
+ code_offset = (int)(ecode - md->start_code);
+
+ save_offset1 = md->offset_vector[offset];
+ save_offset2 = md->offset_vector[offset+1];
+ save_offset3 = md->offset_vector[md->offset_end - number];
+ save_capture_last = md->capture_last;
+
+ DPRINTF(("saving %d %d %d\n", save_offset1, save_offset2, save_offset3));
+
+ /* Each time round the loop, save the current subject position for use
+ when the group matches. For MATCH_MATCH, the group has matched, so we
+ restart it with a new subject starting position, remembering that we had
+ at least one match. For MATCH_NOMATCH, carry on with the alternatives, as
+ usual. If we haven't matched any alternatives in any iteration, check to
+ see if a previous iteration matched. If so, the group has matched;
+ continue from afterwards. Otherwise it has failed; restore the previous
+ capture values before returning NOMATCH. */
+
+ for (;;)
+ {
+ md->offset_vector[md->offset_end - number] =
+ (int)(eptr - md->start_subject);
+ if (op >= OP_SBRA) md->match_function_type = MATCH_CBEGROUP;
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode], offset_top, md,
+ eptrb, RM63);
+ if (rrc == MATCH_KETRPOS)
+ {
+ offset_top = md->end_offset_top;
+ eptr = md->end_match_ptr;
+ ecode = md->start_code + code_offset;
+ save_capture_last = md->capture_last;
+ matched_once = TRUE;
+ continue;
+ }
+
+ /* See comment in the code for capturing groups above about handling
+ THEN. */
+
+ if (rrc == MATCH_THEN)
+ {
+ next = ecode + GET(ecode,1);
+ if (md->start_match_ptr < next &&
+ (*ecode == OP_ALT || *next == OP_ALT))
+ rrc = MATCH_NOMATCH;
+ }
+
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ md->capture_last = save_capture_last;
+ ecode += GET(ecode, 1);
+ if (*ecode != OP_ALT) break;
+ }
+
+ if (!matched_once)
+ {
+ md->offset_vector[offset] = save_offset1;
+ md->offset_vector[offset+1] = save_offset2;
+ md->offset_vector[md->offset_end - number] = save_offset3;
+ }
+
+ if (allow_zero || matched_once)
+ {
+ ecode += 1 + LINK_SIZE;
+ break;
+ }
+
+ RRETURN(MATCH_NOMATCH);
+ }
+
+ /* FALL THROUGH ... Insufficient room for saving captured contents. Treat
+ as a non-capturing bracket. */
+
+ /* VVVVVVVVVVVVVVVVVVVVVVVVV */
+ /* VVVVVVVVVVVVVVVVVVVVVVVVV */
+
+ DPRINTF(("insufficient capture room: treat as non-capturing\n"));
+
+ /* VVVVVVVVVVVVVVVVVVVVVVVVV */
+ /* VVVVVVVVVVVVVVVVVVVVVVVVV */
+
+ /* Non-capturing possessive bracket with unlimited repeat. We come here
+ from BRAZERO with allow_zero = TRUE. The code is similar to the above,
+ without the capturing complication. It is written out separately for speed
+ and cleanliness. */
+
+ case OP_BRAPOS:
+ case OP_SBRAPOS:
+ allow_zero = FALSE;
+
+ POSSESSIVE_NON_CAPTURE:
+ matched_once = FALSE;
+ code_offset = (int)(ecode - md->start_code);
+ save_capture_last = md->capture_last;
+
+ for (;;)
+ {
+ if (op >= OP_SBRA) md->match_function_type = MATCH_CBEGROUP;
+ RMATCH(eptr, ecode + PRIV(OP_lengths)[*ecode], offset_top, md,
+ eptrb, RM48);
+ if (rrc == MATCH_KETRPOS)
+ {
+ offset_top = md->end_offset_top;
+ eptr = md->end_match_ptr;
+ ecode = md->start_code + code_offset;
+ matched_once = TRUE;
+ continue;
+ }
+
+ /* See comment in the code for capturing groups above about handling
+ THEN. */
+
+ if (rrc == MATCH_THEN)
+ {
+ next = ecode + GET(ecode,1);
+ if (md->start_match_ptr < next &&
+ (*ecode == OP_ALT || *next == OP_ALT))
+ rrc = MATCH_NOMATCH;
+ }
+
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ ecode += GET(ecode, 1);
+ if (*ecode != OP_ALT) break;
+ md->capture_last = save_capture_last;
+ }
+
+ if (matched_once || allow_zero)
+ {
+ ecode += 1 + LINK_SIZE;
+ break;
+ }
+ RRETURN(MATCH_NOMATCH);
+
+ /* Control never reaches here. */
+
+ /* Conditional group: compilation checked that there are no more than
+ two branches. If the condition is false, skipping the first branch takes us
+ past the end if there is only one branch, but that's OK because that is
+ exactly what going to the ket would do. */
+
+ case OP_COND:
+ case OP_SCOND:
+ codelink = GET(ecode, 1);
+
+ /* Because of the way auto-callout works during compile, a callout item is
+ inserted between OP_COND and an assertion condition. */
+
+ if (ecode[LINK_SIZE+1] == OP_CALLOUT)
+ {
+ if (PUBL(callout) != NULL)
+ {
+ PUBL(callout_block) cb;
+ cb.version = 2; /* Version 1 of the callout block */
+ cb.callout_number = ecode[LINK_SIZE+2];
+ cb.offset_vector = md->offset_vector;
+#if defined COMPILE_PCRE8
+ cb.subject = (PCRE_SPTR)md->start_subject;
+#elif defined COMPILE_PCRE16
+ cb.subject = (PCRE_SPTR16)md->start_subject;
+#elif defined COMPILE_PCRE32
+ cb.subject = (PCRE_SPTR32)md->start_subject;
+#endif
+ cb.subject_length = (int)(md->end_subject - md->start_subject);
+ cb.start_match = (int)(mstart - md->start_subject);
+ cb.current_position = (int)(eptr - md->start_subject);
+ cb.pattern_position = GET(ecode, LINK_SIZE + 3);
+ cb.next_item_length = GET(ecode, 3 + 2*LINK_SIZE);
+ cb.capture_top = offset_top/2;
+ cb.capture_last = md->capture_last & CAPLMASK;
+ /* Internal change requires this for API compatibility. */
+ if (cb.capture_last == 0) cb.capture_last = -1;
+ cb.callout_data = md->callout_data;
+ cb.mark = md->nomatch_mark;
+ if ((rrc = (*PUBL(callout))(&cb)) > 0) RRETURN(MATCH_NOMATCH);
+ if (rrc < 0) RRETURN(rrc);
+ }
+ ecode += PRIV(OP_lengths)[OP_CALLOUT];
+ codelink -= PRIV(OP_lengths)[OP_CALLOUT];
+ }
+
+ condcode = ecode[LINK_SIZE+1];
+
+ /* Now see what the actual condition is */
+
+ if (condcode == OP_RREF || condcode == OP_NRREF) /* Recursion test */
+ {
+ if (md->recursive == NULL) /* Not recursing => FALSE */
+ {
+ condition = FALSE;
+ ecode += GET(ecode, 1);
+ }
+ else
+ {
+ unsigned int recno = GET2(ecode, LINK_SIZE + 2); /* Recursion group number*/
+ condition = (recno == RREF_ANY || recno == md->recursive->group_num);
+
+ /* If the test is for recursion into a specific subpattern, and it is
+ false, but the test was set up by name, scan the table to see if the
+ name refers to any other numbers, and test them. The condition is true
+ if any one is set. */
+
+ if (!condition && condcode == OP_NRREF)
+ {
+ pcre_uchar *slotA = md->name_table;
+ for (i = 0; i < md->name_count; i++)
+ {
+ if (GET2(slotA, 0) == recno) break;
+ slotA += md->name_entry_size;
+ }
+
+ /* Found a name for the number - there can be only one; duplicate
+ names for different numbers are allowed, but not vice versa. First
+ scan down for duplicates. */
+
+ if (i < md->name_count)
+ {
+ pcre_uchar *slotB = slotA;
+ while (slotB > md->name_table)
+ {
+ slotB -= md->name_entry_size;
+ if (STRCMP_UC_UC(slotA + IMM2_SIZE, slotB + IMM2_SIZE) == 0)
+ {
+ condition = GET2(slotB, 0) == md->recursive->group_num;
+ if (condition) break;
+ }
+ else break;
+ }
+
+ /* Scan up for duplicates */
+
+ if (!condition)
+ {
+ slotB = slotA;
+ for (i++; i < md->name_count; i++)
+ {
+ slotB += md->name_entry_size;
+ if (STRCMP_UC_UC(slotA + IMM2_SIZE, slotB + IMM2_SIZE) == 0)
+ {
+ condition = GET2(slotB, 0) == md->recursive->group_num;
+ if (condition) break;
+ }
+ else break;
+ }
+ }
+ }
+ }
+
+ /* Chose branch according to the condition */
+
+ ecode += condition? 1 + IMM2_SIZE : GET(ecode, 1);
+ }
+ }
+
+ else if (condcode == OP_CREF || condcode == OP_NCREF) /* Group used test */
+ {
+ offset = GET2(ecode, LINK_SIZE+2) << 1; /* Doubled ref number */
+ condition = offset < offset_top && md->offset_vector[offset] >= 0;
+
+ /* If the numbered capture is unset, but the reference was by name,
+ scan the table to see if the name refers to any other numbers, and test
+ them. The condition is true if any one is set. This is tediously similar
+ to the code above, but not close enough to try to amalgamate. */
+
+ if (!condition && condcode == OP_NCREF)
+ {
+ unsigned int refno = offset >> 1;
+ pcre_uchar *slotA = md->name_table;
+
+ for (i = 0; i < md->name_count; i++)
+ {
+ if (GET2(slotA, 0) == refno) break;
+ slotA += md->name_entry_size;
+ }
+
+ /* Found a name for the number - there can be only one; duplicate names
+ for different numbers are allowed, but not vice versa. First scan down
+ for duplicates. */
+
+ if (i < md->name_count)
+ {
+ pcre_uchar *slotB = slotA;
+ while (slotB > md->name_table)
+ {
+ slotB -= md->name_entry_size;
+ if (STRCMP_UC_UC(slotA + IMM2_SIZE, slotB + IMM2_SIZE) == 0)
+ {
+ offset = GET2(slotB, 0) << 1;
+ condition = offset < offset_top &&
+ md->offset_vector[offset] >= 0;
+ if (condition) break;
+ }
+ else break;
+ }
+
+ /* Scan up for duplicates */
+
+ if (!condition)
+ {
+ slotB = slotA;
+ for (i++; i < md->name_count; i++)
+ {
+ slotB += md->name_entry_size;
+ if (STRCMP_UC_UC(slotA + IMM2_SIZE, slotB + IMM2_SIZE) == 0)
+ {
+ offset = GET2(slotB, 0) << 1;
+ condition = offset < offset_top &&
+ md->offset_vector[offset] >= 0;
+ if (condition) break;
+ }
+ else break;
+ }
+ }
+ }
+ }
+
+ /* Chose branch according to the condition */
+
+ ecode += condition? 1 + IMM2_SIZE : GET(ecode, 1);
+ }
+
+ else if (condcode == OP_DEF) /* DEFINE - always false */
+ {
+ condition = FALSE;
+ ecode += GET(ecode, 1);
+ }
+
+ /* The condition is an assertion. Call match() to evaluate it - setting
+ md->match_function_type to MATCH_CONDASSERT causes it to stop at the end of
+ an assertion. */
+
+ else
+ {
+ md->match_function_type = MATCH_CONDASSERT;
+ RMATCH(eptr, ecode + 1 + LINK_SIZE, offset_top, md, NULL, RM3);
+ if (rrc == MATCH_MATCH)
+ {
+ if (md->end_offset_top > offset_top)
+ offset_top = md->end_offset_top; /* Captures may have happened */
+ condition = TRUE;
+ ecode += 1 + LINK_SIZE + GET(ecode, LINK_SIZE + 2);
+ while (*ecode == OP_ALT) ecode += GET(ecode, 1);
+ }
+
+ /* PCRE doesn't allow the effect of (*THEN) to escape beyond an
+ assertion; it is therefore treated as NOMATCH. */
+
+ else if (rrc != MATCH_NOMATCH && rrc != MATCH_THEN)
+ {
+ RRETURN(rrc); /* Need braces because of following else */
+ }
+ else
+ {
+ condition = FALSE;
+ ecode += codelink;
+ }
+ }
+
+ /* We are now at the branch that is to be obeyed. As there is only one, can
+ use tail recursion to avoid using another stack frame, except when there is
+ unlimited repeat of a possibly empty group. In the latter case, a recursive
+ call to match() is always required, unless the second alternative doesn't
+ exist, in which case we can just plough on. Note that, for compatibility
+ with Perl, the | in a conditional group is NOT treated as creating two
+ alternatives. If a THEN is encountered in the branch, it propagates out to
+ the enclosing alternative (unless nested in a deeper set of alternatives,
+ of course). */
+
+ if (condition || *ecode == OP_ALT)
+ {
+ if (op != OP_SCOND)
+ {
+ ecode += 1 + LINK_SIZE;
+ goto TAIL_RECURSE;
+ }
+
+ md->match_function_type = MATCH_CBEGROUP;
+ RMATCH(eptr, ecode + 1 + LINK_SIZE, offset_top, md, eptrb, RM49);
+ RRETURN(rrc);
+ }
+
+ /* Condition false & no alternative; continue after the group. */
+
+ else
+ {
+ ecode += 1 + LINK_SIZE;
+ }
+ break;
+
+
+ /* Before OP_ACCEPT there may be any number of OP_CLOSE opcodes,
+ to close any currently open capturing brackets. */
+
+ case OP_CLOSE:
+ number = GET2(ecode, 1); /* Must be less than 65536 */
+ offset = number << 1;
+
+#ifdef PCRE_DEBUG
+ printf("end bracket %d at *ACCEPT", number);
+ printf("\n");
+#endif
+
+ md->capture_last = (md->capture_last & OVFLMASK) | number;
+ if (offset >= md->offset_max) md->capture_last |= OVFLBIT; else
+ {
+ md->offset_vector[offset] =
+ md->offset_vector[md->offset_end - number];
+ md->offset_vector[offset+1] = (int)(eptr - md->start_subject);
+ if (offset_top <= offset) offset_top = offset + 2;
+ }
+ ecode += 1 + IMM2_SIZE;
+ break;
+
+
+ /* End of the pattern, either real or forced. */
+
+ case OP_END:
+ case OP_ACCEPT:
+ case OP_ASSERT_ACCEPT:
+
+ /* If we have matched an empty string, fail if not in an assertion and not
+ in a recursion if either PCRE_NOTEMPTY is set, or if PCRE_NOTEMPTY_ATSTART
+ is set and we have matched at the start of the subject. In both cases,
+ backtracking will then try other alternatives, if any. */
+
+ if (eptr == mstart && op != OP_ASSERT_ACCEPT &&
+ md->recursive == NULL &&
+ (md->notempty ||
+ (md->notempty_atstart &&
+ mstart == md->start_subject + md->start_offset)))
+ RRETURN(MATCH_NOMATCH);
+
+ /* Otherwise, we have a match. */
+
+ md->end_match_ptr = eptr; /* Record where we ended */
+ md->end_offset_top = offset_top; /* and how many extracts were taken */
+ md->start_match_ptr = mstart; /* and the start (\K can modify) */
+
+ /* For some reason, the macros don't work properly if an expression is
+ given as the argument to RRETURN when the heap is in use. */
+
+ rrc = (op == OP_END)? MATCH_MATCH : MATCH_ACCEPT;
+ RRETURN(rrc);
+
+ /* Assertion brackets. Check the alternative branches in turn - the
+ matching won't pass the KET for an assertion. If any one branch matches,
+ the assertion is true. Lookbehind assertions have an OP_REVERSE item at the
+ start of each branch to move the current point backwards, so the code at
+ this level is identical to the lookahead case. When the assertion is part
+ of a condition, we want to return immediately afterwards. The caller of
+ this incarnation of the match() function will have set MATCH_CONDASSERT in
+ md->match_function type, and one of these opcodes will be the first opcode
+ that is processed. We use a local variable that is preserved over calls to
+ match() to remember this case. */
+
+ case OP_ASSERT:
+ case OP_ASSERTBACK:
+ save_mark = md->mark;
+ if (md->match_function_type == MATCH_CONDASSERT)
+ {
+ condassert = TRUE;
+ md->match_function_type = 0;
+ }
+ else condassert = FALSE;
+
+ /* Loop for each branch */
+
+ do
+ {
+ RMATCH(eptr, ecode + 1 + LINK_SIZE, offset_top, md, NULL, RM4);
+
+ /* A match means that the assertion is true; break out of the loop
+ that matches its alternatives. */
+
+ if (rrc == MATCH_MATCH || rrc == MATCH_ACCEPT)
+ {
+ mstart = md->start_match_ptr; /* In case \K reset it */
+ break;
+ }
+
+ /* If not matched, restore the previous mark setting. */
+
+ md->mark = save_mark;
+
+ /* See comment in the code for capturing groups above about handling
+ THEN. */
+
+ if (rrc == MATCH_THEN)
+ {
+ next = ecode + GET(ecode,1);
+ if (md->start_match_ptr < next &&
+ (*ecode == OP_ALT || *next == OP_ALT))
+ rrc = MATCH_NOMATCH;
+ }
+
+ /* Anything other than NOMATCH causes the entire assertion to fail,
+ passing back the return code. This includes COMMIT, SKIP, PRUNE and an
+ uncaptured THEN, which means they take their normal effect. This
+ consistent approach does not always have exactly the same effect as in
+ Perl. */
+
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ ecode += GET(ecode, 1);
+ }
+ while (*ecode == OP_ALT); /* Continue for next alternative */
+
+ /* If we have tried all the alternative branches, the assertion has
+ failed. If not, we broke out after a match. */
+
+ if (*ecode == OP_KET) RRETURN(MATCH_NOMATCH);
+
+ /* If checking an assertion for a condition, return MATCH_MATCH. */
+
+ if (condassert) RRETURN(MATCH_MATCH);
+
+ /* Continue from after a successful assertion, updating the offsets high
+ water mark, since extracts may have been taken during the assertion. */
+
+ do ecode += GET(ecode,1); while (*ecode == OP_ALT);
+ ecode += 1 + LINK_SIZE;
+ offset_top = md->end_offset_top;
+ continue;
+
+ /* Negative assertion: all branches must fail to match for the assertion to
+ succeed. */
+
+ case OP_ASSERT_NOT:
+ case OP_ASSERTBACK_NOT:
+ save_mark = md->mark;
+ if (md->match_function_type == MATCH_CONDASSERT)
+ {
+ condassert = TRUE;
+ md->match_function_type = 0;
+ }
+ else condassert = FALSE;
+
+ /* Loop for each alternative branch. */
+
+ do
+ {
+ RMATCH(eptr, ecode + 1 + LINK_SIZE, offset_top, md, NULL, RM5);
+ md->mark = save_mark; /* Always restore the mark setting */
+
+ switch(rrc)
+ {
+ case MATCH_MATCH: /* A successful match means */
+ case MATCH_ACCEPT: /* the assertion has failed. */
+ RRETURN(MATCH_NOMATCH);
+
+ case MATCH_NOMATCH: /* Carry on with next branch */
+ break;
+
+ /* See comment in the code for capturing groups above about handling
+ THEN. */
+
+ case MATCH_THEN:
+ next = ecode + GET(ecode,1);
+ if (md->start_match_ptr < next &&
+ (*ecode == OP_ALT || *next == OP_ALT))
+ {
+ rrc = MATCH_NOMATCH;
+ break;
+ }
+ /* Otherwise fall through. */
+
+ /* COMMIT, SKIP, PRUNE, and an uncaptured THEN cause the whole
+ assertion to fail to match, without considering any more alternatives.
+ Failing to match means the assertion is true. This is a consistent
+ approach, but does not always have the same effect as in Perl. */
+
+ case MATCH_COMMIT:
+ case MATCH_SKIP:
+ case MATCH_SKIP_ARG:
+ case MATCH_PRUNE:
+ do ecode += GET(ecode,1); while (*ecode == OP_ALT);
+ goto NEG_ASSERT_TRUE; /* Break out of alternation loop */
+
+ /* Anything else is an error */
+
+ default:
+ RRETURN(rrc);
+ }
+
+ /* Continue with next branch */
+
+ ecode += GET(ecode,1);
+ }
+ while (*ecode == OP_ALT);
+
+ /* All branches in the assertion failed to match. */
+
+ NEG_ASSERT_TRUE:
+ if (condassert) RRETURN(MATCH_MATCH); /* Condition assertion */
+ ecode += 1 + LINK_SIZE; /* Continue with current branch */
+ continue;
+
+ /* Move the subject pointer back. This occurs only at the start of
+ each branch of a lookbehind assertion. If we are too close to the start to
+ move back, this match function fails. When working with UTF-8 we move
+ back a number of characters, not bytes. */
+
+ case OP_REVERSE:
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ i = GET(ecode, 1);
+ while (i-- > 0)
+ {
+ eptr--;
+ if (eptr < md->start_subject) RRETURN(MATCH_NOMATCH);
+ BACKCHAR(eptr);
+ }
+ }
+ else
+#endif
+
+ /* No UTF-8 support, or not in UTF-8 mode: count is byte count */
+
+ {
+ eptr -= GET(ecode, 1);
+ if (eptr < md->start_subject) RRETURN(MATCH_NOMATCH);
+ }
+
+ /* Save the earliest consulted character, then skip to next op code */
+
+ if (eptr < md->start_used_ptr) md->start_used_ptr = eptr;
+ ecode += 1 + LINK_SIZE;
+ break;
+
+ /* The callout item calls an external function, if one is provided, passing
+ details of the match so far. This is mainly for debugging, though the
+ function is able to force a failure. */
+
+ case OP_CALLOUT:
+ if (PUBL(callout) != NULL)
+ {
+ PUBL(callout_block) cb;
+ cb.version = 2; /* Version 1 of the callout block */
+ cb.callout_number = ecode[1];
+ cb.offset_vector = md->offset_vector;
+#if defined COMPILE_PCRE8
+ cb.subject = (PCRE_SPTR)md->start_subject;
+#elif defined COMPILE_PCRE16
+ cb.subject = (PCRE_SPTR16)md->start_subject;
+#elif defined COMPILE_PCRE32
+ cb.subject = (PCRE_SPTR32)md->start_subject;
+#endif
+ cb.subject_length = (int)(md->end_subject - md->start_subject);
+ cb.start_match = (int)(mstart - md->start_subject);
+ cb.current_position = (int)(eptr - md->start_subject);
+ cb.pattern_position = GET(ecode, 2);
+ cb.next_item_length = GET(ecode, 2 + LINK_SIZE);
+ cb.capture_top = offset_top/2;
+ cb.capture_last = md->capture_last & CAPLMASK;
+ /* Internal change requires this for API compatibility. */
+ if (cb.capture_last == 0) cb.capture_last = -1;
+ cb.callout_data = md->callout_data;
+ cb.mark = md->nomatch_mark;
+ if ((rrc = (*PUBL(callout))(&cb)) > 0) RRETURN(MATCH_NOMATCH);
+ if (rrc < 0) RRETURN(rrc);
+ }
+ ecode += 2 + 2*LINK_SIZE;
+ break;
+
+ /* Recursion either matches the current regex, or some subexpression. The
+ offset data is the offset to the starting bracket from the start of the
+ whole pattern. (This is so that it works from duplicated subpatterns.)
+
+ The state of the capturing groups is preserved over recursion, and
+ re-instated afterwards. We don't know how many are started and not yet
+ finished (offset_top records the completed total) so we just have to save
+ all the potential data. There may be up to 65535 such values, which is too
+ large to put on the stack, but using malloc for small numbers seems
+ expensive. As a compromise, the stack is used when there are no more than
+ REC_STACK_SAVE_MAX values to store; otherwise malloc is used.
+
+ There are also other values that have to be saved. We use a chained
+ sequence of blocks that actually live on the stack. Thanks to Robin Houston
+ for the original version of this logic. It has, however, been hacked around
+ a lot, so he is not to blame for the current way it works. */
+
+ case OP_RECURSE:
+ {
+ recursion_info *ri;
+ unsigned int recno;
+
+ callpat = md->start_code + GET(ecode, 1);
+ recno = (callpat == md->start_code)? 0 :
+ GET2(callpat, 1 + LINK_SIZE);
+
+ /* Check for repeating a recursion without advancing the subject pointer.
+ This should catch convoluted mutual recursions. (Some simple cases are
+ caught at compile time.) */
+
+ for (ri = md->recursive; ri != NULL; ri = ri->prevrec)
+ if (recno == ri->group_num && eptr == ri->subject_position)
+ RRETURN(PCRE_ERROR_RECURSELOOP);
+
+ /* Add to "recursing stack" */
+
+ new_recursive.group_num = recno;
+ new_recursive.saved_capture_last = md->capture_last;
+ new_recursive.subject_position = eptr;
+ new_recursive.prevrec = md->recursive;
+ md->recursive = &new_recursive;
+
+ /* Where to continue from afterwards */
+
+ ecode += 1 + LINK_SIZE;
+
+ /* Now save the offset data */
+
+ new_recursive.saved_max = md->offset_end;
+ if (new_recursive.saved_max <= REC_STACK_SAVE_MAX)
+ new_recursive.offset_save = stacksave;
+ else
+ {
+ new_recursive.offset_save =
+ (int *)(PUBL(malloc))(new_recursive.saved_max * sizeof(int));
+ if (new_recursive.offset_save == NULL) RRETURN(PCRE_ERROR_NOMEMORY);
+ }
+ memcpy(new_recursive.offset_save, md->offset_vector,
+ new_recursive.saved_max * sizeof(int));
+
+ /* OK, now we can do the recursion. After processing each alternative,
+ restore the offset data and the last captured value. If there were nested
+ recursions, md->recursive might be changed, so reset it before looping.
+ */
+
+ DPRINTF(("Recursing into group %d\n", new_recursive.group_num));
+ cbegroup = (*callpat >= OP_SBRA);
+ do
+ {
+ if (cbegroup) md->match_function_type = MATCH_CBEGROUP;
+ RMATCH(eptr, callpat + PRIV(OP_lengths)[*callpat], offset_top,
+ md, eptrb, RM6);
+ memcpy(md->offset_vector, new_recursive.offset_save,
+ new_recursive.saved_max * sizeof(int));
+ md->capture_last = new_recursive.saved_capture_last;
+ md->recursive = new_recursive.prevrec;
+ if (rrc == MATCH_MATCH || rrc == MATCH_ACCEPT)
+ {
+ DPRINTF(("Recursion matched\n"));
+ if (new_recursive.offset_save != stacksave)
+ (PUBL(free))(new_recursive.offset_save);
+
+ /* Set where we got to in the subject, and reset the start in case
+ it was changed by \K. This *is* propagated back out of a recursion,
+ for Perl compatibility. */
+
+ eptr = md->end_match_ptr;
+ mstart = md->start_match_ptr;
+ goto RECURSION_MATCHED; /* Exit loop; end processing */
+ }
+
+ /* PCRE does not allow THEN, SKIP, PRUNE or COMMIT to escape beyond a
+ recursion; they cause a NOMATCH for the entire recursion. These codes
+ are defined in a range that can be tested for. */
+
+ if (rrc >= MATCH_BACKTRACK_MIN && rrc <= MATCH_BACKTRACK_MAX)
+ RRETURN(MATCH_NOMATCH);
+
+ /* Any return code other than NOMATCH is an error. */
+
+ if (rrc != MATCH_NOMATCH)
+ {
+ DPRINTF(("Recursion gave error %d\n", rrc));
+ if (new_recursive.offset_save != stacksave)
+ (PUBL(free))(new_recursive.offset_save);
+ RRETURN(rrc);
+ }
+
+ md->recursive = &new_recursive;
+ callpat += GET(callpat, 1);
+ }
+ while (*callpat == OP_ALT);
+
+ DPRINTF(("Recursion didn't match\n"));
+ md->recursive = new_recursive.prevrec;
+ if (new_recursive.offset_save != stacksave)
+ (PUBL(free))(new_recursive.offset_save);
+ RRETURN(MATCH_NOMATCH);
+ }
+
+ RECURSION_MATCHED:
+ break;
+
+ /* An alternation is the end of a branch; scan along to find the end of the
+ bracketed group and go to there. */
+
+ case OP_ALT:
+ do ecode += GET(ecode,1); while (*ecode == OP_ALT);
+ break;
+
+ /* BRAZERO, BRAMINZERO and SKIPZERO occur just before a bracket group,
+ indicating that it may occur zero times. It may repeat infinitely, or not
+ at all - i.e. it could be ()* or ()? or even (){0} in the pattern. Brackets
+ with fixed upper repeat limits are compiled as a number of copies, with the
+ optional ones preceded by BRAZERO or BRAMINZERO. */
+
+ case OP_BRAZERO:
+ next = ecode + 1;
+ RMATCH(eptr, next, offset_top, md, eptrb, RM10);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ do next += GET(next, 1); while (*next == OP_ALT);
+ ecode = next + 1 + LINK_SIZE;
+ break;
+
+ case OP_BRAMINZERO:
+ next = ecode + 1;
+ do next += GET(next, 1); while (*next == OP_ALT);
+ RMATCH(eptr, next + 1+LINK_SIZE, offset_top, md, eptrb, RM11);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ ecode++;
+ break;
+
+ case OP_SKIPZERO:
+ next = ecode+1;
+ do next += GET(next,1); while (*next == OP_ALT);
+ ecode = next + 1 + LINK_SIZE;
+ break;
+
+ /* BRAPOSZERO occurs before a possessive bracket group. Don't do anything
+ here; just jump to the group, with allow_zero set TRUE. */
+
+ case OP_BRAPOSZERO:
+ op = *(++ecode);
+ allow_zero = TRUE;
+ if (op == OP_CBRAPOS || op == OP_SCBRAPOS) goto POSSESSIVE_CAPTURE;
+ goto POSSESSIVE_NON_CAPTURE;
+
+ /* End of a group, repeated or non-repeating. */
+
+ case OP_KET:
+ case OP_KETRMIN:
+ case OP_KETRMAX:
+ case OP_KETRPOS:
+ prev = ecode - GET(ecode, 1);
+
+ /* If this was a group that remembered the subject start, in order to break
+ infinite repeats of empty string matches, retrieve the subject start from
+ the chain. Otherwise, set it NULL. */
+
+ if (*prev >= OP_SBRA || *prev == OP_ONCE)
+ {
+ saved_eptr = eptrb->epb_saved_eptr; /* Value at start of group */
+ eptrb = eptrb->epb_prev; /* Backup to previous group */
+ }
+ else saved_eptr = NULL;
+
+ /* If we are at the end of an assertion group or a non-capturing atomic
+ group, stop matching and return MATCH_MATCH, but record the current high
+ water mark for use by positive assertions. We also need to record the match
+ start in case it was changed by \K. */
+
+ if ((*prev >= OP_ASSERT && *prev <= OP_ASSERTBACK_NOT) ||
+ *prev == OP_ONCE_NC)
+ {
+ md->end_match_ptr = eptr; /* For ONCE_NC */
+ md->end_offset_top = offset_top;
+ md->start_match_ptr = mstart;
+ RRETURN(MATCH_MATCH); /* Sets md->mark */
+ }
+
+ /* For capturing groups we have to check the group number back at the start
+ and if necessary complete handling an extraction by setting the offsets and
+ bumping the high water mark. Whole-pattern recursion is coded as a recurse
+ into group 0, so it won't be picked up here. Instead, we catch it when the
+ OP_END is reached. Other recursion is handled here. We just have to record
+ the current subject position and start match pointer and give a MATCH
+ return. */
+
+ if (*prev == OP_CBRA || *prev == OP_SCBRA ||
+ *prev == OP_CBRAPOS || *prev == OP_SCBRAPOS)
+ {
+ number = GET2(prev, 1+LINK_SIZE);
+ offset = number << 1;
+
+#ifdef PCRE_DEBUG
+ printf("end bracket %d", number);
+ printf("\n");
+#endif
+
+ /* Handle a recursively called group. */
+
+ if (md->recursive != NULL && md->recursive->group_num == number)
+ {
+ md->end_match_ptr = eptr;
+ md->start_match_ptr = mstart;
+ RRETURN(MATCH_MATCH);
+ }
+
+ /* Deal with capturing */
+
+ md->capture_last = (md->capture_last & OVFLMASK) | number;
+ if (offset >= md->offset_max) md->capture_last |= OVFLBIT; else
+ {
+ /* If offset is greater than offset_top, it means that we are
+ "skipping" a capturing group, and that group's offsets must be marked
+ unset. In earlier versions of PCRE, all the offsets were unset at the
+ start of matching, but this doesn't work because atomic groups and
+ assertions can cause a value to be set that should later be unset.
+ Example: matching /(?>(a))b|(a)c/ against "ac". This sets group 1 as
+ part of the atomic group, but this is not on the final matching path,
+ so must be unset when 2 is set. (If there is no group 2, there is no
+ problem, because offset_top will then be 2, indicating no capture.) */
+
+ if (offset > offset_top)
+ {
+ register int *iptr = md->offset_vector + offset_top;
+ register int *iend = md->offset_vector + offset;
+ while (iptr < iend) *iptr++ = -1;
+ }
+
+ /* Now make the extraction */
+
+ md->offset_vector[offset] =
+ md->offset_vector[md->offset_end - number];
+ md->offset_vector[offset+1] = (int)(eptr - md->start_subject);
+ if (offset_top <= offset) offset_top = offset + 2;
+ }
+ }
+
+ /* For an ordinary non-repeating ket, just continue at this level. This
+ also happens for a repeating ket if no characters were matched in the
+ group. This is the forcible breaking of infinite loops as implemented in
+ Perl 5.005. For a non-repeating atomic group that includes captures,
+ establish a backup point by processing the rest of the pattern at a lower
+ level. If this results in a NOMATCH return, pass MATCH_ONCE back to the
+ original OP_ONCE level, thereby bypassing intermediate backup points, but
+ resetting any captures that happened along the way. */
+
+ if (*ecode == OP_KET || eptr == saved_eptr)
+ {
+ if (*prev == OP_ONCE)
+ {
+ RMATCH(eptr, ecode + 1 + LINK_SIZE, offset_top, md, eptrb, RM12);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ md->once_target = prev; /* Level at which to change to MATCH_NOMATCH */
+ RRETURN(MATCH_ONCE);
+ }
+ ecode += 1 + LINK_SIZE; /* Carry on at this level */
+ break;
+ }
+
+ /* OP_KETRPOS is a possessive repeating ket. Remember the current position,
+ and return the MATCH_KETRPOS. This makes it possible to do the repeats one
+ at a time from the outer level, thus saving stack. */
+
+ if (*ecode == OP_KETRPOS)
+ {
+ md->end_match_ptr = eptr;
+ md->end_offset_top = offset_top;
+ RRETURN(MATCH_KETRPOS);
+ }
+
+ /* The normal repeating kets try the rest of the pattern or restart from
+ the preceding bracket, in the appropriate order. In the second case, we can
+ use tail recursion to avoid using another stack frame, unless we have an
+ an atomic group or an unlimited repeat of a group that can match an empty
+ string. */
+
+ if (*ecode == OP_KETRMIN)
+ {
+ RMATCH(eptr, ecode + 1 + LINK_SIZE, offset_top, md, eptrb, RM7);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (*prev == OP_ONCE)
+ {
+ RMATCH(eptr, prev, offset_top, md, eptrb, RM8);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ md->once_target = prev; /* Level at which to change to MATCH_NOMATCH */
+ RRETURN(MATCH_ONCE);
+ }
+ if (*prev >= OP_SBRA) /* Could match an empty string */
+ {
+ RMATCH(eptr, prev, offset_top, md, eptrb, RM50);
+ RRETURN(rrc);
+ }
+ ecode = prev;
+ goto TAIL_RECURSE;
+ }
+ else /* OP_KETRMAX */
+ {
+ RMATCH(eptr, prev, offset_top, md, eptrb, RM13);
+ if (rrc == MATCH_ONCE && md->once_target == prev) rrc = MATCH_NOMATCH;
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (*prev == OP_ONCE)
+ {
+ RMATCH(eptr, ecode + 1 + LINK_SIZE, offset_top, md, eptrb, RM9);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ md->once_target = prev;
+ RRETURN(MATCH_ONCE);
+ }
+ ecode += 1 + LINK_SIZE;
+ goto TAIL_RECURSE;
+ }
+ /* Control never gets here */
+
+ /* Not multiline mode: start of subject assertion, unless notbol. */
+
+ case OP_CIRC:
+ if (md->notbol && eptr == md->start_subject) RRETURN(MATCH_NOMATCH);
+
+ /* Start of subject assertion */
+
+ case OP_SOD:
+ if (eptr != md->start_subject) RRETURN(MATCH_NOMATCH);
+ ecode++;
+ break;
+
+ /* Multiline mode: start of subject unless notbol, or after any newline. */
+
+ case OP_CIRCM:
+ if (md->notbol && eptr == md->start_subject) RRETURN(MATCH_NOMATCH);
+ if (eptr != md->start_subject &&
+ (eptr == md->end_subject || !WAS_NEWLINE(eptr)))
+ RRETURN(MATCH_NOMATCH);
+ ecode++;
+ break;
+
+ /* Start of match assertion */
+
+ case OP_SOM:
+ if (eptr != md->start_subject + md->start_offset) RRETURN(MATCH_NOMATCH);
+ ecode++;
+ break;
+
+ /* Reset the start of match point */
+
+ case OP_SET_SOM:
+ mstart = eptr;
+ ecode++;
+ break;
+
+ /* Multiline mode: assert before any newline, or before end of subject
+ unless noteol is set. */
+
+ case OP_DOLLM:
+ if (eptr < md->end_subject)
+ {
+ if (!IS_NEWLINE(eptr))
+ {
+ if (md->partial != 0 &&
+ eptr + 1 >= md->end_subject &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ RAWUCHARTEST(eptr) == NLBLOCK->nl[0])
+ {
+ md->hitend = TRUE;
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL);
+ }
+ RRETURN(MATCH_NOMATCH);
+ }
+ }
+ else
+ {
+ if (md->noteol) RRETURN(MATCH_NOMATCH);
+ SCHECK_PARTIAL();
+ }
+ ecode++;
+ break;
+
+ /* Not multiline mode: assert before a terminating newline or before end of
+ subject unless noteol is set. */
+
+ case OP_DOLL:
+ if (md->noteol) RRETURN(MATCH_NOMATCH);
+ if (!md->endonly) goto ASSERT_NL_OR_EOS;
+
+ /* ... else fall through for endonly */
+
+ /* End of subject assertion (\z) */
+
+ case OP_EOD:
+ if (eptr < md->end_subject) RRETURN(MATCH_NOMATCH);
+ SCHECK_PARTIAL();
+ ecode++;
+ break;
+
+ /* End of subject or ending \n assertion (\Z) */
+
+ case OP_EODN:
+ ASSERT_NL_OR_EOS:
+ if (eptr < md->end_subject &&
+ (!IS_NEWLINE(eptr) || eptr != md->end_subject - md->nllen))
+ {
+ if (md->partial != 0 &&
+ eptr + 1 >= md->end_subject &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ RAWUCHARTEST(eptr) == NLBLOCK->nl[0])
+ {
+ md->hitend = TRUE;
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL);
+ }
+ RRETURN(MATCH_NOMATCH);
+ }
+
+ /* Either at end of string or \n before end. */
+
+ SCHECK_PARTIAL();
+ ecode++;
+ break;
+
+ /* Word boundary assertions */
+
+ case OP_NOT_WORD_BOUNDARY:
+ case OP_WORD_BOUNDARY:
+ {
+
+ /* Find out if the previous and current characters are "word" characters.
+ It takes a bit more work in UTF-8 mode. Characters > 255 are assumed to
+ be "non-word" characters. Remember the earliest consulted character for
+ partial matching. */
+
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ /* Get status of previous character */
+
+ if (eptr == md->start_subject) prev_is_word = FALSE; else
+ {
+ PCRE_PUCHAR lastptr = eptr - 1;
+ BACKCHAR(lastptr);
+ if (lastptr < md->start_used_ptr) md->start_used_ptr = lastptr;
+ GETCHAR(c, lastptr);
+#ifdef SUPPORT_UCP
+ if (md->use_ucp)
+ {
+ if (c == '_') prev_is_word = TRUE; else
+ {
+ int cat = UCD_CATEGORY(c);
+ prev_is_word = (cat == ucp_L || cat == ucp_N);
+ }
+ }
+ else
+#endif
+ prev_is_word = c < 256 && (md->ctypes[c] & ctype_word) != 0;
+ }
+
+ /* Get status of next character */
+
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ cur_is_word = FALSE;
+ }
+ else
+ {
+ GETCHAR(c, eptr);
+#ifdef SUPPORT_UCP
+ if (md->use_ucp)
+ {
+ if (c == '_') cur_is_word = TRUE; else
+ {
+ int cat = UCD_CATEGORY(c);
+ cur_is_word = (cat == ucp_L || cat == ucp_N);
+ }
+ }
+ else
+#endif
+ cur_is_word = c < 256 && (md->ctypes[c] & ctype_word) != 0;
+ }
+ }
+ else
+#endif
+
+ /* Not in UTF-8 mode, but we may still have PCRE_UCP set, and for
+ consistency with the behaviour of \w we do use it in this case. */
+
+ {
+ /* Get status of previous character */
+
+ if (eptr == md->start_subject) prev_is_word = FALSE; else
+ {
+ if (eptr <= md->start_used_ptr) md->start_used_ptr = eptr - 1;
+#ifdef SUPPORT_UCP
+ if (md->use_ucp)
+ {
+ c = eptr[-1];
+ if (c == '_') prev_is_word = TRUE; else
+ {
+ int cat = UCD_CATEGORY(c);
+ prev_is_word = (cat == ucp_L || cat == ucp_N);
+ }
+ }
+ else
+#endif
+ prev_is_word = MAX_255(eptr[-1])
+ && ((md->ctypes[eptr[-1]] & ctype_word) != 0);
+ }
+
+ /* Get status of next character */
+
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ cur_is_word = FALSE;
+ }
+ else
+#ifdef SUPPORT_UCP
+ if (md->use_ucp)
+ {
+ c = *eptr;
+ if (c == '_') cur_is_word = TRUE; else
+ {
+ int cat = UCD_CATEGORY(c);
+ cur_is_word = (cat == ucp_L || cat == ucp_N);
+ }
+ }
+ else
+#endif
+ cur_is_word = MAX_255(*eptr)
+ && ((md->ctypes[*eptr] & ctype_word) != 0);
+ }
+
+ /* Now see if the situation is what we want */
+
+ if ((*ecode++ == OP_WORD_BOUNDARY)?
+ cur_is_word == prev_is_word : cur_is_word != prev_is_word)
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ /* Match any single character type except newline; have to take care with
+ CRLF newlines and partial matching. */
+
+ case OP_ANY:
+ if (IS_NEWLINE(eptr)) RRETURN(MATCH_NOMATCH);
+ if (md->partial != 0 &&
+ eptr + 1 >= md->end_subject &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ RAWUCHARTEST(eptr) == NLBLOCK->nl[0])
+ {
+ md->hitend = TRUE;
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL);
+ }
+
+ /* Fall through */
+
+ /* Match any single character whatsoever. */
+
+ case OP_ALLANY:
+ if (eptr >= md->end_subject) /* DO NOT merge the eptr++ here; it must */
+ { /* not be updated before SCHECK_PARTIAL. */
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ eptr++;
+#ifdef SUPPORT_UTF
+ if (utf) ACROSSCHAR(eptr < md->end_subject, *eptr, eptr++);
+#endif
+ ecode++;
+ break;
+
+ /* Match a single byte, even in UTF-8 mode. This opcode really does match
+ any byte, even newline, independent of the setting of PCRE_DOTALL. */
+
+ case OP_ANYBYTE:
+ if (eptr >= md->end_subject) /* DO NOT merge the eptr++ here; it must */
+ { /* not be updated before SCHECK_PARTIAL. */
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ eptr++;
+ ecode++;
+ break;
+
+ case OP_NOT_DIGIT:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if (
+#if defined SUPPORT_UTF || !(defined COMPILE_PCRE8)
+ c < 256 &&
+#endif
+ (md->ctypes[c] & ctype_digit) != 0
+ )
+ RRETURN(MATCH_NOMATCH);
+ ecode++;
+ break;
+
+ case OP_DIGIT:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if (
+#if defined SUPPORT_UTF || !(defined COMPILE_PCRE8)
+ c > 255 ||
+#endif
+ (md->ctypes[c] & ctype_digit) == 0
+ )
+ RRETURN(MATCH_NOMATCH);
+ ecode++;
+ break;
+
+ case OP_NOT_WHITESPACE:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if (
+#if defined SUPPORT_UTF || !(defined COMPILE_PCRE8)
+ c < 256 &&
+#endif
+ (md->ctypes[c] & ctype_space) != 0
+ )
+ RRETURN(MATCH_NOMATCH);
+ ecode++;
+ break;
+
+ case OP_WHITESPACE:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if (
+#if defined SUPPORT_UTF || !(defined COMPILE_PCRE8)
+ c > 255 ||
+#endif
+ (md->ctypes[c] & ctype_space) == 0
+ )
+ RRETURN(MATCH_NOMATCH);
+ ecode++;
+ break;
+
+ case OP_NOT_WORDCHAR:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if (
+#if defined SUPPORT_UTF || !(defined COMPILE_PCRE8)
+ c < 256 &&
+#endif
+ (md->ctypes[c] & ctype_word) != 0
+ )
+ RRETURN(MATCH_NOMATCH);
+ ecode++;
+ break;
+
+ case OP_WORDCHAR:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if (
+#if defined SUPPORT_UTF || !(defined COMPILE_PCRE8)
+ c > 255 ||
+#endif
+ (md->ctypes[c] & ctype_word) == 0
+ )
+ RRETURN(MATCH_NOMATCH);
+ ecode++;
+ break;
+
+ case OP_ANYNL:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ switch(c)
+ {
+ default: RRETURN(MATCH_NOMATCH);
+
+ case CHAR_CR:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ }
+ else if (RAWUCHARTEST(eptr) == CHAR_LF) eptr++;
+ break;
+
+ case CHAR_LF:
+ break;
+
+ case CHAR_VT:
+ case CHAR_FF:
+ case CHAR_NEL:
+#ifndef EBCDIC
+ case 0x2028:
+ case 0x2029:
+#endif /* Not EBCDIC */
+ if (md->bsr_anycrlf) RRETURN(MATCH_NOMATCH);
+ break;
+ }
+ ecode++;
+ break;
+
+ case OP_NOT_HSPACE:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ switch(c)
+ {
+ HSPACE_CASES: RRETURN(MATCH_NOMATCH); /* Byte and multibyte cases */
+ default: break;
+ }
+ ecode++;
+ break;
+
+ case OP_HSPACE:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ switch(c)
+ {
+ HSPACE_CASES: break; /* Byte and multibyte cases */
+ default: RRETURN(MATCH_NOMATCH);
+ }
+ ecode++;
+ break;
+
+ case OP_NOT_VSPACE:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ switch(c)
+ {
+ VSPACE_CASES: RRETURN(MATCH_NOMATCH);
+ default: break;
+ }
+ ecode++;
+ break;
+
+ case OP_VSPACE:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ switch(c)
+ {
+ VSPACE_CASES: break;
+ default: RRETURN(MATCH_NOMATCH);
+ }
+ ecode++;
+ break;
+
+#ifdef SUPPORT_UCP
+ /* Check the next character by Unicode property. We will get here only
+ if the support is in the binary; otherwise a compile-time error occurs. */
+
+ case OP_PROP:
+ case OP_NOTPROP:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ {
+ const pcre_uint32 *cp;
+ const ucd_record *prop = GET_UCD(c);
+
+ switch(ecode[1])
+ {
+ case PT_ANY:
+ if (op == OP_NOTPROP) RRETURN(MATCH_NOMATCH);
+ break;
+
+ case PT_LAMP:
+ if ((prop->chartype == ucp_Lu ||
+ prop->chartype == ucp_Ll ||
+ prop->chartype == ucp_Lt) == (op == OP_NOTPROP))
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case PT_GC:
+ if ((ecode[2] != PRIV(ucp_gentype)[prop->chartype]) == (op == OP_PROP))
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case PT_PC:
+ if ((ecode[2] != prop->chartype) == (op == OP_PROP))
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case PT_SC:
+ if ((ecode[2] != prop->script) == (op == OP_PROP))
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ /* These are specials */
+
+ case PT_ALNUM:
+ if ((PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N) == (op == OP_NOTPROP))
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case PT_SPACE: /* Perl space */
+ if ((PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_FF || c == CHAR_CR)
+ == (op == OP_NOTPROP))
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case PT_PXSPACE: /* POSIX space */
+ if ((PRIV(ucp_gentype)[prop->chartype] == ucp_Z ||
+ c == CHAR_HT || c == CHAR_NL || c == CHAR_VT ||
+ c == CHAR_FF || c == CHAR_CR)
+ == (op == OP_NOTPROP))
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case PT_WORD:
+ if ((PRIV(ucp_gentype)[prop->chartype] == ucp_L ||
+ PRIV(ucp_gentype)[prop->chartype] == ucp_N ||
+ c == CHAR_UNDERSCORE) == (op == OP_NOTPROP))
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case PT_CLIST:
+ cp = PRIV(ucd_caseless_sets) + ecode[2];
+ for (;;)
+ {
+ if (c < *cp)
+ { if (op == OP_PROP) { RRETURN(MATCH_NOMATCH); } else break; }
+ if (c == *cp++)
+ { if (op == OP_PROP) break; else { RRETURN(MATCH_NOMATCH); } }
+ }
+ break;
+
+ case PT_UCNC:
+ if ((c == CHAR_DOLLAR_SIGN || c == CHAR_COMMERCIAL_AT ||
+ c == CHAR_GRAVE_ACCENT || (c >= 0xa0 && c <= 0xd7ff) ||
+ c >= 0xe000) == (op == OP_NOTPROP))
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ /* This should never occur */
+
+ default:
+ RRETURN(PCRE_ERROR_INTERNAL);
+ }
+
+ ecode += 3;
+ }
+ break;
+
+ /* Match an extended Unicode sequence. We will get here only if the support
+ is in the binary; otherwise a compile-time error occurs. */
+
+ case OP_EXTUNI:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ else
+ {
+ int lgb, rgb;
+ GETCHARINCTEST(c, eptr);
+ lgb = UCD_GRAPHBREAK(c);
+ while (eptr < md->end_subject)
+ {
+ int len = 1;
+ if (!utf) c = *eptr; else { GETCHARLEN(c, eptr, len); }
+ rgb = UCD_GRAPHBREAK(c);
+ if ((PRIV(ucp_gbtable)[lgb] & (1 << rgb)) == 0) break;
+ lgb = rgb;
+ eptr += len;
+ }
+ }
+ CHECK_PARTIAL();
+ ecode++;
+ break;
+#endif /* SUPPORT_UCP */
+
+
+ /* Match a back reference, possibly repeatedly. Look past the end of the
+ item to see if there is repeat information following. The code is similar
+ to that for character classes, but repeated for efficiency. Then obey
+ similar code to character type repeats - written out again for speed.
+ However, if the referenced string is the empty string, always treat
+ it as matched, any number of times (otherwise there could be infinite
+ loops). */
+
+ case OP_REF:
+ case OP_REFI:
+ caseless = op == OP_REFI;
+ offset = GET2(ecode, 1) << 1; /* Doubled ref number */
+ ecode += 1 + IMM2_SIZE;
+
+ /* If the reference is unset, there are two possibilities:
+
+ (a) In the default, Perl-compatible state, set the length negative;
+ this ensures that every attempt at a match fails. We can't just fail
+ here, because of the possibility of quantifiers with zero minima.
+
+ (b) If the JavaScript compatibility flag is set, set the length to zero
+ so that the back reference matches an empty string.
+
+ Otherwise, set the length to the length of what was matched by the
+ referenced subpattern. */
+
+ if (offset >= offset_top || md->offset_vector[offset] < 0)
+ length = (md->jscript_compat)? 0 : -1;
+ else
+ length = md->offset_vector[offset+1] - md->offset_vector[offset];
+
+ /* Set up for repetition, or handle the non-repeated case */
+
+ switch (*ecode)
+ {
+ case OP_CRSTAR:
+ case OP_CRMINSTAR:
+ case OP_CRPLUS:
+ case OP_CRMINPLUS:
+ case OP_CRQUERY:
+ case OP_CRMINQUERY:
+ c = *ecode++ - OP_CRSTAR;
+ minimize = (c & 1) != 0;
+ min = rep_min[c]; /* Pick up values from tables; */
+ max = rep_max[c]; /* zero for max => infinity */
+ if (max == 0) max = INT_MAX;
+ break;
+
+ case OP_CRRANGE:
+ case OP_CRMINRANGE:
+ minimize = (*ecode == OP_CRMINRANGE);
+ min = GET2(ecode, 1);
+ max = GET2(ecode, 1 + IMM2_SIZE);
+ if (max == 0) max = INT_MAX;
+ ecode += 1 + 2 * IMM2_SIZE;
+ break;
+
+ default: /* No repeat follows */
+ if ((length = match_ref(offset, eptr, length, md, caseless)) < 0)
+ {
+ if (length == -2) eptr = md->end_subject; /* Partial match */
+ CHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ eptr += length;
+ continue; /* With the main loop */
+ }
+
+ /* Handle repeated back references. If the length of the reference is
+ zero, just continue with the main loop. If the length is negative, it
+ means the reference is unset in non-Java-compatible mode. If the minimum is
+ zero, we can continue at the same level without recursion. For any other
+ minimum, carrying on will result in NOMATCH. */
+
+ if (length == 0) continue;
+ if (length < 0 && min == 0) continue;
+
+ /* First, ensure the minimum number of matches are present. We get back
+ the length of the reference string explicitly rather than passing the
+ address of eptr, so that eptr can be a register variable. */
+
+ for (i = 1; i <= min; i++)
+ {
+ int slength;
+ if ((slength = match_ref(offset, eptr, length, md, caseless)) < 0)
+ {
+ if (slength == -2) eptr = md->end_subject; /* Partial match */
+ CHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ eptr += slength;
+ }
+
+ /* If min = max, continue at the same level without recursion.
+ They are not both allowed to be zero. */
+
+ if (min == max) continue;
+
+ /* If minimizing, keep trying and advancing the pointer */
+
+ if (minimize)
+ {
+ for (fi = min;; fi++)
+ {
+ int slength;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM14);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if ((slength = match_ref(offset, eptr, length, md, caseless)) < 0)
+ {
+ if (slength == -2) eptr = md->end_subject; /* Partial match */
+ CHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ eptr += slength;
+ }
+ /* Control never gets here */
+ }
+
+ /* If maximizing, find the longest string and work backwards */
+
+ else
+ {
+ pp = eptr;
+ for (i = min; i < max; i++)
+ {
+ int slength;
+ if ((slength = match_ref(offset, eptr, length, md, caseless)) < 0)
+ {
+ /* Can't use CHECK_PARTIAL because we don't want to update eptr in
+ the soft partial matching case. */
+
+ if (slength == -2 && md->partial != 0 &&
+ md->end_subject > md->start_used_ptr)
+ {
+ md->hitend = TRUE;
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL);
+ }
+ break;
+ }
+ eptr += slength;
+ }
+
+ while (eptr >= pp)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM15);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ eptr -= length;
+ }
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ /* Match a bit-mapped character class, possibly repeatedly. This op code is
+ used when all the characters in the class have values in the range 0-255,
+ and either the matching is caseful, or the characters are in the range
+ 0-127 when UTF-8 processing is enabled. The only difference between
+ OP_CLASS and OP_NCLASS occurs when a data character outside the range is
+ encountered.
+
+ First, look past the end of the item to see if there is repeat information
+ following. Then obey similar code to character type repeats - written out
+ again for speed. */
+
+ case OP_NCLASS:
+ case OP_CLASS:
+ {
+ /* The data variable is saved across frames, so the byte map needs to
+ be stored there. */
+#define BYTE_MAP ((pcre_uint8 *)data)
+ data = ecode + 1; /* Save for matching */
+ ecode += 1 + (32 / sizeof(pcre_uchar)); /* Advance past the item */
+
+ switch (*ecode)
+ {
+ case OP_CRSTAR:
+ case OP_CRMINSTAR:
+ case OP_CRPLUS:
+ case OP_CRMINPLUS:
+ case OP_CRQUERY:
+ case OP_CRMINQUERY:
+ c = *ecode++ - OP_CRSTAR;
+ minimize = (c & 1) != 0;
+ min = rep_min[c]; /* Pick up values from tables; */
+ max = rep_max[c]; /* zero for max => infinity */
+ if (max == 0) max = INT_MAX;
+ break;
+
+ case OP_CRRANGE:
+ case OP_CRMINRANGE:
+ minimize = (*ecode == OP_CRMINRANGE);
+ min = GET2(ecode, 1);
+ max = GET2(ecode, 1 + IMM2_SIZE);
+ if (max == 0) max = INT_MAX;
+ ecode += 1 + 2 * IMM2_SIZE;
+ break;
+
+ default: /* No repeat follows */
+ min = max = 1;
+ break;
+ }
+
+ /* First, ensure the minimum number of matches are present. */
+
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(c, eptr);
+ if (c > 255)
+ {
+ if (op == OP_CLASS) RRETURN(MATCH_NOMATCH);
+ }
+ else
+ if ((BYTE_MAP[c/8] & (1 << (c&7))) == 0) RRETURN(MATCH_NOMATCH);
+ }
+ }
+ else
+#endif
+ /* Not UTF mode */
+ {
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ c = *eptr++;
+#ifndef COMPILE_PCRE8
+ if (c > 255)
+ {
+ if (op == OP_CLASS) RRETURN(MATCH_NOMATCH);
+ }
+ else
+#endif
+ if ((BYTE_MAP[c/8] & (1 << (c&7))) == 0) RRETURN(MATCH_NOMATCH);
+ }
+ }
+
+ /* If max == min we can continue with the main loop without the
+ need to recurse. */
+
+ if (min == max) continue;
+
+ /* If minimizing, keep testing the rest of the expression and advancing
+ the pointer while it matches the class. */
+
+ if (minimize)
+ {
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM16);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(c, eptr);
+ if (c > 255)
+ {
+ if (op == OP_CLASS) RRETURN(MATCH_NOMATCH);
+ }
+ else
+ if ((BYTE_MAP[c/8] & (1 << (c&7))) == 0) RRETURN(MATCH_NOMATCH);
+ }
+ }
+ else
+#endif
+ /* Not UTF mode */
+ {
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM17);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ c = *eptr++;
+#ifndef COMPILE_PCRE8
+ if (c > 255)
+ {
+ if (op == OP_CLASS) RRETURN(MATCH_NOMATCH);
+ }
+ else
+#endif
+ if ((BYTE_MAP[c/8] & (1 << (c&7))) == 0) RRETURN(MATCH_NOMATCH);
+ }
+ }
+ /* Control never gets here */
+ }
+
+ /* If maximizing, find the longest possible run, then work backwards. */
+
+ else
+ {
+ pp = eptr;
+
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(c, eptr, len);
+ if (c > 255)
+ {
+ if (op == OP_CLASS) break;
+ }
+ else
+ if ((BYTE_MAP[c/8] & (1 << (c&7))) == 0) break;
+ eptr += len;
+ }
+ for (;;)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM18);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (eptr-- == pp) break; /* Stop if tried at original pos */
+ BACKCHAR(eptr);
+ }
+ }
+ else
+#endif
+ /* Not UTF mode */
+ {
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ c = *eptr;
+#ifndef COMPILE_PCRE8
+ if (c > 255)
+ {
+ if (op == OP_CLASS) break;
+ }
+ else
+#endif
+ if ((BYTE_MAP[c/8] & (1 << (c&7))) == 0) break;
+ eptr++;
+ }
+ while (eptr >= pp)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM19);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ eptr--;
+ }
+ }
+
+ RRETURN(MATCH_NOMATCH);
+ }
+#undef BYTE_MAP
+ }
+ /* Control never gets here */
+
+
+ /* Match an extended character class. This opcode is encountered only
+ when UTF-8 mode mode is supported. Nevertheless, we may not be in UTF-8
+ mode, because Unicode properties are supported in non-UTF-8 mode. */
+
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ case OP_XCLASS:
+ {
+ data = ecode + 1 + LINK_SIZE; /* Save for matching */
+ ecode += GET(ecode, 1); /* Advance past the item */
+
+ switch (*ecode)
+ {
+ case OP_CRSTAR:
+ case OP_CRMINSTAR:
+ case OP_CRPLUS:
+ case OP_CRMINPLUS:
+ case OP_CRQUERY:
+ case OP_CRMINQUERY:
+ c = *ecode++ - OP_CRSTAR;
+ minimize = (c & 1) != 0;
+ min = rep_min[c]; /* Pick up values from tables; */
+ max = rep_max[c]; /* zero for max => infinity */
+ if (max == 0) max = INT_MAX;
+ break;
+
+ case OP_CRRANGE:
+ case OP_CRMINRANGE:
+ minimize = (*ecode == OP_CRMINRANGE);
+ min = GET2(ecode, 1);
+ max = GET2(ecode, 1 + IMM2_SIZE);
+ if (max == 0) max = INT_MAX;
+ ecode += 1 + 2 * IMM2_SIZE;
+ break;
+
+ default: /* No repeat follows */
+ min = max = 1;
+ break;
+ }
+
+ /* First, ensure the minimum number of matches are present. */
+
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if (!PRIV(xclass)(c, data, utf)) RRETURN(MATCH_NOMATCH);
+ }
+
+ /* If max == min we can continue with the main loop without the
+ need to recurse. */
+
+ if (min == max) continue;
+
+ /* If minimizing, keep testing the rest of the expression and advancing
+ the pointer while it matches the class. */
+
+ if (minimize)
+ {
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM20);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if (!PRIV(xclass)(c, data, utf)) RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+ }
+
+ /* If maximizing, find the longest possible run, then work backwards. */
+
+ else
+ {
+ pp = eptr;
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+#ifdef SUPPORT_UTF
+ GETCHARLENTEST(c, eptr, len);
+#else
+ c = *eptr;
+#endif
+ if (!PRIV(xclass)(c, data, utf)) break;
+ eptr += len;
+ }
+ for(;;)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM21);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (eptr-- == pp) break; /* Stop if tried at original pos */
+#ifdef SUPPORT_UTF
+ if (utf) BACKCHAR(eptr);
+#endif
+ }
+ RRETURN(MATCH_NOMATCH);
+ }
+
+ /* Control never gets here */
+ }
+#endif /* End of XCLASS */
+
+ /* Match a single character, casefully */
+
+ case OP_CHAR:
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ length = 1;
+ ecode++;
+ GETCHARLEN(fc, ecode, length);
+ if (length > md->end_subject - eptr)
+ {
+ CHECK_PARTIAL(); /* Not SCHECK_PARTIAL() */
+ RRETURN(MATCH_NOMATCH);
+ }
+ while (length-- > 0) if (*ecode++ != RAWUCHARINC(eptr)) RRETURN(MATCH_NOMATCH);
+ }
+ else
+#endif
+ /* Not UTF mode */
+ {
+ if (md->end_subject - eptr < 1)
+ {
+ SCHECK_PARTIAL(); /* This one can use SCHECK_PARTIAL() */
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (ecode[1] != *eptr++) RRETURN(MATCH_NOMATCH);
+ ecode += 2;
+ }
+ break;
+
+ /* Match a single character, caselessly. If we are at the end of the
+ subject, give up immediately. */
+
+ case OP_CHARI:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ length = 1;
+ ecode++;
+ GETCHARLEN(fc, ecode, length);
+
+ /* If the pattern character's value is < 128, we have only one byte, and
+ we know that its other case must also be one byte long, so we can use the
+ fast lookup table. We know that there is at least one byte left in the
+ subject. */
+
+ if (fc < 128)
+ {
+ pcre_uint32 cc = RAWUCHAR(eptr);
+ if (md->lcc[fc] != TABLE_GET(cc, md->lcc, cc)) RRETURN(MATCH_NOMATCH);
+ ecode++;
+ eptr++;
+ }
+
+ /* Otherwise we must pick up the subject character. Note that we cannot
+ use the value of "length" to check for sufficient bytes left, because the
+ other case of the character may have more or fewer bytes. */
+
+ else
+ {
+ pcre_uint32 dc;
+ GETCHARINC(dc, eptr);
+ ecode += length;
+
+ /* If we have Unicode property support, we can use it to test the other
+ case of the character, if there is one. */
+
+ if (fc != dc)
+ {
+#ifdef SUPPORT_UCP
+ if (dc != UCD_OTHERCASE(fc))
+#endif
+ RRETURN(MATCH_NOMATCH);
+ }
+ }
+ }
+ else
+#endif /* SUPPORT_UTF */
+
+ /* Not UTF mode */
+ {
+ if (TABLE_GET(ecode[1], md->lcc, ecode[1])
+ != TABLE_GET(*eptr, md->lcc, *eptr)) RRETURN(MATCH_NOMATCH);
+ eptr++;
+ ecode += 2;
+ }
+ break;
+
+ /* Match a single character repeatedly. */
+
+ case OP_EXACT:
+ case OP_EXACTI:
+ min = max = GET2(ecode, 1);
+ ecode += 1 + IMM2_SIZE;
+ goto REPEATCHAR;
+
+ case OP_POSUPTO:
+ case OP_POSUPTOI:
+ possessive = TRUE;
+ /* Fall through */
+
+ case OP_UPTO:
+ case OP_UPTOI:
+ case OP_MINUPTO:
+ case OP_MINUPTOI:
+ min = 0;
+ max = GET2(ecode, 1);
+ minimize = *ecode == OP_MINUPTO || *ecode == OP_MINUPTOI;
+ ecode += 1 + IMM2_SIZE;
+ goto REPEATCHAR;
+
+ case OP_POSSTAR:
+ case OP_POSSTARI:
+ possessive = TRUE;
+ min = 0;
+ max = INT_MAX;
+ ecode++;
+ goto REPEATCHAR;
+
+ case OP_POSPLUS:
+ case OP_POSPLUSI:
+ possessive = TRUE;
+ min = 1;
+ max = INT_MAX;
+ ecode++;
+ goto REPEATCHAR;
+
+ case OP_POSQUERY:
+ case OP_POSQUERYI:
+ possessive = TRUE;
+ min = 0;
+ max = 1;
+ ecode++;
+ goto REPEATCHAR;
+
+ case OP_STAR:
+ case OP_STARI:
+ case OP_MINSTAR:
+ case OP_MINSTARI:
+ case OP_PLUS:
+ case OP_PLUSI:
+ case OP_MINPLUS:
+ case OP_MINPLUSI:
+ case OP_QUERY:
+ case OP_QUERYI:
+ case OP_MINQUERY:
+ case OP_MINQUERYI:
+ c = *ecode++ - ((op < OP_STARI)? OP_STAR : OP_STARI);
+ minimize = (c & 1) != 0;
+ min = rep_min[c]; /* Pick up values from tables; */
+ max = rep_max[c]; /* zero for max => infinity */
+ if (max == 0) max = INT_MAX;
+
+ /* Common code for all repeated single-character matches. We first check
+ for the minimum number of characters. If the minimum equals the maximum, we
+ are done. Otherwise, if minimizing, check the rest of the pattern for a
+ match; if there isn't one, advance up to the maximum, one character at a
+ time.
+
+ If maximizing, advance up to the maximum number of matching characters,
+ until eptr is past the end of the maximum run. If possessive, we are
+ then done (no backing up). Otherwise, match at this position; anything
+ other than no match is immediately returned. For nomatch, back up one
+ character, unless we are matching \R and the last thing matched was
+ \r\n, in which case, back up two bytes. When we reach the first optional
+ character position, we can save stack by doing a tail recurse.
+
+ The various UTF/non-UTF and caseful/caseless cases are handled separately,
+ for speed. */
+
+ REPEATCHAR:
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ length = 1;
+ charptr = ecode;
+ GETCHARLEN(fc, ecode, length);
+ ecode += length;
+
+ /* Handle multibyte character matching specially here. There is
+ support for caseless matching if UCP support is present. */
+
+ if (length > 1)
+ {
+#ifdef SUPPORT_UCP
+ pcre_uint32 othercase;
+ if (op >= OP_STARI && /* Caseless */
+ (othercase = UCD_OTHERCASE(fc)) != fc)
+ oclength = PRIV(ord2utf)(othercase, occhars);
+ else oclength = 0;
+#endif /* SUPPORT_UCP */
+
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr <= md->end_subject - length &&
+ memcmp(eptr, charptr, IN_UCHARS(length)) == 0) eptr += length;
+#ifdef SUPPORT_UCP
+ else if (oclength > 0 &&
+ eptr <= md->end_subject - oclength &&
+ memcmp(eptr, occhars, IN_UCHARS(oclength)) == 0) eptr += oclength;
+#endif /* SUPPORT_UCP */
+ else
+ {
+ CHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ }
+
+ if (min == max) continue;
+
+ if (minimize)
+ {
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM22);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr <= md->end_subject - length &&
+ memcmp(eptr, charptr, IN_UCHARS(length)) == 0) eptr += length;
+#ifdef SUPPORT_UCP
+ else if (oclength > 0 &&
+ eptr <= md->end_subject - oclength &&
+ memcmp(eptr, occhars, IN_UCHARS(oclength)) == 0) eptr += oclength;
+#endif /* SUPPORT_UCP */
+ else
+ {
+ CHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ }
+ /* Control never gets here */
+ }
+
+ else /* Maximize */
+ {
+ pp = eptr;
+ for (i = min; i < max; i++)
+ {
+ if (eptr <= md->end_subject - length &&
+ memcmp(eptr, charptr, IN_UCHARS(length)) == 0) eptr += length;
+#ifdef SUPPORT_UCP
+ else if (oclength > 0 &&
+ eptr <= md->end_subject - oclength &&
+ memcmp(eptr, occhars, IN_UCHARS(oclength)) == 0) eptr += oclength;
+#endif /* SUPPORT_UCP */
+ else
+ {
+ CHECK_PARTIAL();
+ break;
+ }
+ }
+
+ if (possessive) continue; /* No backtracking */
+ for(;;)
+ {
+ if (eptr == pp) goto TAIL_RECURSE;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM23);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+#ifdef SUPPORT_UCP
+ eptr--;
+ BACKCHAR(eptr);
+#else /* without SUPPORT_UCP */
+ eptr -= length;
+#endif /* SUPPORT_UCP */
+ }
+ }
+ /* Control never gets here */
+ }
+
+ /* If the length of a UTF-8 character is 1, we fall through here, and
+ obey the code as for non-UTF-8 characters below, though in this case the
+ value of fc will always be < 128. */
+ }
+ else
+#endif /* SUPPORT_UTF */
+ /* When not in UTF-8 mode, load a single-byte character. */
+ fc = *ecode++;
+
+ /* The value of fc at this point is always one character, though we may
+ or may not be in UTF mode. The code is duplicated for the caseless and
+ caseful cases, for speed, since matching characters is likely to be quite
+ common. First, ensure the minimum number of matches are present. If min =
+ max, continue at the same level without recursing. Otherwise, if
+ minimizing, keep trying the rest of the expression and advancing one
+ matching character if failing, up to the maximum. Alternatively, if
+ maximizing, find the maximum number of characters and work backwards. */
+
+ DPRINTF(("matching %c{%d,%d} against subject %.*s\n", fc, min, max,
+ max, (char *)eptr));
+
+ if (op >= OP_STARI) /* Caseless */
+ {
+#ifdef COMPILE_PCRE8
+ /* fc must be < 128 if UTF is enabled. */
+ foc = md->fcc[fc];
+#else
+#ifdef SUPPORT_UTF
+#ifdef SUPPORT_UCP
+ if (utf && fc > 127)
+ foc = UCD_OTHERCASE(fc);
+#else
+ if (utf && fc > 127)
+ foc = fc;
+#endif /* SUPPORT_UCP */
+ else
+#endif /* SUPPORT_UTF */
+ foc = TABLE_GET(fc, md->fcc, fc);
+#endif /* COMPILE_PCRE8 */
+
+ for (i = 1; i <= min; i++)
+ {
+ pcre_uint32 cc; /* Faster than pcre_uchar */
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ cc = RAWUCHARTEST(eptr);
+ if (fc != cc && foc != cc) RRETURN(MATCH_NOMATCH);
+ eptr++;
+ }
+ if (min == max) continue;
+ if (minimize)
+ {
+ for (fi = min;; fi++)
+ {
+ pcre_uint32 cc; /* Faster than pcre_uchar */
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM24);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ cc = RAWUCHARTEST(eptr);
+ if (fc != cc && foc != cc) RRETURN(MATCH_NOMATCH);
+ eptr++;
+ }
+ /* Control never gets here */
+ }
+ else /* Maximize */
+ {
+ pp = eptr;
+ for (i = min; i < max; i++)
+ {
+ pcre_uint32 cc; /* Faster than pcre_uchar */
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ cc = RAWUCHARTEST(eptr);
+ if (fc != cc && foc != cc) break;
+ eptr++;
+ }
+
+ if (possessive) continue; /* No backtracking */
+ for (;;)
+ {
+ if (eptr == pp) goto TAIL_RECURSE;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM25);
+ eptr--;
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ }
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+ }
+
+ /* Caseful comparisons (includes all multi-byte characters) */
+
+ else
+ {
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (fc != RAWUCHARINCTEST(eptr)) RRETURN(MATCH_NOMATCH);
+ }
+
+ if (min == max) continue;
+
+ if (minimize)
+ {
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM26);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (fc != RAWUCHARINCTEST(eptr)) RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+ }
+ else /* Maximize */
+ {
+ pp = eptr;
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (fc != RAWUCHARTEST(eptr)) break;
+ eptr++;
+ }
+ if (possessive) continue; /* No backtracking */
+ for (;;)
+ {
+ if (eptr == pp) goto TAIL_RECURSE;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM27);
+ eptr--;
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ }
+ RRETURN(MATCH_NOMATCH);
+ }
+ }
+ /* Control never gets here */
+
+ /* Match a negated single one-byte character. The character we are
+ checking can be multibyte. */
+
+ case OP_NOT:
+ case OP_NOTI:
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ register pcre_uint32 ch, och;
+
+ ecode++;
+ GETCHARINC(ch, ecode);
+ GETCHARINC(c, eptr);
+
+ if (op == OP_NOT)
+ {
+ if (ch == c) RRETURN(MATCH_NOMATCH);
+ }
+ else
+ {
+#ifdef SUPPORT_UCP
+ if (ch > 127)
+ och = UCD_OTHERCASE(ch);
+#else
+ if (ch > 127)
+ och = ch;
+#endif /* SUPPORT_UCP */
+ else
+ och = TABLE_GET(ch, md->fcc, ch);
+ if (ch == c || och == c) RRETURN(MATCH_NOMATCH);
+ }
+ }
+ else
+#endif
+ {
+ register pcre_uint32 ch = ecode[1];
+ c = *eptr++;
+ if (ch == c || (op == OP_NOTI && TABLE_GET(ch, md->fcc, ch) == c))
+ RRETURN(MATCH_NOMATCH);
+ ecode += 2;
+ }
+ break;
+
+ /* Match a negated single one-byte character repeatedly. This is almost a
+ repeat of the code for a repeated single character, but I haven't found a
+ nice way of commoning these up that doesn't require a test of the
+ positive/negative option for each character match. Maybe that wouldn't add
+ very much to the time taken, but character matching *is* what this is all
+ about... */
+
+ case OP_NOTEXACT:
+ case OP_NOTEXACTI:
+ min = max = GET2(ecode, 1);
+ ecode += 1 + IMM2_SIZE;
+ goto REPEATNOTCHAR;
+
+ case OP_NOTUPTO:
+ case OP_NOTUPTOI:
+ case OP_NOTMINUPTO:
+ case OP_NOTMINUPTOI:
+ min = 0;
+ max = GET2(ecode, 1);
+ minimize = *ecode == OP_NOTMINUPTO || *ecode == OP_NOTMINUPTOI;
+ ecode += 1 + IMM2_SIZE;
+ goto REPEATNOTCHAR;
+
+ case OP_NOTPOSSTAR:
+ case OP_NOTPOSSTARI:
+ possessive = TRUE;
+ min = 0;
+ max = INT_MAX;
+ ecode++;
+ goto REPEATNOTCHAR;
+
+ case OP_NOTPOSPLUS:
+ case OP_NOTPOSPLUSI:
+ possessive = TRUE;
+ min = 1;
+ max = INT_MAX;
+ ecode++;
+ goto REPEATNOTCHAR;
+
+ case OP_NOTPOSQUERY:
+ case OP_NOTPOSQUERYI:
+ possessive = TRUE;
+ min = 0;
+ max = 1;
+ ecode++;
+ goto REPEATNOTCHAR;
+
+ case OP_NOTPOSUPTO:
+ case OP_NOTPOSUPTOI:
+ possessive = TRUE;
+ min = 0;
+ max = GET2(ecode, 1);
+ ecode += 1 + IMM2_SIZE;
+ goto REPEATNOTCHAR;
+
+ case OP_NOTSTAR:
+ case OP_NOTSTARI:
+ case OP_NOTMINSTAR:
+ case OP_NOTMINSTARI:
+ case OP_NOTPLUS:
+ case OP_NOTPLUSI:
+ case OP_NOTMINPLUS:
+ case OP_NOTMINPLUSI:
+ case OP_NOTQUERY:
+ case OP_NOTQUERYI:
+ case OP_NOTMINQUERY:
+ case OP_NOTMINQUERYI:
+ c = *ecode++ - ((op >= OP_NOTSTARI)? OP_NOTSTARI: OP_NOTSTAR);
+ minimize = (c & 1) != 0;
+ min = rep_min[c]; /* Pick up values from tables; */
+ max = rep_max[c]; /* zero for max => infinity */
+ if (max == 0) max = INT_MAX;
+
+ /* Common code for all repeated single-byte matches. */
+
+ REPEATNOTCHAR:
+ GETCHARINCTEST(fc, ecode);
+
+ /* The code is duplicated for the caseless and caseful cases, for speed,
+ since matching characters is likely to be quite common. First, ensure the
+ minimum number of matches are present. If min = max, continue at the same
+ level without recursing. Otherwise, if minimizing, keep trying the rest of
+ the expression and advancing one matching character if failing, up to the
+ maximum. Alternatively, if maximizing, find the maximum number of
+ characters and work backwards. */
+
+ DPRINTF(("negative matching %c{%d,%d} against subject %.*s\n", fc, min, max,
+ max, (char *)eptr));
+
+ if (op >= OP_NOTSTARI) /* Caseless */
+ {
+#ifdef SUPPORT_UTF
+#ifdef SUPPORT_UCP
+ if (utf && fc > 127)
+ foc = UCD_OTHERCASE(fc);
+#else
+ if (utf && fc > 127)
+ foc = fc;
+#endif /* SUPPORT_UCP */
+ else
+#endif /* SUPPORT_UTF */
+ foc = TABLE_GET(fc, md->fcc, fc);
+
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ register pcre_uint32 d;
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(d, eptr);
+ if (fc == d || (unsigned int)foc == d) RRETURN(MATCH_NOMATCH);
+ }
+ }
+ else
+#endif /* SUPPORT_UTF */
+ /* Not UTF mode */
+ {
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (fc == *eptr || foc == *eptr) RRETURN(MATCH_NOMATCH);
+ eptr++;
+ }
+ }
+
+ if (min == max) continue;
+
+ if (minimize)
+ {
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ register pcre_uint32 d;
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM28);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(d, eptr);
+ if (fc == d || (unsigned int)foc == d) RRETURN(MATCH_NOMATCH);
+ }
+ }
+ else
+#endif /*SUPPORT_UTF */
+ /* Not UTF mode */
+ {
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM29);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (fc == *eptr || foc == *eptr) RRETURN(MATCH_NOMATCH);
+ eptr++;
+ }
+ }
+ /* Control never gets here */
+ }
+
+ /* Maximize case */
+
+ else
+ {
+ pp = eptr;
+
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ register pcre_uint32 d;
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(d, eptr, len);
+ if (fc == d || (unsigned int)foc == d) break;
+ eptr += len;
+ }
+ if (possessive) continue; /* No backtracking */
+ for(;;)
+ {
+ if (eptr == pp) goto TAIL_RECURSE;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM30);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ eptr--;
+ BACKCHAR(eptr);
+ }
+ }
+ else
+#endif /* SUPPORT_UTF */
+ /* Not UTF mode */
+ {
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (fc == *eptr || foc == *eptr) break;
+ eptr++;
+ }
+ if (possessive) continue; /* No backtracking */
+ for (;;)
+ {
+ if (eptr == pp) goto TAIL_RECURSE;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM31);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ eptr--;
+ }
+ }
+
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+ }
+
+ /* Caseful comparisons */
+
+ else
+ {
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ register pcre_uint32 d;
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(d, eptr);
+ if (fc == d) RRETURN(MATCH_NOMATCH);
+ }
+ }
+ else
+#endif
+ /* Not UTF mode */
+ {
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (fc == *eptr++) RRETURN(MATCH_NOMATCH);
+ }
+ }
+
+ if (min == max) continue;
+
+ if (minimize)
+ {
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ register pcre_uint32 d;
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM32);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(d, eptr);
+ if (fc == d) RRETURN(MATCH_NOMATCH);
+ }
+ }
+ else
+#endif
+ /* Not UTF mode */
+ {
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM33);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (fc == *eptr++) RRETURN(MATCH_NOMATCH);
+ }
+ }
+ /* Control never gets here */
+ }
+
+ /* Maximize case */
+
+ else
+ {
+ pp = eptr;
+
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ register pcre_uint32 d;
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(d, eptr, len);
+ if (fc == d) break;
+ eptr += len;
+ }
+ if (possessive) continue; /* No backtracking */
+ for(;;)
+ {
+ if (eptr == pp) goto TAIL_RECURSE;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM34);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ eptr--;
+ BACKCHAR(eptr);
+ }
+ }
+ else
+#endif
+ /* Not UTF mode */
+ {
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (fc == *eptr) break;
+ eptr++;
+ }
+ if (possessive) continue; /* No backtracking */
+ for (;;)
+ {
+ if (eptr == pp) goto TAIL_RECURSE;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM35);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ eptr--;
+ }
+ }
+
+ RRETURN(MATCH_NOMATCH);
+ }
+ }
+ /* Control never gets here */
+
+ /* Match a single character type repeatedly; several different opcodes
+ share code. This is very similar to the code for single characters, but we
+ repeat it in the interests of efficiency. */
+
+ case OP_TYPEEXACT:
+ min = max = GET2(ecode, 1);
+ minimize = TRUE;
+ ecode += 1 + IMM2_SIZE;
+ goto REPEATTYPE;
+
+ case OP_TYPEUPTO:
+ case OP_TYPEMINUPTO:
+ min = 0;
+ max = GET2(ecode, 1);
+ minimize = *ecode == OP_TYPEMINUPTO;
+ ecode += 1 + IMM2_SIZE;
+ goto REPEATTYPE;
+
+ case OP_TYPEPOSSTAR:
+ possessive = TRUE;
+ min = 0;
+ max = INT_MAX;
+ ecode++;
+ goto REPEATTYPE;
+
+ case OP_TYPEPOSPLUS:
+ possessive = TRUE;
+ min = 1;
+ max = INT_MAX;
+ ecode++;
+ goto REPEATTYPE;
+
+ case OP_TYPEPOSQUERY:
+ possessive = TRUE;
+ min = 0;
+ max = 1;
+ ecode++;
+ goto REPEATTYPE;
+
+ case OP_TYPEPOSUPTO:
+ possessive = TRUE;
+ min = 0;
+ max = GET2(ecode, 1);
+ ecode += 1 + IMM2_SIZE;
+ goto REPEATTYPE;
+
+ case OP_TYPESTAR:
+ case OP_TYPEMINSTAR:
+ case OP_TYPEPLUS:
+ case OP_TYPEMINPLUS:
+ case OP_TYPEQUERY:
+ case OP_TYPEMINQUERY:
+ c = *ecode++ - OP_TYPESTAR;
+ minimize = (c & 1) != 0;
+ min = rep_min[c]; /* Pick up values from tables; */
+ max = rep_max[c]; /* zero for max => infinity */
+ if (max == 0) max = INT_MAX;
+
+ /* Common code for all repeated single character type matches. Note that
+ in UTF-8 mode, '.' matches a character of any length, but for the other
+ character types, the valid characters are all one-byte long. */
+
+ REPEATTYPE:
+ ctype = *ecode++; /* Code for the character type */
+
+#ifdef SUPPORT_UCP
+ if (ctype == OP_PROP || ctype == OP_NOTPROP)
+ {
+ prop_fail_result = ctype == OP_NOTPROP;
+ prop_type = *ecode++;
+ prop_value = *ecode++;
+ }
+ else prop_type = -1;
+#endif
+
+ /* First, ensure the minimum number of matches are present. Use inline
+ code for maximizing the speed, and do the type test once at the start
+ (i.e. keep it out of the loop). Separate the UTF-8 code completely as that
+ is tidier. Also separate the UCP code, which can be the same for both UTF-8
+ and single-bytes. */
+
+ if (min > 0)
+ {
+#ifdef SUPPORT_UCP
+ if (prop_type >= 0)
+ {
+ switch(prop_type)
+ {
+ case PT_ANY:
+ if (prop_fail_result) RRETURN(MATCH_NOMATCH);
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ }
+ break;
+
+ case PT_LAMP:
+ for (i = 1; i <= min; i++)
+ {
+ int chartype;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ chartype = UCD_CHARTYPE(c);
+ if ((chartype == ucp_Lu ||
+ chartype == ucp_Ll ||
+ chartype == ucp_Lt) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case PT_GC:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((UCD_CATEGORY(c) == prop_value) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case PT_PC:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((UCD_CHARTYPE(c) == prop_value) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case PT_SC:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((UCD_SCRIPT(c) == prop_value) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case PT_ALNUM:
+ for (i = 1; i <= min; i++)
+ {
+ int category;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ category = UCD_CATEGORY(c);
+ if ((category == ucp_L || category == ucp_N) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case PT_SPACE: /* Perl space */
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((UCD_CATEGORY(c) == ucp_Z || c == CHAR_HT || c == CHAR_NL ||
+ c == CHAR_FF || c == CHAR_CR)
+ == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case PT_PXSPACE: /* POSIX space */
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((UCD_CATEGORY(c) == ucp_Z || c == CHAR_HT || c == CHAR_NL ||
+ c == CHAR_VT || c == CHAR_FF || c == CHAR_CR)
+ == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case PT_WORD:
+ for (i = 1; i <= min; i++)
+ {
+ int category;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ category = UCD_CATEGORY(c);
+ if ((category == ucp_L || category == ucp_N || c == CHAR_UNDERSCORE)
+ == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case PT_CLIST:
+ for (i = 1; i <= min; i++)
+ {
+ const pcre_uint32 *cp;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ cp = PRIV(ucd_caseless_sets) + prop_value;
+ for (;;)
+ {
+ if (c < *cp)
+ { if (prop_fail_result) break; else { RRETURN(MATCH_NOMATCH); } }
+ if (c == *cp++)
+ { if (prop_fail_result) { RRETURN(MATCH_NOMATCH); } else break; }
+ }
+ }
+ break;
+
+ case PT_UCNC:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((c == CHAR_DOLLAR_SIGN || c == CHAR_COMMERCIAL_AT ||
+ c == CHAR_GRAVE_ACCENT || (c >= 0xa0 && c <= 0xd7ff) ||
+ c >= 0xe000) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ /* This should not occur */
+
+ default:
+ RRETURN(PCRE_ERROR_INTERNAL);
+ }
+ }
+
+ /* Match extended Unicode sequences. We will get here only if the
+ support is in the binary; otherwise a compile-time error occurs. */
+
+ else if (ctype == OP_EXTUNI)
+ {
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ else
+ {
+ int lgb, rgb;
+ GETCHARINCTEST(c, eptr);
+ lgb = UCD_GRAPHBREAK(c);
+ while (eptr < md->end_subject)
+ {
+ int len = 1;
+ if (!utf) c = *eptr; else { GETCHARLEN(c, eptr, len); }
+ rgb = UCD_GRAPHBREAK(c);
+ if ((PRIV(ucp_gbtable)[lgb] & (1 << rgb)) == 0) break;
+ lgb = rgb;
+ eptr += len;
+ }
+ }
+ CHECK_PARTIAL();
+ }
+ }
+
+ else
+#endif /* SUPPORT_UCP */
+
+/* Handle all other cases when the coding is UTF-8 */
+
+#ifdef SUPPORT_UTF
+ if (utf) switch(ctype)
+ {
+ case OP_ANY:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (IS_NEWLINE(eptr)) RRETURN(MATCH_NOMATCH);
+ if (md->partial != 0 &&
+ eptr + 1 >= md->end_subject &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ RAWUCHAR(eptr) == NLBLOCK->nl[0])
+ {
+ md->hitend = TRUE;
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL);
+ }
+ eptr++;
+ ACROSSCHAR(eptr < md->end_subject, *eptr, eptr++);
+ }
+ break;
+
+ case OP_ALLANY:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ eptr++;
+ ACROSSCHAR(eptr < md->end_subject, *eptr, eptr++);
+ }
+ break;
+
+ case OP_ANYBYTE:
+ if (eptr > md->end_subject - min) RRETURN(MATCH_NOMATCH);
+ eptr += min;
+ break;
+
+ case OP_ANYNL:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(c, eptr);
+ switch(c)
+ {
+ default: RRETURN(MATCH_NOMATCH);
+
+ case CHAR_CR:
+ if (eptr < md->end_subject && RAWUCHAR(eptr) == CHAR_LF) eptr++;
+ break;
+
+ case CHAR_LF:
+ break;
+
+ case CHAR_VT:
+ case CHAR_FF:
+ case CHAR_NEL:
+#ifndef EBCDIC
+ case 0x2028:
+ case 0x2029:
+#endif /* Not EBCDIC */
+ if (md->bsr_anycrlf) RRETURN(MATCH_NOMATCH);
+ break;
+ }
+ }
+ break;
+
+ case OP_NOT_HSPACE:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(c, eptr);
+ switch(c)
+ {
+ HSPACE_CASES: RRETURN(MATCH_NOMATCH); /* Byte and multibyte cases */
+ default: break;
+ }
+ }
+ break;
+
+ case OP_HSPACE:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(c, eptr);
+ switch(c)
+ {
+ HSPACE_CASES: break; /* Byte and multibyte cases */
+ default: RRETURN(MATCH_NOMATCH);
+ }
+ }
+ break;
+
+ case OP_NOT_VSPACE:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(c, eptr);
+ switch(c)
+ {
+ VSPACE_CASES: RRETURN(MATCH_NOMATCH);
+ default: break;
+ }
+ }
+ break;
+
+ case OP_VSPACE:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(c, eptr);
+ switch(c)
+ {
+ VSPACE_CASES: break;
+ default: RRETURN(MATCH_NOMATCH);
+ }
+ }
+ break;
+
+ case OP_NOT_DIGIT:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINC(c, eptr);
+ if (c < 128 && (md->ctypes[c] & ctype_digit) != 0)
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case OP_DIGIT:
+ for (i = 1; i <= min; i++)
+ {
+ pcre_uint32 cc;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ cc = RAWUCHAR(eptr);
+ if (cc >= 128 || (md->ctypes[cc] & ctype_digit) == 0)
+ RRETURN(MATCH_NOMATCH);
+ eptr++;
+ /* No need to skip more bytes - we know it's a 1-byte character */
+ }
+ break;
+
+ case OP_NOT_WHITESPACE:
+ for (i = 1; i <= min; i++)
+ {
+ pcre_uint32 cc;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ cc = RAWUCHAR(eptr);
+ if (cc < 128 && (md->ctypes[cc] & ctype_space) != 0)
+ RRETURN(MATCH_NOMATCH);
+ eptr++;
+ ACROSSCHAR(eptr < md->end_subject, *eptr, eptr++);
+ }
+ break;
+
+ case OP_WHITESPACE:
+ for (i = 1; i <= min; i++)
+ {
+ pcre_uint32 cc;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ cc = RAWUCHAR(eptr);
+ if (cc >= 128 || (md->ctypes[cc] & ctype_space) == 0)
+ RRETURN(MATCH_NOMATCH);
+ eptr++;
+ /* No need to skip more bytes - we know it's a 1-byte character */
+ }
+ break;
+
+ case OP_NOT_WORDCHAR:
+ for (i = 1; i <= min; i++)
+ {
+ pcre_uint32 cc;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ cc = RAWUCHAR(eptr);
+ if (cc < 128 && (md->ctypes[cc] & ctype_word) != 0)
+ RRETURN(MATCH_NOMATCH);
+ eptr++;
+ ACROSSCHAR(eptr < md->end_subject, *eptr, eptr++);
+ }
+ break;
+
+ case OP_WORDCHAR:
+ for (i = 1; i <= min; i++)
+ {
+ pcre_uint32 cc;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ cc = RAWUCHAR(eptr);
+ if (cc >= 128 || (md->ctypes[cc] & ctype_word) == 0)
+ RRETURN(MATCH_NOMATCH);
+ eptr++;
+ /* No need to skip more bytes - we know it's a 1-byte character */
+ }
+ break;
+
+ default:
+ RRETURN(PCRE_ERROR_INTERNAL);
+ } /* End switch(ctype) */
+
+ else
+#endif /* SUPPORT_UTF */
+
+ /* Code for the non-UTF-8 case for minimum matching of operators other
+ than OP_PROP and OP_NOTPROP. */
+
+ switch(ctype)
+ {
+ case OP_ANY:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (IS_NEWLINE(eptr)) RRETURN(MATCH_NOMATCH);
+ if (md->partial != 0 &&
+ eptr + 1 >= md->end_subject &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ *eptr == NLBLOCK->nl[0])
+ {
+ md->hitend = TRUE;
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL);
+ }
+ eptr++;
+ }
+ break;
+
+ case OP_ALLANY:
+ if (eptr > md->end_subject - min)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ eptr += min;
+ break;
+
+ case OP_ANYBYTE:
+ if (eptr > md->end_subject - min)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ eptr += min;
+ break;
+
+ case OP_ANYNL:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ switch(*eptr++)
+ {
+ default: RRETURN(MATCH_NOMATCH);
+
+ case CHAR_CR:
+ if (eptr < md->end_subject && *eptr == CHAR_LF) eptr++;
+ break;
+
+ case CHAR_LF:
+ break;
+
+ case CHAR_VT:
+ case CHAR_FF:
+ case CHAR_NEL:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ case 0x2028:
+ case 0x2029:
+#endif
+ if (md->bsr_anycrlf) RRETURN(MATCH_NOMATCH);
+ break;
+ }
+ }
+ break;
+
+ case OP_NOT_HSPACE:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ switch(*eptr++)
+ {
+ default: break;
+ HSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ HSPACE_MULTIBYTE_CASES:
+#endif
+ RRETURN(MATCH_NOMATCH);
+ }
+ }
+ break;
+
+ case OP_HSPACE:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ switch(*eptr++)
+ {
+ default: RRETURN(MATCH_NOMATCH);
+ HSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ HSPACE_MULTIBYTE_CASES:
+#endif
+ break;
+ }
+ }
+ break;
+
+ case OP_NOT_VSPACE:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ switch(*eptr++)
+ {
+ VSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ VSPACE_MULTIBYTE_CASES:
+#endif
+ RRETURN(MATCH_NOMATCH);
+ default: break;
+ }
+ }
+ break;
+
+ case OP_VSPACE:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ switch(*eptr++)
+ {
+ default: RRETURN(MATCH_NOMATCH);
+ VSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ VSPACE_MULTIBYTE_CASES:
+#endif
+ break;
+ }
+ }
+ break;
+
+ case OP_NOT_DIGIT:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (MAX_255(*eptr) && (md->ctypes[*eptr] & ctype_digit) != 0)
+ RRETURN(MATCH_NOMATCH);
+ eptr++;
+ }
+ break;
+
+ case OP_DIGIT:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (!MAX_255(*eptr) || (md->ctypes[*eptr] & ctype_digit) == 0)
+ RRETURN(MATCH_NOMATCH);
+ eptr++;
+ }
+ break;
+
+ case OP_NOT_WHITESPACE:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (MAX_255(*eptr) && (md->ctypes[*eptr] & ctype_space) != 0)
+ RRETURN(MATCH_NOMATCH);
+ eptr++;
+ }
+ break;
+
+ case OP_WHITESPACE:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (!MAX_255(*eptr) || (md->ctypes[*eptr] & ctype_space) == 0)
+ RRETURN(MATCH_NOMATCH);
+ eptr++;
+ }
+ break;
+
+ case OP_NOT_WORDCHAR:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (MAX_255(*eptr) && (md->ctypes[*eptr] & ctype_word) != 0)
+ RRETURN(MATCH_NOMATCH);
+ eptr++;
+ }
+ break;
+
+ case OP_WORDCHAR:
+ for (i = 1; i <= min; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (!MAX_255(*eptr) || (md->ctypes[*eptr] & ctype_word) == 0)
+ RRETURN(MATCH_NOMATCH);
+ eptr++;
+ }
+ break;
+
+ default:
+ RRETURN(PCRE_ERROR_INTERNAL);
+ }
+ }
+
+ /* If min = max, continue at the same level without recursing */
+
+ if (min == max) continue;
+
+ /* If minimizing, we have to test the rest of the pattern before each
+ subsequent match. Again, separate the UTF-8 case for speed, and also
+ separate the UCP cases. */
+
+ if (minimize)
+ {
+#ifdef SUPPORT_UCP
+ if (prop_type >= 0)
+ {
+ switch(prop_type)
+ {
+ case PT_ANY:
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM36);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if (prop_fail_result) RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ case PT_LAMP:
+ for (fi = min;; fi++)
+ {
+ int chartype;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM37);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ chartype = UCD_CHARTYPE(c);
+ if ((chartype == ucp_Lu ||
+ chartype == ucp_Ll ||
+ chartype == ucp_Lt) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ case PT_GC:
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM38);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((UCD_CATEGORY(c) == prop_value) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ case PT_PC:
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM39);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((UCD_CHARTYPE(c) == prop_value) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ case PT_SC:
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM40);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((UCD_SCRIPT(c) == prop_value) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ case PT_ALNUM:
+ for (fi = min;; fi++)
+ {
+ int category;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM59);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ category = UCD_CATEGORY(c);
+ if ((category == ucp_L || category == ucp_N) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ case PT_SPACE: /* Perl space */
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM60);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((UCD_CATEGORY(c) == ucp_Z || c == CHAR_HT || c == CHAR_NL ||
+ c == CHAR_FF || c == CHAR_CR)
+ == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ case PT_PXSPACE: /* POSIX space */
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM61);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((UCD_CATEGORY(c) == ucp_Z || c == CHAR_HT || c == CHAR_NL ||
+ c == CHAR_VT || c == CHAR_FF || c == CHAR_CR)
+ == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ case PT_WORD:
+ for (fi = min;; fi++)
+ {
+ int category;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM62);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ category = UCD_CATEGORY(c);
+ if ((category == ucp_L ||
+ category == ucp_N ||
+ c == CHAR_UNDERSCORE)
+ == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ case PT_CLIST:
+ for (fi = min;; fi++)
+ {
+ const pcre_uint32 *cp;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM67);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ cp = PRIV(ucd_caseless_sets) + prop_value;
+ for (;;)
+ {
+ if (c < *cp)
+ { if (prop_fail_result) break; else { RRETURN(MATCH_NOMATCH); } }
+ if (c == *cp++)
+ { if (prop_fail_result) { RRETURN(MATCH_NOMATCH); } else break; }
+ }
+ }
+ /* Control never gets here */
+
+ case PT_UCNC:
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM68);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ GETCHARINCTEST(c, eptr);
+ if ((c == CHAR_DOLLAR_SIGN || c == CHAR_COMMERCIAL_AT ||
+ c == CHAR_GRAVE_ACCENT || (c >= 0xa0 && c <= 0xd7ff) ||
+ c >= 0xe000) == prop_fail_result)
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ /* This should never occur */
+ default:
+ RRETURN(PCRE_ERROR_INTERNAL);
+ }
+ }
+
+ /* Match extended Unicode sequences. We will get here only if the
+ support is in the binary; otherwise a compile-time error occurs. */
+
+ else if (ctype == OP_EXTUNI)
+ {
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM41);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ else
+ {
+ int lgb, rgb;
+ GETCHARINCTEST(c, eptr);
+ lgb = UCD_GRAPHBREAK(c);
+ while (eptr < md->end_subject)
+ {
+ int len = 1;
+ if (!utf) c = *eptr; else { GETCHARLEN(c, eptr, len); }
+ rgb = UCD_GRAPHBREAK(c);
+ if ((PRIV(ucp_gbtable)[lgb] & (1 << rgb)) == 0) break;
+ lgb = rgb;
+ eptr += len;
+ }
+ }
+ CHECK_PARTIAL();
+ }
+ }
+ else
+#endif /* SUPPORT_UCP */
+
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM42);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (ctype == OP_ANY && IS_NEWLINE(eptr))
+ RRETURN(MATCH_NOMATCH);
+ GETCHARINC(c, eptr);
+ switch(ctype)
+ {
+ case OP_ANY: /* This is the non-NL case */
+ if (md->partial != 0 && /* Take care with CRLF partial */
+ eptr >= md->end_subject &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ c == NLBLOCK->nl[0])
+ {
+ md->hitend = TRUE;
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL);
+ }
+ break;
+
+ case OP_ALLANY:
+ case OP_ANYBYTE:
+ break;
+
+ case OP_ANYNL:
+ switch(c)
+ {
+ default: RRETURN(MATCH_NOMATCH);
+ case CHAR_CR:
+ if (eptr < md->end_subject && RAWUCHAR(eptr) == CHAR_LF) eptr++;
+ break;
+
+ case CHAR_LF:
+ break;
+
+ case CHAR_VT:
+ case CHAR_FF:
+ case CHAR_NEL:
+#ifndef EBCDIC
+ case 0x2028:
+ case 0x2029:
+#endif /* Not EBCDIC */
+ if (md->bsr_anycrlf) RRETURN(MATCH_NOMATCH);
+ break;
+ }
+ break;
+
+ case OP_NOT_HSPACE:
+ switch(c)
+ {
+ HSPACE_CASES: RRETURN(MATCH_NOMATCH);
+ default: break;
+ }
+ break;
+
+ case OP_HSPACE:
+ switch(c)
+ {
+ HSPACE_CASES: break;
+ default: RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case OP_NOT_VSPACE:
+ switch(c)
+ {
+ VSPACE_CASES: RRETURN(MATCH_NOMATCH);
+ default: break;
+ }
+ break;
+
+ case OP_VSPACE:
+ switch(c)
+ {
+ VSPACE_CASES: break;
+ default: RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case OP_NOT_DIGIT:
+ if (c < 256 && (md->ctypes[c] & ctype_digit) != 0)
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case OP_DIGIT:
+ if (c >= 256 || (md->ctypes[c] & ctype_digit) == 0)
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case OP_NOT_WHITESPACE:
+ if (c < 256 && (md->ctypes[c] & ctype_space) != 0)
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case OP_WHITESPACE:
+ if (c >= 256 || (md->ctypes[c] & ctype_space) == 0)
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case OP_NOT_WORDCHAR:
+ if (c < 256 && (md->ctypes[c] & ctype_word) != 0)
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ case OP_WORDCHAR:
+ if (c >= 256 || (md->ctypes[c] & ctype_word) == 0)
+ RRETURN(MATCH_NOMATCH);
+ break;
+
+ default:
+ RRETURN(PCRE_ERROR_INTERNAL);
+ }
+ }
+ }
+ else
+#endif
+ /* Not UTF mode */
+ {
+ for (fi = min;; fi++)
+ {
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM43);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ if (fi >= max) RRETURN(MATCH_NOMATCH);
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ RRETURN(MATCH_NOMATCH);
+ }
+ if (ctype == OP_ANY && IS_NEWLINE(eptr))
+ RRETURN(MATCH_NOMATCH);
+ c = *eptr++;
+ switch(ctype)
+ {
+ case OP_ANY: /* This is the non-NL case */
+ if (md->partial != 0 && /* Take care with CRLF partial */
+ eptr >= md->end_subject &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ c == NLBLOCK->nl[0])
+ {
+ md->hitend = TRUE;
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL);
+ }
+ break;
+
+ case OP_ALLANY:
+ case OP_ANYBYTE:
+ break;
+
+ case OP_ANYNL:
+ switch(c)
+ {
+ default: RRETURN(MATCH_NOMATCH);
+ case CHAR_CR:
+ if (eptr < md->end_subject && *eptr == CHAR_LF) eptr++;
+ break;
+
+ case CHAR_LF:
+ break;
+
+ case CHAR_VT:
+ case CHAR_FF:
+ case CHAR_NEL:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ case 0x2028:
+ case 0x2029:
+#endif
+ if (md->bsr_anycrlf) RRETURN(MATCH_NOMATCH);
+ break;
+ }
+ break;
+
+ case OP_NOT_HSPACE:
+ switch(c)
+ {
+ default: break;
+ HSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ HSPACE_MULTIBYTE_CASES:
+#endif
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case OP_HSPACE:
+ switch(c)
+ {
+ default: RRETURN(MATCH_NOMATCH);
+ HSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ HSPACE_MULTIBYTE_CASES:
+#endif
+ break;
+ }
+ break;
+
+ case OP_NOT_VSPACE:
+ switch(c)
+ {
+ default: break;
+ VSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ VSPACE_MULTIBYTE_CASES:
+#endif
+ RRETURN(MATCH_NOMATCH);
+ }
+ break;
+
+ case OP_VSPACE:
+ switch(c)
+ {
+ default: RRETURN(MATCH_NOMATCH);
+ VSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ VSPACE_MULTIBYTE_CASES:
+#endif
+ break;
+ }
+ break;
+
+ case OP_NOT_DIGIT:
+ if (MAX_255(c) && (md->ctypes[c] & ctype_digit) != 0) RRETURN(MATCH_NOMATCH);
+ break;
+
+ case OP_DIGIT:
+ if (!MAX_255(c) || (md->ctypes[c] & ctype_digit) == 0) RRETURN(MATCH_NOMATCH);
+ break;
+
+ case OP_NOT_WHITESPACE:
+ if (MAX_255(c) && (md->ctypes[c] & ctype_space) != 0) RRETURN(MATCH_NOMATCH);
+ break;
+
+ case OP_WHITESPACE:
+ if (!MAX_255(c) || (md->ctypes[c] & ctype_space) == 0) RRETURN(MATCH_NOMATCH);
+ break;
+
+ case OP_NOT_WORDCHAR:
+ if (MAX_255(c) && (md->ctypes[c] & ctype_word) != 0) RRETURN(MATCH_NOMATCH);
+ break;
+
+ case OP_WORDCHAR:
+ if (!MAX_255(c) || (md->ctypes[c] & ctype_word) == 0) RRETURN(MATCH_NOMATCH);
+ break;
+
+ default:
+ RRETURN(PCRE_ERROR_INTERNAL);
+ }
+ }
+ }
+ /* Control never gets here */
+ }
+
+ /* If maximizing, it is worth using inline code for speed, doing the type
+ test once at the start (i.e. keep it out of the loop). Again, keep the
+ UTF-8 and UCP stuff separate. */
+
+ else
+ {
+ pp = eptr; /* Remember where we started */
+
+#ifdef SUPPORT_UCP
+ if (prop_type >= 0)
+ {
+ switch(prop_type)
+ {
+ case PT_ANY:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLENTEST(c, eptr, len);
+ if (prop_fail_result) break;
+ eptr+= len;
+ }
+ break;
+
+ case PT_LAMP:
+ for (i = min; i < max; i++)
+ {
+ int chartype;
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLENTEST(c, eptr, len);
+ chartype = UCD_CHARTYPE(c);
+ if ((chartype == ucp_Lu ||
+ chartype == ucp_Ll ||
+ chartype == ucp_Lt) == prop_fail_result)
+ break;
+ eptr+= len;
+ }
+ break;
+
+ case PT_GC:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLENTEST(c, eptr, len);
+ if ((UCD_CATEGORY(c) == prop_value) == prop_fail_result) break;
+ eptr+= len;
+ }
+ break;
+
+ case PT_PC:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLENTEST(c, eptr, len);
+ if ((UCD_CHARTYPE(c) == prop_value) == prop_fail_result) break;
+ eptr+= len;
+ }
+ break;
+
+ case PT_SC:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLENTEST(c, eptr, len);
+ if ((UCD_SCRIPT(c) == prop_value) == prop_fail_result) break;
+ eptr+= len;
+ }
+ break;
+
+ case PT_ALNUM:
+ for (i = min; i < max; i++)
+ {
+ int category;
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLENTEST(c, eptr, len);
+ category = UCD_CATEGORY(c);
+ if ((category == ucp_L || category == ucp_N) == prop_fail_result)
+ break;
+ eptr+= len;
+ }
+ break;
+
+ case PT_SPACE: /* Perl space */
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLENTEST(c, eptr, len);
+ if ((UCD_CATEGORY(c) == ucp_Z || c == CHAR_HT || c == CHAR_NL ||
+ c == CHAR_FF || c == CHAR_CR)
+ == prop_fail_result)
+ break;
+ eptr+= len;
+ }
+ break;
+
+ case PT_PXSPACE: /* POSIX space */
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLENTEST(c, eptr, len);
+ if ((UCD_CATEGORY(c) == ucp_Z || c == CHAR_HT || c == CHAR_NL ||
+ c == CHAR_VT || c == CHAR_FF || c == CHAR_CR)
+ == prop_fail_result)
+ break;
+ eptr+= len;
+ }
+ break;
+
+ case PT_WORD:
+ for (i = min; i < max; i++)
+ {
+ int category;
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLENTEST(c, eptr, len);
+ category = UCD_CATEGORY(c);
+ if ((category == ucp_L || category == ucp_N ||
+ c == CHAR_UNDERSCORE) == prop_fail_result)
+ break;
+ eptr+= len;
+ }
+ break;
+
+ case PT_CLIST:
+ for (i = min; i < max; i++)
+ {
+ const pcre_uint32 *cp;
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLENTEST(c, eptr, len);
+ cp = PRIV(ucd_caseless_sets) + prop_value;
+ for (;;)
+ {
+ if (c < *cp)
+ { if (prop_fail_result) break; else goto GOT_MAX; }
+ if (c == *cp++)
+ { if (prop_fail_result) goto GOT_MAX; else break; }
+ }
+ eptr += len;
+ }
+ GOT_MAX:
+ break;
+
+ case PT_UCNC:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLENTEST(c, eptr, len);
+ if ((c == CHAR_DOLLAR_SIGN || c == CHAR_COMMERCIAL_AT ||
+ c == CHAR_GRAVE_ACCENT || (c >= 0xa0 && c <= 0xd7ff) ||
+ c >= 0xe000) == prop_fail_result)
+ break;
+ eptr += len;
+ }
+ break;
+
+ default:
+ RRETURN(PCRE_ERROR_INTERNAL);
+ }
+
+ /* eptr is now past the end of the maximum run */
+
+ if (possessive) continue; /* No backtracking */
+ for(;;)
+ {
+ if (eptr == pp) goto TAIL_RECURSE;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM44);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ eptr--;
+ if (utf) BACKCHAR(eptr);
+ }
+ }
+
+ /* Match extended Unicode sequences. We will get here only if the
+ support is in the binary; otherwise a compile-time error occurs. */
+
+ else if (ctype == OP_EXTUNI)
+ {
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ else
+ {
+ int lgb, rgb;
+ GETCHARINCTEST(c, eptr);
+ lgb = UCD_GRAPHBREAK(c);
+ while (eptr < md->end_subject)
+ {
+ int len = 1;
+ if (!utf) c = *eptr; else { GETCHARLEN(c, eptr, len); }
+ rgb = UCD_GRAPHBREAK(c);
+ if ((PRIV(ucp_gbtable)[lgb] & (1 << rgb)) == 0) break;
+ lgb = rgb;
+ eptr += len;
+ }
+ }
+ CHECK_PARTIAL();
+ }
+
+ /* eptr is now past the end of the maximum run */
+
+ if (possessive) continue; /* No backtracking */
+ for(;;)
+ {
+ if (eptr == pp) goto TAIL_RECURSE;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM45);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ eptr--;
+ for (;;) /* Move back over one extended */
+ {
+ if (!utf) c = *eptr; else
+ {
+ BACKCHAR(eptr);
+ GETCHAR(c, eptr);
+ }
+ if (UCD_CATEGORY(c) != ucp_M) break;
+ eptr--;
+ }
+ }
+ }
+
+ else
+#endif /* SUPPORT_UCP */
+
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ switch(ctype)
+ {
+ case OP_ANY:
+ if (max < INT_MAX)
+ {
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (IS_NEWLINE(eptr)) break;
+ if (md->partial != 0 && /* Take care with CRLF partial */
+ eptr + 1 >= md->end_subject &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ RAWUCHAR(eptr) == NLBLOCK->nl[0])
+ {
+ md->hitend = TRUE;
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL);
+ }
+ eptr++;
+ ACROSSCHAR(eptr < md->end_subject, *eptr, eptr++);
+ }
+ }
+
+ /* Handle unlimited UTF-8 repeat */
+
+ else
+ {
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (IS_NEWLINE(eptr)) break;
+ if (md->partial != 0 && /* Take care with CRLF partial */
+ eptr + 1 >= md->end_subject &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ RAWUCHAR(eptr) == NLBLOCK->nl[0])
+ {
+ md->hitend = TRUE;
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL);
+ }
+ eptr++;
+ ACROSSCHAR(eptr < md->end_subject, *eptr, eptr++);
+ }
+ }
+ break;
+
+ case OP_ALLANY:
+ if (max < INT_MAX)
+ {
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ eptr++;
+ ACROSSCHAR(eptr < md->end_subject, *eptr, eptr++);
+ }
+ }
+ else
+ {
+ eptr = md->end_subject; /* Unlimited UTF-8 repeat */
+ SCHECK_PARTIAL();
+ }
+ break;
+
+ /* The byte case is the same as non-UTF8 */
+
+ case OP_ANYBYTE:
+ c = max - min;
+ if (c > (unsigned int)(md->end_subject - eptr))
+ {
+ eptr = md->end_subject;
+ SCHECK_PARTIAL();
+ }
+ else eptr += c;
+ break;
+
+ case OP_ANYNL:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(c, eptr, len);
+ if (c == CHAR_CR)
+ {
+ if (++eptr >= md->end_subject) break;
+ if (RAWUCHAR(eptr) == CHAR_LF) eptr++;
+ }
+ else
+ {
+ if (c != CHAR_LF &&
+ (md->bsr_anycrlf ||
+ (c != CHAR_VT && c != CHAR_FF && c != CHAR_NEL
+#ifndef EBCDIC
+ && c != 0x2028 && c != 0x2029
+#endif /* Not EBCDIC */
+ )))
+ break;
+ eptr += len;
+ }
+ }
+ break;
+
+ case OP_NOT_HSPACE:
+ case OP_HSPACE:
+ for (i = min; i < max; i++)
+ {
+ BOOL gotspace;
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(c, eptr, len);
+ switch(c)
+ {
+ HSPACE_CASES: gotspace = TRUE; break;
+ default: gotspace = FALSE; break;
+ }
+ if (gotspace == (ctype == OP_NOT_HSPACE)) break;
+ eptr += len;
+ }
+ break;
+
+ case OP_NOT_VSPACE:
+ case OP_VSPACE:
+ for (i = min; i < max; i++)
+ {
+ BOOL gotspace;
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(c, eptr, len);
+ switch(c)
+ {
+ VSPACE_CASES: gotspace = TRUE; break;
+ default: gotspace = FALSE; break;
+ }
+ if (gotspace == (ctype == OP_NOT_VSPACE)) break;
+ eptr += len;
+ }
+ break;
+
+ case OP_NOT_DIGIT:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(c, eptr, len);
+ if (c < 256 && (md->ctypes[c] & ctype_digit) != 0) break;
+ eptr+= len;
+ }
+ break;
+
+ case OP_DIGIT:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(c, eptr, len);
+ if (c >= 256 ||(md->ctypes[c] & ctype_digit) == 0) break;
+ eptr+= len;
+ }
+ break;
+
+ case OP_NOT_WHITESPACE:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(c, eptr, len);
+ if (c < 256 && (md->ctypes[c] & ctype_space) != 0) break;
+ eptr+= len;
+ }
+ break;
+
+ case OP_WHITESPACE:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(c, eptr, len);
+ if (c >= 256 ||(md->ctypes[c] & ctype_space) == 0) break;
+ eptr+= len;
+ }
+ break;
+
+ case OP_NOT_WORDCHAR:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(c, eptr, len);
+ if (c < 256 && (md->ctypes[c] & ctype_word) != 0) break;
+ eptr+= len;
+ }
+ break;
+
+ case OP_WORDCHAR:
+ for (i = min; i < max; i++)
+ {
+ int len = 1;
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ GETCHARLEN(c, eptr, len);
+ if (c >= 256 || (md->ctypes[c] & ctype_word) == 0) break;
+ eptr+= len;
+ }
+ break;
+
+ default:
+ RRETURN(PCRE_ERROR_INTERNAL);
+ }
+
+ if (possessive) continue; /* No backtracking */
+ for(;;)
+ {
+ if (eptr == pp) goto TAIL_RECURSE;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM46);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ eptr--;
+ BACKCHAR(eptr);
+ if (ctype == OP_ANYNL && eptr > pp && RAWUCHAR(eptr) == CHAR_NL &&
+ RAWUCHAR(eptr - 1) == CHAR_CR) eptr--;
+ }
+ }
+ else
+#endif /* SUPPORT_UTF */
+ /* Not UTF mode */
+ {
+ switch(ctype)
+ {
+ case OP_ANY:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (IS_NEWLINE(eptr)) break;
+ if (md->partial != 0 && /* Take care with CRLF partial */
+ eptr + 1 >= md->end_subject &&
+ NLBLOCK->nltype == NLTYPE_FIXED &&
+ NLBLOCK->nllen == 2 &&
+ *eptr == NLBLOCK->nl[0])
+ {
+ md->hitend = TRUE;
+ if (md->partial > 1) RRETURN(PCRE_ERROR_PARTIAL);
+ }
+ eptr++;
+ }
+ break;
+
+ case OP_ALLANY:
+ case OP_ANYBYTE:
+ c = max - min;
+ if (c > (unsigned int)(md->end_subject - eptr))
+ {
+ eptr = md->end_subject;
+ SCHECK_PARTIAL();
+ }
+ else eptr += c;
+ break;
+
+ case OP_ANYNL:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ c = *eptr;
+ if (c == CHAR_CR)
+ {
+ if (++eptr >= md->end_subject) break;
+ if (*eptr == CHAR_LF) eptr++;
+ }
+ else
+ {
+ if (c != CHAR_LF && (md->bsr_anycrlf ||
+ (c != CHAR_VT && c != CHAR_FF && c != CHAR_NEL
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ && c != 0x2028 && c != 0x2029
+#endif
+ ))) break;
+ eptr++;
+ }
+ }
+ break;
+
+ case OP_NOT_HSPACE:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ switch(*eptr)
+ {
+ default: eptr++; break;
+ HSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ HSPACE_MULTIBYTE_CASES:
+#endif
+ goto ENDLOOP00;
+ }
+ }
+ ENDLOOP00:
+ break;
+
+ case OP_HSPACE:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ switch(*eptr)
+ {
+ default: goto ENDLOOP01;
+ HSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ HSPACE_MULTIBYTE_CASES:
+#endif
+ eptr++; break;
+ }
+ }
+ ENDLOOP01:
+ break;
+
+ case OP_NOT_VSPACE:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ switch(*eptr)
+ {
+ default: eptr++; break;
+ VSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ VSPACE_MULTIBYTE_CASES:
+#endif
+ goto ENDLOOP02;
+ }
+ }
+ ENDLOOP02:
+ break;
+
+ case OP_VSPACE:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ switch(*eptr)
+ {
+ default: goto ENDLOOP03;
+ VSPACE_BYTE_CASES:
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ VSPACE_MULTIBYTE_CASES:
+#endif
+ eptr++; break;
+ }
+ }
+ ENDLOOP03:
+ break;
+
+ case OP_NOT_DIGIT:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (MAX_255(*eptr) && (md->ctypes[*eptr] & ctype_digit) != 0) break;
+ eptr++;
+ }
+ break;
+
+ case OP_DIGIT:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (!MAX_255(*eptr) || (md->ctypes[*eptr] & ctype_digit) == 0) break;
+ eptr++;
+ }
+ break;
+
+ case OP_NOT_WHITESPACE:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (MAX_255(*eptr) && (md->ctypes[*eptr] & ctype_space) != 0) break;
+ eptr++;
+ }
+ break;
+
+ case OP_WHITESPACE:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (!MAX_255(*eptr) || (md->ctypes[*eptr] & ctype_space) == 0) break;
+ eptr++;
+ }
+ break;
+
+ case OP_NOT_WORDCHAR:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (MAX_255(*eptr) && (md->ctypes[*eptr] & ctype_word) != 0) break;
+ eptr++;
+ }
+ break;
+
+ case OP_WORDCHAR:
+ for (i = min; i < max; i++)
+ {
+ if (eptr >= md->end_subject)
+ {
+ SCHECK_PARTIAL();
+ break;
+ }
+ if (!MAX_255(*eptr) || (md->ctypes[*eptr] & ctype_word) == 0) break;
+ eptr++;
+ }
+ break;
+
+ default:
+ RRETURN(PCRE_ERROR_INTERNAL);
+ }
+
+ if (possessive) continue; /* No backtracking */
+ for (;;)
+ {
+ if (eptr == pp) goto TAIL_RECURSE;
+ RMATCH(eptr, ecode, offset_top, md, eptrb, RM47);
+ if (rrc != MATCH_NOMATCH) RRETURN(rrc);
+ eptr--;
+ if (ctype == OP_ANYNL && eptr > pp && *eptr == CHAR_LF &&
+ eptr[-1] == CHAR_CR) eptr--;
+ }
+ }
+
+ /* Get here if we can't make it match with any permitted repetitions */
+
+ RRETURN(MATCH_NOMATCH);
+ }
+ /* Control never gets here */
+
+ /* There's been some horrible disaster. Arrival here can only mean there is
+ something seriously wrong in the code above or the OP_xxx definitions. */
+
+ default:
+ DPRINTF(("Unknown opcode %d\n", *ecode));
+ RRETURN(PCRE_ERROR_UNKNOWN_OPCODE);
+ }
+
+ /* Do not stick any code in here without much thought; it is assumed
+ that "continue" in the code above comes out to here to repeat the main
+ loop. */
+
+ } /* End of main loop */
+/* Control never reaches here */
+
+
+/* When compiling to use the heap rather than the stack for recursive calls to
+match(), the RRETURN() macro jumps here. The number that is saved in
+frame->Xwhere indicates which label we actually want to return to. */
+
+#ifdef NO_RECURSE
+#define LBL(val) case val: goto L_RM##val;
+HEAP_RETURN:
+switch (frame->Xwhere)
+ {
+ LBL( 1) LBL( 2) LBL( 3) LBL( 4) LBL( 5) LBL( 6) LBL( 7) LBL( 8)
+ LBL( 9) LBL(10) LBL(11) LBL(12) LBL(13) LBL(14) LBL(15) LBL(17)
+ LBL(19) LBL(24) LBL(25) LBL(26) LBL(27) LBL(29) LBL(31) LBL(33)
+ LBL(35) LBL(43) LBL(47) LBL(48) LBL(49) LBL(50) LBL(51) LBL(52)
+ LBL(53) LBL(54) LBL(55) LBL(56) LBL(57) LBL(58) LBL(63) LBL(64)
+ LBL(65) LBL(66)
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ LBL(21)
+#endif
+#ifdef SUPPORT_UTF
+ LBL(16) LBL(18) LBL(20)
+ LBL(22) LBL(23) LBL(28) LBL(30)
+ LBL(32) LBL(34) LBL(42) LBL(46)
+#ifdef SUPPORT_UCP
+ LBL(36) LBL(37) LBL(38) LBL(39) LBL(40) LBL(41) LBL(44) LBL(45)
+ LBL(59) LBL(60) LBL(61) LBL(62) LBL(67) LBL(68)
+#endif /* SUPPORT_UCP */
+#endif /* SUPPORT_UTF */
+ default:
+ DPRINTF(("jump error in pcre match: label %d non-existent\n", frame->Xwhere));
+ return PCRE_ERROR_INTERNAL;
+ }
+#undef LBL
+#endif /* NO_RECURSE */
+}
+
+
+/***************************************************************************
+****************************************************************************
+ RECURSION IN THE match() FUNCTION
+
+Undefine all the macros that were defined above to handle this. */
+
+#ifdef NO_RECURSE
+#undef eptr
+#undef ecode
+#undef mstart
+#undef offset_top
+#undef eptrb
+#undef flags
+
+#undef callpat
+#undef charptr
+#undef data
+#undef next
+#undef pp
+#undef prev
+#undef saved_eptr
+
+#undef new_recursive
+
+#undef cur_is_word
+#undef condition
+#undef prev_is_word
+
+#undef ctype
+#undef length
+#undef max
+#undef min
+#undef number
+#undef offset
+#undef op
+#undef save_capture_last
+#undef save_offset1
+#undef save_offset2
+#undef save_offset3
+#undef stacksave
+
+#undef newptrb
+
+#endif
+
+/* These two are defined as macros in both cases */
+
+#undef fc
+#undef fi
+
+/***************************************************************************
+***************************************************************************/
+
+
+#ifdef NO_RECURSE
+/*************************************************
+* Release allocated heap frames *
+*************************************************/
+
+/* This function releases all the allocated frames. The base frame is on the
+machine stack, and so must not be freed.
+
+Argument: the address of the base frame
+Returns: nothing
+*/
+
+static void
+release_match_heapframes (heapframe *frame_base)
+{
+heapframe *nextframe = frame_base->Xnextframe;
+while (nextframe != NULL)
+ {
+ heapframe *oldframe = nextframe;
+ nextframe = nextframe->Xnextframe;
+ (PUBL(stack_free))(oldframe);
+ }
+}
+#endif
+
+
+/*************************************************
+* Execute a Regular Expression *
+*************************************************/
+
+/* This function applies a compiled re to a subject string and picks out
+portions of the string if it matches. Two elements in the vector are set for
+each substring: the offsets to the start and end of the substring.
+
+Arguments:
+ argument_re points to the compiled expression
+ extra_data points to extra data or is NULL
+ subject points to the subject string
+ length length of subject string (may contain binary zeros)
+ start_offset where to start in the subject string
+ options option bits
+ offsets points to a vector of ints to be filled in with offsets
+ offsetcount the number of elements in the vector
+
+Returns: > 0 => success; value is the number of elements filled in
+ = 0 => success, but offsets is not big enough
+ -1 => failed to match
+ < -1 => some kind of unexpected problem
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_exec(const pcre *argument_re, const pcre_extra *extra_data,
+ PCRE_SPTR subject, int length, int start_offset, int options, int *offsets,
+ int offsetcount)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_exec(const pcre16 *argument_re, const pcre16_extra *extra_data,
+ PCRE_SPTR16 subject, int length, int start_offset, int options, int *offsets,
+ int offsetcount)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_exec(const pcre32 *argument_re, const pcre32_extra *extra_data,
+ PCRE_SPTR32 subject, int length, int start_offset, int options, int *offsets,
+ int offsetcount)
+#endif
+{
+int rc, ocount, arg_offset_max;
+int newline;
+BOOL using_temporary_offsets = FALSE;
+BOOL anchored;
+BOOL startline;
+BOOL firstline;
+BOOL utf;
+BOOL has_first_char = FALSE;
+BOOL has_req_char = FALSE;
+pcre_uchar first_char = 0;
+pcre_uchar first_char2 = 0;
+pcre_uchar req_char = 0;
+pcre_uchar req_char2 = 0;
+match_data match_block;
+match_data *md = &match_block;
+const pcre_uint8 *tables;
+const pcre_uint8 *start_bits = NULL;
+PCRE_PUCHAR start_match = (PCRE_PUCHAR)subject + start_offset;
+PCRE_PUCHAR end_subject;
+PCRE_PUCHAR start_partial = NULL;
+PCRE_PUCHAR match_partial;
+PCRE_PUCHAR req_char_ptr = start_match - 1;
+
+const pcre_study_data *study;
+const REAL_PCRE *re = (const REAL_PCRE *)argument_re;
+
+#ifdef NO_RECURSE
+heapframe frame_zero;
+frame_zero.Xprevframe = NULL; /* Marks the top level */
+frame_zero.Xnextframe = NULL; /* None are allocated yet */
+md->match_frames_base = &frame_zero;
+#endif
+
+/* Check for the special magic call that measures the size of the stack used
+per recursive call of match(). Without the funny casting for sizeof, a Windows
+compiler gave this error: "unary minus operator applied to unsigned type,
+result still unsigned". Hopefully the cast fixes that. */
+
+if (re == NULL && extra_data == NULL && subject == NULL && length == -999 &&
+ start_offset == -999)
+#ifdef NO_RECURSE
+ return -((int)sizeof(heapframe));
+#else
+ return match(NULL, NULL, NULL, 0, NULL, NULL, 0);
+#endif
+
+/* Plausibility checks */
+
+if ((options & ~PUBLIC_EXEC_OPTIONS) != 0) return PCRE_ERROR_BADOPTION;
+if (re == NULL || subject == NULL || (offsets == NULL && offsetcount > 0))
+ return PCRE_ERROR_NULL;
+if (offsetcount < 0) return PCRE_ERROR_BADCOUNT;
+if (length < 0) return PCRE_ERROR_BADLENGTH;
+if (start_offset < 0 || start_offset > length) return PCRE_ERROR_BADOFFSET;
+
+/* Check that the first field in the block is the magic number. If it is not,
+return with PCRE_ERROR_BADMAGIC. However, if the magic number is equal to
+REVERSED_MAGIC_NUMBER we return with PCRE_ERROR_BADENDIANNESS, which
+means that the pattern is likely compiled with different endianness. */
+
+if (re->magic_number != MAGIC_NUMBER)
+ return re->magic_number == REVERSED_MAGIC_NUMBER?
+ PCRE_ERROR_BADENDIANNESS:PCRE_ERROR_BADMAGIC;
+if ((re->flags & PCRE_MODE) == 0) return PCRE_ERROR_BADMODE;
+
+/* These two settings are used in the code for checking a UTF-8 string that
+follows immediately afterwards. Other values in the md block are used only
+during "normal" pcre_exec() processing, not when the JIT support is in use,
+so they are set up later. */
+
+/* PCRE_UTF16 has the same value as PCRE_UTF8. */
+utf = md->utf = (re->options & PCRE_UTF8) != 0;
+md->partial = ((options & PCRE_PARTIAL_HARD) != 0)? 2 :
+ ((options & PCRE_PARTIAL_SOFT) != 0)? 1 : 0;
+
+/* Check a UTF-8 string if required. Pass back the character offset and error
+code for an invalid string if a results vector is available. */
+
+#ifdef SUPPORT_UTF
+if (utf && (options & PCRE_NO_UTF8_CHECK) == 0)
+ {
+ int erroroffset;
+ int errorcode = PRIV(valid_utf)((PCRE_PUCHAR)subject, length, &erroroffset);
+ if (errorcode != 0)
+ {
+ if (offsetcount >= 2)
+ {
+ offsets[0] = erroroffset;
+ offsets[1] = errorcode;
+ }
+#if defined COMPILE_PCRE8
+ return (errorcode <= PCRE_UTF8_ERR5 && md->partial > 1)?
+ PCRE_ERROR_SHORTUTF8 : PCRE_ERROR_BADUTF8;
+#elif defined COMPILE_PCRE16
+ return (errorcode <= PCRE_UTF16_ERR1 && md->partial > 1)?
+ PCRE_ERROR_SHORTUTF16 : PCRE_ERROR_BADUTF16;
+#elif defined COMPILE_PCRE32
+ return PCRE_ERROR_BADUTF32;
+#endif
+ }
+#if defined COMPILE_PCRE8 || defined COMPILE_PCRE16
+ /* Check that a start_offset points to the start of a UTF character. */
+ if (start_offset > 0 && start_offset < length &&
+ NOT_FIRSTCHAR(((PCRE_PUCHAR)subject)[start_offset]))
+ return PCRE_ERROR_BADUTF8_OFFSET;
+#endif
+ }
+#endif
+
+/* If the pattern was successfully studied with JIT support, run the JIT
+executable instead of the rest of this function. Most options must be set at
+compile time for the JIT code to be usable. Fallback to the normal code path if
+an unsupported flag is set. */
+
+#ifdef SUPPORT_JIT
+if (extra_data != NULL
+ && (extra_data->flags & (PCRE_EXTRA_EXECUTABLE_JIT |
+ PCRE_EXTRA_TABLES)) == PCRE_EXTRA_EXECUTABLE_JIT
+ && extra_data->executable_jit != NULL
+ && (options & ~PUBLIC_JIT_EXEC_OPTIONS) == 0)
+ {
+ rc = PRIV(jit_exec)(extra_data, (const pcre_uchar *)subject, length,
+ start_offset, options, offsets, offsetcount);
+
+ /* PCRE_ERROR_NULL means that the selected normal or partial matching
+ mode is not compiled. In this case we simply fallback to interpreter. */
+
+ if (rc != PCRE_ERROR_JIT_BADOPTION) return rc;
+ }
+#endif
+
+/* Carry on with non-JIT matching. This information is for finding all the
+numbers associated with a given name, for condition testing. */
+
+md->name_table = (pcre_uchar *)re + re->name_table_offset;
+md->name_count = re->name_count;
+md->name_entry_size = re->name_entry_size;
+
+/* Fish out the optional data from the extra_data structure, first setting
+the default values. */
+
+study = NULL;
+md->match_limit = MATCH_LIMIT;
+md->match_limit_recursion = MATCH_LIMIT_RECURSION;
+md->callout_data = NULL;
+
+/* The table pointer is always in native byte order. */
+
+tables = re->tables;
+
+/* The two limit values override the defaults, whatever their value. */
+
+if (extra_data != NULL)
+ {
+ register unsigned int flags = extra_data->flags;
+ if ((flags & PCRE_EXTRA_STUDY_DATA) != 0)
+ study = (const pcre_study_data *)extra_data->study_data;
+ if ((flags & PCRE_EXTRA_MATCH_LIMIT) != 0)
+ md->match_limit = extra_data->match_limit;
+ if ((flags & PCRE_EXTRA_MATCH_LIMIT_RECURSION) != 0)
+ md->match_limit_recursion = extra_data->match_limit_recursion;
+ if ((flags & PCRE_EXTRA_CALLOUT_DATA) != 0)
+ md->callout_data = extra_data->callout_data;
+ if ((flags & PCRE_EXTRA_TABLES) != 0) tables = extra_data->tables;
+ }
+
+/* Limits in the regex override only if they are smaller. */
+
+if ((re->flags & PCRE_MLSET) != 0 && re->limit_match < md->match_limit)
+ md->match_limit = re->limit_match;
+
+if ((re->flags & PCRE_RLSET) != 0 &&
+ re->limit_recursion < md->match_limit_recursion)
+ md->match_limit_recursion = re->limit_recursion;
+
+/* If the exec call supplied NULL for tables, use the inbuilt ones. This
+is a feature that makes it possible to save compiled regex and re-use them
+in other programs later. */
+
+if (tables == NULL) tables = PRIV(default_tables);
+
+/* Set up other data */
+
+anchored = ((re->options | options) & PCRE_ANCHORED) != 0;
+startline = (re->flags & PCRE_STARTLINE) != 0;
+firstline = (re->options & PCRE_FIRSTLINE) != 0;
+
+/* The code starts after the real_pcre block and the capture name table. */
+
+md->start_code = (const pcre_uchar *)re + re->name_table_offset +
+ re->name_count * re->name_entry_size;
+
+md->start_subject = (PCRE_PUCHAR)subject;
+md->start_offset = start_offset;
+md->end_subject = md->start_subject + length;
+end_subject = md->end_subject;
+
+md->endonly = (re->options & PCRE_DOLLAR_ENDONLY) != 0;
+md->use_ucp = (re->options & PCRE_UCP) != 0;
+md->jscript_compat = (re->options & PCRE_JAVASCRIPT_COMPAT) != 0;
+md->ignore_skip_arg = 0;
+
+/* Some options are unpacked into BOOL variables in the hope that testing
+them will be faster than individual option bits. */
+
+md->notbol = (options & PCRE_NOTBOL) != 0;
+md->noteol = (options & PCRE_NOTEOL) != 0;
+md->notempty = (options & PCRE_NOTEMPTY) != 0;
+md->notempty_atstart = (options & PCRE_NOTEMPTY_ATSTART) != 0;
+
+md->hitend = FALSE;
+md->mark = md->nomatch_mark = NULL; /* In case never set */
+
+md->recursive = NULL; /* No recursion at top level */
+md->hasthen = (re->flags & PCRE_HASTHEN) != 0;
+
+md->lcc = tables + lcc_offset;
+md->fcc = tables + fcc_offset;
+md->ctypes = tables + ctypes_offset;
+
+/* Handle different \R options. */
+
+switch (options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE))
+ {
+ case 0:
+ if ((re->options & (PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE)) != 0)
+ md->bsr_anycrlf = (re->options & PCRE_BSR_ANYCRLF) != 0;
+ else
+#ifdef BSR_ANYCRLF
+ md->bsr_anycrlf = TRUE;
+#else
+ md->bsr_anycrlf = FALSE;
+#endif
+ break;
+
+ case PCRE_BSR_ANYCRLF:
+ md->bsr_anycrlf = TRUE;
+ break;
+
+ case PCRE_BSR_UNICODE:
+ md->bsr_anycrlf = FALSE;
+ break;
+
+ default: return PCRE_ERROR_BADNEWLINE;
+ }
+
+/* Handle different types of newline. The three bits give eight cases. If
+nothing is set at run time, whatever was used at compile time applies. */
+
+switch ((((options & PCRE_NEWLINE_BITS) == 0)? re->options :
+ (pcre_uint32)options) & PCRE_NEWLINE_BITS)
+ {
+ case 0: newline = NEWLINE; break; /* Compile-time default */
+ case PCRE_NEWLINE_CR: newline = CHAR_CR; break;
+ case PCRE_NEWLINE_LF: newline = CHAR_NL; break;
+ case PCRE_NEWLINE_CR+
+ PCRE_NEWLINE_LF: newline = (CHAR_CR << 8) | CHAR_NL; break;
+ case PCRE_NEWLINE_ANY: newline = -1; break;
+ case PCRE_NEWLINE_ANYCRLF: newline = -2; break;
+ default: return PCRE_ERROR_BADNEWLINE;
+ }
+
+if (newline == -2)
+ {
+ md->nltype = NLTYPE_ANYCRLF;
+ }
+else if (newline < 0)
+ {
+ md->nltype = NLTYPE_ANY;
+ }
+else
+ {
+ md->nltype = NLTYPE_FIXED;
+ if (newline > 255)
+ {
+ md->nllen = 2;
+ md->nl[0] = (newline >> 8) & 255;
+ md->nl[1] = newline & 255;
+ }
+ else
+ {
+ md->nllen = 1;
+ md->nl[0] = newline;
+ }
+ }
+
+/* Partial matching was originally supported only for a restricted set of
+regexes; from release 8.00 there are no restrictions, but the bits are still
+defined (though never set). So there's no harm in leaving this code. */
+
+if (md->partial && (re->flags & PCRE_NOPARTIAL) != 0)
+ return PCRE_ERROR_BADPARTIAL;
+
+/* If the expression has got more back references than the offsets supplied can
+hold, we get a temporary chunk of working store to use during the matching.
+Otherwise, we can use the vector supplied, rounding down its size to a multiple
+of 3. */
+
+ocount = offsetcount - (offsetcount % 3);
+arg_offset_max = (2*ocount)/3;
+
+if (re->top_backref > 0 && re->top_backref >= ocount/3)
+ {
+ ocount = re->top_backref * 3 + 3;
+ md->offset_vector = (int *)(PUBL(malloc))(ocount * sizeof(int));
+ if (md->offset_vector == NULL) return PCRE_ERROR_NOMEMORY;
+ using_temporary_offsets = TRUE;
+ DPRINTF(("Got memory to hold back references\n"));
+ }
+else md->offset_vector = offsets;
+md->offset_end = ocount;
+md->offset_max = (2*ocount)/3;
+md->capture_last = 0;
+
+/* Reset the working variable associated with each extraction. These should
+never be used unless previously set, but they get saved and restored, and so we
+initialize them to avoid reading uninitialized locations. Also, unset the
+offsets for the matched string. This is really just for tidiness with callouts,
+in case they inspect these fields. */
+
+if (md->offset_vector != NULL)
+ {
+ register int *iptr = md->offset_vector + ocount;
+ register int *iend = iptr - re->top_bracket;
+ if (iend < md->offset_vector + 2) iend = md->offset_vector + 2;
+ while (--iptr >= iend) *iptr = -1;
+ md->offset_vector[0] = md->offset_vector[1] = -1;
+ }
+
+/* Set up the first character to match, if available. The first_char value is
+never set for an anchored regular expression, but the anchoring may be forced
+at run time, so we have to test for anchoring. The first char may be unset for
+an unanchored pattern, of course. If there's no first char and the pattern was
+studied, there may be a bitmap of possible first characters. */
+
+if (!anchored)
+ {
+ if ((re->flags & PCRE_FIRSTSET) != 0)
+ {
+ has_first_char = TRUE;
+ first_char = first_char2 = (pcre_uchar)(re->first_char);
+ if ((re->flags & PCRE_FCH_CASELESS) != 0)
+ {
+ first_char2 = TABLE_GET(first_char, md->fcc, first_char);
+#if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
+ if (utf && first_char > 127)
+ first_char2 = UCD_OTHERCASE(first_char);
+#endif
+ }
+ }
+ else
+ if (!startline && study != NULL &&
+ (study->flags & PCRE_STUDY_MAPPED) != 0)
+ start_bits = study->start_bits;
+ }
+
+/* For anchored or unanchored matches, there may be a "last known required
+character" set. */
+
+if ((re->flags & PCRE_REQCHSET) != 0)
+ {
+ has_req_char = TRUE;
+ req_char = req_char2 = (pcre_uchar)(re->req_char);
+ if ((re->flags & PCRE_RCH_CASELESS) != 0)
+ {
+ req_char2 = TABLE_GET(req_char, md->fcc, req_char);
+#if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
+ if (utf && req_char > 127)
+ req_char2 = UCD_OTHERCASE(req_char);
+#endif
+ }
+ }
+
+
+/* ==========================================================================*/
+
+/* Loop for handling unanchored repeated matching attempts; for anchored regexs
+the loop runs just once. */
+
+for(;;)
+ {
+ PCRE_PUCHAR save_end_subject = end_subject;
+ PCRE_PUCHAR new_start_match;
+
+ /* If firstline is TRUE, the start of the match is constrained to the first
+ line of a multiline string. That is, the match must be before or at the first
+ newline. Implement this by temporarily adjusting end_subject so that we stop
+ scanning at a newline. If the match fails at the newline, later code breaks
+ this loop. */
+
+ if (firstline)
+ {
+ PCRE_PUCHAR t = start_match;
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ while (t < md->end_subject && !IS_NEWLINE(t))
+ {
+ t++;
+ ACROSSCHAR(t < end_subject, *t, t++);
+ }
+ }
+ else
+#endif
+ while (t < md->end_subject && !IS_NEWLINE(t)) t++;
+ end_subject = t;
+ }
+
+ /* There are some optimizations that avoid running the match if a known
+ starting point is not found, or if a known later character is not present.
+ However, there is an option that disables these, for testing and for ensuring
+ that all callouts do actually occur. The option can be set in the regex by
+ (*NO_START_OPT) or passed in match-time options. */
+
+ if (((options | re->options) & PCRE_NO_START_OPTIMIZE) == 0)
+ {
+ /* Advance to a unique first char if there is one. */
+
+ if (has_first_char)
+ {
+ pcre_uchar smc;
+
+ if (first_char != first_char2)
+ while (start_match < end_subject &&
+ (smc = RAWUCHARTEST(start_match)) != first_char && smc != first_char2)
+ start_match++;
+ else
+ while (start_match < end_subject && RAWUCHARTEST(start_match) != first_char)
+ start_match++;
+ }
+
+ /* Or to just after a linebreak for a multiline match */
+
+ else if (startline)
+ {
+ if (start_match > md->start_subject + start_offset)
+ {
+#ifdef SUPPORT_UTF
+ if (utf)
+ {
+ while (start_match < end_subject && !WAS_NEWLINE(start_match))
+ {
+ start_match++;
+ ACROSSCHAR(start_match < end_subject, *start_match,
+ start_match++);
+ }
+ }
+ else
+#endif
+ while (start_match < end_subject && !WAS_NEWLINE(start_match))
+ start_match++;
+
+ /* If we have just passed a CR and the newline option is ANY or ANYCRLF,
+ and we are now at a LF, advance the match position by one more character.
+ */
+
+ if (start_match[-1] == CHAR_CR &&
+ (md->nltype == NLTYPE_ANY || md->nltype == NLTYPE_ANYCRLF) &&
+ start_match < end_subject &&
+ RAWUCHARTEST(start_match) == CHAR_NL)
+ start_match++;
+ }
+ }
+
+ /* Or to a non-unique first byte after study */
+
+ else if (start_bits != NULL)
+ {
+ while (start_match < end_subject)
+ {
+ register pcre_uint32 c = RAWUCHARTEST(start_match);
+#ifndef COMPILE_PCRE8
+ if (c > 255) c = 255;
+#endif
+ if ((start_bits[c/8] & (1 << (c&7))) == 0)
+ {
+ start_match++;
+#if defined SUPPORT_UTF && defined COMPILE_PCRE8
+ /* In non 8-bit mode, the iteration will stop for
+ characters > 255 at the beginning or not stop at all. */
+ if (utf)
+ ACROSSCHAR(start_match < end_subject, *start_match,
+ start_match++);
+#endif
+ }
+ else break;
+ }
+ }
+ } /* Starting optimizations */
+
+ /* Restore fudged end_subject */
+
+ end_subject = save_end_subject;
+
+ /* The following two optimizations are disabled for partial matching or if
+ disabling is explicitly requested. */
+
+ if (((options | re->options) & PCRE_NO_START_OPTIMIZE) == 0 && !md->partial)
+ {
+ /* If the pattern was studied, a minimum subject length may be set. This is
+ a lower bound; no actual string of that length may actually match the
+ pattern. Although the value is, strictly, in characters, we treat it as
+ bytes to avoid spending too much time in this optimization. */
+
+ if (study != NULL && (study->flags & PCRE_STUDY_MINLEN) != 0 &&
+ (pcre_uint32)(end_subject - start_match) < study->minlength)
+ {
+ rc = MATCH_NOMATCH;
+ break;
+ }
+
+ /* If req_char is set, we know that that character must appear in the
+ subject for the match to succeed. If the first character is set, req_char
+ must be later in the subject; otherwise the test starts at the match point.
+ This optimization can save a huge amount of backtracking in patterns with
+ nested unlimited repeats that aren't going to match. Writing separate code
+ for cased/caseless versions makes it go faster, as does using an
+ autoincrement and backing off on a match.
+
+ HOWEVER: when the subject string is very, very long, searching to its end
+ can take a long time, and give bad performance on quite ordinary patterns.
+ This showed up when somebody was matching something like /^\d+C/ on a
+ 32-megabyte string... so we don't do this when the string is sufficiently
+ long. */
+
+ if (has_req_char && end_subject - start_match < REQ_BYTE_MAX)
+ {
+ register PCRE_PUCHAR p = start_match + (has_first_char? 1:0);
+
+ /* We don't need to repeat the search if we haven't yet reached the
+ place we found it at last time. */
+
+ if (p > req_char_ptr)
+ {
+ if (req_char != req_char2)
+ {
+ while (p < end_subject)
+ {
+ register pcre_uint32 pp = RAWUCHARINCTEST(p);
+ if (pp == req_char || pp == req_char2) { p--; break; }
+ }
+ }
+ else
+ {
+ while (p < end_subject)
+ {
+ if (RAWUCHARINCTEST(p) == req_char) { p--; break; }
+ }
+ }
+
+ /* If we can't find the required character, break the matching loop,
+ forcing a match failure. */
+
+ if (p >= end_subject)
+ {
+ rc = MATCH_NOMATCH;
+ break;
+ }
+
+ /* If we have found the required character, save the point where we
+ found it, so that we don't search again next time round the loop if
+ the start hasn't passed this character yet. */
+
+ req_char_ptr = p;
+ }
+ }
+ }
+
+#ifdef PCRE_DEBUG /* Sigh. Some compilers never learn. */
+ printf(">>>> Match against: ");
+ pchars(start_match, end_subject - start_match, TRUE, md);
+ printf("\n");
+#endif
+
+ /* OK, we can now run the match. If "hitend" is set afterwards, remember the
+ first starting point for which a partial match was found. */
+
+ md->start_match_ptr = start_match;
+ md->start_used_ptr = start_match;
+ md->match_call_count = 0;
+ md->match_function_type = 0;
+ md->end_offset_top = 0;
+ md->skip_arg_count = 0;
+ rc = match(start_match, md->start_code, start_match, 2, md, NULL, 0);
+ if (md->hitend && start_partial == NULL)
+ {
+ start_partial = md->start_used_ptr;
+ match_partial = start_match;
+ }
+
+ switch(rc)
+ {
+ /* If MATCH_SKIP_ARG reaches this level it means that a MARK that matched
+ the SKIP's arg was not found. In this circumstance, Perl ignores the SKIP
+ entirely. The only way we can do that is to re-do the match at the same
+ point, with a flag to force SKIP with an argument to be ignored. Just
+ treating this case as NOMATCH does not work because it does not check other
+ alternatives in patterns such as A(*SKIP:A)B|AC when the subject is AC. */
+
+ case MATCH_SKIP_ARG:
+ new_start_match = start_match;
+ md->ignore_skip_arg = md->skip_arg_count;
+ break;
+
+ /* SKIP passes back the next starting point explicitly, but if it is no
+ greater than the match we have just done, treat it as NOMATCH. */
+
+ case MATCH_SKIP:
+ if (md->start_match_ptr > start_match)
+ {
+ new_start_match = md->start_match_ptr;
+ break;
+ }
+ /* Fall through */
+
+ /* NOMATCH and PRUNE advance by one character. THEN at this level acts
+ exactly like PRUNE. Unset ignore SKIP-with-argument. */
+
+ case MATCH_NOMATCH:
+ case MATCH_PRUNE:
+ case MATCH_THEN:
+ md->ignore_skip_arg = 0;
+ new_start_match = start_match + 1;
+#ifdef SUPPORT_UTF
+ if (utf)
+ ACROSSCHAR(new_start_match < end_subject, *new_start_match,
+ new_start_match++);
+#endif
+ break;
+
+ /* COMMIT disables the bumpalong, but otherwise behaves as NOMATCH. */
+
+ case MATCH_COMMIT:
+ rc = MATCH_NOMATCH;
+ goto ENDLOOP;
+
+ /* Any other return is either a match, or some kind of error. */
+
+ default:
+ goto ENDLOOP;
+ }
+
+ /* Control reaches here for the various types of "no match at this point"
+ result. Reset the code to MATCH_NOMATCH for subsequent checking. */
+
+ rc = MATCH_NOMATCH;
+
+ /* If PCRE_FIRSTLINE is set, the match must happen before or at the first
+ newline in the subject (though it may continue over the newline). Therefore,
+ if we have just failed to match, starting at a newline, do not continue. */
+
+ if (firstline && IS_NEWLINE(start_match)) break;
+
+ /* Advance to new matching position */
+
+ start_match = new_start_match;
+
+ /* Break the loop if the pattern is anchored or if we have passed the end of
+ the subject. */
+
+ if (anchored || start_match > end_subject) break;
+
+ /* If we have just passed a CR and we are now at a LF, and the pattern does
+ not contain any explicit matches for \r or \n, and the newline option is CRLF
+ or ANY or ANYCRLF, advance the match position by one more character. In
+ normal matching start_match will aways be greater than the first position at
+ this stage, but a failed *SKIP can cause a return at the same point, which is
+ why the first test exists. */
+
+ if (start_match > (PCRE_PUCHAR)subject + start_offset &&
+ start_match[-1] == CHAR_CR &&
+ start_match < end_subject &&
+ *start_match == CHAR_NL &&
+ (re->flags & PCRE_HASCRORLF) == 0 &&
+ (md->nltype == NLTYPE_ANY ||
+ md->nltype == NLTYPE_ANYCRLF ||
+ md->nllen == 2))
+ start_match++;
+
+ md->mark = NULL; /* Reset for start of next match attempt */
+ } /* End of for(;;) "bumpalong" loop */
+
+/* ==========================================================================*/
+
+/* We reach here when rc is not MATCH_NOMATCH, or if one of the stopping
+conditions is true:
+
+(1) The pattern is anchored or the match was failed by (*COMMIT);
+
+(2) We are past the end of the subject;
+
+(3) PCRE_FIRSTLINE is set and we have failed to match at a newline, because
+ this option requests that a match occur at or before the first newline in
+ the subject.
+
+When we have a match and the offset vector is big enough to deal with any
+backreferences, captured substring offsets will already be set up. In the case
+where we had to get some local store to hold offsets for backreference
+processing, copy those that we can. In this case there need not be overflow if
+certain parts of the pattern were not used, even though there are more
+capturing parentheses than vector slots. */
+
+ENDLOOP:
+
+if (rc == MATCH_MATCH || rc == MATCH_ACCEPT)
+ {
+ if (using_temporary_offsets)
+ {
+ if (arg_offset_max >= 4)
+ {
+ memcpy(offsets + 2, md->offset_vector + 2,
+ (arg_offset_max - 2) * sizeof(int));
+ DPRINTF(("Copied offsets from temporary memory\n"));
+ }
+ if (md->end_offset_top > arg_offset_max) md->capture_last |= OVFLBIT;
+ DPRINTF(("Freeing temporary memory\n"));
+ (PUBL(free))(md->offset_vector);
+ }
+
+ /* Set the return code to the number of captured strings, or 0 if there were
+ too many to fit into the vector. */
+
+ rc = ((md->capture_last & OVFLBIT) != 0 &&
+ md->end_offset_top >= arg_offset_max)?
+ 0 : md->end_offset_top/2;
+
+ /* If there is space in the offset vector, set any unused pairs at the end of
+ the pattern to -1 for backwards compatibility. It is documented that this
+ happens. In earlier versions, the whole set of potential capturing offsets
+ was set to -1 each time round the loop, but this is handled differently now.
+ "Gaps" are set to -1 dynamically instead (this fixes a bug). Thus, it is only
+ those at the end that need unsetting here. We can't just unset them all at
+ the start of the whole thing because they may get set in one branch that is
+ not the final matching branch. */
+
+ if (md->end_offset_top/2 <= re->top_bracket && offsets != NULL)
+ {
+ register int *iptr, *iend;
+ int resetcount = 2 + re->top_bracket * 2;
+ if (resetcount > offsetcount) resetcount = offsetcount;
+ iptr = offsets + md->end_offset_top;
+ iend = offsets + resetcount;
+ while (iptr < iend) *iptr++ = -1;
+ }
+
+ /* If there is space, set up the whole thing as substring 0. The value of
+ md->start_match_ptr might be modified if \K was encountered on the success
+ matching path. */
+
+ if (offsetcount < 2) rc = 0; else
+ {
+ offsets[0] = (int)(md->start_match_ptr - md->start_subject);
+ offsets[1] = (int)(md->end_match_ptr - md->start_subject);
+ }
+
+ /* Return MARK data if requested */
+
+ if (extra_data != NULL && (extra_data->flags & PCRE_EXTRA_MARK) != 0)
+ *(extra_data->mark) = (pcre_uchar *)md->mark;
+ DPRINTF((">>>> returning %d\n", rc));
+#ifdef NO_RECURSE
+ release_match_heapframes(&frame_zero);
+#endif
+ return rc;
+ }
+
+/* Control gets here if there has been an error, or if the overall match
+attempt has failed at all permitted starting positions. */
+
+if (using_temporary_offsets)
+ {
+ DPRINTF(("Freeing temporary memory\n"));
+ (PUBL(free))(md->offset_vector);
+ }
+
+/* For anything other than nomatch or partial match, just return the code. */
+
+if (rc != MATCH_NOMATCH && rc != PCRE_ERROR_PARTIAL)
+ {
+ DPRINTF((">>>> error: returning %d\n", rc));
+#ifdef NO_RECURSE
+ release_match_heapframes(&frame_zero);
+#endif
+ return rc;
+ }
+
+/* Handle partial matches - disable any mark data */
+
+if (start_partial != NULL)
+ {
+ DPRINTF((">>>> returning PCRE_ERROR_PARTIAL\n"));
+ md->mark = NULL;
+ if (offsetcount > 1)
+ {
+ offsets[0] = (int)(start_partial - (PCRE_PUCHAR)subject);
+ offsets[1] = (int)(end_subject - (PCRE_PUCHAR)subject);
+ if (offsetcount > 2)
+ offsets[2] = (int)(match_partial - (PCRE_PUCHAR)subject);
+ }
+ rc = PCRE_ERROR_PARTIAL;
+ }
+
+/* This is the classic nomatch case */
+
+else
+ {
+ DPRINTF((">>>> returning PCRE_ERROR_NOMATCH\n"));
+ rc = PCRE_ERROR_NOMATCH;
+ }
+
+/* Return the MARK data if it has been requested. */
+
+if (extra_data != NULL && (extra_data->flags & PCRE_EXTRA_MARK) != 0)
+ *(extra_data->mark) = (pcre_uchar *)md->nomatch_mark;
+#ifdef NO_RECURSE
+ release_match_heapframes(&frame_zero);
+#endif
+return rc;
+}
+
+/* End of pcre_exec.c */
diff --git a/pcre/pcre_fullinfo.c b/pcre/pcre_fullinfo.c
new file mode 100644
index 00000000000..c4eb5c0e1ad
--- /dev/null
+++ b/pcre/pcre_fullinfo.c
@@ -0,0 +1,241 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2013 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains the external function pcre_fullinfo(), which returns
+information about a compiled pattern. */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "pcre_internal.h"
+
+
+/*************************************************
+* Return info about compiled pattern *
+*************************************************/
+
+/* This is a newer "info" function which has an extensible interface so
+that additional items can be added compatibly.
+
+Arguments:
+ argument_re points to compiled code
+ extra_data points extra data, or NULL
+ what what information is required
+ where where to put the information
+
+Returns: 0 if data returned, negative on error
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_fullinfo(const pcre *argument_re, const pcre_extra *extra_data,
+ int what, void *where)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_fullinfo(const pcre16 *argument_re, const pcre16_extra *extra_data,
+ int what, void *where)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_fullinfo(const pcre32 *argument_re, const pcre32_extra *extra_data,
+ int what, void *where)
+#endif
+{
+const REAL_PCRE *re = (const REAL_PCRE *)argument_re;
+const pcre_study_data *study = NULL;
+
+if (re == NULL || where == NULL) return PCRE_ERROR_NULL;
+
+if (extra_data != NULL && (extra_data->flags & PCRE_EXTRA_STUDY_DATA) != 0)
+ study = (const pcre_study_data *)extra_data->study_data;
+
+/* Check that the first field in the block is the magic number. If it is not,
+return with PCRE_ERROR_BADMAGIC. However, if the magic number is equal to
+REVERSED_MAGIC_NUMBER we return with PCRE_ERROR_BADENDIANNESS, which
+means that the pattern is likely compiled with different endianness. */
+
+if (re->magic_number != MAGIC_NUMBER)
+ return re->magic_number == REVERSED_MAGIC_NUMBER?
+ PCRE_ERROR_BADENDIANNESS:PCRE_ERROR_BADMAGIC;
+
+/* Check that this pattern was compiled in the correct bit mode */
+
+if ((re->flags & PCRE_MODE) == 0) return PCRE_ERROR_BADMODE;
+
+switch (what)
+ {
+ case PCRE_INFO_OPTIONS:
+ *((unsigned long int *)where) = re->options & PUBLIC_COMPILE_OPTIONS;
+ break;
+
+ case PCRE_INFO_SIZE:
+ *((size_t *)where) = re->size;
+ break;
+
+ case PCRE_INFO_STUDYSIZE:
+ *((size_t *)where) = (study == NULL)? 0 : study->size;
+ break;
+
+ case PCRE_INFO_JITSIZE:
+#ifdef SUPPORT_JIT
+ *((size_t *)where) =
+ (extra_data != NULL &&
+ (extra_data->flags & PCRE_EXTRA_EXECUTABLE_JIT) != 0 &&
+ extra_data->executable_jit != NULL)?
+ PRIV(jit_get_size)(extra_data->executable_jit) : 0;
+#else
+ *((size_t *)where) = 0;
+#endif
+ break;
+
+ case PCRE_INFO_CAPTURECOUNT:
+ *((int *)where) = re->top_bracket;
+ break;
+
+ case PCRE_INFO_BACKREFMAX:
+ *((int *)where) = re->top_backref;
+ break;
+
+ case PCRE_INFO_FIRSTBYTE:
+ *((int *)where) =
+ ((re->flags & PCRE_FIRSTSET) != 0)? (int)re->first_char :
+ ((re->flags & PCRE_STARTLINE) != 0)? -1 : -2;
+ break;
+
+ case PCRE_INFO_FIRSTCHARACTER:
+ *((pcre_uint32 *)where) =
+ (re->flags & PCRE_FIRSTSET) != 0 ? re->first_char : 0;
+ break;
+
+ case PCRE_INFO_FIRSTCHARACTERFLAGS:
+ *((int *)where) =
+ ((re->flags & PCRE_FIRSTSET) != 0) ? 1 :
+ ((re->flags & PCRE_STARTLINE) != 0) ? 2 : 0;
+ break;
+
+ /* Make sure we pass back the pointer to the bit vector in the external
+ block, not the internal copy (with flipped integer fields). */
+
+ case PCRE_INFO_FIRSTTABLE:
+ *((const pcre_uint8 **)where) =
+ (study != NULL && (study->flags & PCRE_STUDY_MAPPED) != 0)?
+ ((const pcre_study_data *)extra_data->study_data)->start_bits : NULL;
+ break;
+
+ case PCRE_INFO_MINLENGTH:
+ *((int *)where) =
+ (study != NULL && (study->flags & PCRE_STUDY_MINLEN) != 0)?
+ (int)(study->minlength) : -1;
+ break;
+
+ case PCRE_INFO_JIT:
+ *((int *)where) = extra_data != NULL &&
+ (extra_data->flags & PCRE_EXTRA_EXECUTABLE_JIT) != 0 &&
+ extra_data->executable_jit != NULL;
+ break;
+
+ case PCRE_INFO_LASTLITERAL:
+ *((int *)where) =
+ ((re->flags & PCRE_REQCHSET) != 0)? (int)re->req_char : -1;
+ break;
+
+ case PCRE_INFO_REQUIREDCHAR:
+ *((pcre_uint32 *)where) =
+ ((re->flags & PCRE_REQCHSET) != 0) ? re->req_char : 0;
+ break;
+
+ case PCRE_INFO_REQUIREDCHARFLAGS:
+ *((int *)where) =
+ ((re->flags & PCRE_REQCHSET) != 0);
+ break;
+
+ case PCRE_INFO_NAMEENTRYSIZE:
+ *((int *)where) = re->name_entry_size;
+ break;
+
+ case PCRE_INFO_NAMECOUNT:
+ *((int *)where) = re->name_count;
+ break;
+
+ case PCRE_INFO_NAMETABLE:
+ *((const pcre_uchar **)where) = (const pcre_uchar *)re + re->name_table_offset;
+ break;
+
+ case PCRE_INFO_DEFAULT_TABLES:
+ *((const pcre_uint8 **)where) = (const pcre_uint8 *)(PRIV(default_tables));
+ break;
+
+ /* From release 8.00 this will always return TRUE because NOPARTIAL is
+ no longer ever set (the restrictions have been removed). */
+
+ case PCRE_INFO_OKPARTIAL:
+ *((int *)where) = (re->flags & PCRE_NOPARTIAL) == 0;
+ break;
+
+ case PCRE_INFO_JCHANGED:
+ *((int *)where) = (re->flags & PCRE_JCHANGED) != 0;
+ break;
+
+ case PCRE_INFO_HASCRORLF:
+ *((int *)where) = (re->flags & PCRE_HASCRORLF) != 0;
+ break;
+
+ case PCRE_INFO_MAXLOOKBEHIND:
+ *((int *)where) = re->max_lookbehind;
+ break;
+
+ case PCRE_INFO_MATCHLIMIT:
+ if ((re->flags & PCRE_MLSET) == 0) return PCRE_ERROR_UNSET;
+ *((pcre_uint32 *)where) = re->limit_match;
+ break;
+
+ case PCRE_INFO_RECURSIONLIMIT:
+ if ((re->flags & PCRE_RLSET) == 0) return PCRE_ERROR_UNSET;
+ *((pcre_uint32 *)where) = re->limit_recursion;
+ break;
+
+ default: return PCRE_ERROR_BADOPTION;
+ }
+
+return 0;
+}
+
+/* End of pcre_fullinfo.c */
diff --git a/pcre/pcre_get.c b/pcre/pcre_get.c
new file mode 100644
index 00000000000..8094b34bbfb
--- /dev/null
+++ b/pcre/pcre_get.c
@@ -0,0 +1,662 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains some convenience functions for extracting substrings
+from the subject string after a regex match has succeeded. The original idea
+for these functions came from Scott Wimer. */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "pcre_internal.h"
+
+
+/*************************************************
+* Find number for named string *
+*************************************************/
+
+/* This function is used by the get_first_set() function below, as well
+as being generally available. It assumes that names are unique.
+
+Arguments:
+ code the compiled regex
+ stringname the name whose number is required
+
+Returns: the number of the named parentheses, or a negative number
+ (PCRE_ERROR_NOSUBSTRING) if not found
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_get_stringnumber(const pcre *code, const char *stringname)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_get_stringnumber(const pcre16 *code, PCRE_SPTR16 stringname)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_get_stringnumber(const pcre32 *code, PCRE_SPTR32 stringname)
+#endif
+{
+int rc;
+int entrysize;
+int top, bot;
+pcre_uchar *nametable;
+
+#ifdef COMPILE_PCRE8
+if ((rc = pcre_fullinfo(code, NULL, PCRE_INFO_NAMECOUNT, &top)) != 0)
+ return rc;
+if (top <= 0) return PCRE_ERROR_NOSUBSTRING;
+
+if ((rc = pcre_fullinfo(code, NULL, PCRE_INFO_NAMEENTRYSIZE, &entrysize)) != 0)
+ return rc;
+if ((rc = pcre_fullinfo(code, NULL, PCRE_INFO_NAMETABLE, &nametable)) != 0)
+ return rc;
+#endif
+#ifdef COMPILE_PCRE16
+if ((rc = pcre16_fullinfo(code, NULL, PCRE_INFO_NAMECOUNT, &top)) != 0)
+ return rc;
+if (top <= 0) return PCRE_ERROR_NOSUBSTRING;
+
+if ((rc = pcre16_fullinfo(code, NULL, PCRE_INFO_NAMEENTRYSIZE, &entrysize)) != 0)
+ return rc;
+if ((rc = pcre16_fullinfo(code, NULL, PCRE_INFO_NAMETABLE, &nametable)) != 0)
+ return rc;
+#endif
+#ifdef COMPILE_PCRE32
+if ((rc = pcre32_fullinfo(code, NULL, PCRE_INFO_NAMECOUNT, &top)) != 0)
+ return rc;
+if (top <= 0) return PCRE_ERROR_NOSUBSTRING;
+
+if ((rc = pcre32_fullinfo(code, NULL, PCRE_INFO_NAMEENTRYSIZE, &entrysize)) != 0)
+ return rc;
+if ((rc = pcre32_fullinfo(code, NULL, PCRE_INFO_NAMETABLE, &nametable)) != 0)
+ return rc;
+#endif
+
+bot = 0;
+while (top > bot)
+ {
+ int mid = (top + bot) / 2;
+ pcre_uchar *entry = nametable + entrysize*mid;
+ int c = STRCMP_UC_UC((pcre_uchar *)stringname,
+ (pcre_uchar *)(entry + IMM2_SIZE));
+ if (c == 0) return GET2(entry, 0);
+ if (c > 0) bot = mid + 1; else top = mid;
+ }
+
+return PCRE_ERROR_NOSUBSTRING;
+}
+
+
+
+/*************************************************
+* Find (multiple) entries for named string *
+*************************************************/
+
+/* This is used by the get_first_set() function below, as well as being
+generally available. It is used when duplicated names are permitted.
+
+Arguments:
+ code the compiled regex
+ stringname the name whose entries required
+ firstptr where to put the pointer to the first entry
+ lastptr where to put the pointer to the last entry
+
+Returns: the length of each entry, or a negative number
+ (PCRE_ERROR_NOSUBSTRING) if not found
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_get_stringtable_entries(const pcre *code, const char *stringname,
+ char **firstptr, char **lastptr)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_get_stringtable_entries(const pcre16 *code, PCRE_SPTR16 stringname,
+ PCRE_UCHAR16 **firstptr, PCRE_UCHAR16 **lastptr)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_get_stringtable_entries(const pcre32 *code, PCRE_SPTR32 stringname,
+ PCRE_UCHAR32 **firstptr, PCRE_UCHAR32 **lastptr)
+#endif
+{
+int rc;
+int entrysize;
+int top, bot;
+pcre_uchar *nametable, *lastentry;
+
+#ifdef COMPILE_PCRE8
+if ((rc = pcre_fullinfo(code, NULL, PCRE_INFO_NAMECOUNT, &top)) != 0)
+ return rc;
+if (top <= 0) return PCRE_ERROR_NOSUBSTRING;
+
+if ((rc = pcre_fullinfo(code, NULL, PCRE_INFO_NAMEENTRYSIZE, &entrysize)) != 0)
+ return rc;
+if ((rc = pcre_fullinfo(code, NULL, PCRE_INFO_NAMETABLE, &nametable)) != 0)
+ return rc;
+#endif
+#ifdef COMPILE_PCRE16
+if ((rc = pcre16_fullinfo(code, NULL, PCRE_INFO_NAMECOUNT, &top)) != 0)
+ return rc;
+if (top <= 0) return PCRE_ERROR_NOSUBSTRING;
+
+if ((rc = pcre16_fullinfo(code, NULL, PCRE_INFO_NAMEENTRYSIZE, &entrysize)) != 0)
+ return rc;
+if ((rc = pcre16_fullinfo(code, NULL, PCRE_INFO_NAMETABLE, &nametable)) != 0)
+ return rc;
+#endif
+#ifdef COMPILE_PCRE32
+if ((rc = pcre32_fullinfo(code, NULL, PCRE_INFO_NAMECOUNT, &top)) != 0)
+ return rc;
+if (top <= 0) return PCRE_ERROR_NOSUBSTRING;
+
+if ((rc = pcre32_fullinfo(code, NULL, PCRE_INFO_NAMEENTRYSIZE, &entrysize)) != 0)
+ return rc;
+if ((rc = pcre32_fullinfo(code, NULL, PCRE_INFO_NAMETABLE, &nametable)) != 0)
+ return rc;
+#endif
+
+lastentry = nametable + entrysize * (top - 1);
+bot = 0;
+while (top > bot)
+ {
+ int mid = (top + bot) / 2;
+ pcre_uchar *entry = nametable + entrysize*mid;
+ int c = STRCMP_UC_UC((pcre_uchar *)stringname,
+ (pcre_uchar *)(entry + IMM2_SIZE));
+ if (c == 0)
+ {
+ pcre_uchar *first = entry;
+ pcre_uchar *last = entry;
+ while (first > nametable)
+ {
+ if (STRCMP_UC_UC((pcre_uchar *)stringname,
+ (pcre_uchar *)(first - entrysize + IMM2_SIZE)) != 0) break;
+ first -= entrysize;
+ }
+ while (last < lastentry)
+ {
+ if (STRCMP_UC_UC((pcre_uchar *)stringname,
+ (pcre_uchar *)(last + entrysize + IMM2_SIZE)) != 0) break;
+ last += entrysize;
+ }
+#if defined COMPILE_PCRE8
+ *firstptr = (char *)first;
+ *lastptr = (char *)last;
+#elif defined COMPILE_PCRE16
+ *firstptr = (PCRE_UCHAR16 *)first;
+ *lastptr = (PCRE_UCHAR16 *)last;
+#elif defined COMPILE_PCRE32
+ *firstptr = (PCRE_UCHAR32 *)first;
+ *lastptr = (PCRE_UCHAR32 *)last;
+#endif
+ return entrysize;
+ }
+ if (c > 0) bot = mid + 1; else top = mid;
+ }
+
+return PCRE_ERROR_NOSUBSTRING;
+}
+
+
+
+/*************************************************
+* Find first set of multiple named strings *
+*************************************************/
+
+/* This function allows for duplicate names in the table of named substrings.
+It returns the number of the first one that was set in a pattern match.
+
+Arguments:
+ code the compiled regex
+ stringname the name of the capturing substring
+ ovector the vector of matched substrings
+
+Returns: the number of the first that is set,
+ or the number of the last one if none are set,
+ or a negative number on error
+*/
+
+#if defined COMPILE_PCRE8
+static int
+get_first_set(const pcre *code, const char *stringname, int *ovector)
+#elif defined COMPILE_PCRE16
+static int
+get_first_set(const pcre16 *code, PCRE_SPTR16 stringname, int *ovector)
+#elif defined COMPILE_PCRE32
+static int
+get_first_set(const pcre32 *code, PCRE_SPTR32 stringname, int *ovector)
+#endif
+{
+const REAL_PCRE *re = (const REAL_PCRE *)code;
+int entrysize;
+pcre_uchar *entry;
+#if defined COMPILE_PCRE8
+char *first, *last;
+#elif defined COMPILE_PCRE16
+PCRE_UCHAR16 *first, *last;
+#elif defined COMPILE_PCRE32
+PCRE_UCHAR32 *first, *last;
+#endif
+
+#if defined COMPILE_PCRE8
+if ((re->options & PCRE_DUPNAMES) == 0 && (re->flags & PCRE_JCHANGED) == 0)
+ return pcre_get_stringnumber(code, stringname);
+entrysize = pcre_get_stringtable_entries(code, stringname, &first, &last);
+#elif defined COMPILE_PCRE16
+if ((re->options & PCRE_DUPNAMES) == 0 && (re->flags & PCRE_JCHANGED) == 0)
+ return pcre16_get_stringnumber(code, stringname);
+entrysize = pcre16_get_stringtable_entries(code, stringname, &first, &last);
+#elif defined COMPILE_PCRE32
+if ((re->options & PCRE_DUPNAMES) == 0 && (re->flags & PCRE_JCHANGED) == 0)
+ return pcre32_get_stringnumber(code, stringname);
+entrysize = pcre32_get_stringtable_entries(code, stringname, &first, &last);
+#endif
+if (entrysize <= 0) return entrysize;
+for (entry = (pcre_uchar *)first; entry <= (pcre_uchar *)last; entry += entrysize)
+ {
+ int n = GET2(entry, 0);
+ if (ovector[n*2] >= 0) return n;
+ }
+return GET2(entry, 0);
+}
+
+
+
+
+/*************************************************
+* Copy captured string to given buffer *
+*************************************************/
+
+/* This function copies a single captured substring into a given buffer.
+Note that we use memcpy() rather than strncpy() in case there are binary zeros
+in the string.
+
+Arguments:
+ subject the subject string that was matched
+ ovector pointer to the offsets table
+ stringcount the number of substrings that were captured
+ (i.e. the yield of the pcre_exec call, unless
+ that was zero, in which case it should be 1/3
+ of the offset table size)
+ stringnumber the number of the required substring
+ buffer where to put the substring
+ size the size of the buffer
+
+Returns: if successful:
+ the length of the copied string, not including the zero
+ that is put on the end; can be zero
+ if not successful:
+ PCRE_ERROR_NOMEMORY (-6) buffer too small
+ PCRE_ERROR_NOSUBSTRING (-7) no such captured substring
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_copy_substring(const char *subject, int *ovector, int stringcount,
+ int stringnumber, char *buffer, int size)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_copy_substring(PCRE_SPTR16 subject, int *ovector, int stringcount,
+ int stringnumber, PCRE_UCHAR16 *buffer, int size)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_copy_substring(PCRE_SPTR32 subject, int *ovector, int stringcount,
+ int stringnumber, PCRE_UCHAR32 *buffer, int size)
+#endif
+{
+int yield;
+if (stringnumber < 0 || stringnumber >= stringcount)
+ return PCRE_ERROR_NOSUBSTRING;
+stringnumber *= 2;
+yield = ovector[stringnumber+1] - ovector[stringnumber];
+if (size < yield + 1) return PCRE_ERROR_NOMEMORY;
+memcpy(buffer, subject + ovector[stringnumber], IN_UCHARS(yield));
+buffer[yield] = 0;
+return yield;
+}
+
+
+
+/*************************************************
+* Copy named captured string to given buffer *
+*************************************************/
+
+/* This function copies a single captured substring into a given buffer,
+identifying it by name. If the regex permits duplicate names, the first
+substring that is set is chosen.
+
+Arguments:
+ code the compiled regex
+ subject the subject string that was matched
+ ovector pointer to the offsets table
+ stringcount the number of substrings that were captured
+ (i.e. the yield of the pcre_exec call, unless
+ that was zero, in which case it should be 1/3
+ of the offset table size)
+ stringname the name of the required substring
+ buffer where to put the substring
+ size the size of the buffer
+
+Returns: if successful:
+ the length of the copied string, not including the zero
+ that is put on the end; can be zero
+ if not successful:
+ PCRE_ERROR_NOMEMORY (-6) buffer too small
+ PCRE_ERROR_NOSUBSTRING (-7) no such captured substring
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_copy_named_substring(const pcre *code, const char *subject,
+ int *ovector, int stringcount, const char *stringname,
+ char *buffer, int size)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_copy_named_substring(const pcre16 *code, PCRE_SPTR16 subject,
+ int *ovector, int stringcount, PCRE_SPTR16 stringname,
+ PCRE_UCHAR16 *buffer, int size)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_copy_named_substring(const pcre32 *code, PCRE_SPTR32 subject,
+ int *ovector, int stringcount, PCRE_SPTR32 stringname,
+ PCRE_UCHAR32 *buffer, int size)
+#endif
+{
+int n = get_first_set(code, stringname, ovector);
+if (n <= 0) return n;
+#if defined COMPILE_PCRE8
+return pcre_copy_substring(subject, ovector, stringcount, n, buffer, size);
+#elif defined COMPILE_PCRE16
+return pcre16_copy_substring(subject, ovector, stringcount, n, buffer, size);
+#elif defined COMPILE_PCRE32
+return pcre32_copy_substring(subject, ovector, stringcount, n, buffer, size);
+#endif
+}
+
+
+
+/*************************************************
+* Copy all captured strings to new store *
+*************************************************/
+
+/* This function gets one chunk of store and builds a list of pointers and all
+of the captured substrings in it. A NULL pointer is put on the end of the list.
+
+Arguments:
+ subject the subject string that was matched
+ ovector pointer to the offsets table
+ stringcount the number of substrings that were captured
+ (i.e. the yield of the pcre_exec call, unless
+ that was zero, in which case it should be 1/3
+ of the offset table size)
+ listptr set to point to the list of pointers
+
+Returns: if successful: 0
+ if not successful:
+ PCRE_ERROR_NOMEMORY (-6) failed to get store
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_get_substring_list(const char *subject, int *ovector, int stringcount,
+ const char ***listptr)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_get_substring_list(PCRE_SPTR16 subject, int *ovector, int stringcount,
+ PCRE_SPTR16 **listptr)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_get_substring_list(PCRE_SPTR32 subject, int *ovector, int stringcount,
+ PCRE_SPTR32 **listptr)
+#endif
+{
+int i;
+int size = sizeof(pcre_uchar *);
+int double_count = stringcount * 2;
+pcre_uchar **stringlist;
+pcre_uchar *p;
+
+for (i = 0; i < double_count; i += 2)
+ size += sizeof(pcre_uchar *) + IN_UCHARS(ovector[i+1] - ovector[i] + 1);
+
+stringlist = (pcre_uchar **)(PUBL(malloc))(size);
+if (stringlist == NULL) return PCRE_ERROR_NOMEMORY;
+
+#if defined COMPILE_PCRE8
+*listptr = (const char **)stringlist;
+#elif defined COMPILE_PCRE16
+*listptr = (PCRE_SPTR16 *)stringlist;
+#elif defined COMPILE_PCRE32
+*listptr = (PCRE_SPTR32 *)stringlist;
+#endif
+p = (pcre_uchar *)(stringlist + stringcount + 1);
+
+for (i = 0; i < double_count; i += 2)
+ {
+ int len = ovector[i+1] - ovector[i];
+ memcpy(p, subject + ovector[i], IN_UCHARS(len));
+ *stringlist++ = p;
+ p += len;
+ *p++ = 0;
+ }
+
+*stringlist = NULL;
+return 0;
+}
+
+
+
+/*************************************************
+* Free store obtained by get_substring_list *
+*************************************************/
+
+/* This function exists for the benefit of people calling PCRE from non-C
+programs that can call its functions, but not free() or (PUBL(free))()
+directly.
+
+Argument: the result of a previous pcre_get_substring_list()
+Returns: nothing
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN void PCRE_CALL_CONVENTION
+pcre_free_substring_list(const char **pointer)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN void PCRE_CALL_CONVENTION
+pcre16_free_substring_list(PCRE_SPTR16 *pointer)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN void PCRE_CALL_CONVENTION
+pcre32_free_substring_list(PCRE_SPTR32 *pointer)
+#endif
+{
+(PUBL(free))((void *)pointer);
+}
+
+
+
+/*************************************************
+* Copy captured string to new store *
+*************************************************/
+
+/* This function copies a single captured substring into a piece of new
+store
+
+Arguments:
+ subject the subject string that was matched
+ ovector pointer to the offsets table
+ stringcount the number of substrings that were captured
+ (i.e. the yield of the pcre_exec call, unless
+ that was zero, in which case it should be 1/3
+ of the offset table size)
+ stringnumber the number of the required substring
+ stringptr where to put a pointer to the substring
+
+Returns: if successful:
+ the length of the string, not including the zero that
+ is put on the end; can be zero
+ if not successful:
+ PCRE_ERROR_NOMEMORY (-6) failed to get store
+ PCRE_ERROR_NOSUBSTRING (-7) substring not present
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_get_substring(const char *subject, int *ovector, int stringcount,
+ int stringnumber, const char **stringptr)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_get_substring(PCRE_SPTR16 subject, int *ovector, int stringcount,
+ int stringnumber, PCRE_SPTR16 *stringptr)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_get_substring(PCRE_SPTR32 subject, int *ovector, int stringcount,
+ int stringnumber, PCRE_SPTR32 *stringptr)
+#endif
+{
+int yield;
+pcre_uchar *substring;
+if (stringnumber < 0 || stringnumber >= stringcount)
+ return PCRE_ERROR_NOSUBSTRING;
+stringnumber *= 2;
+yield = ovector[stringnumber+1] - ovector[stringnumber];
+substring = (pcre_uchar *)(PUBL(malloc))(IN_UCHARS(yield + 1));
+if (substring == NULL) return PCRE_ERROR_NOMEMORY;
+memcpy(substring, subject + ovector[stringnumber], IN_UCHARS(yield));
+substring[yield] = 0;
+#if defined COMPILE_PCRE8
+*stringptr = (const char *)substring;
+#elif defined COMPILE_PCRE16
+*stringptr = (PCRE_SPTR16)substring;
+#elif defined COMPILE_PCRE32
+*stringptr = (PCRE_SPTR32)substring;
+#endif
+return yield;
+}
+
+
+
+/*************************************************
+* Copy named captured string to new store *
+*************************************************/
+
+/* This function copies a single captured substring, identified by name, into
+new store. If the regex permits duplicate names, the first substring that is
+set is chosen.
+
+Arguments:
+ code the compiled regex
+ subject the subject string that was matched
+ ovector pointer to the offsets table
+ stringcount the number of substrings that were captured
+ (i.e. the yield of the pcre_exec call, unless
+ that was zero, in which case it should be 1/3
+ of the offset table size)
+ stringname the name of the required substring
+ stringptr where to put the pointer
+
+Returns: if successful:
+ the length of the copied string, not including the zero
+ that is put on the end; can be zero
+ if not successful:
+ PCRE_ERROR_NOMEMORY (-6) couldn't get memory
+ PCRE_ERROR_NOSUBSTRING (-7) no such captured substring
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_get_named_substring(const pcre *code, const char *subject,
+ int *ovector, int stringcount, const char *stringname,
+ const char **stringptr)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_get_named_substring(const pcre16 *code, PCRE_SPTR16 subject,
+ int *ovector, int stringcount, PCRE_SPTR16 stringname,
+ PCRE_SPTR16 *stringptr)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_get_named_substring(const pcre32 *code, PCRE_SPTR32 subject,
+ int *ovector, int stringcount, PCRE_SPTR32 stringname,
+ PCRE_SPTR32 *stringptr)
+#endif
+{
+int n = get_first_set(code, stringname, ovector);
+if (n <= 0) return n;
+#if defined COMPILE_PCRE8
+return pcre_get_substring(subject, ovector, stringcount, n, stringptr);
+#elif defined COMPILE_PCRE16
+return pcre16_get_substring(subject, ovector, stringcount, n, stringptr);
+#elif defined COMPILE_PCRE32
+return pcre32_get_substring(subject, ovector, stringcount, n, stringptr);
+#endif
+}
+
+
+
+
+/*************************************************
+* Free store obtained by get_substring *
+*************************************************/
+
+/* This function exists for the benefit of people calling PCRE from non-C
+programs that can call its functions, but not free() or (PUBL(free))()
+directly.
+
+Argument: the result of a previous pcre_get_substring()
+Returns: nothing
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN void PCRE_CALL_CONVENTION
+pcre_free_substring(const char *pointer)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN void PCRE_CALL_CONVENTION
+pcre16_free_substring(PCRE_SPTR16 pointer)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN void PCRE_CALL_CONVENTION
+pcre32_free_substring(PCRE_SPTR32 pointer)
+#endif
+{
+(PUBL(free))((void *)pointer);
+}
+
+/* End of pcre_get.c */
diff --git a/pcre/pcre_globals.c b/pcre/pcre_globals.c
new file mode 100644
index 00000000000..36e6ddb3a89
--- /dev/null
+++ b/pcre/pcre_globals.c
@@ -0,0 +1,84 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains global variables that are exported by the PCRE library.
+PCRE is thread-clean and doesn't use any global variables in the normal sense.
+However, it calls memory allocation and freeing functions via the four
+indirections below, and it can optionally do callouts, using the fifth
+indirection. These values can be changed by the caller, but are shared between
+all threads.
+
+For MS Visual Studio and Symbian OS, there are problems in initializing these
+variables to non-local functions. In these cases, therefore, an indirection via
+a local function is used.
+
+Also, when compiling for Virtual Pascal, things are done differently, and
+global variables are not used. */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "pcre_internal.h"
+
+#if defined _MSC_VER || defined __SYMBIAN32__
+static void* LocalPcreMalloc(size_t aSize)
+ {
+ return malloc(aSize);
+ }
+static void LocalPcreFree(void* aPtr)
+ {
+ free(aPtr);
+ }
+PCRE_EXP_DATA_DEFN void *(*PUBL(malloc))(size_t) = LocalPcreMalloc;
+PCRE_EXP_DATA_DEFN void (*PUBL(free))(void *) = LocalPcreFree;
+PCRE_EXP_DATA_DEFN void *(*PUBL(stack_malloc))(size_t) = LocalPcreMalloc;
+PCRE_EXP_DATA_DEFN void (*PUBL(stack_free))(void *) = LocalPcreFree;
+PCRE_EXP_DATA_DEFN int (*PUBL(callout))(PUBL(callout_block) *) = NULL;
+
+#elif !defined VPCOMPAT
+PCRE_EXP_DATA_DEFN void *(*PUBL(malloc))(size_t) = malloc;
+PCRE_EXP_DATA_DEFN void (*PUBL(free))(void *) = free;
+PCRE_EXP_DATA_DEFN void *(*PUBL(stack_malloc))(size_t) = malloc;
+PCRE_EXP_DATA_DEFN void (*PUBL(stack_free))(void *) = free;
+PCRE_EXP_DATA_DEFN int (*PUBL(callout))(PUBL(callout_block) *) = NULL;
+#endif
+
+/* End of pcre_globals.c */
diff --git a/pcre/pcre_internal.h b/pcre/pcre_internal.h
new file mode 100644
index 00000000000..307069ca9d6
--- /dev/null
+++ b/pcre/pcre_internal.h
@@ -0,0 +1,2771 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2013 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+/* This header contains definitions that are shared between the different
+modules, but which are not relevant to the exported API. This includes some
+functions whose names all begin with "_pcre_", "_pcre16_" or "_pcre32_"
+depending on the PRIV macro. */
+
+#ifndef PCRE_INTERNAL_H
+#define PCRE_INTERNAL_H
+
+/* Define PCRE_DEBUG to get debugging output on stdout. */
+
+#if 0
+#define PCRE_DEBUG
+#endif
+
+/* PCRE is compiled as an 8 bit library if it is not requested otherwise. */
+
+#if !defined COMPILE_PCRE16 && !defined COMPILE_PCRE32
+#define COMPILE_PCRE8
+#endif
+
+/* If SUPPORT_UCP is defined, SUPPORT_UTF must also be defined. The
+"configure" script ensures this, but not everybody uses "configure". */
+
+#if defined SUPPORT_UCP && !(defined SUPPORT_UTF)
+#define SUPPORT_UTF 1
+#endif
+
+/* We define SUPPORT_UTF if SUPPORT_UTF8 is enabled for compatibility
+reasons with existing code. */
+
+#if defined SUPPORT_UTF8 && !(defined SUPPORT_UTF)
+#define SUPPORT_UTF 1
+#endif
+
+/* Fixme: SUPPORT_UTF8 should be eventually disappear from the code.
+Until then we define it if SUPPORT_UTF is defined. */
+
+#if defined SUPPORT_UTF && !(defined SUPPORT_UTF8)
+#define SUPPORT_UTF8 1
+#endif
+
+/* We do not support both EBCDIC and UTF-8/16/32 at the same time. The "configure"
+script prevents both being selected, but not everybody uses "configure". */
+
+#if defined EBCDIC && defined SUPPORT_UTF
+#error The use of both EBCDIC and SUPPORT_UTF is not supported.
+#endif
+
+/* Use a macro for debugging printing, 'cause that eliminates the use of #ifdef
+inline, and there are *still* stupid compilers about that don't like indented
+pre-processor statements, or at least there were when I first wrote this. After
+all, it had only been about 10 years then...
+
+It turns out that the Mac Debugging.h header also defines the macro DPRINTF, so
+be absolutely sure we get our version. */
+
+#undef DPRINTF
+#ifdef PCRE_DEBUG
+#define DPRINTF(p) printf p
+#else
+#define DPRINTF(p) /* Nothing */
+#endif
+
+
+/* Standard C headers plus the external interface definition. The only time
+setjmp and stdarg are used is when NO_RECURSE is set. */
+
+#include
+#include
+#include
+#include
+#include
+#include
+
+/* Valgrind (memcheck) support */
+
+#ifdef SUPPORT_VALGRIND
+#include
+#endif
+
+/* When compiling a DLL for Windows, the exported symbols have to be declared
+using some MS magic. I found some useful information on this web page:
+http://msdn2.microsoft.com/en-us/library/y4h7bcy6(VS.80).aspx. According to the
+information there, using __declspec(dllexport) without "extern" we have a
+definition; with "extern" we have a declaration. The settings here override the
+setting in pcre.h (which is included below); it defines only PCRE_EXP_DECL,
+which is all that is needed for applications (they just import the symbols). We
+use:
+
+ PCRE_EXP_DECL for declarations
+ PCRE_EXP_DEFN for definitions of exported functions
+ PCRE_EXP_DATA_DEFN for definitions of exported variables
+
+The reason for the two DEFN macros is that in non-Windows environments, one
+does not want to have "extern" before variable definitions because it leads to
+compiler warnings. So we distinguish between functions and variables. In
+Windows, the two should always be the same.
+
+The reason for wrapping this in #ifndef PCRE_EXP_DECL is so that pcretest,
+which is an application, but needs to import this file in order to "peek" at
+internals, can #include pcre.h first to get an application's-eye view.
+
+In principle, people compiling for non-Windows, non-Unix-like (i.e. uncommon,
+special-purpose environments) might want to stick other stuff in front of
+exported symbols. That's why, in the non-Windows case, we set PCRE_EXP_DEFN and
+PCRE_EXP_DATA_DEFN only if they are not already set. */
+
+#ifndef PCRE_EXP_DECL
+# ifdef _WIN32
+# ifndef PCRE_STATIC
+# define PCRE_EXP_DECL extern __declspec(dllexport)
+# define PCRE_EXP_DEFN __declspec(dllexport)
+# define PCRE_EXP_DATA_DEFN __declspec(dllexport)
+# else
+# define PCRE_EXP_DECL extern
+# define PCRE_EXP_DEFN
+# define PCRE_EXP_DATA_DEFN
+# endif
+# else
+# ifdef __cplusplus
+# define PCRE_EXP_DECL extern "C"
+# else
+# define PCRE_EXP_DECL extern
+# endif
+# ifndef PCRE_EXP_DEFN
+# define PCRE_EXP_DEFN PCRE_EXP_DECL
+# endif
+# ifndef PCRE_EXP_DATA_DEFN
+# define PCRE_EXP_DATA_DEFN
+# endif
+# endif
+#endif
+
+/* When compiling with the MSVC compiler, it is sometimes necessary to include
+a "calling convention" before exported function names. (This is secondhand
+information; I know nothing about MSVC myself). For example, something like
+
+ void __cdecl function(....)
+
+might be needed. In order so make this easy, all the exported functions have
+PCRE_CALL_CONVENTION just before their names. It is rarely needed; if not
+set, we ensure here that it has no effect. */
+
+#ifndef PCRE_CALL_CONVENTION
+#define PCRE_CALL_CONVENTION
+#endif
+
+/* We need to have types that specify unsigned 8, 16 and 32-bit integers. We
+cannot determine these outside the compilation (e.g. by running a program as
+part of "configure") because PCRE is often cross-compiled for use on other
+systems. Instead we make use of the maximum sizes that are available at
+preprocessor time in standard C environments. */
+
+typedef unsigned char pcre_uint8;
+
+#if USHRT_MAX == 65535
+typedef unsigned short pcre_uint16;
+typedef short pcre_int16;
+#define PCRE_UINT16_MAX USHRT_MAX
+#define PCRE_INT16_MAX SHRT_MAX
+#elif UINT_MAX == 65535
+typedef unsigned int pcre_uint16;
+typedef int pcre_int16;
+#define PCRE_UINT16_MAX UINT_MAX
+#define PCRE_INT16_MAX INT_MAX
+#else
+#error Cannot determine a type for 16-bit integers
+#endif
+
+#if UINT_MAX == 4294967295U
+typedef unsigned int pcre_uint32;
+typedef int pcre_int32;
+#define PCRE_UINT32_MAX UINT_MAX
+#define PCRE_INT32_MAX INT_MAX
+#elif ULONG_MAX == 4294967295UL
+typedef unsigned long int pcre_uint32;
+typedef long int pcre_int32;
+#define PCRE_UINT32_MAX ULONG_MAX
+#define PCRE_INT32_MAX LONG_MAX
+#else
+#error Cannot determine a type for 32-bit integers
+#endif
+
+/* When checking for integer overflow in pcre_compile(), we need to handle
+large integers. If a 64-bit integer type is available, we can use that.
+Otherwise we have to cast to double, which of course requires floating point
+arithmetic. Handle this by defining a macro for the appropriate type. If
+stdint.h is available, include it; it may define INT64_MAX. Systems that do not
+have stdint.h (e.g. Solaris) may have inttypes.h. The macro int64_t may be set
+by "configure". */
+
+#if defined HAVE_STDINT_H
+#include
+#elif defined HAVE_INTTYPES_H
+#include
+#endif
+
+#if defined INT64_MAX || defined int64_t
+#define INT64_OR_DOUBLE int64_t
+#else
+#define INT64_OR_DOUBLE double
+#endif
+
+/* All character handling must be done as unsigned characters. Otherwise there
+are problems with top-bit-set characters and functions such as isspace().
+However, we leave the interface to the outside world as char * or short *,
+because that should make things easier for callers. This character type is
+called pcre_uchar.
+
+The IN_UCHARS macro multiply its argument with the byte size of the current
+pcre_uchar type. Useful for memcpy and such operations, whose require the
+byte size of their input/output buffers.
+
+The MAX_255 macro checks whether its pcre_uchar input is less than 256.
+
+The TABLE_GET macro is designed for accessing elements of tables whose contain
+exactly 256 items. When the character is able to contain more than 256
+items, some check is needed before accessing these tables.
+*/
+
+#if defined COMPILE_PCRE8
+
+typedef unsigned char pcre_uchar;
+#define IN_UCHARS(x) (x)
+#define MAX_255(c) 1
+#define TABLE_GET(c, table, default) ((table)[c])
+
+#elif defined COMPILE_PCRE16
+
+#if USHRT_MAX != 65535
+/* This is a warning message. Change PCRE_UCHAR16 to a 16 bit data type in
+pcre.h(.in) and disable (comment out) this message. */
+#error Warning: PCRE_UCHAR16 is not a 16 bit data type.
+#endif
+
+typedef pcre_uint16 pcre_uchar;
+#define UCHAR_SHIFT (1)
+#define IN_UCHARS(x) ((x) << UCHAR_SHIFT)
+#define MAX_255(c) ((c) <= 255u)
+#define TABLE_GET(c, table, default) (MAX_255(c)? ((table)[c]):(default))
+
+#elif defined COMPILE_PCRE32
+
+typedef pcre_uint32 pcre_uchar;
+#define UCHAR_SHIFT (2)
+#define IN_UCHARS(x) ((x) << UCHAR_SHIFT)
+#define MAX_255(c) ((c) <= 255u)
+#define TABLE_GET(c, table, default) (MAX_255(c)? ((table)[c]):(default))
+
+#else
+#error Unsupported compiling mode
+#endif /* COMPILE_PCRE[8|16|32] */
+
+/* This is an unsigned int value that no character can ever have. UTF-8
+characters only go up to 0x7fffffff (though Unicode doesn't go beyond
+0x0010ffff). */
+
+#define NOTACHAR 0xffffffff
+
+/* PCRE is able to support several different kinds of newline (CR, LF, CRLF,
+"any" and "anycrlf" at present). The following macros are used to package up
+testing for newlines. NLBLOCK, PSSTART, and PSEND are defined in the various
+modules to indicate in which datablock the parameters exist, and what the
+start/end of string field names are. */
+
+#define NLTYPE_FIXED 0 /* Newline is a fixed length string */
+#define NLTYPE_ANY 1 /* Newline is any Unicode line ending */
+#define NLTYPE_ANYCRLF 2 /* Newline is CR, LF, or CRLF */
+
+/* This macro checks for a newline at the given position */
+
+#define IS_NEWLINE(p) \
+ ((NLBLOCK->nltype != NLTYPE_FIXED)? \
+ ((p) < NLBLOCK->PSEND && \
+ PRIV(is_newline)((p), NLBLOCK->nltype, NLBLOCK->PSEND, \
+ &(NLBLOCK->nllen), utf)) \
+ : \
+ ((p) <= NLBLOCK->PSEND - NLBLOCK->nllen && \
+ RAWUCHARTEST(p) == NLBLOCK->nl[0] && \
+ (NLBLOCK->nllen == 1 || RAWUCHARTEST(p+1) == NLBLOCK->nl[1]) \
+ ) \
+ )
+
+/* This macro checks for a newline immediately preceding the given position */
+
+#define WAS_NEWLINE(p) \
+ ((NLBLOCK->nltype != NLTYPE_FIXED)? \
+ ((p) > NLBLOCK->PSSTART && \
+ PRIV(was_newline)((p), NLBLOCK->nltype, NLBLOCK->PSSTART, \
+ &(NLBLOCK->nllen), utf)) \
+ : \
+ ((p) >= NLBLOCK->PSSTART + NLBLOCK->nllen && \
+ RAWUCHARTEST(p - NLBLOCK->nllen) == NLBLOCK->nl[0] && \
+ (NLBLOCK->nllen == 1 || RAWUCHARTEST(p - NLBLOCK->nllen + 1) == NLBLOCK->nl[1]) \
+ ) \
+ )
+
+/* When PCRE is compiled as a C++ library, the subject pointer can be replaced
+with a custom type. This makes it possible, for example, to allow pcre_exec()
+to process subject strings that are discontinuous by using a smart pointer
+class. It must always be possible to inspect all of the subject string in
+pcre_exec() because of the way it backtracks. Two macros are required in the
+normal case, for sign-unspecified and unsigned char pointers. The former is
+used for the external interface and appears in pcre.h, which is why its name
+must begin with PCRE_. */
+
+#ifdef CUSTOM_SUBJECT_PTR
+#define PCRE_PUCHAR CUSTOM_SUBJECT_PTR
+#else
+#define PCRE_PUCHAR const pcre_uchar *
+#endif
+
+/* Include the public PCRE header and the definitions of UCP character property
+values. */
+
+#include "pcre.h"
+#include "ucp.h"
+
+#ifdef COMPILE_PCRE32
+/* Assert that the public PCRE_UCHAR32 is a 32-bit type */
+typedef int __assert_pcre_uchar32_size[sizeof(PCRE_UCHAR32) == 4 ? 1 : -1];
+#endif
+
+/* When compiling for use with the Virtual Pascal compiler, these functions
+need to have their names changed. PCRE must be compiled with the -DVPCOMPAT
+option on the command line. */
+
+#ifdef VPCOMPAT
+#define strlen(s) _strlen(s)
+#define strncmp(s1,s2,m) _strncmp(s1,s2,m)
+#define memcmp(s,c,n) _memcmp(s,c,n)
+#define memcpy(d,s,n) _memcpy(d,s,n)
+#define memmove(d,s,n) _memmove(d,s,n)
+#define memset(s,c,n) _memset(s,c,n)
+#else /* VPCOMPAT */
+
+/* To cope with SunOS4 and other systems that lack memmove() but have bcopy(),
+define a macro for memmove() if HAVE_MEMMOVE is false, provided that HAVE_BCOPY
+is set. Otherwise, include an emulating function for those systems that have
+neither (there some non-Unix environments where this is the case). */
+
+#ifndef HAVE_MEMMOVE
+#undef memmove /* some systems may have a macro */
+#ifdef HAVE_BCOPY
+#define memmove(a, b, c) bcopy(b, a, c)
+#else /* HAVE_BCOPY */
+static void *
+pcre_memmove(void *d, const void *s, size_t n)
+{
+size_t i;
+unsigned char *dest = (unsigned char *)d;
+const unsigned char *src = (const unsigned char *)s;
+if (dest > src)
+ {
+ dest += n;
+ src += n;
+ for (i = 0; i < n; ++i) *(--dest) = *(--src);
+ return (void *)dest;
+ }
+else
+ {
+ for (i = 0; i < n; ++i) *dest++ = *src++;
+ return (void *)(dest - n);
+ }
+}
+#define memmove(a, b, c) pcre_memmove(a, b, c)
+#endif /* not HAVE_BCOPY */
+#endif /* not HAVE_MEMMOVE */
+#endif /* not VPCOMPAT */
+
+
+/* PCRE keeps offsets in its compiled code as 2-byte quantities (always stored
+in big-endian order) by default. These are used, for example, to link from the
+start of a subpattern to its alternatives and its end. The use of 2 bytes per
+offset limits the size of the compiled regex to around 64K, which is big enough
+for almost everybody. However, I received a request for an even bigger limit.
+For this reason, and also to make the code easier to maintain, the storing and
+loading of offsets from the byte string is now handled by the macros that are
+defined here.
+
+The macros are controlled by the value of LINK_SIZE. This defaults to 2 in
+the config.h file, but can be overridden by using -D on the command line. This
+is automated on Unix systems via the "configure" command. */
+
+#if defined COMPILE_PCRE8
+
+#if LINK_SIZE == 2
+
+#define PUT(a,n,d) \
+ (a[n] = (d) >> 8), \
+ (a[(n)+1] = (d) & 255)
+
+#define GET(a,n) \
+ (((a)[n] << 8) | (a)[(n)+1])
+
+#define MAX_PATTERN_SIZE (1 << 16)
+
+
+#elif LINK_SIZE == 3
+
+#define PUT(a,n,d) \
+ (a[n] = (d) >> 16), \
+ (a[(n)+1] = (d) >> 8), \
+ (a[(n)+2] = (d) & 255)
+
+#define GET(a,n) \
+ (((a)[n] << 16) | ((a)[(n)+1] << 8) | (a)[(n)+2])
+
+#define MAX_PATTERN_SIZE (1 << 24)
+
+
+#elif LINK_SIZE == 4
+
+#define PUT(a,n,d) \
+ (a[n] = (d) >> 24), \
+ (a[(n)+1] = (d) >> 16), \
+ (a[(n)+2] = (d) >> 8), \
+ (a[(n)+3] = (d) & 255)
+
+#define GET(a,n) \
+ (((a)[n] << 24) | ((a)[(n)+1] << 16) | ((a)[(n)+2] << 8) | (a)[(n)+3])
+
+/* Keep it positive */
+#define MAX_PATTERN_SIZE (1 << 30)
+
+#else
+#error LINK_SIZE must be either 2, 3, or 4
+#endif
+
+#elif defined COMPILE_PCRE16
+
+#if LINK_SIZE == 2
+
+/* Redefine LINK_SIZE as a multiple of sizeof(pcre_uchar) */
+#undef LINK_SIZE
+#define LINK_SIZE 1
+
+#define PUT(a,n,d) \
+ (a[n] = (d))
+
+#define GET(a,n) \
+ (a[n])
+
+#define MAX_PATTERN_SIZE (1 << 16)
+
+#elif LINK_SIZE == 3 || LINK_SIZE == 4
+
+/* Redefine LINK_SIZE as a multiple of sizeof(pcre_uchar) */
+#undef LINK_SIZE
+#define LINK_SIZE 2
+
+#define PUT(a,n,d) \
+ (a[n] = (d) >> 16), \
+ (a[(n)+1] = (d) & 65535)
+
+#define GET(a,n) \
+ (((a)[n] << 16) | (a)[(n)+1])
+
+/* Keep it positive */
+#define MAX_PATTERN_SIZE (1 << 30)
+
+#else
+#error LINK_SIZE must be either 2, 3, or 4
+#endif
+
+#elif defined COMPILE_PCRE32
+
+/* Only supported LINK_SIZE is 4 */
+/* Redefine LINK_SIZE as a multiple of sizeof(pcre_uchar) */
+#undef LINK_SIZE
+#define LINK_SIZE 1
+
+#define PUT(a,n,d) \
+ (a[n] = (d))
+
+#define GET(a,n) \
+ (a[n])
+
+/* Keep it positive */
+#define MAX_PATTERN_SIZE (1 << 30)
+
+#else
+#error Unsupported compiling mode
+#endif /* COMPILE_PCRE[8|16|32] */
+
+/* Convenience macro defined in terms of the others */
+
+#define PUTINC(a,n,d) PUT(a,n,d), a += LINK_SIZE
+
+
+/* PCRE uses some other 2-byte quantities that do not change when the size of
+offsets changes. There are used for repeat counts and for other things such as
+capturing parenthesis numbers in back references. */
+
+#if defined COMPILE_PCRE8
+
+#define IMM2_SIZE 2
+
+#define PUT2(a,n,d) \
+ a[n] = (d) >> 8; \
+ a[(n)+1] = (d) & 255
+
+/* For reasons that I do not understand, the expression in this GET2 macro is
+treated by gcc as a signed expression, even when a is declared as unsigned. It
+seems that any kind of arithmetic results in a signed value. */
+
+#define GET2(a,n) \
+ (unsigned int)(((a)[n] << 8) | (a)[(n)+1])
+
+#elif defined COMPILE_PCRE16
+
+#define IMM2_SIZE 1
+
+#define PUT2(a,n,d) \
+ a[n] = d
+
+#define GET2(a,n) \
+ a[n]
+
+#elif defined COMPILE_PCRE32
+
+#define IMM2_SIZE 1
+
+#define PUT2(a,n,d) \
+ a[n] = d
+
+#define GET2(a,n) \
+ a[n]
+
+#else
+#error Unsupported compiling mode
+#endif /* COMPILE_PCRE[8|16|32] */
+
+#define PUT2INC(a,n,d) PUT2(a,n,d), a += IMM2_SIZE
+
+/* The maximum length of a MARK name is currently one data unit; it may be
+changed in future to be a fixed number of bytes or to depend on LINK_SIZE. */
+
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+#define MAX_MARK ((1u << 16) - 1)
+#else
+#define MAX_MARK ((1u << 8) - 1)
+#endif
+
+/* When UTF encoding is being used, a character is no longer just a single
+byte. The macros for character handling generate simple sequences when used in
+character-mode, and more complicated ones for UTF characters. GETCHARLENTEST
+and other macros are not used when UTF is not supported, so they are not
+defined. To make sure they can never even appear when UTF support is omitted,
+we don't even define them. */
+
+#ifndef SUPPORT_UTF
+
+/* #define MAX_VALUE_FOR_SINGLE_CHAR */
+/* #define HAS_EXTRALEN(c) */
+/* #define GET_EXTRALEN(c) */
+/* #define NOT_FIRSTCHAR(c) */
+#define GETCHAR(c, eptr) c = *eptr;
+#define GETCHARTEST(c, eptr) c = *eptr;
+#define GETCHARINC(c, eptr) c = *eptr++;
+#define GETCHARINCTEST(c, eptr) c = *eptr++;
+#define GETCHARLEN(c, eptr, len) c = *eptr;
+#define RAWUCHAR(eptr) (*(eptr))
+#define RAWUCHARINC(eptr) (*(eptr)++)
+#define RAWUCHARTEST(eptr) (*(eptr))
+#define RAWUCHARINCTEST(eptr) (*(eptr)++)
+/* #define GETCHARLENTEST(c, eptr, len) */
+/* #define BACKCHAR(eptr) */
+/* #define FORWARDCHAR(eptr) */
+/* #define ACROSSCHAR(condition, eptr, action) */
+
+#else /* SUPPORT_UTF */
+
+/* Tests whether the code point needs extra characters to decode. */
+
+#define HASUTF8EXTRALEN(c) ((c) >= 0xc0)
+
+/* Base macro to pick up the remaining bytes of a UTF-8 character, not
+advancing the pointer. */
+
+#define GETUTF8(c, eptr) \
+ { \
+ if ((c & 0x20) == 0) \
+ c = ((c & 0x1f) << 6) | (eptr[1] & 0x3f); \
+ else if ((c & 0x10) == 0) \
+ c = ((c & 0x0f) << 12) | ((eptr[1] & 0x3f) << 6) | (eptr[2] & 0x3f); \
+ else if ((c & 0x08) == 0) \
+ c = ((c & 0x07) << 18) | ((eptr[1] & 0x3f) << 12) | \
+ ((eptr[2] & 0x3f) << 6) | (eptr[3] & 0x3f); \
+ else if ((c & 0x04) == 0) \
+ c = ((c & 0x03) << 24) | ((eptr[1] & 0x3f) << 18) | \
+ ((eptr[2] & 0x3f) << 12) | ((eptr[3] & 0x3f) << 6) | \
+ (eptr[4] & 0x3f); \
+ else \
+ c = ((c & 0x01) << 30) | ((eptr[1] & 0x3f) << 24) | \
+ ((eptr[2] & 0x3f) << 18) | ((eptr[3] & 0x3f) << 12) | \
+ ((eptr[4] & 0x3f) << 6) | (eptr[5] & 0x3f); \
+ }
+
+/* Base macro to pick up the remaining bytes of a UTF-8 character, advancing
+the pointer. */
+
+#define GETUTF8INC(c, eptr) \
+ { \
+ if ((c & 0x20) == 0) \
+ c = ((c & 0x1f) << 6) | (*eptr++ & 0x3f); \
+ else if ((c & 0x10) == 0) \
+ { \
+ c = ((c & 0x0f) << 12) | ((*eptr & 0x3f) << 6) | (eptr[1] & 0x3f); \
+ eptr += 2; \
+ } \
+ else if ((c & 0x08) == 0) \
+ { \
+ c = ((c & 0x07) << 18) | ((*eptr & 0x3f) << 12) | \
+ ((eptr[1] & 0x3f) << 6) | (eptr[2] & 0x3f); \
+ eptr += 3; \
+ } \
+ else if ((c & 0x04) == 0) \
+ { \
+ c = ((c & 0x03) << 24) | ((*eptr & 0x3f) << 18) | \
+ ((eptr[1] & 0x3f) << 12) | ((eptr[2] & 0x3f) << 6) | \
+ (eptr[3] & 0x3f); \
+ eptr += 4; \
+ } \
+ else \
+ { \
+ c = ((c & 0x01) << 30) | ((*eptr & 0x3f) << 24) | \
+ ((eptr[1] & 0x3f) << 18) | ((eptr[2] & 0x3f) << 12) | \
+ ((eptr[3] & 0x3f) << 6) | (eptr[4] & 0x3f); \
+ eptr += 5; \
+ } \
+ }
+
+#if defined COMPILE_PCRE8
+
+/* These macros were originally written in the form of loops that used data
+from the tables whose names start with PRIV(utf8_table). They were rewritten by
+a user so as not to use loops, because in some environments this gives a
+significant performance advantage, and it seems never to do any harm. */
+
+/* Tells the biggest code point which can be encoded as a single character. */
+
+#define MAX_VALUE_FOR_SINGLE_CHAR 127
+
+/* Tests whether the code point needs extra characters to decode. */
+
+#define HAS_EXTRALEN(c) ((c) >= 0xc0)
+
+/* Returns with the additional number of characters if IS_MULTICHAR(c) is TRUE.
+Otherwise it has an undefined behaviour. */
+
+#define GET_EXTRALEN(c) (PRIV(utf8_table4)[(c) & 0x3f])
+
+/* Returns TRUE, if the given character is not the first character
+of a UTF sequence. */
+
+#define NOT_FIRSTCHAR(c) (((c) & 0xc0) == 0x80)
+
+/* Get the next UTF-8 character, not advancing the pointer. This is called when
+we know we are in UTF-8 mode. */
+
+#define GETCHAR(c, eptr) \
+ c = *eptr; \
+ if (c >= 0xc0) GETUTF8(c, eptr);
+
+/* Get the next UTF-8 character, testing for UTF-8 mode, and not advancing the
+pointer. */
+
+#define GETCHARTEST(c, eptr) \
+ c = *eptr; \
+ if (utf && c >= 0xc0) GETUTF8(c, eptr);
+
+/* Get the next UTF-8 character, advancing the pointer. This is called when we
+know we are in UTF-8 mode. */
+
+#define GETCHARINC(c, eptr) \
+ c = *eptr++; \
+ if (c >= 0xc0) GETUTF8INC(c, eptr);
+
+/* Get the next character, testing for UTF-8 mode, and advancing the pointer.
+This is called when we don't know if we are in UTF-8 mode. */
+
+#define GETCHARINCTEST(c, eptr) \
+ c = *eptr++; \
+ if (utf && c >= 0xc0) GETUTF8INC(c, eptr);
+
+/* Base macro to pick up the remaining bytes of a UTF-8 character, not
+advancing the pointer, incrementing the length. */
+
+#define GETUTF8LEN(c, eptr, len) \
+ { \
+ if ((c & 0x20) == 0) \
+ { \
+ c = ((c & 0x1f) << 6) | (eptr[1] & 0x3f); \
+ len++; \
+ } \
+ else if ((c & 0x10) == 0) \
+ { \
+ c = ((c & 0x0f) << 12) | ((eptr[1] & 0x3f) << 6) | (eptr[2] & 0x3f); \
+ len += 2; \
+ } \
+ else if ((c & 0x08) == 0) \
+ {\
+ c = ((c & 0x07) << 18) | ((eptr[1] & 0x3f) << 12) | \
+ ((eptr[2] & 0x3f) << 6) | (eptr[3] & 0x3f); \
+ len += 3; \
+ } \
+ else if ((c & 0x04) == 0) \
+ { \
+ c = ((c & 0x03) << 24) | ((eptr[1] & 0x3f) << 18) | \
+ ((eptr[2] & 0x3f) << 12) | ((eptr[3] & 0x3f) << 6) | \
+ (eptr[4] & 0x3f); \
+ len += 4; \
+ } \
+ else \
+ {\
+ c = ((c & 0x01) << 30) | ((eptr[1] & 0x3f) << 24) | \
+ ((eptr[2] & 0x3f) << 18) | ((eptr[3] & 0x3f) << 12) | \
+ ((eptr[4] & 0x3f) << 6) | (eptr[5] & 0x3f); \
+ len += 5; \
+ } \
+ }
+
+/* Get the next UTF-8 character, not advancing the pointer, incrementing length
+if there are extra bytes. This is called when we know we are in UTF-8 mode. */
+
+#define GETCHARLEN(c, eptr, len) \
+ c = *eptr; \
+ if (c >= 0xc0) GETUTF8LEN(c, eptr, len);
+
+/* Get the next UTF-8 character, testing for UTF-8 mode, not advancing the
+pointer, incrementing length if there are extra bytes. This is called when we
+do not know if we are in UTF-8 mode. */
+
+#define GETCHARLENTEST(c, eptr, len) \
+ c = *eptr; \
+ if (utf && c >= 0xc0) GETUTF8LEN(c, eptr, len);
+
+/* Returns the next uchar, not advancing the pointer. This is called when
+we know we are in UTF mode. */
+
+#define RAWUCHAR(eptr) \
+ (*(eptr))
+
+/* Returns the next uchar, advancing the pointer. This is called when
+we know we are in UTF mode. */
+
+#define RAWUCHARINC(eptr) \
+ (*((eptr)++))
+
+/* Returns the next uchar, testing for UTF mode, and not advancing the
+pointer. */
+
+#define RAWUCHARTEST(eptr) \
+ (*(eptr))
+
+/* Returns the next uchar, testing for UTF mode, advancing the
+pointer. */
+
+#define RAWUCHARINCTEST(eptr) \
+ (*((eptr)++))
+
+/* If the pointer is not at the start of a character, move it back until
+it is. This is called only in UTF-8 mode - we don't put a test within the macro
+because almost all calls are already within a block of UTF-8 only code. */
+
+#define BACKCHAR(eptr) while((*eptr & 0xc0) == 0x80) eptr--
+
+/* Same as above, just in the other direction. */
+#define FORWARDCHAR(eptr) while((*eptr & 0xc0) == 0x80) eptr++
+
+/* Same as above, but it allows a fully customizable form. */
+#define ACROSSCHAR(condition, eptr, action) \
+ while((condition) && ((eptr) & 0xc0) == 0x80) action
+
+#elif defined COMPILE_PCRE16
+
+/* Tells the biggest code point which can be encoded as a single character. */
+
+#define MAX_VALUE_FOR_SINGLE_CHAR 65535
+
+/* Tests whether the code point needs extra characters to decode. */
+
+#define HAS_EXTRALEN(c) (((c) & 0xfc00) == 0xd800)
+
+/* Returns with the additional number of characters if IS_MULTICHAR(c) is TRUE.
+Otherwise it has an undefined behaviour. */
+
+#define GET_EXTRALEN(c) 1
+
+/* Returns TRUE, if the given character is not the first character
+of a UTF sequence. */
+
+#define NOT_FIRSTCHAR(c) (((c) & 0xfc00) == 0xdc00)
+
+/* Base macro to pick up the low surrogate of a UTF-16 character, not
+advancing the pointer. */
+
+#define GETUTF16(c, eptr) \
+ { c = (((c & 0x3ff) << 10) | (eptr[1] & 0x3ff)) + 0x10000; }
+
+/* Get the next UTF-16 character, not advancing the pointer. This is called when
+we know we are in UTF-16 mode. */
+
+#define GETCHAR(c, eptr) \
+ c = *eptr; \
+ if ((c & 0xfc00) == 0xd800) GETUTF16(c, eptr);
+
+/* Get the next UTF-16 character, testing for UTF-16 mode, and not advancing the
+pointer. */
+
+#define GETCHARTEST(c, eptr) \
+ c = *eptr; \
+ if (utf && (c & 0xfc00) == 0xd800) GETUTF16(c, eptr);
+
+/* Base macro to pick up the low surrogate of a UTF-16 character, advancing
+the pointer. */
+
+#define GETUTF16INC(c, eptr) \
+ { c = (((c & 0x3ff) << 10) | (*eptr++ & 0x3ff)) + 0x10000; }
+
+/* Get the next UTF-16 character, advancing the pointer. This is called when we
+know we are in UTF-16 mode. */
+
+#define GETCHARINC(c, eptr) \
+ c = *eptr++; \
+ if ((c & 0xfc00) == 0xd800) GETUTF16INC(c, eptr);
+
+/* Get the next character, testing for UTF-16 mode, and advancing the pointer.
+This is called when we don't know if we are in UTF-16 mode. */
+
+#define GETCHARINCTEST(c, eptr) \
+ c = *eptr++; \
+ if (utf && (c & 0xfc00) == 0xd800) GETUTF16INC(c, eptr);
+
+/* Base macro to pick up the low surrogate of a UTF-16 character, not
+advancing the pointer, incrementing the length. */
+
+#define GETUTF16LEN(c, eptr, len) \
+ { c = (((c & 0x3ff) << 10) | (eptr[1] & 0x3ff)) + 0x10000; len++; }
+
+/* Get the next UTF-16 character, not advancing the pointer, incrementing
+length if there is a low surrogate. This is called when we know we are in
+UTF-16 mode. */
+
+#define GETCHARLEN(c, eptr, len) \
+ c = *eptr; \
+ if ((c & 0xfc00) == 0xd800) GETUTF16LEN(c, eptr, len);
+
+/* Get the next UTF-816character, testing for UTF-16 mode, not advancing the
+pointer, incrementing length if there is a low surrogate. This is called when
+we do not know if we are in UTF-16 mode. */
+
+#define GETCHARLENTEST(c, eptr, len) \
+ c = *eptr; \
+ if (utf && (c & 0xfc00) == 0xd800) GETUTF16LEN(c, eptr, len);
+
+/* Returns the next uchar, not advancing the pointer. This is called when
+we know we are in UTF mode. */
+
+#define RAWUCHAR(eptr) \
+ (*(eptr))
+
+/* Returns the next uchar, advancing the pointer. This is called when
+we know we are in UTF mode. */
+
+#define RAWUCHARINC(eptr) \
+ (*((eptr)++))
+
+/* Returns the next uchar, testing for UTF mode, and not advancing the
+pointer. */
+
+#define RAWUCHARTEST(eptr) \
+ (*(eptr))
+
+/* Returns the next uchar, testing for UTF mode, advancing the
+pointer. */
+
+#define RAWUCHARINCTEST(eptr) \
+ (*((eptr)++))
+
+/* If the pointer is not at the start of a character, move it back until
+it is. This is called only in UTF-16 mode - we don't put a test within the
+macro because almost all calls are already within a block of UTF-16 only
+code. */
+
+#define BACKCHAR(eptr) if ((*eptr & 0xfc00) == 0xdc00) eptr--
+
+/* Same as above, just in the other direction. */
+#define FORWARDCHAR(eptr) if ((*eptr & 0xfc00) == 0xdc00) eptr++
+
+/* Same as above, but it allows a fully customizable form. */
+#define ACROSSCHAR(condition, eptr, action) \
+ if ((condition) && ((eptr) & 0xfc00) == 0xdc00) action
+
+#elif defined COMPILE_PCRE32
+
+/* These are trivial for the 32-bit library, since all UTF-32 characters fit
+into one pcre_uchar unit. */
+#define MAX_VALUE_FOR_SINGLE_CHAR (0x10ffffu)
+#define HAS_EXTRALEN(c) (0)
+#define GET_EXTRALEN(c) (0)
+#define NOT_FIRSTCHAR(c) (0)
+
+/* Get the next UTF-32 character, not advancing the pointer. This is called when
+we know we are in UTF-32 mode. */
+
+#define GETCHAR(c, eptr) \
+ c = *(eptr);
+
+/* Get the next UTF-32 character, testing for UTF-32 mode, and not advancing the
+pointer. */
+
+#define GETCHARTEST(c, eptr) \
+ c = *(eptr);
+
+/* Get the next UTF-32 character, advancing the pointer. This is called when we
+know we are in UTF-32 mode. */
+
+#define GETCHARINC(c, eptr) \
+ c = *((eptr)++);
+
+/* Get the next character, testing for UTF-32 mode, and advancing the pointer.
+This is called when we don't know if we are in UTF-32 mode. */
+
+#define GETCHARINCTEST(c, eptr) \
+ c = *((eptr)++);
+
+/* Get the next UTF-32 character, not advancing the pointer, not incrementing
+length (since all UTF-32 is of length 1). This is called when we know we are in
+UTF-32 mode. */
+
+#define GETCHARLEN(c, eptr, len) \
+ GETCHAR(c, eptr)
+
+/* Get the next UTF-32character, testing for UTF-32 mode, not advancing the
+pointer, not incrementing the length (since all UTF-32 is of length 1).
+This is called when we do not know if we are in UTF-32 mode. */
+
+#define GETCHARLENTEST(c, eptr, len) \
+ GETCHARTEST(c, eptr)
+
+/* Returns the next uchar, not advancing the pointer. This is called when
+we know we are in UTF mode. */
+
+#define RAWUCHAR(eptr) \
+ (*(eptr))
+
+/* Returns the next uchar, advancing the pointer. This is called when
+we know we are in UTF mode. */
+
+#define RAWUCHARINC(eptr) \
+ (*((eptr)++))
+
+/* Returns the next uchar, testing for UTF mode, and not advancing the
+pointer. */
+
+#define RAWUCHARTEST(eptr) \
+ (*(eptr))
+
+/* Returns the next uchar, testing for UTF mode, advancing the
+pointer. */
+
+#define RAWUCHARINCTEST(eptr) \
+ (*((eptr)++))
+
+/* If the pointer is not at the start of a character, move it back until
+it is. This is called only in UTF-32 mode - we don't put a test within the
+macro because almost all calls are already within a block of UTF-32 only
+code.
+These are all no-ops since all UTF-32 characters fit into one pcre_uchar. */
+
+#define BACKCHAR(eptr) do { } while (0)
+
+/* Same as above, just in the other direction. */
+#define FORWARDCHAR(eptr) do { } while (0)
+
+/* Same as above, but it allows a fully customizable form. */
+#define ACROSSCHAR(condition, eptr, action) do { } while (0)
+
+#else
+#error Unsupported compiling mode
+#endif /* COMPILE_PCRE[8|16|32] */
+
+#endif /* SUPPORT_UTF */
+
+/* Tests for Unicode horizontal and vertical whitespace characters must check a
+number of different values. Using a switch statement for this generates the
+fastest code (no loop, no memory access), and there are several places in the
+interpreter code where this happens. In order to ensure that all the case lists
+remain in step, we use macros so that there is only one place where the lists
+are defined.
+
+These values are also required as lists in pcre_compile.c when processing \h,
+\H, \v and \V in a character class. The lists are defined in pcre_tables.c, but
+macros that define the values are here so that all the definitions are
+together. The lists must be in ascending character order, terminated by
+NOTACHAR (which is 0xffffffff).
+
+Any changes should ensure that the various macros are kept in step with each
+other. NOTE: The values also appear in pcre_jit_compile.c. */
+
+/* ------ ASCII/Unicode environments ------ */
+
+#ifndef EBCDIC
+
+#define HSPACE_LIST \
+ CHAR_HT, CHAR_SPACE, 0xa0, \
+ 0x1680, 0x180e, 0x2000, 0x2001, 0x2002, 0x2003, 0x2004, 0x2005, \
+ 0x2006, 0x2007, 0x2008, 0x2009, 0x200A, 0x202f, 0x205f, 0x3000, \
+ NOTACHAR
+
+#define HSPACE_MULTIBYTE_CASES \
+ case 0x1680: /* OGHAM SPACE MARK */ \
+ case 0x180e: /* MONGOLIAN VOWEL SEPARATOR */ \
+ case 0x2000: /* EN QUAD */ \
+ case 0x2001: /* EM QUAD */ \
+ case 0x2002: /* EN SPACE */ \
+ case 0x2003: /* EM SPACE */ \
+ case 0x2004: /* THREE-PER-EM SPACE */ \
+ case 0x2005: /* FOUR-PER-EM SPACE */ \
+ case 0x2006: /* SIX-PER-EM SPACE */ \
+ case 0x2007: /* FIGURE SPACE */ \
+ case 0x2008: /* PUNCTUATION SPACE */ \
+ case 0x2009: /* THIN SPACE */ \
+ case 0x200A: /* HAIR SPACE */ \
+ case 0x202f: /* NARROW NO-BREAK SPACE */ \
+ case 0x205f: /* MEDIUM MATHEMATICAL SPACE */ \
+ case 0x3000 /* IDEOGRAPHIC SPACE */
+
+#define HSPACE_BYTE_CASES \
+ case CHAR_HT: \
+ case CHAR_SPACE: \
+ case 0xa0 /* NBSP */
+
+#define HSPACE_CASES \
+ HSPACE_BYTE_CASES: \
+ HSPACE_MULTIBYTE_CASES
+
+#define VSPACE_LIST \
+ CHAR_LF, CHAR_VT, CHAR_FF, CHAR_CR, CHAR_NEL, 0x2028, 0x2029, NOTACHAR
+
+#define VSPACE_MULTIBYTE_CASES \
+ case 0x2028: /* LINE SEPARATOR */ \
+ case 0x2029 /* PARAGRAPH SEPARATOR */
+
+#define VSPACE_BYTE_CASES \
+ case CHAR_LF: \
+ case CHAR_VT: \
+ case CHAR_FF: \
+ case CHAR_CR: \
+ case CHAR_NEL
+
+#define VSPACE_CASES \
+ VSPACE_BYTE_CASES: \
+ VSPACE_MULTIBYTE_CASES
+
+/* ------ EBCDIC environments ------ */
+
+#else
+#define HSPACE_LIST CHAR_HT, CHAR_SPACE
+
+#define HSPACE_BYTE_CASES \
+ case CHAR_HT: \
+ case CHAR_SPACE
+
+#define HSPACE_CASES HSPACE_BYTE_CASES
+
+#ifdef EBCDIC_NL25
+#define VSPACE_LIST \
+ CHAR_VT, CHAR_FF, CHAR_CR, CHAR_NEL, CHAR_LF, NOTACHAR
+#else
+#define VSPACE_LIST \
+ CHAR_VT, CHAR_FF, CHAR_CR, CHAR_LF, CHAR_NEL, NOTACHAR
+#endif
+
+#define VSPACE_BYTE_CASES \
+ case CHAR_LF: \
+ case CHAR_VT: \
+ case CHAR_FF: \
+ case CHAR_CR: \
+ case CHAR_NEL
+
+#define VSPACE_CASES VSPACE_BYTE_CASES
+#endif /* EBCDIC */
+
+/* ------ End of whitespace macros ------ */
+
+
+
+/* Private flags containing information about the compiled regex. They used to
+live at the top end of the options word, but that got almost full, so they were
+moved to a 16-bit flags word - which got almost full, so now they are in a
+32-bit flags word. From release 8.00, PCRE_NOPARTIAL is unused, as the
+restrictions on partial matching have been lifted. It remains for backwards
+compatibility. */
+
+#define PCRE_MODE8 0x00000001 /* compiled in 8 bit mode */
+#define PCRE_MODE16 0x00000002 /* compiled in 16 bit mode */
+#define PCRE_MODE32 0x00000004 /* compiled in 32 bit mode */
+#define PCRE_FIRSTSET 0x00000010 /* first_char is set */
+#define PCRE_FCH_CASELESS 0x00000020 /* caseless first char */
+#define PCRE_REQCHSET 0x00000040 /* req_byte is set */
+#define PCRE_RCH_CASELESS 0x00000080 /* caseless requested char */
+#define PCRE_STARTLINE 0x00000100 /* start after \n for multiline */
+#define PCRE_NOPARTIAL 0x00000200 /* can't use partial with this regex */
+#define PCRE_JCHANGED 0x00000400 /* j option used in regex */
+#define PCRE_HASCRORLF 0x00000800 /* explicit \r or \n in pattern */
+#define PCRE_HASTHEN 0x00001000 /* pattern contains (*THEN) */
+#define PCRE_MLSET 0x00002000 /* match limit set by regex */
+#define PCRE_RLSET 0x00004000 /* recursion limit set by regex */
+
+#if defined COMPILE_PCRE8
+#define PCRE_MODE PCRE_MODE8
+#elif defined COMPILE_PCRE16
+#define PCRE_MODE PCRE_MODE16
+#elif defined COMPILE_PCRE32
+#define PCRE_MODE PCRE_MODE32
+#endif
+#define PCRE_MODE_MASK (PCRE_MODE8 | PCRE_MODE16 | PCRE_MODE32)
+
+/* Flags for the "extra" block produced by pcre_study(). */
+
+#define PCRE_STUDY_MAPPED 0x0001 /* a map of starting chars exists */
+#define PCRE_STUDY_MINLEN 0x0002 /* a minimum length field exists */
+
+/* Masks for identifying the public options that are permitted at compile
+time, run time, or study time, respectively. */
+
+#define PCRE_NEWLINE_BITS (PCRE_NEWLINE_CR|PCRE_NEWLINE_LF|PCRE_NEWLINE_ANY| \
+ PCRE_NEWLINE_ANYCRLF)
+
+#define PUBLIC_COMPILE_OPTIONS \
+ (PCRE_CASELESS|PCRE_EXTENDED|PCRE_ANCHORED|PCRE_MULTILINE| \
+ PCRE_DOTALL|PCRE_DOLLAR_ENDONLY|PCRE_EXTRA|PCRE_UNGREEDY|PCRE_UTF8| \
+ PCRE_NO_AUTO_CAPTURE|PCRE_NO_UTF8_CHECK|PCRE_AUTO_CALLOUT|PCRE_FIRSTLINE| \
+ PCRE_DUPNAMES|PCRE_NEWLINE_BITS|PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE| \
+ PCRE_JAVASCRIPT_COMPAT|PCRE_UCP|PCRE_NO_START_OPTIMIZE|PCRE_NEVER_UTF)
+
+#define PUBLIC_EXEC_OPTIONS \
+ (PCRE_ANCHORED|PCRE_NOTBOL|PCRE_NOTEOL|PCRE_NOTEMPTY|PCRE_NOTEMPTY_ATSTART| \
+ PCRE_NO_UTF8_CHECK|PCRE_PARTIAL_HARD|PCRE_PARTIAL_SOFT|PCRE_NEWLINE_BITS| \
+ PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE|PCRE_NO_START_OPTIMIZE)
+
+#define PUBLIC_DFA_EXEC_OPTIONS \
+ (PCRE_ANCHORED|PCRE_NOTBOL|PCRE_NOTEOL|PCRE_NOTEMPTY|PCRE_NOTEMPTY_ATSTART| \
+ PCRE_NO_UTF8_CHECK|PCRE_PARTIAL_HARD|PCRE_PARTIAL_SOFT|PCRE_DFA_SHORTEST| \
+ PCRE_DFA_RESTART|PCRE_NEWLINE_BITS|PCRE_BSR_ANYCRLF|PCRE_BSR_UNICODE| \
+ PCRE_NO_START_OPTIMIZE)
+
+#define PUBLIC_STUDY_OPTIONS \
+ (PCRE_STUDY_JIT_COMPILE|PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE| \
+ PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE|PCRE_STUDY_EXTRA_NEEDED)
+
+#define PUBLIC_JIT_EXEC_OPTIONS \
+ (PCRE_NO_UTF8_CHECK|PCRE_NOTBOL|PCRE_NOTEOL|PCRE_NOTEMPTY|\
+ PCRE_NOTEMPTY_ATSTART|PCRE_PARTIAL_SOFT|PCRE_PARTIAL_HARD)
+
+/* Magic number to provide a small check against being handed junk. */
+
+#define MAGIC_NUMBER 0x50435245UL /* 'PCRE' */
+
+/* This variable is used to detect a loaded regular expression
+in different endianness. */
+
+#define REVERSED_MAGIC_NUMBER 0x45524350UL /* 'ERCP' */
+
+/* The maximum remaining length of subject we are prepared to search for a
+req_byte match. */
+
+#define REQ_BYTE_MAX 1000
+
+/* Miscellaneous definitions. The #ifndef is to pacify compiler warnings in
+environments where these macros are defined elsewhere. Unfortunately, there
+is no way to do the same for the typedef. */
+
+typedef int BOOL;
+
+#ifndef FALSE
+#define FALSE 0
+#define TRUE 1
+#endif
+
+/* If PCRE is to support UTF-8 on EBCDIC platforms, we cannot use normal
+character constants like '*' because the compiler would emit their EBCDIC code,
+which is different from their ASCII/UTF-8 code. Instead we define macros for
+the characters so that they always use the ASCII/UTF-8 code when UTF-8 support
+is enabled. When UTF-8 support is not enabled, the definitions use character
+literals. Both character and string versions of each character are needed, and
+there are some longer strings as well.
+
+This means that, on EBCDIC platforms, the PCRE library can handle either
+EBCDIC, or UTF-8, but not both. To support both in the same compiled library
+would need different lookups depending on whether PCRE_UTF8 was set or not.
+This would make it impossible to use characters in switch/case statements,
+which would reduce performance. For a theoretical use (which nobody has asked
+for) in a minority area (EBCDIC platforms), this is not sensible. Any
+application that did need both could compile two versions of the library, using
+macros to give the functions distinct names. */
+
+#ifndef SUPPORT_UTF
+
+/* UTF-8 support is not enabled; use the platform-dependent character literals
+so that PCRE works in both ASCII and EBCDIC environments, but only in non-UTF
+mode. Newline characters are problematic in EBCDIC. Though it has CR and LF
+characters, a common practice has been to use its NL (0x15) character as the
+line terminator in C-like processing environments. However, sometimes the LF
+(0x25) character is used instead, according to this Unicode document:
+
+http://unicode.org/standard/reports/tr13/tr13-5.html
+
+PCRE defaults EBCDIC NL to 0x15, but has a build-time option to select 0x25
+instead. Whichever is *not* chosen is defined as NEL.
+
+In both ASCII and EBCDIC environments, CHAR_NL and CHAR_LF are synonyms for the
+same code point. */
+
+#ifdef EBCDIC
+
+#ifndef EBCDIC_NL25
+#define CHAR_NL '\x15'
+#define CHAR_NEL '\x25'
+#define STR_NL "\x15"
+#define STR_NEL "\x25"
+#else
+#define CHAR_NL '\x25'
+#define CHAR_NEL '\x15'
+#define STR_NL "\x25"
+#define STR_NEL "\x15"
+#endif
+
+#define CHAR_LF CHAR_NL
+#define STR_LF STR_NL
+
+#define CHAR_ESC '\047'
+#define CHAR_DEL '\007'
+#define STR_ESC "\047"
+#define STR_DEL "\007"
+
+#else /* Not EBCDIC */
+
+/* In ASCII/Unicode, linefeed is '\n' and we equate this to NL for
+compatibility. NEL is the Unicode newline character; make sure it is
+a positive value. */
+
+#define CHAR_LF '\n'
+#define CHAR_NL CHAR_LF
+#define CHAR_NEL ((unsigned char)'\x85')
+#define CHAR_ESC '\033'
+#define CHAR_DEL '\177'
+
+#define STR_LF "\n"
+#define STR_NL STR_LF
+#define STR_NEL "\x85"
+#define STR_ESC "\033"
+#define STR_DEL "\177"
+
+#endif /* EBCDIC */
+
+/* The remaining definitions work in both environments. */
+
+#define CHAR_NULL '\0'
+#define CHAR_HT '\t'
+#define CHAR_VT '\v'
+#define CHAR_FF '\f'
+#define CHAR_CR '\r'
+#define CHAR_BS '\b'
+#define CHAR_BEL '\a'
+
+#define CHAR_SPACE ' '
+#define CHAR_EXCLAMATION_MARK '!'
+#define CHAR_QUOTATION_MARK '"'
+#define CHAR_NUMBER_SIGN '#'
+#define CHAR_DOLLAR_SIGN '$'
+#define CHAR_PERCENT_SIGN '%'
+#define CHAR_AMPERSAND '&'
+#define CHAR_APOSTROPHE '\''
+#define CHAR_LEFT_PARENTHESIS '('
+#define CHAR_RIGHT_PARENTHESIS ')'
+#define CHAR_ASTERISK '*'
+#define CHAR_PLUS '+'
+#define CHAR_COMMA ','
+#define CHAR_MINUS '-'
+#define CHAR_DOT '.'
+#define CHAR_SLASH '/'
+#define CHAR_0 '0'
+#define CHAR_1 '1'
+#define CHAR_2 '2'
+#define CHAR_3 '3'
+#define CHAR_4 '4'
+#define CHAR_5 '5'
+#define CHAR_6 '6'
+#define CHAR_7 '7'
+#define CHAR_8 '8'
+#define CHAR_9 '9'
+#define CHAR_COLON ':'
+#define CHAR_SEMICOLON ';'
+#define CHAR_LESS_THAN_SIGN '<'
+#define CHAR_EQUALS_SIGN '='
+#define CHAR_GREATER_THAN_SIGN '>'
+#define CHAR_QUESTION_MARK '?'
+#define CHAR_COMMERCIAL_AT '@'
+#define CHAR_A 'A'
+#define CHAR_B 'B'
+#define CHAR_C 'C'
+#define CHAR_D 'D'
+#define CHAR_E 'E'
+#define CHAR_F 'F'
+#define CHAR_G 'G'
+#define CHAR_H 'H'
+#define CHAR_I 'I'
+#define CHAR_J 'J'
+#define CHAR_K 'K'
+#define CHAR_L 'L'
+#define CHAR_M 'M'
+#define CHAR_N 'N'
+#define CHAR_O 'O'
+#define CHAR_P 'P'
+#define CHAR_Q 'Q'
+#define CHAR_R 'R'
+#define CHAR_S 'S'
+#define CHAR_T 'T'
+#define CHAR_U 'U'
+#define CHAR_V 'V'
+#define CHAR_W 'W'
+#define CHAR_X 'X'
+#define CHAR_Y 'Y'
+#define CHAR_Z 'Z'
+#define CHAR_LEFT_SQUARE_BRACKET '['
+#define CHAR_BACKSLASH '\\'
+#define CHAR_RIGHT_SQUARE_BRACKET ']'
+#define CHAR_CIRCUMFLEX_ACCENT '^'
+#define CHAR_UNDERSCORE '_'
+#define CHAR_GRAVE_ACCENT '`'
+#define CHAR_a 'a'
+#define CHAR_b 'b'
+#define CHAR_c 'c'
+#define CHAR_d 'd'
+#define CHAR_e 'e'
+#define CHAR_f 'f'
+#define CHAR_g 'g'
+#define CHAR_h 'h'
+#define CHAR_i 'i'
+#define CHAR_j 'j'
+#define CHAR_k 'k'
+#define CHAR_l 'l'
+#define CHAR_m 'm'
+#define CHAR_n 'n'
+#define CHAR_o 'o'
+#define CHAR_p 'p'
+#define CHAR_q 'q'
+#define CHAR_r 'r'
+#define CHAR_s 's'
+#define CHAR_t 't'
+#define CHAR_u 'u'
+#define CHAR_v 'v'
+#define CHAR_w 'w'
+#define CHAR_x 'x'
+#define CHAR_y 'y'
+#define CHAR_z 'z'
+#define CHAR_LEFT_CURLY_BRACKET '{'
+#define CHAR_VERTICAL_LINE '|'
+#define CHAR_RIGHT_CURLY_BRACKET '}'
+#define CHAR_TILDE '~'
+
+#define STR_HT "\t"
+#define STR_VT "\v"
+#define STR_FF "\f"
+#define STR_CR "\r"
+#define STR_BS "\b"
+#define STR_BEL "\a"
+
+#define STR_SPACE " "
+#define STR_EXCLAMATION_MARK "!"
+#define STR_QUOTATION_MARK "\""
+#define STR_NUMBER_SIGN "#"
+#define STR_DOLLAR_SIGN "$"
+#define STR_PERCENT_SIGN "%"
+#define STR_AMPERSAND "&"
+#define STR_APOSTROPHE "'"
+#define STR_LEFT_PARENTHESIS "("
+#define STR_RIGHT_PARENTHESIS ")"
+#define STR_ASTERISK "*"
+#define STR_PLUS "+"
+#define STR_COMMA ","
+#define STR_MINUS "-"
+#define STR_DOT "."
+#define STR_SLASH "/"
+#define STR_0 "0"
+#define STR_1 "1"
+#define STR_2 "2"
+#define STR_3 "3"
+#define STR_4 "4"
+#define STR_5 "5"
+#define STR_6 "6"
+#define STR_7 "7"
+#define STR_8 "8"
+#define STR_9 "9"
+#define STR_COLON ":"
+#define STR_SEMICOLON ";"
+#define STR_LESS_THAN_SIGN "<"
+#define STR_EQUALS_SIGN "="
+#define STR_GREATER_THAN_SIGN ">"
+#define STR_QUESTION_MARK "?"
+#define STR_COMMERCIAL_AT "@"
+#define STR_A "A"
+#define STR_B "B"
+#define STR_C "C"
+#define STR_D "D"
+#define STR_E "E"
+#define STR_F "F"
+#define STR_G "G"
+#define STR_H "H"
+#define STR_I "I"
+#define STR_J "J"
+#define STR_K "K"
+#define STR_L "L"
+#define STR_M "M"
+#define STR_N "N"
+#define STR_O "O"
+#define STR_P "P"
+#define STR_Q "Q"
+#define STR_R "R"
+#define STR_S "S"
+#define STR_T "T"
+#define STR_U "U"
+#define STR_V "V"
+#define STR_W "W"
+#define STR_X "X"
+#define STR_Y "Y"
+#define STR_Z "Z"
+#define STR_LEFT_SQUARE_BRACKET "["
+#define STR_BACKSLASH "\\"
+#define STR_RIGHT_SQUARE_BRACKET "]"
+#define STR_CIRCUMFLEX_ACCENT "^"
+#define STR_UNDERSCORE "_"
+#define STR_GRAVE_ACCENT "`"
+#define STR_a "a"
+#define STR_b "b"
+#define STR_c "c"
+#define STR_d "d"
+#define STR_e "e"
+#define STR_f "f"
+#define STR_g "g"
+#define STR_h "h"
+#define STR_i "i"
+#define STR_j "j"
+#define STR_k "k"
+#define STR_l "l"
+#define STR_m "m"
+#define STR_n "n"
+#define STR_o "o"
+#define STR_p "p"
+#define STR_q "q"
+#define STR_r "r"
+#define STR_s "s"
+#define STR_t "t"
+#define STR_u "u"
+#define STR_v "v"
+#define STR_w "w"
+#define STR_x "x"
+#define STR_y "y"
+#define STR_z "z"
+#define STR_LEFT_CURLY_BRACKET "{"
+#define STR_VERTICAL_LINE "|"
+#define STR_RIGHT_CURLY_BRACKET "}"
+#define STR_TILDE "~"
+
+#define STRING_ACCEPT0 "ACCEPT\0"
+#define STRING_COMMIT0 "COMMIT\0"
+#define STRING_F0 "F\0"
+#define STRING_FAIL0 "FAIL\0"
+#define STRING_MARK0 "MARK\0"
+#define STRING_PRUNE0 "PRUNE\0"
+#define STRING_SKIP0 "SKIP\0"
+#define STRING_THEN "THEN"
+
+#define STRING_alpha0 "alpha\0"
+#define STRING_lower0 "lower\0"
+#define STRING_upper0 "upper\0"
+#define STRING_alnum0 "alnum\0"
+#define STRING_ascii0 "ascii\0"
+#define STRING_blank0 "blank\0"
+#define STRING_cntrl0 "cntrl\0"
+#define STRING_digit0 "digit\0"
+#define STRING_graph0 "graph\0"
+#define STRING_print0 "print\0"
+#define STRING_punct0 "punct\0"
+#define STRING_space0 "space\0"
+#define STRING_word0 "word\0"
+#define STRING_xdigit "xdigit"
+
+#define STRING_DEFINE "DEFINE"
+
+#define STRING_CR_RIGHTPAR "CR)"
+#define STRING_LF_RIGHTPAR "LF)"
+#define STRING_CRLF_RIGHTPAR "CRLF)"
+#define STRING_ANY_RIGHTPAR "ANY)"
+#define STRING_ANYCRLF_RIGHTPAR "ANYCRLF)"
+#define STRING_BSR_ANYCRLF_RIGHTPAR "BSR_ANYCRLF)"
+#define STRING_BSR_UNICODE_RIGHTPAR "BSR_UNICODE)"
+#define STRING_UTF8_RIGHTPAR "UTF8)"
+#define STRING_UTF16_RIGHTPAR "UTF16)"
+#define STRING_UTF32_RIGHTPAR "UTF32)"
+#define STRING_UTF_RIGHTPAR "UTF)"
+#define STRING_UCP_RIGHTPAR "UCP)"
+#define STRING_NO_START_OPT_RIGHTPAR "NO_START_OPT)"
+#define STRING_LIMIT_MATCH_EQ "LIMIT_MATCH="
+#define STRING_LIMIT_RECURSION_EQ "LIMIT_RECURSION="
+
+#else /* SUPPORT_UTF */
+
+/* UTF-8 support is enabled; always use UTF-8 (=ASCII) character codes. This
+works in both modes non-EBCDIC platforms, and on EBCDIC platforms in UTF-8 mode
+only. */
+
+#define CHAR_HT '\011'
+#define CHAR_VT '\013'
+#define CHAR_FF '\014'
+#define CHAR_CR '\015'
+#define CHAR_LF '\012'
+#define CHAR_NL CHAR_LF
+#define CHAR_NEL ((unsigned char)'\x85')
+#define CHAR_BS '\010'
+#define CHAR_BEL '\007'
+#define CHAR_ESC '\033'
+#define CHAR_DEL '\177'
+
+#define CHAR_NULL '\0'
+#define CHAR_SPACE '\040'
+#define CHAR_EXCLAMATION_MARK '\041'
+#define CHAR_QUOTATION_MARK '\042'
+#define CHAR_NUMBER_SIGN '\043'
+#define CHAR_DOLLAR_SIGN '\044'
+#define CHAR_PERCENT_SIGN '\045'
+#define CHAR_AMPERSAND '\046'
+#define CHAR_APOSTROPHE '\047'
+#define CHAR_LEFT_PARENTHESIS '\050'
+#define CHAR_RIGHT_PARENTHESIS '\051'
+#define CHAR_ASTERISK '\052'
+#define CHAR_PLUS '\053'
+#define CHAR_COMMA '\054'
+#define CHAR_MINUS '\055'
+#define CHAR_DOT '\056'
+#define CHAR_SLASH '\057'
+#define CHAR_0 '\060'
+#define CHAR_1 '\061'
+#define CHAR_2 '\062'
+#define CHAR_3 '\063'
+#define CHAR_4 '\064'
+#define CHAR_5 '\065'
+#define CHAR_6 '\066'
+#define CHAR_7 '\067'
+#define CHAR_8 '\070'
+#define CHAR_9 '\071'
+#define CHAR_COLON '\072'
+#define CHAR_SEMICOLON '\073'
+#define CHAR_LESS_THAN_SIGN '\074'
+#define CHAR_EQUALS_SIGN '\075'
+#define CHAR_GREATER_THAN_SIGN '\076'
+#define CHAR_QUESTION_MARK '\077'
+#define CHAR_COMMERCIAL_AT '\100'
+#define CHAR_A '\101'
+#define CHAR_B '\102'
+#define CHAR_C '\103'
+#define CHAR_D '\104'
+#define CHAR_E '\105'
+#define CHAR_F '\106'
+#define CHAR_G '\107'
+#define CHAR_H '\110'
+#define CHAR_I '\111'
+#define CHAR_J '\112'
+#define CHAR_K '\113'
+#define CHAR_L '\114'
+#define CHAR_M '\115'
+#define CHAR_N '\116'
+#define CHAR_O '\117'
+#define CHAR_P '\120'
+#define CHAR_Q '\121'
+#define CHAR_R '\122'
+#define CHAR_S '\123'
+#define CHAR_T '\124'
+#define CHAR_U '\125'
+#define CHAR_V '\126'
+#define CHAR_W '\127'
+#define CHAR_X '\130'
+#define CHAR_Y '\131'
+#define CHAR_Z '\132'
+#define CHAR_LEFT_SQUARE_BRACKET '\133'
+#define CHAR_BACKSLASH '\134'
+#define CHAR_RIGHT_SQUARE_BRACKET '\135'
+#define CHAR_CIRCUMFLEX_ACCENT '\136'
+#define CHAR_UNDERSCORE '\137'
+#define CHAR_GRAVE_ACCENT '\140'
+#define CHAR_a '\141'
+#define CHAR_b '\142'
+#define CHAR_c '\143'
+#define CHAR_d '\144'
+#define CHAR_e '\145'
+#define CHAR_f '\146'
+#define CHAR_g '\147'
+#define CHAR_h '\150'
+#define CHAR_i '\151'
+#define CHAR_j '\152'
+#define CHAR_k '\153'
+#define CHAR_l '\154'
+#define CHAR_m '\155'
+#define CHAR_n '\156'
+#define CHAR_o '\157'
+#define CHAR_p '\160'
+#define CHAR_q '\161'
+#define CHAR_r '\162'
+#define CHAR_s '\163'
+#define CHAR_t '\164'
+#define CHAR_u '\165'
+#define CHAR_v '\166'
+#define CHAR_w '\167'
+#define CHAR_x '\170'
+#define CHAR_y '\171'
+#define CHAR_z '\172'
+#define CHAR_LEFT_CURLY_BRACKET '\173'
+#define CHAR_VERTICAL_LINE '\174'
+#define CHAR_RIGHT_CURLY_BRACKET '\175'
+#define CHAR_TILDE '\176'
+
+#define STR_HT "\011"
+#define STR_VT "\013"
+#define STR_FF "\014"
+#define STR_CR "\015"
+#define STR_NL "\012"
+#define STR_BS "\010"
+#define STR_BEL "\007"
+#define STR_ESC "\033"
+#define STR_DEL "\177"
+
+#define STR_SPACE "\040"
+#define STR_EXCLAMATION_MARK "\041"
+#define STR_QUOTATION_MARK "\042"
+#define STR_NUMBER_SIGN "\043"
+#define STR_DOLLAR_SIGN "\044"
+#define STR_PERCENT_SIGN "\045"
+#define STR_AMPERSAND "\046"
+#define STR_APOSTROPHE "\047"
+#define STR_LEFT_PARENTHESIS "\050"
+#define STR_RIGHT_PARENTHESIS "\051"
+#define STR_ASTERISK "\052"
+#define STR_PLUS "\053"
+#define STR_COMMA "\054"
+#define STR_MINUS "\055"
+#define STR_DOT "\056"
+#define STR_SLASH "\057"
+#define STR_0 "\060"
+#define STR_1 "\061"
+#define STR_2 "\062"
+#define STR_3 "\063"
+#define STR_4 "\064"
+#define STR_5 "\065"
+#define STR_6 "\066"
+#define STR_7 "\067"
+#define STR_8 "\070"
+#define STR_9 "\071"
+#define STR_COLON "\072"
+#define STR_SEMICOLON "\073"
+#define STR_LESS_THAN_SIGN "\074"
+#define STR_EQUALS_SIGN "\075"
+#define STR_GREATER_THAN_SIGN "\076"
+#define STR_QUESTION_MARK "\077"
+#define STR_COMMERCIAL_AT "\100"
+#define STR_A "\101"
+#define STR_B "\102"
+#define STR_C "\103"
+#define STR_D "\104"
+#define STR_E "\105"
+#define STR_F "\106"
+#define STR_G "\107"
+#define STR_H "\110"
+#define STR_I "\111"
+#define STR_J "\112"
+#define STR_K "\113"
+#define STR_L "\114"
+#define STR_M "\115"
+#define STR_N "\116"
+#define STR_O "\117"
+#define STR_P "\120"
+#define STR_Q "\121"
+#define STR_R "\122"
+#define STR_S "\123"
+#define STR_T "\124"
+#define STR_U "\125"
+#define STR_V "\126"
+#define STR_W "\127"
+#define STR_X "\130"
+#define STR_Y "\131"
+#define STR_Z "\132"
+#define STR_LEFT_SQUARE_BRACKET "\133"
+#define STR_BACKSLASH "\134"
+#define STR_RIGHT_SQUARE_BRACKET "\135"
+#define STR_CIRCUMFLEX_ACCENT "\136"
+#define STR_UNDERSCORE "\137"
+#define STR_GRAVE_ACCENT "\140"
+#define STR_a "\141"
+#define STR_b "\142"
+#define STR_c "\143"
+#define STR_d "\144"
+#define STR_e "\145"
+#define STR_f "\146"
+#define STR_g "\147"
+#define STR_h "\150"
+#define STR_i "\151"
+#define STR_j "\152"
+#define STR_k "\153"
+#define STR_l "\154"
+#define STR_m "\155"
+#define STR_n "\156"
+#define STR_o "\157"
+#define STR_p "\160"
+#define STR_q "\161"
+#define STR_r "\162"
+#define STR_s "\163"
+#define STR_t "\164"
+#define STR_u "\165"
+#define STR_v "\166"
+#define STR_w "\167"
+#define STR_x "\170"
+#define STR_y "\171"
+#define STR_z "\172"
+#define STR_LEFT_CURLY_BRACKET "\173"
+#define STR_VERTICAL_LINE "\174"
+#define STR_RIGHT_CURLY_BRACKET "\175"
+#define STR_TILDE "\176"
+
+#define STRING_ACCEPT0 STR_A STR_C STR_C STR_E STR_P STR_T "\0"
+#define STRING_COMMIT0 STR_C STR_O STR_M STR_M STR_I STR_T "\0"
+#define STRING_F0 STR_F "\0"
+#define STRING_FAIL0 STR_F STR_A STR_I STR_L "\0"
+#define STRING_MARK0 STR_M STR_A STR_R STR_K "\0"
+#define STRING_PRUNE0 STR_P STR_R STR_U STR_N STR_E "\0"
+#define STRING_SKIP0 STR_S STR_K STR_I STR_P "\0"
+#define STRING_THEN STR_T STR_H STR_E STR_N
+
+#define STRING_alpha0 STR_a STR_l STR_p STR_h STR_a "\0"
+#define STRING_lower0 STR_l STR_o STR_w STR_e STR_r "\0"
+#define STRING_upper0 STR_u STR_p STR_p STR_e STR_r "\0"
+#define STRING_alnum0 STR_a STR_l STR_n STR_u STR_m "\0"
+#define STRING_ascii0 STR_a STR_s STR_c STR_i STR_i "\0"
+#define STRING_blank0 STR_b STR_l STR_a STR_n STR_k "\0"
+#define STRING_cntrl0 STR_c STR_n STR_t STR_r STR_l "\0"
+#define STRING_digit0 STR_d STR_i STR_g STR_i STR_t "\0"
+#define STRING_graph0 STR_g STR_r STR_a STR_p STR_h "\0"
+#define STRING_print0 STR_p STR_r STR_i STR_n STR_t "\0"
+#define STRING_punct0 STR_p STR_u STR_n STR_c STR_t "\0"
+#define STRING_space0 STR_s STR_p STR_a STR_c STR_e "\0"
+#define STRING_word0 STR_w STR_o STR_r STR_d "\0"
+#define STRING_xdigit STR_x STR_d STR_i STR_g STR_i STR_t
+
+#define STRING_DEFINE STR_D STR_E STR_F STR_I STR_N STR_E
+
+#define STRING_CR_RIGHTPAR STR_C STR_R STR_RIGHT_PARENTHESIS
+#define STRING_LF_RIGHTPAR STR_L STR_F STR_RIGHT_PARENTHESIS
+#define STRING_CRLF_RIGHTPAR STR_C STR_R STR_L STR_F STR_RIGHT_PARENTHESIS
+#define STRING_ANY_RIGHTPAR STR_A STR_N STR_Y STR_RIGHT_PARENTHESIS
+#define STRING_ANYCRLF_RIGHTPAR STR_A STR_N STR_Y STR_C STR_R STR_L STR_F STR_RIGHT_PARENTHESIS
+#define STRING_BSR_ANYCRLF_RIGHTPAR STR_B STR_S STR_R STR_UNDERSCORE STR_A STR_N STR_Y STR_C STR_R STR_L STR_F STR_RIGHT_PARENTHESIS
+#define STRING_BSR_UNICODE_RIGHTPAR STR_B STR_S STR_R STR_UNDERSCORE STR_U STR_N STR_I STR_C STR_O STR_D STR_E STR_RIGHT_PARENTHESIS
+#define STRING_UTF8_RIGHTPAR STR_U STR_T STR_F STR_8 STR_RIGHT_PARENTHESIS
+#define STRING_UTF16_RIGHTPAR STR_U STR_T STR_F STR_1 STR_6 STR_RIGHT_PARENTHESIS
+#define STRING_UTF32_RIGHTPAR STR_U STR_T STR_F STR_3 STR_2 STR_RIGHT_PARENTHESIS
+#define STRING_UTF_RIGHTPAR STR_U STR_T STR_F STR_RIGHT_PARENTHESIS
+#define STRING_UCP_RIGHTPAR STR_U STR_C STR_P STR_RIGHT_PARENTHESIS
+#define STRING_NO_START_OPT_RIGHTPAR STR_N STR_O STR_UNDERSCORE STR_S STR_T STR_A STR_R STR_T STR_UNDERSCORE STR_O STR_P STR_T STR_RIGHT_PARENTHESIS
+#define STRING_LIMIT_MATCH_EQ STR_L STR_I STR_M STR_I STR_T STR_UNDERSCORE STR_M STR_A STR_T STR_C STR_H STR_EQUALS_SIGN
+#define STRING_LIMIT_RECURSION_EQ STR_L STR_I STR_M STR_I STR_T STR_UNDERSCORE STR_R STR_E STR_C STR_U STR_R STR_S STR_I STR_O STR_N STR_EQUALS_SIGN
+
+#endif /* SUPPORT_UTF */
+
+/* Escape items that are just an encoding of a particular data value. */
+
+#ifndef ESC_e
+#define ESC_e CHAR_ESC
+#endif
+
+#ifndef ESC_f
+#define ESC_f CHAR_FF
+#endif
+
+#ifndef ESC_n
+#define ESC_n CHAR_LF
+#endif
+
+#ifndef ESC_r
+#define ESC_r CHAR_CR
+#endif
+
+/* We can't officially use ESC_t because it is a POSIX reserved identifier
+(presumably because of all the others like size_t). */
+
+#ifndef ESC_tee
+#define ESC_tee CHAR_HT
+#endif
+
+/* Codes for different types of Unicode property */
+
+#define PT_ANY 0 /* Any property - matches all chars */
+#define PT_LAMP 1 /* L& - the union of Lu, Ll, Lt */
+#define PT_GC 2 /* Specified general characteristic (e.g. L) */
+#define PT_PC 3 /* Specified particular characteristic (e.g. Lu) */
+#define PT_SC 4 /* Script (e.g. Han) */
+#define PT_ALNUM 5 /* Alphanumeric - the union of L and N */
+#define PT_SPACE 6 /* Perl space - Z plus 9,10,12,13 */
+#define PT_PXSPACE 7 /* POSIX space - Z plus 9,10,11,12,13 */
+#define PT_WORD 8 /* Word - L plus N plus underscore */
+#define PT_CLIST 9 /* Pseudo-property: match character list */
+#define PT_UCNC 10 /* Universal Character nameable character */
+
+/* Flag bits and data types for the extended class (OP_XCLASS) for classes that
+contain characters with values greater than 255. */
+
+#define XCL_NOT 0x01 /* Flag: this is a negative class */
+#define XCL_MAP 0x02 /* Flag: a 32-byte map is present */
+
+#define XCL_END 0 /* Marks end of individual items */
+#define XCL_SINGLE 1 /* Single item (one multibyte char) follows */
+#define XCL_RANGE 2 /* A range (two multibyte chars) follows */
+#define XCL_PROP 3 /* Unicode property (2-byte property code follows) */
+#define XCL_NOTPROP 4 /* Unicode inverted property (ditto) */
+
+/* These are escaped items that aren't just an encoding of a particular data
+value such as \n. They must have non-zero values, as check_escape() returns
+0 for a data character. Also, they must appear in the same order as in the opcode
+definitions below, up to ESC_z. There's a dummy for OP_ALLANY because it
+corresponds to "." in DOTALL mode rather than an escape sequence. It is also
+used for [^] in JavaScript compatibility mode, and for \C in non-utf mode. In
+non-DOTALL mode, "." behaves like \N.
+
+The special values ESC_DU, ESC_du, etc. are used instead of ESC_D, ESC_d, etc.
+when PCRE_UCP is set and replacement of \d etc by \p sequences is required.
+They must be contiguous, and remain in order so that the replacements can be
+looked up from a table.
+
+Negative numbers are used to encode a backreference (\1, \2, \3, etc.) in
+check_escape(). There are two tests in the code for an escape
+greater than ESC_b and less than ESC_Z to detect the types that may be
+repeated. These are the types that consume characters. If any new escapes are
+put in between that don't consume a character, that code will have to change.
+*/
+
+enum { ESC_A = 1, ESC_G, ESC_K, ESC_B, ESC_b, ESC_D, ESC_d, ESC_S, ESC_s,
+ ESC_W, ESC_w, ESC_N, ESC_dum, ESC_C, ESC_P, ESC_p, ESC_R, ESC_H,
+ ESC_h, ESC_V, ESC_v, ESC_X, ESC_Z, ESC_z,
+ ESC_E, ESC_Q, ESC_g, ESC_k,
+ ESC_DU, ESC_du, ESC_SU, ESC_su, ESC_WU, ESC_wu };
+
+/* Opcode table: Starting from 1 (i.e. after OP_END), the values up to
+OP_EOD must correspond in order to the list of escapes immediately above.
+
+*** NOTE NOTE NOTE *** Whenever this list is updated, the two macro definitions
+that follow must also be updated to match. There are also tables called
+"coptable" and "poptable" in pcre_dfa_exec.c that must be updated. */
+
+enum {
+ OP_END, /* 0 End of pattern */
+
+ /* Values corresponding to backslashed metacharacters */
+
+ OP_SOD, /* 1 Start of data: \A */
+ OP_SOM, /* 2 Start of match (subject + offset): \G */
+ OP_SET_SOM, /* 3 Set start of match (\K) */
+ OP_NOT_WORD_BOUNDARY, /* 4 \B */
+ OP_WORD_BOUNDARY, /* 5 \b */
+ OP_NOT_DIGIT, /* 6 \D */
+ OP_DIGIT, /* 7 \d */
+ OP_NOT_WHITESPACE, /* 8 \S */
+ OP_WHITESPACE, /* 9 \s */
+ OP_NOT_WORDCHAR, /* 10 \W */
+ OP_WORDCHAR, /* 11 \w */
+
+ OP_ANY, /* 12 Match any character except newline (\N) */
+ OP_ALLANY, /* 13 Match any character */
+ OP_ANYBYTE, /* 14 Match any byte (\C); different to OP_ANY for UTF-8 */
+ OP_NOTPROP, /* 15 \P (not Unicode property) */
+ OP_PROP, /* 16 \p (Unicode property) */
+ OP_ANYNL, /* 17 \R (any newline sequence) */
+ OP_NOT_HSPACE, /* 18 \H (not horizontal whitespace) */
+ OP_HSPACE, /* 19 \h (horizontal whitespace) */
+ OP_NOT_VSPACE, /* 20 \V (not vertical whitespace) */
+ OP_VSPACE, /* 21 \v (vertical whitespace) */
+ OP_EXTUNI, /* 22 \X (extended Unicode sequence */
+ OP_EODN, /* 23 End of data or \n at end of data (\Z) */
+ OP_EOD, /* 24 End of data (\z) */
+
+ OP_CIRC, /* 25 Start of line - not multiline */
+ OP_CIRCM, /* 26 Start of line - multiline */
+ OP_DOLL, /* 27 End of line - not multiline */
+ OP_DOLLM, /* 28 End of line - multiline */
+ OP_CHAR, /* 29 Match one character, casefully */
+ OP_CHARI, /* 30 Match one character, caselessly */
+ OP_NOT, /* 31 Match one character, not the given one, casefully */
+ OP_NOTI, /* 32 Match one character, not the given one, caselessly */
+
+ /* The following sets of 13 opcodes must always be kept in step because
+ the offset from the first one is used to generate the others. */
+
+ /**** Single characters, caseful, must precede the caseless ones ****/
+
+ OP_STAR, /* 33 The maximizing and minimizing versions of */
+ OP_MINSTAR, /* 34 these six opcodes must come in pairs, with */
+ OP_PLUS, /* 35 the minimizing one second. */
+ OP_MINPLUS, /* 36 */
+ OP_QUERY, /* 37 */
+ OP_MINQUERY, /* 38 */
+
+ OP_UPTO, /* 39 From 0 to n matches of one character, caseful*/
+ OP_MINUPTO, /* 40 */
+ OP_EXACT, /* 41 Exactly n matches */
+
+ OP_POSSTAR, /* 42 Possessified star, caseful */
+ OP_POSPLUS, /* 43 Possessified plus, caseful */
+ OP_POSQUERY, /* 44 Posesssified query, caseful */
+ OP_POSUPTO, /* 45 Possessified upto, caseful */
+
+ /**** Single characters, caseless, must follow the caseful ones */
+
+ OP_STARI, /* 46 */
+ OP_MINSTARI, /* 47 */
+ OP_PLUSI, /* 48 */
+ OP_MINPLUSI, /* 49 */
+ OP_QUERYI, /* 50 */
+ OP_MINQUERYI, /* 51 */
+
+ OP_UPTOI, /* 52 From 0 to n matches of one character, caseless */
+ OP_MINUPTOI, /* 53 */
+ OP_EXACTI, /* 54 */
+
+ OP_POSSTARI, /* 55 Possessified star, caseless */
+ OP_POSPLUSI, /* 56 Possessified plus, caseless */
+ OP_POSQUERYI, /* 57 Posesssified query, caseless */
+ OP_POSUPTOI, /* 58 Possessified upto, caseless */
+
+ /**** The negated ones must follow the non-negated ones, and match them ****/
+ /**** Negated single character, caseful; must precede the caseless ones ****/
+
+ OP_NOTSTAR, /* 59 The maximizing and minimizing versions of */
+ OP_NOTMINSTAR, /* 60 these six opcodes must come in pairs, with */
+ OP_NOTPLUS, /* 61 the minimizing one second. They must be in */
+ OP_NOTMINPLUS, /* 62 exactly the same order as those above. */
+ OP_NOTQUERY, /* 63 */
+ OP_NOTMINQUERY, /* 64 */
+
+ OP_NOTUPTO, /* 65 From 0 to n matches, caseful */
+ OP_NOTMINUPTO, /* 66 */
+ OP_NOTEXACT, /* 67 Exactly n matches */
+
+ OP_NOTPOSSTAR, /* 68 Possessified versions, caseful */
+ OP_NOTPOSPLUS, /* 69 */
+ OP_NOTPOSQUERY, /* 70 */
+ OP_NOTPOSUPTO, /* 71 */
+
+ /**** Negated single character, caseless; must follow the caseful ones ****/
+
+ OP_NOTSTARI, /* 72 */
+ OP_NOTMINSTARI, /* 73 */
+ OP_NOTPLUSI, /* 74 */
+ OP_NOTMINPLUSI, /* 75 */
+ OP_NOTQUERYI, /* 76 */
+ OP_NOTMINQUERYI, /* 77 */
+
+ OP_NOTUPTOI, /* 78 From 0 to n matches, caseless */
+ OP_NOTMINUPTOI, /* 79 */
+ OP_NOTEXACTI, /* 80 Exactly n matches */
+
+ OP_NOTPOSSTARI, /* 81 Possessified versions, caseless */
+ OP_NOTPOSPLUSI, /* 82 */
+ OP_NOTPOSQUERYI, /* 83 */
+ OP_NOTPOSUPTOI, /* 84 */
+
+ /**** Character types ****/
+
+ OP_TYPESTAR, /* 85 The maximizing and minimizing versions of */
+ OP_TYPEMINSTAR, /* 86 these six opcodes must come in pairs, with */
+ OP_TYPEPLUS, /* 87 the minimizing one second. These codes must */
+ OP_TYPEMINPLUS, /* 88 be in exactly the same order as those above. */
+ OP_TYPEQUERY, /* 89 */
+ OP_TYPEMINQUERY, /* 90 */
+
+ OP_TYPEUPTO, /* 91 From 0 to n matches */
+ OP_TYPEMINUPTO, /* 92 */
+ OP_TYPEEXACT, /* 93 Exactly n matches */
+
+ OP_TYPEPOSSTAR, /* 94 Possessified versions */
+ OP_TYPEPOSPLUS, /* 95 */
+ OP_TYPEPOSQUERY, /* 96 */
+ OP_TYPEPOSUPTO, /* 97 */
+
+ /* These are used for character classes and back references; only the
+ first six are the same as the sets above. */
+
+ OP_CRSTAR, /* 98 The maximizing and minimizing versions of */
+ OP_CRMINSTAR, /* 99 all these opcodes must come in pairs, with */
+ OP_CRPLUS, /* 100 the minimizing one second. These codes must */
+ OP_CRMINPLUS, /* 101 be in exactly the same order as those above. */
+ OP_CRQUERY, /* 102 */
+ OP_CRMINQUERY, /* 103 */
+
+ OP_CRRANGE, /* 104 These are different to the three sets above. */
+ OP_CRMINRANGE, /* 105 */
+
+ /* End of quantifier opcodes */
+
+ OP_CLASS, /* 106 Match a character class, chars < 256 only */
+ OP_NCLASS, /* 107 Same, but the bitmap was created from a negative
+ class - the difference is relevant only when a
+ character > 255 is encountered. */
+ OP_XCLASS, /* 108 Extended class for handling > 255 chars within the
+ class. This does both positive and negative. */
+ OP_REF, /* 109 Match a back reference, casefully */
+ OP_REFI, /* 110 Match a back reference, caselessly */
+ OP_RECURSE, /* 111 Match a numbered subpattern (possibly recursive) */
+ OP_CALLOUT, /* 112 Call out to external function if provided */
+
+ OP_ALT, /* 113 Start of alternation */
+ OP_KET, /* 114 End of group that doesn't have an unbounded repeat */
+ OP_KETRMAX, /* 115 These two must remain together and in this */
+ OP_KETRMIN, /* 116 order. They are for groups the repeat for ever. */
+ OP_KETRPOS, /* 117 Possessive unlimited repeat. */
+
+ /* The assertions must come before BRA, CBRA, ONCE, and COND, and the four
+ asserts must remain in order. */
+
+ OP_REVERSE, /* 118 Move pointer back - used in lookbehind assertions */
+ OP_ASSERT, /* 119 Positive lookahead */
+ OP_ASSERT_NOT, /* 120 Negative lookahead */
+ OP_ASSERTBACK, /* 121 Positive lookbehind */
+ OP_ASSERTBACK_NOT, /* 122 Negative lookbehind */
+
+ /* ONCE, ONCE_NC, BRA, BRAPOS, CBRA, CBRAPOS, and COND must come immediately
+ after the assertions, with ONCE first, as there's a test for >= ONCE for a
+ subpattern that isn't an assertion. The POS versions must immediately follow
+ the non-POS versions in each case. */
+
+ OP_ONCE, /* 123 Atomic group, contains captures */
+ OP_ONCE_NC, /* 124 Atomic group containing no captures */
+ OP_BRA, /* 125 Start of non-capturing bracket */
+ OP_BRAPOS, /* 126 Ditto, with unlimited, possessive repeat */
+ OP_CBRA, /* 127 Start of capturing bracket */
+ OP_CBRAPOS, /* 128 Ditto, with unlimited, possessive repeat */
+ OP_COND, /* 129 Conditional group */
+
+ /* These five must follow the previous five, in the same order. There's a
+ check for >= SBRA to distinguish the two sets. */
+
+ OP_SBRA, /* 130 Start of non-capturing bracket, check empty */
+ OP_SBRAPOS, /* 131 Ditto, with unlimited, possessive repeat */
+ OP_SCBRA, /* 132 Start of capturing bracket, check empty */
+ OP_SCBRAPOS, /* 133 Ditto, with unlimited, possessive repeat */
+ OP_SCOND, /* 134 Conditional group, check empty */
+
+ /* The next two pairs must (respectively) be kept together. */
+
+ OP_CREF, /* 135 Used to hold a capture number as condition */
+ OP_NCREF, /* 136 Same, but generated by a name reference*/
+ OP_RREF, /* 137 Used to hold a recursion number as condition */
+ OP_NRREF, /* 138 Same, but generated by a name reference*/
+ OP_DEF, /* 139 The DEFINE condition */
+
+ OP_BRAZERO, /* 140 These two must remain together and in this */
+ OP_BRAMINZERO, /* 141 order. */
+ OP_BRAPOSZERO, /* 142 */
+
+ /* These are backtracking control verbs */
+
+ OP_MARK, /* 143 always has an argument */
+ OP_PRUNE, /* 144 */
+ OP_PRUNE_ARG, /* 145 same, but with argument */
+ OP_SKIP, /* 146 */
+ OP_SKIP_ARG, /* 147 same, but with argument */
+ OP_THEN, /* 148 */
+ OP_THEN_ARG, /* 149 same, but with argument */
+ OP_COMMIT, /* 150 */
+
+ /* These are forced failure and success verbs */
+
+ OP_FAIL, /* 151 */
+ OP_ACCEPT, /* 152 */
+ OP_ASSERT_ACCEPT, /* 153 Used inside assertions */
+ OP_CLOSE, /* 154 Used before OP_ACCEPT to close open captures */
+
+ /* This is used to skip a subpattern with a {0} quantifier */
+
+ OP_SKIPZERO, /* 155 */
+
+ /* This is not an opcode, but is used to check that tables indexed by opcode
+ are the correct length, in order to catch updating errors - there have been
+ some in the past. */
+
+ OP_TABLE_LENGTH
+};
+
+/* *** NOTE NOTE NOTE *** Whenever the list above is updated, the two macro
+definitions that follow must also be updated to match. There are also tables
+called "coptable" and "poptable" in pcre_dfa_exec.c that must be updated. */
+
+
+/* This macro defines textual names for all the opcodes. These are used only
+for debugging, and some of them are only partial names. The macro is referenced
+only in pcre_printint.c, which fills out the full names in many cases (and in
+some cases doesn't actually use these names at all). */
+
+#define OP_NAME_LIST \
+ "End", "\\A", "\\G", "\\K", "\\B", "\\b", "\\D", "\\d", \
+ "\\S", "\\s", "\\W", "\\w", "Any", "AllAny", "Anybyte", \
+ "notprop", "prop", "\\R", "\\H", "\\h", "\\V", "\\v", \
+ "extuni", "\\Z", "\\z", \
+ "^", "^", "$", "$", "char", "chari", "not", "noti", \
+ "*", "*?", "+", "+?", "?", "??", \
+ "{", "{", "{", \
+ "*+","++", "?+", "{", \
+ "*", "*?", "+", "+?", "?", "??", \
+ "{", "{", "{", \
+ "*+","++", "?+", "{", \
+ "*", "*?", "+", "+?", "?", "??", \
+ "{", "{", "{", \
+ "*+","++", "?+", "{", \
+ "*", "*?", "+", "+?", "?", "??", \
+ "{", "{", "{", \
+ "*+","++", "?+", "{", \
+ "*", "*?", "+", "+?", "?", "??", "{", "{", "{", \
+ "*+","++", "?+", "{", \
+ "*", "*?", "+", "+?", "?", "??", "{", "{", \
+ "class", "nclass", "xclass", "Ref", "Refi", \
+ "Recurse", "Callout", \
+ "Alt", "Ket", "KetRmax", "KetRmin", "KetRpos", \
+ "Reverse", "Assert", "Assert not", "AssertB", "AssertB not", \
+ "Once", "Once_NC", \
+ "Bra", "BraPos", "CBra", "CBraPos", \
+ "Cond", \
+ "SBra", "SBraPos", "SCBra", "SCBraPos", \
+ "SCond", \
+ "Cond ref", "Cond nref", "Cond rec", "Cond nrec", "Cond def", \
+ "Brazero", "Braminzero", "Braposzero", \
+ "*MARK", "*PRUNE", "*PRUNE", "*SKIP", "*SKIP", \
+ "*THEN", "*THEN", "*COMMIT", "*FAIL", \
+ "*ACCEPT", "*ASSERT_ACCEPT", \
+ "Close", "Skip zero"
+
+
+/* This macro defines the length of fixed length operations in the compiled
+regex. The lengths are used when searching for specific things, and also in the
+debugging printing of a compiled regex. We use a macro so that it can be
+defined close to the definitions of the opcodes themselves.
+
+As things have been extended, some of these are no longer fixed lenths, but are
+minima instead. For example, the length of a single-character repeat may vary
+in UTF-8 mode. The code that uses this table must know about such things. */
+
+#define OP_LENGTHS \
+ 1, /* End */ \
+ 1, 1, 1, 1, 1, /* \A, \G, \K, \B, \b */ \
+ 1, 1, 1, 1, 1, 1, /* \D, \d, \S, \s, \W, \w */ \
+ 1, 1, 1, /* Any, AllAny, Anybyte */ \
+ 3, 3, /* \P, \p */ \
+ 1, 1, 1, 1, 1, /* \R, \H, \h, \V, \v */ \
+ 1, /* \X */ \
+ 1, 1, 1, 1, 1, 1, /* \Z, \z, ^, ^M, $, $M */ \
+ 2, /* Char - the minimum length */ \
+ 2, /* Chari - the minimum length */ \
+ 2, /* not */ \
+ 2, /* noti */ \
+ /* Positive single-char repeats ** These are */ \
+ 2, 2, 2, 2, 2, 2, /* *, *?, +, +?, ?, ?? ** minima in */ \
+ 2+IMM2_SIZE, 2+IMM2_SIZE, /* upto, minupto ** mode */ \
+ 2+IMM2_SIZE, /* exact */ \
+ 2, 2, 2, 2+IMM2_SIZE, /* *+, ++, ?+, upto+ */ \
+ 2, 2, 2, 2, 2, 2, /* *I, *?I, +I, +?I, ?I, ??I ** UTF-8 */ \
+ 2+IMM2_SIZE, 2+IMM2_SIZE, /* upto I, minupto I */ \
+ 2+IMM2_SIZE, /* exact I */ \
+ 2, 2, 2, 2+IMM2_SIZE, /* *+I, ++I, ?+I, upto+I */ \
+ /* Negative single-char repeats - only for chars < 256 */ \
+ 2, 2, 2, 2, 2, 2, /* NOT *, *?, +, +?, ?, ?? */ \
+ 2+IMM2_SIZE, 2+IMM2_SIZE, /* NOT upto, minupto */ \
+ 2+IMM2_SIZE, /* NOT exact */ \
+ 2, 2, 2, 2+IMM2_SIZE, /* Possessive NOT *, +, ?, upto */ \
+ 2, 2, 2, 2, 2, 2, /* NOT *I, *?I, +I, +?I, ?I, ??I */ \
+ 2+IMM2_SIZE, 2+IMM2_SIZE, /* NOT upto I, minupto I */ \
+ 2+IMM2_SIZE, /* NOT exact I */ \
+ 2, 2, 2, 2+IMM2_SIZE, /* Possessive NOT *I, +I, ?I, upto I */ \
+ /* Positive type repeats */ \
+ 2, 2, 2, 2, 2, 2, /* Type *, *?, +, +?, ?, ?? */ \
+ 2+IMM2_SIZE, 2+IMM2_SIZE, /* Type upto, minupto */ \
+ 2+IMM2_SIZE, /* Type exact */ \
+ 2, 2, 2, 2+IMM2_SIZE, /* Possessive *+, ++, ?+, upto+ */ \
+ /* Character class & ref repeats */ \
+ 1, 1, 1, 1, 1, 1, /* *, *?, +, +?, ?, ?? */ \
+ 1+2*IMM2_SIZE, 1+2*IMM2_SIZE, /* CRRANGE, CRMINRANGE */ \
+ 1+(32/sizeof(pcre_uchar)), /* CLASS */ \
+ 1+(32/sizeof(pcre_uchar)), /* NCLASS */ \
+ 0, /* XCLASS - variable length */ \
+ 1+IMM2_SIZE, /* REF */ \
+ 1+IMM2_SIZE, /* REFI */ \
+ 1+LINK_SIZE, /* RECURSE */ \
+ 2+2*LINK_SIZE, /* CALLOUT */ \
+ 1+LINK_SIZE, /* Alt */ \
+ 1+LINK_SIZE, /* Ket */ \
+ 1+LINK_SIZE, /* KetRmax */ \
+ 1+LINK_SIZE, /* KetRmin */ \
+ 1+LINK_SIZE, /* KetRpos */ \
+ 1+LINK_SIZE, /* Reverse */ \
+ 1+LINK_SIZE, /* Assert */ \
+ 1+LINK_SIZE, /* Assert not */ \
+ 1+LINK_SIZE, /* Assert behind */ \
+ 1+LINK_SIZE, /* Assert behind not */ \
+ 1+LINK_SIZE, /* ONCE */ \
+ 1+LINK_SIZE, /* ONCE_NC */ \
+ 1+LINK_SIZE, /* BRA */ \
+ 1+LINK_SIZE, /* BRAPOS */ \
+ 1+LINK_SIZE+IMM2_SIZE, /* CBRA */ \
+ 1+LINK_SIZE+IMM2_SIZE, /* CBRAPOS */ \
+ 1+LINK_SIZE, /* COND */ \
+ 1+LINK_SIZE, /* SBRA */ \
+ 1+LINK_SIZE, /* SBRAPOS */ \
+ 1+LINK_SIZE+IMM2_SIZE, /* SCBRA */ \
+ 1+LINK_SIZE+IMM2_SIZE, /* SCBRAPOS */ \
+ 1+LINK_SIZE, /* SCOND */ \
+ 1+IMM2_SIZE, 1+IMM2_SIZE, /* CREF, NCREF */ \
+ 1+IMM2_SIZE, 1+IMM2_SIZE, /* RREF, NRREF */ \
+ 1, /* DEF */ \
+ 1, 1, 1, /* BRAZERO, BRAMINZERO, BRAPOSZERO */ \
+ 3, 1, 3, /* MARK, PRUNE, PRUNE_ARG */ \
+ 1, 3, /* SKIP, SKIP_ARG */ \
+ 1, 3, /* THEN, THEN_ARG */ \
+ 1, 1, 1, 1, /* COMMIT, FAIL, ACCEPT, ASSERT_ACCEPT */ \
+ 1+IMM2_SIZE, 1 /* CLOSE, SKIPZERO */
+
+/* A magic value for OP_RREF and OP_NRREF to indicate the "any recursion"
+condition. */
+
+#define RREF_ANY 0xffff
+
+/* Compile time error code numbers. They are given names so that they can more
+easily be tracked. When a new number is added, the table called eint in
+pcreposix.c must be updated. */
+
+enum { ERR0, ERR1, ERR2, ERR3, ERR4, ERR5, ERR6, ERR7, ERR8, ERR9,
+ ERR10, ERR11, ERR12, ERR13, ERR14, ERR15, ERR16, ERR17, ERR18, ERR19,
+ ERR20, ERR21, ERR22, ERR23, ERR24, ERR25, ERR26, ERR27, ERR28, ERR29,
+ ERR30, ERR31, ERR32, ERR33, ERR34, ERR35, ERR36, ERR37, ERR38, ERR39,
+ ERR40, ERR41, ERR42, ERR43, ERR44, ERR45, ERR46, ERR47, ERR48, ERR49,
+ ERR50, ERR51, ERR52, ERR53, ERR54, ERR55, ERR56, ERR57, ERR58, ERR59,
+ ERR60, ERR61, ERR62, ERR63, ERR64, ERR65, ERR66, ERR67, ERR68, ERR69,
+ ERR70, ERR71, ERR72, ERR73, ERR74, ERR75, ERR76, ERR77, ERR78, ERRCOUNT };
+
+/* JIT compiling modes. The function list is indexed by them. */
+enum { JIT_COMPILE, JIT_PARTIAL_SOFT_COMPILE, JIT_PARTIAL_HARD_COMPILE,
+ JIT_NUMBER_OF_COMPILE_MODES };
+
+/* The real format of the start of the pcre block; the index of names and the
+code vector run on as long as necessary after the end. We store an explicit
+offset to the name table so that if a regex is compiled on one host, saved, and
+then run on another where the size of pointers is different, all might still
+be well.
+
+The size of the structure must be a multiple of 8 bytes. For the case of
+compiled-on-4 and run-on-8, we include an extra pointer that is always NULL so
+that there are an even number of pointers which therefore are a multiple of 8
+bytes.
+
+It is necessary to fork the struct for the 32 bit library, since it needs to
+use pcre_uint32 for first_char and req_char. We can't put an ifdef inside the
+typedef because pcretest needs access to the struct of the 8-, 16- and 32-bit
+variants.
+
+*** WARNING ***
+When new fields are added to these structures, remember to adjust the code in
+pcre_byte_order.c that is concerned with swapping the byte order of the fields
+when a compiled regex is reloaded on a host with different endianness.
+*** WARNING ***
+There is also similar byte-flipping code in pcretest.c, which is used for
+testing the byte-flipping features. It must also be kept in step.
+*** WARNING ***
+*/
+
+typedef struct real_pcre8_or_16 {
+ pcre_uint32 magic_number;
+ pcre_uint32 size; /* Total that was malloced */
+ pcre_uint32 options; /* Public options */
+ pcre_uint32 flags; /* Private flags */
+ pcre_uint32 limit_match; /* Limit set from regex */
+ pcre_uint32 limit_recursion; /* Limit set from regex */
+ pcre_uint16 first_char; /* Starting character */
+ pcre_uint16 req_char; /* This character must be seen */
+ pcre_uint16 max_lookbehind; /* Longest lookbehind (characters) */
+ pcre_uint16 top_bracket; /* Highest numbered group */
+ pcre_uint16 top_backref; /* Highest numbered back reference */
+ pcre_uint16 name_table_offset; /* Offset to name table that follows */
+ pcre_uint16 name_entry_size; /* Size of any name items */
+ pcre_uint16 name_count; /* Number of name items */
+ pcre_uint16 ref_count; /* Reference count */
+ pcre_uint16 dummy1; /* To ensure size is a multiple of 8 */
+ pcre_uint16 dummy2; /* To ensure size is a multiple of 8 */
+ pcre_uint16 dummy3; /* To ensure size is a multiple of 8 */
+ const pcre_uint8 *tables; /* Pointer to tables or NULL for std */
+ void *nullpad; /* NULL padding */
+} real_pcre8_or_16;
+
+typedef struct real_pcre8_or_16 real_pcre;
+typedef struct real_pcre8_or_16 real_pcre16;
+
+typedef struct real_pcre32 {
+ pcre_uint32 magic_number;
+ pcre_uint32 size; /* Total that was malloced */
+ pcre_uint32 options; /* Public options */
+ pcre_uint32 flags; /* Private flags */
+ pcre_uint32 limit_match; /* Limit set from regex */
+ pcre_uint32 limit_recursion; /* Limit set from regex */
+ pcre_uint32 first_char; /* Starting character */
+ pcre_uint32 req_char; /* This character must be seen */
+ pcre_uint16 max_lookbehind; /* Longest lookbehind (characters) */
+ pcre_uint16 top_bracket; /* Highest numbered group */
+ pcre_uint16 top_backref; /* Highest numbered back reference */
+ pcre_uint16 name_table_offset; /* Offset to name table that follows */
+ pcre_uint16 name_entry_size; /* Size of any name items */
+ pcre_uint16 name_count; /* Number of name items */
+ pcre_uint16 ref_count; /* Reference count */
+ pcre_uint16 dummy; /* To ensure size is a multiple of 8 */
+ const pcre_uint8 *tables; /* Pointer to tables or NULL for std */
+ void *nullpad; /* NULL padding */
+} real_pcre32;
+
+#if defined COMPILE_PCRE8
+#define REAL_PCRE real_pcre
+#elif defined COMPILE_PCRE16
+#define REAL_PCRE real_pcre16
+#elif defined COMPILE_PCRE32
+#define REAL_PCRE real_pcre32
+#endif
+
+/* Assert that the size of REAL_PCRE is divisible by 8 */
+typedef int __assert_real_pcre_size_divisible_8[(sizeof(REAL_PCRE) % 8) == 0 ? 1 : -1];
+
+/* Needed in pcretest to access some fields in the real_pcre* structures
+ * directly. They're unified for 8/16/32 bits since the structs only differ
+ * after these fields; if that ever changes, need to fork those defines into
+ * 8/16 and 32 bit versions. */
+#define REAL_PCRE_MAGIC(re) (((REAL_PCRE*)re)->magic_number)
+#define REAL_PCRE_SIZE(re) (((REAL_PCRE*)re)->size)
+#define REAL_PCRE_OPTIONS(re) (((REAL_PCRE*)re)->options)
+#define REAL_PCRE_FLAGS(re) (((REAL_PCRE*)re)->flags)
+
+/* The format of the block used to store data from pcre_study(). The same
+remark (see NOTE above) about extending this structure applies. */
+
+typedef struct pcre_study_data {
+ pcre_uint32 size; /* Total that was malloced */
+ pcre_uint32 flags; /* Private flags */
+ pcre_uint8 start_bits[32]; /* Starting char bits */
+ pcre_uint32 minlength; /* Minimum subject length */
+} pcre_study_data;
+
+/* Structure for building a chain of open capturing subpatterns during
+compiling, so that instructions to close them can be compiled when (*ACCEPT) is
+encountered. This is also used to identify subpatterns that contain recursive
+back references to themselves, so that they can be made atomic. */
+
+typedef struct open_capitem {
+ struct open_capitem *next; /* Chain link */
+ pcre_uint16 number; /* Capture number */
+ pcre_uint16 flag; /* Set TRUE if recursive back ref */
+} open_capitem;
+
+/* Structure for passing "static" information around between the functions
+doing the compiling, so that they are thread-safe. */
+
+typedef struct compile_data {
+ const pcre_uint8 *lcc; /* Points to lower casing table */
+ const pcre_uint8 *fcc; /* Points to case-flipping table */
+ const pcre_uint8 *cbits; /* Points to character type table */
+ const pcre_uint8 *ctypes; /* Points to table of type maps */
+ const pcre_uchar *start_workspace;/* The start of working space */
+ const pcre_uchar *start_code; /* The start of the compiled code */
+ const pcre_uchar *start_pattern; /* The start of the pattern */
+ const pcre_uchar *end_pattern; /* The end of the pattern */
+ open_capitem *open_caps; /* Chain of open capture items */
+ pcre_uchar *hwm; /* High watermark of workspace */
+ pcre_uchar *name_table; /* The name/number table */
+ int names_found; /* Number of entries so far */
+ int name_entry_size; /* Size of each entry */
+ int workspace_size; /* Size of workspace */
+ unsigned int bracount; /* Count of capturing parens as we compile */
+ int final_bracount; /* Saved value after first pass */
+ int max_lookbehind; /* Maximum lookbehind (characters) */
+ int top_backref; /* Maximum back reference */
+ unsigned int backref_map; /* Bitmap of low back refs */
+ int assert_depth; /* Depth of nested assertions */
+ pcre_uint32 external_options; /* External (initial) options */
+ pcre_uint32 external_flags; /* External flag bits to be set */
+ int req_varyopt; /* "After variable item" flag for reqbyte */
+ BOOL had_accept; /* (*ACCEPT) encountered */
+ BOOL had_pruneorskip; /* (*PRUNE) or (*SKIP) encountered */
+ BOOL check_lookbehind; /* Lookbehinds need later checking */
+ int nltype; /* Newline type */
+ int nllen; /* Newline string length */
+ pcre_uchar nl[4]; /* Newline string when fixed length */
+} compile_data;
+
+/* Structure for maintaining a chain of pointers to the currently incomplete
+branches, for testing for left recursion while compiling. */
+
+typedef struct branch_chain {
+ struct branch_chain *outer;
+ pcre_uchar *current_branch;
+} branch_chain;
+
+/* Structure for items in a linked list that represents an explicit recursive
+call within the pattern; used by pcre_exec(). */
+
+typedef struct recursion_info {
+ struct recursion_info *prevrec; /* Previous recursion record (or NULL) */
+ unsigned int group_num; /* Number of group that was called */
+ int *offset_save; /* Pointer to start of saved offsets */
+ int saved_max; /* Number of saved offsets */
+ int saved_capture_last; /* Last capture number */
+ PCRE_PUCHAR subject_position; /* Position at start of recursion */
+} recursion_info;
+
+/* A similar structure for pcre_dfa_exec(). */
+
+typedef struct dfa_recursion_info {
+ struct dfa_recursion_info *prevrec;
+ int group_num;
+ PCRE_PUCHAR subject_position;
+} dfa_recursion_info;
+
+/* Structure for building a chain of data for holding the values of the subject
+pointer at the start of each subpattern, so as to detect when an empty string
+has been matched by a subpattern - to break infinite loops; used by
+pcre_exec(). */
+
+typedef struct eptrblock {
+ struct eptrblock *epb_prev;
+ PCRE_PUCHAR epb_saved_eptr;
+} eptrblock;
+
+
+/* Structure for passing "static" information around between the functions
+doing traditional NFA matching, so that they are thread-safe. */
+
+typedef struct match_data {
+ unsigned long int match_call_count; /* As it says */
+ unsigned long int match_limit; /* As it says */
+ unsigned long int match_limit_recursion; /* As it says */
+ int *offset_vector; /* Offset vector */
+ int offset_end; /* One past the end */
+ int offset_max; /* The maximum usable for return data */
+ int nltype; /* Newline type */
+ int nllen; /* Newline string length */
+ int name_count; /* Number of names in name table */
+ int name_entry_size; /* Size of entry in names table */
+ unsigned int skip_arg_count; /* For counting SKIP_ARGs */
+ unsigned int ignore_skip_arg; /* For re-run when SKIP arg name not found */
+ pcre_uchar *name_table; /* Table of names */
+ pcre_uchar nl[4]; /* Newline string when fixed */
+ const pcre_uint8 *lcc; /* Points to lower casing table */
+ const pcre_uint8 *fcc; /* Points to case-flipping table */
+ const pcre_uint8 *ctypes; /* Points to table of type maps */
+ BOOL notbol; /* NOTBOL flag */
+ BOOL noteol; /* NOTEOL flag */
+ BOOL utf; /* UTF-8 / UTF-16 flag */
+ BOOL jscript_compat; /* JAVASCRIPT_COMPAT flag */
+ BOOL use_ucp; /* PCRE_UCP flag */
+ BOOL endonly; /* Dollar not before final \n */
+ BOOL notempty; /* Empty string match not wanted */
+ BOOL notempty_atstart; /* Empty string match at start not wanted */
+ BOOL hitend; /* Hit the end of the subject at some point */
+ BOOL bsr_anycrlf; /* \R is just any CRLF, not full Unicode */
+ BOOL hasthen; /* Pattern contains (*THEN) */
+ const pcre_uchar *start_code; /* For use when recursing */
+ PCRE_PUCHAR start_subject; /* Start of the subject string */
+ PCRE_PUCHAR end_subject; /* End of the subject string */
+ PCRE_PUCHAR start_match_ptr; /* Start of matched string */
+ PCRE_PUCHAR end_match_ptr; /* Subject position at end match */
+ PCRE_PUCHAR start_used_ptr; /* Earliest consulted character */
+ int partial; /* PARTIAL options */
+ int end_offset_top; /* Highwater mark at end of match */
+ pcre_int32 capture_last; /* Most recent capture number + overflow flag */
+ int start_offset; /* The start offset value */
+ int match_function_type; /* Set for certain special calls of MATCH() */
+ eptrblock *eptrchain; /* Chain of eptrblocks for tail recursions */
+ int eptrn; /* Next free eptrblock */
+ recursion_info *recursive; /* Linked list of recursion data */
+ void *callout_data; /* To pass back to callouts */
+ const pcre_uchar *mark; /* Mark pointer to pass back on success */
+ const pcre_uchar *nomatch_mark;/* Mark pointer to pass back on failure */
+ const pcre_uchar *once_target; /* Where to back up to for atomic groups */
+#ifdef NO_RECURSE
+ void *match_frames_base; /* For remembering malloc'd frames */
+#endif
+} match_data;
+
+/* A similar structure is used for the same purpose by the DFA matching
+functions. */
+
+typedef struct dfa_match_data {
+ const pcre_uchar *start_code; /* Start of the compiled pattern */
+ const pcre_uchar *start_subject ; /* Start of the subject string */
+ const pcre_uchar *end_subject; /* End of subject string */
+ const pcre_uchar *start_used_ptr; /* Earliest consulted character */
+ const pcre_uint8 *tables; /* Character tables */
+ int start_offset; /* The start offset value */
+ int moptions; /* Match options */
+ int poptions; /* Pattern options */
+ int nltype; /* Newline type */
+ int nllen; /* Newline string length */
+ pcre_uchar nl[4]; /* Newline string when fixed */
+ void *callout_data; /* To pass back to callouts */
+ dfa_recursion_info *recursive; /* Linked list of recursion data */
+} dfa_match_data;
+
+/* Bit definitions for entries in the pcre_ctypes table. */
+
+#define ctype_space 0x01
+#define ctype_letter 0x02
+#define ctype_digit 0x04
+#define ctype_xdigit 0x08
+#define ctype_word 0x10 /* alphanumeric or '_' */
+#define ctype_meta 0x80 /* regexp meta char or zero (end pattern) */
+
+/* Offsets for the bitmap tables in pcre_cbits. Each table contains a set
+of bits for a class map. Some classes are built by combining these tables. */
+
+#define cbit_space 0 /* [:space:] or \s */
+#define cbit_xdigit 32 /* [:xdigit:] */
+#define cbit_digit 64 /* [:digit:] or \d */
+#define cbit_upper 96 /* [:upper:] */
+#define cbit_lower 128 /* [:lower:] */
+#define cbit_word 160 /* [:word:] or \w */
+#define cbit_graph 192 /* [:graph:] */
+#define cbit_print 224 /* [:print:] */
+#define cbit_punct 256 /* [:punct:] */
+#define cbit_cntrl 288 /* [:cntrl:] */
+#define cbit_length 320 /* Length of the cbits table */
+
+/* Offsets of the various tables from the base tables pointer, and
+total length. */
+
+#define lcc_offset 0
+#define fcc_offset 256
+#define cbits_offset 512
+#define ctypes_offset (cbits_offset + cbit_length)
+#define tables_length (ctypes_offset + 256)
+
+/* Internal function and data prefixes. */
+
+#if defined COMPILE_PCRE8
+#ifndef PUBL
+#define PUBL(name) pcre_##name
+#endif
+#ifndef PRIV
+#define PRIV(name) _pcre_##name
+#endif
+#elif defined COMPILE_PCRE16
+#ifndef PUBL
+#define PUBL(name) pcre16_##name
+#endif
+#ifndef PRIV
+#define PRIV(name) _pcre16_##name
+#endif
+#elif defined COMPILE_PCRE32
+#ifndef PUBL
+#define PUBL(name) pcre32_##name
+#endif
+#ifndef PRIV
+#define PRIV(name) _pcre32_##name
+#endif
+#else
+#error Unsupported compiling mode
+#endif /* COMPILE_PCRE[8|16|32] */
+
+/* Layout of the UCP type table that translates property names into types and
+codes. Each entry used to point directly to a name, but to reduce the number of
+relocations in shared libraries, it now has an offset into a single string
+instead. */
+
+typedef struct {
+ pcre_uint16 name_offset;
+ pcre_uint16 type;
+ pcre_uint16 value;
+} ucp_type_table;
+
+
+/* Internal shared data tables. These are tables that are used by more than one
+of the exported public functions. They have to be "external" in the C sense,
+but are not part of the PCRE public API. The data for these tables is in the
+pcre_tables.c module. */
+
+#ifdef COMPILE_PCRE8
+extern const int PRIV(utf8_table1)[];
+extern const int PRIV(utf8_table1_size);
+extern const int PRIV(utf8_table2)[];
+extern const int PRIV(utf8_table3)[];
+extern const pcre_uint8 PRIV(utf8_table4)[];
+#endif /* COMPILE_PCRE8 */
+
+extern const char PRIV(utt_names)[];
+extern const ucp_type_table PRIV(utt)[];
+extern const int PRIV(utt_size);
+
+extern const pcre_uint8 PRIV(OP_lengths)[];
+extern const pcre_uint8 PRIV(default_tables)[];
+
+extern const pcre_uint32 PRIV(hspace_list)[];
+extern const pcre_uint32 PRIV(vspace_list)[];
+
+
+/* Internal shared functions. These are functions that are used by more than
+one of the exported public functions. They have to be "external" in the C
+sense, but are not part of the PCRE public API. */
+
+/* String comparison functions. */
+#if defined COMPILE_PCRE8
+
+#define STRCMP_UC_UC(str1, str2) \
+ strcmp((char *)(str1), (char *)(str2))
+#define STRCMP_UC_C8(str1, str2) \
+ strcmp((char *)(str1), (str2))
+#define STRNCMP_UC_UC(str1, str2, num) \
+ strncmp((char *)(str1), (char *)(str2), (num))
+#define STRNCMP_UC_C8(str1, str2, num) \
+ strncmp((char *)(str1), (str2), (num))
+#define STRLEN_UC(str) strlen((const char *)str)
+
+#elif defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+
+extern int PRIV(strcmp_uc_uc)(const pcre_uchar *,
+ const pcre_uchar *);
+extern int PRIV(strcmp_uc_c8)(const pcre_uchar *,
+ const char *);
+extern int PRIV(strncmp_uc_uc)(const pcre_uchar *,
+ const pcre_uchar *, unsigned int num);
+extern int PRIV(strncmp_uc_c8)(const pcre_uchar *,
+ const char *, unsigned int num);
+extern unsigned int PRIV(strlen_uc)(const pcre_uchar *str);
+
+#define STRCMP_UC_UC(str1, str2) \
+ PRIV(strcmp_uc_uc)((str1), (str2))
+#define STRCMP_UC_C8(str1, str2) \
+ PRIV(strcmp_uc_c8)((str1), (str2))
+#define STRNCMP_UC_UC(str1, str2, num) \
+ PRIV(strncmp_uc_uc)((str1), (str2), (num))
+#define STRNCMP_UC_C8(str1, str2, num) \
+ PRIV(strncmp_uc_c8)((str1), (str2), (num))
+#define STRLEN_UC(str) PRIV(strlen_uc)(str)
+
+#endif /* COMPILE_PCRE[8|16|32] */
+
+#if defined COMPILE_PCRE8 || defined COMPILE_PCRE16
+
+#define STRCMP_UC_UC_TEST(str1, str2) STRCMP_UC_UC(str1, str2)
+#define STRCMP_UC_C8_TEST(str1, str2) STRCMP_UC_C8(str1, str2)
+
+#elif defined COMPILE_PCRE32
+
+extern int PRIV(strcmp_uc_uc_utf)(const pcre_uchar *,
+ const pcre_uchar *);
+extern int PRIV(strcmp_uc_c8_utf)(const pcre_uchar *,
+ const char *);
+
+#define STRCMP_UC_UC_TEST(str1, str2) \
+ (utf ? PRIV(strcmp_uc_uc_utf)((str1), (str2)) : PRIV(strcmp_uc_uc)((str1), (str2)))
+#define STRCMP_UC_C8_TEST(str1, str2) \
+ (utf ? PRIV(strcmp_uc_c8_utf)((str1), (str2)) : PRIV(strcmp_uc_c8)((str1), (str2)))
+
+#endif /* COMPILE_PCRE[8|16|32] */
+
+extern const pcre_uchar *PRIV(find_bracket)(const pcre_uchar *, BOOL, int);
+extern BOOL PRIV(is_newline)(PCRE_PUCHAR, int, PCRE_PUCHAR,
+ int *, BOOL);
+extern unsigned int PRIV(ord2utf)(pcre_uint32, pcre_uchar *);
+extern int PRIV(valid_utf)(PCRE_PUCHAR, int, int *);
+extern BOOL PRIV(was_newline)(PCRE_PUCHAR, int, PCRE_PUCHAR,
+ int *, BOOL);
+extern BOOL PRIV(xclass)(pcre_uint32, const pcre_uchar *, BOOL);
+
+#ifdef SUPPORT_JIT
+extern void PRIV(jit_compile)(const REAL_PCRE *,
+ PUBL(extra) *, int);
+extern int PRIV(jit_exec)(const PUBL(extra) *,
+ const pcre_uchar *, int, int, int, int *, int);
+extern void PRIV(jit_free)(void *);
+extern int PRIV(jit_get_size)(void *);
+extern const char* PRIV(jit_get_target)(void);
+#endif
+
+/* Unicode character database (UCD) */
+
+typedef struct {
+ pcre_uint8 script; /* ucp_Arabic, etc. */
+ pcre_uint8 chartype; /* ucp_Cc, etc. (general categories) */
+ pcre_uint8 gbprop; /* ucp_gbControl, etc. (grapheme break property) */
+ pcre_uint8 caseset; /* offset to multichar other cases or zero */
+ pcre_int32 other_case; /* offset to other case, or zero if none */
+} ucd_record;
+
+extern const pcre_uint32 PRIV(ucd_caseless_sets)[];
+extern const ucd_record PRIV(ucd_records)[];
+extern const pcre_uint8 PRIV(ucd_stage1)[];
+extern const pcre_uint16 PRIV(ucd_stage2)[];
+extern const pcre_uint32 PRIV(ucp_gentype)[];
+extern const pcre_uint32 PRIV(ucp_gbtable)[];
+#ifdef SUPPORT_JIT
+extern const int PRIV(ucp_typerange)[];
+#endif
+
+#ifdef SUPPORT_UCP
+/* UCD access macros */
+
+#define UCD_BLOCK_SIZE 128
+#define GET_UCD(ch) (PRIV(ucd_records) + \
+ PRIV(ucd_stage2)[PRIV(ucd_stage1)[(int)(ch) / UCD_BLOCK_SIZE] * \
+ UCD_BLOCK_SIZE + (int)(ch) % UCD_BLOCK_SIZE])
+
+#define UCD_CHARTYPE(ch) GET_UCD(ch)->chartype
+#define UCD_SCRIPT(ch) GET_UCD(ch)->script
+#define UCD_CATEGORY(ch) PRIV(ucp_gentype)[UCD_CHARTYPE(ch)]
+#define UCD_GRAPHBREAK(ch) GET_UCD(ch)->gbprop
+#define UCD_CASESET(ch) GET_UCD(ch)->caseset
+#define UCD_OTHERCASE(ch) ((pcre_uint32)((int)ch + (int)(GET_UCD(ch)->other_case)))
+
+#endif /* SUPPORT_UCP */
+
+#endif
+
+/* End of pcre_internal.h */
diff --git a/pcre/pcre_jit_compile.c b/pcre/pcre_jit_compile.c
new file mode 100644
index 00000000000..201416dd264
--- /dev/null
+++ b/pcre/pcre_jit_compile.c
@@ -0,0 +1,9752 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2013 University of Cambridge
+
+ The machine code generator part (this module) was written by Zoltan Herczeg
+ Copyright (c) 2010-2013
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "pcre_internal.h"
+
+#if defined SUPPORT_JIT
+
+/* All-in-one: Since we use the JIT compiler only from here,
+we just include it. This way we don't need to touch the build
+system files. */
+
+#define SLJIT_MALLOC(size) (PUBL(malloc))(size)
+#define SLJIT_FREE(ptr) (PUBL(free))(ptr)
+#define SLJIT_CONFIG_AUTO 1
+#define SLJIT_CONFIG_STATIC 1
+#define SLJIT_VERBOSE 0
+#define SLJIT_DEBUG 0
+
+#include "sljit/sljitLir.c"
+
+#if defined SLJIT_CONFIG_UNSUPPORTED && SLJIT_CONFIG_UNSUPPORTED
+#error Unsupported architecture
+#endif
+
+/* Defines for debugging purposes. */
+
+/* 1 - Use unoptimized capturing brackets.
+ 2 - Enable capture_last_ptr (includes option 1). */
+/* #define DEBUG_FORCE_UNOPTIMIZED_CBRAS 2 */
+
+/* 1 - Always have a control head. */
+/* #define DEBUG_FORCE_CONTROL_HEAD 1 */
+
+/* Allocate memory for the regex stack on the real machine stack.
+Fast, but limited size. */
+#define MACHINE_STACK_SIZE 32768
+
+/* Growth rate for stack allocated by the OS. Should be the multiply
+of page size. */
+#define STACK_GROWTH_RATE 8192
+
+/* Enable to check that the allocation could destroy temporaries. */
+#if defined SLJIT_DEBUG && SLJIT_DEBUG
+#define DESTROY_REGISTERS 1
+#endif
+
+/*
+Short summary about the backtracking mechanism empolyed by the jit code generator:
+
+The code generator follows the recursive nature of the PERL compatible regular
+expressions. The basic blocks of regular expressions are condition checkers
+whose execute different commands depending on the result of the condition check.
+The relationship between the operators can be horizontal (concatenation) and
+vertical (sub-expression) (See struct backtrack_common for more details).
+
+ 'ab' - 'a' and 'b' regexps are concatenated
+ 'a+' - 'a' is the sub-expression of the '+' operator
+
+The condition checkers are boolean (true/false) checkers. Machine code is generated
+for the checker itself and for the actions depending on the result of the checker.
+The 'true' case is called as the matching path (expected path), and the other is called as
+the 'backtrack' path. Branch instructions are expesive for all CPUs, so we avoid taken
+branches on the matching path.
+
+ Greedy star operator (*) :
+ Matching path: match happens.
+ Backtrack path: match failed.
+ Non-greedy star operator (*?) :
+ Matching path: no need to perform a match.
+ Backtrack path: match is required.
+
+The following example shows how the code generated for a capturing bracket
+with two alternatives. Let A, B, C, D are arbirary regular expressions, and
+we have the following regular expression:
+
+ A(B|C)D
+
+The generated code will be the following:
+
+ A matching path
+ '(' matching path (pushing arguments to the stack)
+ B matching path
+ ')' matching path (pushing arguments to the stack)
+ D matching path
+ return with successful match
+
+ D backtrack path
+ ')' backtrack path (If we arrived from "C" jump to the backtrack of "C")
+ B backtrack path
+ C expected path
+ jump to D matching path
+ C backtrack path
+ A backtrack path
+
+ Notice, that the order of backtrack code paths are the opposite of the fast
+ code paths. In this way the topmost value on the stack is always belong
+ to the current backtrack code path. The backtrack path must check
+ whether there is a next alternative. If so, it needs to jump back to
+ the matching path eventually. Otherwise it needs to clear out its own stack
+ frame and continue the execution on the backtrack code paths.
+*/
+
+/*
+Saved stack frames:
+
+Atomic blocks and asserts require reloading the values of private data
+when the backtrack mechanism performed. Because of OP_RECURSE, the data
+are not necessarly known in compile time, thus we need a dynamic restore
+mechanism.
+
+The stack frames are stored in a chain list, and have the following format:
+([ capturing bracket offset ][ start value ][ end value ])+ ... [ 0 ] [ previous head ]
+
+Thus we can restore the private data to a particular point in the stack.
+*/
+
+typedef struct jit_arguments {
+ /* Pointers first. */
+ struct sljit_stack *stack;
+ const pcre_uchar *str;
+ const pcre_uchar *begin;
+ const pcre_uchar *end;
+ int *offsets;
+ pcre_uchar *uchar_ptr;
+ pcre_uchar *mark_ptr;
+ void *callout_data;
+ /* Everything else after. */
+ pcre_uint32 limit_match;
+ int real_offset_count;
+ int offset_count;
+ pcre_uint8 notbol;
+ pcre_uint8 noteol;
+ pcre_uint8 notempty;
+ pcre_uint8 notempty_atstart;
+} jit_arguments;
+
+typedef struct executable_functions {
+ void *executable_funcs[JIT_NUMBER_OF_COMPILE_MODES];
+ PUBL(jit_callback) callback;
+ void *userdata;
+ pcre_uint32 top_bracket;
+ pcre_uint32 limit_match;
+ sljit_uw executable_sizes[JIT_NUMBER_OF_COMPILE_MODES];
+} executable_functions;
+
+typedef struct jump_list {
+ struct sljit_jump *jump;
+ struct jump_list *next;
+} jump_list;
+
+typedef struct stub_list {
+ struct sljit_jump *start;
+ struct sljit_label *quit;
+ struct stub_list *next;
+} stub_list;
+
+enum frame_types {
+ no_frame = -1,
+ no_stack = -2
+};
+
+enum control_types {
+ type_mark = 0,
+ type_then_trap = 1
+};
+
+typedef int (SLJIT_CALL *jit_function)(jit_arguments *args);
+
+/* The following structure is the key data type for the recursive
+code generator. It is allocated by compile_matchingpath, and contains
+the arguments for compile_backtrackingpath. Must be the first member
+of its descendants. */
+typedef struct backtrack_common {
+ /* Concatenation stack. */
+ struct backtrack_common *prev;
+ jump_list *nextbacktracks;
+ /* Internal stack (for component operators). */
+ struct backtrack_common *top;
+ jump_list *topbacktracks;
+ /* Opcode pointer. */
+ pcre_uchar *cc;
+} backtrack_common;
+
+typedef struct assert_backtrack {
+ backtrack_common common;
+ jump_list *condfailed;
+ /* Less than 0 if a frame is not needed. */
+ int framesize;
+ /* Points to our private memory word on the stack. */
+ int private_data_ptr;
+ /* For iterators. */
+ struct sljit_label *matchingpath;
+} assert_backtrack;
+
+typedef struct bracket_backtrack {
+ backtrack_common common;
+ /* Where to coninue if an alternative is successfully matched. */
+ struct sljit_label *alternative_matchingpath;
+ /* For rmin and rmax iterators. */
+ struct sljit_label *recursive_matchingpath;
+ /* For greedy ? operator. */
+ struct sljit_label *zero_matchingpath;
+ /* Contains the branches of a failed condition. */
+ union {
+ /* Both for OP_COND, OP_SCOND. */
+ jump_list *condfailed;
+ assert_backtrack *assert;
+ /* For OP_ONCE. Less than 0 if not needed. */
+ int framesize;
+ } u;
+ /* Points to our private memory word on the stack. */
+ int private_data_ptr;
+} bracket_backtrack;
+
+typedef struct bracketpos_backtrack {
+ backtrack_common common;
+ /* Points to our private memory word on the stack. */
+ int private_data_ptr;
+ /* Reverting stack is needed. */
+ int framesize;
+ /* Allocated stack size. */
+ int stacksize;
+} bracketpos_backtrack;
+
+typedef struct braminzero_backtrack {
+ backtrack_common common;
+ struct sljit_label *matchingpath;
+} braminzero_backtrack;
+
+typedef struct iterator_backtrack {
+ backtrack_common common;
+ /* Next iteration. */
+ struct sljit_label *matchingpath;
+} iterator_backtrack;
+
+typedef struct recurse_entry {
+ struct recurse_entry *next;
+ /* Contains the function entry. */
+ struct sljit_label *entry;
+ /* Collects the calls until the function is not created. */
+ jump_list *calls;
+ /* Points to the starting opcode. */
+ sljit_sw start;
+} recurse_entry;
+
+typedef struct recurse_backtrack {
+ backtrack_common common;
+ BOOL inlined_pattern;
+} recurse_backtrack;
+
+#define OP_THEN_TRAP OP_TABLE_LENGTH
+
+typedef struct then_trap_backtrack {
+ backtrack_common common;
+ /* If then_trap is not NULL, this structure contains the real
+ then_trap for the backtracking path. */
+ struct then_trap_backtrack *then_trap;
+ /* Points to the starting opcode. */
+ sljit_sw start;
+ /* Exit point for the then opcodes of this alternative. */
+ jump_list *quit;
+ /* Frame size of the current alternative. */
+ int framesize;
+} then_trap_backtrack;
+
+#define MAX_RANGE_SIZE 6
+
+typedef struct compiler_common {
+ /* The sljit ceneric compiler. */
+ struct sljit_compiler *compiler;
+ /* First byte code. */
+ pcre_uchar *start;
+ /* Maps private data offset to each opcode. */
+ sljit_si *private_data_ptrs;
+ /* Tells whether the capturing bracket is optimized. */
+ pcre_uint8 *optimized_cbracket;
+ /* Tells whether the starting offset is a target of then. */
+ pcre_uint8 *then_offsets;
+ /* Current position where a THEN must jump. */
+ then_trap_backtrack *then_trap;
+ /* Starting offset of private data for capturing brackets. */
+ int cbra_ptr;
+ /* Output vector starting point. Must be divisible by 2. */
+ int ovector_start;
+ /* Last known position of the requested byte. */
+ int req_char_ptr;
+ /* Head of the last recursion. */
+ int recursive_head_ptr;
+ /* First inspected character for partial matching. */
+ int start_used_ptr;
+ /* Starting pointer for partial soft matches. */
+ int hit_start;
+ /* End pointer of the first line. */
+ int first_line_end;
+ /* Points to the marked string. */
+ int mark_ptr;
+ /* Recursive control verb management chain. */
+ int control_head_ptr;
+ /* Points to the last matched capture block index. */
+ int capture_last_ptr;
+ /* Points to the starting position of the current match. */
+ int start_ptr;
+
+ /* Flipped and lower case tables. */
+ const pcre_uint8 *fcc;
+ sljit_sw lcc;
+ /* Mode can be PCRE_STUDY_JIT_COMPILE and others. */
+ int mode;
+ /* \K is found in the pattern. */
+ BOOL has_set_som;
+ /* (*SKIP:arg) is found in the pattern. */
+ BOOL has_skip_arg;
+ /* (*THEN) is found in the pattern. */
+ BOOL has_then;
+ /* Needs to know the start position anytime. */
+ BOOL needs_start_ptr;
+ /* Currently in recurse or negative assert. */
+ BOOL local_exit;
+ /* Currently in a positive assert. */
+ BOOL positive_assert;
+ /* Newline control. */
+ int nltype;
+ int newline;
+ int bsr_nltype;
+ /* Dollar endonly. */
+ int endonly;
+ /* Tables. */
+ sljit_sw ctypes;
+ int digits[2 + MAX_RANGE_SIZE];
+ /* Named capturing brackets. */
+ sljit_uw name_table;
+ sljit_sw name_count;
+ sljit_sw name_entry_size;
+
+ /* Labels and jump lists. */
+ struct sljit_label *partialmatchlabel;
+ struct sljit_label *quit_label;
+ struct sljit_label *forced_quit_label;
+ struct sljit_label *accept_label;
+ stub_list *stubs;
+ recurse_entry *entries;
+ recurse_entry *currententry;
+ jump_list *partialmatch;
+ jump_list *quit;
+ jump_list *positive_assert_quit;
+ jump_list *forced_quit;
+ jump_list *accept;
+ jump_list *calllimit;
+ jump_list *stackalloc;
+ jump_list *revertframes;
+ jump_list *wordboundary;
+ jump_list *anynewline;
+ jump_list *hspace;
+ jump_list *vspace;
+ jump_list *casefulcmp;
+ jump_list *caselesscmp;
+ jump_list *reset_match;
+ BOOL jscript_compat;
+#ifdef SUPPORT_UTF
+ BOOL utf;
+#ifdef SUPPORT_UCP
+ BOOL use_ucp;
+#endif
+#ifndef COMPILE_PCRE32
+ jump_list *utfreadchar;
+#endif
+#ifdef COMPILE_PCRE8
+ jump_list *utfreadtype8;
+#endif
+#endif /* SUPPORT_UTF */
+#ifdef SUPPORT_UCP
+ jump_list *getucd;
+#endif
+} compiler_common;
+
+/* For byte_sequence_compare. */
+
+typedef struct compare_context {
+ int length;
+ int sourcereg;
+#if defined SLJIT_UNALIGNED && SLJIT_UNALIGNED
+ int ucharptr;
+ union {
+ sljit_si asint;
+ sljit_uh asushort;
+#if defined COMPILE_PCRE8
+ sljit_ub asbyte;
+ sljit_ub asuchars[4];
+#elif defined COMPILE_PCRE16
+ sljit_uh asuchars[2];
+#elif defined COMPILE_PCRE32
+ sljit_ui asuchars[1];
+#endif
+ } c;
+ union {
+ sljit_si asint;
+ sljit_uh asushort;
+#if defined COMPILE_PCRE8
+ sljit_ub asbyte;
+ sljit_ub asuchars[4];
+#elif defined COMPILE_PCRE16
+ sljit_uh asuchars[2];
+#elif defined COMPILE_PCRE32
+ sljit_ui asuchars[1];
+#endif
+ } oc;
+#endif
+} compare_context;
+
+/* Undefine sljit macros. */
+#undef CMP
+
+/* Used for accessing the elements of the stack. */
+#define STACK(i) ((-(i) - 1) * (int)sizeof(sljit_sw))
+
+#define TMP1 SLJIT_SCRATCH_REG1
+#define TMP2 SLJIT_SCRATCH_REG3
+#define TMP3 SLJIT_TEMPORARY_EREG2
+#define STR_PTR SLJIT_SAVED_REG1
+#define STR_END SLJIT_SAVED_REG2
+#define STACK_TOP SLJIT_SCRATCH_REG2
+#define STACK_LIMIT SLJIT_SAVED_REG3
+#define ARGUMENTS SLJIT_SAVED_EREG1
+#define COUNT_MATCH SLJIT_SAVED_EREG2
+#define RETURN_ADDR SLJIT_TEMPORARY_EREG1
+
+/* Local space layout. */
+/* These two locals can be used by the current opcode. */
+#define LOCALS0 (0 * sizeof(sljit_sw))
+#define LOCALS1 (1 * sizeof(sljit_sw))
+/* Two local variables for possessive quantifiers (char1 cannot use them). */
+#define POSSESSIVE0 (2 * sizeof(sljit_sw))
+#define POSSESSIVE1 (3 * sizeof(sljit_sw))
+/* Max limit of recursions. */
+#define LIMIT_MATCH (4 * sizeof(sljit_sw))
+/* The output vector is stored on the stack, and contains pointers
+to characters. The vector data is divided into two groups: the first
+group contains the start / end character pointers, and the second is
+the start pointers when the end of the capturing group has not yet reached. */
+#define OVECTOR_START (common->ovector_start)
+#define OVECTOR(i) (OVECTOR_START + (i) * sizeof(sljit_sw))
+#define OVECTOR_PRIV(i) (common->cbra_ptr + (i) * sizeof(sljit_sw))
+#define PRIVATE_DATA(cc) (common->private_data_ptrs[(cc) - common->start])
+
+#if defined COMPILE_PCRE8
+#define MOV_UCHAR SLJIT_MOV_UB
+#define MOVU_UCHAR SLJIT_MOVU_UB
+#elif defined COMPILE_PCRE16
+#define MOV_UCHAR SLJIT_MOV_UH
+#define MOVU_UCHAR SLJIT_MOVU_UH
+#elif defined COMPILE_PCRE32
+#define MOV_UCHAR SLJIT_MOV_UI
+#define MOVU_UCHAR SLJIT_MOVU_UI
+#else
+#error Unsupported compiling mode
+#endif
+
+/* Shortcuts. */
+#define DEFINE_COMPILER \
+ struct sljit_compiler *compiler = common->compiler
+#define OP1(op, dst, dstw, src, srcw) \
+ sljit_emit_op1(compiler, (op), (dst), (dstw), (src), (srcw))
+#define OP2(op, dst, dstw, src1, src1w, src2, src2w) \
+ sljit_emit_op2(compiler, (op), (dst), (dstw), (src1), (src1w), (src2), (src2w))
+#define LABEL() \
+ sljit_emit_label(compiler)
+#define JUMP(type) \
+ sljit_emit_jump(compiler, (type))
+#define JUMPTO(type, label) \
+ sljit_set_label(sljit_emit_jump(compiler, (type)), (label))
+#define JUMPHERE(jump) \
+ sljit_set_label((jump), sljit_emit_label(compiler))
+#define SET_LABEL(jump, label) \
+ sljit_set_label((jump), (label))
+#define CMP(type, src1, src1w, src2, src2w) \
+ sljit_emit_cmp(compiler, (type), (src1), (src1w), (src2), (src2w))
+#define CMPTO(type, src1, src1w, src2, src2w, label) \
+ sljit_set_label(sljit_emit_cmp(compiler, (type), (src1), (src1w), (src2), (src2w)), (label))
+#define OP_FLAGS(op, dst, dstw, src, srcw, type) \
+ sljit_emit_op_flags(compiler, (op), (dst), (dstw), (src), (srcw), (type))
+#define GET_LOCAL_BASE(dst, dstw, offset) \
+ sljit_get_local_base(compiler, (dst), (dstw), (offset))
+
+static pcre_uchar* bracketend(pcre_uchar* cc)
+{
+SLJIT_ASSERT((*cc >= OP_ASSERT && *cc <= OP_ASSERTBACK_NOT) || (*cc >= OP_ONCE && *cc <= OP_SCOND));
+do cc += GET(cc, 1); while (*cc == OP_ALT);
+SLJIT_ASSERT(*cc >= OP_KET && *cc <= OP_KETRPOS);
+cc += 1 + LINK_SIZE;
+return cc;
+}
+
+/* Functions whose might need modification for all new supported opcodes:
+ next_opcode
+ check_opcode_types
+ set_private_data_ptrs
+ get_framesize
+ init_frame
+ get_private_data_copy_length
+ copy_private_data
+ compile_matchingpath
+ compile_backtrackingpath
+*/
+
+static pcre_uchar *next_opcode(compiler_common *common, pcre_uchar *cc)
+{
+SLJIT_UNUSED_ARG(common);
+switch(*cc)
+ {
+ case OP_SOD:
+ case OP_SOM:
+ case OP_SET_SOM:
+ case OP_NOT_WORD_BOUNDARY:
+ case OP_WORD_BOUNDARY:
+ case OP_NOT_DIGIT:
+ case OP_DIGIT:
+ case OP_NOT_WHITESPACE:
+ case OP_WHITESPACE:
+ case OP_NOT_WORDCHAR:
+ case OP_WORDCHAR:
+ case OP_ANY:
+ case OP_ALLANY:
+ case OP_NOTPROP:
+ case OP_PROP:
+ case OP_ANYNL:
+ case OP_NOT_HSPACE:
+ case OP_HSPACE:
+ case OP_NOT_VSPACE:
+ case OP_VSPACE:
+ case OP_EXTUNI:
+ case OP_EODN:
+ case OP_EOD:
+ case OP_CIRC:
+ case OP_CIRCM:
+ case OP_DOLL:
+ case OP_DOLLM:
+ case OP_CRSTAR:
+ case OP_CRMINSTAR:
+ case OP_CRPLUS:
+ case OP_CRMINPLUS:
+ case OP_CRQUERY:
+ case OP_CRMINQUERY:
+ case OP_CRRANGE:
+ case OP_CRMINRANGE:
+ case OP_CLASS:
+ case OP_NCLASS:
+ case OP_REF:
+ case OP_REFI:
+ case OP_RECURSE:
+ case OP_CALLOUT:
+ case OP_ALT:
+ case OP_KET:
+ case OP_KETRMAX:
+ case OP_KETRMIN:
+ case OP_KETRPOS:
+ case OP_REVERSE:
+ case OP_ASSERT:
+ case OP_ASSERT_NOT:
+ case OP_ASSERTBACK:
+ case OP_ASSERTBACK_NOT:
+ case OP_ONCE:
+ case OP_ONCE_NC:
+ case OP_BRA:
+ case OP_BRAPOS:
+ case OP_CBRA:
+ case OP_CBRAPOS:
+ case OP_COND:
+ case OP_SBRA:
+ case OP_SBRAPOS:
+ case OP_SCBRA:
+ case OP_SCBRAPOS:
+ case OP_SCOND:
+ case OP_CREF:
+ case OP_NCREF:
+ case OP_RREF:
+ case OP_NRREF:
+ case OP_DEF:
+ case OP_BRAZERO:
+ case OP_BRAMINZERO:
+ case OP_BRAPOSZERO:
+ case OP_PRUNE:
+ case OP_SKIP:
+ case OP_THEN:
+ case OP_COMMIT:
+ case OP_FAIL:
+ case OP_ACCEPT:
+ case OP_ASSERT_ACCEPT:
+ case OP_CLOSE:
+ case OP_SKIPZERO:
+ return cc + PRIV(OP_lengths)[*cc];
+
+ case OP_CHAR:
+ case OP_CHARI:
+ case OP_NOT:
+ case OP_NOTI:
+ case OP_STAR:
+ case OP_MINSTAR:
+ case OP_PLUS:
+ case OP_MINPLUS:
+ case OP_QUERY:
+ case OP_MINQUERY:
+ case OP_UPTO:
+ case OP_MINUPTO:
+ case OP_EXACT:
+ case OP_POSSTAR:
+ case OP_POSPLUS:
+ case OP_POSQUERY:
+ case OP_POSUPTO:
+ case OP_STARI:
+ case OP_MINSTARI:
+ case OP_PLUSI:
+ case OP_MINPLUSI:
+ case OP_QUERYI:
+ case OP_MINQUERYI:
+ case OP_UPTOI:
+ case OP_MINUPTOI:
+ case OP_EXACTI:
+ case OP_POSSTARI:
+ case OP_POSPLUSI:
+ case OP_POSQUERYI:
+ case OP_POSUPTOI:
+ case OP_NOTSTAR:
+ case OP_NOTMINSTAR:
+ case OP_NOTPLUS:
+ case OP_NOTMINPLUS:
+ case OP_NOTQUERY:
+ case OP_NOTMINQUERY:
+ case OP_NOTUPTO:
+ case OP_NOTMINUPTO:
+ case OP_NOTEXACT:
+ case OP_NOTPOSSTAR:
+ case OP_NOTPOSPLUS:
+ case OP_NOTPOSQUERY:
+ case OP_NOTPOSUPTO:
+ case OP_NOTSTARI:
+ case OP_NOTMINSTARI:
+ case OP_NOTPLUSI:
+ case OP_NOTMINPLUSI:
+ case OP_NOTQUERYI:
+ case OP_NOTMINQUERYI:
+ case OP_NOTUPTOI:
+ case OP_NOTMINUPTOI:
+ case OP_NOTEXACTI:
+ case OP_NOTPOSSTARI:
+ case OP_NOTPOSPLUSI:
+ case OP_NOTPOSQUERYI:
+ case OP_NOTPOSUPTOI:
+ cc += PRIV(OP_lengths)[*cc];
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+ return cc;
+
+ /* Special cases. */
+ case OP_TYPESTAR:
+ case OP_TYPEMINSTAR:
+ case OP_TYPEPLUS:
+ case OP_TYPEMINPLUS:
+ case OP_TYPEQUERY:
+ case OP_TYPEMINQUERY:
+ case OP_TYPEUPTO:
+ case OP_TYPEMINUPTO:
+ case OP_TYPEEXACT:
+ case OP_TYPEPOSSTAR:
+ case OP_TYPEPOSPLUS:
+ case OP_TYPEPOSQUERY:
+ case OP_TYPEPOSUPTO:
+ return cc + PRIV(OP_lengths)[*cc] - 1;
+
+ case OP_ANYBYTE:
+#ifdef SUPPORT_UTF
+ if (common->utf) return NULL;
+#endif
+ return cc + 1;
+
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ case OP_XCLASS:
+ return cc + GET(cc, 1);
+#endif
+
+ case OP_MARK:
+ case OP_PRUNE_ARG:
+ case OP_SKIP_ARG:
+ case OP_THEN_ARG:
+ return cc + 1 + 2 + cc[1];
+
+ default:
+ /* All opcodes are supported now! */
+ SLJIT_ASSERT_STOP();
+ return NULL;
+ }
+}
+
+static BOOL check_opcode_types(compiler_common *common, pcre_uchar *cc, pcre_uchar *ccend)
+{
+pcre_uchar *name;
+pcre_uchar *name2;
+unsigned int cbra_index;
+int i;
+
+/* Calculate important variables (like stack size) and checks whether all opcodes are supported. */
+while (cc < ccend)
+ {
+ switch(*cc)
+ {
+ case OP_SET_SOM:
+ common->has_set_som = TRUE;
+ cc += 1;
+ break;
+
+ case OP_REF:
+ case OP_REFI:
+ common->optimized_cbracket[GET2(cc, 1)] = 0;
+ cc += 1 + IMM2_SIZE;
+ break;
+
+ case OP_CBRAPOS:
+ case OP_SCBRAPOS:
+ common->optimized_cbracket[GET2(cc, 1 + LINK_SIZE)] = 0;
+ cc += 1 + LINK_SIZE + IMM2_SIZE;
+ break;
+
+ case OP_COND:
+ case OP_SCOND:
+ /* Only AUTO_CALLOUT can insert this opcode. We do
+ not intend to support this case. */
+ if (cc[1 + LINK_SIZE] == OP_CALLOUT)
+ return FALSE;
+ cc += 1 + LINK_SIZE;
+ break;
+
+ case OP_CREF:
+ i = GET2(cc, 1);
+ common->optimized_cbracket[i] = 0;
+ cc += 1 + IMM2_SIZE;
+ break;
+
+ case OP_NCREF:
+ cbra_index = GET2(cc, 1);
+ name = (pcre_uchar *)common->name_table;
+ name2 = name;
+ for (i = 0; i < common->name_count; i++)
+ {
+ if (GET2(name, 0) == cbra_index) break;
+ name += common->name_entry_size;
+ }
+ SLJIT_ASSERT(i != common->name_count);
+
+ for (i = 0; i < common->name_count; i++)
+ {
+ if (STRCMP_UC_UC(name2 + IMM2_SIZE, name + IMM2_SIZE) == 0)
+ common->optimized_cbracket[GET2(name2, 0)] = 0;
+ name2 += common->name_entry_size;
+ }
+ cc += 1 + IMM2_SIZE;
+ break;
+
+ case OP_RECURSE:
+ /* Set its value only once. */
+ if (common->recursive_head_ptr == 0)
+ {
+ common->recursive_head_ptr = common->ovector_start;
+ common->ovector_start += sizeof(sljit_sw);
+ }
+ cc += 1 + LINK_SIZE;
+ break;
+
+ case OP_CALLOUT:
+ if (common->capture_last_ptr == 0)
+ {
+ common->capture_last_ptr = common->ovector_start;
+ common->ovector_start += sizeof(sljit_sw);
+ }
+ cc += 2 + 2 * LINK_SIZE;
+ break;
+
+ case OP_THEN_ARG:
+ common->has_then = TRUE;
+ common->control_head_ptr = 1;
+ /* Fall through. */
+
+ case OP_PRUNE_ARG:
+ common->needs_start_ptr = TRUE;
+ /* Fall through. */
+
+ case OP_MARK:
+ if (common->mark_ptr == 0)
+ {
+ common->mark_ptr = common->ovector_start;
+ common->ovector_start += sizeof(sljit_sw);
+ }
+ cc += 1 + 2 + cc[1];
+ break;
+
+ case OP_THEN:
+ common->has_then = TRUE;
+ common->control_head_ptr = 1;
+ /* Fall through. */
+
+ case OP_PRUNE:
+ case OP_SKIP:
+ common->needs_start_ptr = TRUE;
+ cc += 1;
+ break;
+
+ case OP_SKIP_ARG:
+ common->control_head_ptr = 1;
+ common->has_skip_arg = TRUE;
+ cc += 1 + 2 + cc[1];
+ break;
+
+ default:
+ cc = next_opcode(common, cc);
+ if (cc == NULL)
+ return FALSE;
+ break;
+ }
+ }
+return TRUE;
+}
+
+static int get_class_iterator_size(pcre_uchar *cc)
+{
+switch(*cc)
+ {
+ case OP_CRSTAR:
+ case OP_CRPLUS:
+ return 2;
+
+ case OP_CRMINSTAR:
+ case OP_CRMINPLUS:
+ case OP_CRQUERY:
+ case OP_CRMINQUERY:
+ return 1;
+
+ case OP_CRRANGE:
+ case OP_CRMINRANGE:
+ if (GET2(cc, 1) == GET2(cc, 1 + IMM2_SIZE))
+ return 0;
+ return 2;
+
+ default:
+ return 0;
+ }
+}
+
+static BOOL detect_repeat(compiler_common *common, pcre_uchar *begin)
+{
+pcre_uchar *end = bracketend(begin);
+pcre_uchar *next;
+pcre_uchar *next_end;
+pcre_uchar *max_end;
+pcre_uchar type;
+sljit_sw length = end - begin;
+int min, max, i;
+
+/* Detect fixed iterations first. */
+if (end[-(1 + LINK_SIZE)] != OP_KET)
+ return FALSE;
+
+/* Already detected repeat. */
+if (common->private_data_ptrs[end - common->start - LINK_SIZE] != 0)
+ return TRUE;
+
+next = end;
+min = 1;
+while (1)
+ {
+ if (*next != *begin)
+ break;
+ next_end = bracketend(next);
+ if (next_end - next != length || memcmp(begin, next, IN_UCHARS(length)) != 0)
+ break;
+ next = next_end;
+ min++;
+ }
+
+if (min == 2)
+ return FALSE;
+
+max = 0;
+max_end = next;
+if (*next == OP_BRAZERO || *next == OP_BRAMINZERO)
+ {
+ type = *next;
+ while (1)
+ {
+ if (next[0] != type || next[1] != OP_BRA || next[2 + LINK_SIZE] != *begin)
+ break;
+ next_end = bracketend(next + 2 + LINK_SIZE);
+ if (next_end - next != (length + 2 + LINK_SIZE) || memcmp(begin, next + 2 + LINK_SIZE, IN_UCHARS(length)) != 0)
+ break;
+ next = next_end;
+ max++;
+ }
+
+ if (next[0] == type && next[1] == *begin && max >= 1)
+ {
+ next_end = bracketend(next + 1);
+ if (next_end - next == (length + 1) && memcmp(begin, next + 1, IN_UCHARS(length)) == 0)
+ {
+ for (i = 0; i < max; i++, next_end += 1 + LINK_SIZE)
+ if (*next_end != OP_KET)
+ break;
+
+ if (i == max)
+ {
+ common->private_data_ptrs[max_end - common->start - LINK_SIZE] = next_end - max_end;
+ common->private_data_ptrs[max_end - common->start - LINK_SIZE + 1] = (type == OP_BRAZERO) ? OP_UPTO : OP_MINUPTO;
+ /* +2 the original and the last. */
+ common->private_data_ptrs[max_end - common->start - LINK_SIZE + 2] = max + 2;
+ if (min == 1)
+ return TRUE;
+ min--;
+ max_end -= (1 + LINK_SIZE) + GET(max_end, -LINK_SIZE);
+ }
+ }
+ }
+ }
+
+if (min >= 3)
+ {
+ common->private_data_ptrs[end - common->start - LINK_SIZE] = max_end - end;
+ common->private_data_ptrs[end - common->start - LINK_SIZE + 1] = OP_EXACT;
+ common->private_data_ptrs[end - common->start - LINK_SIZE + 2] = min;
+ return TRUE;
+ }
+
+return FALSE;
+}
+
+#define CASE_ITERATOR_PRIVATE_DATA_1 \
+ case OP_MINSTAR: \
+ case OP_MINPLUS: \
+ case OP_QUERY: \
+ case OP_MINQUERY: \
+ case OP_MINSTARI: \
+ case OP_MINPLUSI: \
+ case OP_QUERYI: \
+ case OP_MINQUERYI: \
+ case OP_NOTMINSTAR: \
+ case OP_NOTMINPLUS: \
+ case OP_NOTQUERY: \
+ case OP_NOTMINQUERY: \
+ case OP_NOTMINSTARI: \
+ case OP_NOTMINPLUSI: \
+ case OP_NOTQUERYI: \
+ case OP_NOTMINQUERYI:
+
+#define CASE_ITERATOR_PRIVATE_DATA_2A \
+ case OP_STAR: \
+ case OP_PLUS: \
+ case OP_STARI: \
+ case OP_PLUSI: \
+ case OP_NOTSTAR: \
+ case OP_NOTPLUS: \
+ case OP_NOTSTARI: \
+ case OP_NOTPLUSI:
+
+#define CASE_ITERATOR_PRIVATE_DATA_2B \
+ case OP_UPTO: \
+ case OP_MINUPTO: \
+ case OP_UPTOI: \
+ case OP_MINUPTOI: \
+ case OP_NOTUPTO: \
+ case OP_NOTMINUPTO: \
+ case OP_NOTUPTOI: \
+ case OP_NOTMINUPTOI:
+
+#define CASE_ITERATOR_TYPE_PRIVATE_DATA_1 \
+ case OP_TYPEMINSTAR: \
+ case OP_TYPEMINPLUS: \
+ case OP_TYPEQUERY: \
+ case OP_TYPEMINQUERY:
+
+#define CASE_ITERATOR_TYPE_PRIVATE_DATA_2A \
+ case OP_TYPESTAR: \
+ case OP_TYPEPLUS:
+
+#define CASE_ITERATOR_TYPE_PRIVATE_DATA_2B \
+ case OP_TYPEUPTO: \
+ case OP_TYPEMINUPTO:
+
+static void set_private_data_ptrs(compiler_common *common, int *private_data_start, pcre_uchar *ccend)
+{
+pcre_uchar *cc = common->start;
+pcre_uchar *alternative;
+pcre_uchar *end = NULL;
+int private_data_ptr = *private_data_start;
+int space, size, bracketlen;
+
+while (cc < ccend)
+ {
+ space = 0;
+ size = 0;
+ bracketlen = 0;
+ if (private_data_ptr > SLJIT_MAX_LOCAL_SIZE)
+ return;
+
+ if (*cc == OP_ONCE || *cc == OP_ONCE_NC || *cc == OP_BRA || *cc == OP_CBRA || *cc == OP_COND)
+ if (detect_repeat(common, cc))
+ {
+ /* These brackets are converted to repeats, so no global
+ based single character repeat is allowed. */
+ if (cc >= end)
+ end = bracketend(cc);
+ }
+
+ switch(*cc)
+ {
+ case OP_KET:
+ if (common->private_data_ptrs[cc + 1 - common->start] != 0)
+ {
+ common->private_data_ptrs[cc - common->start] = private_data_ptr;
+ private_data_ptr += sizeof(sljit_sw);
+ cc += common->private_data_ptrs[cc + 1 - common->start];
+ }
+ cc += 1 + LINK_SIZE;
+ break;
+
+ case OP_ASSERT:
+ case OP_ASSERT_NOT:
+ case OP_ASSERTBACK:
+ case OP_ASSERTBACK_NOT:
+ case OP_ONCE:
+ case OP_ONCE_NC:
+ case OP_BRAPOS:
+ case OP_SBRA:
+ case OP_SBRAPOS:
+ case OP_SCOND:
+ common->private_data_ptrs[cc - common->start] = private_data_ptr;
+ private_data_ptr += sizeof(sljit_sw);
+ bracketlen = 1 + LINK_SIZE;
+ break;
+
+ case OP_CBRAPOS:
+ case OP_SCBRAPOS:
+ common->private_data_ptrs[cc - common->start] = private_data_ptr;
+ private_data_ptr += sizeof(sljit_sw);
+ bracketlen = 1 + LINK_SIZE + IMM2_SIZE;
+ break;
+
+ case OP_COND:
+ /* Might be a hidden SCOND. */
+ alternative = cc + GET(cc, 1);
+ if (*alternative == OP_KETRMAX || *alternative == OP_KETRMIN)
+ {
+ common->private_data_ptrs[cc - common->start] = private_data_ptr;
+ private_data_ptr += sizeof(sljit_sw);
+ }
+ bracketlen = 1 + LINK_SIZE;
+ break;
+
+ case OP_BRA:
+ bracketlen = 1 + LINK_SIZE;
+ break;
+
+ case OP_CBRA:
+ case OP_SCBRA:
+ bracketlen = 1 + LINK_SIZE + IMM2_SIZE;
+ break;
+
+ CASE_ITERATOR_PRIVATE_DATA_1
+ space = 1;
+ size = -2;
+ break;
+
+ CASE_ITERATOR_PRIVATE_DATA_2A
+ space = 2;
+ size = -2;
+ break;
+
+ CASE_ITERATOR_PRIVATE_DATA_2B
+ space = 2;
+ size = -(2 + IMM2_SIZE);
+ break;
+
+ CASE_ITERATOR_TYPE_PRIVATE_DATA_1
+ space = 1;
+ size = 1;
+ break;
+
+ CASE_ITERATOR_TYPE_PRIVATE_DATA_2A
+ if (cc[1] != OP_ANYNL && cc[1] != OP_EXTUNI)
+ space = 2;
+ size = 1;
+ break;
+
+ CASE_ITERATOR_TYPE_PRIVATE_DATA_2B
+ if (cc[1 + IMM2_SIZE] != OP_ANYNL && cc[1 + IMM2_SIZE] != OP_EXTUNI)
+ space = 2;
+ size = 1 + IMM2_SIZE;
+ break;
+
+ case OP_CLASS:
+ case OP_NCLASS:
+ size += 1 + 32 / sizeof(pcre_uchar);
+ space = get_class_iterator_size(cc + size);
+ break;
+
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ case OP_XCLASS:
+ size = GET(cc, 1);
+ space = get_class_iterator_size(cc + size);
+ break;
+#endif
+
+ default:
+ cc = next_opcode(common, cc);
+ SLJIT_ASSERT(cc != NULL);
+ break;
+ }
+
+ /* Character iterators, which are not inside a repeated bracket,
+ gets a private slot instead of allocating it on the stack. */
+ if (space > 0 && cc >= end)
+ {
+ common->private_data_ptrs[cc - common->start] = private_data_ptr;
+ private_data_ptr += sizeof(sljit_sw) * space;
+ }
+
+ if (size != 0)
+ {
+ if (size < 0)
+ {
+ cc += -size;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+ }
+ else
+ cc += size;
+ }
+
+ if (bracketlen > 0)
+ {
+ if (cc >= end)
+ {
+ end = bracketend(cc);
+ if (end[-1 - LINK_SIZE] == OP_KET)
+ end = NULL;
+ }
+ cc += bracketlen;
+ }
+ }
+*private_data_start = private_data_ptr;
+}
+
+/* Returns with a frame_types (always < 0) if no need for frame. */
+static int get_framesize(compiler_common *common, pcre_uchar *cc, pcre_uchar *ccend, BOOL recursive, BOOL* needs_control_head)
+{
+int length = 0;
+int possessive = 0;
+BOOL stack_restore = FALSE;
+BOOL setsom_found = recursive;
+BOOL setmark_found = recursive;
+/* The last capture is a local variable even for recursions. */
+BOOL capture_last_found = FALSE;
+
+#if defined DEBUG_FORCE_CONTROL_HEAD && DEBUG_FORCE_CONTROL_HEAD
+SLJIT_ASSERT(common->control_head_ptr != 0);
+*needs_control_head = TRUE;
+#else
+*needs_control_head = FALSE;
+#endif
+
+if (ccend == NULL)
+ {
+ ccend = bracketend(cc) - (1 + LINK_SIZE);
+ if (!recursive && (*cc == OP_CBRAPOS || *cc == OP_SCBRAPOS))
+ {
+ possessive = length = (common->capture_last_ptr != 0) ? 5 : 3;
+ /* This is correct regardless of common->capture_last_ptr. */
+ capture_last_found = TRUE;
+ }
+ cc = next_opcode(common, cc);
+ }
+
+SLJIT_ASSERT(cc != NULL);
+while (cc < ccend)
+ switch(*cc)
+ {
+ case OP_SET_SOM:
+ SLJIT_ASSERT(common->has_set_som);
+ stack_restore = TRUE;
+ if (!setsom_found)
+ {
+ length += 2;
+ setsom_found = TRUE;
+ }
+ cc += 1;
+ break;
+
+ case OP_MARK:
+ case OP_PRUNE_ARG:
+ case OP_THEN_ARG:
+ SLJIT_ASSERT(common->mark_ptr != 0);
+ stack_restore = TRUE;
+ if (!setmark_found)
+ {
+ length += 2;
+ setmark_found = TRUE;
+ }
+ if (common->control_head_ptr != 0)
+ *needs_control_head = TRUE;
+ cc += 1 + 2 + cc[1];
+ break;
+
+ case OP_RECURSE:
+ stack_restore = TRUE;
+ if (common->has_set_som && !setsom_found)
+ {
+ length += 2;
+ setsom_found = TRUE;
+ }
+ if (common->mark_ptr != 0 && !setmark_found)
+ {
+ length += 2;
+ setmark_found = TRUE;
+ }
+ if (common->capture_last_ptr != 0 && !capture_last_found)
+ {
+ length += 2;
+ capture_last_found = TRUE;
+ }
+ cc += 1 + LINK_SIZE;
+ break;
+
+ case OP_CBRA:
+ case OP_CBRAPOS:
+ case OP_SCBRA:
+ case OP_SCBRAPOS:
+ stack_restore = TRUE;
+ if (common->capture_last_ptr != 0 && !capture_last_found)
+ {
+ length += 2;
+ capture_last_found = TRUE;
+ }
+ length += 3;
+ cc += 1 + LINK_SIZE + IMM2_SIZE;
+ break;
+
+ default:
+ stack_restore = TRUE;
+ /* Fall through. */
+
+ case OP_NOT_WORD_BOUNDARY:
+ case OP_WORD_BOUNDARY:
+ case OP_NOT_DIGIT:
+ case OP_DIGIT:
+ case OP_NOT_WHITESPACE:
+ case OP_WHITESPACE:
+ case OP_NOT_WORDCHAR:
+ case OP_WORDCHAR:
+ case OP_ANY:
+ case OP_ALLANY:
+ case OP_ANYBYTE:
+ case OP_NOTPROP:
+ case OP_PROP:
+ case OP_ANYNL:
+ case OP_NOT_HSPACE:
+ case OP_HSPACE:
+ case OP_NOT_VSPACE:
+ case OP_VSPACE:
+ case OP_EXTUNI:
+ case OP_EODN:
+ case OP_EOD:
+ case OP_CIRC:
+ case OP_CIRCM:
+ case OP_DOLL:
+ case OP_DOLLM:
+ case OP_CHAR:
+ case OP_CHARI:
+ case OP_NOT:
+ case OP_NOTI:
+
+ case OP_EXACT:
+ case OP_POSSTAR:
+ case OP_POSPLUS:
+ case OP_POSQUERY:
+ case OP_POSUPTO:
+
+ case OP_EXACTI:
+ case OP_POSSTARI:
+ case OP_POSPLUSI:
+ case OP_POSQUERYI:
+ case OP_POSUPTOI:
+
+ case OP_NOTEXACT:
+ case OP_NOTPOSSTAR:
+ case OP_NOTPOSPLUS:
+ case OP_NOTPOSQUERY:
+ case OP_NOTPOSUPTO:
+
+ case OP_NOTEXACTI:
+ case OP_NOTPOSSTARI:
+ case OP_NOTPOSPLUSI:
+ case OP_NOTPOSQUERYI:
+ case OP_NOTPOSUPTOI:
+
+ case OP_TYPEEXACT:
+ case OP_TYPEPOSSTAR:
+ case OP_TYPEPOSPLUS:
+ case OP_TYPEPOSQUERY:
+ case OP_TYPEPOSUPTO:
+
+ case OP_CLASS:
+ case OP_NCLASS:
+ case OP_XCLASS:
+
+ cc = next_opcode(common, cc);
+ SLJIT_ASSERT(cc != NULL);
+ break;
+ }
+
+/* Possessive quantifiers can use a special case. */
+if (SLJIT_UNLIKELY(possessive == length))
+ return stack_restore ? no_frame : no_stack;
+
+if (length > 0)
+ return length + 1;
+return stack_restore ? no_frame : no_stack;
+}
+
+static void init_frame(compiler_common *common, pcre_uchar *cc, pcre_uchar *ccend, int stackpos, int stacktop, BOOL recursive)
+{
+DEFINE_COMPILER;
+BOOL setsom_found = recursive;
+BOOL setmark_found = recursive;
+/* The last capture is a local variable even for recursions. */
+BOOL capture_last_found = FALSE;
+int offset;
+
+/* >= 1 + shortest item size (2) */
+SLJIT_UNUSED_ARG(stacktop);
+SLJIT_ASSERT(stackpos >= stacktop + 2);
+
+stackpos = STACK(stackpos);
+if (ccend == NULL)
+ {
+ ccend = bracketend(cc) - (1 + LINK_SIZE);
+ if (recursive || (*cc != OP_CBRAPOS && *cc != OP_SCBRAPOS))
+ cc = next_opcode(common, cc);
+ }
+
+SLJIT_ASSERT(cc != NULL);
+while (cc < ccend)
+ switch(*cc)
+ {
+ case OP_SET_SOM:
+ SLJIT_ASSERT(common->has_set_som);
+ if (!setsom_found)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0));
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, SLJIT_IMM, -OVECTOR(0));
+ stackpos += (int)sizeof(sljit_sw);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, TMP1, 0);
+ stackpos += (int)sizeof(sljit_sw);
+ setsom_found = TRUE;
+ }
+ cc += 1;
+ break;
+
+ case OP_MARK:
+ case OP_PRUNE_ARG:
+ case OP_THEN_ARG:
+ SLJIT_ASSERT(common->mark_ptr != 0);
+ if (!setmark_found)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mark_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, SLJIT_IMM, -common->mark_ptr);
+ stackpos += (int)sizeof(sljit_sw);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, TMP1, 0);
+ stackpos += (int)sizeof(sljit_sw);
+ setmark_found = TRUE;
+ }
+ cc += 1 + 2 + cc[1];
+ break;
+
+ case OP_RECURSE:
+ if (common->has_set_som && !setsom_found)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0));
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, SLJIT_IMM, -OVECTOR(0));
+ stackpos += (int)sizeof(sljit_sw);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, TMP1, 0);
+ stackpos += (int)sizeof(sljit_sw);
+ setsom_found = TRUE;
+ }
+ if (common->mark_ptr != 0 && !setmark_found)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mark_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, SLJIT_IMM, -common->mark_ptr);
+ stackpos += (int)sizeof(sljit_sw);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, TMP1, 0);
+ stackpos += (int)sizeof(sljit_sw);
+ setmark_found = TRUE;
+ }
+ if (common->capture_last_ptr != 0 && !capture_last_found)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->capture_last_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, SLJIT_IMM, -common->capture_last_ptr);
+ stackpos += (int)sizeof(sljit_sw);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, TMP1, 0);
+ stackpos += (int)sizeof(sljit_sw);
+ capture_last_found = TRUE;
+ }
+ cc += 1 + LINK_SIZE;
+ break;
+
+ case OP_CBRA:
+ case OP_CBRAPOS:
+ case OP_SCBRA:
+ case OP_SCBRAPOS:
+ if (common->capture_last_ptr != 0 && !capture_last_found)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->capture_last_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, SLJIT_IMM, -common->capture_last_ptr);
+ stackpos += (int)sizeof(sljit_sw);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, TMP1, 0);
+ stackpos += (int)sizeof(sljit_sw);
+ capture_last_found = TRUE;
+ }
+ offset = (GET2(cc, 1 + LINK_SIZE)) << 1;
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, SLJIT_IMM, OVECTOR(offset));
+ stackpos += (int)sizeof(sljit_sw);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset));
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1));
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, TMP1, 0);
+ stackpos += (int)sizeof(sljit_sw);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, TMP2, 0);
+ stackpos += (int)sizeof(sljit_sw);
+
+ cc += 1 + LINK_SIZE + IMM2_SIZE;
+ break;
+
+ default:
+ cc = next_opcode(common, cc);
+ SLJIT_ASSERT(cc != NULL);
+ break;
+ }
+
+OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackpos, SLJIT_IMM, 0);
+SLJIT_ASSERT(stackpos == STACK(stacktop));
+}
+
+static SLJIT_INLINE int get_private_data_copy_length(compiler_common *common, pcre_uchar *cc, pcre_uchar *ccend, BOOL needs_control_head)
+{
+int private_data_length = needs_control_head ? 3 : 2;
+int size;
+pcre_uchar *alternative;
+/* Calculate the sum of the private machine words. */
+while (cc < ccend)
+ {
+ size = 0;
+ switch(*cc)
+ {
+ case OP_KET:
+ if (PRIVATE_DATA(cc) != 0)
+ private_data_length++;
+ cc += 1 + LINK_SIZE;
+ break;
+
+ case OP_ASSERT:
+ case OP_ASSERT_NOT:
+ case OP_ASSERTBACK:
+ case OP_ASSERTBACK_NOT:
+ case OP_ONCE:
+ case OP_ONCE_NC:
+ case OP_BRAPOS:
+ case OP_SBRA:
+ case OP_SBRAPOS:
+ case OP_SCOND:
+ private_data_length++;
+ cc += 1 + LINK_SIZE;
+ break;
+
+ case OP_CBRA:
+ case OP_SCBRA:
+ if (common->optimized_cbracket[GET2(cc, 1 + LINK_SIZE)] == 0)
+ private_data_length++;
+ cc += 1 + LINK_SIZE + IMM2_SIZE;
+ break;
+
+ case OP_CBRAPOS:
+ case OP_SCBRAPOS:
+ private_data_length += 2;
+ cc += 1 + LINK_SIZE + IMM2_SIZE;
+ break;
+
+ case OP_COND:
+ /* Might be a hidden SCOND. */
+ alternative = cc + GET(cc, 1);
+ if (*alternative == OP_KETRMAX || *alternative == OP_KETRMIN)
+ private_data_length++;
+ cc += 1 + LINK_SIZE;
+ break;
+
+ CASE_ITERATOR_PRIVATE_DATA_1
+ if (PRIVATE_DATA(cc))
+ private_data_length++;
+ cc += 2;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+ break;
+
+ CASE_ITERATOR_PRIVATE_DATA_2A
+ if (PRIVATE_DATA(cc))
+ private_data_length += 2;
+ cc += 2;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+ break;
+
+ CASE_ITERATOR_PRIVATE_DATA_2B
+ if (PRIVATE_DATA(cc))
+ private_data_length += 2;
+ cc += 2 + IMM2_SIZE;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+ break;
+
+ CASE_ITERATOR_TYPE_PRIVATE_DATA_1
+ if (PRIVATE_DATA(cc))
+ private_data_length++;
+ cc += 1;
+ break;
+
+ CASE_ITERATOR_TYPE_PRIVATE_DATA_2A
+ if (PRIVATE_DATA(cc))
+ private_data_length += 2;
+ cc += 1;
+ break;
+
+ CASE_ITERATOR_TYPE_PRIVATE_DATA_2B
+ if (PRIVATE_DATA(cc))
+ private_data_length += 2;
+ cc += 1 + IMM2_SIZE;
+ break;
+
+ case OP_CLASS:
+ case OP_NCLASS:
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ case OP_XCLASS:
+ size = (*cc == OP_XCLASS) ? GET(cc, 1) : 1 + 32 / (int)sizeof(pcre_uchar);
+#else
+ size = 1 + 32 / (int)sizeof(pcre_uchar);
+#endif
+ if (PRIVATE_DATA(cc))
+ private_data_length += get_class_iterator_size(cc + size);
+ cc += size;
+ break;
+
+ default:
+ cc = next_opcode(common, cc);
+ SLJIT_ASSERT(cc != NULL);
+ break;
+ }
+ }
+SLJIT_ASSERT(cc == ccend);
+return private_data_length;
+}
+
+static void copy_private_data(compiler_common *common, pcre_uchar *cc, pcre_uchar *ccend,
+ BOOL save, int stackptr, int stacktop, BOOL needs_control_head)
+{
+DEFINE_COMPILER;
+int srcw[2];
+int count, size;
+BOOL tmp1next = TRUE;
+BOOL tmp1empty = TRUE;
+BOOL tmp2empty = TRUE;
+pcre_uchar *alternative;
+enum {
+ start,
+ loop,
+ end
+} status;
+
+status = save ? start : loop;
+stackptr = STACK(stackptr - 2);
+stacktop = STACK(stacktop - 1);
+
+if (!save)
+ {
+ stackptr += (needs_control_head ? 2 : 1) * sizeof(sljit_sw);
+ if (stackptr < stacktop)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), stackptr);
+ stackptr += sizeof(sljit_sw);
+ tmp1empty = FALSE;
+ }
+ if (stackptr < stacktop)
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), stackptr);
+ stackptr += sizeof(sljit_sw);
+ tmp2empty = FALSE;
+ }
+ /* The tmp1next must be TRUE in either way. */
+ }
+
+do
+ {
+ count = 0;
+ switch(status)
+ {
+ case start:
+ SLJIT_ASSERT(save && common->recursive_head_ptr != 0);
+ count = 1;
+ srcw[0] = common->recursive_head_ptr;
+ if (needs_control_head)
+ {
+ SLJIT_ASSERT(common->control_head_ptr != 0);
+ count = 2;
+ srcw[1] = common->control_head_ptr;
+ }
+ status = loop;
+ break;
+
+ case loop:
+ if (cc >= ccend)
+ {
+ status = end;
+ break;
+ }
+
+ switch(*cc)
+ {
+ case OP_KET:
+ if (PRIVATE_DATA(cc) != 0)
+ {
+ count = 1;
+ srcw[0] = PRIVATE_DATA(cc);
+ }
+ cc += 1 + LINK_SIZE;
+ break;
+
+ case OP_ASSERT:
+ case OP_ASSERT_NOT:
+ case OP_ASSERTBACK:
+ case OP_ASSERTBACK_NOT:
+ case OP_ONCE:
+ case OP_ONCE_NC:
+ case OP_BRAPOS:
+ case OP_SBRA:
+ case OP_SBRAPOS:
+ case OP_SCOND:
+ count = 1;
+ srcw[0] = PRIVATE_DATA(cc);
+ SLJIT_ASSERT(srcw[0] != 0);
+ cc += 1 + LINK_SIZE;
+ break;
+
+ case OP_CBRA:
+ case OP_SCBRA:
+ if (common->optimized_cbracket[GET2(cc, 1 + LINK_SIZE)] == 0)
+ {
+ count = 1;
+ srcw[0] = OVECTOR_PRIV(GET2(cc, 1 + LINK_SIZE));
+ }
+ cc += 1 + LINK_SIZE + IMM2_SIZE;
+ break;
+
+ case OP_CBRAPOS:
+ case OP_SCBRAPOS:
+ count = 2;
+ srcw[0] = PRIVATE_DATA(cc);
+ srcw[1] = OVECTOR_PRIV(GET2(cc, 1 + LINK_SIZE));
+ SLJIT_ASSERT(srcw[0] != 0 && srcw[1] != 0);
+ cc += 1 + LINK_SIZE + IMM2_SIZE;
+ break;
+
+ case OP_COND:
+ /* Might be a hidden SCOND. */
+ alternative = cc + GET(cc, 1);
+ if (*alternative == OP_KETRMAX || *alternative == OP_KETRMIN)
+ {
+ count = 1;
+ srcw[0] = PRIVATE_DATA(cc);
+ SLJIT_ASSERT(srcw[0] != 0);
+ }
+ cc += 1 + LINK_SIZE;
+ break;
+
+ CASE_ITERATOR_PRIVATE_DATA_1
+ if (PRIVATE_DATA(cc))
+ {
+ count = 1;
+ srcw[0] = PRIVATE_DATA(cc);
+ }
+ cc += 2;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+ break;
+
+ CASE_ITERATOR_PRIVATE_DATA_2A
+ if (PRIVATE_DATA(cc))
+ {
+ count = 2;
+ srcw[0] = PRIVATE_DATA(cc);
+ srcw[1] = PRIVATE_DATA(cc) + sizeof(sljit_sw);
+ }
+ cc += 2;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+ break;
+
+ CASE_ITERATOR_PRIVATE_DATA_2B
+ if (PRIVATE_DATA(cc))
+ {
+ count = 2;
+ srcw[0] = PRIVATE_DATA(cc);
+ srcw[1] = PRIVATE_DATA(cc) + sizeof(sljit_sw);
+ }
+ cc += 2 + IMM2_SIZE;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+ break;
+
+ CASE_ITERATOR_TYPE_PRIVATE_DATA_1
+ if (PRIVATE_DATA(cc))
+ {
+ count = 1;
+ srcw[0] = PRIVATE_DATA(cc);
+ }
+ cc += 1;
+ break;
+
+ CASE_ITERATOR_TYPE_PRIVATE_DATA_2A
+ if (PRIVATE_DATA(cc))
+ {
+ count = 2;
+ srcw[0] = PRIVATE_DATA(cc);
+ srcw[1] = srcw[0] + sizeof(sljit_sw);
+ }
+ cc += 1;
+ break;
+
+ CASE_ITERATOR_TYPE_PRIVATE_DATA_2B
+ if (PRIVATE_DATA(cc))
+ {
+ count = 2;
+ srcw[0] = PRIVATE_DATA(cc);
+ srcw[1] = srcw[0] + sizeof(sljit_sw);
+ }
+ cc += 1 + IMM2_SIZE;
+ break;
+
+ case OP_CLASS:
+ case OP_NCLASS:
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ case OP_XCLASS:
+ size = (*cc == OP_XCLASS) ? GET(cc, 1) : 1 + 32 / (int)sizeof(pcre_uchar);
+#else
+ size = 1 + 32 / (int)sizeof(pcre_uchar);
+#endif
+ if (PRIVATE_DATA(cc))
+ switch(get_class_iterator_size(cc + size))
+ {
+ case 1:
+ count = 1;
+ srcw[0] = PRIVATE_DATA(cc);
+ break;
+
+ case 2:
+ count = 2;
+ srcw[0] = PRIVATE_DATA(cc);
+ srcw[1] = srcw[0] + sizeof(sljit_sw);
+ break;
+
+ default:
+ SLJIT_ASSERT_STOP();
+ break;
+ }
+ cc += size;
+ break;
+
+ default:
+ cc = next_opcode(common, cc);
+ SLJIT_ASSERT(cc != NULL);
+ break;
+ }
+ break;
+
+ case end:
+ SLJIT_ASSERT_STOP();
+ break;
+ }
+
+ while (count > 0)
+ {
+ count--;
+ if (save)
+ {
+ if (tmp1next)
+ {
+ if (!tmp1empty)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackptr, TMP1, 0);
+ stackptr += sizeof(sljit_sw);
+ }
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), srcw[count]);
+ tmp1empty = FALSE;
+ tmp1next = FALSE;
+ }
+ else
+ {
+ if (!tmp2empty)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackptr, TMP2, 0);
+ stackptr += sizeof(sljit_sw);
+ }
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), srcw[count]);
+ tmp2empty = FALSE;
+ tmp1next = TRUE;
+ }
+ }
+ else
+ {
+ if (tmp1next)
+ {
+ SLJIT_ASSERT(!tmp1empty);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), srcw[count], TMP1, 0);
+ tmp1empty = stackptr >= stacktop;
+ if (!tmp1empty)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), stackptr);
+ stackptr += sizeof(sljit_sw);
+ }
+ tmp1next = FALSE;
+ }
+ else
+ {
+ SLJIT_ASSERT(!tmp2empty);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), srcw[count], TMP2, 0);
+ tmp2empty = stackptr >= stacktop;
+ if (!tmp2empty)
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), stackptr);
+ stackptr += sizeof(sljit_sw);
+ }
+ tmp1next = TRUE;
+ }
+ }
+ }
+ }
+while (status != end);
+
+if (save)
+ {
+ if (tmp1next)
+ {
+ if (!tmp1empty)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackptr, TMP1, 0);
+ stackptr += sizeof(sljit_sw);
+ }
+ if (!tmp2empty)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackptr, TMP2, 0);
+ stackptr += sizeof(sljit_sw);
+ }
+ }
+ else
+ {
+ if (!tmp2empty)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackptr, TMP2, 0);
+ stackptr += sizeof(sljit_sw);
+ }
+ if (!tmp1empty)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), stackptr, TMP1, 0);
+ stackptr += sizeof(sljit_sw);
+ }
+ }
+ }
+SLJIT_ASSERT(cc == ccend && stackptr == stacktop && (save || (tmp1empty && tmp2empty)));
+}
+
+static SLJIT_INLINE pcre_uchar *set_then_offsets(compiler_common *common, pcre_uchar *cc, pcre_uint8 *current_offset)
+{
+pcre_uchar *end = bracketend(cc);
+BOOL has_alternatives = cc[GET(cc, 1)] == OP_ALT;
+
+/* Assert captures then. */
+if (*cc >= OP_ASSERT && *cc <= OP_ASSERTBACK_NOT)
+ current_offset = NULL;
+/* Conditional block does not. */
+if (*cc == OP_COND || *cc == OP_SCOND)
+ has_alternatives = FALSE;
+
+cc = next_opcode(common, cc);
+if (has_alternatives)
+ current_offset = common->then_offsets + (cc - common->start);
+
+while (cc < end)
+ {
+ if ((*cc >= OP_ASSERT && *cc <= OP_ASSERTBACK_NOT) || (*cc >= OP_ONCE && *cc <= OP_SCOND))
+ cc = set_then_offsets(common, cc, current_offset);
+ else
+ {
+ if (*cc == OP_ALT && has_alternatives)
+ current_offset = common->then_offsets + (cc + 1 + LINK_SIZE - common->start);
+ if (*cc >= OP_THEN && *cc <= OP_THEN_ARG && current_offset != NULL)
+ *current_offset = 1;
+ cc = next_opcode(common, cc);
+ }
+ }
+
+return end;
+}
+
+#undef CASE_ITERATOR_PRIVATE_DATA_1
+#undef CASE_ITERATOR_PRIVATE_DATA_2A
+#undef CASE_ITERATOR_PRIVATE_DATA_2B
+#undef CASE_ITERATOR_TYPE_PRIVATE_DATA_1
+#undef CASE_ITERATOR_TYPE_PRIVATE_DATA_2A
+#undef CASE_ITERATOR_TYPE_PRIVATE_DATA_2B
+
+static SLJIT_INLINE BOOL is_powerof2(unsigned int value)
+{
+return (value & (value - 1)) == 0;
+}
+
+static SLJIT_INLINE void set_jumps(jump_list *list, struct sljit_label *label)
+{
+while (list)
+ {
+ /* sljit_set_label is clever enough to do nothing
+ if either the jump or the label is NULL. */
+ SET_LABEL(list->jump, label);
+ list = list->next;
+ }
+}
+
+static SLJIT_INLINE void add_jump(struct sljit_compiler *compiler, jump_list **list, struct sljit_jump* jump)
+{
+jump_list *list_item = sljit_alloc_memory(compiler, sizeof(jump_list));
+if (list_item)
+ {
+ list_item->next = *list;
+ list_item->jump = jump;
+ *list = list_item;
+ }
+}
+
+static void add_stub(compiler_common *common, struct sljit_jump *start)
+{
+DEFINE_COMPILER;
+stub_list* list_item = sljit_alloc_memory(compiler, sizeof(stub_list));
+
+if (list_item)
+ {
+ list_item->start = start;
+ list_item->quit = LABEL();
+ list_item->next = common->stubs;
+ common->stubs = list_item;
+ }
+}
+
+static void flush_stubs(compiler_common *common)
+{
+DEFINE_COMPILER;
+stub_list* list_item = common->stubs;
+
+while (list_item)
+ {
+ JUMPHERE(list_item->start);
+ add_jump(compiler, &common->stackalloc, JUMP(SLJIT_FAST_CALL));
+ JUMPTO(SLJIT_JUMP, list_item->quit);
+ list_item = list_item->next;
+ }
+common->stubs = NULL;
+}
+
+static SLJIT_INLINE void count_match(compiler_common *common)
+{
+DEFINE_COMPILER;
+
+OP2(SLJIT_SUB | SLJIT_SET_E, COUNT_MATCH, 0, COUNT_MATCH, 0, SLJIT_IMM, 1);
+add_jump(compiler, &common->calllimit, JUMP(SLJIT_C_ZERO));
+}
+
+static SLJIT_INLINE void allocate_stack(compiler_common *common, int size)
+{
+/* May destroy all locals and registers except TMP2. */
+DEFINE_COMPILER;
+
+OP2(SLJIT_ADD, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, size * sizeof(sljit_sw));
+#ifdef DESTROY_REGISTERS
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_IMM, 12345);
+OP1(SLJIT_MOV, TMP3, 0, TMP1, 0);
+OP1(SLJIT_MOV, RETURN_ADDR, 0, TMP1, 0);
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0, TMP1, 0);
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1, TMP1, 0);
+#endif
+add_stub(common, CMP(SLJIT_C_GREATER, STACK_TOP, 0, STACK_LIMIT, 0));
+}
+
+static SLJIT_INLINE void free_stack(compiler_common *common, int size)
+{
+DEFINE_COMPILER;
+OP2(SLJIT_SUB, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, size * sizeof(sljit_sw));
+}
+
+static SLJIT_INLINE void reset_ovector(compiler_common *common, int length)
+{
+DEFINE_COMPILER;
+struct sljit_label *loop;
+int i;
+
+/* At this point we can freely use all temporary registers. */
+SLJIT_ASSERT(length > 1);
+/* TMP1 returns with begin - 1. */
+OP2(SLJIT_SUB, SLJIT_SCRATCH_REG1, 0, SLJIT_MEM1(SLJIT_SAVED_REG1), SLJIT_OFFSETOF(jit_arguments, begin), SLJIT_IMM, IN_UCHARS(1));
+if (length < 8)
+ {
+ for (i = 1; i < length; i++)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(i), SLJIT_SCRATCH_REG1, 0);
+ }
+else
+ {
+ GET_LOCAL_BASE(SLJIT_SCRATCH_REG2, 0, OVECTOR_START);
+ OP1(SLJIT_MOV, SLJIT_SCRATCH_REG3, 0, SLJIT_IMM, length - 1);
+ loop = LABEL();
+ OP1(SLJIT_MOVU, SLJIT_MEM1(SLJIT_SCRATCH_REG2), sizeof(sljit_sw), SLJIT_SCRATCH_REG1, 0);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_SCRATCH_REG3, 0, SLJIT_SCRATCH_REG3, 0, SLJIT_IMM, 1);
+ JUMPTO(SLJIT_C_NOT_ZERO, loop);
+ }
+}
+
+static SLJIT_INLINE void do_reset_match(compiler_common *common, int length)
+{
+DEFINE_COMPILER;
+struct sljit_label *loop;
+int i;
+
+SLJIT_ASSERT(length > 1);
+/* OVECTOR(1) contains the "string begin - 1" constant. */
+if (length > 2)
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(1));
+if (length < 8)
+ {
+ for (i = 2; i < length; i++)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(i), TMP1, 0);
+ }
+else
+ {
+ GET_LOCAL_BASE(TMP2, 0, OVECTOR_START + sizeof(sljit_sw));
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_IMM, length - 2);
+ loop = LABEL();
+ OP1(SLJIT_MOVU, SLJIT_MEM1(TMP2), sizeof(sljit_sw), TMP1, 0);
+ OP2(SLJIT_SUB | SLJIT_SET_E, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, 1);
+ JUMPTO(SLJIT_C_NOT_ZERO, loop);
+ }
+
+OP1(SLJIT_MOV, STACK_TOP, 0, ARGUMENTS, 0);
+if (common->mark_ptr != 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mark_ptr, SLJIT_IMM, 0);
+if (common->control_head_ptr != 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, SLJIT_IMM, 0);
+OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(STACK_TOP), SLJIT_OFFSETOF(jit_arguments, stack));
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_ptr);
+OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(STACK_TOP), SLJIT_OFFSETOF(struct sljit_stack, base));
+}
+
+static sljit_sw SLJIT_CALL do_search_mark(sljit_sw *current, const pcre_uchar *skip_arg)
+{
+while (current != NULL)
+ {
+ switch (current[-2])
+ {
+ case type_then_trap:
+ break;
+
+ case type_mark:
+ if (STRCMP_UC_UC(skip_arg, (pcre_uchar *)current[-3]) == 0)
+ return current[-4];
+ break;
+
+ default:
+ SLJIT_ASSERT_STOP();
+ break;
+ }
+ current = (sljit_sw*)current[-1];
+ }
+return -1;
+}
+
+static SLJIT_INLINE void copy_ovector(compiler_common *common, int topbracket)
+{
+DEFINE_COMPILER;
+struct sljit_label *loop;
+struct sljit_jump *early_quit;
+
+/* At this point we can freely use all registers. */
+OP1(SLJIT_MOV, SLJIT_SAVED_REG3, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(1));
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(1), STR_PTR, 0);
+
+OP1(SLJIT_MOV, SLJIT_SCRATCH_REG1, 0, ARGUMENTS, 0);
+if (common->mark_ptr != 0)
+ OP1(SLJIT_MOV, SLJIT_SCRATCH_REG3, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mark_ptr);
+OP1(SLJIT_MOV_SI, SLJIT_SCRATCH_REG2, 0, SLJIT_MEM1(SLJIT_SCRATCH_REG1), SLJIT_OFFSETOF(jit_arguments, offset_count));
+if (common->mark_ptr != 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_SCRATCH_REG1), SLJIT_OFFSETOF(jit_arguments, mark_ptr), SLJIT_SCRATCH_REG3, 0);
+OP2(SLJIT_SUB, SLJIT_SCRATCH_REG3, 0, SLJIT_MEM1(SLJIT_SCRATCH_REG1), SLJIT_OFFSETOF(jit_arguments, offsets), SLJIT_IMM, sizeof(int));
+OP1(SLJIT_MOV, SLJIT_SCRATCH_REG1, 0, SLJIT_MEM1(SLJIT_SCRATCH_REG1), SLJIT_OFFSETOF(jit_arguments, begin));
+GET_LOCAL_BASE(SLJIT_SAVED_REG1, 0, OVECTOR_START);
+/* Unlikely, but possible */
+early_quit = CMP(SLJIT_C_EQUAL, SLJIT_SCRATCH_REG2, 0, SLJIT_IMM, 0);
+loop = LABEL();
+OP2(SLJIT_SUB, SLJIT_SAVED_REG2, 0, SLJIT_MEM1(SLJIT_SAVED_REG1), 0, SLJIT_SCRATCH_REG1, 0);
+OP2(SLJIT_ADD, SLJIT_SAVED_REG1, 0, SLJIT_SAVED_REG1, 0, SLJIT_IMM, sizeof(sljit_sw));
+/* Copy the integer value to the output buffer */
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+OP2(SLJIT_ASHR, SLJIT_SAVED_REG2, 0, SLJIT_SAVED_REG2, 0, SLJIT_IMM, UCHAR_SHIFT);
+#endif
+OP1(SLJIT_MOVU_SI, SLJIT_MEM1(SLJIT_SCRATCH_REG3), sizeof(int), SLJIT_SAVED_REG2, 0);
+OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_SCRATCH_REG2, 0, SLJIT_SCRATCH_REG2, 0, SLJIT_IMM, 1);
+JUMPTO(SLJIT_C_NOT_ZERO, loop);
+JUMPHERE(early_quit);
+
+/* Calculate the return value, which is the maximum ovector value. */
+if (topbracket > 1)
+ {
+ GET_LOCAL_BASE(SLJIT_SCRATCH_REG1, 0, OVECTOR_START + topbracket * 2 * sizeof(sljit_sw));
+ OP1(SLJIT_MOV, SLJIT_SCRATCH_REG2, 0, SLJIT_IMM, topbracket + 1);
+
+ /* OVECTOR(0) is never equal to SLJIT_SAVED_REG3. */
+ loop = LABEL();
+ OP1(SLJIT_MOVU, SLJIT_SCRATCH_REG3, 0, SLJIT_MEM1(SLJIT_SCRATCH_REG1), -(2 * (sljit_sw)sizeof(sljit_sw)));
+ OP2(SLJIT_SUB, SLJIT_SCRATCH_REG2, 0, SLJIT_SCRATCH_REG2, 0, SLJIT_IMM, 1);
+ CMPTO(SLJIT_C_EQUAL, SLJIT_SCRATCH_REG3, 0, SLJIT_SAVED_REG3, 0, loop);
+ OP1(SLJIT_MOV, SLJIT_RETURN_REG, 0, SLJIT_SCRATCH_REG2, 0);
+ }
+else
+ OP1(SLJIT_MOV, SLJIT_RETURN_REG, 0, SLJIT_IMM, 1);
+}
+
+static SLJIT_INLINE void return_with_partial_match(compiler_common *common, struct sljit_label *quit)
+{
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+
+SLJIT_COMPILE_ASSERT(STR_END == SLJIT_SAVED_REG2, str_end_must_be_saved_reg2);
+SLJIT_ASSERT(common->start_used_ptr != 0 && common->start_ptr != 0
+ && (common->mode == JIT_PARTIAL_SOFT_COMPILE ? common->hit_start != 0 : common->hit_start == 0));
+
+OP1(SLJIT_MOV, SLJIT_SCRATCH_REG2, 0, ARGUMENTS, 0);
+OP1(SLJIT_MOV, SLJIT_RETURN_REG, 0, SLJIT_IMM, PCRE_ERROR_PARTIAL);
+OP1(SLJIT_MOV_SI, SLJIT_SCRATCH_REG3, 0, SLJIT_MEM1(SLJIT_SCRATCH_REG2), SLJIT_OFFSETOF(jit_arguments, real_offset_count));
+CMPTO(SLJIT_C_SIG_LESS, SLJIT_SCRATCH_REG3, 0, SLJIT_IMM, 2, quit);
+
+/* Store match begin and end. */
+OP1(SLJIT_MOV, SLJIT_SAVED_REG1, 0, SLJIT_MEM1(SLJIT_SCRATCH_REG2), SLJIT_OFFSETOF(jit_arguments, begin));
+OP1(SLJIT_MOV, SLJIT_SCRATCH_REG2, 0, SLJIT_MEM1(SLJIT_SCRATCH_REG2), SLJIT_OFFSETOF(jit_arguments, offsets));
+
+jump = CMP(SLJIT_C_SIG_LESS, SLJIT_SCRATCH_REG3, 0, SLJIT_IMM, 3);
+OP2(SLJIT_SUB, SLJIT_SCRATCH_REG3, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mode == JIT_PARTIAL_HARD_COMPILE ? common->start_ptr : (common->hit_start + (int)sizeof(sljit_sw)), SLJIT_SAVED_REG1, 0);
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+OP2(SLJIT_ASHR, SLJIT_SCRATCH_REG3, 0, SLJIT_SCRATCH_REG3, 0, SLJIT_IMM, UCHAR_SHIFT);
+#endif
+OP1(SLJIT_MOV_SI, SLJIT_MEM1(SLJIT_SCRATCH_REG2), 2 * sizeof(int), SLJIT_SCRATCH_REG3, 0);
+JUMPHERE(jump);
+
+OP1(SLJIT_MOV, SLJIT_SCRATCH_REG3, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mode == JIT_PARTIAL_HARD_COMPILE ? common->start_used_ptr : common->hit_start);
+OP2(SLJIT_SUB, SLJIT_SAVED_REG2, 0, STR_END, 0, SLJIT_SAVED_REG1, 0);
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+OP2(SLJIT_ASHR, SLJIT_SAVED_REG2, 0, SLJIT_SAVED_REG2, 0, SLJIT_IMM, UCHAR_SHIFT);
+#endif
+OP1(SLJIT_MOV_SI, SLJIT_MEM1(SLJIT_SCRATCH_REG2), sizeof(int), SLJIT_SAVED_REG2, 0);
+
+OP2(SLJIT_SUB, SLJIT_SCRATCH_REG3, 0, SLJIT_SCRATCH_REG3, 0, SLJIT_SAVED_REG1, 0);
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+OP2(SLJIT_ASHR, SLJIT_SCRATCH_REG3, 0, SLJIT_SCRATCH_REG3, 0, SLJIT_IMM, UCHAR_SHIFT);
+#endif
+OP1(SLJIT_MOV_SI, SLJIT_MEM1(SLJIT_SCRATCH_REG2), 0, SLJIT_SCRATCH_REG3, 0);
+
+JUMPTO(SLJIT_JUMP, quit);
+}
+
+static SLJIT_INLINE void check_start_used_ptr(compiler_common *common)
+{
+/* May destroy TMP1. */
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+
+if (common->mode == JIT_PARTIAL_SOFT_COMPILE)
+ {
+ /* The value of -1 must be kept for start_used_ptr! */
+ OP2(SLJIT_ADD, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, SLJIT_IMM, 1);
+ /* Jumps if start_used_ptr < STR_PTR, or start_used_ptr == -1. Although overwriting
+ is not necessary if start_used_ptr == STR_PTR, it does not hurt as well. */
+ jump = CMP(SLJIT_C_LESS_EQUAL, TMP1, 0, STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, STR_PTR, 0);
+ JUMPHERE(jump);
+ }
+else if (common->mode == JIT_PARTIAL_HARD_COMPILE)
+ {
+ jump = CMP(SLJIT_C_LESS_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, STR_PTR, 0);
+ JUMPHERE(jump);
+ }
+}
+
+static SLJIT_INLINE BOOL char_has_othercase(compiler_common *common, pcre_uchar* cc)
+{
+/* Detects if the character has an othercase. */
+unsigned int c;
+
+#ifdef SUPPORT_UTF
+if (common->utf)
+ {
+ GETCHAR(c, cc);
+ if (c > 127)
+ {
+#ifdef SUPPORT_UCP
+ return c != UCD_OTHERCASE(c);
+#else
+ return FALSE;
+#endif
+ }
+#ifndef COMPILE_PCRE8
+ return common->fcc[c] != c;
+#endif
+ }
+else
+#endif
+ c = *cc;
+return MAX_255(c) ? common->fcc[c] != c : FALSE;
+}
+
+static SLJIT_INLINE unsigned int char_othercase(compiler_common *common, unsigned int c)
+{
+/* Returns with the othercase. */
+#ifdef SUPPORT_UTF
+if (common->utf && c > 127)
+ {
+#ifdef SUPPORT_UCP
+ return UCD_OTHERCASE(c);
+#else
+ return c;
+#endif
+ }
+#endif
+return TABLE_GET(c, common->fcc, c);
+}
+
+static unsigned int char_get_othercase_bit(compiler_common *common, pcre_uchar* cc)
+{
+/* Detects if the character and its othercase has only 1 bit difference. */
+unsigned int c, oc, bit;
+#if defined SUPPORT_UTF && defined COMPILE_PCRE8
+int n;
+#endif
+
+#ifdef SUPPORT_UTF
+if (common->utf)
+ {
+ GETCHAR(c, cc);
+ if (c <= 127)
+ oc = common->fcc[c];
+ else
+ {
+#ifdef SUPPORT_UCP
+ oc = UCD_OTHERCASE(c);
+#else
+ oc = c;
+#endif
+ }
+ }
+else
+ {
+ c = *cc;
+ oc = TABLE_GET(c, common->fcc, c);
+ }
+#else
+c = *cc;
+oc = TABLE_GET(c, common->fcc, c);
+#endif
+
+SLJIT_ASSERT(c != oc);
+
+bit = c ^ oc;
+/* Optimized for English alphabet. */
+if (c <= 127 && bit == 0x20)
+ return (0 << 8) | 0x20;
+
+/* Since c != oc, they must have at least 1 bit difference. */
+if (!is_powerof2(bit))
+ return 0;
+
+#if defined COMPILE_PCRE8
+
+#ifdef SUPPORT_UTF
+if (common->utf && c > 127)
+ {
+ n = GET_EXTRALEN(*cc);
+ while ((bit & 0x3f) == 0)
+ {
+ n--;
+ bit >>= 6;
+ }
+ return (n << 8) | bit;
+ }
+#endif /* SUPPORT_UTF */
+return (0 << 8) | bit;
+
+#elif defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+
+#ifdef SUPPORT_UTF
+if (common->utf && c > 65535)
+ {
+ if (bit >= (1 << 10))
+ bit >>= 10;
+ else
+ return (bit < 256) ? ((2 << 8) | bit) : ((3 << 8) | (bit >> 8));
+ }
+#endif /* SUPPORT_UTF */
+return (bit < 256) ? ((0 << 8) | bit) : ((1 << 8) | (bit >> 8));
+
+#endif /* COMPILE_PCRE[8|16|32] */
+}
+
+static void check_partial(compiler_common *common, BOOL force)
+{
+/* Checks whether a partial matching is occurred. Does not modify registers. */
+DEFINE_COMPILER;
+struct sljit_jump *jump = NULL;
+
+SLJIT_ASSERT(!force || common->mode != JIT_COMPILE);
+
+if (common->mode == JIT_COMPILE)
+ return;
+
+if (!force)
+ jump = CMP(SLJIT_C_GREATER_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, STR_PTR, 0);
+else if (common->mode == JIT_PARTIAL_SOFT_COMPILE)
+ jump = CMP(SLJIT_C_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, SLJIT_IMM, -1);
+
+if (common->mode == JIT_PARTIAL_SOFT_COMPILE)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->hit_start, SLJIT_IMM, 0);
+else
+ {
+ if (common->partialmatchlabel != NULL)
+ JUMPTO(SLJIT_JUMP, common->partialmatchlabel);
+ else
+ add_jump(compiler, &common->partialmatch, JUMP(SLJIT_JUMP));
+ }
+
+if (jump != NULL)
+ JUMPHERE(jump);
+}
+
+static void check_str_end(compiler_common *common, jump_list **end_reached)
+{
+/* Does not affect registers. Usually used in a tight spot. */
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+
+if (common->mode == JIT_COMPILE)
+ {
+ add_jump(compiler, end_reached, CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0));
+ return;
+ }
+
+jump = CMP(SLJIT_C_LESS, STR_PTR, 0, STR_END, 0);
+if (common->mode == JIT_PARTIAL_SOFT_COMPILE)
+ {
+ add_jump(compiler, end_reached, CMP(SLJIT_C_GREATER_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, STR_PTR, 0));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->hit_start, SLJIT_IMM, 0);
+ add_jump(compiler, end_reached, JUMP(SLJIT_JUMP));
+ }
+else
+ {
+ add_jump(compiler, end_reached, CMP(SLJIT_C_GREATER_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, STR_PTR, 0));
+ if (common->partialmatchlabel != NULL)
+ JUMPTO(SLJIT_JUMP, common->partialmatchlabel);
+ else
+ add_jump(compiler, &common->partialmatch, JUMP(SLJIT_JUMP));
+ }
+JUMPHERE(jump);
+}
+
+static void detect_partial_match(compiler_common *common, jump_list **backtracks)
+{
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+
+if (common->mode == JIT_COMPILE)
+ {
+ add_jump(compiler, backtracks, CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0));
+ return;
+ }
+
+/* Partial matching mode. */
+jump = CMP(SLJIT_C_LESS, STR_PTR, 0, STR_END, 0);
+add_jump(compiler, backtracks, CMP(SLJIT_C_GREATER_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, STR_PTR, 0));
+if (common->mode == JIT_PARTIAL_SOFT_COMPILE)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->hit_start, SLJIT_IMM, 0);
+ add_jump(compiler, backtracks, JUMP(SLJIT_JUMP));
+ }
+else
+ {
+ if (common->partialmatchlabel != NULL)
+ JUMPTO(SLJIT_JUMP, common->partialmatchlabel);
+ else
+ add_jump(compiler, &common->partialmatch, JUMP(SLJIT_JUMP));
+ }
+JUMPHERE(jump);
+}
+
+static void read_char(compiler_common *common)
+{
+/* Reads the character into TMP1, updates STR_PTR.
+Does not check STR_END. TMP2 Destroyed. */
+DEFINE_COMPILER;
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+struct sljit_jump *jump;
+#endif
+
+OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), 0);
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+if (common->utf)
+ {
+#if defined COMPILE_PCRE8
+ jump = CMP(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xc0);
+#elif defined COMPILE_PCRE16
+ jump = CMP(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xd800);
+#endif /* COMPILE_PCRE[8|16] */
+ add_jump(compiler, &common->utfreadchar, JUMP(SLJIT_FAST_CALL));
+ JUMPHERE(jump);
+ }
+#endif /* SUPPORT_UTF && !COMPILE_PCRE32 */
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+}
+
+static void peek_char(compiler_common *common)
+{
+/* Reads the character into TMP1, keeps STR_PTR.
+Does not check STR_END. TMP2 Destroyed. */
+DEFINE_COMPILER;
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+struct sljit_jump *jump;
+#endif
+
+OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), 0);
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+if (common->utf)
+ {
+#if defined COMPILE_PCRE8
+ jump = CMP(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xc0);
+#elif defined COMPILE_PCRE16
+ jump = CMP(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xd800);
+#endif /* COMPILE_PCRE[8|16] */
+ add_jump(compiler, &common->utfreadchar, JUMP(SLJIT_FAST_CALL));
+ OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, TMP2, 0);
+ JUMPHERE(jump);
+ }
+#endif /* SUPPORT_UTF && !COMPILE_PCRE32 */
+}
+
+static void read_char8_type(compiler_common *common)
+{
+/* Reads the character type into TMP1, updates STR_PTR. Does not check STR_END. */
+DEFINE_COMPILER;
+#if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+struct sljit_jump *jump;
+#endif
+
+#ifdef SUPPORT_UTF
+if (common->utf)
+ {
+ OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), 0);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+#if defined COMPILE_PCRE8
+ /* This can be an extra read in some situations, but hopefully
+ it is needed in most cases. */
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP2), common->ctypes);
+ jump = CMP(SLJIT_C_LESS, TMP2, 0, SLJIT_IMM, 0xc0);
+ add_jump(compiler, &common->utfreadtype8, JUMP(SLJIT_FAST_CALL));
+ JUMPHERE(jump);
+#elif defined COMPILE_PCRE16
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_IMM, 0);
+ jump = CMP(SLJIT_C_GREATER, TMP2, 0, SLJIT_IMM, 255);
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP2), common->ctypes);
+ JUMPHERE(jump);
+ /* Skip low surrogate if necessary. */
+ OP2(SLJIT_AND, TMP2, 0, TMP2, 0, SLJIT_IMM, 0xfc00);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP2, 0, SLJIT_IMM, 0xd800);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SHL, TMP2, 0, TMP2, 0, SLJIT_IMM, 1);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP2, 0);
+#elif defined COMPILE_PCRE32
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_IMM, 0);
+ jump = CMP(SLJIT_C_GREATER, TMP2, 0, SLJIT_IMM, 255);
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP2), common->ctypes);
+ JUMPHERE(jump);
+#endif /* COMPILE_PCRE[8|16|32] */
+ return;
+ }
+#endif /* SUPPORT_UTF */
+OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), 0);
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+/* The ctypes array contains only 256 values. */
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_IMM, 0);
+jump = CMP(SLJIT_C_GREATER, TMP2, 0, SLJIT_IMM, 255);
+#endif
+OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP2), common->ctypes);
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+JUMPHERE(jump);
+#endif
+}
+
+static void skip_char_back(compiler_common *common)
+{
+/* Goes one character back. Affects STR_PTR and TMP1. Does not check begin. */
+DEFINE_COMPILER;
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+#if defined COMPILE_PCRE8
+struct sljit_label *label;
+
+if (common->utf)
+ {
+ label = LABEL();
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), -IN_UCHARS(1));
+ OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, 0xc0);
+ CMPTO(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, 0x80, label);
+ return;
+ }
+#elif defined COMPILE_PCRE16
+if (common->utf)
+ {
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), -IN_UCHARS(1));
+ OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ /* Skip low surrogate if necessary. */
+ OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, 0xfc00);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0xdc00);
+ OP_FLAGS(SLJIT_MOV, TMP1, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SHL, TMP1, 0, TMP1, 0, SLJIT_IMM, 1);
+ OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, TMP1, 0);
+ return;
+ }
+#endif /* COMPILE_PCRE[8|16] */
+#endif /* SUPPORT_UTF && !COMPILE_PCRE32 */
+OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+}
+
+static void check_newlinechar(compiler_common *common, int nltype, jump_list **backtracks, BOOL jumpiftrue)
+{
+/* Character comes in TMP1. Checks if it is a newline. TMP2 may be destroyed. */
+DEFINE_COMPILER;
+
+if (nltype == NLTYPE_ANY)
+ {
+ add_jump(compiler, &common->anynewline, JUMP(SLJIT_FAST_CALL));
+ add_jump(compiler, backtracks, JUMP(jumpiftrue ? SLJIT_C_NOT_ZERO : SLJIT_C_ZERO));
+ }
+else if (nltype == NLTYPE_ANYCRLF)
+ {
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, CHAR_CR);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, CHAR_NL);
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ add_jump(compiler, backtracks, JUMP(jumpiftrue ? SLJIT_C_NOT_ZERO : SLJIT_C_ZERO));
+ }
+else
+ {
+ SLJIT_ASSERT(nltype == NLTYPE_FIXED && common->newline < 256);
+ add_jump(compiler, backtracks, CMP(jumpiftrue ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, common->newline));
+ }
+}
+
+#ifdef SUPPORT_UTF
+
+#if defined COMPILE_PCRE8
+static void do_utfreadchar(compiler_common *common)
+{
+/* Fast decoding a UTF-8 character. TMP1 contains the first byte
+of the character (>= 0xc0). Return char value in TMP1, length - 1 in TMP2. */
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+
+sljit_emit_fast_enter(compiler, RETURN_ADDR, 0);
+/* Searching for the first zero. */
+OP2(SLJIT_AND | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x20);
+jump = JUMP(SLJIT_C_NOT_ZERO);
+/* Two byte sequence. */
+OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(1));
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, 0x1f);
+OP2(SLJIT_SHL, TMP1, 0, TMP1, 0, SLJIT_IMM, 6);
+OP2(SLJIT_AND, TMP2, 0, TMP2, 0, SLJIT_IMM, 0x3f);
+OP2(SLJIT_OR, TMP1, 0, TMP1, 0, TMP2, 0);
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, IN_UCHARS(1));
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+JUMPHERE(jump);
+
+OP2(SLJIT_AND | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x10);
+jump = JUMP(SLJIT_C_NOT_ZERO);
+/* Three byte sequence. */
+OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(1));
+OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, 0x0f);
+OP2(SLJIT_SHL, TMP1, 0, TMP1, 0, SLJIT_IMM, 12);
+OP2(SLJIT_AND, TMP2, 0, TMP2, 0, SLJIT_IMM, 0x3f);
+OP2(SLJIT_SHL, TMP2, 0, TMP2, 0, SLJIT_IMM, 6);
+OP2(SLJIT_OR, TMP1, 0, TMP1, 0, TMP2, 0);
+OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(2));
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(2));
+OP2(SLJIT_AND, TMP2, 0, TMP2, 0, SLJIT_IMM, 0x3f);
+OP2(SLJIT_OR, TMP1, 0, TMP1, 0, TMP2, 0);
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, IN_UCHARS(2));
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+JUMPHERE(jump);
+
+/* Four byte sequence. */
+OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(1));
+OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, 0x07);
+OP2(SLJIT_SHL, TMP1, 0, TMP1, 0, SLJIT_IMM, 18);
+OP2(SLJIT_AND, TMP2, 0, TMP2, 0, SLJIT_IMM, 0x3f);
+OP2(SLJIT_SHL, TMP2, 0, TMP2, 0, SLJIT_IMM, 12);
+OP2(SLJIT_OR, TMP1, 0, TMP1, 0, TMP2, 0);
+OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(2));
+OP2(SLJIT_AND, TMP2, 0, TMP2, 0, SLJIT_IMM, 0x3f);
+OP2(SLJIT_SHL, TMP2, 0, TMP2, 0, SLJIT_IMM, 6);
+OP2(SLJIT_OR, TMP1, 0, TMP1, 0, TMP2, 0);
+OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(3));
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(3));
+OP2(SLJIT_AND, TMP2, 0, TMP2, 0, SLJIT_IMM, 0x3f);
+OP2(SLJIT_OR, TMP1, 0, TMP1, 0, TMP2, 0);
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, IN_UCHARS(3));
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+}
+
+static void do_utfreadtype8(compiler_common *common)
+{
+/* Fast decoding a UTF-8 character type. TMP2 contains the first byte
+of the character (>= 0xc0). Return value in TMP1. */
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+struct sljit_jump *compare;
+
+sljit_emit_fast_enter(compiler, RETURN_ADDR, 0);
+
+OP2(SLJIT_AND | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP2, 0, SLJIT_IMM, 0x20);
+jump = JUMP(SLJIT_C_NOT_ZERO);
+/* Two byte sequence. */
+OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(0));
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+OP2(SLJIT_AND, TMP2, 0, TMP2, 0, SLJIT_IMM, 0x1f);
+OP2(SLJIT_SHL, TMP2, 0, TMP2, 0, SLJIT_IMM, 6);
+OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, 0x3f);
+OP2(SLJIT_OR, TMP2, 0, TMP2, 0, TMP1, 0);
+compare = CMP(SLJIT_C_GREATER, TMP2, 0, SLJIT_IMM, 255);
+OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP2), common->ctypes);
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+
+JUMPHERE(compare);
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_IMM, 0);
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+JUMPHERE(jump);
+
+/* We only have types for characters less than 256. */
+OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP2), (sljit_sw)PRIV(utf8_table4) - 0xc0);
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP1, 0);
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_IMM, 0);
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+}
+
+#elif defined COMPILE_PCRE16
+
+static void do_utfreadchar(compiler_common *common)
+{
+/* Fast decoding a UTF-16 character. TMP1 contains the first 16 bit char
+of the character (>= 0xd800). Return char value in TMP1, length - 1 in TMP2. */
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+
+sljit_emit_fast_enter(compiler, RETURN_ADDR, 0);
+jump = CMP(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xdc00);
+/* Do nothing, only return. */
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+
+JUMPHERE(jump);
+/* Combine two 16 bit characters. */
+OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(1));
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, 0x3ff);
+OP2(SLJIT_SHL, TMP1, 0, TMP1, 0, SLJIT_IMM, 10);
+OP2(SLJIT_AND, TMP2, 0, TMP2, 0, SLJIT_IMM, 0x3ff);
+OP2(SLJIT_OR, TMP1, 0, TMP1, 0, TMP2, 0);
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, IN_UCHARS(1));
+OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, SLJIT_IMM, 0x10000);
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+}
+
+#endif /* COMPILE_PCRE[8|16] */
+
+#endif /* SUPPORT_UTF */
+
+#ifdef SUPPORT_UCP
+
+/* UCD_BLOCK_SIZE must be 128 (see the assert below). */
+#define UCD_BLOCK_MASK 127
+#define UCD_BLOCK_SHIFT 7
+
+static void do_getucd(compiler_common *common)
+{
+/* Search the UCD record for the character comes in TMP1.
+Returns chartype in TMP1 and UCD offset in TMP2. */
+DEFINE_COMPILER;
+
+SLJIT_ASSERT(UCD_BLOCK_SIZE == 128 && sizeof(ucd_record) == 8);
+
+sljit_emit_fast_enter(compiler, RETURN_ADDR, 0);
+OP2(SLJIT_LSHR, TMP2, 0, TMP1, 0, SLJIT_IMM, UCD_BLOCK_SHIFT);
+OP1(SLJIT_MOV_UB, TMP2, 0, SLJIT_MEM1(TMP2), (sljit_sw)PRIV(ucd_stage1));
+OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, UCD_BLOCK_MASK);
+OP2(SLJIT_SHL, TMP2, 0, TMP2, 0, SLJIT_IMM, UCD_BLOCK_SHIFT);
+OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, TMP2, 0);
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, (sljit_sw)PRIV(ucd_stage2));
+OP1(SLJIT_MOV_UH, TMP2, 0, SLJIT_MEM2(TMP2, TMP1), 1);
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_IMM, (sljit_sw)PRIV(ucd_records) + SLJIT_OFFSETOF(ucd_record, chartype));
+OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM2(TMP1, TMP2), 3);
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+}
+#endif
+
+static SLJIT_INLINE struct sljit_label *mainloop_entry(compiler_common *common, BOOL hascrorlf, BOOL firstline)
+{
+DEFINE_COMPILER;
+struct sljit_label *mainloop;
+struct sljit_label *newlinelabel = NULL;
+struct sljit_jump *start;
+struct sljit_jump *end = NULL;
+struct sljit_jump *nl = NULL;
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+struct sljit_jump *singlechar;
+#endif
+jump_list *newline = NULL;
+BOOL newlinecheck = FALSE;
+BOOL readuchar = FALSE;
+
+if (!(hascrorlf || firstline) && (common->nltype == NLTYPE_ANY ||
+ common->nltype == NLTYPE_ANYCRLF || common->newline > 255))
+ newlinecheck = TRUE;
+
+if (firstline)
+ {
+ /* Search for the end of the first line. */
+ SLJIT_ASSERT(common->first_line_end != 0);
+ OP1(SLJIT_MOV, TMP3, 0, STR_PTR, 0);
+
+ if (common->nltype == NLTYPE_FIXED && common->newline > 255)
+ {
+ mainloop = LABEL();
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ end = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(-1));
+ OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(0));
+ CMPTO(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, (common->newline >> 8) & 0xff, mainloop);
+ CMPTO(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, common->newline & 0xff, mainloop);
+ JUMPHERE(end);
+ OP2(SLJIT_SUB, SLJIT_MEM1(SLJIT_LOCALS_REG), common->first_line_end, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ }
+ else
+ {
+ end = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+ mainloop = LABEL();
+ /* Continual stores does not cause data dependency. */
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->first_line_end, STR_PTR, 0);
+ read_char(common);
+ check_newlinechar(common, common->nltype, &newline, TRUE);
+ CMPTO(SLJIT_C_LESS, STR_PTR, 0, STR_END, 0, mainloop);
+ JUMPHERE(end);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->first_line_end, STR_PTR, 0);
+ set_jumps(newline, LABEL());
+ }
+
+ OP1(SLJIT_MOV, STR_PTR, 0, TMP3, 0);
+ }
+
+start = JUMP(SLJIT_JUMP);
+
+if (newlinecheck)
+ {
+ newlinelabel = LABEL();
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ end = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), 0);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, common->newline & 0xff);
+ OP_FLAGS(SLJIT_MOV, TMP1, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ OP2(SLJIT_SHL, TMP1, 0, TMP1, 0, SLJIT_IMM, UCHAR_SHIFT);
+#endif
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP1, 0);
+ nl = JUMP(SLJIT_JUMP);
+ }
+
+mainloop = LABEL();
+
+/* Increasing the STR_PTR here requires one less jump in the most common case. */
+#ifdef SUPPORT_UTF
+if (common->utf) readuchar = TRUE;
+#endif
+if (newlinecheck) readuchar = TRUE;
+
+if (readuchar)
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), 0);
+
+if (newlinecheck)
+ CMPTO(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, (common->newline >> 8) & 0xff, newlinelabel);
+
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+#if defined SUPPORT_UTF && !defined COMPILE_PCRE32
+#if defined COMPILE_PCRE8
+if (common->utf)
+ {
+ singlechar = CMP(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xc0);
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP1), (sljit_sw)PRIV(utf8_table4) - 0xc0);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP1, 0);
+ JUMPHERE(singlechar);
+ }
+#elif defined COMPILE_PCRE16
+if (common->utf)
+ {
+ singlechar = CMP(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xd800);
+ OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, 0xfc00);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0xd800);
+ OP_FLAGS(SLJIT_MOV, TMP1, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SHL, TMP1, 0, TMP1, 0, SLJIT_IMM, 1);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP1, 0);
+ JUMPHERE(singlechar);
+ }
+#endif /* COMPILE_PCRE[8|16] */
+#endif /* SUPPORT_UTF && !COMPILE_PCRE32 */
+JUMPHERE(start);
+
+if (newlinecheck)
+ {
+ JUMPHERE(end);
+ JUMPHERE(nl);
+ }
+
+return mainloop;
+}
+
+#define MAX_N_CHARS 3
+
+static SLJIT_INLINE BOOL fast_forward_first_n_chars(compiler_common *common, BOOL firstline)
+{
+DEFINE_COMPILER;
+struct sljit_label *start;
+struct sljit_jump *quit;
+pcre_uint32 chars[MAX_N_CHARS * 2];
+pcre_uchar *cc = common->start + 1 + LINK_SIZE;
+int location = 0;
+pcre_int32 len, c, bit, caseless;
+int must_stop;
+
+/* We do not support alternatives now. */
+if (*(common->start + GET(common->start, 1)) == OP_ALT)
+ return FALSE;
+
+while (TRUE)
+ {
+ caseless = 0;
+ must_stop = 1;
+ switch(*cc)
+ {
+ case OP_CHAR:
+ must_stop = 0;
+ cc++;
+ break;
+
+ case OP_CHARI:
+ caseless = 1;
+ must_stop = 0;
+ cc++;
+ break;
+
+ case OP_SOD:
+ case OP_SOM:
+ case OP_SET_SOM:
+ case OP_NOT_WORD_BOUNDARY:
+ case OP_WORD_BOUNDARY:
+ case OP_EODN:
+ case OP_EOD:
+ case OP_CIRC:
+ case OP_CIRCM:
+ case OP_DOLL:
+ case OP_DOLLM:
+ /* Zero width assertions. */
+ cc++;
+ continue;
+
+ case OP_PLUS:
+ case OP_MINPLUS:
+ case OP_POSPLUS:
+ cc++;
+ break;
+
+ case OP_EXACT:
+ cc += 1 + IMM2_SIZE;
+ break;
+
+ case OP_PLUSI:
+ case OP_MINPLUSI:
+ case OP_POSPLUSI:
+ caseless = 1;
+ cc++;
+ break;
+
+ case OP_EXACTI:
+ caseless = 1;
+ cc += 1 + IMM2_SIZE;
+ break;
+
+ default:
+ must_stop = 2;
+ break;
+ }
+
+ if (must_stop == 2)
+ break;
+
+ len = 1;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[0])) len += GET_EXTRALEN(cc[0]);
+#endif
+
+ if (caseless && char_has_othercase(common, cc))
+ {
+ caseless = char_get_othercase_bit(common, cc);
+ if (caseless == 0)
+ return FALSE;
+#ifdef COMPILE_PCRE8
+ caseless = ((caseless & 0xff) << 8) | (len - (caseless >> 8));
+#else
+ if ((caseless & 0x100) != 0)
+ caseless = ((caseless & 0xff) << 16) | (len - (caseless >> 9));
+ else
+ caseless = ((caseless & 0xff) << 8) | (len - (caseless >> 9));
+#endif
+ }
+ else
+ caseless = 0;
+
+ while (len > 0 && location < MAX_N_CHARS * 2)
+ {
+ c = *cc;
+ bit = 0;
+ if (len == (caseless & 0xff))
+ {
+ bit = caseless >> 8;
+ c |= bit;
+ }
+
+ chars[location] = c;
+ chars[location + 1] = bit;
+
+ len--;
+ location += 2;
+ cc++;
+ }
+
+ if (location >= MAX_N_CHARS * 2 || must_stop != 0)
+ break;
+ }
+
+/* At least two characters are required. */
+if (location < 2 * 2)
+ return FALSE;
+
+if (firstline)
+ {
+ SLJIT_ASSERT(common->first_line_end != 0);
+ OP1(SLJIT_MOV, TMP3, 0, STR_END, 0);
+ OP2(SLJIT_SUB, STR_END, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->first_line_end, SLJIT_IMM, IN_UCHARS((location >> 1) - 1));
+ }
+else
+ OP2(SLJIT_SUB, STR_END, 0, STR_END, 0, SLJIT_IMM, IN_UCHARS((location >> 1) - 1));
+
+start = LABEL();
+quit = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+
+OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(0));
+OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(1));
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+if (chars[1] != 0)
+ OP2(SLJIT_OR, TMP1, 0, TMP1, 0, SLJIT_IMM, chars[1]);
+CMPTO(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, chars[0], start);
+if (location > 2 * 2)
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(1));
+if (chars[3] != 0)
+ OP2(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_IMM, chars[3]);
+CMPTO(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, chars[2], start);
+if (location > 2 * 2)
+ {
+ if (chars[5] != 0)
+ OP2(SLJIT_OR, TMP1, 0, TMP1, 0, SLJIT_IMM, chars[5]);
+ CMPTO(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, chars[4], start);
+ }
+OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+
+JUMPHERE(quit);
+
+if (firstline)
+ OP1(SLJIT_MOV, STR_END, 0, TMP3, 0);
+else
+ OP2(SLJIT_ADD, STR_END, 0, STR_END, 0, SLJIT_IMM, IN_UCHARS((location >> 1) - 1));
+return TRUE;
+}
+
+#undef MAX_N_CHARS
+
+static SLJIT_INLINE void fast_forward_first_char(compiler_common *common, pcre_uchar first_char, BOOL caseless, BOOL firstline)
+{
+DEFINE_COMPILER;
+struct sljit_label *start;
+struct sljit_jump *quit;
+struct sljit_jump *found;
+pcre_uchar oc, bit;
+
+if (firstline)
+ {
+ SLJIT_ASSERT(common->first_line_end != 0);
+ OP1(SLJIT_MOV, TMP3, 0, STR_END, 0);
+ OP1(SLJIT_MOV, STR_END, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->first_line_end);
+ }
+
+start = LABEL();
+quit = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), 0);
+
+oc = first_char;
+if (caseless)
+ {
+ oc = TABLE_GET(first_char, common->fcc, first_char);
+#if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
+ if (first_char > 127 && common->utf)
+ oc = UCD_OTHERCASE(first_char);
+#endif
+ }
+if (first_char == oc)
+ found = CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, first_char);
+else
+ {
+ bit = first_char ^ oc;
+ if (is_powerof2(bit))
+ {
+ OP2(SLJIT_OR, TMP2, 0, TMP1, 0, SLJIT_IMM, bit);
+ found = CMP(SLJIT_C_EQUAL, TMP2, 0, SLJIT_IMM, first_char | bit);
+ }
+ else
+ {
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, first_char);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, oc);
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ found = JUMP(SLJIT_C_NOT_ZERO);
+ }
+ }
+
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+JUMPTO(SLJIT_JUMP, start);
+JUMPHERE(found);
+JUMPHERE(quit);
+
+if (firstline)
+ OP1(SLJIT_MOV, STR_END, 0, TMP3, 0);
+}
+
+static SLJIT_INLINE void fast_forward_newline(compiler_common *common, BOOL firstline)
+{
+DEFINE_COMPILER;
+struct sljit_label *loop;
+struct sljit_jump *lastchar;
+struct sljit_jump *firstchar;
+struct sljit_jump *quit;
+struct sljit_jump *foundcr = NULL;
+struct sljit_jump *notfoundnl;
+jump_list *newline = NULL;
+
+if (firstline)
+ {
+ SLJIT_ASSERT(common->first_line_end != 0);
+ OP1(SLJIT_MOV, TMP3, 0, STR_END, 0);
+ OP1(SLJIT_MOV, STR_END, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->first_line_end);
+ }
+
+if (common->nltype == NLTYPE_FIXED && common->newline > 255)
+ {
+ lastchar = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+ OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, str));
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, begin));
+ firstchar = CMP(SLJIT_C_LESS_EQUAL, STR_PTR, 0, TMP2, 0);
+
+ OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, SLJIT_IMM, IN_UCHARS(2));
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, STR_PTR, 0, TMP1, 0);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_GREATER_EQUAL);
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ OP2(SLJIT_SHL, TMP2, 0, TMP2, 0, SLJIT_IMM, UCHAR_SHIFT);
+#endif
+ OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, TMP2, 0);
+
+ loop = LABEL();
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ quit = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(-2));
+ OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(-1));
+ CMPTO(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, (common->newline >> 8) & 0xff, loop);
+ CMPTO(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, common->newline & 0xff, loop);
+
+ JUMPHERE(quit);
+ JUMPHERE(firstchar);
+ JUMPHERE(lastchar);
+
+ if (firstline)
+ OP1(SLJIT_MOV, STR_END, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE0);
+ return;
+ }
+
+OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, str));
+firstchar = CMP(SLJIT_C_LESS_EQUAL, STR_PTR, 0, TMP2, 0);
+skip_char_back(common);
+
+loop = LABEL();
+read_char(common);
+lastchar = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+if (common->nltype == NLTYPE_ANY || common->nltype == NLTYPE_ANYCRLF)
+ foundcr = CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, CHAR_CR);
+check_newlinechar(common, common->nltype, &newline, FALSE);
+set_jumps(newline, loop);
+
+if (common->nltype == NLTYPE_ANY || common->nltype == NLTYPE_ANYCRLF)
+ {
+ quit = JUMP(SLJIT_JUMP);
+ JUMPHERE(foundcr);
+ notfoundnl = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), 0);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, CHAR_NL);
+ OP_FLAGS(SLJIT_MOV, TMP1, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+#if defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ OP2(SLJIT_SHL, TMP1, 0, TMP1, 0, SLJIT_IMM, UCHAR_SHIFT);
+#endif
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP1, 0);
+ JUMPHERE(notfoundnl);
+ JUMPHERE(quit);
+ }
+JUMPHERE(lastchar);
+JUMPHERE(firstchar);
+
+if (firstline)
+ OP1(SLJIT_MOV, STR_END, 0, TMP3, 0);
+}
+
+static BOOL check_class_ranges(compiler_common *common, const pcre_uint8 *bits, BOOL nclass, jump_list **backtracks);
+
+static SLJIT_INLINE void fast_forward_start_bits(compiler_common *common, sljit_uw start_bits, BOOL firstline)
+{
+DEFINE_COMPILER;
+struct sljit_label *start;
+struct sljit_jump *quit;
+struct sljit_jump *found = NULL;
+jump_list *matches = NULL;
+pcre_uint8 inverted_start_bits[32];
+int i;
+#ifndef COMPILE_PCRE8
+struct sljit_jump *jump;
+#endif
+
+for (i = 0; i < 32; ++i)
+ inverted_start_bits[i] = ~(((pcre_uint8*)start_bits)[i]);
+
+if (firstline)
+ {
+ SLJIT_ASSERT(common->first_line_end != 0);
+ OP1(SLJIT_MOV, RETURN_ADDR, 0, STR_END, 0);
+ OP1(SLJIT_MOV, STR_END, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->first_line_end);
+ }
+
+start = LABEL();
+quit = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), 0);
+#ifdef SUPPORT_UTF
+if (common->utf)
+ OP1(SLJIT_MOV, TMP3, 0, TMP1, 0);
+#endif
+
+if (!check_class_ranges(common, inverted_start_bits, (inverted_start_bits[31] & 0x80) != 0, &matches))
+ {
+#ifndef COMPILE_PCRE8
+ jump = CMP(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 255);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_IMM, 255);
+ JUMPHERE(jump);
+#endif
+ OP2(SLJIT_AND, TMP2, 0, TMP1, 0, SLJIT_IMM, 0x7);
+ OP2(SLJIT_LSHR, TMP1, 0, TMP1, 0, SLJIT_IMM, 3);
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP1), start_bits);
+ OP2(SLJIT_SHL, TMP2, 0, SLJIT_IMM, 1, TMP2, 0);
+ OP2(SLJIT_AND | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, TMP2, 0);
+ found = JUMP(SLJIT_C_NOT_ZERO);
+ }
+
+#ifdef SUPPORT_UTF
+if (common->utf)
+ OP1(SLJIT_MOV, TMP1, 0, TMP3, 0);
+#endif
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+#ifdef SUPPORT_UTF
+#if defined COMPILE_PCRE8
+if (common->utf)
+ {
+ CMPTO(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xc0, start);
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP1), (sljit_sw)PRIV(utf8_table4) - 0xc0);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP1, 0);
+ }
+#elif defined COMPILE_PCRE16
+if (common->utf)
+ {
+ CMPTO(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xd800, start);
+ OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, 0xfc00);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0xd800);
+ OP_FLAGS(SLJIT_MOV, TMP1, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SHL, TMP1, 0, TMP1, 0, SLJIT_IMM, 1);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP1, 0);
+ }
+#endif /* COMPILE_PCRE[8|16] */
+#endif /* SUPPORT_UTF */
+JUMPTO(SLJIT_JUMP, start);
+if (found != NULL)
+ JUMPHERE(found);
+if (matches != NULL)
+ set_jumps(matches, LABEL());
+JUMPHERE(quit);
+
+if (firstline)
+ OP1(SLJIT_MOV, STR_END, 0, RETURN_ADDR, 0);
+}
+
+static SLJIT_INLINE struct sljit_jump *search_requested_char(compiler_common *common, pcre_uchar req_char, BOOL caseless, BOOL has_firstchar)
+{
+DEFINE_COMPILER;
+struct sljit_label *loop;
+struct sljit_jump *toolong;
+struct sljit_jump *alreadyfound;
+struct sljit_jump *found;
+struct sljit_jump *foundoc = NULL;
+struct sljit_jump *notfound;
+pcre_uint32 oc, bit;
+
+SLJIT_ASSERT(common->req_char_ptr != 0);
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->req_char_ptr);
+OP2(SLJIT_ADD, TMP1, 0, STR_PTR, 0, SLJIT_IMM, REQ_BYTE_MAX);
+toolong = CMP(SLJIT_C_LESS, TMP1, 0, STR_END, 0);
+alreadyfound = CMP(SLJIT_C_LESS, STR_PTR, 0, TMP2, 0);
+
+if (has_firstchar)
+ OP2(SLJIT_ADD, TMP1, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+else
+ OP1(SLJIT_MOV, TMP1, 0, STR_PTR, 0);
+
+loop = LABEL();
+notfound = CMP(SLJIT_C_GREATER_EQUAL, TMP1, 0, STR_END, 0);
+
+OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(TMP1), 0);
+oc = req_char;
+if (caseless)
+ {
+ oc = TABLE_GET(req_char, common->fcc, req_char);
+#if defined SUPPORT_UCP && !(defined COMPILE_PCRE8)
+ if (req_char > 127 && common->utf)
+ oc = UCD_OTHERCASE(req_char);
+#endif
+ }
+if (req_char == oc)
+ found = CMP(SLJIT_C_EQUAL, TMP2, 0, SLJIT_IMM, req_char);
+else
+ {
+ bit = req_char ^ oc;
+ if (is_powerof2(bit))
+ {
+ OP2(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_IMM, bit);
+ found = CMP(SLJIT_C_EQUAL, TMP2, 0, SLJIT_IMM, req_char | bit);
+ }
+ else
+ {
+ found = CMP(SLJIT_C_EQUAL, TMP2, 0, SLJIT_IMM, req_char);
+ foundoc = CMP(SLJIT_C_EQUAL, TMP2, 0, SLJIT_IMM, oc);
+ }
+ }
+OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, SLJIT_IMM, IN_UCHARS(1));
+JUMPTO(SLJIT_JUMP, loop);
+
+JUMPHERE(found);
+if (foundoc)
+ JUMPHERE(foundoc);
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->req_char_ptr, TMP1, 0);
+JUMPHERE(alreadyfound);
+JUMPHERE(toolong);
+return notfound;
+}
+
+static void do_revertframes(compiler_common *common)
+{
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+struct sljit_label *mainloop;
+
+sljit_emit_fast_enter(compiler, RETURN_ADDR, 0);
+OP1(SLJIT_MOV, TMP1, 0, STACK_TOP, 0);
+GET_LOCAL_BASE(TMP3, 0, 0);
+
+/* Drop frames until we reach STACK_TOP. */
+mainloop = LABEL();
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(TMP1), 0);
+OP2(SLJIT_SUB | SLJIT_SET_S, SLJIT_UNUSED, 0, TMP2, 0, SLJIT_IMM, 0);
+jump = JUMP(SLJIT_C_SIG_LESS_EQUAL);
+
+OP2(SLJIT_ADD, TMP2, 0, TMP2, 0, TMP3, 0);
+OP1(SLJIT_MOV, SLJIT_MEM1(TMP2), 0, SLJIT_MEM1(TMP1), sizeof(sljit_sw));
+OP1(SLJIT_MOV, SLJIT_MEM1(TMP2), sizeof(sljit_sw), SLJIT_MEM1(TMP1), 2 * sizeof(sljit_sw));
+OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, SLJIT_IMM, 3 * sizeof(sljit_sw));
+JUMPTO(SLJIT_JUMP, mainloop);
+
+JUMPHERE(jump);
+jump = JUMP(SLJIT_C_SIG_LESS);
+/* End of dropping frames. */
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+
+JUMPHERE(jump);
+OP1(SLJIT_NEG, TMP2, 0, TMP2, 0);
+OP2(SLJIT_ADD, TMP2, 0, TMP2, 0, TMP3, 0);
+OP1(SLJIT_MOV, SLJIT_MEM1(TMP2), 0, SLJIT_MEM1(TMP1), sizeof(sljit_sw));
+OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, SLJIT_IMM, 2 * sizeof(sljit_sw));
+JUMPTO(SLJIT_JUMP, mainloop);
+}
+
+static void check_wordboundary(compiler_common *common)
+{
+DEFINE_COMPILER;
+struct sljit_jump *skipread;
+jump_list *skipread_list = NULL;
+#if !(defined COMPILE_PCRE8) || defined SUPPORT_UTF
+struct sljit_jump *jump;
+#endif
+
+SLJIT_COMPILE_ASSERT(ctype_word == 0x10, ctype_word_must_be_16);
+
+sljit_emit_fast_enter(compiler, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0);
+/* Get type of the previous char, and put it to LOCALS1. */
+OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, begin));
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1, SLJIT_IMM, 0);
+skipread = CMP(SLJIT_C_LESS_EQUAL, STR_PTR, 0, TMP1, 0);
+skip_char_back(common);
+check_start_used_ptr(common);
+read_char(common);
+
+/* Testing char type. */
+#ifdef SUPPORT_UCP
+if (common->use_ucp)
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, 1);
+ jump = CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, CHAR_UNDERSCORE);
+ add_jump(compiler, &common->getucd, JUMP(SLJIT_FAST_CALL));
+ OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, ucp_Ll);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, ucp_Lu - ucp_Ll);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_LESS_EQUAL);
+ OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, ucp_Nd - ucp_Ll);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, ucp_No - ucp_Nd);
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_LESS_EQUAL);
+ JUMPHERE(jump);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1, TMP2, 0);
+ }
+else
+#endif
+ {
+#ifndef COMPILE_PCRE8
+ jump = CMP(SLJIT_C_GREATER, TMP1, 0, SLJIT_IMM, 255);
+#elif defined SUPPORT_UTF
+ /* Here LOCALS1 has already been zeroed. */
+ jump = NULL;
+ if (common->utf)
+ jump = CMP(SLJIT_C_GREATER, TMP1, 0, SLJIT_IMM, 255);
+#endif /* COMPILE_PCRE8 */
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP1), common->ctypes);
+ OP2(SLJIT_LSHR, TMP1, 0, TMP1, 0, SLJIT_IMM, 4 /* ctype_word */);
+ OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1, TMP1, 0);
+#ifndef COMPILE_PCRE8
+ JUMPHERE(jump);
+#elif defined SUPPORT_UTF
+ if (jump != NULL)
+ JUMPHERE(jump);
+#endif /* COMPILE_PCRE8 */
+ }
+JUMPHERE(skipread);
+
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, 0);
+check_str_end(common, &skipread_list);
+peek_char(common);
+
+/* Testing char type. This is a code duplication. */
+#ifdef SUPPORT_UCP
+if (common->use_ucp)
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, 1);
+ jump = CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, CHAR_UNDERSCORE);
+ add_jump(compiler, &common->getucd, JUMP(SLJIT_FAST_CALL));
+ OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, ucp_Ll);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, ucp_Lu - ucp_Ll);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_LESS_EQUAL);
+ OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, ucp_Nd - ucp_Ll);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, ucp_No - ucp_Nd);
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_LESS_EQUAL);
+ JUMPHERE(jump);
+ }
+else
+#endif
+ {
+#ifndef COMPILE_PCRE8
+ /* TMP2 may be destroyed by peek_char. */
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, 0);
+ jump = CMP(SLJIT_C_GREATER, TMP1, 0, SLJIT_IMM, 255);
+#elif defined SUPPORT_UTF
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, 0);
+ jump = NULL;
+ if (common->utf)
+ jump = CMP(SLJIT_C_GREATER, TMP1, 0, SLJIT_IMM, 255);
+#endif
+ OP1(SLJIT_MOV_UB, TMP2, 0, SLJIT_MEM1(TMP1), common->ctypes);
+ OP2(SLJIT_LSHR, TMP2, 0, TMP2, 0, SLJIT_IMM, 4 /* ctype_word */);
+ OP2(SLJIT_AND, TMP2, 0, TMP2, 0, SLJIT_IMM, 1);
+#ifndef COMPILE_PCRE8
+ JUMPHERE(jump);
+#elif defined SUPPORT_UTF
+ if (jump != NULL)
+ JUMPHERE(jump);
+#endif /* COMPILE_PCRE8 */
+ }
+set_jumps(skipread_list, LABEL());
+
+OP2(SLJIT_XOR | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1);
+sljit_emit_fast_return(compiler, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0);
+}
+
+/*
+ range format:
+
+ ranges[0] = length of the range (max MAX_RANGE_SIZE, -1 means invalid range).
+ ranges[1] = first bit (0 or 1)
+ ranges[2-length] = position of the bit change (when the current bit is not equal to the previous)
+*/
+
+static BOOL check_ranges(compiler_common *common, int *ranges, jump_list **backtracks, BOOL readch)
+{
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+
+if (ranges[0] < 0)
+ return FALSE;
+
+switch(ranges[0])
+ {
+ case 1:
+ if (readch)
+ read_char(common);
+ add_jump(compiler, backtracks, CMP(ranges[1] == 0 ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL, TMP1, 0, SLJIT_IMM, ranges[2]));
+ return TRUE;
+
+ case 2:
+ if (readch)
+ read_char(common);
+ OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, ranges[2]);
+ add_jump(compiler, backtracks, CMP(ranges[1] != 0 ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL, TMP1, 0, SLJIT_IMM, ranges[3] - ranges[2]));
+ return TRUE;
+
+ case 4:
+ if (ranges[2] + 1 == ranges[3] && ranges[4] + 1 == ranges[5])
+ {
+ if (readch)
+ read_char(common);
+ if (ranges[1] != 0)
+ {
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, ranges[2]));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, ranges[4]));
+ }
+ else
+ {
+ jump = CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, ranges[2]);
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, ranges[4]));
+ JUMPHERE(jump);
+ }
+ return TRUE;
+ }
+ if ((ranges[3] - ranges[2]) == (ranges[5] - ranges[4]) && is_powerof2(ranges[4] - ranges[2]))
+ {
+ if (readch)
+ read_char(common);
+ OP2(SLJIT_OR, TMP1, 0, TMP1, 0, SLJIT_IMM, ranges[4] - ranges[2]);
+ OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, ranges[4]);
+ add_jump(compiler, backtracks, CMP(ranges[1] != 0 ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL, TMP1, 0, SLJIT_IMM, ranges[5] - ranges[4]));
+ return TRUE;
+ }
+ return FALSE;
+
+ default:
+ return FALSE;
+ }
+}
+
+static void get_ctype_ranges(compiler_common *common, int flag, int *ranges)
+{
+int i, bit, length;
+const pcre_uint8 *ctypes = (const pcre_uint8*)common->ctypes;
+
+bit = ctypes[0] & flag;
+ranges[0] = -1;
+ranges[1] = bit != 0 ? 1 : 0;
+length = 0;
+
+for (i = 1; i < 256; i++)
+ if ((ctypes[i] & flag) != bit)
+ {
+ if (length >= MAX_RANGE_SIZE)
+ return;
+ ranges[2 + length] = i;
+ length++;
+ bit ^= flag;
+ }
+
+if (bit != 0)
+ {
+ if (length >= MAX_RANGE_SIZE)
+ return;
+ ranges[2 + length] = 256;
+ length++;
+ }
+ranges[0] = length;
+}
+
+static BOOL check_class_ranges(compiler_common *common, const pcre_uint8 *bits, BOOL nclass, jump_list **backtracks)
+{
+int ranges[2 + MAX_RANGE_SIZE];
+pcre_uint8 bit, cbit, all;
+int i, byte, length = 0;
+
+bit = bits[0] & 0x1;
+ranges[1] = bit;
+/* Can be 0 or 255. */
+all = -bit;
+
+for (i = 0; i < 256; )
+ {
+ byte = i >> 3;
+ if ((i & 0x7) == 0 && bits[byte] == all)
+ i += 8;
+ else
+ {
+ cbit = (bits[byte] >> (i & 0x7)) & 0x1;
+ if (cbit != bit)
+ {
+ if (length >= MAX_RANGE_SIZE)
+ return FALSE;
+ ranges[2 + length] = i;
+ length++;
+ bit = cbit;
+ all = -cbit;
+ }
+ i++;
+ }
+ }
+
+if (((bit == 0) && nclass) || ((bit == 1) && !nclass))
+ {
+ if (length >= MAX_RANGE_SIZE)
+ return FALSE;
+ ranges[2 + length] = 256;
+ length++;
+ }
+ranges[0] = length;
+
+return check_ranges(common, ranges, backtracks, FALSE);
+}
+
+static void check_anynewline(compiler_common *common)
+{
+/* Check whether TMP1 contains a newline character. TMP2 destroyed. */
+DEFINE_COMPILER;
+
+sljit_emit_fast_enter(compiler, RETURN_ADDR, 0);
+
+OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, 0x0a);
+OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x0d - 0x0a);
+OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_LESS_EQUAL);
+OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x85 - 0x0a);
+#if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+#ifdef COMPILE_PCRE8
+if (common->utf)
+ {
+#endif
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_OR, TMP1, 0, TMP1, 0, SLJIT_IMM, 0x1);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x2029 - 0x0a);
+#ifdef COMPILE_PCRE8
+ }
+#endif
+#endif /* SUPPORT_UTF || COMPILE_PCRE16 || COMPILE_PCRE32 */
+OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+}
+
+static void check_hspace(compiler_common *common)
+{
+/* Check whether TMP1 contains a newline character. TMP2 destroyed. */
+DEFINE_COMPILER;
+
+sljit_emit_fast_enter(compiler, RETURN_ADDR, 0);
+
+OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x09);
+OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x20);
+OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0xa0);
+#if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+#ifdef COMPILE_PCRE8
+if (common->utf)
+ {
+#endif
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x1680);
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x180e);
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, 0x2000);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x200A - 0x2000);
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_LESS_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x202f - 0x2000);
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x205f - 0x2000);
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x3000 - 0x2000);
+#ifdef COMPILE_PCRE8
+ }
+#endif
+#endif /* SUPPORT_UTF || COMPILE_PCRE16 || COMPILE_PCRE32 */
+OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+}
+
+static void check_vspace(compiler_common *common)
+{
+/* Check whether TMP1 contains a newline character. TMP2 destroyed. */
+DEFINE_COMPILER;
+
+sljit_emit_fast_enter(compiler, RETURN_ADDR, 0);
+
+OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, 0x0a);
+OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x0d - 0x0a);
+OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_LESS_EQUAL);
+OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x85 - 0x0a);
+#if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+#ifdef COMPILE_PCRE8
+if (common->utf)
+ {
+#endif
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_OR, TMP1, 0, TMP1, 0, SLJIT_IMM, 0x1);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0x2029 - 0x0a);
+#ifdef COMPILE_PCRE8
+ }
+#endif
+#endif /* SUPPORT_UTF || COMPILE_PCRE16 || COMPILE_PCRE32 */
+OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+}
+
+#define CHAR1 STR_END
+#define CHAR2 STACK_TOP
+
+static void do_casefulcmp(compiler_common *common)
+{
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+struct sljit_label *label;
+
+sljit_emit_fast_enter(compiler, RETURN_ADDR, 0);
+OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, TMP2, 0);
+OP1(SLJIT_MOV, TMP3, 0, CHAR1, 0);
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0, CHAR2, 0);
+OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, IN_UCHARS(1));
+OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+
+label = LABEL();
+OP1(MOVU_UCHAR, CHAR1, 0, SLJIT_MEM1(TMP1), IN_UCHARS(1));
+OP1(MOVU_UCHAR, CHAR2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(1));
+jump = CMP(SLJIT_C_NOT_EQUAL, CHAR1, 0, CHAR2, 0);
+OP2(SLJIT_SUB | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_IMM, IN_UCHARS(1));
+JUMPTO(SLJIT_C_NOT_ZERO, label);
+
+JUMPHERE(jump);
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+OP1(SLJIT_MOV, CHAR1, 0, TMP3, 0);
+OP1(SLJIT_MOV, CHAR2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0);
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+}
+
+#define LCC_TABLE STACK_LIMIT
+
+static void do_caselesscmp(compiler_common *common)
+{
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+struct sljit_label *label;
+
+sljit_emit_fast_enter(compiler, RETURN_ADDR, 0);
+OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, TMP2, 0);
+
+OP1(SLJIT_MOV, TMP3, 0, LCC_TABLE, 0);
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0, CHAR1, 0);
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1, CHAR2, 0);
+OP1(SLJIT_MOV, LCC_TABLE, 0, SLJIT_IMM, common->lcc);
+OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, IN_UCHARS(1));
+OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+
+label = LABEL();
+OP1(MOVU_UCHAR, CHAR1, 0, SLJIT_MEM1(TMP1), IN_UCHARS(1));
+OP1(MOVU_UCHAR, CHAR2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(1));
+#ifndef COMPILE_PCRE8
+jump = CMP(SLJIT_C_GREATER, CHAR1, 0, SLJIT_IMM, 255);
+#endif
+OP1(SLJIT_MOV_UB, CHAR1, 0, SLJIT_MEM2(LCC_TABLE, CHAR1), 0);
+#ifndef COMPILE_PCRE8
+JUMPHERE(jump);
+jump = CMP(SLJIT_C_GREATER, CHAR2, 0, SLJIT_IMM, 255);
+#endif
+OP1(SLJIT_MOV_UB, CHAR2, 0, SLJIT_MEM2(LCC_TABLE, CHAR2), 0);
+#ifndef COMPILE_PCRE8
+JUMPHERE(jump);
+#endif
+jump = CMP(SLJIT_C_NOT_EQUAL, CHAR1, 0, CHAR2, 0);
+OP2(SLJIT_SUB | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_IMM, IN_UCHARS(1));
+JUMPTO(SLJIT_C_NOT_ZERO, label);
+
+JUMPHERE(jump);
+OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+OP1(SLJIT_MOV, LCC_TABLE, 0, TMP3, 0);
+OP1(SLJIT_MOV, CHAR1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0);
+OP1(SLJIT_MOV, CHAR2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1);
+sljit_emit_fast_return(compiler, RETURN_ADDR, 0);
+}
+
+#undef LCC_TABLE
+#undef CHAR1
+#undef CHAR2
+
+#if defined SUPPORT_UTF && defined SUPPORT_UCP
+
+static const pcre_uchar * SLJIT_CALL do_utf_caselesscmp(pcre_uchar *src1, jit_arguments *args, pcre_uchar *end1)
+{
+/* This function would be ineffective to do in JIT level. */
+pcre_uint32 c1, c2;
+const pcre_uchar *src2 = args->uchar_ptr;
+const pcre_uchar *end2 = args->end;
+const ucd_record *ur;
+const pcre_uint32 *pp;
+
+while (src1 < end1)
+ {
+ if (src2 >= end2)
+ return (pcre_uchar*)1;
+ GETCHARINC(c1, src1);
+ GETCHARINC(c2, src2);
+ ur = GET_UCD(c2);
+ if (c1 != c2 && c1 != c2 + ur->other_case)
+ {
+ pp = PRIV(ucd_caseless_sets) + ur->caseset;
+ for (;;)
+ {
+ if (c1 < *pp) return NULL;
+ if (c1 == *pp++) break;
+ }
+ }
+ }
+return src2;
+}
+
+#endif /* SUPPORT_UTF && SUPPORT_UCP */
+
+static pcre_uchar *byte_sequence_compare(compiler_common *common, BOOL caseless, pcre_uchar *cc,
+ compare_context* context, jump_list **backtracks)
+{
+DEFINE_COMPILER;
+unsigned int othercasebit = 0;
+pcre_uchar *othercasechar = NULL;
+#ifdef SUPPORT_UTF
+int utflength;
+#endif
+
+if (caseless && char_has_othercase(common, cc))
+ {
+ othercasebit = char_get_othercase_bit(common, cc);
+ SLJIT_ASSERT(othercasebit);
+ /* Extracting bit difference info. */
+#if defined COMPILE_PCRE8
+ othercasechar = cc + (othercasebit >> 8);
+ othercasebit &= 0xff;
+#elif defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ /* Note that this code only handles characters in the BMP. If there
+ ever are characters outside the BMP whose othercase differs in only one
+ bit from itself (there currently are none), this code will need to be
+ revised for COMPILE_PCRE32. */
+ othercasechar = cc + (othercasebit >> 9);
+ if ((othercasebit & 0x100) != 0)
+ othercasebit = (othercasebit & 0xff) << 8;
+ else
+ othercasebit &= 0xff;
+#endif /* COMPILE_PCRE[8|16|32] */
+ }
+
+if (context->sourcereg == -1)
+ {
+#if defined COMPILE_PCRE8
+#if defined SLJIT_UNALIGNED && SLJIT_UNALIGNED
+ if (context->length >= 4)
+ OP1(SLJIT_MOV_SI, TMP1, 0, SLJIT_MEM1(STR_PTR), -context->length);
+ else if (context->length >= 2)
+ OP1(SLJIT_MOV_UH, TMP1, 0, SLJIT_MEM1(STR_PTR), -context->length);
+ else
+#endif
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(STR_PTR), -context->length);
+#elif defined COMPILE_PCRE16
+#if defined SLJIT_UNALIGNED && SLJIT_UNALIGNED
+ if (context->length >= 4)
+ OP1(SLJIT_MOV_SI, TMP1, 0, SLJIT_MEM1(STR_PTR), -context->length);
+ else
+#endif
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), -context->length);
+#elif defined COMPILE_PCRE32
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), -context->length);
+#endif /* COMPILE_PCRE[8|16|32] */
+ context->sourcereg = TMP2;
+ }
+
+#ifdef SUPPORT_UTF
+utflength = 1;
+if (common->utf && HAS_EXTRALEN(*cc))
+ utflength += GET_EXTRALEN(*cc);
+
+do
+ {
+#endif
+
+ context->length -= IN_UCHARS(1);
+#if (defined SLJIT_UNALIGNED && SLJIT_UNALIGNED) && (defined COMPILE_PCRE8 || defined COMPILE_PCRE16)
+
+ /* Unaligned read is supported. */
+ if (othercasebit != 0 && othercasechar == cc)
+ {
+ context->c.asuchars[context->ucharptr] = *cc | othercasebit;
+ context->oc.asuchars[context->ucharptr] = othercasebit;
+ }
+ else
+ {
+ context->c.asuchars[context->ucharptr] = *cc;
+ context->oc.asuchars[context->ucharptr] = 0;
+ }
+ context->ucharptr++;
+
+#if defined COMPILE_PCRE8
+ if (context->ucharptr >= 4 || context->length == 0 || (context->ucharptr == 2 && context->length == 1))
+#else
+ if (context->ucharptr >= 2 || context->length == 0)
+#endif
+ {
+ if (context->length >= 4)
+ OP1(SLJIT_MOV_SI, context->sourcereg, 0, SLJIT_MEM1(STR_PTR), -context->length);
+ else if (context->length >= 2)
+ OP1(SLJIT_MOV_UH, context->sourcereg, 0, SLJIT_MEM1(STR_PTR), -context->length);
+#if defined COMPILE_PCRE8
+ else if (context->length >= 1)
+ OP1(SLJIT_MOV_UB, context->sourcereg, 0, SLJIT_MEM1(STR_PTR), -context->length);
+#endif /* COMPILE_PCRE8 */
+ context->sourcereg = context->sourcereg == TMP1 ? TMP2 : TMP1;
+
+ switch(context->ucharptr)
+ {
+ case 4 / sizeof(pcre_uchar):
+ if (context->oc.asint != 0)
+ OP2(SLJIT_OR, context->sourcereg, 0, context->sourcereg, 0, SLJIT_IMM, context->oc.asint);
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, context->sourcereg, 0, SLJIT_IMM, context->c.asint | context->oc.asint));
+ break;
+
+ case 2 / sizeof(pcre_uchar):
+ if (context->oc.asushort != 0)
+ OP2(SLJIT_OR, context->sourcereg, 0, context->sourcereg, 0, SLJIT_IMM, context->oc.asushort);
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, context->sourcereg, 0, SLJIT_IMM, context->c.asushort | context->oc.asushort));
+ break;
+
+#ifdef COMPILE_PCRE8
+ case 1:
+ if (context->oc.asbyte != 0)
+ OP2(SLJIT_OR, context->sourcereg, 0, context->sourcereg, 0, SLJIT_IMM, context->oc.asbyte);
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, context->sourcereg, 0, SLJIT_IMM, context->c.asbyte | context->oc.asbyte));
+ break;
+#endif
+
+ default:
+ SLJIT_ASSERT_STOP();
+ break;
+ }
+ context->ucharptr = 0;
+ }
+
+#else
+
+ /* Unaligned read is unsupported or in 32 bit mode. */
+ if (context->length >= 1)
+ OP1(MOV_UCHAR, context->sourcereg, 0, SLJIT_MEM1(STR_PTR), -context->length);
+
+ context->sourcereg = context->sourcereg == TMP1 ? TMP2 : TMP1;
+
+ if (othercasebit != 0 && othercasechar == cc)
+ {
+ OP2(SLJIT_OR, context->sourcereg, 0, context->sourcereg, 0, SLJIT_IMM, othercasebit);
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, context->sourcereg, 0, SLJIT_IMM, *cc | othercasebit));
+ }
+ else
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, context->sourcereg, 0, SLJIT_IMM, *cc));
+
+#endif
+
+ cc++;
+#ifdef SUPPORT_UTF
+ utflength--;
+ }
+while (utflength > 0);
+#endif
+
+return cc;
+}
+
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+
+#define SET_TYPE_OFFSET(value) \
+ if ((value) != typeoffset) \
+ { \
+ if ((value) > typeoffset) \
+ OP2(SLJIT_SUB, typereg, 0, typereg, 0, SLJIT_IMM, (value) - typeoffset); \
+ else \
+ OP2(SLJIT_ADD, typereg, 0, typereg, 0, SLJIT_IMM, typeoffset - (value)); \
+ } \
+ typeoffset = (value);
+
+#define SET_CHAR_OFFSET(value) \
+ if ((value) != charoffset) \
+ { \
+ if ((value) > charoffset) \
+ OP2(SLJIT_SUB, TMP1, 0, TMP1, 0, SLJIT_IMM, (value) - charoffset); \
+ else \
+ OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, SLJIT_IMM, charoffset - (value)); \
+ } \
+ charoffset = (value);
+
+static void compile_xclass_matchingpath(compiler_common *common, pcre_uchar *cc, jump_list **backtracks)
+{
+DEFINE_COMPILER;
+jump_list *found = NULL;
+jump_list **list = (*cc & XCL_NOT) == 0 ? &found : backtracks;
+pcre_int32 c, charoffset;
+const pcre_uint32 *other_cases;
+struct sljit_jump *jump = NULL;
+pcre_uchar *ccbegin;
+int compares, invertcmp, numberofcmps;
+#ifdef SUPPORT_UCP
+BOOL needstype = FALSE, needsscript = FALSE, needschar = FALSE;
+BOOL charsaved = FALSE;
+int typereg = TMP1, scriptreg = TMP1;
+pcre_int32 typeoffset;
+#endif
+
+/* Although SUPPORT_UTF must be defined, we are
+ not necessary in utf mode even in 8 bit mode. */
+detect_partial_match(common, backtracks);
+read_char(common);
+
+if ((*cc++ & XCL_MAP) != 0)
+ {
+ OP1(SLJIT_MOV, TMP3, 0, TMP1, 0);
+#ifndef COMPILE_PCRE8
+ jump = CMP(SLJIT_C_GREATER, TMP1, 0, SLJIT_IMM, 255);
+#elif defined SUPPORT_UTF
+ if (common->utf)
+ jump = CMP(SLJIT_C_GREATER, TMP1, 0, SLJIT_IMM, 255);
+#endif
+
+ if (!check_class_ranges(common, (const pcre_uint8 *)cc, TRUE, list))
+ {
+ OP2(SLJIT_AND, TMP2, 0, TMP1, 0, SLJIT_IMM, 0x7);
+ OP2(SLJIT_LSHR, TMP1, 0, TMP1, 0, SLJIT_IMM, 3);
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP1), (sljit_sw)cc);
+ OP2(SLJIT_SHL, TMP2, 0, SLJIT_IMM, 1, TMP2, 0);
+ OP2(SLJIT_AND | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, TMP2, 0);
+ add_jump(compiler, list, JUMP(SLJIT_C_NOT_ZERO));
+ }
+
+#ifndef COMPILE_PCRE8
+ JUMPHERE(jump);
+#elif defined SUPPORT_UTF
+ if (common->utf)
+ JUMPHERE(jump);
+#endif
+ OP1(SLJIT_MOV, TMP1, 0, TMP3, 0);
+#ifdef SUPPORT_UCP
+ charsaved = TRUE;
+#endif
+ cc += 32 / sizeof(pcre_uchar);
+ }
+
+/* Scanning the necessary info. */
+ccbegin = cc;
+compares = 0;
+while (*cc != XCL_END)
+ {
+ compares++;
+ if (*cc == XCL_SINGLE)
+ {
+ cc += 2;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+#ifdef SUPPORT_UCP
+ needschar = TRUE;
+#endif
+ }
+ else if (*cc == XCL_RANGE)
+ {
+ cc += 2;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+ cc++;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
+#endif
+#ifdef SUPPORT_UCP
+ needschar = TRUE;
+#endif
+ }
+#ifdef SUPPORT_UCP
+ else
+ {
+ SLJIT_ASSERT(*cc == XCL_PROP || *cc == XCL_NOTPROP);
+ cc++;
+ switch(*cc)
+ {
+ case PT_ANY:
+ break;
+
+ case PT_LAMP:
+ case PT_GC:
+ case PT_PC:
+ case PT_ALNUM:
+ needstype = TRUE;
+ break;
+
+ case PT_SC:
+ needsscript = TRUE;
+ break;
+
+ case PT_SPACE:
+ case PT_PXSPACE:
+ case PT_WORD:
+ needstype = TRUE;
+ needschar = TRUE;
+ break;
+
+ case PT_CLIST:
+ case PT_UCNC:
+ needschar = TRUE;
+ break;
+
+ default:
+ SLJIT_ASSERT_STOP();
+ break;
+ }
+ cc += 2;
+ }
+#endif
+ }
+
+#ifdef SUPPORT_UCP
+/* Simple register allocation. TMP1 is preferred if possible. */
+if (needstype || needsscript)
+ {
+ if (needschar && !charsaved)
+ OP1(SLJIT_MOV, TMP3, 0, TMP1, 0);
+ add_jump(compiler, &common->getucd, JUMP(SLJIT_FAST_CALL));
+ if (needschar)
+ {
+ if (needstype)
+ {
+ OP1(SLJIT_MOV, RETURN_ADDR, 0, TMP1, 0);
+ typereg = RETURN_ADDR;
+ }
+
+ if (needsscript)
+ scriptreg = TMP3;
+ OP1(SLJIT_MOV, TMP1, 0, TMP3, 0);
+ }
+ else if (needstype && needsscript)
+ scriptreg = TMP3;
+ /* In all other cases only one of them was specified, and that can goes to TMP1. */
+
+ if (needsscript)
+ {
+ if (scriptreg == TMP1)
+ {
+ OP1(SLJIT_MOV, scriptreg, 0, SLJIT_IMM, (sljit_sw)PRIV(ucd_records) + SLJIT_OFFSETOF(ucd_record, script));
+ OP1(SLJIT_MOV_UB, scriptreg, 0, SLJIT_MEM2(scriptreg, TMP2), 3);
+ }
+ else
+ {
+ OP2(SLJIT_SHL, TMP2, 0, TMP2, 0, SLJIT_IMM, 3);
+ OP2(SLJIT_ADD, TMP2, 0, TMP2, 0, SLJIT_IMM, (sljit_sw)PRIV(ucd_records) + SLJIT_OFFSETOF(ucd_record, script));
+ OP1(SLJIT_MOV_UB, scriptreg, 0, SLJIT_MEM1(TMP2), 0);
+ }
+ }
+ }
+#endif
+
+/* Generating code. */
+cc = ccbegin;
+charoffset = 0;
+numberofcmps = 0;
+#ifdef SUPPORT_UCP
+typeoffset = 0;
+#endif
+
+while (*cc != XCL_END)
+ {
+ compares--;
+ invertcmp = (compares == 0 && list != backtracks);
+ jump = NULL;
+
+ if (*cc == XCL_SINGLE)
+ {
+ cc ++;
+#ifdef SUPPORT_UTF
+ if (common->utf)
+ {
+ GETCHARINC(c, cc);
+ }
+ else
+#endif
+ c = *cc++;
+
+ if (numberofcmps < 3 && (*cc == XCL_SINGLE || *cc == XCL_RANGE))
+ {
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, c - charoffset);
+ OP_FLAGS(numberofcmps == 0 ? SLJIT_MOV : SLJIT_OR, TMP2, 0, numberofcmps == 0 ? SLJIT_UNUSED : TMP2, 0, SLJIT_C_EQUAL);
+ numberofcmps++;
+ }
+ else if (numberofcmps > 0)
+ {
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, c - charoffset);
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ jump = JUMP(SLJIT_C_NOT_ZERO ^ invertcmp);
+ numberofcmps = 0;
+ }
+ else
+ {
+ jump = CMP(SLJIT_C_EQUAL ^ invertcmp, TMP1, 0, SLJIT_IMM, c - charoffset);
+ numberofcmps = 0;
+ }
+ }
+ else if (*cc == XCL_RANGE)
+ {
+ cc ++;
+#ifdef SUPPORT_UTF
+ if (common->utf)
+ {
+ GETCHARINC(c, cc);
+ }
+ else
+#endif
+ c = *cc++;
+ SET_CHAR_OFFSET(c);
+#ifdef SUPPORT_UTF
+ if (common->utf)
+ {
+ GETCHARINC(c, cc);
+ }
+ else
+#endif
+ c = *cc++;
+ if (numberofcmps < 3 && (*cc == XCL_SINGLE || *cc == XCL_RANGE))
+ {
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, c - charoffset);
+ OP_FLAGS(numberofcmps == 0 ? SLJIT_MOV : SLJIT_OR, TMP2, 0, numberofcmps == 0 ? SLJIT_UNUSED : TMP2, 0, SLJIT_C_LESS_EQUAL);
+ numberofcmps++;
+ }
+ else if (numberofcmps > 0)
+ {
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, c - charoffset);
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_LESS_EQUAL);
+ jump = JUMP(SLJIT_C_NOT_ZERO ^ invertcmp);
+ numberofcmps = 0;
+ }
+ else
+ {
+ jump = CMP(SLJIT_C_LESS_EQUAL ^ invertcmp, TMP1, 0, SLJIT_IMM, c - charoffset);
+ numberofcmps = 0;
+ }
+ }
+#ifdef SUPPORT_UCP
+ else
+ {
+ if (*cc == XCL_NOTPROP)
+ invertcmp ^= 0x1;
+ cc++;
+ switch(*cc)
+ {
+ case PT_ANY:
+ if (list != backtracks)
+ {
+ if ((cc[-1] == XCL_NOTPROP && compares > 0) || (cc[-1] == XCL_PROP && compares == 0))
+ continue;
+ }
+ else if (cc[-1] == XCL_NOTPROP)
+ continue;
+ jump = JUMP(SLJIT_JUMP);
+ break;
+
+ case PT_LAMP:
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, typereg, 0, SLJIT_IMM, ucp_Lu - typeoffset);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, typereg, 0, SLJIT_IMM, ucp_Ll - typeoffset);
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, typereg, 0, SLJIT_IMM, ucp_Lt - typeoffset);
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ jump = JUMP(SLJIT_C_NOT_ZERO ^ invertcmp);
+ break;
+
+ case PT_GC:
+ c = PRIV(ucp_typerange)[(int)cc[1] * 2];
+ SET_TYPE_OFFSET(c);
+ jump = CMP(SLJIT_C_LESS_EQUAL ^ invertcmp, typereg, 0, SLJIT_IMM, PRIV(ucp_typerange)[(int)cc[1] * 2 + 1] - c);
+ break;
+
+ case PT_PC:
+ jump = CMP(SLJIT_C_EQUAL ^ invertcmp, typereg, 0, SLJIT_IMM, (int)cc[1] - typeoffset);
+ break;
+
+ case PT_SC:
+ jump = CMP(SLJIT_C_EQUAL ^ invertcmp, scriptreg, 0, SLJIT_IMM, (int)cc[1]);
+ break;
+
+ case PT_SPACE:
+ case PT_PXSPACE:
+ if (*cc == PT_SPACE)
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, 0);
+ jump = CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, 11 - charoffset);
+ }
+ SET_CHAR_OFFSET(9);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 13 - 9);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_LESS_EQUAL);
+ if (*cc == PT_SPACE)
+ JUMPHERE(jump);
+
+ SET_TYPE_OFFSET(ucp_Zl);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, typereg, 0, SLJIT_IMM, ucp_Zs - ucp_Zl);
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_LESS_EQUAL);
+ jump = JUMP(SLJIT_C_NOT_ZERO ^ invertcmp);
+ break;
+
+ case PT_WORD:
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, CHAR_UNDERSCORE - charoffset);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ /* Fall through. */
+
+ case PT_ALNUM:
+ SET_TYPE_OFFSET(ucp_Ll);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, typereg, 0, SLJIT_IMM, ucp_Lu - ucp_Ll);
+ OP_FLAGS((*cc == PT_ALNUM) ? SLJIT_MOV : SLJIT_OR, TMP2, 0, (*cc == PT_ALNUM) ? SLJIT_UNUSED : TMP2, 0, SLJIT_C_LESS_EQUAL);
+ SET_TYPE_OFFSET(ucp_Nd);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, typereg, 0, SLJIT_IMM, ucp_No - ucp_Nd);
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_LESS_EQUAL);
+ jump = JUMP(SLJIT_C_NOT_ZERO ^ invertcmp);
+ break;
+
+ case PT_CLIST:
+ other_cases = PRIV(ucd_caseless_sets) + cc[1];
+
+ /* At least three characters are required.
+ Otherwise this case would be handled by the normal code path. */
+ SLJIT_ASSERT(other_cases[0] != NOTACHAR && other_cases[1] != NOTACHAR && other_cases[2] != NOTACHAR);
+ SLJIT_ASSERT(other_cases[0] < other_cases[1] && other_cases[1] < other_cases[2]);
+
+ /* Optimizing character pairs, if their difference is power of 2. */
+ if (is_powerof2(other_cases[1] ^ other_cases[0]))
+ {
+ if (charoffset == 0)
+ OP2(SLJIT_OR, TMP2, 0, TMP1, 0, SLJIT_IMM, other_cases[1] ^ other_cases[0]);
+ else
+ {
+ OP2(SLJIT_ADD, TMP2, 0, TMP1, 0, SLJIT_IMM, (sljit_sw)charoffset);
+ OP2(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_IMM, other_cases[1] ^ other_cases[0]);
+ }
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP2, 0, SLJIT_IMM, other_cases[1]);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ other_cases += 2;
+ }
+ else if (is_powerof2(other_cases[2] ^ other_cases[1]))
+ {
+ if (charoffset == 0)
+ OP2(SLJIT_OR, TMP2, 0, TMP1, 0, SLJIT_IMM, other_cases[2] ^ other_cases[1]);
+ else
+ {
+ OP2(SLJIT_ADD, TMP2, 0, TMP1, 0, SLJIT_IMM, (sljit_sw)charoffset);
+ OP2(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_IMM, other_cases[1] ^ other_cases[0]);
+ }
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP2, 0, SLJIT_IMM, other_cases[2]);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, other_cases[0] - charoffset);
+ OP_FLAGS(SLJIT_OR | ((other_cases[3] == NOTACHAR) ? SLJIT_SET_E : 0), TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+
+ other_cases += 3;
+ }
+ else
+ {
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, *other_cases++ - charoffset);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ }
+
+ while (*other_cases != NOTACHAR)
+ {
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, *other_cases++ - charoffset);
+ OP_FLAGS(SLJIT_OR | ((*other_cases == NOTACHAR) ? SLJIT_SET_E : 0), TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ }
+ jump = JUMP(SLJIT_C_NOT_ZERO ^ invertcmp);
+ break;
+
+ case PT_UCNC:
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, CHAR_DOLLAR_SIGN - charoffset);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, CHAR_COMMERCIAL_AT - charoffset);
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, CHAR_GRAVE_ACCENT - charoffset);
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+
+ SET_CHAR_OFFSET(0xa0);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0xd7ff - charoffset);
+ OP_FLAGS(SLJIT_OR, TMP2, 0, TMP2, 0, SLJIT_C_LESS_EQUAL);
+ SET_CHAR_OFFSET(0);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0xe000 - 0);
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_GREATER_EQUAL);
+ jump = JUMP(SLJIT_C_NOT_ZERO ^ invertcmp);
+ break;
+ }
+ cc += 2;
+ }
+#endif
+
+ if (jump != NULL)
+ add_jump(compiler, compares > 0 ? list : backtracks, jump);
+ }
+
+if (found != NULL)
+ set_jumps(found, LABEL());
+}
+
+#undef SET_TYPE_OFFSET
+#undef SET_CHAR_OFFSET
+
+#endif
+
+static pcre_uchar *compile_char1_matchingpath(compiler_common *common, pcre_uchar type, pcre_uchar *cc, jump_list **backtracks)
+{
+DEFINE_COMPILER;
+int length;
+unsigned int c, oc, bit;
+compare_context context;
+struct sljit_jump *jump[4];
+jump_list *end_list;
+#ifdef SUPPORT_UTF
+struct sljit_label *label;
+#ifdef SUPPORT_UCP
+pcre_uchar propdata[5];
+#endif
+#endif
+
+switch(type)
+ {
+ case OP_SOD:
+ OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, begin));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, STR_PTR, 0, TMP1, 0));
+ return cc;
+
+ case OP_SOM:
+ OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, str));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, STR_PTR, 0, TMP1, 0));
+ return cc;
+
+ case OP_NOT_WORD_BOUNDARY:
+ case OP_WORD_BOUNDARY:
+ add_jump(compiler, &common->wordboundary, JUMP(SLJIT_FAST_CALL));
+ add_jump(compiler, backtracks, JUMP(type == OP_NOT_WORD_BOUNDARY ? SLJIT_C_NOT_ZERO : SLJIT_C_ZERO));
+ return cc;
+
+ case OP_NOT_DIGIT:
+ case OP_DIGIT:
+ /* Digits are usually 0-9, so it is worth to optimize them. */
+ if (common->digits[0] == -2)
+ get_ctype_ranges(common, ctype_digit, common->digits);
+ detect_partial_match(common, backtracks);
+ /* Flip the starting bit in the negative case. */
+ if (type == OP_NOT_DIGIT)
+ common->digits[1] ^= 1;
+ if (!check_ranges(common, common->digits, backtracks, TRUE))
+ {
+ read_char8_type(common);
+ OP2(SLJIT_AND | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, ctype_digit);
+ add_jump(compiler, backtracks, JUMP(type == OP_DIGIT ? SLJIT_C_ZERO : SLJIT_C_NOT_ZERO));
+ }
+ if (type == OP_NOT_DIGIT)
+ common->digits[1] ^= 1;
+ return cc;
+
+ case OP_NOT_WHITESPACE:
+ case OP_WHITESPACE:
+ detect_partial_match(common, backtracks);
+ read_char8_type(common);
+ OP2(SLJIT_AND | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, ctype_space);
+ add_jump(compiler, backtracks, JUMP(type == OP_WHITESPACE ? SLJIT_C_ZERO : SLJIT_C_NOT_ZERO));
+ return cc;
+
+ case OP_NOT_WORDCHAR:
+ case OP_WORDCHAR:
+ detect_partial_match(common, backtracks);
+ read_char8_type(common);
+ OP2(SLJIT_AND | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, ctype_word);
+ add_jump(compiler, backtracks, JUMP(type == OP_WORDCHAR ? SLJIT_C_ZERO : SLJIT_C_NOT_ZERO));
+ return cc;
+
+ case OP_ANY:
+ detect_partial_match(common, backtracks);
+ read_char(common);
+ if (common->nltype == NLTYPE_FIXED && common->newline > 255)
+ {
+ jump[0] = CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, (common->newline >> 8) & 0xff);
+ end_list = NULL;
+ if (common->mode != JIT_PARTIAL_HARD_COMPILE)
+ add_jump(compiler, &end_list, CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0));
+ else
+ check_str_end(common, &end_list);
+
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), 0);
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, common->newline & 0xff));
+ set_jumps(end_list, LABEL());
+ JUMPHERE(jump[0]);
+ }
+ else
+ check_newlinechar(common, common->nltype, backtracks, TRUE);
+ return cc;
+
+ case OP_ALLANY:
+ detect_partial_match(common, backtracks);
+#ifdef SUPPORT_UTF
+ if (common->utf)
+ {
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), 0);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+#if defined COMPILE_PCRE8 || defined COMPILE_PCRE16
+#if defined COMPILE_PCRE8
+ jump[0] = CMP(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xc0);
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP1), (sljit_sw)PRIV(utf8_table4) - 0xc0);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP1, 0);
+#elif defined COMPILE_PCRE16
+ jump[0] = CMP(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xd800);
+ OP2(SLJIT_AND, TMP1, 0, TMP1, 0, SLJIT_IMM, 0xfc00);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, 0xd800);
+ OP_FLAGS(SLJIT_MOV, TMP1, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SHL, TMP1, 0, TMP1, 0, SLJIT_IMM, 1);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP1, 0);
+#endif
+ JUMPHERE(jump[0]);
+#endif /* COMPILE_PCRE[8|16] */
+ return cc;
+ }
+#endif
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ return cc;
+
+ case OP_ANYBYTE:
+ detect_partial_match(common, backtracks);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ return cc;
+
+#ifdef SUPPORT_UTF
+#ifdef SUPPORT_UCP
+ case OP_NOTPROP:
+ case OP_PROP:
+ propdata[0] = 0;
+ propdata[1] = type == OP_NOTPROP ? XCL_NOTPROP : XCL_PROP;
+ propdata[2] = cc[0];
+ propdata[3] = cc[1];
+ propdata[4] = XCL_END;
+ compile_xclass_matchingpath(common, propdata, backtracks);
+ return cc + 2;
+#endif
+#endif
+
+ case OP_ANYNL:
+ detect_partial_match(common, backtracks);
+ read_char(common);
+ jump[0] = CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, CHAR_CR);
+ /* We don't need to handle soft partial matching case. */
+ end_list = NULL;
+ if (common->mode != JIT_PARTIAL_HARD_COMPILE)
+ add_jump(compiler, &end_list, CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0));
+ else
+ check_str_end(common, &end_list);
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), 0);
+ jump[1] = CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, CHAR_NL);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ jump[2] = JUMP(SLJIT_JUMP);
+ JUMPHERE(jump[0]);
+ check_newlinechar(common, common->bsr_nltype, backtracks, FALSE);
+ set_jumps(end_list, LABEL());
+ JUMPHERE(jump[1]);
+ JUMPHERE(jump[2]);
+ return cc;
+
+ case OP_NOT_HSPACE:
+ case OP_HSPACE:
+ detect_partial_match(common, backtracks);
+ read_char(common);
+ add_jump(compiler, &common->hspace, JUMP(SLJIT_FAST_CALL));
+ add_jump(compiler, backtracks, JUMP(type == OP_NOT_HSPACE ? SLJIT_C_NOT_ZERO : SLJIT_C_ZERO));
+ return cc;
+
+ case OP_NOT_VSPACE:
+ case OP_VSPACE:
+ detect_partial_match(common, backtracks);
+ read_char(common);
+ add_jump(compiler, &common->vspace, JUMP(SLJIT_FAST_CALL));
+ add_jump(compiler, backtracks, JUMP(type == OP_NOT_VSPACE ? SLJIT_C_NOT_ZERO : SLJIT_C_ZERO));
+ return cc;
+
+#ifdef SUPPORT_UCP
+ case OP_EXTUNI:
+ detect_partial_match(common, backtracks);
+ read_char(common);
+ add_jump(compiler, &common->getucd, JUMP(SLJIT_FAST_CALL));
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_IMM, (sljit_sw)PRIV(ucd_records) + SLJIT_OFFSETOF(ucd_record, gbprop));
+ /* Optimize register allocation: use a real register. */
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0, STACK_TOP, 0);
+ OP1(SLJIT_MOV_UB, STACK_TOP, 0, SLJIT_MEM2(TMP1, TMP2), 3);
+
+ label = LABEL();
+ jump[0] = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+ OP1(SLJIT_MOV, TMP3, 0, STR_PTR, 0);
+ read_char(common);
+ add_jump(compiler, &common->getucd, JUMP(SLJIT_FAST_CALL));
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_IMM, (sljit_sw)PRIV(ucd_records) + SLJIT_OFFSETOF(ucd_record, gbprop));
+ OP1(SLJIT_MOV_UB, TMP2, 0, SLJIT_MEM2(TMP1, TMP2), 3);
+
+ OP2(SLJIT_SHL, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, 2);
+ OP1(SLJIT_MOV_UI, TMP1, 0, SLJIT_MEM1(STACK_TOP), (sljit_sw)PRIV(ucp_gbtable));
+ OP1(SLJIT_MOV, STACK_TOP, 0, TMP2, 0);
+ OP2(SLJIT_SHL, TMP2, 0, SLJIT_IMM, 1, TMP2, 0);
+ OP2(SLJIT_AND | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, TMP2, 0);
+ JUMPTO(SLJIT_C_NOT_ZERO, label);
+
+ OP1(SLJIT_MOV, STR_PTR, 0, TMP3, 0);
+ JUMPHERE(jump[0]);
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0);
+
+ if (common->mode == JIT_PARTIAL_HARD_COMPILE)
+ {
+ jump[0] = CMP(SLJIT_C_LESS, STR_PTR, 0, STR_END, 0);
+ /* Since we successfully read a char above, partial matching must occure. */
+ check_partial(common, TRUE);
+ JUMPHERE(jump[0]);
+ }
+ return cc;
+#endif
+
+ case OP_EODN:
+ /* Requires rather complex checks. */
+ jump[0] = CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0);
+ if (common->nltype == NLTYPE_FIXED && common->newline > 255)
+ {
+ OP2(SLJIT_ADD, TMP2, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(2));
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(0));
+ if (common->mode == JIT_COMPILE)
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, STR_END, 0));
+ else
+ {
+ jump[1] = CMP(SLJIT_C_EQUAL, TMP2, 0, STR_END, 0);
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP2, 0, STR_END, 0);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_LESS);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, (common->newline >> 8) & 0xff);
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_NOT_EQUAL);
+ add_jump(compiler, backtracks, JUMP(SLJIT_C_NOT_EQUAL));
+ check_partial(common, TRUE);
+ add_jump(compiler, backtracks, JUMP(SLJIT_JUMP));
+ JUMPHERE(jump[1]);
+ }
+ OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(1));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, (common->newline >> 8) & 0xff));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, common->newline & 0xff));
+ }
+ else if (common->nltype == NLTYPE_FIXED)
+ {
+ OP2(SLJIT_ADD, TMP2, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(0));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, STR_END, 0));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, common->newline));
+ }
+ else
+ {
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(0));
+ jump[1] = CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, CHAR_CR);
+ OP2(SLJIT_ADD, TMP2, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(2));
+ OP2(SLJIT_SUB | SLJIT_SET_U, SLJIT_UNUSED, 0, TMP2, 0, STR_END, 0);
+ jump[2] = JUMP(SLJIT_C_GREATER);
+ add_jump(compiler, backtracks, JUMP(SLJIT_C_LESS));
+ /* Equal. */
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(1));
+ jump[3] = CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, CHAR_NL);
+ add_jump(compiler, backtracks, JUMP(SLJIT_JUMP));
+
+ JUMPHERE(jump[1]);
+ if (common->nltype == NLTYPE_ANYCRLF)
+ {
+ OP2(SLJIT_ADD, TMP2, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_LESS, TMP2, 0, STR_END, 0));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, CHAR_NL));
+ }
+ else
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1, STR_PTR, 0);
+ read_char(common);
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, STR_PTR, 0, STR_END, 0));
+ add_jump(compiler, &common->anynewline, JUMP(SLJIT_FAST_CALL));
+ add_jump(compiler, backtracks, JUMP(SLJIT_C_ZERO));
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1);
+ }
+ JUMPHERE(jump[2]);
+ JUMPHERE(jump[3]);
+ }
+ JUMPHERE(jump[0]);
+ check_partial(common, FALSE);
+ return cc;
+
+ case OP_EOD:
+ add_jump(compiler, backtracks, CMP(SLJIT_C_LESS, STR_PTR, 0, STR_END, 0));
+ check_partial(common, FALSE);
+ return cc;
+
+ case OP_CIRC:
+ OP1(SLJIT_MOV, TMP2, 0, ARGUMENTS, 0);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(TMP2), SLJIT_OFFSETOF(jit_arguments, begin));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_GREATER, STR_PTR, 0, TMP1, 0));
+ OP1(SLJIT_MOV_UB, TMP2, 0, SLJIT_MEM1(TMP2), SLJIT_OFFSETOF(jit_arguments, notbol));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, 0));
+ return cc;
+
+ case OP_CIRCM:
+ OP1(SLJIT_MOV, TMP2, 0, ARGUMENTS, 0);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(TMP2), SLJIT_OFFSETOF(jit_arguments, begin));
+ jump[1] = CMP(SLJIT_C_GREATER, STR_PTR, 0, TMP1, 0);
+ OP1(SLJIT_MOV_UB, TMP2, 0, SLJIT_MEM1(TMP2), SLJIT_OFFSETOF(jit_arguments, notbol));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, 0));
+ jump[0] = JUMP(SLJIT_JUMP);
+ JUMPHERE(jump[1]);
+
+ add_jump(compiler, backtracks, CMP(SLJIT_C_GREATER_EQUAL, STR_PTR, 0, STR_END, 0));
+ if (common->nltype == NLTYPE_FIXED && common->newline > 255)
+ {
+ OP2(SLJIT_SUB, TMP2, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(2));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_LESS, TMP2, 0, TMP1, 0));
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(-2));
+ OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(-1));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, (common->newline >> 8) & 0xff));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, common->newline & 0xff));
+ }
+ else
+ {
+ skip_char_back(common);
+ read_char(common);
+ check_newlinechar(common, common->nltype, backtracks, FALSE);
+ }
+ JUMPHERE(jump[0]);
+ return cc;
+
+ case OP_DOLL:
+ OP1(SLJIT_MOV, TMP2, 0, ARGUMENTS, 0);
+ OP1(SLJIT_MOV_UB, TMP2, 0, SLJIT_MEM1(TMP2), SLJIT_OFFSETOF(jit_arguments, noteol));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, 0));
+
+ if (!common->endonly)
+ compile_char1_matchingpath(common, OP_EODN, cc, backtracks);
+ else
+ {
+ add_jump(compiler, backtracks, CMP(SLJIT_C_LESS, STR_PTR, 0, STR_END, 0));
+ check_partial(common, FALSE);
+ }
+ return cc;
+
+ case OP_DOLLM:
+ jump[1] = CMP(SLJIT_C_LESS, STR_PTR, 0, STR_END, 0);
+ OP1(SLJIT_MOV, TMP2, 0, ARGUMENTS, 0);
+ OP1(SLJIT_MOV_UB, TMP2, 0, SLJIT_MEM1(TMP2), SLJIT_OFFSETOF(jit_arguments, noteol));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, 0));
+ check_partial(common, FALSE);
+ jump[0] = JUMP(SLJIT_JUMP);
+ JUMPHERE(jump[1]);
+
+ if (common->nltype == NLTYPE_FIXED && common->newline > 255)
+ {
+ OP2(SLJIT_ADD, TMP2, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(2));
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(0));
+ if (common->mode == JIT_COMPILE)
+ add_jump(compiler, backtracks, CMP(SLJIT_C_GREATER, TMP2, 0, STR_END, 0));
+ else
+ {
+ jump[1] = CMP(SLJIT_C_LESS_EQUAL, TMP2, 0, STR_END, 0);
+ /* STR_PTR = STR_END - IN_UCHARS(1) */
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, (common->newline >> 8) & 0xff));
+ check_partial(common, TRUE);
+ add_jump(compiler, backtracks, JUMP(SLJIT_JUMP));
+ JUMPHERE(jump[1]);
+ }
+
+ OP1(MOV_UCHAR, TMP2, 0, SLJIT_MEM1(STR_PTR), IN_UCHARS(1));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, (common->newline >> 8) & 0xff));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, common->newline & 0xff));
+ }
+ else
+ {
+ peek_char(common);
+ check_newlinechar(common, common->nltype, backtracks, FALSE);
+ }
+ JUMPHERE(jump[0]);
+ return cc;
+
+ case OP_CHAR:
+ case OP_CHARI:
+ length = 1;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(*cc)) length += GET_EXTRALEN(*cc);
+#endif
+ if (common->mode == JIT_COMPILE && (type == OP_CHAR || !char_has_othercase(common, cc) || char_get_othercase_bit(common, cc) != 0))
+ {
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(length));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_GREATER, STR_PTR, 0, STR_END, 0));
+
+ context.length = IN_UCHARS(length);
+ context.sourcereg = -1;
+#if defined SLJIT_UNALIGNED && SLJIT_UNALIGNED
+ context.ucharptr = 0;
+#endif
+ return byte_sequence_compare(common, type == OP_CHARI, cc, &context, backtracks);
+ }
+ detect_partial_match(common, backtracks);
+ read_char(common);
+#ifdef SUPPORT_UTF
+ if (common->utf)
+ {
+ GETCHAR(c, cc);
+ }
+ else
+#endif
+ c = *cc;
+ if (type == OP_CHAR || !char_has_othercase(common, cc))
+ {
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, c));
+ return cc + length;
+ }
+ oc = char_othercase(common, c);
+ bit = c ^ oc;
+ if (is_powerof2(bit))
+ {
+ OP2(SLJIT_OR, TMP1, 0, TMP1, 0, SLJIT_IMM, bit);
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, c | bit));
+ return cc + length;
+ }
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, c);
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_IMM, oc);
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ add_jump(compiler, backtracks, JUMP(SLJIT_C_ZERO));
+ return cc + length;
+
+ case OP_NOT:
+ case OP_NOTI:
+ detect_partial_match(common, backtracks);
+ length = 1;
+#ifdef SUPPORT_UTF
+ if (common->utf)
+ {
+#ifdef COMPILE_PCRE8
+ c = *cc;
+ if (c < 128)
+ {
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(STR_PTR), 0);
+ if (type == OP_NOT || !char_has_othercase(common, cc))
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, c));
+ else
+ {
+ /* Since UTF8 code page is fixed, we know that c is in [a-z] or [A-Z] range. */
+ OP2(SLJIT_OR, TMP2, 0, TMP1, 0, SLJIT_IMM, 0x20);
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, TMP2, 0, SLJIT_IMM, c | 0x20));
+ }
+ /* Skip the variable-length character. */
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(1));
+ jump[0] = CMP(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, 0xc0);
+ OP1(MOV_UCHAR, TMP1, 0, SLJIT_MEM1(TMP1), (sljit_sw)PRIV(utf8_table4) - 0xc0);
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP1, 0);
+ JUMPHERE(jump[0]);
+ return cc + 1;
+ }
+ else
+#endif /* COMPILE_PCRE8 */
+ {
+ GETCHARLEN(c, cc, length);
+ read_char(common);
+ }
+ }
+ else
+#endif /* SUPPORT_UTF */
+ {
+ read_char(common);
+ c = *cc;
+ }
+
+ if (type == OP_NOT || !char_has_othercase(common, cc))
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, c));
+ else
+ {
+ oc = char_othercase(common, c);
+ bit = c ^ oc;
+ if (is_powerof2(bit))
+ {
+ OP2(SLJIT_OR, TMP1, 0, TMP1, 0, SLJIT_IMM, bit);
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, c | bit));
+ }
+ else
+ {
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, c));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, oc));
+ }
+ }
+ return cc + length;
+
+ case OP_CLASS:
+ case OP_NCLASS:
+ detect_partial_match(common, backtracks);
+ read_char(common);
+ if (check_class_ranges(common, (const pcre_uint8 *)cc, type == OP_NCLASS, backtracks))
+ return cc + 32 / sizeof(pcre_uchar);
+
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ jump[0] = NULL;
+#ifdef COMPILE_PCRE8
+ /* This check only affects 8 bit mode. In other modes, we
+ always need to compare the value with 255. */
+ if (common->utf)
+#endif /* COMPILE_PCRE8 */
+ {
+ jump[0] = CMP(SLJIT_C_GREATER, TMP1, 0, SLJIT_IMM, 255);
+ if (type == OP_CLASS)
+ {
+ add_jump(compiler, backtracks, jump[0]);
+ jump[0] = NULL;
+ }
+ }
+#endif /* SUPPORT_UTF || !COMPILE_PCRE8 */
+ OP2(SLJIT_AND, TMP2, 0, TMP1, 0, SLJIT_IMM, 0x7);
+ OP2(SLJIT_LSHR, TMP1, 0, TMP1, 0, SLJIT_IMM, 3);
+ OP1(SLJIT_MOV_UB, TMP1, 0, SLJIT_MEM1(TMP1), (sljit_sw)cc);
+ OP2(SLJIT_SHL, TMP2, 0, SLJIT_IMM, 1, TMP2, 0);
+ OP2(SLJIT_AND | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, TMP2, 0);
+ add_jump(compiler, backtracks, JUMP(SLJIT_C_ZERO));
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ if (jump[0] != NULL)
+ JUMPHERE(jump[0]);
+#endif /* SUPPORT_UTF || !COMPILE_PCRE8 */
+ return cc + 32 / sizeof(pcre_uchar);
+
+#if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ case OP_XCLASS:
+ compile_xclass_matchingpath(common, cc + LINK_SIZE, backtracks);
+ return cc + GET(cc, 0) - 1;
+#endif
+
+ case OP_REVERSE:
+ length = GET(cc, 0);
+ if (length == 0)
+ return cc + LINK_SIZE;
+ OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+#ifdef SUPPORT_UTF
+ if (common->utf)
+ {
+ OP1(SLJIT_MOV, TMP3, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, begin));
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, length);
+ label = LABEL();
+ add_jump(compiler, backtracks, CMP(SLJIT_C_LESS_EQUAL, STR_PTR, 0, TMP3, 0));
+ skip_char_back(common);
+ OP2(SLJIT_SUB | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_IMM, 1);
+ JUMPTO(SLJIT_C_NOT_ZERO, label);
+ }
+ else
+#endif
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, begin));
+ OP2(SLJIT_SUB, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(length));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_LESS, STR_PTR, 0, TMP1, 0));
+ }
+ check_start_used_ptr(common);
+ return cc + LINK_SIZE;
+ }
+SLJIT_ASSERT_STOP();
+return cc;
+}
+
+static SLJIT_INLINE pcre_uchar *compile_charn_matchingpath(compiler_common *common, pcre_uchar *cc, pcre_uchar *ccend, jump_list **backtracks)
+{
+/* This function consumes at least one input character. */
+/* To decrease the number of length checks, we try to concatenate the fixed length character sequences. */
+DEFINE_COMPILER;
+pcre_uchar *ccbegin = cc;
+compare_context context;
+int size;
+
+context.length = 0;
+do
+ {
+ if (cc >= ccend)
+ break;
+
+ if (*cc == OP_CHAR)
+ {
+ size = 1;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(cc[1]))
+ size += GET_EXTRALEN(cc[1]);
+#endif
+ }
+ else if (*cc == OP_CHARI)
+ {
+ size = 1;
+#ifdef SUPPORT_UTF
+ if (common->utf)
+ {
+ if (char_has_othercase(common, cc + 1) && char_get_othercase_bit(common, cc + 1) == 0)
+ size = 0;
+ else if (HAS_EXTRALEN(cc[1]))
+ size += GET_EXTRALEN(cc[1]);
+ }
+ else
+#endif
+ if (char_has_othercase(common, cc + 1) && char_get_othercase_bit(common, cc + 1) == 0)
+ size = 0;
+ }
+ else
+ size = 0;
+
+ cc += 1 + size;
+ context.length += IN_UCHARS(size);
+ }
+while (size > 0 && context.length <= 128);
+
+cc = ccbegin;
+if (context.length > 0)
+ {
+ /* We have a fixed-length byte sequence. */
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, SLJIT_IMM, context.length);
+ add_jump(compiler, backtracks, CMP(SLJIT_C_GREATER, STR_PTR, 0, STR_END, 0));
+
+ context.sourcereg = -1;
+#if defined SLJIT_UNALIGNED && SLJIT_UNALIGNED
+ context.ucharptr = 0;
+#endif
+ do cc = byte_sequence_compare(common, *cc == OP_CHARI, cc + 1, &context, backtracks); while (context.length > 0);
+ return cc;
+ }
+
+/* A non-fixed length character will be checked if length == 0. */
+return compile_char1_matchingpath(common, *cc, cc + 1, backtracks);
+}
+
+static struct sljit_jump *compile_ref_checks(compiler_common *common, pcre_uchar *cc, jump_list **backtracks)
+{
+DEFINE_COMPILER;
+int offset = GET2(cc, 1) << 1;
+
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset));
+if (!common->jscript_compat)
+ {
+ if (backtracks == NULL)
+ {
+ /* OVECTOR(1) contains the "string begin - 1" constant. */
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(1));
+ OP_FLAGS(SLJIT_MOV, TMP2, 0, SLJIT_UNUSED, 0, SLJIT_C_EQUAL);
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_UNUSED, 0, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1));
+ OP_FLAGS(SLJIT_OR | SLJIT_SET_E, TMP2, 0, TMP2, 0, SLJIT_C_EQUAL);
+ return JUMP(SLJIT_C_NOT_ZERO);
+ }
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(1)));
+ }
+return CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1));
+}
+
+/* Forward definitions. */
+static void compile_matchingpath(compiler_common *, pcre_uchar *, pcre_uchar *, backtrack_common *);
+static void compile_backtrackingpath(compiler_common *, struct backtrack_common *);
+
+#define PUSH_BACKTRACK(size, ccstart, error) \
+ do \
+ { \
+ backtrack = sljit_alloc_memory(compiler, (size)); \
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler))) \
+ return error; \
+ memset(backtrack, 0, size); \
+ backtrack->prev = parent->top; \
+ backtrack->cc = (ccstart); \
+ parent->top = backtrack; \
+ } \
+ while (0)
+
+#define PUSH_BACKTRACK_NOVALUE(size, ccstart) \
+ do \
+ { \
+ backtrack = sljit_alloc_memory(compiler, (size)); \
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler))) \
+ return; \
+ memset(backtrack, 0, size); \
+ backtrack->prev = parent->top; \
+ backtrack->cc = (ccstart); \
+ parent->top = backtrack; \
+ } \
+ while (0)
+
+#define BACKTRACK_AS(type) ((type *)backtrack)
+
+static pcre_uchar *compile_ref_matchingpath(compiler_common *common, pcre_uchar *cc, jump_list **backtracks, BOOL withchecks, BOOL emptyfail)
+{
+DEFINE_COMPILER;
+int offset = GET2(cc, 1) << 1;
+struct sljit_jump *jump = NULL;
+struct sljit_jump *partial;
+struct sljit_jump *nopartial;
+
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset));
+/* OVECTOR(1) contains the "string begin - 1" constant. */
+if (withchecks && !common->jscript_compat)
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(1)));
+
+#if defined SUPPORT_UTF && defined SUPPORT_UCP
+if (common->utf && *cc == OP_REFI)
+ {
+ SLJIT_ASSERT(TMP1 == SLJIT_SCRATCH_REG1 && STACK_TOP == SLJIT_SCRATCH_REG2 && TMP2 == SLJIT_SCRATCH_REG3);
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1));
+ if (withchecks)
+ jump = CMP(SLJIT_C_EQUAL, TMP1, 0, TMP2, 0);
+
+ /* Needed to save important temporary registers. */
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0, STACK_TOP, 0);
+ OP1(SLJIT_MOV, SLJIT_SCRATCH_REG2, 0, ARGUMENTS, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_SCRATCH_REG2), SLJIT_OFFSETOF(jit_arguments, uchar_ptr), STR_PTR, 0);
+ sljit_emit_ijump(compiler, SLJIT_CALL3, SLJIT_IMM, SLJIT_FUNC_OFFSET(do_utf_caselesscmp));
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0);
+ if (common->mode == JIT_COMPILE)
+ add_jump(compiler, backtracks, CMP(SLJIT_C_LESS_EQUAL, SLJIT_RETURN_REG, 0, SLJIT_IMM, 1));
+ else
+ {
+ add_jump(compiler, backtracks, CMP(SLJIT_C_EQUAL, SLJIT_RETURN_REG, 0, SLJIT_IMM, 0));
+ nopartial = CMP(SLJIT_C_NOT_EQUAL, SLJIT_RETURN_REG, 0, SLJIT_IMM, 1);
+ check_partial(common, FALSE);
+ add_jump(compiler, backtracks, JUMP(SLJIT_JUMP));
+ JUMPHERE(nopartial);
+ }
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_RETURN_REG, 0);
+ }
+else
+#endif /* SUPPORT_UTF && SUPPORT_UCP */
+ {
+ OP2(SLJIT_SUB | SLJIT_SET_E, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1), TMP1, 0);
+ if (withchecks)
+ jump = JUMP(SLJIT_C_ZERO);
+
+ OP2(SLJIT_ADD, STR_PTR, 0, STR_PTR, 0, TMP2, 0);
+ partial = CMP(SLJIT_C_GREATER, STR_PTR, 0, STR_END, 0);
+ if (common->mode == JIT_COMPILE)
+ add_jump(compiler, backtracks, partial);
+
+ add_jump(compiler, *cc == OP_REF ? &common->casefulcmp : &common->caselesscmp, JUMP(SLJIT_FAST_CALL));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, 0));
+
+ if (common->mode != JIT_COMPILE)
+ {
+ nopartial = JUMP(SLJIT_JUMP);
+ JUMPHERE(partial);
+ /* TMP2 -= STR_END - STR_PTR */
+ OP2(SLJIT_SUB, TMP2, 0, TMP2, 0, STR_PTR, 0);
+ OP2(SLJIT_ADD, TMP2, 0, TMP2, 0, STR_END, 0);
+ partial = CMP(SLJIT_C_EQUAL, TMP2, 0, SLJIT_IMM, 0);
+ OP1(SLJIT_MOV, STR_PTR, 0, STR_END, 0);
+ add_jump(compiler, *cc == OP_REF ? &common->casefulcmp : &common->caselesscmp, JUMP(SLJIT_FAST_CALL));
+ add_jump(compiler, backtracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, 0));
+ JUMPHERE(partial);
+ check_partial(common, FALSE);
+ add_jump(compiler, backtracks, JUMP(SLJIT_JUMP));
+ JUMPHERE(nopartial);
+ }
+ }
+
+if (jump != NULL)
+ {
+ if (emptyfail)
+ add_jump(compiler, backtracks, jump);
+ else
+ JUMPHERE(jump);
+ }
+return cc + 1 + IMM2_SIZE;
+}
+
+static SLJIT_INLINE pcre_uchar *compile_ref_iterator_matchingpath(compiler_common *common, pcre_uchar *cc, backtrack_common *parent)
+{
+DEFINE_COMPILER;
+backtrack_common *backtrack;
+pcre_uchar type;
+struct sljit_label *label;
+struct sljit_jump *zerolength;
+struct sljit_jump *jump = NULL;
+pcre_uchar *ccbegin = cc;
+int min = 0, max = 0;
+BOOL minimize;
+
+PUSH_BACKTRACK(sizeof(iterator_backtrack), cc, NULL);
+
+type = cc[1 + IMM2_SIZE];
+minimize = (type & 0x1) != 0;
+switch(type)
+ {
+ case OP_CRSTAR:
+ case OP_CRMINSTAR:
+ min = 0;
+ max = 0;
+ cc += 1 + IMM2_SIZE + 1;
+ break;
+ case OP_CRPLUS:
+ case OP_CRMINPLUS:
+ min = 1;
+ max = 0;
+ cc += 1 + IMM2_SIZE + 1;
+ break;
+ case OP_CRQUERY:
+ case OP_CRMINQUERY:
+ min = 0;
+ max = 1;
+ cc += 1 + IMM2_SIZE + 1;
+ break;
+ case OP_CRRANGE:
+ case OP_CRMINRANGE:
+ min = GET2(cc, 1 + IMM2_SIZE + 1);
+ max = GET2(cc, 1 + IMM2_SIZE + 1 + IMM2_SIZE);
+ cc += 1 + IMM2_SIZE + 1 + 2 * IMM2_SIZE;
+ break;
+ default:
+ SLJIT_ASSERT_STOP();
+ break;
+ }
+
+if (!minimize)
+ {
+ if (min == 0)
+ {
+ allocate_stack(common, 2);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), SLJIT_IMM, 0);
+ /* Temporary release of STR_PTR. */
+ OP2(SLJIT_SUB, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, sizeof(sljit_sw));
+ zerolength = compile_ref_checks(common, ccbegin, NULL);
+ /* Restore if not zero length. */
+ OP2(SLJIT_ADD, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, sizeof(sljit_sw));
+ }
+ else
+ {
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ zerolength = compile_ref_checks(common, ccbegin, &backtrack->topbacktracks);
+ }
+
+ if (min > 1 || max > 1)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE0, SLJIT_IMM, 0);
+
+ label = LABEL();
+ compile_ref_matchingpath(common, ccbegin, &backtrack->topbacktracks, FALSE, FALSE);
+
+ if (min > 1 || max > 1)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE0);
+ OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, SLJIT_IMM, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE0, TMP1, 0);
+ if (min > 1)
+ CMPTO(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, min, label);
+ if (max > 1)
+ {
+ jump = CMP(SLJIT_C_GREATER_EQUAL, TMP1, 0, SLJIT_IMM, max);
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ JUMPTO(SLJIT_JUMP, label);
+ JUMPHERE(jump);
+ }
+ }
+
+ if (max == 0)
+ {
+ /* Includes min > 1 case as well. */
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ JUMPTO(SLJIT_JUMP, label);
+ }
+
+ JUMPHERE(zerolength);
+ BACKTRACK_AS(iterator_backtrack)->matchingpath = LABEL();
+
+ count_match(common);
+ return cc;
+ }
+
+allocate_stack(common, 2);
+OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+if (type != OP_CRMINSTAR)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), SLJIT_IMM, 0);
+
+if (min == 0)
+ {
+ zerolength = compile_ref_checks(common, ccbegin, NULL);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ jump = JUMP(SLJIT_JUMP);
+ }
+else
+ zerolength = compile_ref_checks(common, ccbegin, &backtrack->topbacktracks);
+
+BACKTRACK_AS(iterator_backtrack)->matchingpath = LABEL();
+if (max > 0)
+ add_jump(compiler, &backtrack->topbacktracks, CMP(SLJIT_C_GREATER_EQUAL, SLJIT_MEM1(STACK_TOP), STACK(1), SLJIT_IMM, max));
+
+compile_ref_matchingpath(common, ccbegin, &backtrack->topbacktracks, TRUE, TRUE);
+OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+
+if (min > 1)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(1));
+ OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, SLJIT_IMM, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), TMP1, 0);
+ CMPTO(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, min, BACKTRACK_AS(iterator_backtrack)->matchingpath);
+ }
+else if (max > 0)
+ OP2(SLJIT_ADD, SLJIT_MEM1(STACK_TOP), STACK(1), SLJIT_MEM1(STACK_TOP), STACK(1), SLJIT_IMM, 1);
+
+if (jump != NULL)
+ JUMPHERE(jump);
+JUMPHERE(zerolength);
+
+count_match(common);
+return cc;
+}
+
+static SLJIT_INLINE pcre_uchar *compile_recurse_matchingpath(compiler_common *common, pcre_uchar *cc, backtrack_common *parent)
+{
+DEFINE_COMPILER;
+backtrack_common *backtrack;
+recurse_entry *entry = common->entries;
+recurse_entry *prev = NULL;
+sljit_sw start = GET(cc, 1);
+pcre_uchar *start_cc;
+BOOL needs_control_head;
+
+PUSH_BACKTRACK(sizeof(recurse_backtrack), cc, NULL);
+
+/* Inlining simple patterns. */
+if (get_framesize(common, common->start + start, NULL, TRUE, &needs_control_head) == no_stack)
+ {
+ start_cc = common->start + start;
+ compile_matchingpath(common, next_opcode(common, start_cc), bracketend(start_cc) - (1 + LINK_SIZE), backtrack);
+ BACKTRACK_AS(recurse_backtrack)->inlined_pattern = TRUE;
+ return cc + 1 + LINK_SIZE;
+ }
+
+while (entry != NULL)
+ {
+ if (entry->start == start)
+ break;
+ prev = entry;
+ entry = entry->next;
+ }
+
+if (entry == NULL)
+ {
+ entry = sljit_alloc_memory(compiler, sizeof(recurse_entry));
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ return NULL;
+ entry->next = NULL;
+ entry->entry = NULL;
+ entry->calls = NULL;
+ entry->start = start;
+
+ if (prev != NULL)
+ prev->next = entry;
+ else
+ common->entries = entry;
+ }
+
+if (common->has_set_som && common->mark_ptr != 0)
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0));
+ allocate_stack(common, 2);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mark_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), TMP2, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), TMP1, 0);
+ }
+else if (common->has_set_som || common->mark_ptr != 0)
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->has_set_som ? (int)(OVECTOR(0)) : common->mark_ptr);
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), TMP2, 0);
+ }
+
+if (entry->entry == NULL)
+ add_jump(compiler, &entry->calls, JUMP(SLJIT_FAST_CALL));
+else
+ JUMPTO(SLJIT_FAST_CALL, entry->entry);
+/* Leave if the match is failed. */
+add_jump(compiler, &backtrack->topbacktracks, CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, 0));
+return cc + 1 + LINK_SIZE;
+}
+
+static int SLJIT_CALL do_callout(struct jit_arguments* arguments, PUBL(callout_block) *callout_block, pcre_uchar **jit_ovector)
+{
+const pcre_uchar *begin = arguments->begin;
+int *offset_vector = arguments->offsets;
+int offset_count = arguments->offset_count;
+int i;
+
+if (PUBL(callout) == NULL)
+ return 0;
+
+callout_block->version = 2;
+callout_block->callout_data = arguments->callout_data;
+
+/* Offsets in subject. */
+callout_block->subject_length = arguments->end - arguments->begin;
+callout_block->start_match = (pcre_uchar*)callout_block->subject - arguments->begin;
+callout_block->current_position = (pcre_uchar*)callout_block->offset_vector - arguments->begin;
+#if defined COMPILE_PCRE8
+callout_block->subject = (PCRE_SPTR)begin;
+#elif defined COMPILE_PCRE16
+callout_block->subject = (PCRE_SPTR16)begin;
+#elif defined COMPILE_PCRE32
+callout_block->subject = (PCRE_SPTR32)begin;
+#endif
+
+/* Convert and copy the JIT offset vector to the offset_vector array. */
+callout_block->capture_top = 0;
+callout_block->offset_vector = offset_vector;
+for (i = 2; i < offset_count; i += 2)
+ {
+ offset_vector[i] = jit_ovector[i] - begin;
+ offset_vector[i + 1] = jit_ovector[i + 1] - begin;
+ if (jit_ovector[i] >= begin)
+ callout_block->capture_top = i;
+ }
+
+callout_block->capture_top = (callout_block->capture_top >> 1) + 1;
+if (offset_count > 0)
+ offset_vector[0] = -1;
+if (offset_count > 1)
+ offset_vector[1] = -1;
+return (*PUBL(callout))(callout_block);
+}
+
+/* Aligning to 8 byte. */
+#define CALLOUT_ARG_SIZE \
+ (((int)sizeof(PUBL(callout_block)) + 7) & ~7)
+
+#define CALLOUT_ARG_OFFSET(arg) \
+ (-CALLOUT_ARG_SIZE + SLJIT_OFFSETOF(PUBL(callout_block), arg))
+
+static SLJIT_INLINE pcre_uchar *compile_callout_matchingpath(compiler_common *common, pcre_uchar *cc, backtrack_common *parent)
+{
+DEFINE_COMPILER;
+backtrack_common *backtrack;
+
+PUSH_BACKTRACK(sizeof(backtrack_common), cc, NULL);
+
+allocate_stack(common, CALLOUT_ARG_SIZE / sizeof(sljit_sw));
+
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->capture_last_ptr);
+OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+SLJIT_ASSERT(common->capture_last_ptr != 0);
+OP1(SLJIT_MOV_SI, SLJIT_MEM1(STACK_TOP), CALLOUT_ARG_OFFSET(callout_number), SLJIT_IMM, cc[1]);
+OP1(SLJIT_MOV_SI, SLJIT_MEM1(STACK_TOP), CALLOUT_ARG_OFFSET(capture_last), TMP2, 0);
+
+/* These pointer sized fields temporarly stores internal variables. */
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0));
+OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), CALLOUT_ARG_OFFSET(offset_vector), STR_PTR, 0);
+OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), CALLOUT_ARG_OFFSET(subject), TMP2, 0);
+
+if (common->mark_ptr != 0)
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, mark_ptr));
+OP1(SLJIT_MOV_SI, SLJIT_MEM1(STACK_TOP), CALLOUT_ARG_OFFSET(pattern_position), SLJIT_IMM, GET(cc, 2));
+OP1(SLJIT_MOV_SI, SLJIT_MEM1(STACK_TOP), CALLOUT_ARG_OFFSET(next_item_length), SLJIT_IMM, GET(cc, 2 + LINK_SIZE));
+OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), CALLOUT_ARG_OFFSET(mark), (common->mark_ptr != 0) ? TMP2 : SLJIT_IMM, 0);
+
+/* Needed to save important temporary registers. */
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0, STACK_TOP, 0);
+OP2(SLJIT_SUB, SLJIT_SCRATCH_REG2, 0, STACK_TOP, 0, SLJIT_IMM, CALLOUT_ARG_SIZE);
+GET_LOCAL_BASE(SLJIT_SCRATCH_REG3, 0, OVECTOR_START);
+sljit_emit_ijump(compiler, SLJIT_CALL3, SLJIT_IMM, SLJIT_FUNC_OFFSET(do_callout));
+OP1(SLJIT_MOV_SI, SLJIT_RETURN_REG, 0, SLJIT_RETURN_REG, 0);
+OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0);
+free_stack(common, CALLOUT_ARG_SIZE / sizeof(sljit_sw));
+
+/* Check return value. */
+OP2(SLJIT_SUB | SLJIT_SET_S, SLJIT_UNUSED, 0, SLJIT_RETURN_REG, 0, SLJIT_IMM, 0);
+add_jump(compiler, &backtrack->topbacktracks, JUMP(SLJIT_C_SIG_GREATER));
+if (common->forced_quit_label == NULL)
+ add_jump(compiler, &common->forced_quit, JUMP(SLJIT_C_SIG_LESS));
+else
+ JUMPTO(SLJIT_C_SIG_LESS, common->forced_quit_label);
+return cc + 2 + 2 * LINK_SIZE;
+}
+
+#undef CALLOUT_ARG_SIZE
+#undef CALLOUT_ARG_OFFSET
+
+static pcre_uchar *compile_assert_matchingpath(compiler_common *common, pcre_uchar *cc, assert_backtrack *backtrack, BOOL conditional)
+{
+DEFINE_COMPILER;
+int framesize;
+int extrasize;
+BOOL needs_control_head;
+int private_data_ptr;
+backtrack_common altbacktrack;
+pcre_uchar *ccbegin;
+pcre_uchar opcode;
+pcre_uchar bra = OP_BRA;
+jump_list *tmp = NULL;
+jump_list **target = (conditional) ? &backtrack->condfailed : &backtrack->common.topbacktracks;
+jump_list **found;
+/* Saving previous accept variables. */
+BOOL save_local_exit = common->local_exit;
+BOOL save_positive_assert = common->positive_assert;
+then_trap_backtrack *save_then_trap = common->then_trap;
+struct sljit_label *save_quit_label = common->quit_label;
+struct sljit_label *save_accept_label = common->accept_label;
+jump_list *save_quit = common->quit;
+jump_list *save_positive_assert_quit = common->positive_assert_quit;
+jump_list *save_accept = common->accept;
+struct sljit_jump *jump;
+struct sljit_jump *brajump = NULL;
+
+/* Assert captures then. */
+common->then_trap = NULL;
+
+if (*cc == OP_BRAZERO || *cc == OP_BRAMINZERO)
+ {
+ SLJIT_ASSERT(!conditional);
+ bra = *cc;
+ cc++;
+ }
+private_data_ptr = PRIVATE_DATA(cc);
+SLJIT_ASSERT(private_data_ptr != 0);
+framesize = get_framesize(common, cc, NULL, FALSE, &needs_control_head);
+backtrack->framesize = framesize;
+backtrack->private_data_ptr = private_data_ptr;
+opcode = *cc;
+SLJIT_ASSERT(opcode >= OP_ASSERT && opcode <= OP_ASSERTBACK_NOT);
+found = (opcode == OP_ASSERT || opcode == OP_ASSERTBACK) ? &tmp : target;
+ccbegin = cc;
+cc += GET(cc, 1);
+
+if (bra == OP_BRAMINZERO)
+ {
+ /* This is a braminzero backtrack path. */
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+ brajump = CMP(SLJIT_C_EQUAL, STR_PTR, 0, SLJIT_IMM, 0);
+ }
+
+if (framesize < 0)
+ {
+ extrasize = needs_control_head ? 2 : 1;
+ if (framesize == no_frame)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, STACK_TOP, 0);
+ allocate_stack(common, extrasize);
+ if (needs_control_head)
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ if (needs_control_head)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, SLJIT_IMM, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), TMP1, 0);
+ }
+ }
+else
+ {
+ extrasize = needs_control_head ? 3 : 2;
+ allocate_stack(common, framesize + extrasize);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ OP2(SLJIT_SUB, TMP2, 0, STACK_TOP, 0, SLJIT_IMM, (framesize + extrasize) * sizeof(sljit_sw));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, TMP2, 0);
+ if (needs_control_head)
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ if (needs_control_head)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(2), TMP1, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), TMP2, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, SLJIT_IMM, 0);
+ }
+ else
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), TMP1, 0);
+ init_frame(common, ccbegin, NULL, framesize + extrasize - 1, extrasize, FALSE);
+ }
+
+memset(&altbacktrack, 0, sizeof(backtrack_common));
+if (opcode == OP_ASSERT_NOT || opcode == OP_ASSERTBACK_NOT)
+ {
+ /* Negative assert is stronger than positive assert. */
+ common->local_exit = TRUE;
+ common->quit_label = NULL;
+ common->quit = NULL;
+ common->positive_assert = FALSE;
+ }
+else
+ common->positive_assert = TRUE;
+common->positive_assert_quit = NULL;
+
+while (1)
+ {
+ common->accept_label = NULL;
+ common->accept = NULL;
+ altbacktrack.top = NULL;
+ altbacktrack.topbacktracks = NULL;
+
+ if (*ccbegin == OP_ALT)
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+
+ altbacktrack.cc = ccbegin;
+ compile_matchingpath(common, ccbegin + 1 + LINK_SIZE, cc, &altbacktrack);
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ {
+ if (opcode == OP_ASSERT_NOT || opcode == OP_ASSERTBACK_NOT)
+ {
+ common->local_exit = save_local_exit;
+ common->quit_label = save_quit_label;
+ common->quit = save_quit;
+ }
+ common->positive_assert = save_positive_assert;
+ common->then_trap = save_then_trap;
+ common->accept_label = save_accept_label;
+ common->positive_assert_quit = save_positive_assert_quit;
+ common->accept = save_accept;
+ return NULL;
+ }
+ common->accept_label = LABEL();
+ if (common->accept != NULL)
+ set_jumps(common->accept, common->accept_label);
+
+ /* Reset stack. */
+ if (framesize < 0)
+ {
+ if (framesize == no_frame)
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ else
+ free_stack(common, extrasize);
+ if (needs_control_head)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, SLJIT_MEM1(STACK_TOP), 0);
+ }
+ else
+ {
+ if ((opcode != OP_ASSERT_NOT && opcode != OP_ASSERTBACK_NOT) || conditional)
+ {
+ /* We don't need to keep the STR_PTR, only the previous private_data_ptr. */
+ OP2(SLJIT_ADD, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, SLJIT_IMM, (framesize + 1) * sizeof(sljit_sw));
+ if (needs_control_head)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, SLJIT_MEM1(STACK_TOP), 0);
+ }
+ else
+ {
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ if (needs_control_head)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, SLJIT_MEM1(STACK_TOP), (framesize + 1) * sizeof(sljit_sw));
+ add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+ }
+ }
+
+ if (opcode == OP_ASSERT_NOT || opcode == OP_ASSERTBACK_NOT)
+ {
+ /* We know that STR_PTR was stored on the top of the stack. */
+ if (conditional)
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), needs_control_head ? sizeof(sljit_sw) : 0);
+ else if (bra == OP_BRAZERO)
+ {
+ if (framesize < 0)
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), (extrasize - 1) * sizeof(sljit_sw));
+ else
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), framesize * sizeof(sljit_sw));
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), (framesize + extrasize - 1) * sizeof(sljit_sw));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, TMP1, 0);
+ }
+ OP2(SLJIT_ADD, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, sizeof(sljit_sw));
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ }
+ else if (framesize >= 0)
+ {
+ /* For OP_BRA and OP_BRAMINZERO. */
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, SLJIT_MEM1(STACK_TOP), framesize * sizeof(sljit_sw));
+ }
+ }
+ add_jump(compiler, found, JUMP(SLJIT_JUMP));
+
+ compile_backtrackingpath(common, altbacktrack.top);
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ {
+ if (opcode == OP_ASSERT_NOT || opcode == OP_ASSERTBACK_NOT)
+ {
+ common->local_exit = save_local_exit;
+ common->quit_label = save_quit_label;
+ common->quit = save_quit;
+ }
+ common->positive_assert = save_positive_assert;
+ common->then_trap = save_then_trap;
+ common->accept_label = save_accept_label;
+ common->positive_assert_quit = save_positive_assert_quit;
+ common->accept = save_accept;
+ return NULL;
+ }
+ set_jumps(altbacktrack.topbacktracks, LABEL());
+
+ if (*cc != OP_ALT)
+ break;
+
+ ccbegin = cc;
+ cc += GET(cc, 1);
+ }
+
+if (opcode == OP_ASSERT_NOT || opcode == OP_ASSERTBACK_NOT)
+ {
+ SLJIT_ASSERT(common->positive_assert_quit == NULL);
+ /* Makes the check less complicated below. */
+ common->positive_assert_quit = common->quit;
+ }
+
+/* None of them matched. */
+if (common->positive_assert_quit != NULL)
+ {
+ jump = JUMP(SLJIT_JUMP);
+ set_jumps(common->positive_assert_quit, LABEL());
+ SLJIT_ASSERT(framesize != no_stack);
+ if (framesize < 0)
+ OP2(SLJIT_ADD, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, SLJIT_IMM, extrasize * sizeof(sljit_sw));
+ else
+ {
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+ OP2(SLJIT_ADD, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, (framesize + extrasize) * sizeof(sljit_sw));
+ }
+ JUMPHERE(jump);
+ }
+
+if (needs_control_head)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, SLJIT_MEM1(STACK_TOP), STACK(1));
+
+if (opcode == OP_ASSERT || opcode == OP_ASSERTBACK)
+ {
+ /* Assert is failed. */
+ if (conditional || bra == OP_BRAZERO)
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+
+ if (framesize < 0)
+ {
+ /* The topmost item should be 0. */
+ if (bra == OP_BRAZERO)
+ {
+ if (extrasize == 2)
+ free_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ }
+ else
+ free_stack(common, extrasize);
+ }
+ else
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(extrasize - 1));
+ /* The topmost item should be 0. */
+ if (bra == OP_BRAZERO)
+ {
+ free_stack(common, framesize + extrasize - 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ }
+ else
+ free_stack(common, framesize + extrasize);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, TMP1, 0);
+ }
+ jump = JUMP(SLJIT_JUMP);
+ if (bra != OP_BRAZERO)
+ add_jump(compiler, target, jump);
+
+ /* Assert is successful. */
+ set_jumps(tmp, LABEL());
+ if (framesize < 0)
+ {
+ /* We know that STR_PTR was stored on the top of the stack. */
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), (extrasize - 1) * sizeof(sljit_sw));
+ /* Keep the STR_PTR on the top of the stack. */
+ if (bra == OP_BRAZERO)
+ {
+ OP2(SLJIT_ADD, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, sizeof(sljit_sw));
+ if (extrasize == 2)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ }
+ else if (bra == OP_BRAMINZERO)
+ {
+ OP2(SLJIT_ADD, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, sizeof(sljit_sw));
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ }
+ }
+ else
+ {
+ if (bra == OP_BRA)
+ {
+ /* We don't need to keep the STR_PTR, only the previous private_data_ptr. */
+ OP2(SLJIT_ADD, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, SLJIT_IMM, (framesize + 1) * sizeof(sljit_sw));
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), (extrasize - 2) * sizeof(sljit_sw));
+ }
+ else
+ {
+ /* We don't need to keep the STR_PTR, only the previous private_data_ptr. */
+ OP2(SLJIT_ADD, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, SLJIT_IMM, (framesize + 2) * sizeof(sljit_sw));
+ if (extrasize == 2)
+ {
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ if (bra == OP_BRAMINZERO)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ }
+ else
+ {
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), bra == OP_BRAZERO ? STR_PTR : SLJIT_IMM, 0);
+ }
+ }
+ }
+
+ if (bra == OP_BRAZERO)
+ {
+ backtrack->matchingpath = LABEL();
+ SET_LABEL(jump, backtrack->matchingpath);
+ }
+ else if (bra == OP_BRAMINZERO)
+ {
+ JUMPTO(SLJIT_JUMP, backtrack->matchingpath);
+ JUMPHERE(brajump);
+ if (framesize >= 0)
+ {
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, SLJIT_MEM1(STACK_TOP), framesize * sizeof(sljit_sw));
+ }
+ set_jumps(backtrack->common.topbacktracks, LABEL());
+ }
+ }
+else
+ {
+ /* AssertNot is successful. */
+ if (framesize < 0)
+ {
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ if (bra != OP_BRA)
+ {
+ if (extrasize == 2)
+ free_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ }
+ else
+ free_stack(common, extrasize);
+ }
+ else
+ {
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(extrasize - 1));
+ /* The topmost item should be 0. */
+ if (bra != OP_BRA)
+ {
+ free_stack(common, framesize + extrasize - 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ }
+ else
+ free_stack(common, framesize + extrasize);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, TMP1, 0);
+ }
+
+ if (bra == OP_BRAZERO)
+ backtrack->matchingpath = LABEL();
+ else if (bra == OP_BRAMINZERO)
+ {
+ JUMPTO(SLJIT_JUMP, backtrack->matchingpath);
+ JUMPHERE(brajump);
+ }
+
+ if (bra != OP_BRA)
+ {
+ SLJIT_ASSERT(found == &backtrack->common.topbacktracks);
+ set_jumps(backtrack->common.topbacktracks, LABEL());
+ backtrack->common.topbacktracks = NULL;
+ }
+ }
+
+if (opcode == OP_ASSERT_NOT || opcode == OP_ASSERTBACK_NOT)
+ {
+ common->local_exit = save_local_exit;
+ common->quit_label = save_quit_label;
+ common->quit = save_quit;
+ }
+common->positive_assert = save_positive_assert;
+common->then_trap = save_then_trap;
+common->accept_label = save_accept_label;
+common->positive_assert_quit = save_positive_assert_quit;
+common->accept = save_accept;
+return cc + 1 + LINK_SIZE;
+}
+
+static sljit_sw SLJIT_CALL do_searchovector(sljit_uw refno, sljit_sw* locals, pcre_uchar *name_table)
+{
+int condition = FALSE;
+pcre_uchar *slotA = name_table;
+pcre_uchar *slotB;
+sljit_sw name_count = locals[LOCALS0 / sizeof(sljit_sw)];
+sljit_sw name_entry_size = locals[LOCALS1 / sizeof(sljit_sw)];
+sljit_sw no_capture;
+int i;
+
+locals += refno & 0xff;
+refno >>= 8;
+no_capture = locals[1];
+
+for (i = 0; i < name_count; i++)
+ {
+ if (GET2(slotA, 0) == refno) break;
+ slotA += name_entry_size;
+ }
+
+if (i < name_count)
+ {
+ /* Found a name for the number - there can be only one; duplicate names
+ for different numbers are allowed, but not vice versa. First scan down
+ for duplicates. */
+
+ slotB = slotA;
+ while (slotB > name_table)
+ {
+ slotB -= name_entry_size;
+ if (STRCMP_UC_UC(slotA + IMM2_SIZE, slotB + IMM2_SIZE) == 0)
+ {
+ condition = locals[GET2(slotB, 0) << 1] != no_capture;
+ if (condition) break;
+ }
+ else break;
+ }
+
+ /* Scan up for duplicates */
+ if (!condition)
+ {
+ slotB = slotA;
+ for (i++; i < name_count; i++)
+ {
+ slotB += name_entry_size;
+ if (STRCMP_UC_UC(slotA + IMM2_SIZE, slotB + IMM2_SIZE) == 0)
+ {
+ condition = locals[GET2(slotB, 0) << 1] != no_capture;
+ if (condition) break;
+ }
+ else break;
+ }
+ }
+ }
+return condition;
+}
+
+static sljit_sw SLJIT_CALL do_searchgroups(sljit_uw recno, sljit_uw* locals, pcre_uchar *name_table)
+{
+int condition = FALSE;
+pcre_uchar *slotA = name_table;
+pcre_uchar *slotB;
+sljit_uw name_count = locals[LOCALS0 / sizeof(sljit_sw)];
+sljit_uw name_entry_size = locals[LOCALS1 / sizeof(sljit_sw)];
+sljit_uw group_num = locals[POSSESSIVE0 / sizeof(sljit_sw)];
+sljit_uw i;
+
+for (i = 0; i < name_count; i++)
+ {
+ if (GET2(slotA, 0) == recno) break;
+ slotA += name_entry_size;
+ }
+
+if (i < name_count)
+ {
+ /* Found a name for the number - there can be only one; duplicate
+ names for different numbers are allowed, but not vice versa. First
+ scan down for duplicates. */
+
+ slotB = slotA;
+ while (slotB > name_table)
+ {
+ slotB -= name_entry_size;
+ if (STRCMP_UC_UC(slotA + IMM2_SIZE, slotB + IMM2_SIZE) == 0)
+ {
+ condition = GET2(slotB, 0) == group_num;
+ if (condition) break;
+ }
+ else break;
+ }
+
+ /* Scan up for duplicates */
+ if (!condition)
+ {
+ slotB = slotA;
+ for (i++; i < name_count; i++)
+ {
+ slotB += name_entry_size;
+ if (STRCMP_UC_UC(slotA + IMM2_SIZE, slotB + IMM2_SIZE) == 0)
+ {
+ condition = GET2(slotB, 0) == group_num;
+ if (condition) break;
+ }
+ else break;
+ }
+ }
+ }
+return condition;
+}
+
+static SLJIT_INLINE void match_once_common(compiler_common *common, pcre_uchar ket, int framesize, int private_data_ptr, BOOL has_alternatives, BOOL needs_control_head)
+{
+DEFINE_COMPILER;
+int stacksize;
+
+if (framesize < 0)
+ {
+ if (framesize == no_frame)
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ else
+ {
+ stacksize = needs_control_head ? 1 : 0;
+ if (ket != OP_KET || has_alternatives)
+ stacksize++;
+ free_stack(common, stacksize);
+ }
+
+ if (needs_control_head)
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), (ket != OP_KET || has_alternatives) ? sizeof(sljit_sw) : 0);
+
+ /* TMP2 which is set here used by OP_KETRMAX below. */
+ if (ket == OP_KETRMAX)
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), 0);
+ else if (ket == OP_KETRMIN)
+ {
+ /* Move the STR_PTR to the private_data_ptr. */
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, SLJIT_MEM1(STACK_TOP), 0);
+ }
+ }
+else
+ {
+ stacksize = (ket != OP_KET || has_alternatives) ? 2 : 1;
+ OP2(SLJIT_ADD, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, SLJIT_IMM, (framesize + stacksize) * sizeof(sljit_sw));
+ if (needs_control_head)
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), 0);
+
+ if (ket == OP_KETRMAX)
+ {
+ /* TMP2 which is set here used by OP_KETRMAX below. */
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ }
+ }
+if (needs_control_head)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, TMP1, 0);
+}
+
+static SLJIT_INLINE int match_capture_common(compiler_common *common, int stacksize, int offset, int private_data_ptr)
+{
+DEFINE_COMPILER;
+
+if (common->capture_last_ptr != 0)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->capture_last_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->capture_last_ptr, SLJIT_IMM, offset >> 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), TMP1, 0);
+ stacksize++;
+ }
+if (common->optimized_cbracket[offset >> 1] == 0)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset));
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1));
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), TMP1, 0);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize + 1), TMP2, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1), STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset), TMP1, 0);
+ stacksize += 2;
+ }
+return stacksize;
+}
+
+/*
+ Handling bracketed expressions is probably the most complex part.
+
+ Stack layout naming characters:
+ S - Push the current STR_PTR
+ 0 - Push a 0 (NULL)
+ A - Push the current STR_PTR. Needed for restoring the STR_PTR
+ before the next alternative. Not pushed if there are no alternatives.
+ M - Any values pushed by the current alternative. Can be empty, or anything.
+ C - Push the previous OVECTOR(i), OVECTOR(i+1) and OVECTOR_PRIV(i) to the stack.
+ L - Push the previous local (pointed by localptr) to the stack
+ () - opional values stored on the stack
+ ()* - optonal, can be stored multiple times
+
+ The following list shows the regular expression templates, their PCRE byte codes
+ and stack layout supported by pcre-sljit.
+
+ (?:) OP_BRA | OP_KET A M
+ () OP_CBRA | OP_KET C M
+ (?:)+ OP_BRA | OP_KETRMAX 0 A M S ( A M S )*
+ OP_SBRA | OP_KETRMAX 0 L M S ( L M S )*
+ (?:)+? OP_BRA | OP_KETRMIN 0 A M S ( A M S )*
+ OP_SBRA | OP_KETRMIN 0 L M S ( L M S )*
+ ()+ OP_CBRA | OP_KETRMAX 0 C M S ( C M S )*
+ OP_SCBRA | OP_KETRMAX 0 C M S ( C M S )*
+ ()+? OP_CBRA | OP_KETRMIN 0 C M S ( C M S )*
+ OP_SCBRA | OP_KETRMIN 0 C M S ( C M S )*
+ (?:)? OP_BRAZERO | OP_BRA | OP_KET S ( A M 0 )
+ (?:)?? OP_BRAMINZERO | OP_BRA | OP_KET S ( A M 0 )
+ ()? OP_BRAZERO | OP_CBRA | OP_KET S ( C M 0 )
+ ()?? OP_BRAMINZERO | OP_CBRA | OP_KET S ( C M 0 )
+ (?:)* OP_BRAZERO | OP_BRA | OP_KETRMAX S 0 ( A M S )*
+ OP_BRAZERO | OP_SBRA | OP_KETRMAX S 0 ( L M S )*
+ (?:)*? OP_BRAMINZERO | OP_BRA | OP_KETRMIN S 0 ( A M S )*
+ OP_BRAMINZERO | OP_SBRA | OP_KETRMIN S 0 ( L M S )*
+ ()* OP_BRAZERO | OP_CBRA | OP_KETRMAX S 0 ( C M S )*
+ OP_BRAZERO | OP_SCBRA | OP_KETRMAX S 0 ( C M S )*
+ ()*? OP_BRAMINZERO | OP_CBRA | OP_KETRMIN S 0 ( C M S )*
+ OP_BRAMINZERO | OP_SCBRA | OP_KETRMIN S 0 ( C M S )*
+
+
+ Stack layout naming characters:
+ A - Push the alternative index (starting from 0) on the stack.
+ Not pushed if there is no alternatives.
+ M - Any values pushed by the current alternative. Can be empty, or anything.
+
+ The next list shows the possible content of a bracket:
+ (|) OP_*BRA | OP_ALT ... M A
+ (?()|) OP_*COND | OP_ALT M A
+ (?>|) OP_ONCE | OP_ALT ... [stack trace] M A
+ (?>|) OP_ONCE_NC | OP_ALT ... [stack trace] M A
+ Or nothing, if trace is unnecessary
+*/
+
+static pcre_uchar *compile_bracket_matchingpath(compiler_common *common, pcre_uchar *cc, backtrack_common *parent)
+{
+DEFINE_COMPILER;
+backtrack_common *backtrack;
+pcre_uchar opcode;
+int private_data_ptr = 0;
+int offset = 0;
+int stacksize;
+int repeat_ptr = 0, repeat_length = 0;
+int repeat_type = 0, repeat_count = 0;
+pcre_uchar *ccbegin;
+pcre_uchar *matchingpath;
+pcre_uchar bra = OP_BRA;
+pcre_uchar ket;
+assert_backtrack *assert;
+BOOL has_alternatives;
+BOOL needs_control_head = FALSE;
+struct sljit_jump *jump;
+struct sljit_jump *skip;
+struct sljit_label *rmax_label = NULL;
+struct sljit_jump *braminzero = NULL;
+
+PUSH_BACKTRACK(sizeof(bracket_backtrack), cc, NULL);
+
+if (*cc == OP_BRAZERO || *cc == OP_BRAMINZERO)
+ {
+ bra = *cc;
+ cc++;
+ opcode = *cc;
+ }
+
+opcode = *cc;
+ccbegin = cc;
+matchingpath = bracketend(cc) - 1 - LINK_SIZE;
+ket = *matchingpath;
+if (ket == OP_KET && PRIVATE_DATA(matchingpath) != 0)
+ {
+ repeat_ptr = PRIVATE_DATA(matchingpath);
+ repeat_length = PRIVATE_DATA(matchingpath + 1);
+ repeat_type = PRIVATE_DATA(matchingpath + 2);
+ repeat_count = PRIVATE_DATA(matchingpath + 3);
+ SLJIT_ASSERT(repeat_length != 0 && repeat_type != 0 && repeat_count != 0);
+ if (repeat_type == OP_UPTO)
+ ket = OP_KETRMAX;
+ if (repeat_type == OP_MINUPTO)
+ ket = OP_KETRMIN;
+ }
+
+if ((opcode == OP_COND || opcode == OP_SCOND) && cc[1 + LINK_SIZE] == OP_DEF)
+ {
+ /* Drop this bracket_backtrack. */
+ parent->top = backtrack->prev;
+ return matchingpath + 1 + LINK_SIZE + repeat_length;
+ }
+
+matchingpath = ccbegin + 1 + LINK_SIZE;
+SLJIT_ASSERT(ket == OP_KET || ket == OP_KETRMAX || ket == OP_KETRMIN);
+SLJIT_ASSERT(!((bra == OP_BRAZERO && ket == OP_KETRMIN) || (bra == OP_BRAMINZERO && ket == OP_KETRMAX)));
+cc += GET(cc, 1);
+
+has_alternatives = *cc == OP_ALT;
+if (SLJIT_UNLIKELY(opcode == OP_COND) || SLJIT_UNLIKELY(opcode == OP_SCOND))
+ {
+ has_alternatives = (*matchingpath == OP_RREF) ? FALSE : TRUE;
+ if (*matchingpath == OP_NRREF)
+ {
+ stacksize = GET2(matchingpath, 1);
+ if (common->currententry == NULL || stacksize == RREF_ANY)
+ has_alternatives = FALSE;
+ else if (common->currententry->start == 0)
+ has_alternatives = stacksize != 0;
+ else
+ has_alternatives = stacksize != (int)GET2(common->start, common->currententry->start + 1 + LINK_SIZE);
+ }
+ }
+
+if (SLJIT_UNLIKELY(opcode == OP_COND) && (*cc == OP_KETRMAX || *cc == OP_KETRMIN))
+ opcode = OP_SCOND;
+if (SLJIT_UNLIKELY(opcode == OP_ONCE_NC))
+ opcode = OP_ONCE;
+
+if (opcode == OP_CBRA || opcode == OP_SCBRA)
+ {
+ /* Capturing brackets has a pre-allocated space. */
+ offset = GET2(ccbegin, 1 + LINK_SIZE);
+ if (common->optimized_cbracket[offset] == 0)
+ {
+ private_data_ptr = OVECTOR_PRIV(offset);
+ offset <<= 1;
+ }
+ else
+ {
+ offset <<= 1;
+ private_data_ptr = OVECTOR(offset);
+ }
+ BACKTRACK_AS(bracket_backtrack)->private_data_ptr = private_data_ptr;
+ matchingpath += IMM2_SIZE;
+ }
+else if (opcode == OP_ONCE || opcode == OP_SBRA || opcode == OP_SCOND)
+ {
+ /* Other brackets simply allocate the next entry. */
+ private_data_ptr = PRIVATE_DATA(ccbegin);
+ SLJIT_ASSERT(private_data_ptr != 0);
+ BACKTRACK_AS(bracket_backtrack)->private_data_ptr = private_data_ptr;
+ if (opcode == OP_ONCE)
+ BACKTRACK_AS(bracket_backtrack)->u.framesize = get_framesize(common, ccbegin, NULL, FALSE, &needs_control_head);
+ }
+
+/* Instructions before the first alternative. */
+stacksize = 0;
+if (ket == OP_KETRMAX || (ket == OP_KETRMIN && bra != OP_BRAMINZERO))
+ stacksize++;
+if (bra == OP_BRAZERO)
+ stacksize++;
+
+if (stacksize > 0)
+ allocate_stack(common, stacksize);
+
+stacksize = 0;
+if (ket == OP_KETRMAX || (ket == OP_KETRMIN && bra != OP_BRAMINZERO))
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), SLJIT_IMM, 0);
+ stacksize++;
+ }
+
+if (bra == OP_BRAZERO)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), STR_PTR, 0);
+
+if (bra == OP_BRAMINZERO)
+ {
+ /* This is a backtrack path! (Since the try-path of OP_BRAMINZERO matches to the empty string) */
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ if (ket != OP_KETRMIN)
+ {
+ free_stack(common, 1);
+ braminzero = CMP(SLJIT_C_EQUAL, STR_PTR, 0, SLJIT_IMM, 0);
+ }
+ else
+ {
+ if (opcode == OP_ONCE || opcode >= OP_SBRA)
+ {
+ jump = CMP(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_IMM, 0);
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(1));
+ /* Nothing stored during the first run. */
+ skip = JUMP(SLJIT_JUMP);
+ JUMPHERE(jump);
+ /* Checking zero-length iteration. */
+ if (opcode != OP_ONCE || BACKTRACK_AS(bracket_backtrack)->u.framesize < 0)
+ {
+ /* When we come from outside, private_data_ptr contains the previous STR_PTR. */
+ braminzero = CMP(SLJIT_C_EQUAL, STR_PTR, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ }
+ else
+ {
+ /* Except when the whole stack frame must be saved. */
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ braminzero = CMP(SLJIT_C_EQUAL, STR_PTR, 0, SLJIT_MEM1(TMP1), (BACKTRACK_AS(bracket_backtrack)->u.framesize + 1) * sizeof(sljit_sw));
+ }
+ JUMPHERE(skip);
+ }
+ else
+ {
+ jump = CMP(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_IMM, 0);
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(1));
+ JUMPHERE(jump);
+ }
+ }
+ }
+
+if (repeat_type != 0)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, SLJIT_IMM, repeat_count);
+ if (repeat_type == OP_EXACT)
+ rmax_label = LABEL();
+ }
+
+if (ket == OP_KETRMIN)
+ BACKTRACK_AS(bracket_backtrack)->recursive_matchingpath = LABEL();
+
+if (ket == OP_KETRMAX)
+ {
+ rmax_label = LABEL();
+ if (has_alternatives && opcode != OP_ONCE && opcode < OP_SBRA && repeat_type == 0)
+ BACKTRACK_AS(bracket_backtrack)->alternative_matchingpath = rmax_label;
+ }
+
+/* Handling capturing brackets and alternatives. */
+if (opcode == OP_ONCE)
+ {
+ stacksize = 0;
+ if (needs_control_head)
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr);
+ stacksize++;
+ }
+
+ if (BACKTRACK_AS(bracket_backtrack)->u.framesize < 0)
+ {
+ /* Neither capturing brackets nor recursions are found in the block. */
+ if (ket == OP_KETRMIN)
+ {
+ stacksize += 2;
+ if (!needs_control_head)
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ }
+ else
+ {
+ if (BACKTRACK_AS(bracket_backtrack)->u.framesize == no_frame)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, STACK_TOP, 0);
+ if (ket == OP_KETRMAX || has_alternatives)
+ stacksize++;
+ }
+
+ if (stacksize > 0)
+ allocate_stack(common, stacksize);
+
+ stacksize = 0;
+ if (needs_control_head)
+ {
+ stacksize++;
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), TMP2, 0);
+ }
+
+ if (ket == OP_KETRMIN)
+ {
+ if (needs_control_head)
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), STR_PTR, 0);
+ if (BACKTRACK_AS(bracket_backtrack)->u.framesize == no_frame)
+ OP2(SLJIT_SUB, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, STACK_TOP, 0, SLJIT_IMM, needs_control_head ? (2 * sizeof(sljit_sw)) : sizeof(sljit_sw));
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize + 1), TMP2, 0);
+ }
+ else if (ket == OP_KETRMAX || has_alternatives)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), STR_PTR, 0);
+ }
+ else
+ {
+ if (ket != OP_KET || has_alternatives)
+ stacksize++;
+
+ stacksize += BACKTRACK_AS(bracket_backtrack)->u.framesize + 1;
+ allocate_stack(common, stacksize);
+
+ if (needs_control_head)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), TMP2, 0);
+
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ OP2(SLJIT_SUB, TMP2, 0, STACK_TOP, 0, SLJIT_IMM, stacksize * sizeof(sljit_sw));
+
+ stacksize = needs_control_head ? 1 : 0;
+ if (ket != OP_KET || has_alternatives)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, TMP2, 0);
+ stacksize++;
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), TMP1, 0);
+ }
+ else
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, TMP2, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), TMP1, 0);
+ }
+ init_frame(common, ccbegin, NULL, BACKTRACK_AS(bracket_backtrack)->u.framesize + stacksize, stacksize + 1, FALSE);
+ }
+ }
+else if (opcode == OP_CBRA || opcode == OP_SCBRA)
+ {
+ /* Saving the previous values. */
+ if (common->optimized_cbracket[offset >> 1] != 0)
+ {
+ SLJIT_ASSERT(private_data_ptr == OVECTOR(offset));
+ allocate_stack(common, 2);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr + sizeof(sljit_sw));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), TMP1, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), TMP2, 0);
+ }
+ else
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), TMP2, 0);
+ }
+ }
+else if (opcode == OP_SBRA || opcode == OP_SCOND)
+ {
+ /* Saving the previous value. */
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), TMP2, 0);
+ }
+else if (has_alternatives)
+ {
+ /* Pushing the starting string pointer. */
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ }
+
+/* Generating code for the first alternative. */
+if (opcode == OP_COND || opcode == OP_SCOND)
+ {
+ if (*matchingpath == OP_CREF)
+ {
+ SLJIT_ASSERT(has_alternatives);
+ add_jump(compiler, &(BACKTRACK_AS(bracket_backtrack)->u.condfailed),
+ CMP(SLJIT_C_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(GET2(matchingpath, 1) << 1), SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(1)));
+ matchingpath += 1 + IMM2_SIZE;
+ }
+ else if (*matchingpath == OP_NCREF)
+ {
+ SLJIT_ASSERT(has_alternatives);
+ stacksize = GET2(matchingpath, 1);
+ jump = CMP(SLJIT_C_NOT_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(stacksize << 1), SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(1));
+
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE1, STACK_TOP, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0, SLJIT_IMM, common->name_count);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1, SLJIT_IMM, common->name_entry_size);
+ OP1(SLJIT_MOV, SLJIT_SCRATCH_REG1, 0, SLJIT_IMM, (stacksize << 8) | (common->ovector_start / sizeof(sljit_sw)));
+ GET_LOCAL_BASE(SLJIT_SCRATCH_REG2, 0, 0);
+ OP1(SLJIT_MOV, SLJIT_SCRATCH_REG3, 0, SLJIT_IMM, common->name_table);
+ sljit_emit_ijump(compiler, SLJIT_CALL3, SLJIT_IMM, SLJIT_FUNC_OFFSET(do_searchovector));
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE1);
+ add_jump(compiler, &(BACKTRACK_AS(bracket_backtrack)->u.condfailed), CMP(SLJIT_C_EQUAL, SLJIT_SCRATCH_REG1, 0, SLJIT_IMM, 0));
+
+ JUMPHERE(jump);
+ matchingpath += 1 + IMM2_SIZE;
+ }
+ else if (*matchingpath == OP_RREF || *matchingpath == OP_NRREF)
+ {
+ /* Never has other case. */
+ BACKTRACK_AS(bracket_backtrack)->u.condfailed = NULL;
+
+ stacksize = GET2(matchingpath, 1);
+ if (common->currententry == NULL)
+ stacksize = 0;
+ else if (stacksize == RREF_ANY)
+ stacksize = 1;
+ else if (common->currententry->start == 0)
+ stacksize = stacksize == 0;
+ else
+ stacksize = stacksize == (int)GET2(common->start, common->currententry->start + 1 + LINK_SIZE);
+
+ if (*matchingpath == OP_RREF || stacksize || common->currententry == NULL)
+ {
+ SLJIT_ASSERT(!has_alternatives);
+ if (stacksize != 0)
+ matchingpath += 1 + IMM2_SIZE;
+ else
+ {
+ if (*cc == OP_ALT)
+ {
+ matchingpath = cc + 1 + LINK_SIZE;
+ cc += GET(cc, 1);
+ }
+ else
+ matchingpath = cc;
+ }
+ }
+ else
+ {
+ SLJIT_ASSERT(has_alternatives);
+
+ stacksize = GET2(matchingpath, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE1, STACK_TOP, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0, SLJIT_IMM, common->name_count);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1, SLJIT_IMM, common->name_entry_size);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE0, SLJIT_IMM, GET2(common->start, common->currententry->start + 1 + LINK_SIZE));
+ OP1(SLJIT_MOV, SLJIT_SCRATCH_REG1, 0, SLJIT_IMM, stacksize);
+ GET_LOCAL_BASE(SLJIT_SCRATCH_REG2, 0, 0);
+ OP1(SLJIT_MOV, SLJIT_SCRATCH_REG3, 0, SLJIT_IMM, common->name_table);
+ sljit_emit_ijump(compiler, SLJIT_CALL3, SLJIT_IMM, SLJIT_FUNC_OFFSET(do_searchgroups));
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE1);
+ add_jump(compiler, &(BACKTRACK_AS(bracket_backtrack)->u.condfailed), CMP(SLJIT_C_EQUAL, SLJIT_SCRATCH_REG1, 0, SLJIT_IMM, 0));
+ matchingpath += 1 + IMM2_SIZE;
+ }
+ }
+ else
+ {
+ SLJIT_ASSERT(has_alternatives && *matchingpath >= OP_ASSERT && *matchingpath <= OP_ASSERTBACK_NOT);
+ /* Similar code as PUSH_BACKTRACK macro. */
+ assert = sljit_alloc_memory(compiler, sizeof(assert_backtrack));
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ return NULL;
+ memset(assert, 0, sizeof(assert_backtrack));
+ assert->common.cc = matchingpath;
+ BACKTRACK_AS(bracket_backtrack)->u.assert = assert;
+ matchingpath = compile_assert_matchingpath(common, matchingpath, assert, TRUE);
+ }
+ }
+
+compile_matchingpath(common, matchingpath, cc, backtrack);
+if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ return NULL;
+
+if (opcode == OP_ONCE)
+ match_once_common(common, ket, BACKTRACK_AS(bracket_backtrack)->u.framesize, private_data_ptr, has_alternatives, needs_control_head);
+
+stacksize = 0;
+if (repeat_type == OP_MINUPTO)
+ {
+ /* We need to preserve the counter. TMP2 will be used below. */
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr);
+ stacksize++;
+ }
+if (ket != OP_KET || bra != OP_BRA)
+ stacksize++;
+if (offset != 0)
+ {
+ if (common->capture_last_ptr != 0)
+ stacksize++;
+ if (common->optimized_cbracket[offset >> 1] == 0)
+ stacksize += 2;
+ }
+if (has_alternatives && opcode != OP_ONCE)
+ stacksize++;
+
+if (stacksize > 0)
+ allocate_stack(common, stacksize);
+
+stacksize = 0;
+if (repeat_type == OP_MINUPTO)
+ {
+ /* TMP2 was set above. */
+ OP2(SLJIT_SUB, SLJIT_MEM1(STACK_TOP), STACK(stacksize), TMP2, 0, SLJIT_IMM, 1);
+ stacksize++;
+ }
+
+if (ket != OP_KET || bra != OP_BRA)
+ {
+ if (ket != OP_KET)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), STR_PTR, 0);
+ else
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), SLJIT_IMM, 0);
+ stacksize++;
+ }
+
+if (offset != 0)
+ stacksize = match_capture_common(common, stacksize, offset, private_data_ptr);
+
+if (has_alternatives)
+ {
+ if (opcode != OP_ONCE)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), SLJIT_IMM, 0);
+ if (ket != OP_KETRMAX)
+ BACKTRACK_AS(bracket_backtrack)->alternative_matchingpath = LABEL();
+ }
+
+/* Must be after the matchingpath label. */
+if (offset != 0 && common->optimized_cbracket[offset >> 1] != 0)
+ {
+ SLJIT_ASSERT(private_data_ptr == OVECTOR(offset + 0));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1), STR_PTR, 0);
+ }
+
+if (ket == OP_KETRMAX)
+ {
+ if (repeat_type != 0)
+ {
+ if (has_alternatives)
+ BACKTRACK_AS(bracket_backtrack)->alternative_matchingpath = LABEL();
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, SLJIT_IMM, 1);
+ JUMPTO(SLJIT_C_NOT_ZERO, rmax_label);
+ /* Drop STR_PTR for greedy plus quantifier. */
+ if (opcode != OP_ONCE)
+ free_stack(common, 1);
+ }
+ else if (opcode == OP_ONCE || opcode >= OP_SBRA)
+ {
+ if (has_alternatives)
+ BACKTRACK_AS(bracket_backtrack)->alternative_matchingpath = LABEL();
+ /* Checking zero-length iteration. */
+ if (opcode != OP_ONCE)
+ {
+ CMPTO(SLJIT_C_NOT_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, STR_PTR, 0, rmax_label);
+ /* Drop STR_PTR for greedy plus quantifier. */
+ if (bra != OP_BRAZERO)
+ free_stack(common, 1);
+ }
+ else
+ /* TMP2 must contain the starting STR_PTR. */
+ CMPTO(SLJIT_C_NOT_EQUAL, TMP2, 0, STR_PTR, 0, rmax_label);
+ }
+ else
+ JUMPTO(SLJIT_JUMP, rmax_label);
+ BACKTRACK_AS(bracket_backtrack)->recursive_matchingpath = LABEL();
+ }
+
+if (repeat_type == OP_EXACT)
+ {
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, SLJIT_IMM, 1);
+ JUMPTO(SLJIT_C_NOT_ZERO, rmax_label);
+ }
+else if (repeat_type == OP_UPTO)
+ {
+ /* We need to preserve the counter. */
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr);
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), TMP2, 0);
+ }
+
+if (bra == OP_BRAZERO)
+ BACKTRACK_AS(bracket_backtrack)->zero_matchingpath = LABEL();
+
+if (bra == OP_BRAMINZERO)
+ {
+ /* This is a backtrack path! (From the viewpoint of OP_BRAMINZERO) */
+ JUMPTO(SLJIT_JUMP, ((braminzero_backtrack *)parent)->matchingpath);
+ if (braminzero != NULL)
+ {
+ JUMPHERE(braminzero);
+ /* We need to release the end pointer to perform the
+ backtrack for the zero-length iteration. When
+ framesize is < 0, OP_ONCE will do the release itself. */
+ if (opcode == OP_ONCE && BACKTRACK_AS(bracket_backtrack)->u.framesize >= 0)
+ {
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+ }
+ else if (ket == OP_KETRMIN && opcode != OP_ONCE)
+ free_stack(common, 1);
+ }
+ /* Continue to the normal backtrack. */
+ }
+
+if ((ket != OP_KET && bra != OP_BRAMINZERO) || bra == OP_BRAZERO)
+ count_match(common);
+
+/* Skip the other alternatives. */
+while (*cc == OP_ALT)
+ cc += GET(cc, 1);
+cc += 1 + LINK_SIZE;
+
+/* Temporarily encoding the needs_control_head in framesize. */
+if (opcode == OP_ONCE)
+ BACKTRACK_AS(bracket_backtrack)->u.framesize = (BACKTRACK_AS(bracket_backtrack)->u.framesize << 1) | (needs_control_head ? 1 : 0);
+return cc + repeat_length;
+}
+
+static pcre_uchar *compile_bracketpos_matchingpath(compiler_common *common, pcre_uchar *cc, backtrack_common *parent)
+{
+DEFINE_COMPILER;
+backtrack_common *backtrack;
+pcre_uchar opcode;
+int private_data_ptr;
+int cbraprivptr = 0;
+BOOL needs_control_head;
+int framesize;
+int stacksize;
+int offset = 0;
+BOOL zero = FALSE;
+pcre_uchar *ccbegin = NULL;
+int stack; /* Also contains the offset of control head. */
+struct sljit_label *loop = NULL;
+struct jump_list *emptymatch = NULL;
+
+PUSH_BACKTRACK(sizeof(bracketpos_backtrack), cc, NULL);
+if (*cc == OP_BRAPOSZERO)
+ {
+ zero = TRUE;
+ cc++;
+ }
+
+opcode = *cc;
+private_data_ptr = PRIVATE_DATA(cc);
+SLJIT_ASSERT(private_data_ptr != 0);
+BACKTRACK_AS(bracketpos_backtrack)->private_data_ptr = private_data_ptr;
+switch(opcode)
+ {
+ case OP_BRAPOS:
+ case OP_SBRAPOS:
+ ccbegin = cc + 1 + LINK_SIZE;
+ break;
+
+ case OP_CBRAPOS:
+ case OP_SCBRAPOS:
+ offset = GET2(cc, 1 + LINK_SIZE);
+ /* This case cannot be optimized in the same was as
+ normal capturing brackets. */
+ SLJIT_ASSERT(common->optimized_cbracket[offset] == 0);
+ cbraprivptr = OVECTOR_PRIV(offset);
+ offset <<= 1;
+ ccbegin = cc + 1 + LINK_SIZE + IMM2_SIZE;
+ break;
+
+ default:
+ SLJIT_ASSERT_STOP();
+ break;
+ }
+
+framesize = get_framesize(common, cc, NULL, FALSE, &needs_control_head);
+BACKTRACK_AS(bracketpos_backtrack)->framesize = framesize;
+if (framesize < 0)
+ {
+ if (offset != 0)
+ {
+ stacksize = 2;
+ if (common->capture_last_ptr != 0)
+ stacksize++;
+ }
+ else
+ stacksize = 1;
+
+ if (needs_control_head)
+ stacksize++;
+ if (!zero)
+ stacksize++;
+
+ BACKTRACK_AS(bracketpos_backtrack)->stacksize = stacksize;
+ allocate_stack(common, stacksize);
+ if (framesize == no_frame)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, STACK_TOP, 0);
+
+ stack = 0;
+ if (offset != 0)
+ {
+ stack = 2;
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset));
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1));
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), TMP1, 0);
+ if (common->capture_last_ptr != 0)
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->capture_last_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), TMP2, 0);
+ if (needs_control_head)
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr);
+ if (common->capture_last_ptr != 0)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(2), TMP1, 0);
+ stack = 3;
+ }
+ }
+ else
+ {
+ if (needs_control_head)
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ stack = 1;
+ }
+
+ if (needs_control_head)
+ stack++;
+ if (!zero)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stack), SLJIT_IMM, 1);
+ if (needs_control_head)
+ {
+ stack--;
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stack), TMP2, 0);
+ }
+ }
+else
+ {
+ stacksize = framesize + 1;
+ if (!zero)
+ stacksize++;
+ if (needs_control_head)
+ stacksize++;
+ if (offset == 0)
+ stacksize++;
+ BACKTRACK_AS(bracketpos_backtrack)->stacksize = stacksize;
+
+ allocate_stack(common, stacksize);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ if (needs_control_head)
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr);
+ OP2(SLJIT_SUB, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, STACK_TOP, 0, SLJIT_IMM, -STACK(stacksize - 1));
+
+ stack = 0;
+ if (!zero)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 1);
+ stack = 1;
+ }
+ if (needs_control_head)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stack), TMP2, 0);
+ stack++;
+ }
+ if (offset == 0)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stack), STR_PTR, 0);
+ stack++;
+ }
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stack), TMP1, 0);
+ init_frame(common, cc, NULL, stacksize - 1, stacksize - framesize, FALSE);
+ stack -= 1 + (offset == 0);
+ }
+
+if (offset != 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), cbraprivptr, STR_PTR, 0);
+
+loop = LABEL();
+while (*cc != OP_KETRPOS)
+ {
+ backtrack->top = NULL;
+ backtrack->topbacktracks = NULL;
+ cc += GET(cc, 1);
+
+ compile_matchingpath(common, ccbegin, cc, backtrack);
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ return NULL;
+
+ if (framesize < 0)
+ {
+ if (framesize == no_frame)
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+
+ if (offset != 0)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), cbraprivptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1), STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), cbraprivptr, STR_PTR, 0);
+ if (common->capture_last_ptr != 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->capture_last_ptr, SLJIT_IMM, offset >> 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset), TMP1, 0);
+ }
+ else
+ {
+ if (opcode == OP_SBRAPOS)
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ }
+
+ if (opcode == OP_SBRAPOS || opcode == OP_SCBRAPOS)
+ add_jump(compiler, &emptymatch, CMP(SLJIT_C_EQUAL, TMP1, 0, STR_PTR, 0));
+
+ if (!zero)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize - 1), SLJIT_IMM, 0);
+ }
+ else
+ {
+ if (offset != 0)
+ {
+ OP2(SLJIT_ADD, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, SLJIT_IMM, stacksize * sizeof(sljit_sw));
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), cbraprivptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1), STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), cbraprivptr, STR_PTR, 0);
+ if (common->capture_last_ptr != 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->capture_last_ptr, SLJIT_IMM, offset >> 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset), TMP1, 0);
+ }
+ else
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ OP2(SLJIT_ADD, STACK_TOP, 0, TMP2, 0, SLJIT_IMM, stacksize * sizeof(sljit_sw));
+ if (opcode == OP_SBRAPOS)
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(TMP2), (framesize + 1) * sizeof(sljit_sw));
+ OP1(SLJIT_MOV, SLJIT_MEM1(TMP2), (framesize + 1) * sizeof(sljit_sw), STR_PTR, 0);
+ }
+
+ if (opcode == OP_SBRAPOS || opcode == OP_SCBRAPOS)
+ add_jump(compiler, &emptymatch, CMP(SLJIT_C_EQUAL, TMP1, 0, STR_PTR, 0));
+
+ if (!zero)
+ {
+ if (framesize < 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize - 1), SLJIT_IMM, 0);
+ else
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ }
+ }
+
+ if (needs_control_head)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, SLJIT_MEM1(STACK_TOP), STACK(stack));
+
+ JUMPTO(SLJIT_JUMP, loop);
+ flush_stubs(common);
+
+ compile_backtrackingpath(common, backtrack->top);
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ return NULL;
+ set_jumps(backtrack->topbacktracks, LABEL());
+
+ if (framesize < 0)
+ {
+ if (offset != 0)
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), cbraprivptr);
+ else
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ }
+ else
+ {
+ if (offset != 0)
+ {
+ /* Last alternative. */
+ if (*cc == OP_KETRPOS)
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), cbraprivptr);
+ }
+ else
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(TMP2), (framesize + 1) * sizeof(sljit_sw));
+ }
+ }
+
+ if (*cc == OP_KETRPOS)
+ break;
+ ccbegin = cc + 1 + LINK_SIZE;
+ }
+
+/* We don't have to restore the control head in case of a failed match. */
+
+backtrack->topbacktracks = NULL;
+if (!zero)
+ {
+ if (framesize < 0)
+ add_jump(compiler, &backtrack->topbacktracks, CMP(SLJIT_C_NOT_EQUAL, SLJIT_MEM1(STACK_TOP), STACK(stacksize - 1), SLJIT_IMM, 0));
+ else /* TMP2 is set to [private_data_ptr] above. */
+ add_jump(compiler, &backtrack->topbacktracks, CMP(SLJIT_C_NOT_EQUAL, SLJIT_MEM1(TMP2), (stacksize - 1) * sizeof(sljit_sw), SLJIT_IMM, 0));
+ }
+
+/* None of them matched. */
+set_jumps(emptymatch, LABEL());
+count_match(common);
+return cc + 1 + LINK_SIZE;
+}
+
+static SLJIT_INLINE pcre_uchar *get_iterator_parameters(compiler_common *common, pcre_uchar *cc, pcre_uchar *opcode, pcre_uchar *type, int *arg1, int *arg2, pcre_uchar **end)
+{
+int class_len;
+
+*opcode = *cc;
+if (*opcode >= OP_STAR && *opcode <= OP_POSUPTO)
+ {
+ cc++;
+ *type = OP_CHAR;
+ }
+else if (*opcode >= OP_STARI && *opcode <= OP_POSUPTOI)
+ {
+ cc++;
+ *type = OP_CHARI;
+ *opcode -= OP_STARI - OP_STAR;
+ }
+else if (*opcode >= OP_NOTSTAR && *opcode <= OP_NOTPOSUPTO)
+ {
+ cc++;
+ *type = OP_NOT;
+ *opcode -= OP_NOTSTAR - OP_STAR;
+ }
+else if (*opcode >= OP_NOTSTARI && *opcode <= OP_NOTPOSUPTOI)
+ {
+ cc++;
+ *type = OP_NOTI;
+ *opcode -= OP_NOTSTARI - OP_STAR;
+ }
+else if (*opcode >= OP_TYPESTAR && *opcode <= OP_TYPEPOSUPTO)
+ {
+ cc++;
+ *opcode -= OP_TYPESTAR - OP_STAR;
+ *type = 0;
+ }
+else
+ {
+ SLJIT_ASSERT(*opcode >= OP_CLASS || *opcode <= OP_XCLASS);
+ *type = *opcode;
+ cc++;
+ class_len = (*type < OP_XCLASS) ? (int)(1 + (32 / sizeof(pcre_uchar))) : GET(cc, 0);
+ *opcode = cc[class_len - 1];
+ if (*opcode >= OP_CRSTAR && *opcode <= OP_CRMINQUERY)
+ {
+ *opcode -= OP_CRSTAR - OP_STAR;
+ if (end != NULL)
+ *end = cc + class_len;
+ }
+ else
+ {
+ SLJIT_ASSERT(*opcode == OP_CRRANGE || *opcode == OP_CRMINRANGE);
+ *arg1 = GET2(cc, (class_len + IMM2_SIZE));
+ *arg2 = GET2(cc, class_len);
+
+ if (*arg2 == 0)
+ {
+ SLJIT_ASSERT(*arg1 != 0);
+ *opcode = (*opcode == OP_CRRANGE) ? OP_UPTO : OP_MINUPTO;
+ }
+ if (*arg1 == *arg2)
+ *opcode = OP_EXACT;
+
+ if (end != NULL)
+ *end = cc + class_len + 2 * IMM2_SIZE;
+ }
+ return cc;
+ }
+
+if (*opcode == OP_UPTO || *opcode == OP_MINUPTO || *opcode == OP_EXACT || *opcode == OP_POSUPTO)
+ {
+ *arg1 = GET2(cc, 0);
+ cc += IMM2_SIZE;
+ }
+
+if (*type == 0)
+ {
+ *type = *cc;
+ if (end != NULL)
+ *end = next_opcode(common, cc);
+ cc++;
+ return cc;
+ }
+
+if (end != NULL)
+ {
+ *end = cc + 1;
+#ifdef SUPPORT_UTF
+ if (common->utf && HAS_EXTRALEN(*cc)) *end += GET_EXTRALEN(*cc);
+#endif
+ }
+return cc;
+}
+
+static pcre_uchar *compile_iterator_matchingpath(compiler_common *common, pcre_uchar *cc, backtrack_common *parent)
+{
+DEFINE_COMPILER;
+backtrack_common *backtrack;
+pcre_uchar opcode;
+pcre_uchar type;
+int arg1 = -1, arg2 = -1;
+pcre_uchar* end;
+jump_list *nomatch = NULL;
+struct sljit_jump *jump = NULL;
+struct sljit_label *label;
+int private_data_ptr = PRIVATE_DATA(cc);
+int base = (private_data_ptr == 0) ? SLJIT_MEM1(STACK_TOP) : SLJIT_MEM1(SLJIT_LOCALS_REG);
+int offset0 = (private_data_ptr == 0) ? STACK(0) : private_data_ptr;
+int offset1 = (private_data_ptr == 0) ? STACK(1) : private_data_ptr + (int)sizeof(sljit_sw);
+int tmp_base, tmp_offset;
+
+PUSH_BACKTRACK(sizeof(iterator_backtrack), cc, NULL);
+
+cc = get_iterator_parameters(common, cc, &opcode, &type, &arg1, &arg2, &end);
+
+switch(type)
+ {
+ case OP_NOT_DIGIT:
+ case OP_DIGIT:
+ case OP_NOT_WHITESPACE:
+ case OP_WHITESPACE:
+ case OP_NOT_WORDCHAR:
+ case OP_WORDCHAR:
+ case OP_ANY:
+ case OP_ALLANY:
+ case OP_ANYBYTE:
+ case OP_ANYNL:
+ case OP_NOT_HSPACE:
+ case OP_HSPACE:
+ case OP_NOT_VSPACE:
+ case OP_VSPACE:
+ case OP_CHAR:
+ case OP_CHARI:
+ case OP_NOT:
+ case OP_NOTI:
+ case OP_CLASS:
+ case OP_NCLASS:
+ tmp_base = TMP3;
+ tmp_offset = 0;
+ break;
+
+ default:
+ SLJIT_ASSERT_STOP();
+ /* Fall through. */
+
+ case OP_EXTUNI:
+ case OP_XCLASS:
+ case OP_NOTPROP:
+ case OP_PROP:
+ tmp_base = SLJIT_MEM1(SLJIT_LOCALS_REG);
+ tmp_offset = POSSESSIVE0;
+ break;
+ }
+
+switch(opcode)
+ {
+ case OP_STAR:
+ case OP_PLUS:
+ case OP_UPTO:
+ case OP_CRRANGE:
+ if (type == OP_ANYNL || type == OP_EXTUNI)
+ {
+ SLJIT_ASSERT(private_data_ptr == 0);
+ if (opcode == OP_STAR || opcode == OP_UPTO)
+ {
+ allocate_stack(common, 2);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), SLJIT_IMM, 0);
+ }
+ else
+ {
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ }
+
+ if (opcode == OP_UPTO || opcode == OP_CRRANGE)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE0, SLJIT_IMM, 0);
+
+ label = LABEL();
+ compile_char1_matchingpath(common, type, cc, &backtrack->topbacktracks);
+ if (opcode == OP_UPTO || opcode == OP_CRRANGE)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE0);
+ OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, SLJIT_IMM, 1);
+ if (opcode == OP_CRRANGE && arg2 > 0)
+ CMPTO(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, arg2, label);
+ if (opcode == OP_UPTO || (opcode == OP_CRRANGE && arg1 > 0))
+ jump = CMP(SLJIT_C_GREATER_EQUAL, TMP1, 0, SLJIT_IMM, arg1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE0, TMP1, 0);
+ }
+
+ /* We cannot use TMP3 because of this allocate_stack. */
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ JUMPTO(SLJIT_JUMP, label);
+ if (jump != NULL)
+ JUMPHERE(jump);
+ }
+ else
+ {
+ if (opcode == OP_PLUS)
+ compile_char1_matchingpath(common, type, cc, &backtrack->topbacktracks);
+ if (private_data_ptr == 0)
+ allocate_stack(common, 2);
+ OP1(SLJIT_MOV, base, offset0, STR_PTR, 0);
+ if (opcode <= OP_PLUS)
+ OP1(SLJIT_MOV, base, offset1, STR_PTR, 0);
+ else
+ OP1(SLJIT_MOV, base, offset1, SLJIT_IMM, 1);
+ label = LABEL();
+ compile_char1_matchingpath(common, type, cc, &nomatch);
+ OP1(SLJIT_MOV, base, offset0, STR_PTR, 0);
+ if (opcode <= OP_PLUS)
+ JUMPTO(SLJIT_JUMP, label);
+ else if (opcode == OP_CRRANGE && arg1 == 0)
+ {
+ OP2(SLJIT_ADD, base, offset1, base, offset1, SLJIT_IMM, 1);
+ JUMPTO(SLJIT_JUMP, label);
+ }
+ else
+ {
+ OP1(SLJIT_MOV, TMP1, 0, base, offset1);
+ OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, SLJIT_IMM, 1);
+ OP1(SLJIT_MOV, base, offset1, TMP1, 0);
+ CMPTO(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, arg1 + 1, label);
+ }
+ set_jumps(nomatch, LABEL());
+ if (opcode == OP_CRRANGE)
+ add_jump(compiler, &backtrack->topbacktracks, CMP(SLJIT_C_LESS, base, offset1, SLJIT_IMM, arg2 + 1));
+ OP1(SLJIT_MOV, STR_PTR, 0, base, offset0);
+ }
+ BACKTRACK_AS(iterator_backtrack)->matchingpath = LABEL();
+ break;
+
+ case OP_MINSTAR:
+ case OP_MINPLUS:
+ if (opcode == OP_MINPLUS)
+ compile_char1_matchingpath(common, type, cc, &backtrack->topbacktracks);
+ if (private_data_ptr == 0)
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, base, offset0, STR_PTR, 0);
+ BACKTRACK_AS(iterator_backtrack)->matchingpath = LABEL();
+ break;
+
+ case OP_MINUPTO:
+ case OP_CRMINRANGE:
+ if (private_data_ptr == 0)
+ allocate_stack(common, 2);
+ OP1(SLJIT_MOV, base, offset0, STR_PTR, 0);
+ OP1(SLJIT_MOV, base, offset1, SLJIT_IMM, 1);
+ if (opcode == OP_CRMINRANGE)
+ add_jump(compiler, &backtrack->topbacktracks, JUMP(SLJIT_JUMP));
+ BACKTRACK_AS(iterator_backtrack)->matchingpath = LABEL();
+ break;
+
+ case OP_QUERY:
+ case OP_MINQUERY:
+ if (private_data_ptr == 0)
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, base, offset0, STR_PTR, 0);
+ if (opcode == OP_QUERY)
+ compile_char1_matchingpath(common, type, cc, &backtrack->topbacktracks);
+ BACKTRACK_AS(iterator_backtrack)->matchingpath = LABEL();
+ break;
+
+ case OP_EXACT:
+ OP1(SLJIT_MOV, tmp_base, tmp_offset, SLJIT_IMM, arg1);
+ label = LABEL();
+ compile_char1_matchingpath(common, type, cc, &backtrack->topbacktracks);
+ OP2(SLJIT_SUB | SLJIT_SET_E, tmp_base, tmp_offset, tmp_base, tmp_offset, SLJIT_IMM, 1);
+ JUMPTO(SLJIT_C_NOT_ZERO, label);
+ break;
+
+ case OP_POSSTAR:
+ case OP_POSPLUS:
+ case OP_POSUPTO:
+ if (opcode == OP_POSPLUS)
+ compile_char1_matchingpath(common, type, cc, &backtrack->topbacktracks);
+ if (opcode == OP_POSUPTO)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE1, SLJIT_IMM, arg1);
+ OP1(SLJIT_MOV, tmp_base, tmp_offset, STR_PTR, 0);
+ label = LABEL();
+ compile_char1_matchingpath(common, type, cc, &nomatch);
+ OP1(SLJIT_MOV, tmp_base, tmp_offset, STR_PTR, 0);
+ if (opcode != OP_POSUPTO)
+ JUMPTO(SLJIT_JUMP, label);
+ else
+ {
+ OP2(SLJIT_SUB | SLJIT_SET_E, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE1, SLJIT_MEM1(SLJIT_LOCALS_REG), POSSESSIVE1, SLJIT_IMM, 1);
+ JUMPTO(SLJIT_C_NOT_ZERO, label);
+ }
+ set_jumps(nomatch, LABEL());
+ OP1(SLJIT_MOV, STR_PTR, 0, tmp_base, tmp_offset);
+ break;
+
+ case OP_POSQUERY:
+ OP1(SLJIT_MOV, tmp_base, tmp_offset, STR_PTR, 0);
+ compile_char1_matchingpath(common, type, cc, &nomatch);
+ OP1(SLJIT_MOV, tmp_base, tmp_offset, STR_PTR, 0);
+ set_jumps(nomatch, LABEL());
+ OP1(SLJIT_MOV, STR_PTR, 0, tmp_base, tmp_offset);
+ break;
+
+ default:
+ SLJIT_ASSERT_STOP();
+ break;
+ }
+
+count_match(common);
+return end;
+}
+
+static SLJIT_INLINE pcre_uchar *compile_fail_accept_matchingpath(compiler_common *common, pcre_uchar *cc, backtrack_common *parent)
+{
+DEFINE_COMPILER;
+backtrack_common *backtrack;
+
+PUSH_BACKTRACK(sizeof(backtrack_common), cc, NULL);
+
+if (*cc == OP_FAIL)
+ {
+ add_jump(compiler, &backtrack->topbacktracks, JUMP(SLJIT_JUMP));
+ return cc + 1;
+ }
+
+if (*cc == OP_ASSERT_ACCEPT || common->currententry != NULL)
+ {
+ /* No need to check notempty conditions. */
+ if (common->accept_label == NULL)
+ add_jump(compiler, &common->accept, JUMP(SLJIT_JUMP));
+ else
+ JUMPTO(SLJIT_JUMP, common->accept_label);
+ return cc + 1;
+ }
+
+if (common->accept_label == NULL)
+ add_jump(compiler, &common->accept, CMP(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0)));
+else
+ CMPTO(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0), common->accept_label);
+OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+OP1(SLJIT_MOV_UB, TMP2, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, notempty));
+add_jump(compiler, &backtrack->topbacktracks, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, 0));
+OP1(SLJIT_MOV_UB, TMP2, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, notempty_atstart));
+if (common->accept_label == NULL)
+ add_jump(compiler, &common->accept, CMP(SLJIT_C_EQUAL, TMP2, 0, SLJIT_IMM, 0));
+else
+ CMPTO(SLJIT_C_EQUAL, TMP2, 0, SLJIT_IMM, 0, common->accept_label);
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, str));
+if (common->accept_label == NULL)
+ add_jump(compiler, &common->accept, CMP(SLJIT_C_NOT_EQUAL, TMP2, 0, STR_PTR, 0));
+else
+ CMPTO(SLJIT_C_NOT_EQUAL, TMP2, 0, STR_PTR, 0, common->accept_label);
+add_jump(compiler, &backtrack->topbacktracks, JUMP(SLJIT_JUMP));
+return cc + 1;
+}
+
+static SLJIT_INLINE pcre_uchar *compile_close_matchingpath(compiler_common *common, pcre_uchar *cc)
+{
+DEFINE_COMPILER;
+int offset = GET2(cc, 1);
+BOOL optimized_cbracket = common->optimized_cbracket[offset] != 0;
+
+/* Data will be discarded anyway... */
+if (common->currententry != NULL)
+ return cc + 1 + IMM2_SIZE;
+
+if (!optimized_cbracket)
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR_PRIV(offset));
+offset <<= 1;
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1), STR_PTR, 0);
+if (!optimized_cbracket)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset), TMP1, 0);
+return cc + 1 + IMM2_SIZE;
+}
+
+static SLJIT_INLINE pcre_uchar *compile_control_verb_matchingpath(compiler_common *common, pcre_uchar *cc, backtrack_common *parent)
+{
+DEFINE_COMPILER;
+backtrack_common *backtrack;
+pcre_uchar opcode = *cc;
+pcre_uchar *ccend = cc + 1;
+
+if (opcode == OP_PRUNE_ARG || opcode == OP_SKIP_ARG || opcode == OP_THEN_ARG)
+ ccend += 2 + cc[1];
+
+PUSH_BACKTRACK(sizeof(backtrack_common), cc, NULL);
+
+if (opcode == OP_SKIP)
+ {
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ return ccend;
+ }
+
+if (opcode == OP_PRUNE_ARG || opcode == OP_THEN_ARG)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, (sljit_sw)(cc + 2));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mark_ptr, TMP2, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, mark_ptr), TMP2, 0);
+ }
+
+return ccend;
+}
+
+static pcre_uchar then_trap_opcode[1] = { OP_THEN_TRAP };
+
+static SLJIT_INLINE void compile_then_trap_matchingpath(compiler_common *common, pcre_uchar *cc, pcre_uchar *ccend, backtrack_common *parent)
+{
+DEFINE_COMPILER;
+backtrack_common *backtrack;
+BOOL needs_control_head;
+int size;
+
+PUSH_BACKTRACK_NOVALUE(sizeof(then_trap_backtrack), cc);
+common->then_trap = BACKTRACK_AS(then_trap_backtrack);
+BACKTRACK_AS(then_trap_backtrack)->common.cc = then_trap_opcode;
+BACKTRACK_AS(then_trap_backtrack)->start = (sljit_sw)(cc - common->start);
+BACKTRACK_AS(then_trap_backtrack)->framesize = get_framesize(common, cc, ccend, FALSE, &needs_control_head);
+
+size = BACKTRACK_AS(then_trap_backtrack)->framesize;
+size = 3 + (size < 0 ? 0 : size);
+
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr);
+allocate_stack(common, size);
+if (size > 3)
+ OP2(SLJIT_SUB, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, STACK_TOP, 0, SLJIT_IMM, (size - 3) * sizeof(sljit_sw));
+else
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, STACK_TOP, 0);
+OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(size - 1), SLJIT_IMM, BACKTRACK_AS(then_trap_backtrack)->start);
+OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(size - 2), SLJIT_IMM, type_then_trap);
+OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(size - 3), TMP2, 0);
+
+size = BACKTRACK_AS(then_trap_backtrack)->framesize;
+if (size >= 0)
+ init_frame(common, cc, ccend, size - 1, 0, FALSE);
+}
+
+static void compile_matchingpath(compiler_common *common, pcre_uchar *cc, pcre_uchar *ccend, backtrack_common *parent)
+{
+DEFINE_COMPILER;
+backtrack_common *backtrack;
+BOOL has_then_trap = FALSE;
+then_trap_backtrack *save_then_trap = NULL;
+
+SLJIT_ASSERT(*ccend == OP_END || (*ccend >= OP_ALT && *ccend <= OP_KETRPOS));
+
+if (common->has_then && common->then_offsets[cc - common->start] != 0)
+ {
+ SLJIT_ASSERT(*ccend != OP_END && common->control_head_ptr != 0);
+ has_then_trap = TRUE;
+ save_then_trap = common->then_trap;
+ /* Tail item on backtrack. */
+ compile_then_trap_matchingpath(common, cc, ccend, parent);
+ }
+
+while (cc < ccend)
+ {
+ switch(*cc)
+ {
+ case OP_SOD:
+ case OP_SOM:
+ case OP_NOT_WORD_BOUNDARY:
+ case OP_WORD_BOUNDARY:
+ case OP_NOT_DIGIT:
+ case OP_DIGIT:
+ case OP_NOT_WHITESPACE:
+ case OP_WHITESPACE:
+ case OP_NOT_WORDCHAR:
+ case OP_WORDCHAR:
+ case OP_ANY:
+ case OP_ALLANY:
+ case OP_ANYBYTE:
+ case OP_NOTPROP:
+ case OP_PROP:
+ case OP_ANYNL:
+ case OP_NOT_HSPACE:
+ case OP_HSPACE:
+ case OP_NOT_VSPACE:
+ case OP_VSPACE:
+ case OP_EXTUNI:
+ case OP_EODN:
+ case OP_EOD:
+ case OP_CIRC:
+ case OP_CIRCM:
+ case OP_DOLL:
+ case OP_DOLLM:
+ case OP_NOT:
+ case OP_NOTI:
+ case OP_REVERSE:
+ cc = compile_char1_matchingpath(common, *cc, cc + 1, parent->top != NULL ? &parent->top->nextbacktracks : &parent->topbacktracks);
+ break;
+
+ case OP_SET_SOM:
+ PUSH_BACKTRACK_NOVALUE(sizeof(backtrack_common), cc);
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0));
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0), STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), TMP2, 0);
+ cc++;
+ break;
+
+ case OP_CHAR:
+ case OP_CHARI:
+ if (common->mode == JIT_COMPILE)
+ cc = compile_charn_matchingpath(common, cc, ccend, parent->top != NULL ? &parent->top->nextbacktracks : &parent->topbacktracks);
+ else
+ cc = compile_char1_matchingpath(common, *cc, cc + 1, parent->top != NULL ? &parent->top->nextbacktracks : &parent->topbacktracks);
+ break;
+
+ case OP_STAR:
+ case OP_MINSTAR:
+ case OP_PLUS:
+ case OP_MINPLUS:
+ case OP_QUERY:
+ case OP_MINQUERY:
+ case OP_UPTO:
+ case OP_MINUPTO:
+ case OP_EXACT:
+ case OP_POSSTAR:
+ case OP_POSPLUS:
+ case OP_POSQUERY:
+ case OP_POSUPTO:
+ case OP_STARI:
+ case OP_MINSTARI:
+ case OP_PLUSI:
+ case OP_MINPLUSI:
+ case OP_QUERYI:
+ case OP_MINQUERYI:
+ case OP_UPTOI:
+ case OP_MINUPTOI:
+ case OP_EXACTI:
+ case OP_POSSTARI:
+ case OP_POSPLUSI:
+ case OP_POSQUERYI:
+ case OP_POSUPTOI:
+ case OP_NOTSTAR:
+ case OP_NOTMINSTAR:
+ case OP_NOTPLUS:
+ case OP_NOTMINPLUS:
+ case OP_NOTQUERY:
+ case OP_NOTMINQUERY:
+ case OP_NOTUPTO:
+ case OP_NOTMINUPTO:
+ case OP_NOTEXACT:
+ case OP_NOTPOSSTAR:
+ case OP_NOTPOSPLUS:
+ case OP_NOTPOSQUERY:
+ case OP_NOTPOSUPTO:
+ case OP_NOTSTARI:
+ case OP_NOTMINSTARI:
+ case OP_NOTPLUSI:
+ case OP_NOTMINPLUSI:
+ case OP_NOTQUERYI:
+ case OP_NOTMINQUERYI:
+ case OP_NOTUPTOI:
+ case OP_NOTMINUPTOI:
+ case OP_NOTEXACTI:
+ case OP_NOTPOSSTARI:
+ case OP_NOTPOSPLUSI:
+ case OP_NOTPOSQUERYI:
+ case OP_NOTPOSUPTOI:
+ case OP_TYPESTAR:
+ case OP_TYPEMINSTAR:
+ case OP_TYPEPLUS:
+ case OP_TYPEMINPLUS:
+ case OP_TYPEQUERY:
+ case OP_TYPEMINQUERY:
+ case OP_TYPEUPTO:
+ case OP_TYPEMINUPTO:
+ case OP_TYPEEXACT:
+ case OP_TYPEPOSSTAR:
+ case OP_TYPEPOSPLUS:
+ case OP_TYPEPOSQUERY:
+ case OP_TYPEPOSUPTO:
+ cc = compile_iterator_matchingpath(common, cc, parent);
+ break;
+
+ case OP_CLASS:
+ case OP_NCLASS:
+ if (cc[1 + (32 / sizeof(pcre_uchar))] >= OP_CRSTAR && cc[1 + (32 / sizeof(pcre_uchar))] <= OP_CRMINRANGE)
+ cc = compile_iterator_matchingpath(common, cc, parent);
+ else
+ cc = compile_char1_matchingpath(common, *cc, cc + 1, parent->top != NULL ? &parent->top->nextbacktracks : &parent->topbacktracks);
+ break;
+
+#if defined SUPPORT_UTF || defined COMPILE_PCRE16 || defined COMPILE_PCRE32
+ case OP_XCLASS:
+ if (*(cc + GET(cc, 1)) >= OP_CRSTAR && *(cc + GET(cc, 1)) <= OP_CRMINRANGE)
+ cc = compile_iterator_matchingpath(common, cc, parent);
+ else
+ cc = compile_char1_matchingpath(common, *cc, cc + 1, parent->top != NULL ? &parent->top->nextbacktracks : &parent->topbacktracks);
+ break;
+#endif
+
+ case OP_REF:
+ case OP_REFI:
+ if (cc[1 + IMM2_SIZE] >= OP_CRSTAR && cc[1 + IMM2_SIZE] <= OP_CRMINRANGE)
+ cc = compile_ref_iterator_matchingpath(common, cc, parent);
+ else
+ cc = compile_ref_matchingpath(common, cc, parent->top != NULL ? &parent->top->nextbacktracks : &parent->topbacktracks, TRUE, FALSE);
+ break;
+
+ case OP_RECURSE:
+ cc = compile_recurse_matchingpath(common, cc, parent);
+ break;
+
+ case OP_CALLOUT:
+ cc = compile_callout_matchingpath(common, cc, parent);
+ break;
+
+ case OP_ASSERT:
+ case OP_ASSERT_NOT:
+ case OP_ASSERTBACK:
+ case OP_ASSERTBACK_NOT:
+ PUSH_BACKTRACK_NOVALUE(sizeof(assert_backtrack), cc);
+ cc = compile_assert_matchingpath(common, cc, BACKTRACK_AS(assert_backtrack), FALSE);
+ break;
+
+ case OP_BRAMINZERO:
+ PUSH_BACKTRACK_NOVALUE(sizeof(braminzero_backtrack), cc);
+ cc = bracketend(cc + 1);
+ if (*(cc - 1 - LINK_SIZE) != OP_KETRMIN)
+ {
+ allocate_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+ }
+ else
+ {
+ allocate_stack(common, 2);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), STR_PTR, 0);
+ }
+ BACKTRACK_AS(braminzero_backtrack)->matchingpath = LABEL();
+ if (cc[1] > OP_ASSERTBACK_NOT)
+ count_match(common);
+ break;
+
+ case OP_ONCE:
+ case OP_ONCE_NC:
+ case OP_BRA:
+ case OP_CBRA:
+ case OP_COND:
+ case OP_SBRA:
+ case OP_SCBRA:
+ case OP_SCOND:
+ cc = compile_bracket_matchingpath(common, cc, parent);
+ break;
+
+ case OP_BRAZERO:
+ if (cc[1] > OP_ASSERTBACK_NOT)
+ cc = compile_bracket_matchingpath(common, cc, parent);
+ else
+ {
+ PUSH_BACKTRACK_NOVALUE(sizeof(assert_backtrack), cc);
+ cc = compile_assert_matchingpath(common, cc, BACKTRACK_AS(assert_backtrack), FALSE);
+ }
+ break;
+
+ case OP_BRAPOS:
+ case OP_CBRAPOS:
+ case OP_SBRAPOS:
+ case OP_SCBRAPOS:
+ case OP_BRAPOSZERO:
+ cc = compile_bracketpos_matchingpath(common, cc, parent);
+ break;
+
+ case OP_MARK:
+ PUSH_BACKTRACK_NOVALUE(sizeof(backtrack_common), cc);
+ SLJIT_ASSERT(common->mark_ptr != 0);
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mark_ptr);
+ allocate_stack(common, common->has_skip_arg ? 5 : 1);
+ OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(common->has_skip_arg ? 4 : 0), TMP2, 0);
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, (sljit_sw)(cc + 2));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mark_ptr, TMP2, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, mark_ptr), TMP2, 0);
+ if (common->has_skip_arg)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, STACK_TOP, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(1), SLJIT_IMM, type_mark);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(2), SLJIT_IMM, (sljit_sw)(cc + 2));
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(3), STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), TMP1, 0);
+ }
+ cc += 1 + 2 + cc[1];
+ break;
+
+ case OP_PRUNE:
+ case OP_PRUNE_ARG:
+ case OP_SKIP:
+ case OP_SKIP_ARG:
+ case OP_THEN:
+ case OP_THEN_ARG:
+ case OP_COMMIT:
+ cc = compile_control_verb_matchingpath(common, cc, parent);
+ break;
+
+ case OP_FAIL:
+ case OP_ACCEPT:
+ case OP_ASSERT_ACCEPT:
+ cc = compile_fail_accept_matchingpath(common, cc, parent);
+ break;
+
+ case OP_CLOSE:
+ cc = compile_close_matchingpath(common, cc);
+ break;
+
+ case OP_SKIPZERO:
+ cc = bracketend(cc + 1);
+ break;
+
+ default:
+ SLJIT_ASSERT_STOP();
+ return;
+ }
+ if (cc == NULL)
+ return;
+ }
+
+if (has_then_trap)
+ {
+ /* Head item on backtrack. */
+ PUSH_BACKTRACK_NOVALUE(sizeof(then_trap_backtrack), cc);
+ BACKTRACK_AS(then_trap_backtrack)->common.cc = then_trap_opcode;
+ BACKTRACK_AS(then_trap_backtrack)->then_trap = common->then_trap;
+ common->then_trap = save_then_trap;
+ }
+SLJIT_ASSERT(cc == ccend);
+}
+
+#undef PUSH_BACKTRACK
+#undef PUSH_BACKTRACK_NOVALUE
+#undef BACKTRACK_AS
+
+#define COMPILE_BACKTRACKINGPATH(current) \
+ do \
+ { \
+ compile_backtrackingpath(common, (current)); \
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler))) \
+ return; \
+ } \
+ while (0)
+
+#define CURRENT_AS(type) ((type *)current)
+
+static void compile_iterator_backtrackingpath(compiler_common *common, struct backtrack_common *current)
+{
+DEFINE_COMPILER;
+pcre_uchar *cc = current->cc;
+pcre_uchar opcode;
+pcre_uchar type;
+int arg1 = -1, arg2 = -1;
+struct sljit_label *label = NULL;
+struct sljit_jump *jump = NULL;
+jump_list *jumplist = NULL;
+int private_data_ptr = PRIVATE_DATA(cc);
+int base = (private_data_ptr == 0) ? SLJIT_MEM1(STACK_TOP) : SLJIT_MEM1(SLJIT_LOCALS_REG);
+int offset0 = (private_data_ptr == 0) ? STACK(0) : private_data_ptr;
+int offset1 = (private_data_ptr == 0) ? STACK(1) : private_data_ptr + (int)sizeof(sljit_sw);
+
+cc = get_iterator_parameters(common, cc, &opcode, &type, &arg1, &arg2, NULL);
+
+switch(opcode)
+ {
+ case OP_STAR:
+ case OP_PLUS:
+ case OP_UPTO:
+ case OP_CRRANGE:
+ if (type == OP_ANYNL || type == OP_EXTUNI)
+ {
+ SLJIT_ASSERT(private_data_ptr == 0);
+ set_jumps(current->topbacktracks, LABEL());
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+ CMPTO(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_IMM, 0, CURRENT_AS(iterator_backtrack)->matchingpath);
+ }
+ else
+ {
+ if (opcode == OP_UPTO)
+ arg2 = 0;
+ if (opcode <= OP_PLUS)
+ {
+ OP1(SLJIT_MOV, STR_PTR, 0, base, offset0);
+ jump = CMP(SLJIT_C_LESS_EQUAL, STR_PTR, 0, base, offset1);
+ }
+ else
+ {
+ OP1(SLJIT_MOV, TMP1, 0, base, offset1);
+ OP1(SLJIT_MOV, STR_PTR, 0, base, offset0);
+ jump = CMP(SLJIT_C_LESS_EQUAL, TMP1, 0, SLJIT_IMM, arg2 + 1);
+ OP2(SLJIT_SUB, base, offset1, TMP1, 0, SLJIT_IMM, 1);
+ }
+ skip_char_back(common);
+ OP1(SLJIT_MOV, base, offset0, STR_PTR, 0);
+ JUMPTO(SLJIT_JUMP, CURRENT_AS(iterator_backtrack)->matchingpath);
+ if (opcode == OP_CRRANGE)
+ set_jumps(current->topbacktracks, LABEL());
+ JUMPHERE(jump);
+ if (private_data_ptr == 0)
+ free_stack(common, 2);
+ if (opcode == OP_PLUS)
+ set_jumps(current->topbacktracks, LABEL());
+ }
+ break;
+
+ case OP_MINSTAR:
+ case OP_MINPLUS:
+ OP1(SLJIT_MOV, STR_PTR, 0, base, offset0);
+ compile_char1_matchingpath(common, type, cc, &jumplist);
+ OP1(SLJIT_MOV, base, offset0, STR_PTR, 0);
+ JUMPTO(SLJIT_JUMP, CURRENT_AS(iterator_backtrack)->matchingpath);
+ set_jumps(jumplist, LABEL());
+ if (private_data_ptr == 0)
+ free_stack(common, 1);
+ if (opcode == OP_MINPLUS)
+ set_jumps(current->topbacktracks, LABEL());
+ break;
+
+ case OP_MINUPTO:
+ case OP_CRMINRANGE:
+ if (opcode == OP_CRMINRANGE)
+ {
+ label = LABEL();
+ set_jumps(current->topbacktracks, label);
+ }
+ OP1(SLJIT_MOV, STR_PTR, 0, base, offset0);
+ compile_char1_matchingpath(common, type, cc, &jumplist);
+
+ OP1(SLJIT_MOV, TMP1, 0, base, offset1);
+ OP1(SLJIT_MOV, base, offset0, STR_PTR, 0);
+ OP2(SLJIT_ADD, TMP1, 0, TMP1, 0, SLJIT_IMM, 1);
+ OP1(SLJIT_MOV, base, offset1, TMP1, 0);
+
+ if (opcode == OP_CRMINRANGE)
+ CMPTO(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, arg2 + 1, label);
+
+ if (opcode == OP_CRMINRANGE && arg1 == 0)
+ JUMPTO(SLJIT_JUMP, CURRENT_AS(iterator_backtrack)->matchingpath);
+ else
+ CMPTO(SLJIT_C_LESS, TMP1, 0, SLJIT_IMM, arg1 + 2, CURRENT_AS(iterator_backtrack)->matchingpath);
+
+ set_jumps(jumplist, LABEL());
+ if (private_data_ptr == 0)
+ free_stack(common, 2);
+ break;
+
+ case OP_QUERY:
+ OP1(SLJIT_MOV, STR_PTR, 0, base, offset0);
+ OP1(SLJIT_MOV, base, offset0, SLJIT_IMM, 0);
+ CMPTO(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_IMM, 0, CURRENT_AS(iterator_backtrack)->matchingpath);
+ jump = JUMP(SLJIT_JUMP);
+ set_jumps(current->topbacktracks, LABEL());
+ OP1(SLJIT_MOV, STR_PTR, 0, base, offset0);
+ OP1(SLJIT_MOV, base, offset0, SLJIT_IMM, 0);
+ JUMPTO(SLJIT_JUMP, CURRENT_AS(iterator_backtrack)->matchingpath);
+ JUMPHERE(jump);
+ if (private_data_ptr == 0)
+ free_stack(common, 1);
+ break;
+
+ case OP_MINQUERY:
+ OP1(SLJIT_MOV, STR_PTR, 0, base, offset0);
+ OP1(SLJIT_MOV, base, offset0, SLJIT_IMM, 0);
+ jump = CMP(SLJIT_C_EQUAL, STR_PTR, 0, SLJIT_IMM, 0);
+ compile_char1_matchingpath(common, type, cc, &jumplist);
+ JUMPTO(SLJIT_JUMP, CURRENT_AS(iterator_backtrack)->matchingpath);
+ set_jumps(jumplist, LABEL());
+ JUMPHERE(jump);
+ if (private_data_ptr == 0)
+ free_stack(common, 1);
+ break;
+
+ case OP_EXACT:
+ case OP_POSPLUS:
+ set_jumps(current->topbacktracks, LABEL());
+ break;
+
+ case OP_POSSTAR:
+ case OP_POSQUERY:
+ case OP_POSUPTO:
+ break;
+
+ default:
+ SLJIT_ASSERT_STOP();
+ break;
+ }
+}
+
+static SLJIT_INLINE void compile_ref_iterator_backtrackingpath(compiler_common *common, struct backtrack_common *current)
+{
+DEFINE_COMPILER;
+pcre_uchar *cc = current->cc;
+pcre_uchar type;
+
+type = cc[1 + IMM2_SIZE];
+if ((type & 0x1) == 0)
+ {
+ set_jumps(current->topbacktracks, LABEL());
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+ CMPTO(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_IMM, 0, CURRENT_AS(iterator_backtrack)->matchingpath);
+ return;
+ }
+
+OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+CMPTO(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_IMM, 0, CURRENT_AS(iterator_backtrack)->matchingpath);
+set_jumps(current->topbacktracks, LABEL());
+free_stack(common, 2);
+}
+
+static SLJIT_INLINE void compile_recurse_backtrackingpath(compiler_common *common, struct backtrack_common *current)
+{
+DEFINE_COMPILER;
+
+if (CURRENT_AS(recurse_backtrack)->inlined_pattern)
+ compile_backtrackingpath(common, current->top);
+set_jumps(current->topbacktracks, LABEL());
+if (CURRENT_AS(recurse_backtrack)->inlined_pattern)
+ return;
+
+if (common->has_set_som && common->mark_ptr != 0)
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(1));
+ free_stack(common, 2);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0), TMP2, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mark_ptr, TMP1, 0);
+ }
+else if (common->has_set_som || common->mark_ptr != 0)
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->has_set_som ? (int)(OVECTOR(0)) : common->mark_ptr, TMP2, 0);
+ }
+}
+
+static void compile_assert_backtrackingpath(compiler_common *common, struct backtrack_common *current)
+{
+DEFINE_COMPILER;
+pcre_uchar *cc = current->cc;
+pcre_uchar bra = OP_BRA;
+struct sljit_jump *brajump = NULL;
+
+SLJIT_ASSERT(*cc != OP_BRAMINZERO);
+if (*cc == OP_BRAZERO)
+ {
+ bra = *cc;
+ cc++;
+ }
+
+if (bra == OP_BRAZERO)
+ {
+ SLJIT_ASSERT(current->topbacktracks == NULL);
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ }
+
+if (CURRENT_AS(assert_backtrack)->framesize < 0)
+ {
+ set_jumps(current->topbacktracks, LABEL());
+
+ if (bra == OP_BRAZERO)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ CMPTO(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_IMM, 0, CURRENT_AS(assert_backtrack)->matchingpath);
+ free_stack(common, 1);
+ }
+ return;
+ }
+
+if (bra == OP_BRAZERO)
+ {
+ if (*cc == OP_ASSERT_NOT || *cc == OP_ASSERTBACK_NOT)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ CMPTO(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_IMM, 0, CURRENT_AS(assert_backtrack)->matchingpath);
+ free_stack(common, 1);
+ return;
+ }
+ free_stack(common, 1);
+ brajump = CMP(SLJIT_C_EQUAL, STR_PTR, 0, SLJIT_IMM, 0);
+ }
+
+if (*cc == OP_ASSERT || *cc == OP_ASSERTBACK)
+ {
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), CURRENT_AS(assert_backtrack)->private_data_ptr);
+ add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), CURRENT_AS(assert_backtrack)->private_data_ptr, SLJIT_MEM1(STACK_TOP), CURRENT_AS(assert_backtrack)->framesize * sizeof(sljit_sw));
+
+ set_jumps(current->topbacktracks, LABEL());
+ }
+else
+ set_jumps(current->topbacktracks, LABEL());
+
+if (bra == OP_BRAZERO)
+ {
+ /* We know there is enough place on the stack. */
+ OP2(SLJIT_ADD, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, sizeof(sljit_sw));
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), SLJIT_IMM, 0);
+ JUMPTO(SLJIT_JUMP, CURRENT_AS(assert_backtrack)->matchingpath);
+ JUMPHERE(brajump);
+ }
+}
+
+static void compile_bracket_backtrackingpath(compiler_common *common, struct backtrack_common *current)
+{
+DEFINE_COMPILER;
+int opcode, stacksize, count;
+int offset = 0;
+int private_data_ptr = CURRENT_AS(bracket_backtrack)->private_data_ptr;
+int repeat_ptr = 0, repeat_type = 0, repeat_count = 0;
+pcre_uchar *cc = current->cc;
+pcre_uchar *ccbegin;
+pcre_uchar *ccprev;
+jump_list *jumplist = NULL;
+jump_list *jumplistitem = NULL;
+pcre_uchar bra = OP_BRA;
+pcre_uchar ket;
+assert_backtrack *assert;
+BOOL has_alternatives;
+BOOL needs_control_head = FALSE;
+struct sljit_jump *brazero = NULL;
+struct sljit_jump *once = NULL;
+struct sljit_jump *cond = NULL;
+struct sljit_label *rmin_label = NULL;
+struct sljit_label *exact_label = NULL;
+
+if (*cc == OP_BRAZERO || *cc == OP_BRAMINZERO)
+ {
+ bra = *cc;
+ cc++;
+ }
+
+opcode = *cc;
+ccbegin = bracketend(cc) - 1 - LINK_SIZE;
+ket = *ccbegin;
+if (ket == OP_KET && PRIVATE_DATA(ccbegin) != 0)
+ {
+ repeat_ptr = PRIVATE_DATA(ccbegin);
+ repeat_type = PRIVATE_DATA(ccbegin + 2);
+ repeat_count = PRIVATE_DATA(ccbegin + 3);
+ SLJIT_ASSERT(repeat_type != 0 && repeat_count != 0);
+ if (repeat_type == OP_UPTO)
+ ket = OP_KETRMAX;
+ if (repeat_type == OP_MINUPTO)
+ ket = OP_KETRMIN;
+ }
+ccbegin = cc;
+cc += GET(cc, 1);
+has_alternatives = *cc == OP_ALT;
+if (SLJIT_UNLIKELY(opcode == OP_COND) || SLJIT_UNLIKELY(opcode == OP_SCOND))
+ has_alternatives = (ccbegin[1 + LINK_SIZE] >= OP_ASSERT && ccbegin[1 + LINK_SIZE] <= OP_ASSERTBACK_NOT) || CURRENT_AS(bracket_backtrack)->u.condfailed != NULL;
+if (opcode == OP_CBRA || opcode == OP_SCBRA)
+ offset = (GET2(ccbegin, 1 + LINK_SIZE)) << 1;
+if (SLJIT_UNLIKELY(opcode == OP_COND) && (*cc == OP_KETRMAX || *cc == OP_KETRMIN))
+ opcode = OP_SCOND;
+if (SLJIT_UNLIKELY(opcode == OP_ONCE_NC))
+ opcode = OP_ONCE;
+
+/* Decoding the needs_control_head in framesize. */
+if (opcode == OP_ONCE)
+ {
+ needs_control_head = (CURRENT_AS(bracket_backtrack)->u.framesize & 0x1) != 0;
+ CURRENT_AS(bracket_backtrack)->u.framesize >>= 1;
+ }
+
+if (ket != OP_KET && repeat_type != 0)
+ {
+ /* TMP1 is used in OP_KETRMIN below. */
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+ if (repeat_type == OP_UPTO)
+ OP2(SLJIT_ADD, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, TMP1, 0, SLJIT_IMM, 1);
+ else
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, TMP1, 0);
+ }
+
+if (ket == OP_KETRMAX)
+ {
+ if (bra == OP_BRAZERO)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+ brazero = CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, 0);
+ }
+ }
+else if (ket == OP_KETRMIN)
+ {
+ if (bra != OP_BRAMINZERO)
+ {
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ if (repeat_type != 0)
+ {
+ /* TMP1 was set a few lines above. */
+ CMPTO(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, 0, CURRENT_AS(bracket_backtrack)->recursive_matchingpath);
+ /* Drop STR_PTR for non-greedy plus quantifier. */
+ if (opcode != OP_ONCE)
+ free_stack(common, 1);
+ }
+ else if (opcode >= OP_SBRA || opcode == OP_ONCE)
+ {
+ /* Checking zero-length iteration. */
+ if (opcode != OP_ONCE || CURRENT_AS(bracket_backtrack)->u.framesize < 0)
+ CMPTO(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, CURRENT_AS(bracket_backtrack)->recursive_matchingpath);
+ else
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ CMPTO(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_MEM1(TMP1), (CURRENT_AS(bracket_backtrack)->u.framesize + 1) * sizeof(sljit_sw), CURRENT_AS(bracket_backtrack)->recursive_matchingpath);
+ }
+ /* Drop STR_PTR for non-greedy plus quantifier. */
+ if (opcode != OP_ONCE)
+ free_stack(common, 1);
+ }
+ else
+ JUMPTO(SLJIT_JUMP, CURRENT_AS(bracket_backtrack)->recursive_matchingpath);
+ }
+ rmin_label = LABEL();
+ if (repeat_type != 0)
+ OP2(SLJIT_ADD, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, SLJIT_IMM, 1);
+ }
+else if (bra == OP_BRAZERO)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+ brazero = CMP(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, 0);
+ }
+else if (repeat_type == OP_EXACT)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, SLJIT_IMM, 1);
+ exact_label = LABEL();
+ }
+
+if (offset != 0)
+ {
+ if (common->capture_last_ptr != 0)
+ {
+ SLJIT_ASSERT(common->optimized_cbracket[offset >> 1] == 0);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), STACK(1));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->capture_last_ptr, TMP1, 0);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(2));
+ free_stack(common, 3);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset), TMP2, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1), TMP1, 0);
+ }
+ else if (common->optimized_cbracket[offset >> 1] == 0)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), STACK(1));
+ free_stack(common, 2);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset), TMP1, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1), TMP2, 0);
+ }
+ }
+
+if (SLJIT_UNLIKELY(opcode == OP_ONCE))
+ {
+ if (CURRENT_AS(bracket_backtrack)->u.framesize >= 0)
+ {
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+ }
+ once = JUMP(SLJIT_JUMP);
+ }
+else if (SLJIT_UNLIKELY(opcode == OP_COND) || SLJIT_UNLIKELY(opcode == OP_SCOND))
+ {
+ if (has_alternatives)
+ {
+ /* Always exactly one alternative. */
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+
+ jumplistitem = sljit_alloc_memory(compiler, sizeof(jump_list));
+ if (SLJIT_UNLIKELY(!jumplistitem))
+ return;
+ jumplist = jumplistitem;
+ jumplistitem->next = NULL;
+ jumplistitem->jump = CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, 1);
+ }
+ }
+else if (*cc == OP_ALT)
+ {
+ /* Build a jump list. Get the last successfully matched branch index. */
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+ count = 1;
+ do
+ {
+ /* Append as the last item. */
+ if (jumplist != NULL)
+ {
+ jumplistitem->next = sljit_alloc_memory(compiler, sizeof(jump_list));
+ jumplistitem = jumplistitem->next;
+ }
+ else
+ {
+ jumplistitem = sljit_alloc_memory(compiler, sizeof(jump_list));
+ jumplist = jumplistitem;
+ }
+
+ if (SLJIT_UNLIKELY(!jumplistitem))
+ return;
+
+ jumplistitem->next = NULL;
+ jumplistitem->jump = CMP(SLJIT_C_EQUAL, TMP1, 0, SLJIT_IMM, count++);
+ cc += GET(cc, 1);
+ }
+ while (*cc == OP_ALT);
+
+ cc = ccbegin + GET(ccbegin, 1);
+ }
+
+COMPILE_BACKTRACKINGPATH(current->top);
+if (current->topbacktracks)
+ set_jumps(current->topbacktracks, LABEL());
+
+if (SLJIT_UNLIKELY(opcode == OP_COND) || SLJIT_UNLIKELY(opcode == OP_SCOND))
+ {
+ /* Conditional block always has at most one alternative. */
+ if (ccbegin[1 + LINK_SIZE] >= OP_ASSERT && ccbegin[1 + LINK_SIZE] <= OP_ASSERTBACK_NOT)
+ {
+ SLJIT_ASSERT(has_alternatives);
+ assert = CURRENT_AS(bracket_backtrack)->u.assert;
+ if (assert->framesize >= 0 && (ccbegin[1 + LINK_SIZE] == OP_ASSERT || ccbegin[1 + LINK_SIZE] == OP_ASSERTBACK))
+ {
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), assert->private_data_ptr);
+ add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), assert->private_data_ptr, SLJIT_MEM1(STACK_TOP), assert->framesize * sizeof(sljit_sw));
+ }
+ cond = JUMP(SLJIT_JUMP);
+ set_jumps(CURRENT_AS(bracket_backtrack)->u.assert->condfailed, LABEL());
+ }
+ else if (CURRENT_AS(bracket_backtrack)->u.condfailed != NULL)
+ {
+ SLJIT_ASSERT(has_alternatives);
+ cond = JUMP(SLJIT_JUMP);
+ set_jumps(CURRENT_AS(bracket_backtrack)->u.condfailed, LABEL());
+ }
+ else
+ SLJIT_ASSERT(!has_alternatives);
+ }
+
+if (has_alternatives)
+ {
+ count = 1;
+ do
+ {
+ current->top = NULL;
+ current->topbacktracks = NULL;
+ current->nextbacktracks = NULL;
+ /* Conditional blocks always have an additional alternative, even if it is empty. */
+ if (*cc == OP_ALT)
+ {
+ ccprev = cc + 1 + LINK_SIZE;
+ cc += GET(cc, 1);
+ if (opcode != OP_COND && opcode != OP_SCOND)
+ {
+ if (opcode != OP_ONCE)
+ {
+ if (private_data_ptr != 0)
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr);
+ else
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ }
+ else
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(needs_control_head ? 1 : 0));
+ }
+ compile_matchingpath(common, ccprev, cc, current);
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ return;
+ }
+
+ /* Instructions after the current alternative is successfully matched. */
+ /* There is a similar code in compile_bracket_matchingpath. */
+ if (opcode == OP_ONCE)
+ match_once_common(common, ket, CURRENT_AS(bracket_backtrack)->u.framesize, private_data_ptr, has_alternatives, needs_control_head);
+
+ stacksize = 0;
+ if (repeat_type == OP_MINUPTO)
+ {
+ /* We need to preserve the counter. TMP2 will be used below. */
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr);
+ stacksize++;
+ }
+ if (ket != OP_KET || bra != OP_BRA)
+ stacksize++;
+ if (offset != 0)
+ {
+ if (common->capture_last_ptr != 0)
+ stacksize++;
+ if (common->optimized_cbracket[offset >> 1] == 0)
+ stacksize += 2;
+ }
+ if (opcode != OP_ONCE)
+ stacksize++;
+
+ if (stacksize > 0)
+ allocate_stack(common, stacksize);
+
+ stacksize = 0;
+ if (repeat_type == OP_MINUPTO)
+ {
+ /* TMP2 was set above. */
+ OP2(SLJIT_SUB, SLJIT_MEM1(STACK_TOP), STACK(stacksize), TMP2, 0, SLJIT_IMM, 1);
+ stacksize++;
+ }
+
+ if (ket != OP_KET || bra != OP_BRA)
+ {
+ if (ket != OP_KET)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), STR_PTR, 0);
+ else
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), SLJIT_IMM, 0);
+ stacksize++;
+ }
+
+ if (offset != 0)
+ stacksize = match_capture_common(common, stacksize, offset, private_data_ptr);
+
+ if (opcode != OP_ONCE)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(stacksize), SLJIT_IMM, count++);
+
+ if (offset != 0 && ket == OP_KETRMAX && common->optimized_cbracket[offset >> 1] != 0)
+ {
+ /* If ket is not OP_KETRMAX, this code path is executed after the jump to alternative_matchingpath. */
+ SLJIT_ASSERT(private_data_ptr == OVECTOR(offset + 0));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1), STR_PTR, 0);
+ }
+
+ JUMPTO(SLJIT_JUMP, CURRENT_AS(bracket_backtrack)->alternative_matchingpath);
+
+ if (opcode != OP_ONCE)
+ {
+ SLJIT_ASSERT(jumplist);
+ JUMPHERE(jumplist->jump);
+ jumplist = jumplist->next;
+ }
+
+ COMPILE_BACKTRACKINGPATH(current->top);
+ if (current->topbacktracks)
+ set_jumps(current->topbacktracks, LABEL());
+ SLJIT_ASSERT(!current->nextbacktracks);
+ }
+ while (*cc == OP_ALT);
+ SLJIT_ASSERT(!jumplist);
+
+ if (cond != NULL)
+ {
+ SLJIT_ASSERT(opcode == OP_COND || opcode == OP_SCOND);
+ assert = CURRENT_AS(bracket_backtrack)->u.assert;
+ if ((ccbegin[1 + LINK_SIZE] == OP_ASSERT_NOT || ccbegin[1 + LINK_SIZE] == OP_ASSERTBACK_NOT) && assert->framesize >= 0)
+ {
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), assert->private_data_ptr);
+ add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), assert->private_data_ptr, SLJIT_MEM1(STACK_TOP), assert->framesize * sizeof(sljit_sw));
+ }
+ JUMPHERE(cond);
+ }
+
+ /* Free the STR_PTR. */
+ if (private_data_ptr == 0)
+ free_stack(common, 1);
+ }
+
+if (offset != 0)
+ {
+ /* Using both tmp register is better for instruction scheduling. */
+ if (common->optimized_cbracket[offset >> 1] != 0)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), STACK(1));
+ free_stack(common, 2);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset), TMP1, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1), TMP2, 0);
+ }
+ else
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, TMP1, 0);
+ }
+ }
+else if (opcode == OP_SBRA || opcode == OP_SCOND)
+ {
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+ }
+else if (opcode == OP_ONCE)
+ {
+ cc = ccbegin + GET(ccbegin, 1);
+ stacksize = needs_control_head ? 1 : 0;
+
+ if (CURRENT_AS(bracket_backtrack)->u.framesize >= 0)
+ {
+ /* Reset head and drop saved frame. */
+ stacksize += CURRENT_AS(bracket_backtrack)->u.framesize + ((ket != OP_KET || *cc == OP_ALT) ? 2 : 1);
+ }
+ else if (ket == OP_KETRMAX || (*cc == OP_ALT && ket != OP_KETRMIN))
+ {
+ /* The STR_PTR must be released. */
+ stacksize++;
+ }
+ free_stack(common, stacksize);
+
+ JUMPHERE(once);
+ /* Restore previous private_data_ptr */
+ if (CURRENT_AS(bracket_backtrack)->u.framesize >= 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, SLJIT_MEM1(STACK_TOP), CURRENT_AS(bracket_backtrack)->u.framesize * sizeof(sljit_sw));
+ else if (ket == OP_KETRMIN)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(1));
+ /* See the comment below. */
+ free_stack(common, 2);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), private_data_ptr, TMP1, 0);
+ }
+ }
+
+if (repeat_type == OP_EXACT)
+ {
+ OP2(SLJIT_ADD, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, SLJIT_IMM, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), repeat_ptr, TMP1, 0);
+ CMPTO(SLJIT_C_LESS_EQUAL, TMP1, 0, SLJIT_IMM, repeat_count, exact_label);
+ }
+else if (ket == OP_KETRMAX)
+ {
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ if (bra != OP_BRAZERO)
+ free_stack(common, 1);
+
+ CMPTO(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_IMM, 0, CURRENT_AS(bracket_backtrack)->recursive_matchingpath);
+ if (bra == OP_BRAZERO)
+ {
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(1));
+ JUMPTO(SLJIT_JUMP, CURRENT_AS(bracket_backtrack)->zero_matchingpath);
+ JUMPHERE(brazero);
+ free_stack(common, 1);
+ }
+ }
+else if (ket == OP_KETRMIN)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+
+ /* OP_ONCE removes everything in case of a backtrack, so we don't
+ need to explicitly release the STR_PTR. The extra release would
+ affect badly the free_stack(2) above. */
+ if (opcode != OP_ONCE)
+ free_stack(common, 1);
+ CMPTO(SLJIT_C_NOT_EQUAL, TMP1, 0, SLJIT_IMM, 0, rmin_label);
+ if (opcode == OP_ONCE)
+ free_stack(common, bra == OP_BRAMINZERO ? 2 : 1);
+ else if (bra == OP_BRAMINZERO)
+ free_stack(common, 1);
+ }
+else if (bra == OP_BRAZERO)
+ {
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ JUMPTO(SLJIT_JUMP, CURRENT_AS(bracket_backtrack)->zero_matchingpath);
+ JUMPHERE(brazero);
+ }
+}
+
+static SLJIT_INLINE void compile_bracketpos_backtrackingpath(compiler_common *common, struct backtrack_common *current)
+{
+DEFINE_COMPILER;
+int offset;
+struct sljit_jump *jump;
+
+if (CURRENT_AS(bracketpos_backtrack)->framesize < 0)
+ {
+ if (*current->cc == OP_CBRAPOS || *current->cc == OP_SCBRAPOS)
+ {
+ offset = (GET2(current->cc, 1 + LINK_SIZE)) << 1;
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), STACK(1));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset), TMP1, 0);
+ if (common->capture_last_ptr != 0)
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(2));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(offset + 1), TMP2, 0);
+ if (common->capture_last_ptr != 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->capture_last_ptr, TMP1, 0);
+ }
+ set_jumps(current->topbacktracks, LABEL());
+ free_stack(common, CURRENT_AS(bracketpos_backtrack)->stacksize);
+ return;
+ }
+
+OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), CURRENT_AS(bracketpos_backtrack)->private_data_ptr);
+add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+
+if (current->topbacktracks)
+ {
+ jump = JUMP(SLJIT_JUMP);
+ set_jumps(current->topbacktracks, LABEL());
+ /* Drop the stack frame. */
+ free_stack(common, CURRENT_AS(bracketpos_backtrack)->stacksize);
+ JUMPHERE(jump);
+ }
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), CURRENT_AS(bracketpos_backtrack)->private_data_ptr, SLJIT_MEM1(STACK_TOP), CURRENT_AS(bracketpos_backtrack)->framesize * sizeof(sljit_sw));
+}
+
+static SLJIT_INLINE void compile_braminzero_backtrackingpath(compiler_common *common, struct backtrack_common *current)
+{
+assert_backtrack backtrack;
+
+current->top = NULL;
+current->topbacktracks = NULL;
+current->nextbacktracks = NULL;
+if (current->cc[1] > OP_ASSERTBACK_NOT)
+ {
+ /* Manual call of compile_bracket_matchingpath and compile_bracket_backtrackingpath. */
+ compile_bracket_matchingpath(common, current->cc, current);
+ compile_bracket_backtrackingpath(common, current->top);
+ }
+else
+ {
+ memset(&backtrack, 0, sizeof(backtrack));
+ backtrack.common.cc = current->cc;
+ backtrack.matchingpath = CURRENT_AS(braminzero_backtrack)->matchingpath;
+ /* Manual call of compile_assert_matchingpath. */
+ compile_assert_matchingpath(common, current->cc, &backtrack, FALSE);
+ }
+SLJIT_ASSERT(!current->nextbacktracks && !current->topbacktracks);
+}
+
+static SLJIT_INLINE void compile_control_verb_backtrackingpath(compiler_common *common, struct backtrack_common *current)
+{
+DEFINE_COMPILER;
+pcre_uchar opcode = *current->cc;
+struct sljit_label *loop;
+struct sljit_jump *jump;
+
+if (opcode == OP_THEN || opcode == OP_THEN_ARG)
+ {
+ if (common->then_trap != NULL)
+ {
+ SLJIT_ASSERT(common->control_head_ptr != 0);
+
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_IMM, type_then_trap);
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_IMM, common->then_trap->start);
+ jump = JUMP(SLJIT_JUMP);
+
+ loop = LABEL();
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(STACK_TOP), -(int)sizeof(sljit_sw));
+ JUMPHERE(jump);
+ CMPTO(SLJIT_C_NOT_EQUAL, SLJIT_MEM1(STACK_TOP), -(int)(2 * sizeof(sljit_sw)), TMP1, 0, loop);
+ CMPTO(SLJIT_C_NOT_EQUAL, SLJIT_MEM1(STACK_TOP), -(int)(3 * sizeof(sljit_sw)), TMP2, 0, loop);
+ add_jump(compiler, &common->then_trap->quit, JUMP(SLJIT_JUMP));
+ return;
+ }
+ else if (common->positive_assert)
+ {
+ add_jump(compiler, &common->positive_assert_quit, JUMP(SLJIT_JUMP));
+ return;
+ }
+ }
+
+if (common->local_exit)
+ {
+ if (common->quit_label == NULL)
+ add_jump(compiler, &common->quit, JUMP(SLJIT_JUMP));
+ else
+ JUMPTO(SLJIT_JUMP, common->quit_label);
+ return;
+ }
+
+if (opcode == OP_SKIP_ARG)
+ {
+ SLJIT_ASSERT(common->control_head_ptr != 0);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0, STACK_TOP, 0);
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_IMM, (sljit_sw)(current->cc + 2));
+ sljit_emit_ijump(compiler, SLJIT_CALL2, SLJIT_IMM, SLJIT_FUNC_OFFSET(do_search_mark));
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0);
+
+ OP1(SLJIT_MOV, STR_PTR, 0, TMP1, 0);
+ add_jump(compiler, &common->reset_match, CMP(SLJIT_C_NOT_EQUAL, STR_PTR, 0, SLJIT_IMM, -1));
+ return;
+ }
+
+if (opcode == OP_SKIP)
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+else
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_IMM, 0);
+add_jump(compiler, &common->reset_match, JUMP(SLJIT_JUMP));
+}
+
+static SLJIT_INLINE void compile_then_trap_backtrackingpath(compiler_common *common, struct backtrack_common *current)
+{
+DEFINE_COMPILER;
+struct sljit_jump *jump;
+int size;
+
+if (CURRENT_AS(then_trap_backtrack)->then_trap)
+ {
+ common->then_trap = CURRENT_AS(then_trap_backtrack)->then_trap;
+ return;
+ }
+
+size = CURRENT_AS(then_trap_backtrack)->framesize;
+size = 3 + (size < 0 ? 0 : size);
+
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(size - 3));
+free_stack(common, size);
+jump = JUMP(SLJIT_JUMP);
+
+set_jumps(CURRENT_AS(then_trap_backtrack)->quit, LABEL());
+/* STACK_TOP is set by THEN. */
+if (CURRENT_AS(then_trap_backtrack)->framesize >= 0)
+ add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+free_stack(common, 3);
+
+JUMPHERE(jump);
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, TMP1, 0);
+}
+
+static void compile_backtrackingpath(compiler_common *common, struct backtrack_common *current)
+{
+DEFINE_COMPILER;
+then_trap_backtrack *save_then_trap = common->then_trap;
+
+while (current)
+ {
+ if (current->nextbacktracks != NULL)
+ set_jumps(current->nextbacktracks, LABEL());
+ switch(*current->cc)
+ {
+ case OP_SET_SOM:
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0), TMP1, 0);
+ break;
+
+ case OP_STAR:
+ case OP_MINSTAR:
+ case OP_PLUS:
+ case OP_MINPLUS:
+ case OP_QUERY:
+ case OP_MINQUERY:
+ case OP_UPTO:
+ case OP_MINUPTO:
+ case OP_EXACT:
+ case OP_POSSTAR:
+ case OP_POSPLUS:
+ case OP_POSQUERY:
+ case OP_POSUPTO:
+ case OP_STARI:
+ case OP_MINSTARI:
+ case OP_PLUSI:
+ case OP_MINPLUSI:
+ case OP_QUERYI:
+ case OP_MINQUERYI:
+ case OP_UPTOI:
+ case OP_MINUPTOI:
+ case OP_EXACTI:
+ case OP_POSSTARI:
+ case OP_POSPLUSI:
+ case OP_POSQUERYI:
+ case OP_POSUPTOI:
+ case OP_NOTSTAR:
+ case OP_NOTMINSTAR:
+ case OP_NOTPLUS:
+ case OP_NOTMINPLUS:
+ case OP_NOTQUERY:
+ case OP_NOTMINQUERY:
+ case OP_NOTUPTO:
+ case OP_NOTMINUPTO:
+ case OP_NOTEXACT:
+ case OP_NOTPOSSTAR:
+ case OP_NOTPOSPLUS:
+ case OP_NOTPOSQUERY:
+ case OP_NOTPOSUPTO:
+ case OP_NOTSTARI:
+ case OP_NOTMINSTARI:
+ case OP_NOTPLUSI:
+ case OP_NOTMINPLUSI:
+ case OP_NOTQUERYI:
+ case OP_NOTMINQUERYI:
+ case OP_NOTUPTOI:
+ case OP_NOTMINUPTOI:
+ case OP_NOTEXACTI:
+ case OP_NOTPOSSTARI:
+ case OP_NOTPOSPLUSI:
+ case OP_NOTPOSQUERYI:
+ case OP_NOTPOSUPTOI:
+ case OP_TYPESTAR:
+ case OP_TYPEMINSTAR:
+ case OP_TYPEPLUS:
+ case OP_TYPEMINPLUS:
+ case OP_TYPEQUERY:
+ case OP_TYPEMINQUERY:
+ case OP_TYPEUPTO:
+ case OP_TYPEMINUPTO:
+ case OP_TYPEEXACT:
+ case OP_TYPEPOSSTAR:
+ case OP_TYPEPOSPLUS:
+ case OP_TYPEPOSQUERY:
+ case OP_TYPEPOSUPTO:
+ case OP_CLASS:
+ case OP_NCLASS:
+#if defined SUPPORT_UTF || !defined COMPILE_PCRE8
+ case OP_XCLASS:
+#endif
+ compile_iterator_backtrackingpath(common, current);
+ break;
+
+ case OP_REF:
+ case OP_REFI:
+ compile_ref_iterator_backtrackingpath(common, current);
+ break;
+
+ case OP_RECURSE:
+ compile_recurse_backtrackingpath(common, current);
+ break;
+
+ case OP_ASSERT:
+ case OP_ASSERT_NOT:
+ case OP_ASSERTBACK:
+ case OP_ASSERTBACK_NOT:
+ compile_assert_backtrackingpath(common, current);
+ break;
+
+ case OP_ONCE:
+ case OP_ONCE_NC:
+ case OP_BRA:
+ case OP_CBRA:
+ case OP_COND:
+ case OP_SBRA:
+ case OP_SCBRA:
+ case OP_SCOND:
+ compile_bracket_backtrackingpath(common, current);
+ break;
+
+ case OP_BRAZERO:
+ if (current->cc[1] > OP_ASSERTBACK_NOT)
+ compile_bracket_backtrackingpath(common, current);
+ else
+ compile_assert_backtrackingpath(common, current);
+ break;
+
+ case OP_BRAPOS:
+ case OP_CBRAPOS:
+ case OP_SBRAPOS:
+ case OP_SCBRAPOS:
+ case OP_BRAPOSZERO:
+ compile_bracketpos_backtrackingpath(common, current);
+ break;
+
+ case OP_BRAMINZERO:
+ compile_braminzero_backtrackingpath(common, current);
+ break;
+
+ case OP_MARK:
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), STACK(common->has_skip_arg ? 4 : 0));
+ if (common->has_skip_arg)
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+ free_stack(common, common->has_skip_arg ? 5 : 1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mark_ptr, TMP1, 0);
+ if (common->has_skip_arg)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, TMP2, 0);
+ break;
+
+ case OP_THEN:
+ case OP_THEN_ARG:
+ case OP_PRUNE:
+ case OP_PRUNE_ARG:
+ case OP_SKIP:
+ case OP_SKIP_ARG:
+ compile_control_verb_backtrackingpath(common, current);
+ break;
+
+ case OP_COMMIT:
+ if (!common->local_exit)
+ OP1(SLJIT_MOV, SLJIT_RETURN_REG, 0, SLJIT_IMM, PCRE_ERROR_NOMATCH);
+ if (common->quit_label == NULL)
+ add_jump(compiler, &common->quit, JUMP(SLJIT_JUMP));
+ else
+ JUMPTO(SLJIT_JUMP, common->quit_label);
+ break;
+
+ case OP_CALLOUT:
+ case OP_FAIL:
+ case OP_ACCEPT:
+ case OP_ASSERT_ACCEPT:
+ set_jumps(current->topbacktracks, LABEL());
+ break;
+
+ case OP_THEN_TRAP:
+ /* A virtual opcode for then traps. */
+ compile_then_trap_backtrackingpath(common, current);
+ break;
+
+ default:
+ SLJIT_ASSERT_STOP();
+ break;
+ }
+ current = current->prev;
+ }
+common->then_trap = save_then_trap;
+}
+
+static SLJIT_INLINE void compile_recurse(compiler_common *common)
+{
+DEFINE_COMPILER;
+pcre_uchar *cc = common->start + common->currententry->start;
+pcre_uchar *ccbegin = cc + 1 + LINK_SIZE + (*cc == OP_BRA ? 0 : IMM2_SIZE);
+pcre_uchar *ccend = bracketend(cc);
+BOOL needs_control_head;
+int framesize = get_framesize(common, cc, NULL, TRUE, &needs_control_head);
+int private_data_size = get_private_data_copy_length(common, ccbegin, ccend, needs_control_head);
+int alternativesize;
+BOOL needs_frame;
+backtrack_common altbacktrack;
+struct sljit_jump *jump;
+
+/* Recurse captures then. */
+common->then_trap = NULL;
+
+SLJIT_ASSERT(*cc == OP_BRA || *cc == OP_CBRA || *cc == OP_CBRAPOS || *cc == OP_SCBRA || *cc == OP_SCBRAPOS);
+needs_frame = framesize >= 0;
+if (!needs_frame)
+ framesize = 0;
+alternativesize = *(cc + GET(cc, 1)) == OP_ALT ? 1 : 0;
+
+SLJIT_ASSERT(common->currententry->entry == NULL && common->recursive_head_ptr != 0);
+common->currententry->entry = LABEL();
+set_jumps(common->currententry->calls, common->currententry->entry);
+
+sljit_emit_fast_enter(compiler, TMP2, 0);
+allocate_stack(common, private_data_size + framesize + alternativesize);
+OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(private_data_size + framesize + alternativesize - 1), TMP2, 0);
+copy_private_data(common, ccbegin, ccend, TRUE, private_data_size + framesize + alternativesize, framesize + alternativesize, needs_control_head);
+if (needs_control_head)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, SLJIT_IMM, 0);
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->recursive_head_ptr, STACK_TOP, 0);
+if (needs_frame)
+ init_frame(common, cc, NULL, framesize + alternativesize - 1, alternativesize, TRUE);
+
+if (alternativesize > 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(STACK_TOP), STACK(0), STR_PTR, 0);
+
+memset(&altbacktrack, 0, sizeof(backtrack_common));
+common->quit_label = NULL;
+common->accept_label = NULL;
+common->quit = NULL;
+common->accept = NULL;
+altbacktrack.cc = ccbegin;
+cc += GET(cc, 1);
+while (1)
+ {
+ altbacktrack.top = NULL;
+ altbacktrack.topbacktracks = NULL;
+
+ if (altbacktrack.cc != ccbegin)
+ OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(STACK_TOP), STACK(0));
+
+ compile_matchingpath(common, altbacktrack.cc, cc, &altbacktrack);
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ return;
+
+ add_jump(compiler, &common->accept, JUMP(SLJIT_JUMP));
+
+ compile_backtrackingpath(common, altbacktrack.top);
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ return;
+ set_jumps(altbacktrack.topbacktracks, LABEL());
+
+ if (*cc != OP_ALT)
+ break;
+
+ altbacktrack.cc = cc + 1 + LINK_SIZE;
+ cc += GET(cc, 1);
+ }
+
+/* None of them matched. */
+OP1(SLJIT_MOV, TMP3, 0, SLJIT_IMM, 0);
+jump = JUMP(SLJIT_JUMP);
+
+if (common->quit != NULL)
+ {
+ set_jumps(common->quit, LABEL());
+ OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->recursive_head_ptr);
+ if (needs_frame)
+ {
+ OP2(SLJIT_SUB, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, (framesize + alternativesize) * sizeof(sljit_sw));
+ add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+ OP2(SLJIT_ADD, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, (framesize + alternativesize) * sizeof(sljit_sw));
+ }
+ OP1(SLJIT_MOV, TMP3, 0, SLJIT_IMM, 0);
+ common->quit = NULL;
+ add_jump(compiler, &common->quit, JUMP(SLJIT_JUMP));
+ }
+
+set_jumps(common->accept, LABEL());
+OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->recursive_head_ptr);
+if (needs_frame)
+ {
+ OP2(SLJIT_SUB, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, (framesize + alternativesize) * sizeof(sljit_sw));
+ add_jump(compiler, &common->revertframes, JUMP(SLJIT_FAST_CALL));
+ OP2(SLJIT_ADD, STACK_TOP, 0, STACK_TOP, 0, SLJIT_IMM, (framesize + alternativesize) * sizeof(sljit_sw));
+ }
+OP1(SLJIT_MOV, TMP3, 0, SLJIT_IMM, 1);
+
+JUMPHERE(jump);
+if (common->quit != NULL)
+ set_jumps(common->quit, LABEL());
+copy_private_data(common, ccbegin, ccend, FALSE, private_data_size + framesize + alternativesize, framesize + alternativesize, needs_control_head);
+free_stack(common, private_data_size + framesize + alternativesize);
+if (needs_control_head)
+ {
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(STACK_TOP), 2 * sizeof(sljit_sw));
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), sizeof(sljit_sw));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->recursive_head_ptr, TMP1, 0);
+ OP1(SLJIT_MOV, TMP1, 0, TMP3, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, TMP2, 0);
+ }
+else
+ {
+ OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(STACK_TOP), sizeof(sljit_sw));
+ OP1(SLJIT_MOV, TMP1, 0, TMP3, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->recursive_head_ptr, TMP2, 0);
+ }
+sljit_emit_fast_return(compiler, SLJIT_MEM1(STACK_TOP), 0);
+}
+
+#undef COMPILE_BACKTRACKINGPATH
+#undef CURRENT_AS
+
+void
+PRIV(jit_compile)(const REAL_PCRE *re, PUBL(extra) *extra, int mode)
+{
+struct sljit_compiler *compiler;
+backtrack_common rootbacktrack;
+compiler_common common_data;
+compiler_common *common = &common_data;
+const pcre_uint8 *tables = re->tables;
+pcre_study_data *study;
+int private_data_size;
+pcre_uchar *ccend;
+executable_functions *functions;
+void *executable_func;
+sljit_uw executable_size;
+struct sljit_label *mainloop_label = NULL;
+struct sljit_label *continue_match_label;
+struct sljit_label *empty_match_found_label;
+struct sljit_label *empty_match_backtrack_label;
+struct sljit_label *reset_match_label;
+struct sljit_jump *jump;
+struct sljit_jump *minlength_check_failed = NULL;
+struct sljit_jump *reqbyte_notfound = NULL;
+struct sljit_jump *empty_match;
+struct sljit_label *quit_label;
+
+SLJIT_ASSERT((extra->flags & PCRE_EXTRA_STUDY_DATA) != 0);
+study = extra->study_data;
+
+if (!tables)
+ tables = PRIV(default_tables);
+
+memset(&rootbacktrack, 0, sizeof(backtrack_common));
+memset(common, 0, sizeof(compiler_common));
+rootbacktrack.cc = (pcre_uchar *)re + re->name_table_offset + re->name_count * re->name_entry_size;
+
+common->start = rootbacktrack.cc;
+common->fcc = tables + fcc_offset;
+common->lcc = (sljit_sw)(tables + lcc_offset);
+common->mode = mode;
+common->nltype = NLTYPE_FIXED;
+switch(re->options & PCRE_NEWLINE_BITS)
+ {
+ case 0:
+ /* Compile-time default */
+ switch(NEWLINE)
+ {
+ case -1: common->newline = (CHAR_CR << 8) | CHAR_NL; common->nltype = NLTYPE_ANY; break;
+ case -2: common->newline = (CHAR_CR << 8) | CHAR_NL; common->nltype = NLTYPE_ANYCRLF; break;
+ default: common->newline = NEWLINE; break;
+ }
+ break;
+ case PCRE_NEWLINE_CR: common->newline = CHAR_CR; break;
+ case PCRE_NEWLINE_LF: common->newline = CHAR_NL; break;
+ case PCRE_NEWLINE_CR+
+ PCRE_NEWLINE_LF: common->newline = (CHAR_CR << 8) | CHAR_NL; break;
+ case PCRE_NEWLINE_ANY: common->newline = (CHAR_CR << 8) | CHAR_NL; common->nltype = NLTYPE_ANY; break;
+ case PCRE_NEWLINE_ANYCRLF: common->newline = (CHAR_CR << 8) | CHAR_NL; common->nltype = NLTYPE_ANYCRLF; break;
+ default: return;
+ }
+if ((re->options & PCRE_BSR_ANYCRLF) != 0)
+ common->bsr_nltype = NLTYPE_ANYCRLF;
+else if ((re->options & PCRE_BSR_UNICODE) != 0)
+ common->bsr_nltype = NLTYPE_ANY;
+else
+ {
+#ifdef BSR_ANYCRLF
+ common->bsr_nltype = NLTYPE_ANYCRLF;
+#else
+ common->bsr_nltype = NLTYPE_ANY;
+#endif
+ }
+common->endonly = (re->options & PCRE_DOLLAR_ENDONLY) != 0;
+common->ctypes = (sljit_sw)(tables + ctypes_offset);
+common->digits[0] = -2;
+common->name_table = (sljit_sw)((pcre_uchar *)re + re->name_table_offset);
+common->name_count = re->name_count;
+common->name_entry_size = re->name_entry_size;
+common->jscript_compat = (re->options & PCRE_JAVASCRIPT_COMPAT) != 0;
+#ifdef SUPPORT_UTF
+/* PCRE_UTF[16|32] have the same value as PCRE_UTF8. */
+common->utf = (re->options & PCRE_UTF8) != 0;
+#ifdef SUPPORT_UCP
+common->use_ucp = (re->options & PCRE_UCP) != 0;
+#endif
+#endif /* SUPPORT_UTF */
+ccend = bracketend(rootbacktrack.cc);
+
+/* Calculate the local space size on the stack. */
+common->ovector_start = LIMIT_MATCH + sizeof(sljit_sw);
+common->optimized_cbracket = (pcre_uint8 *)SLJIT_MALLOC(re->top_bracket + 1);
+if (!common->optimized_cbracket)
+ return;
+#if defined DEBUG_FORCE_UNOPTIMIZED_CBRAS && DEBUG_FORCE_UNOPTIMIZED_CBRAS == 1
+memset(common->optimized_cbracket, 0, re->top_bracket + 1);
+#else
+memset(common->optimized_cbracket, 1, re->top_bracket + 1);
+#endif
+
+SLJIT_ASSERT(*rootbacktrack.cc == OP_BRA && ccend[-(1 + LINK_SIZE)] == OP_KET);
+#if defined DEBUG_FORCE_UNOPTIMIZED_CBRAS && DEBUG_FORCE_UNOPTIMIZED_CBRAS == 2
+common->capture_last_ptr = common->ovector_start;
+common->ovector_start += sizeof(sljit_sw);
+#endif
+if (!check_opcode_types(common, rootbacktrack.cc, ccend))
+ {
+ SLJIT_FREE(common->optimized_cbracket);
+ return;
+ }
+
+/* Checking flags and updating ovector_start. */
+if (mode == JIT_COMPILE && (re->flags & PCRE_REQCHSET) != 0 && (re->options & PCRE_NO_START_OPTIMIZE) == 0)
+ {
+ common->req_char_ptr = common->ovector_start;
+ common->ovector_start += sizeof(sljit_sw);
+ }
+if (mode != JIT_COMPILE)
+ {
+ common->start_used_ptr = common->ovector_start;
+ common->ovector_start += sizeof(sljit_sw);
+ if (mode == JIT_PARTIAL_SOFT_COMPILE)
+ {
+ common->hit_start = common->ovector_start;
+ common->ovector_start += 2 * sizeof(sljit_sw);
+ }
+ else
+ {
+ SLJIT_ASSERT(mode == JIT_PARTIAL_HARD_COMPILE);
+ common->needs_start_ptr = TRUE;
+ }
+ }
+if ((re->options & PCRE_FIRSTLINE) != 0)
+ {
+ common->first_line_end = common->ovector_start;
+ common->ovector_start += sizeof(sljit_sw);
+ }
+#if defined DEBUG_FORCE_CONTROL_HEAD && DEBUG_FORCE_CONTROL_HEAD
+common->control_head_ptr = 1;
+#endif
+if (common->control_head_ptr != 0)
+ {
+ common->control_head_ptr = common->ovector_start;
+ common->ovector_start += sizeof(sljit_sw);
+ }
+if (common->needs_start_ptr && common->has_set_som)
+ {
+ /* Saving the real start pointer is necessary. */
+ common->start_ptr = common->ovector_start;
+ common->ovector_start += sizeof(sljit_sw);
+ }
+else
+ common->needs_start_ptr = FALSE;
+
+/* Aligning ovector to even number of sljit words. */
+if ((common->ovector_start & sizeof(sljit_sw)) != 0)
+ common->ovector_start += sizeof(sljit_sw);
+
+if (common->start_ptr == 0)
+ common->start_ptr = OVECTOR(0);
+
+/* Capturing brackets cannot be optimized if callouts are allowed. */
+if (common->capture_last_ptr != 0)
+ memset(common->optimized_cbracket, 0, re->top_bracket + 1);
+
+SLJIT_ASSERT(!(common->req_char_ptr != 0 && common->start_used_ptr != 0));
+common->cbra_ptr = OVECTOR_START + (re->top_bracket + 1) * 2 * sizeof(sljit_sw);
+
+common->private_data_ptrs = (int *)SLJIT_MALLOC((ccend - rootbacktrack.cc) * sizeof(sljit_si));
+if (!common->private_data_ptrs)
+ {
+ SLJIT_FREE(common->optimized_cbracket);
+ return;
+ }
+memset(common->private_data_ptrs, 0, (ccend - rootbacktrack.cc) * sizeof(int));
+
+private_data_size = common->cbra_ptr + (re->top_bracket + 1) * sizeof(sljit_sw);
+set_private_data_ptrs(common, &private_data_size, ccend);
+if (private_data_size > SLJIT_MAX_LOCAL_SIZE)
+ {
+ SLJIT_FREE(common->private_data_ptrs);
+ SLJIT_FREE(common->optimized_cbracket);
+ return;
+ }
+
+if (common->has_then)
+ {
+ common->then_offsets = (pcre_uint8 *)SLJIT_MALLOC(ccend - rootbacktrack.cc);
+ if (!common->then_offsets)
+ {
+ SLJIT_FREE(common->optimized_cbracket);
+ SLJIT_FREE(common->private_data_ptrs);
+ return;
+ }
+ memset(common->then_offsets, 0, ccend - rootbacktrack.cc);
+ set_then_offsets(common, rootbacktrack.cc, NULL);
+ }
+
+compiler = sljit_create_compiler();
+if (!compiler)
+ {
+ SLJIT_FREE(common->optimized_cbracket);
+ SLJIT_FREE(common->private_data_ptrs);
+ if (common->has_then)
+ SLJIT_FREE(common->then_offsets);
+ return;
+ }
+common->compiler = compiler;
+
+/* Main pcre_jit_exec entry. */
+sljit_emit_enter(compiler, 1, 5, 5, private_data_size);
+
+/* Register init. */
+reset_ovector(common, (re->top_bracket + 1) * 2);
+if (common->req_char_ptr != 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->req_char_ptr, SLJIT_SCRATCH_REG1, 0);
+
+OP1(SLJIT_MOV, ARGUMENTS, 0, SLJIT_SAVED_REG1, 0);
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_SAVED_REG1, 0);
+OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, str));
+OP1(SLJIT_MOV, STR_END, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, end));
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, stack));
+OP1(SLJIT_MOV_UI, TMP1, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, limit_match));
+OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(TMP2), SLJIT_OFFSETOF(struct sljit_stack, base));
+OP1(SLJIT_MOV, STACK_LIMIT, 0, SLJIT_MEM1(TMP2), SLJIT_OFFSETOF(struct sljit_stack, limit));
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LIMIT_MATCH, TMP1, 0);
+
+if (mode == JIT_PARTIAL_SOFT_COMPILE)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->hit_start, SLJIT_IMM, -1);
+if (common->mark_ptr != 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->mark_ptr, SLJIT_IMM, 0);
+if (common->control_head_ptr != 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->control_head_ptr, SLJIT_IMM, 0);
+
+/* Main part of the matching */
+if ((re->options & PCRE_ANCHORED) == 0)
+ {
+ mainloop_label = mainloop_entry(common, (re->flags & PCRE_HASCRORLF) != 0, (re->options & PCRE_FIRSTLINE) != 0);
+ continue_match_label = LABEL();
+ /* Forward search if possible. */
+ if ((re->options & PCRE_NO_START_OPTIMIZE) == 0)
+ {
+ if (mode == JIT_COMPILE && fast_forward_first_n_chars(common, (re->options & PCRE_FIRSTLINE) != 0))
+ { /* Do nothing */ }
+ else if ((re->flags & PCRE_FIRSTSET) != 0)
+ fast_forward_first_char(common, (pcre_uchar)re->first_char, (re->flags & PCRE_FCH_CASELESS) != 0, (re->options & PCRE_FIRSTLINE) != 0);
+ else if ((re->flags & PCRE_STARTLINE) != 0)
+ fast_forward_newline(common, (re->options & PCRE_FIRSTLINE) != 0);
+ else if ((re->flags & PCRE_STARTLINE) == 0 && study != NULL && (study->flags & PCRE_STUDY_MAPPED) != 0)
+ fast_forward_start_bits(common, (sljit_uw)study->start_bits, (re->options & PCRE_FIRSTLINE) != 0);
+ }
+ }
+else
+ continue_match_label = LABEL();
+
+if (mode == JIT_COMPILE && study->minlength > 0 && (re->options & PCRE_NO_START_OPTIMIZE) == 0)
+ {
+ OP1(SLJIT_MOV, SLJIT_RETURN_REG, 0, SLJIT_IMM, PCRE_ERROR_NOMATCH);
+ OP2(SLJIT_ADD, TMP2, 0, STR_PTR, 0, SLJIT_IMM, IN_UCHARS(study->minlength));
+ minlength_check_failed = CMP(SLJIT_C_GREATER, TMP2, 0, STR_END, 0);
+ }
+if (common->req_char_ptr != 0)
+ reqbyte_notfound = search_requested_char(common, (pcre_uchar)re->req_char, (re->flags & PCRE_RCH_CASELESS) != 0, (re->flags & PCRE_FIRSTSET) != 0);
+
+/* Store the current STR_PTR in OVECTOR(0). */
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0), STR_PTR, 0);
+/* Copy the limit of allowed recursions. */
+OP1(SLJIT_MOV, COUNT_MATCH, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), LIMIT_MATCH);
+if (common->capture_last_ptr != 0)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->capture_last_ptr, SLJIT_IMM, -1);
+
+if (common->needs_start_ptr)
+ {
+ SLJIT_ASSERT(common->start_ptr != OVECTOR(0));
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_ptr, STR_PTR, 0);
+ }
+else
+ SLJIT_ASSERT(common->start_ptr == OVECTOR(0));
+
+/* Copy the beginning of the string. */
+if (mode == JIT_PARTIAL_SOFT_COMPILE)
+ {
+ jump = CMP(SLJIT_C_NOT_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), common->hit_start, SLJIT_IMM, -1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, STR_PTR, 0);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->hit_start + sizeof(sljit_sw), STR_PTR, 0);
+ JUMPHERE(jump);
+ }
+else if (mode == JIT_PARTIAL_HARD_COMPILE)
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, STR_PTR, 0);
+
+compile_matchingpath(common, rootbacktrack.cc, ccend, &rootbacktrack);
+if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ {
+ sljit_free_compiler(compiler);
+ SLJIT_FREE(common->optimized_cbracket);
+ SLJIT_FREE(common->private_data_ptrs);
+ if (common->has_then)
+ SLJIT_FREE(common->then_offsets);
+ return;
+ }
+
+empty_match = CMP(SLJIT_C_EQUAL, STR_PTR, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), OVECTOR(0));
+empty_match_found_label = LABEL();
+
+common->accept_label = LABEL();
+if (common->accept != NULL)
+ set_jumps(common->accept, common->accept_label);
+
+/* This means we have a match. Update the ovector. */
+copy_ovector(common, re->top_bracket + 1);
+common->quit_label = common->forced_quit_label = LABEL();
+if (common->quit != NULL)
+ set_jumps(common->quit, common->quit_label);
+if (common->forced_quit != NULL)
+ set_jumps(common->forced_quit, common->forced_quit_label);
+if (minlength_check_failed != NULL)
+ SET_LABEL(minlength_check_failed, common->forced_quit_label);
+sljit_emit_return(compiler, SLJIT_MOV, SLJIT_RETURN_REG, 0);
+
+if (mode != JIT_COMPILE)
+ {
+ common->partialmatchlabel = LABEL();
+ set_jumps(common->partialmatch, common->partialmatchlabel);
+ return_with_partial_match(common, common->quit_label);
+ }
+
+empty_match_backtrack_label = LABEL();
+compile_backtrackingpath(common, rootbacktrack.top);
+if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ {
+ sljit_free_compiler(compiler);
+ SLJIT_FREE(common->optimized_cbracket);
+ SLJIT_FREE(common->private_data_ptrs);
+ if (common->has_then)
+ SLJIT_FREE(common->then_offsets);
+ return;
+ }
+
+SLJIT_ASSERT(rootbacktrack.prev == NULL);
+reset_match_label = LABEL();
+
+if (mode == JIT_PARTIAL_SOFT_COMPILE)
+ {
+ /* Update hit_start only in the first time. */
+ jump = CMP(SLJIT_C_NOT_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), common->hit_start, SLJIT_IMM, 0);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_used_ptr, SLJIT_IMM, -1);
+ OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), common->hit_start, TMP1, 0);
+ JUMPHERE(jump);
+ }
+
+/* Check we have remaining characters. */
+if ((re->options & PCRE_ANCHORED) == 0 && (re->options & PCRE_FIRSTLINE) != 0)
+ {
+ SLJIT_ASSERT(common->first_line_end != 0);
+ OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->first_line_end);
+ }
+
+OP1(SLJIT_MOV, STR_PTR, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), common->start_ptr);
+
+if ((re->options & PCRE_ANCHORED) == 0)
+ {
+ if ((re->options & PCRE_FIRSTLINE) == 0)
+ CMPTO(SLJIT_C_LESS, STR_PTR, 0, STR_END, 0, mainloop_label);
+ else
+ CMPTO(SLJIT_C_LESS, STR_PTR, 0, TMP1, 0, mainloop_label);
+ }
+
+/* No more remaining characters. */
+if (reqbyte_notfound != NULL)
+ JUMPHERE(reqbyte_notfound);
+
+if (mode == JIT_PARTIAL_SOFT_COMPILE)
+ CMPTO(SLJIT_C_NOT_EQUAL, SLJIT_MEM1(SLJIT_LOCALS_REG), common->hit_start, SLJIT_IMM, -1, common->partialmatchlabel);
+
+OP1(SLJIT_MOV, SLJIT_RETURN_REG, 0, SLJIT_IMM, PCRE_ERROR_NOMATCH);
+JUMPTO(SLJIT_JUMP, common->quit_label);
+
+flush_stubs(common);
+
+JUMPHERE(empty_match);
+OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+OP1(SLJIT_MOV_UB, TMP2, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, notempty));
+CMPTO(SLJIT_C_NOT_EQUAL, TMP2, 0, SLJIT_IMM, 0, empty_match_backtrack_label);
+OP1(SLJIT_MOV_UB, TMP2, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, notempty_atstart));
+CMPTO(SLJIT_C_EQUAL, TMP2, 0, SLJIT_IMM, 0, empty_match_found_label);
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, str));
+CMPTO(SLJIT_C_NOT_EQUAL, TMP2, 0, STR_PTR, 0, empty_match_found_label);
+JUMPTO(SLJIT_JUMP, empty_match_backtrack_label);
+
+common->currententry = common->entries;
+common->local_exit = TRUE;
+quit_label = common->quit_label;
+while (common->currententry != NULL)
+ {
+ /* Might add new entries. */
+ compile_recurse(common);
+ if (SLJIT_UNLIKELY(sljit_get_compiler_error(compiler)))
+ {
+ sljit_free_compiler(compiler);
+ SLJIT_FREE(common->optimized_cbracket);
+ SLJIT_FREE(common->private_data_ptrs);
+ if (common->has_then)
+ SLJIT_FREE(common->then_offsets);
+ return;
+ }
+ flush_stubs(common);
+ common->currententry = common->currententry->next;
+ }
+common->local_exit = FALSE;
+common->quit_label = quit_label;
+
+/* Allocating stack, returns with PCRE_ERROR_JIT_STACKLIMIT if fails. */
+/* This is a (really) rare case. */
+set_jumps(common->stackalloc, LABEL());
+/* RETURN_ADDR is not a saved register. */
+sljit_emit_fast_enter(compiler, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0);
+OP1(SLJIT_MOV, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1, TMP2, 0);
+OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, stack));
+OP1(SLJIT_MOV, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(struct sljit_stack, top), STACK_TOP, 0);
+OP2(SLJIT_ADD, TMP2, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(struct sljit_stack, limit), SLJIT_IMM, STACK_GROWTH_RATE);
+
+sljit_emit_ijump(compiler, SLJIT_CALL2, SLJIT_IMM, SLJIT_FUNC_OFFSET(sljit_stack_resize));
+jump = CMP(SLJIT_C_NOT_EQUAL, SLJIT_RETURN_REG, 0, SLJIT_IMM, 0);
+OP1(SLJIT_MOV, TMP1, 0, ARGUMENTS, 0);
+OP1(SLJIT_MOV, TMP1, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(jit_arguments, stack));
+OP1(SLJIT_MOV, STACK_TOP, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(struct sljit_stack, top));
+OP1(SLJIT_MOV, STACK_LIMIT, 0, SLJIT_MEM1(TMP1), SLJIT_OFFSETOF(struct sljit_stack, limit));
+OP1(SLJIT_MOV, TMP2, 0, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS1);
+sljit_emit_fast_return(compiler, SLJIT_MEM1(SLJIT_LOCALS_REG), LOCALS0);
+
+/* Allocation failed. */
+JUMPHERE(jump);
+/* We break the return address cache here, but this is a really rare case. */
+OP1(SLJIT_MOV, SLJIT_RETURN_REG, 0, SLJIT_IMM, PCRE_ERROR_JIT_STACKLIMIT);
+JUMPTO(SLJIT_JUMP, common->quit_label);
+
+/* Call limit reached. */
+set_jumps(common->calllimit, LABEL());
+OP1(SLJIT_MOV, SLJIT_RETURN_REG, 0, SLJIT_IMM, PCRE_ERROR_MATCHLIMIT);
+JUMPTO(SLJIT_JUMP, common->quit_label);
+
+if (common->revertframes != NULL)
+ {
+ set_jumps(common->revertframes, LABEL());
+ do_revertframes(common);
+ }
+if (common->wordboundary != NULL)
+ {
+ set_jumps(common->wordboundary, LABEL());
+ check_wordboundary(common);
+ }
+if (common->anynewline != NULL)
+ {
+ set_jumps(common->anynewline, LABEL());
+ check_anynewline(common);
+ }
+if (common->hspace != NULL)
+ {
+ set_jumps(common->hspace, LABEL());
+ check_hspace(common);
+ }
+if (common->vspace != NULL)
+ {
+ set_jumps(common->vspace, LABEL());
+ check_vspace(common);
+ }
+if (common->casefulcmp != NULL)
+ {
+ set_jumps(common->casefulcmp, LABEL());
+ do_casefulcmp(common);
+ }
+if (common->caselesscmp != NULL)
+ {
+ set_jumps(common->caselesscmp, LABEL());
+ do_caselesscmp(common);
+ }
+if (common->reset_match != NULL)
+ {
+ set_jumps(common->reset_match, LABEL());
+ do_reset_match(common, (re->top_bracket + 1) * 2);
+ CMPTO(SLJIT_C_GREATER, STR_PTR, 0, TMP1, 0, continue_match_label);
+ OP1(SLJIT_MOV, STR_PTR, 0, TMP1, 0);
+ JUMPTO(SLJIT_JUMP, reset_match_label);
+ }
+#ifdef SUPPORT_UTF
+#ifndef COMPILE_PCRE32
+if (common->utfreadchar != NULL)
+ {
+ set_jumps(common->utfreadchar, LABEL());
+ do_utfreadchar(common);
+ }
+#endif /* !COMPILE_PCRE32 */
+#ifdef COMPILE_PCRE8
+if (common->utfreadtype8 != NULL)
+ {
+ set_jumps(common->utfreadtype8, LABEL());
+ do_utfreadtype8(common);
+ }
+#endif /* COMPILE_PCRE8 */
+#endif /* SUPPORT_UTF */
+#ifdef SUPPORT_UCP
+if (common->getucd != NULL)
+ {
+ set_jumps(common->getucd, LABEL());
+ do_getucd(common);
+ }
+#endif
+
+SLJIT_FREE(common->optimized_cbracket);
+SLJIT_FREE(common->private_data_ptrs);
+if (common->has_then)
+ SLJIT_FREE(common->then_offsets);
+
+executable_func = sljit_generate_code(compiler);
+executable_size = sljit_get_generated_code_size(compiler);
+sljit_free_compiler(compiler);
+if (executable_func == NULL)
+ return;
+
+/* Reuse the function descriptor if possible. */
+if ((extra->flags & PCRE_EXTRA_EXECUTABLE_JIT) != 0 && extra->executable_jit != NULL)
+ functions = (executable_functions *)extra->executable_jit;
+else
+ {
+ /* Note: If your memory-checker has flagged the allocation below as a
+ * memory leak, it is probably because you either forgot to call
+ * pcre_free_study() (or pcre16_free_study()) on the pcre_extra (or
+ * pcre16_extra) object, or you called said function after having
+ * cleared the PCRE_EXTRA_EXECUTABLE_JIT bit from the "flags" field
+ * of the object. (The function will only free the JIT data if the
+ * bit remains set, as the bit indicates that the pointer to the data
+ * is valid.)
+ */
+ functions = SLJIT_MALLOC(sizeof(executable_functions));
+ if (functions == NULL)
+ {
+ /* This case is highly unlikely since we just recently
+ freed a lot of memory. Although not impossible. */
+ sljit_free_code(executable_func);
+ return;
+ }
+ memset(functions, 0, sizeof(executable_functions));
+ functions->top_bracket = (re->top_bracket + 1) * 2;
+ functions->limit_match = (re->flags & PCRE_MLSET) != 0 ? re->limit_match : 0;
+ extra->executable_jit = functions;
+ extra->flags |= PCRE_EXTRA_EXECUTABLE_JIT;
+ }
+
+functions->executable_funcs[mode] = executable_func;
+functions->executable_sizes[mode] = executable_size;
+}
+
+static int jit_machine_stack_exec(jit_arguments *arguments, void* executable_func)
+{
+union {
+ void* executable_func;
+ jit_function call_executable_func;
+} convert_executable_func;
+pcre_uint8 local_space[MACHINE_STACK_SIZE];
+struct sljit_stack local_stack;
+
+local_stack.top = (sljit_sw)&local_space;
+local_stack.base = local_stack.top;
+local_stack.limit = local_stack.base + MACHINE_STACK_SIZE;
+local_stack.max_limit = local_stack.limit;
+arguments->stack = &local_stack;
+convert_executable_func.executable_func = executable_func;
+return convert_executable_func.call_executable_func(arguments);
+}
+
+int
+PRIV(jit_exec)(const PUBL(extra) *extra_data, const pcre_uchar *subject,
+ int length, int start_offset, int options, int *offsets, int offset_count)
+{
+executable_functions *functions = (executable_functions *)extra_data->executable_jit;
+union {
+ void* executable_func;
+ jit_function call_executable_func;
+} convert_executable_func;
+jit_arguments arguments;
+int max_offset_count;
+int retval;
+int mode = JIT_COMPILE;
+
+if ((options & PCRE_PARTIAL_HARD) != 0)
+ mode = JIT_PARTIAL_HARD_COMPILE;
+else if ((options & PCRE_PARTIAL_SOFT) != 0)
+ mode = JIT_PARTIAL_SOFT_COMPILE;
+
+if (functions->executable_funcs[mode] == NULL)
+ return PCRE_ERROR_JIT_BADOPTION;
+
+/* Sanity checks should be handled by pcre_exec. */
+arguments.str = subject + start_offset;
+arguments.begin = subject;
+arguments.end = subject + length;
+arguments.mark_ptr = NULL;
+/* JIT decreases this value less frequently than the interpreter. */
+arguments.limit_match = ((extra_data->flags & PCRE_EXTRA_MATCH_LIMIT) == 0) ? MATCH_LIMIT : (pcre_uint32)(extra_data->match_limit);
+if (functions->limit_match != 0 && functions->limit_match < arguments.limit_match)
+ arguments.limit_match = functions->limit_match;
+arguments.notbol = (options & PCRE_NOTBOL) != 0;
+arguments.noteol = (options & PCRE_NOTEOL) != 0;
+arguments.notempty = (options & PCRE_NOTEMPTY) != 0;
+arguments.notempty_atstart = (options & PCRE_NOTEMPTY_ATSTART) != 0;
+arguments.offsets = offsets;
+arguments.callout_data = (extra_data->flags & PCRE_EXTRA_CALLOUT_DATA) != 0 ? extra_data->callout_data : NULL;
+arguments.real_offset_count = offset_count;
+
+/* pcre_exec() rounds offset_count to a multiple of 3, and then uses only 2/3 of
+the output vector for storing captured strings, with the remainder used as
+workspace. We don't need the workspace here. For compatibility, we limit the
+number of captured strings in the same way as pcre_exec(), so that the user
+gets the same result with and without JIT. */
+
+if (offset_count != 2)
+ offset_count = ((offset_count - (offset_count % 3)) * 2) / 3;
+max_offset_count = functions->top_bracket;
+if (offset_count > max_offset_count)
+ offset_count = max_offset_count;
+arguments.offset_count = offset_count;
+
+if (functions->callback)
+ arguments.stack = (struct sljit_stack *)functions->callback(functions->userdata);
+else
+ arguments.stack = (struct sljit_stack *)functions->userdata;
+
+if (arguments.stack == NULL)
+ retval = jit_machine_stack_exec(&arguments, functions->executable_funcs[mode]);
+else
+ {
+ convert_executable_func.executable_func = functions->executable_funcs[mode];
+ retval = convert_executable_func.call_executable_func(&arguments);
+ }
+
+if (retval * 2 > offset_count)
+ retval = 0;
+if ((extra_data->flags & PCRE_EXTRA_MARK) != 0)
+ *(extra_data->mark) = arguments.mark_ptr;
+
+return retval;
+}
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_jit_exec(const pcre *argument_re, const pcre_extra *extra_data,
+ PCRE_SPTR subject, int length, int start_offset, int options,
+ int *offsets, int offset_count, pcre_jit_stack *stack)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_jit_exec(const pcre16 *argument_re, const pcre16_extra *extra_data,
+ PCRE_SPTR16 subject, int length, int start_offset, int options,
+ int *offsets, int offset_count, pcre16_jit_stack *stack)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_jit_exec(const pcre32 *argument_re, const pcre32_extra *extra_data,
+ PCRE_SPTR32 subject, int length, int start_offset, int options,
+ int *offsets, int offset_count, pcre32_jit_stack *stack)
+#endif
+{
+pcre_uchar *subject_ptr = (pcre_uchar *)subject;
+executable_functions *functions = (executable_functions *)extra_data->executable_jit;
+union {
+ void* executable_func;
+ jit_function call_executable_func;
+} convert_executable_func;
+jit_arguments arguments;
+int max_offset_count;
+int retval;
+int mode = JIT_COMPILE;
+
+SLJIT_UNUSED_ARG(argument_re);
+
+/* Plausibility checks */
+if ((options & ~PUBLIC_JIT_EXEC_OPTIONS) != 0) return PCRE_ERROR_JIT_BADOPTION;
+
+if ((options & PCRE_PARTIAL_HARD) != 0)
+ mode = JIT_PARTIAL_HARD_COMPILE;
+else if ((options & PCRE_PARTIAL_SOFT) != 0)
+ mode = JIT_PARTIAL_SOFT_COMPILE;
+
+if (functions->executable_funcs[mode] == NULL)
+ return PCRE_ERROR_JIT_BADOPTION;
+
+/* Sanity checks should be handled by pcre_exec. */
+arguments.stack = (struct sljit_stack *)stack;
+arguments.str = subject_ptr + start_offset;
+arguments.begin = subject_ptr;
+arguments.end = subject_ptr + length;
+arguments.mark_ptr = NULL;
+/* JIT decreases this value less frequently than the interpreter. */
+arguments.limit_match = ((extra_data->flags & PCRE_EXTRA_MATCH_LIMIT) == 0) ? MATCH_LIMIT : (pcre_uint32)(extra_data->match_limit);
+if (functions->limit_match != 0 && functions->limit_match < arguments.limit_match)
+ arguments.limit_match = functions->limit_match;
+arguments.notbol = (options & PCRE_NOTBOL) != 0;
+arguments.noteol = (options & PCRE_NOTEOL) != 0;
+arguments.notempty = (options & PCRE_NOTEMPTY) != 0;
+arguments.notempty_atstart = (options & PCRE_NOTEMPTY_ATSTART) != 0;
+arguments.offsets = offsets;
+arguments.callout_data = (extra_data->flags & PCRE_EXTRA_CALLOUT_DATA) != 0 ? extra_data->callout_data : NULL;
+arguments.real_offset_count = offset_count;
+
+/* pcre_exec() rounds offset_count to a multiple of 3, and then uses only 2/3 of
+the output vector for storing captured strings, with the remainder used as
+workspace. We don't need the workspace here. For compatibility, we limit the
+number of captured strings in the same way as pcre_exec(), so that the user
+gets the same result with and without JIT. */
+
+if (offset_count != 2)
+ offset_count = ((offset_count - (offset_count % 3)) * 2) / 3;
+max_offset_count = functions->top_bracket;
+if (offset_count > max_offset_count)
+ offset_count = max_offset_count;
+arguments.offset_count = offset_count;
+
+convert_executable_func.executable_func = functions->executable_funcs[mode];
+retval = convert_executable_func.call_executable_func(&arguments);
+
+if (retval * 2 > offset_count)
+ retval = 0;
+if ((extra_data->flags & PCRE_EXTRA_MARK) != 0)
+ *(extra_data->mark) = arguments.mark_ptr;
+
+return retval;
+}
+
+void
+PRIV(jit_free)(void *executable_funcs)
+{
+int i;
+executable_functions *functions = (executable_functions *)executable_funcs;
+for (i = 0; i < JIT_NUMBER_OF_COMPILE_MODES; i++)
+ {
+ if (functions->executable_funcs[i] != NULL)
+ sljit_free_code(functions->executable_funcs[i]);
+ }
+SLJIT_FREE(functions);
+}
+
+int
+PRIV(jit_get_size)(void *executable_funcs)
+{
+int i;
+sljit_uw size = 0;
+sljit_uw *executable_sizes = ((executable_functions *)executable_funcs)->executable_sizes;
+for (i = 0; i < JIT_NUMBER_OF_COMPILE_MODES; i++)
+ size += executable_sizes[i];
+return (int)size;
+}
+
+const char*
+PRIV(jit_get_target)(void)
+{
+return sljit_get_platform_name();
+}
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DECL pcre_jit_stack *
+pcre_jit_stack_alloc(int startsize, int maxsize)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DECL pcre16_jit_stack *
+pcre16_jit_stack_alloc(int startsize, int maxsize)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DECL pcre32_jit_stack *
+pcre32_jit_stack_alloc(int startsize, int maxsize)
+#endif
+{
+if (startsize < 1 || maxsize < 1)
+ return NULL;
+if (startsize > maxsize)
+ startsize = maxsize;
+startsize = (startsize + STACK_GROWTH_RATE - 1) & ~(STACK_GROWTH_RATE - 1);
+maxsize = (maxsize + STACK_GROWTH_RATE - 1) & ~(STACK_GROWTH_RATE - 1);
+return (PUBL(jit_stack)*)sljit_allocate_stack(startsize, maxsize);
+}
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DECL void
+pcre_jit_stack_free(pcre_jit_stack *stack)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DECL void
+pcre16_jit_stack_free(pcre16_jit_stack *stack)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DECL void
+pcre32_jit_stack_free(pcre32_jit_stack *stack)
+#endif
+{
+sljit_free_stack((struct sljit_stack *)stack);
+}
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DECL void
+pcre_assign_jit_stack(pcre_extra *extra, pcre_jit_callback callback, void *userdata)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DECL void
+pcre16_assign_jit_stack(pcre16_extra *extra, pcre16_jit_callback callback, void *userdata)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DECL void
+pcre32_assign_jit_stack(pcre32_extra *extra, pcre32_jit_callback callback, void *userdata)
+#endif
+{
+executable_functions *functions;
+if (extra != NULL &&
+ (extra->flags & PCRE_EXTRA_EXECUTABLE_JIT) != 0 &&
+ extra->executable_jit != NULL)
+ {
+ functions = (executable_functions *)extra->executable_jit;
+ functions->callback = callback;
+ functions->userdata = userdata;
+ }
+}
+
+#else /* SUPPORT_JIT */
+
+/* These are dummy functions to avoid linking errors when JIT support is not
+being compiled. */
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DECL pcre_jit_stack *
+pcre_jit_stack_alloc(int startsize, int maxsize)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DECL pcre16_jit_stack *
+pcre16_jit_stack_alloc(int startsize, int maxsize)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DECL pcre32_jit_stack *
+pcre32_jit_stack_alloc(int startsize, int maxsize)
+#endif
+{
+(void)startsize;
+(void)maxsize;
+return NULL;
+}
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DECL void
+pcre_jit_stack_free(pcre_jit_stack *stack)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DECL void
+pcre16_jit_stack_free(pcre16_jit_stack *stack)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DECL void
+pcre32_jit_stack_free(pcre32_jit_stack *stack)
+#endif
+{
+(void)stack;
+}
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DECL void
+pcre_assign_jit_stack(pcre_extra *extra, pcre_jit_callback callback, void *userdata)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DECL void
+pcre16_assign_jit_stack(pcre16_extra *extra, pcre16_jit_callback callback, void *userdata)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DECL void
+pcre32_assign_jit_stack(pcre32_extra *extra, pcre32_jit_callback callback, void *userdata)
+#endif
+{
+(void)extra;
+(void)callback;
+(void)userdata;
+}
+
+#endif
+
+/* End of pcre_jit_compile.c */
diff --git a/pcre/pcre_jit_test.c b/pcre/pcre_jit_test.c
new file mode 100644
index 00000000000..1c247c58117
--- /dev/null
+++ b/pcre/pcre_jit_test.c
@@ -0,0 +1,1691 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Main Library written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+ This JIT compiler regression test program was written by Zoltan Herczeg
+ Copyright (c) 2010-2012
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include
+#include
+#include "pcre.h"
+
+
+#include "pcre_internal.h"
+
+#define PCRE_BUG 0x80000000
+
+/*
+ Letter characters:
+ \xe6\x92\xad = 0x64ad = 25773 (kanji)
+ Non-letter characters:
+ \xc2\xa1 = 0xa1 = (Inverted Exclamation Mark)
+ \xf3\xa9\xb7\x80 = 0xe9dc0 = 957888
+ \xed\xa0\x80 = 55296 = 0xd800 (Invalid UTF character)
+ \xed\xb0\x80 = 56320 = 0xdc00 (Invalid UTF character)
+ Newlines:
+ \xc2\x85 = 0x85 = 133 (NExt Line = NEL)
+ \xe2\x80\xa8 = 0x2028 = 8232 (Line Separator)
+ Othercase pairs:
+ \xc3\xa9 = 0xe9 = 233 (e')
+ \xc3\x89 = 0xc9 = 201 (E')
+ \xc3\xa1 = 0xe1 = 225 (a')
+ \xc3\x81 = 0xc1 = 193 (A')
+ \xc8\xba = 0x23a = 570
+ \xe2\xb1\xa5 = 0x2c65 = 11365
+ \xe1\xbd\xb8 = 0x1f78 = 8056
+ \xe1\xbf\xb8 = 0x1ff8 = 8184
+ \xf0\x90\x90\x80 = 0x10400 = 66560
+ \xf0\x90\x90\xa8 = 0x10428 = 66600
+ Mark property:
+ \xcc\x8d = 0x30d = 781
+ Special:
+ \xdf\xbf = 0x7ff = 2047 (highest 2 byte character)
+ \xe0\xa0\x80 = 0x800 = 2048 (lowest 2 byte character)
+ \xef\xbf\xbf = 0xffff = 65535 (highest 3 byte character)
+ \xf0\x90\x80\x80 = 0x10000 = 65536 (lowest 4 byte character)
+ \xf4\x8f\xbf\xbf = 0x10ffff = 1114111 (highest allowed utf character)
+*/
+
+static int regression_tests(void);
+
+int main(void)
+{
+ int jit = 0;
+#if defined SUPPORT_PCRE8
+ pcre_config(PCRE_CONFIG_JIT, &jit);
+#elif defined SUPPORT_PCRE16
+ pcre16_config(PCRE_CONFIG_JIT, &jit);
+#elif defined SUPPORT_PCRE32
+ pcre32_config(PCRE_CONFIG_JIT, &jit);
+#endif
+ if (!jit) {
+ printf("JIT must be enabled to run pcre_jit_test\n");
+ return 1;
+ }
+ return regression_tests();
+}
+
+/* --------------------------------------------------------------------------------------- */
+
+#if !(defined SUPPORT_PCRE8) && !(defined SUPPORT_PCRE16) && !(defined SUPPORT_PCRE32)
+#error SUPPORT_PCRE8 or SUPPORT_PCRE16 or SUPPORT_PCRE32 must be defined
+#endif
+
+#define MUA (PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_ANYCRLF)
+#define MUAP (PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_ANYCRLF | PCRE_UCP)
+#define CMUA (PCRE_CASELESS | PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_ANYCRLF)
+#define CMUAP (PCRE_CASELESS | PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_ANYCRLF | PCRE_UCP)
+#define MA (PCRE_MULTILINE | PCRE_NEWLINE_ANYCRLF)
+#define MAP (PCRE_MULTILINE | PCRE_NEWLINE_ANYCRLF | PCRE_UCP)
+#define CMA (PCRE_CASELESS | PCRE_MULTILINE | PCRE_NEWLINE_ANYCRLF)
+
+#define OFFSET_MASK 0x00ffff
+#define F_NO8 0x010000
+#define F_NO16 0x020000
+#define F_NO32 0x020000
+#define F_NOMATCH 0x040000
+#define F_DIFF 0x080000
+#define F_FORCECONV 0x100000
+#define F_PROPERTY 0x200000
+#define F_STUDY 0x400000
+
+struct regression_test_case {
+ int flags;
+ int start_offset;
+ const char *pattern;
+ const char *input;
+};
+
+static struct regression_test_case regression_test_cases[] = {
+ /* Constant strings. */
+ { MUA, 0, "AbC", "AbAbC" },
+ { MUA, 0, "ACCEPT", "AACACCACCEACCEPACCEPTACCEPTT" },
+ { CMUA, 0, "aA#\xc3\xa9\xc3\x81", "aA#Aa#\xc3\x89\xc3\xa1" },
+ { MA, 0, "[^a]", "aAbB" },
+ { CMA, 0, "[^m]", "mMnN" },
+ { MA, 0, "a[^b][^#]", "abacd" },
+ { CMA, 0, "A[^B][^E]", "abacd" },
+ { CMUA, 0, "[^x][^#]", "XxBll" },
+ { MUA, 0, "[^a]", "aaa\xc3\xa1#Ab" },
+ { CMUA, 0, "[^A]", "aA\xe6\x92\xad" },
+ { MUA, 0, "\\W(\\W)?\\w", "\r\n+bc" },
+ { MUA, 0, "\\W(\\W)?\\w", "\n\r+bc" },
+ { MUA, 0, "\\W(\\W)?\\w", "\r\r+bc" },
+ { MUA, 0, "\\W(\\W)?\\w", "\n\n+bc" },
+ { MUA, 0, "[axd]", "sAXd" },
+ { CMUA, 0, "[axd]", "sAXd" },
+ { CMUA, 0 | F_NOMATCH, "[^axd]", "DxA" },
+ { MUA, 0, "[a-dA-C]", "\xe6\x92\xad\xc3\xa9.B" },
+ { MUA, 0, "[^a-dA-C]", "\xe6\x92\xad\xc3\xa9" },
+ { CMUA, 0, "[^\xc3\xa9]", "\xc3\xa9\xc3\x89." },
+ { MUA, 0, "[^\xc3\xa9]", "\xc3\xa9\xc3\x89." },
+ { MUA, 0, "[^a]", "\xc2\x80[]" },
+ { CMUA, 0, "\xf0\x90\x90\xa7", "\xf0\x90\x91\x8f" },
+ { CMA, 0, "1a2b3c4", "1a2B3c51A2B3C4" },
+ { PCRE_CASELESS, 0, "\xff#a", "\xff#\xff\xfe##\xff#A" },
+ { PCRE_CASELESS, 0, "\xfe", "\xff\xfc#\xfe\xfe" },
+ { PCRE_CASELESS, 0, "a1", "Aa1" },
+ { MA, 0, "\\Ca", "cda" },
+ { CMA, 0, "\\Ca", "CDA" },
+ { MA, 0 | F_NOMATCH, "\\Cx", "cda" },
+ { CMA, 0 | F_NOMATCH, "\\Cx", "CDA" },
+ { CMUAP, 0, "\xf0\x90\x90\x80\xf0\x90\x90\xa8", "\xf0\x90\x90\xa8\xf0\x90\x90\x80" },
+ { CMUAP, 0, "\xf0\x90\x90\x80{2}", "\xf0\x90\x90\x80#\xf0\x90\x90\xa8\xf0\x90\x90\x80" },
+ { CMUAP, 0, "\xf0\x90\x90\xa8{2}", "\xf0\x90\x90\x80#\xf0\x90\x90\xa8\xf0\x90\x90\x80" },
+ { CMUAP, 0, "\xe1\xbd\xb8\xe1\xbf\xb8", "\xe1\xbf\xb8\xe1\xbd\xb8" },
+
+ /* Assertions. */
+ { MUA, 0, "\\b[^A]", "A_B#" },
+ { MA, 0 | F_NOMATCH, "\\b\\W", "\n*" },
+ { MUA, 0, "\\B[^,]\\b[^s]\\b", "#X" },
+ { MAP, 0, "\\B", "_\xa1" },
+ { MAP, 0, "\\b_\\b[,A]\\B", "_," },
+ { MUAP, 0, "\\b", "\xe6\x92\xad!" },
+ { MUAP, 0, "\\B", "_\xc2\xa1\xc3\xa1\xc2\x85" },
+ { MUAP, 0, "\\b[^A]\\B[^c]\\b[^_]\\B", "_\xc3\xa1\xe2\x80\xa8" },
+ { MUAP, 0, "\\b\\w+\\B", "\xc3\x89\xc2\xa1\xe6\x92\xad\xc3\x81\xc3\xa1" },
+ { MUA, 0 | F_NOMATCH, "\\b.", "\xcd\xbe" },
+ { CMUAP, 0, "\\By", "\xf0\x90\x90\xa8y" },
+ { MA, 0 | F_NOMATCH, "\\R^", "\n" },
+ { MA, 1 | F_NOMATCH, "^", "\n" },
+ { 0, 0, "^ab", "ab" },
+ { 0, 0 | F_NOMATCH, "^ab", "aab" },
+ { PCRE_MULTILINE | PCRE_NEWLINE_CRLF, 0, "^a", "\r\raa\n\naa\r\naa" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_ANYCRLF, 0, "^-", "\xe2\x80\xa8--\xc2\x85-\r\n-" },
+ { PCRE_MULTILINE | PCRE_NEWLINE_ANY, 0, "^-", "a--b--\x85--" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_ANY, 0, "^-", "a--\xe2\x80\xa8--" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_ANY, 0, "^-", "a--\xc2\x85--" },
+ { 0, 0, "ab$", "ab" },
+ { 0, 0 | F_NOMATCH, "ab$", "abab\n\n" },
+ { PCRE_DOLLAR_ENDONLY, 0 | F_NOMATCH, "ab$", "abab\r\n" },
+ { PCRE_MULTILINE | PCRE_NEWLINE_CRLF, 0, "a$", "\r\raa\n\naa\r\naa" },
+ { PCRE_MULTILINE | PCRE_NEWLINE_ANY, 0, "a$", "aaa" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_ANYCRLF, 0, "#$", "#\xc2\x85###\r#" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_ANY, 0, "#$", "#\xe2\x80\xa9" },
+ { PCRE_NOTBOL | PCRE_NEWLINE_ANY, 0 | F_NOMATCH, "^a", "aa\naa" },
+ { PCRE_NOTBOL | PCRE_MULTILINE | PCRE_NEWLINE_ANY, 0, "^a", "aa\naa" },
+ { PCRE_NOTEOL | PCRE_NEWLINE_ANY, 0 | F_NOMATCH, "a$", "aa\naa" },
+ { PCRE_NOTEOL | PCRE_NEWLINE_ANY, 0 | F_NOMATCH, "a$", "aa\r\n" },
+ { PCRE_UTF8 | PCRE_DOLLAR_ENDONLY | PCRE_NEWLINE_ANY, 0 | F_PROPERTY, "\\p{Any}{2,}$", "aa\r\n" },
+ { PCRE_NOTEOL | PCRE_MULTILINE | PCRE_NEWLINE_ANY, 0, "a$", "aa\naa" },
+ { PCRE_NEWLINE_CR, 0, ".\\Z", "aaa" },
+ { PCRE_NEWLINE_CR | PCRE_UTF8, 0, "a\\Z", "aaa\r" },
+ { PCRE_NEWLINE_CR, 0, ".\\Z", "aaa\n" },
+ { PCRE_NEWLINE_CRLF, 0, ".\\Z", "aaa\r" },
+ { PCRE_NEWLINE_CRLF | PCRE_UTF8, 0, ".\\Z", "aaa\n" },
+ { PCRE_NEWLINE_CRLF, 0, ".\\Z", "aaa\r\n" },
+ { PCRE_NEWLINE_ANYCRLF | PCRE_UTF8, 0, ".\\Z", "aaa" },
+ { PCRE_NEWLINE_ANYCRLF | PCRE_UTF8, 0, ".\\Z", "aaa\r" },
+ { PCRE_NEWLINE_ANYCRLF | PCRE_UTF8, 0, ".\\Z", "aaa\n" },
+ { PCRE_NEWLINE_ANYCRLF | PCRE_UTF8, 0, ".\\Z", "aaa\r\n" },
+ { PCRE_NEWLINE_ANYCRLF | PCRE_UTF8, 0, ".\\Z", "aaa\xe2\x80\xa8" },
+ { PCRE_NEWLINE_ANYCRLF | PCRE_UTF8, 0, ".\\Z", "aaa" },
+ { PCRE_NEWLINE_ANYCRLF | PCRE_UTF8, 0, ".\\Z", "aaa\r" },
+ { PCRE_NEWLINE_ANYCRLF | PCRE_UTF8, 0, ".\\Z", "aaa\n" },
+ { PCRE_NEWLINE_ANYCRLF | PCRE_UTF8, 0, ".\\Z", "aaa\r\n" },
+ { PCRE_NEWLINE_ANY | PCRE_UTF8, 0, ".\\Z", "aaa\xc2\x85" },
+ { PCRE_NEWLINE_ANY | PCRE_UTF8, 0, ".\\Z", "aaa\xe2\x80\xa8" },
+ { MA, 0, "\\Aa", "aaa" },
+ { MA, 1 | F_NOMATCH, "\\Aa", "aaa" },
+ { MA, 1, "\\Ga", "aaa" },
+ { MA, 1 | F_NOMATCH, "\\Ga", "aba" },
+ { MA, 0, "a\\z", "aaa" },
+ { MA, 0 | F_NOMATCH, "a\\z", "aab" },
+
+ /* Brackets. */
+ { MUA, 0, "(ab|bb|cd)", "bacde" },
+ { MUA, 0, "(?:ab|a)(bc|c)", "ababc" },
+ { MUA, 0, "((ab|(cc))|(bb)|(?:cd|efg))", "abac" },
+ { CMUA, 0, "((aB|(Cc))|(bB)|(?:cd|EFg))", "AcCe" },
+ { MUA, 0, "((ab|(cc))|(bb)|(?:cd|ebg))", "acebebg" },
+ { MUA, 0, "(?:(a)|(?:b))(cc|(?:d|e))(a|b)k", "accabdbbccbk" },
+
+ /* Greedy and non-greedy ? operators. */
+ { MUA, 0, "(?:a)?a", "laab" },
+ { CMUA, 0, "(A)?A", "llaab" },
+ { MUA, 0, "(a)?\?a", "aab" }, /* ?? is the prefix of trygraphs in GCC. */
+ { MUA, 0, "(a)?a", "manm" },
+ { CMUA, 0, "(a|b)?\?d((?:e)?)", "ABABdx" },
+ { MUA, 0, "(a|b)?\?d((?:e)?)", "abcde" },
+ { MUA, 0, "((?:ab)?\?g|b(?:g(nn|d)?\?)?)?\?(?:n)?m", "abgnbgnnbgdnmm" },
+
+ /* Greedy and non-greedy + operators */
+ { MUA, 0, "(aa)+aa", "aaaaaaa" },
+ { MUA, 0, "(aa)+?aa", "aaaaaaa" },
+ { MUA, 0, "(?:aba|ab|a)+l", "ababamababal" },
+ { MUA, 0, "(?:aba|ab|a)+?l", "ababamababal" },
+ { MUA, 0, "(a(?:bc|cb|b|c)+?|ss)+e", "accssabccbcacbccbbXaccssabccbcacbccbbe" },
+ { MUA, 0, "(a(?:bc|cb|b|c)+|ss)+?e", "accssabccbcacbccbbXaccssabccbcacbccbbe" },
+ { MUA, 0, "(?:(b(c)+?)+)?\?(?:(bc)+|(cb)+)+(?:m)+", "bccbcccbcbccbcbPbccbcccbcbccbcbmmn" },
+
+ /* Greedy and non-greedy * operators */
+ { CMUA, 0, "(?:AA)*AB", "aaaaaaamaaaaaaab" },
+ { MUA, 0, "(?:aa)*?ab", "aaaaaaamaaaaaaab" },
+ { MUA, 0, "(aa|ab)*ab", "aaabaaab" },
+ { CMUA, 0, "(aa|Ab)*?aB", "aaabaaab" },
+ { MUA, 0, "(a|b)*(?:a)*(?:b)*m", "abbbaaababanabbbaaababamm" },
+ { MUA, 0, "(a|b)*?(?:a)*?(?:b)*?m", "abbbaaababanabbbaaababamm" },
+ { MA, 0, "a(a(\\1*)a|(b)b+){0}a", "aa" },
+ { MA, 0, "((?:a|)*){0}a", "a" },
+
+ /* Combining ? + * operators */
+ { MUA, 0, "((bm)+)?\?(?:a)*(bm)+n|((am)+?)?(?:a)+(am)*n", "bmbmabmamaaamambmaman" },
+ { MUA, 0, "(((ab)?cd)*ef)+g", "abcdcdefcdefefmabcdcdefcdefefgg" },
+ { MUA, 0, "(((ab)?\?cd)*?ef)+?g", "abcdcdefcdefefmabcdcdefcdefefgg" },
+ { MUA, 0, "(?:(ab)?c|(?:ab)+?d)*g", "ababcdccababddg" },
+ { MUA, 0, "(?:(?:ab)?\?c|(ab)+d)*?g", "ababcdccababddg" },
+
+ /* Single character iterators. */
+ { MUA, 0, "(a+aab)+aaaab", "aaaabcaaaabaabcaabcaaabaaaab" },
+ { MUA, 0, "(a*a*aab)+x", "aaaaabaabaaabmaabx" },
+ { MUA, 0, "(a*?(b|ab)a*?)+x", "aaaabcxbbaabaacbaaabaabax" },
+ { MUA, 0, "(a+(ab|ad)a+)+x", "aaabaaaadaabaaabaaaadaaax" },
+ { MUA, 0, "(a?(a)a?)+(aaa)", "abaaabaaaaaaaa" },
+ { MUA, 0, "(a?\?(a)a?\?)+(b)", "aaaacaaacaacacbaaab" },
+ { MUA, 0, "(a{0,4}(b))+d", "aaaaaabaabcaaaaabaaaaabd" },
+ { MUA, 0, "(a{0,4}?[^b])+d+(a{0,4}[^b])d+", "aaaaadaaaacaadddaaddd" },
+ { MUA, 0, "(ba{2})+c", "baabaaabacbaabaac" },
+ { MUA, 0, "(a*+bc++)+", "aaabbcaaabcccab" },
+ { MUA, 0, "(a?+[^b])+", "babaacacb" },
+ { MUA, 0, "(a{0,3}+b)(a{0,3}+b)(a{0,3}+)[^c]", "abaabaaacbaabaaaac" },
+ { CMUA, 0, "([a-c]+[d-f]+?)+?g", "aBdacdehAbDaFgA" },
+ { CMUA, 0, "[c-f]+k", "DemmFke" },
+ { MUA, 0, "([DGH]{0,4}M)+", "GGDGHDGMMHMDHHGHM" },
+ { MUA, 0, "([a-c]{4,}s)+", "abasabbasbbaabsbba" },
+ { CMUA, 0, "[ace]{3,7}", "AcbDAcEEcEd" },
+ { CMUA, 0, "[ace]{3,7}?", "AcbDAcEEcEd" },
+ { CMUA, 0, "[ace]{3,}", "AcbDAcEEcEd" },
+ { CMUA, 0, "[ace]{3,}?", "AcbDAcEEcEd" },
+ { MUA, 0, "[ckl]{2,}?g", "cdkkmlglglkcg" },
+ { CMUA, 0, "[ace]{5}?", "AcCebDAcEEcEd" },
+ { MUA, 0, "([AbC]{3,5}?d)+", "BACaAbbAEAACCbdCCbdCCAAbb" },
+ { MUA, 0, "([^ab]{0,}s){2}", "abaabcdsABamsDDs" },
+ { MUA, 0, "\\b\\w+\\B", "x,a_cd" },
+ { MUAP, 0, "\\b[^\xc2\xa1]+\\B", "\xc3\x89\xc2\xa1\xe6\x92\xad\xc3\x81\xc3\xa1" },
+ { CMUA, 0, "[^b]+(a*)([^c]?d{3})", "aaaaddd" },
+ { CMUAP, 0, "\xe1\xbd\xb8{2}", "\xe1\xbf\xb8#\xe1\xbf\xb8\xe1\xbd\xb8" },
+ { CMUA, 0, "[^\xf0\x90\x90\x80]{2,4}@", "\xf0\x90\x90\xa8\xf0\x90\x90\x80###\xf0\x90\x90\x80@@@" },
+ { CMUA, 0, "[^\xe1\xbd\xb8][^\xc3\xa9]", "\xe1\xbd\xb8\xe1\xbf\xb8\xc3\xa9\xc3\x89#" },
+ { MUA, 0, "[^\xe1\xbd\xb8][^\xc3\xa9]", "\xe1\xbd\xb8\xe1\xbf\xb8\xc3\xa9\xc3\x89#" },
+ { MUA, 0, "[^\xe1\xbd\xb8]{3,}?", "##\xe1\xbd\xb8#\xe1\xbd\xb8#\xc3\x89#\xe1\xbd\xb8" },
+
+ /* Bracket repeats with limit. */
+ { MUA, 0, "(?:(ab){2}){5}M", "abababababababababababM" },
+ { MUA, 0, "(?:ab|abab){1,5}M", "abababababababababababM" },
+ { MUA, 0, "(?>ab|abab){1,5}M", "abababababababababababM" },
+ { MUA, 0, "(?:ab|abab){1,5}?M", "abababababababababababM" },
+ { MUA, 0, "(?>ab|abab){1,5}?M", "abababababababababababM" },
+ { MUA, 0, "(?:(ab){1,4}?){1,3}?M", "abababababababababababababM" },
+ { MUA, 0, "(?:(ab){1,4}){1,3}abababababababababababM", "ababababababababababababM" },
+ { MUA, 0 | F_NOMATCH, "(?:(ab){1,4}){1,3}abababababababababababM", "abababababababababababM" },
+ { MUA, 0, "(ab){4,6}?M", "abababababababM" },
+
+ /* Basic character sets. */
+ { MUA, 0, "(?:\\s)+(?:\\S)+", "ab \t\xc3\xa9\xe6\x92\xad " },
+ { MUA, 0, "(\\w)*(k)(\\W)?\?", "abcdef abck11" },
+ { MUA, 0, "\\((\\d)+\\)\\D", "a() (83 (8)2 (9)ab" },
+ { MUA, 0, "\\w(\\s|(?:\\d)*,)+\\w\\wb", "a 5, 4,, bb 5, 4,, aab" },
+ { MUA, 0, "(\\v+)(\\V+)", "\x0e\xc2\x85\xe2\x80\xa8\x0b\x09\xe2\x80\xa9" },
+ { MUA, 0, "(\\h+)(\\H+)", "\xe2\x80\xa8\xe2\x80\x80\x20\xe2\x80\x8a\xe2\x81\x9f\xe3\x80\x80\x09\x20\xc2\xa0\x0a" },
+
+ /* Unicode properties. */
+ { MUAP, 0, "[1-5\xc3\xa9\\w]", "\xc3\xa1_" },
+ { MUAP, 0 | F_PROPERTY, "[\xc3\x81\\p{Ll}]", "A_\xc3\x89\xc3\xa1" },
+ { MUAP, 0, "[\\Wd-h_x-z]+", "a\xc2\xa1#_yhzdxi" },
+ { MUAP, 0 | F_NOMATCH | F_PROPERTY, "[\\P{Any}]", "abc" },
+ { MUAP, 0 | F_NOMATCH | F_PROPERTY, "[^\\p{Any}]", "abc" },
+ { MUAP, 0 | F_NOMATCH | F_PROPERTY, "[\\P{Any}\xc3\xa1-\xc3\xa8]", "abc" },
+ { MUAP, 0 | F_NOMATCH | F_PROPERTY, "[^\\p{Any}\xc3\xa1-\xc3\xa8]", "abc" },
+ { MUAP, 0 | F_NOMATCH | F_PROPERTY, "[\xc3\xa1-\xc3\xa8\\P{Any}]", "abc" },
+ { MUAP, 0 | F_NOMATCH | F_PROPERTY, "[^\xc3\xa1-\xc3\xa8\\p{Any}]", "abc" },
+ { MUAP, 0 | F_PROPERTY, "[\xc3\xa1-\xc3\xa8\\p{Any}]", "abc" },
+ { MUAP, 0 | F_PROPERTY, "[^\xc3\xa1-\xc3\xa8\\P{Any}]", "abc" },
+ { MUAP, 0, "[b-\xc3\xa9\\s]", "a\xc\xe6\x92\xad" },
+ { CMUAP, 0, "[\xc2\x85-\xc2\x89\xc3\x89]", "\xc2\x84\xc3\xa9" },
+ { MUAP, 0, "[^b-d^&\\s]{3,}", "db^ !a\xe2\x80\xa8_ae" },
+ { MUAP, 0 | F_PROPERTY, "[^\\S\\P{Any}][\\sN]{1,3}[\\P{N}]{4}", "\xe2\x80\xaa\xa N\x9\xc3\xa9_0" },
+ { MUA, 0 | F_PROPERTY, "[^\\P{L}\x9!D-F\xa]{2,3}", "\x9,.DF\xa.CG\xc3\x81" },
+ { CMUAP, 0, "[\xc3\xa1-\xc3\xa9_\xe2\x80\xa0-\xe2\x80\xaf]{1,5}[^\xe2\x80\xa0-\xe2\x80\xaf]", "\xc2\xa1\xc3\x89\xc3\x89\xe2\x80\xaf_\xe2\x80\xa0" },
+ { MUAP, 0 | F_PROPERTY, "[\xc3\xa2-\xc3\xa6\xc3\x81-\xc3\x84\xe2\x80\xa8-\xe2\x80\xa9\xe6\x92\xad\\p{Zs}]{2,}", "\xe2\x80\xa7\xe2\x80\xa9\xe6\x92\xad \xe6\x92\xae" },
+ { MUAP, 0 | F_PROPERTY, "[\\P{L&}]{2}[^\xc2\x85-\xc2\x89\\p{Ll}\\p{Lu}]{2}", "\xc3\xa9\xe6\x92\xad.a\xe6\x92\xad|\xc2\x8a#" },
+ { PCRE_UCP, 0, "[a-b\\s]{2,5}[^a]", "AB baaa" },
+
+ /* Possible empty brackets. */
+ { MUA, 0, "(?:|ab||bc|a)+d", "abcxabcabd" },
+ { MUA, 0, "(|ab||bc|a)+d", "abcxabcabd" },
+ { MUA, 0, "(?:|ab||bc|a)*d", "abcxabcabd" },
+ { MUA, 0, "(|ab||bc|a)*d", "abcxabcabd" },
+ { MUA, 0, "(?:|ab||bc|a)+?d", "abcxabcabd" },
+ { MUA, 0, "(|ab||bc|a)+?d", "abcxabcabd" },
+ { MUA, 0, "(?:|ab||bc|a)*?d", "abcxabcabd" },
+ { MUA, 0, "(|ab||bc|a)*?d", "abcxabcabd" },
+ { MUA, 0, "(((a)*?|(?:ba)+)+?|(?:|c|ca)*)*m", "abaacaccabacabalabaacaccabacabamm" },
+ { MUA, 0, "(?:((?:a)*|(ba)+?)+|(|c|ca)*?)*?m", "abaacaccabacabalabaacaccabacabamm" },
+
+ /* Start offset. */
+ { MUA, 3, "(\\d|(?:\\w)*\\w)+", "0ac01Hb" },
+ { MUA, 4 | F_NOMATCH, "(\\w\\W\\w)+", "ab#d" },
+ { MUA, 2 | F_NOMATCH, "(\\w\\W\\w)+", "ab#d" },
+ { MUA, 1, "(\\w\\W\\w)+", "ab#d" },
+
+ /* Newline. */
+ { PCRE_MULTILINE | PCRE_NEWLINE_CRLF, 0, "\\W{0,2}[^#]{3}", "\r\n#....." },
+ { PCRE_MULTILINE | PCRE_NEWLINE_CR, 0, "\\W{0,2}[^#]{3}", "\r\n#....." },
+ { PCRE_MULTILINE | PCRE_NEWLINE_CRLF, 0, "\\W{1,3}[^#]", "\r\n##...." },
+
+ /* Any character except newline or any newline. */
+ { PCRE_NEWLINE_CRLF, 0, ".", "\r" },
+ { PCRE_NEWLINE_CRLF | PCRE_UTF8, 0, ".(.).", "a\xc3\xa1\r\n\n\r\r" },
+ { PCRE_NEWLINE_ANYCRLF, 0, ".(.)", "a\rb\nc\r\n\xc2\x85\xe2\x80\xa8" },
+ { PCRE_NEWLINE_ANYCRLF | PCRE_UTF8, 0, ".(.)", "a\rb\nc\r\n\xc2\x85\xe2\x80\xa8" },
+ { PCRE_NEWLINE_ANY | PCRE_UTF8, 0, "(.).", "a\rb\nc\r\n\xc2\x85\xe2\x80\xa9$de" },
+ { PCRE_NEWLINE_ANYCRLF | PCRE_UTF8, 0 | F_NOMATCH, ".(.).", "\xe2\x80\xa8\nb\r" },
+ { PCRE_NEWLINE_ANY, 0, "(.)(.)", "#\x85#\r#\n#\r\n#\x84" },
+ { PCRE_NEWLINE_ANY | PCRE_UTF8, 0, "(.+)#", "#\rMn\xc2\x85#\n###" },
+ { PCRE_BSR_ANYCRLF, 0, "\\R", "\r" },
+ { PCRE_BSR_ANYCRLF, 0, "\\R", "\x85#\r\n#" },
+ { PCRE_BSR_UNICODE | PCRE_UTF8, 0, "\\R", "ab\xe2\x80\xa8#c" },
+ { PCRE_BSR_UNICODE | PCRE_UTF8, 0, "\\R", "ab\r\nc" },
+ { PCRE_NEWLINE_CRLF | PCRE_BSR_UNICODE | PCRE_UTF8, 0, "(\\R.)+", "\xc2\x85\r\n#\xe2\x80\xa8\n\r\n\r" },
+ { MUA, 0 | F_NOMATCH, "\\R+", "ab" },
+ { MUA, 0, "\\R+", "ab\r\n\r" },
+ { MUA, 0, "\\R*", "ab\r\n\r" },
+ { MUA, 0, "\\R*", "\r\n\r" },
+ { MUA, 0, "\\R{2,4}", "\r\nab\r\r" },
+ { MUA, 0, "\\R{2,4}", "\r\nab\n\n\n\r\r\r" },
+ { MUA, 0, "\\R{2,}", "\r\nab\n\n\n\r\r\r" },
+ { MUA, 0, "\\R{0,3}", "\r\n\r\n\r\n\r\n\r\n" },
+ { MUA, 0 | F_NOMATCH, "\\R+\\R\\R", "\r\n\r\n" },
+ { MUA, 0, "\\R+\\R\\R", "\r\r\r" },
+ { MUA, 0, "\\R*\\R\\R", "\n\r" },
+ { MUA, 0 | F_NOMATCH, "\\R{2,4}\\R\\R", "\r\r\r" },
+ { MUA, 0, "\\R{2,4}\\R\\R", "\r\r\r\r" },
+
+ /* Atomic groups (no fallback from "next" direction). */
+ { MUA, 0 | F_NOMATCH, "(?>ab)ab", "bab" },
+ { MUA, 0 | F_NOMATCH, "(?>(ab))ab", "bab" },
+ { MUA, 0, "(?>ab)+abc(?>de)*def(?>gh)?ghe(?>ij)+?k(?>lm)*?n(?>op)?\?op",
+ "bababcdedefgheijijklmlmnop" },
+ { MUA, 0, "(?>a(b)+a|(ab)?\?(b))an", "abban" },
+ { MUA, 0, "(?>ab+a|(?:ab)?\?b)an", "abban" },
+ { MUA, 0, "((?>ab|ad|)*?)(?>|c)*abad", "abababcababad" },
+ { MUA, 0, "(?>(aa|b|)*+(?>(##)|###)*d|(aa)(?>(baa)?)m)", "aabaa#####da" },
+ { MUA, 0, "((?>a|)+?)b", "aaacaaab" },
+ { MUA, 0, "(?>x|)*$", "aaa" },
+ { MUA, 0, "(?>(x)|)*$", "aaa" },
+ { MUA, 0, "(?>x|())*$", "aaa" },
+ { MUA, 0, "((?>[cxy]a|[a-d])*?)b", "aaa+ aaab" },
+ { MUA, 0, "((?>[cxy](a)|[a-d])*?)b", "aaa+ aaab" },
+ { MUA, 0, "(?>((?>(a+))))bab|(?>((?>(a+))))bb", "aaaabaaabaabab" },
+ { MUA, 0, "(?>(?>a+))bab|(?>(?>a+))bb", "aaaabaaabaabab" },
+ { MUA, 0, "(?>(a)c|(?>(c)|(a))a)b*?bab", "aaaabaaabaabab" },
+ { MUA, 0, "(?>ac|(?>c|a)a)b*?bab", "aaaabaaabaabab" },
+ { MUA, 0, "(?>(b)b|(a))*b(?>(c)|d)?x", "ababcaaabdbx" },
+ { MUA, 0, "(?>bb|a)*b(?>c|d)?x", "ababcaaabdbx" },
+ { MUA, 0, "(?>(bb)|a)*b(?>c|(d))?x", "ababcaaabdbx" },
+ { MUA, 0, "(?>(a))*?(?>(a))+?(?>(a))??x", "aaaaaacccaaaaabax" },
+ { MUA, 0, "(?>a)*?(?>a)+?(?>a)??x", "aaaaaacccaaaaabax" },
+ { MUA, 0, "(?>(a)|)*?(?>(a)|)+?(?>(a)|)??x", "aaaaaacccaaaaabax" },
+ { MUA, 0, "(?>a|)*?(?>a|)+?(?>a|)??x", "aaaaaacccaaaaabax" },
+ { MUA, 0, "(?>a(?>(a{0,2}))*?b|aac)+b", "aaaaaaacaaaabaaaaacaaaabaacaaabb" },
+ { CMA, 0, "(?>((?>a{32}|b+|(a*))?(?>c+|d*)?\?)+e)+?f", "aaccebbdde bbdaaaccebbdee bbdaaaccebbdeef" },
+ { MUA, 0, "(?>(?:(?>aa|a||x)+?b|(?>aa|a||(x))+?c)?(?>[ad]{0,2})*?d)+d", "aaacdbaabdcabdbaaacd aacaabdbdcdcaaaadaabcbaadd" },
+ { MUA, 0, "(?>(?:(?>aa|a||(x))+?b|(?>aa|a||x)+?c)?(?>[ad]{0,2})*?d)+d", "aaacdbaabdcabdbaaacd aacaabdbdcdcaaaadaabcbaadd" },
+ { MUA, 0 | F_PROPERTY, "\\X", "\xcc\x8d\xcc\x8d" },
+ { MUA, 0 | F_PROPERTY, "\\X", "\xcc\x8d\xcc\x8d#\xcc\x8d\xcc\x8d" },
+ { MUA, 0 | F_PROPERTY, "\\X+..", "\xcc\x8d#\xcc\x8d#\xcc\x8d\xcc\x8d" },
+ { MUA, 0 | F_PROPERTY, "\\X{2,4}", "abcdef" },
+ { MUA, 0 | F_PROPERTY, "\\X{2,4}?", "abcdef" },
+ { MUA, 0 | F_NOMATCH | F_PROPERTY, "\\X{2,4}..", "#\xcc\x8d##" },
+ { MUA, 0 | F_PROPERTY, "\\X{2,4}..", "#\xcc\x8d#\xcc\x8d##" },
+ { MUA, 0, "(c(ab)?+ab)+", "cabcababcab" },
+ { MUA, 0, "(?>(a+)b)+aabab", "aaaabaaabaabab" },
+
+ /* Possessive quantifiers. */
+ { MUA, 0, "(?:a|b)++m", "mababbaaxababbaam" },
+ { MUA, 0, "(?:a|b)*+m", "mababbaaxababbaam" },
+ { MUA, 0, "(?:a|b)*+m", "ababbaaxababbaam" },
+ { MUA, 0, "(a|b)++m", "mababbaaxababbaam" },
+ { MUA, 0, "(a|b)*+m", "mababbaaxababbaam" },
+ { MUA, 0, "(a|b)*+m", "ababbaaxababbaam" },
+ { MUA, 0, "(a|b(*ACCEPT))++m", "maaxab" },
+ { MUA, 0, "(?:b*)++m", "bxbbxbbbxm" },
+ { MUA, 0, "(?:b*)++m", "bxbbxbbbxbbm" },
+ { MUA, 0, "(?:b*)*+m", "bxbbxbbbxm" },
+ { MUA, 0, "(?:b*)*+m", "bxbbxbbbxbbm" },
+ { MUA, 0, "(b*)++m", "bxbbxbbbxm" },
+ { MUA, 0, "(b*)++m", "bxbbxbbbxbbm" },
+ { MUA, 0, "(b*)*+m", "bxbbxbbbxm" },
+ { MUA, 0, "(b*)*+m", "bxbbxbbbxbbm" },
+ { MUA, 0, "(?:a|(b))++m", "mababbaaxababbaam" },
+ { MUA, 0, "(?:(a)|b)*+m", "mababbaaxababbaam" },
+ { MUA, 0, "(?:(a)|(b))*+m", "ababbaaxababbaam" },
+ { MUA, 0, "(a|(b))++m", "mababbaaxababbaam" },
+ { MUA, 0, "((a)|b)*+m", "mababbaaxababbaam" },
+ { MUA, 0, "((a)|(b))*+m", "ababbaaxababbaam" },
+ { MUA, 0, "(a|(b)(*ACCEPT))++m", "maaxab" },
+ { MUA, 0, "(?:(b*))++m", "bxbbxbbbxm" },
+ { MUA, 0, "(?:(b*))++m", "bxbbxbbbxbbm" },
+ { MUA, 0, "(?:(b*))*+m", "bxbbxbbbxm" },
+ { MUA, 0, "(?:(b*))*+m", "bxbbxbbbxbbm" },
+ { MUA, 0, "((b*))++m", "bxbbxbbbxm" },
+ { MUA, 0, "((b*))++m", "bxbbxbbbxbbm" },
+ { MUA, 0, "((b*))*+m", "bxbbxbbbxm" },
+ { MUA, 0, "((b*))*+m", "bxbbxbbbxbbm" },
+ { MUA, 0 | F_NOMATCH, "(?>(b{2,4}))(?:(?:(aa|c))++m|(?:(aa|c))+n)", "bbaacaaccaaaacxbbbmbn" },
+ { MUA, 0, "((?:b)++a)+(cd)*+m", "bbababbacdcdnbbababbacdcdm" },
+ { MUA, 0, "((?:(b))++a)+((c)d)*+m", "bbababbacdcdnbbababbacdcdm" },
+ { MUA, 0, "(?:(?:(?:ab)*+k)++(?:n(?:cd)++)*+)*+m", "ababkkXababkkabkncXababkkabkncdcdncdXababkkabkncdcdncdkkabkncdXababkkabkncdcdncdkkabkncdm" },
+ { MUA, 0, "(?:((ab)*+(k))++(n(?:c(d))++)*+)*+m", "ababkkXababkkabkncXababkkabkncdcdncdXababkkabkncdcdncdkkabkncdXababkkabkncdcdncdkkabkncdm" },
+
+ /* Back references. */
+ { MUA, 0, "(aa|bb)(\\1*)(ll|)(\\3*)bbbbbbc", "aaaaaabbbbbbbbc" },
+ { CMUA, 0, "(aa|bb)(\\1+)(ll|)(\\3+)bbbbbbc", "bBbbBbCbBbbbBbbcbbBbbbBBbbC" },
+ { CMA, 0, "(a{2,4})\\1", "AaAaaAaA" },
+ { MUA, 0, "(aa|bb)(\\1?)aa(\\1?)(ll|)(\\4+)bbc", "aaaaaaaabbaabbbbaabbbbc" },
+ { MUA, 0, "(aa|bb)(\\1{0,5})(ll|)(\\3{0,5})cc", "bbxxbbbbxxaaaaaaaaaaaaaaaacc" },
+ { MUA, 0, "(aa|bb)(\\1{3,5})(ll|)(\\3{3,5})cc", "bbbbbbbbbbbbaaaaaaccbbbbbbbbbbbbbbcc" },
+ { MUA, 0, "(aa|bb)(\\1{3,})(ll|)(\\3{3,})cc", "bbbbbbbbbbbbaaaaaaccbbbbbbbbbbbbbbcc" },
+ { MUA, 0, "(\\w+)b(\\1+)c", "GabGaGaDbGaDGaDc" },
+ { MUA, 0, "(?:(aa)|b)\\1?b", "bb" },
+ { CMUA, 0, "(aa|bb)(\\1*?)aa(\\1+?)", "bBBbaaAAaaAAaa" },
+ { MUA, 0, "(aa|bb)(\\1*?)(dd|)cc(\\3+?)", "aaaaaccdd" },
+ { CMUA, 0, "(?:(aa|bb)(\\1?\?)cc){2}(\\1?\?)", "aAaABBbbAAaAcCaAcCaA" },
+ { MUA, 0, "(?:(aa|bb)(\\1{3,5}?)){2}(dd|)(\\3{3,5}?)", "aaaaaabbbbbbbbbbaaaaaaaaaaaaaa" },
+ { CMA, 0, "(?:(aa|bb)(\\1{3,}?)){2}(dd|)(\\3{3,}?)", "aaaaaabbbbbbbbbbaaaaaaaaaaaaaa" },
+ { MUA, 0, "(?:(aa|bb)(\\1{0,3}?)){2}(dd|)(\\3{0,3}?)b(\\1{0,3}?)(\\1{0,3})", "aaaaaaaaaaaaaaabaaaaa" },
+ { MUA, 0, "(a(?:\\1|)a){3}b", "aaaaaaaaaaab" },
+ { MA, 0, "(a?)b(\\1\\1*\\1+\\1?\\1*?\\1+?\\1??\\1*+\\1++\\1?+\\1{4}\\1{3,5}\\1{4,}\\1{0,5}\\1{3,5}?\\1{4,}?\\1{0,5}?\\1{3,5}+\\1{4,}+\\1{0,5}+#){2}d", "bb#b##d" },
+ { MUAP, 0 | F_PROPERTY, "(\\P{N})\\1{2,}", ".www." },
+ { MUAP, 0 | F_PROPERTY, "(\\P{N})\\1{0,2}", "wwwww." },
+ { MUAP, 0 | F_PROPERTY, "(\\P{N})\\1{1,2}ww", "wwww" },
+ { MUAP, 0 | F_PROPERTY, "(\\P{N})\\1{1,2}ww", "wwwww" },
+ { PCRE_UCP, 0 | F_PROPERTY, "(\\P{N})\\1{2,}", ".www." },
+ { CMUAP, 0, "(\xf0\x90\x90\x80)\\1", "\xf0\x90\x90\xa8\xf0\x90\x90\xa8" },
+
+ /* Assertions. */
+ { MUA, 0, "(?=xx|yy|zz)\\w{4}", "abczzdefg" },
+ { MUA, 0, "(?=((\\w+)b){3}|ab)", "dbbbb ab" },
+ { MUA, 0, "(?!ab|bc|cd)[a-z]{2}", "Xabcdef" },
+ { MUA, 0, "(?<=aaa|aa|a)a", "aaa" },
+ { MUA, 2, "(?<=aaa|aa|a)a", "aaa" },
+ { MA, 0, "(?<=aaa|aa|a)a", "aaa" },
+ { MA, 2, "(?<=aaa|aa|a)a", "aaa" },
+ { MUA, 0, "(\\d{2})(?!\\w+c|(((\\w?)m){2}n)+|\\1)", "x5656" },
+ { MUA, 0, "((?=((\\d{2,6}\\w){2,}))\\w{5,20}K){2,}", "567v09708K12l00M00 567v09708K12l00M00K45K" },
+ { MUA, 0, "(?=(?:(?=\\S+a)\\w*(b)){3})\\w+\\d", "bba bbab nbbkba nbbkba0kl" },
+ { MUA, 0, "(?>a(?>(b+))a(?=(..)))*?k", "acabbcabbaabacabaabbakk" },
+ { MUA, 0, "((?(?=(a))a)+k)", "bbak" },
+ { MUA, 0, "((?(?=a)a)+k)", "bbak" },
+ { MUA, 0 | F_NOMATCH, "(?=(?>(a))m)amk", "a k" },
+ { MUA, 0 | F_NOMATCH, "(?!(?>(a))m)amk", "a k" },
+ { MUA, 0 | F_NOMATCH, "(?>(?=(a))am)amk", "a k" },
+ { MUA, 0, "(?=(?>a|(?=(?>(b+))a|c)[a-c]+)*?m)[a-cm]+k", "aaam bbam baaambaam abbabba baaambaamk" },
+ { MUA, 0, "(?> ?\?\\b(?(?=\\w{1,4}(a))m)\\w{0,8}bc){2,}?", "bca ssbc mabd ssbc mabc" },
+ { MUA, 0, "(?:(?=ab)?[^n][^n])+m", "ababcdabcdcdabnababcdabcdcdabm" },
+ { MUA, 0, "(?:(?=a(b))?[^n][^n])+m", "ababcdabcdcdabnababcdabcdcdabm" },
+ { MUA, 0, "(?:(?=.(.))??\\1.)+m", "aabbbcbacccanaabbbcbacccam" },
+ { MUA, 0, "(?:(?=.)??[a-c])+m", "abacdcbacacdcaccam" },
+ { MUA, 0, "((?!a)?(?!([^a]))?)+$", "acbab" },
+ { MUA, 0, "((?!a)?\?(?!([^a]))?\?)+$", "acbab" },
+
+ /* Not empty, ACCEPT, FAIL */
+ { MUA | PCRE_NOTEMPTY, 0 | F_NOMATCH, "a*", "bcx" },
+ { MUA | PCRE_NOTEMPTY, 0, "a*", "bcaad" },
+ { MUA | PCRE_NOTEMPTY, 0, "a*?", "bcaad" },
+ { MUA | PCRE_NOTEMPTY_ATSTART, 0, "a*", "bcaad" },
+ { MUA, 0, "a(*ACCEPT)b", "ab" },
+ { MUA | PCRE_NOTEMPTY, 0 | F_NOMATCH, "a*(*ACCEPT)b", "bcx" },
+ { MUA | PCRE_NOTEMPTY, 0, "a*(*ACCEPT)b", "bcaad" },
+ { MUA | PCRE_NOTEMPTY, 0, "a*?(*ACCEPT)b", "bcaad" },
+ { MUA | PCRE_NOTEMPTY, 0 | F_NOMATCH, "(?:z|a*(*ACCEPT)b)", "bcx" },
+ { MUA | PCRE_NOTEMPTY, 0, "(?:z|a*(*ACCEPT)b)", "bcaad" },
+ { MUA | PCRE_NOTEMPTY, 0, "(?:z|a*?(*ACCEPT)b)", "bcaad" },
+ { MUA | PCRE_NOTEMPTY_ATSTART, 0, "a*(*ACCEPT)b", "bcx" },
+ { MUA | PCRE_NOTEMPTY_ATSTART, 0 | F_NOMATCH, "a*(*ACCEPT)b", "" },
+ { MUA, 0, "((a(*ACCEPT)b))", "ab" },
+ { MUA, 0, "(a(*FAIL)a|a)", "aaa" },
+ { MUA, 0, "(?=ab(*ACCEPT)b)a", "ab" },
+ { MUA, 0, "(?=(?:x|ab(*ACCEPT)b))", "ab" },
+ { MUA, 0, "(?=(a(b(*ACCEPT)b)))a", "ab" },
+ { MUA | PCRE_NOTEMPTY, 0, "(?=a*(*ACCEPT))c", "c" },
+
+ /* Conditional blocks. */
+ { MUA, 0, "(?(?=(a))a|b)+k", "ababbalbbadabak" },
+ { MUA, 0, "(?(?!(b))a|b)+k", "ababbalbbadabak" },
+ { MUA, 0, "(?(?=a)a|b)+k", "ababbalbbadabak" },
+ { MUA, 0, "(?(?!b)a|b)+k", "ababbalbbadabak" },
+ { MUA, 0, "(?(?=(a))a*|b*)+k", "ababbalbbadabak" },
+ { MUA, 0, "(?(?!(b))a*|b*)+k", "ababbalbbadabak" },
+ { MUA, 0, "(?(?!(b))(?:aaaaaa|a)|(?:bbbbbb|b))+aaaak", "aaaaaaaaaaaaaa bbbbbbbbbbbbbbb aaaaaaak" },
+ { MUA, 0, "(?(?!b)(?:aaaaaa|a)|(?:bbbbbb|b))+aaaak", "aaaaaaaaaaaaaa bbbbbbbbbbbbbbb aaaaaaak" },
+ { MUA, 0 | F_DIFF, "(?(?!(b))(?:aaaaaa|a)|(?:bbbbbb|b))+bbbbk", "aaaaaaaaaaaaaa bbbbbbbbbbbbbbb bbbbbbbk" },
+ { MUA, 0, "(?(?!b)(?:aaaaaa|a)|(?:bbbbbb|b))+bbbbk", "aaaaaaaaaaaaaa bbbbbbbbbbbbbbb bbbbbbbk" },
+ { MUA, 0, "(?(?=a)a*|b*)+k", "ababbalbbadabak" },
+ { MUA, 0, "(?(?!b)a*|b*)+k", "ababbalbbadabak" },
+ { MUA, 0, "(?(?=a)ab)", "a" },
+ { MUA, 0, "(?(?a)?(?Pb)?(?(Name)c|d)*l", "bc ddd abccabccl" },
+ { MUA, 0, "(?Pa)?(?Pb)?(?(Name)c|d)+?dd", "bcabcacdb bdddd" },
+ { MUA, 0, "(?Pa)?(?Pb)?(?(Name)c|d)+l", "ababccddabdbccd abcccl" },
+ { MUA, 0, "((?:a|aa)(?(1)aaa))x", "aax" },
+
+ /* Set start of match. */
+ { MUA, 0, "(?:\\Ka)*aaaab", "aaaaaaaa aaaaaaabb" },
+ { MUA, 0, "(?>\\Ka\\Ka)*aaaab", "aaaaaaaa aaaaaaaaaabb" },
+ { MUA, 0, "a+\\K(?<=\\Gaa)a", "aaaaaa" },
+ { MUA | PCRE_NOTEMPTY, 0 | F_NOMATCH, "a\\K(*ACCEPT)b", "aa" },
+ { MUA | PCRE_NOTEMPTY_ATSTART, 0, "a\\K(*ACCEPT)b", "aa" },
+
+ /* First line. */
+ { MUA | PCRE_FIRSTLINE, 0 | F_PROPERTY, "\\p{Any}a", "bb\naaa" },
+ { MUA | PCRE_FIRSTLINE, 0 | F_NOMATCH | F_PROPERTY, "\\p{Any}a", "bb\r\naaa" },
+ { MUA | PCRE_FIRSTLINE, 0, "(?<=a)", "a" },
+ { MUA | PCRE_FIRSTLINE, 0 | F_NOMATCH, "[^a][^b]", "ab" },
+ { MUA | PCRE_FIRSTLINE, 0 | F_NOMATCH, "a", "\na" },
+ { MUA | PCRE_FIRSTLINE, 0 | F_NOMATCH, "[abc]", "\na" },
+ { MUA | PCRE_FIRSTLINE, 0 | F_NOMATCH, "^a", "\na" },
+ { MUA | PCRE_FIRSTLINE, 0 | F_NOMATCH, "^(?<=\n)", "\na" },
+ { MUA | PCRE_FIRSTLINE, 0, "\xf0\x90\x90\x80", "\xf0\x90\x90\x80" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_ANY | PCRE_FIRSTLINE, 0 | F_NOMATCH, "#", "\xc2\x85#" },
+ { PCRE_MULTILINE | PCRE_NEWLINE_ANY | PCRE_FIRSTLINE, 0 | F_NOMATCH, "#", "\x85#" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_ANY | PCRE_FIRSTLINE, 0 | F_NOMATCH, "^#", "\xe2\x80\xa8#" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_CRLF | PCRE_FIRSTLINE, 0 | F_PROPERTY, "\\p{Any}", "\r\na" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_CRLF | PCRE_FIRSTLINE, 0, ".", "\r" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_CRLF | PCRE_FIRSTLINE, 0, "a", "\ra" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_CRLF | PCRE_FIRSTLINE, 0 | F_NOMATCH, "ba", "bbb\r\nba" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_CRLF | PCRE_FIRSTLINE, 0 | F_NOMATCH | F_PROPERTY, "\\p{Any}{4}|a", "\r\na" },
+ { PCRE_MULTILINE | PCRE_UTF8 | PCRE_NEWLINE_CRLF | PCRE_FIRSTLINE, 1, ".", "\r\n" },
+ { PCRE_FIRSTLINE | PCRE_NEWLINE_LF | PCRE_DOTALL, 0 | F_NOMATCH, "ab.", "ab" },
+
+ /* Recurse. */
+ { MUA, 0, "(a)(?1)", "aa" },
+ { MUA, 0, "((a))(?1)", "aa" },
+ { MUA, 0, "(b|a)(?1)", "aa" },
+ { MUA, 0, "(b|(a))(?1)", "aa" },
+ { MUA, 0 | F_NOMATCH, "((a)(b)(?:a*))(?1)", "aba" },
+ { MUA, 0, "((a)(b)(?:a*))(?1)", "abab" },
+ { MUA, 0, "((a+)c(?2))b(?1)", "aacaabaca" },
+ { MUA, 0, "((?2)b|(a)){2}(?1)", "aabab" },
+ { MUA, 0, "(?1)(a)*+(?2)(b(?1))", "aababa" },
+ { MUA, 0, "(?1)(((a(*ACCEPT)))b)", "axaa" },
+ { MUA, 0, "(?1)(?(DEFINE) (((ac(*ACCEPT)))b) )", "akaac" },
+ { MUA, 0, "(a+)b(?1)b\\1", "abaaabaaaaa" },
+ { MUA, 0 | F_NOMATCH, "(?(DEFINE)(aa|a))(?1)ab", "aab" },
+ { MUA, 0, "(?(DEFINE)(a\\Kb))(?1)+ababc", "abababxabababc" },
+ { MUA, 0, "(a\\Kb)(?1)+ababc", "abababxababababc" },
+ { MUA, 0 | F_NOMATCH, "(a\\Kb)(?1)+ababc", "abababxababababxc" },
+ { MUA, 0, "b|<(?R)*>", "<" },
+ { MUA, 0, "(a\\K){0}(?:(?1)b|ac)", "ac" },
+ { MUA, 0, "(?(DEFINE)(a(?2)|b)(b(?1)|(a)))(?:(?1)|(?2))m", "ababababnababababaam" },
+ { MUA, 0, "(a)((?(R)a|b))(?2)", "aabbabaa" },
+ { MUA, 0, "(a)((?(R2)a|b))(?2)", "aabbabaa" },
+ { MUA, 0, "(a)((?(R1)a|b))(?2)", "ababba" },
+ { MUA, 0, "(?(R0)aa|bb(?R))", "abba aabb bbaa" },
+ { MUA, 0, "((?(R)(?:aaaa|a)|(?:(aaaa)|(a)))+)(?1)$", "aaaaaaaaaa aaaa" },
+ { MUA, 0, "(?Pa(?(R&Name)a|b))(?1)", "aab abb abaa" },
+ { MUA, 0, "((?(R)a|(?1)){3})", "XaaaaaaaaaX" },
+ { MUA, 0, "((?:(?(R)a|(?1))){3})", "XaaaaaaaaaX" },
+ { MUA, 0, "((?(R)a|(?1)){1,3})aaaaaa", "aaaaaaaaXaaaaaaaaa" },
+ { MUA, 0, "((?(R)a|(?1)){1,3}?)M", "aaaM" },
+
+ /* 16 bit specific tests. */
+ { CMA, 0 | F_FORCECONV, "\xc3\xa1", "\xc3\x81\xc3\xa1" },
+ { CMA, 0 | F_FORCECONV, "\xe1\xbd\xb8", "\xe1\xbf\xb8\xe1\xbd\xb8" },
+ { CMA, 0 | F_FORCECONV, "[\xc3\xa1]", "\xc3\x81\xc3\xa1" },
+ { CMA, 0 | F_FORCECONV, "[\xe1\xbd\xb8]", "\xe1\xbf\xb8\xe1\xbd\xb8" },
+ { CMA, 0 | F_FORCECONV, "[a-\xed\xb0\x80]", "A" },
+ { CMA, 0 | F_NO8 | F_FORCECONV, "[a-\\x{dc00}]", "B" },
+ { CMA, 0 | F_NO8 | F_NOMATCH | F_FORCECONV, "[b-\\x{dc00}]", "a" },
+ { CMA, 0 | F_NO8 | F_FORCECONV, "\xed\xa0\x80\\x{d800}\xed\xb0\x80\\x{dc00}", "\xed\xa0\x80\xed\xa0\x80\xed\xb0\x80\xed\xb0\x80" },
+ { CMA, 0 | F_NO8 | F_FORCECONV, "[\xed\xa0\x80\\x{d800}]{1,2}?[\xed\xb0\x80\\x{dc00}]{1,2}?#", "\xed\xa0\x80\xed\xa0\x80\xed\xb0\x80\xed\xb0\x80#" },
+ { CMA, 0 | F_FORCECONV, "[\xed\xa0\x80\xed\xb0\x80#]{0,3}(?<=\xed\xb0\x80.)", "\xed\xa0\x80#\xed\xa0\x80##\xed\xb0\x80\xed\xa0\x80" },
+ { CMA, 0 | F_FORCECONV, "[\xed\xa0\x80-\xed\xb3\xbf]", "\xed\x9f\xbf\xed\xa0\x83" },
+ { CMA, 0 | F_FORCECONV, "[\xed\xa0\x80-\xed\xb3\xbf]", "\xed\xb4\x80\xed\xb3\xb0" },
+ { CMA, 0 | F_NO8 | F_FORCECONV, "[\\x{d800}-\\x{dcff}]", "\xed\x9f\xbf\xed\xa0\x83" },
+ { CMA, 0 | F_NO8 | F_FORCECONV, "[\\x{d800}-\\x{dcff}]", "\xed\xb4\x80\xed\xb3\xb0" },
+ { CMA, 0 | F_FORCECONV, "[\xed\xa0\x80-\xef\xbf\xbf]+[\x1-\xed\xb0\x80]+#", "\xed\xa0\x85\xc3\x81\xed\xa0\x85\xef\xbf\xb0\xc2\x85\xed\xa9\x89#" },
+ { CMA, 0 | F_FORCECONV, "[\xed\xa0\x80][\xed\xb0\x80]{2,}", "\xed\xa0\x80\xed\xb0\x80\xed\xa0\x80\xed\xb0\x80\xed\xb0\x80\xed\xb0\x80" },
+ { MA, 0 | F_FORCECONV, "[^\xed\xb0\x80]{3,}?", "##\xed\xb0\x80#\xed\xb0\x80#\xc3\x89#\xed\xb0\x80" },
+ { MA, 0 | F_NO8 | F_FORCECONV, "[^\\x{dc00}]{3,}?", "##\xed\xb0\x80#\xed\xb0\x80#\xc3\x89#\xed\xb0\x80" },
+ { CMA, 0 | F_FORCECONV, ".\\B.", "\xed\xa0\x80\xed\xb0\x80" },
+ { CMA, 0 | F_FORCECONV, "\\D+(?:\\d+|.)\\S+(?:\\s+|.)\\W+(?:\\w+|.)\xed\xa0\x80\xed\xa0\x80", "\xed\xa0\x80\xed\xa0\x80\xed\xa0\x80\xed\xa0\x80\xed\xa0\x80\xed\xa0\x80\xed\xa0\x80\xed\xa0\x80" },
+ { CMA, 0 | F_FORCECONV, "\\d*\\s*\\w*\xed\xa0\x80\xed\xa0\x80", "\xed\xa0\x80\xed\xa0\x80" },
+ { CMA, 0 | F_FORCECONV | F_NOMATCH, "\\d*?\\D*?\\s*?\\S*?\\w*?\\W*?##", "\xed\xa0\x80\xed\xa0\x80\xed\xa0\x80\xed\xa0\x80#" },
+ { CMA | PCRE_EXTENDED, 0 | F_FORCECONV, "\xed\xa0\x80 \xed\xb0\x80 !", "\xed\xa0\x80\xed\xb0\x80!" },
+ { CMA, 0 | F_FORCECONV, "\xed\xa0\x80+#[^#]+\xed\xa0\x80", "\xed\xa0\x80#a\xed\xa0\x80" },
+ { CMA, 0 | F_FORCECONV, "(\xed\xa0\x80+)#\\1", "\xed\xa0\x80\xed\xa0\x80#\xed\xa0\x80\xed\xa0\x80" },
+ { PCRE_MULTILINE | PCRE_NEWLINE_ANY, 0 | F_NO8 | F_FORCECONV, "^-", "a--\xe2\x80\xa8--" },
+ { PCRE_BSR_UNICODE, 0 | F_NO8 | F_FORCECONV, "\\R", "ab\xe2\x80\xa8" },
+ { 0, 0 | F_NO8 | F_FORCECONV, "\\v", "ab\xe2\x80\xa9" },
+ { 0, 0 | F_NO8 | F_FORCECONV, "\\h", "ab\xe1\xa0\x8e" },
+ { 0, 0 | F_NO8 | F_FORCECONV, "\\v+?\\V+?#", "\xe2\x80\xa9\xe2\x80\xa9\xef\xbf\xbf\xef\xbf\xbf#" },
+ { 0, 0 | F_NO8 | F_FORCECONV, "\\h+?\\H+?#", "\xe1\xa0\x8e\xe1\xa0\x8e\xef\xbf\xbf\xef\xbf\xbf#" },
+
+ /* Partial matching. */
+ { MUA | PCRE_PARTIAL_SOFT, 0, "ab", "a" },
+ { MUA | PCRE_PARTIAL_SOFT, 0, "ab|a", "a" },
+ { MUA | PCRE_PARTIAL_HARD, 0, "ab|a", "a" },
+ { MUA | PCRE_PARTIAL_SOFT, 0, "\\b#", "a" },
+ { MUA | PCRE_PARTIAL_SOFT, 0, "(?<=a)b", "a" },
+ { MUA | PCRE_PARTIAL_SOFT, 0, "abc|(?<=xxa)bc", "xxab" },
+ { MUA | PCRE_PARTIAL_SOFT, 0, "a\\B", "a" },
+ { MUA | PCRE_PARTIAL_HARD, 0, "a\\b", "a" },
+
+ /* (*MARK) verb. */
+ { MUA, 0, "a(*MARK:aa)a", "ababaa" },
+ { MUA, 0 | F_NOMATCH, "a(*:aa)a", "abab" },
+ { MUA, 0, "a(*:aa)(b(*:bb)b|bc)", "abc" },
+ { MUA, 0 | F_NOMATCH, "a(*:1)x|b(*:2)y", "abc" },
+ { MUA, 0, "(?>a(*:aa))b|ac", "ac" },
+ { MUA, 0, "(?(DEFINE)(a(*:aa)))(?1)", "a" },
+ { MUA, 0 | F_NOMATCH, "(?(DEFINE)((a)(*:aa)))(?1)b", "aa" },
+ { MUA, 0, "(?(DEFINE)(a(*:aa)))a(?1)b|aac", "aac" },
+ { MUA, 0, "(a(*:aa)){0}(?:b(?1)b|c)+c", "babbab cc" },
+ { MUA, 0, "(a(*:aa)){0}(?:b(?1)b)+", "babba" },
+ { MUA, 0 | F_NOMATCH | F_STUDY, "(a(*:aa)){0}(?:b(?1)b)+", "ba" },
+ { MUA, 0, "(a\\K(*:aa)){0}(?:b(?1)b|c)+c", "babbab cc" },
+ { MUA, 0, "(a\\K(*:aa)){0}(?:b(?1)b)+", "babba" },
+ { MUA, 0 | F_NOMATCH | F_STUDY, "(a\\K(*:aa)){0}(?:b(?1)b)+", "ba" },
+ { MUA, 0 | F_NOMATCH | F_STUDY, "(*:mark)m", "a" },
+
+ /* (*COMMIT) verb. */
+ { MUA, 0 | F_NOMATCH, "a(*COMMIT)b", "ac" },
+ { MUA, 0, "aa(*COMMIT)b", "xaxaab" },
+ { MUA, 0 | F_NOMATCH, "a(*COMMIT)(*:msg)b|ac", "ac" },
+ { MUA, 0 | F_NOMATCH, "(a(*COMMIT)b)++", "abac" },
+ { MUA, 0 | F_NOMATCH, "((a)(*COMMIT)b)++", "abac" },
+ { MUA, 0 | F_NOMATCH, "(?=a(*COMMIT)b)ab|ad", "ad" },
+
+ /* (*PRUNE) verb. */
+ { MUA, 0, "aa\\K(*PRUNE)b", "aaab" },
+ { MUA, 0, "aa(*PRUNE:bb)b|a", "aa" },
+ { MUA, 0, "(a)(a)(*PRUNE)b|(a)", "aa" },
+ { MUA, 0, "(a)(a)(a)(a)(a)(a)(a)(a)(*PRUNE)b|(a)", "aaaaaaaa" },
+ { MUA | PCRE_PARTIAL_SOFT, 0, "a(*PRUNE)a|", "a" },
+ { MUA | PCRE_PARTIAL_SOFT, 0, "a(*PRUNE)a|m", "a" },
+ { MUA, 0 | F_NOMATCH, "(?=a(*PRUNE)b)ab|ad", "ad" },
+ { MUA, 0, "a(*COMMIT)(*PRUNE)d|bc", "abc" },
+ { MUA, 0, "(?=a(*COMMIT)b)a(*PRUNE)c|bc", "abc" },
+ { MUA, 0 | F_NOMATCH, "(*COMMIT)(?=a(*COMMIT)b)a(*PRUNE)c|bc", "abc" },
+ { MUA, 0, "(?=(a)(*COMMIT)b)a(*PRUNE)c|bc", "abc" },
+ { MUA, 0 | F_NOMATCH, "(*COMMIT)(?=(a)(*COMMIT)b)a(*PRUNE)c|bc", "abc" },
+ { MUA, 0, "(a(*COMMIT)b){0}a(?1)(*PRUNE)c|bc", "abc" },
+ { MUA, 0 | F_NOMATCH, "(a(*COMMIT)b){0}a(*COMMIT)(?1)(*PRUNE)c|bc", "abc" },
+ { MUA, 0, "(a(*COMMIT)b)++(*PRUNE)d|c", "ababc" },
+ { MUA, 0 | F_NOMATCH, "(*COMMIT)(a(*COMMIT)b)++(*PRUNE)d|c", "ababc" },
+ { MUA, 0, "((a)(*COMMIT)b)++(*PRUNE)d|c", "ababc" },
+ { MUA, 0 | F_NOMATCH, "(*COMMIT)((a)(*COMMIT)b)++(*PRUNE)d|c", "ababc" },
+ { MUA, 0, "(?>a(*COMMIT)b)*abab(*PRUNE)d|ba", "ababab" },
+ { MUA, 0 | F_NOMATCH, "(*COMMIT)(?>a(*COMMIT)b)*abab(*PRUNE)d|ba", "ababab" },
+ { MUA, 0, "(?>a(*COMMIT)b)+abab(*PRUNE)d|ba", "ababab" },
+ { MUA, 0 | F_NOMATCH, "(*COMMIT)(?>a(*COMMIT)b)+abab(*PRUNE)d|ba", "ababab" },
+ { MUA, 0, "(?>a(*COMMIT)b)?ab(*PRUNE)d|ba", "aba" },
+ { MUA, 0 | F_NOMATCH, "(*COMMIT)(?>a(*COMMIT)b)?ab(*PRUNE)d|ba", "aba" },
+ { MUA, 0, "(?>a(*COMMIT)b)*?n(*PRUNE)d|ba", "abababn" },
+ { MUA, 0 | F_NOMATCH, "(*COMMIT)(?>a(*COMMIT)b)*?n(*PRUNE)d|ba", "abababn" },
+ { MUA, 0, "(?>a(*COMMIT)b)+?n(*PRUNE)d|ba", "abababn" },
+ { MUA, 0 | F_NOMATCH, "(*COMMIT)(?>a(*COMMIT)b)+?n(*PRUNE)d|ba", "abababn" },
+ { MUA, 0, "(?>a(*COMMIT)b)??n(*PRUNE)d|bn", "abn" },
+ { MUA, 0 | F_NOMATCH, "(*COMMIT)(?>a(*COMMIT)b)??n(*PRUNE)d|bn", "abn" },
+
+ /* (*SKIP) verb. */
+ { MUA, 0 | F_NOMATCH, "(?=a(*SKIP)b)ab|ad", "ad" },
+
+ /* (*THEN) verb. */
+ { MUA, 0, "((?:a(*THEN)|aab)(*THEN)c|a+)+m", "aabcaabcaabcaabcnacm" },
+ { MUA, 0 | F_NOMATCH, "((?:a(*THEN)|aab)(*THEN)c|a+)+m", "aabcm" },
+ { MUA, 0, "((?:a(*THEN)|aab)c|a+)+m", "aabcaabcnmaabcaabcm" },
+ { MUA, 0, "((?:a|aab)(*THEN)c|a+)+m", "aam" },
+ { MUA, 0, "((?:a(*COMMIT)|aab)(*THEN)c|a+)+m", "aam" },
+ { MUA, 0, "(?(?=a(*THEN)b)ab|ad)", "ad" },
+ { MUA, 0, "(?(?!a(*THEN)b)ad|add)", "add" },
+ { MUA, 0 | F_NOMATCH, "(?(?=a)a(*THEN)b|ad)", "ad" },
+ { MUA, 0, "(?!(?(?=a)ab|b(*THEN)d))bn|bnn", "bnn" },
+
+ /* Deep recursion. */
+ { MUA, 0, "((((?:(?:(?:\\w)+)?)*|(?>\\w)+?)+|(?>\\w)?\?)*)?\\s", "aaaaa+ " },
+ { MUA, 0, "(?:((?:(?:(?:\\w*?)+)??|(?>\\w)?|\\w*+)*)+)+?\\s", "aa+ " },
+ { MUA, 0, "((a?)+)+b", "aaaaaaaaaaaa b" },
+
+ /* Deep recursion: Stack limit reached. */
+ { MA, 0 | F_NOMATCH, "a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?aaaaaaaaaaaaaaaaaaaaaaa", "aaaaaaaaaaaaaaaaaaaaaaa" },
+ { MA, 0 | F_NOMATCH, "(?:a+)+b", "aaaaaaaaaaaaaaaaaaaaaaaa b" },
+ { MA, 0 | F_NOMATCH, "(?:a+?)+?b", "aaaaaaaaaaaaaaaaaaaaaaaa b" },
+ { MA, 0 | F_NOMATCH, "(?:a*)*b", "aaaaaaaaaaaaaaaaaaaaaaaa b" },
+ { MA, 0 | F_NOMATCH, "(?:a*?)*?b", "aaaaaaaaaaaaaaaaaaaaaaaa b" },
+
+ { 0, 0, NULL, NULL }
+};
+
+static const unsigned char *tables(int mode)
+{
+ /* The purpose of this function to allow valgrind
+ for reporting invalid reads and writes. */
+ static unsigned char *tables_copy;
+ const char *errorptr;
+ int erroroffset;
+ unsigned char *default_tables;
+#if defined SUPPORT_PCRE8
+ pcre *regex;
+ char null_str[1] = { 0 };
+#elif defined SUPPORT_PCRE16
+ pcre16 *regex;
+ PCRE_UCHAR16 null_str[1] = { 0 };
+#elif defined SUPPORT_PCRE32
+ pcre32 *regex;
+ PCRE_UCHAR32 null_str[1] = { 0 };
+#endif
+
+ if (mode) {
+ if (tables_copy)
+ free(tables_copy);
+ tables_copy = NULL;
+ return NULL;
+ }
+
+ if (tables_copy)
+ return tables_copy;
+
+ default_tables = NULL;
+#if defined SUPPORT_PCRE8
+ regex = pcre_compile(null_str, 0, &errorptr, &erroroffset, NULL);
+ if (regex) {
+ pcre_fullinfo(regex, NULL, PCRE_INFO_DEFAULT_TABLES, &default_tables);
+ pcre_free(regex);
+ }
+#elif defined SUPPORT_PCRE16
+ regex = pcre16_compile(null_str, 0, &errorptr, &erroroffset, NULL);
+ if (regex) {
+ pcre16_fullinfo(regex, NULL, PCRE_INFO_DEFAULT_TABLES, &default_tables);
+ pcre16_free(regex);
+ }
+#elif defined SUPPORT_PCRE32
+ regex = pcre32_compile(null_str, 0, &errorptr, &erroroffset, NULL);
+ if (regex) {
+ pcre32_fullinfo(regex, NULL, PCRE_INFO_DEFAULT_TABLES, &default_tables);
+ pcre32_free(regex);
+ }
+#endif
+ /* Shouldn't ever happen. */
+ if (!default_tables)
+ return NULL;
+
+ /* Unfortunately this value cannot get from pcre_fullinfo.
+ Since this is a test program, this is acceptable at the moment. */
+ tables_copy = (unsigned char *)malloc(1088);
+ if (!tables_copy)
+ return NULL;
+
+ memcpy(tables_copy, default_tables, 1088);
+ return tables_copy;
+}
+
+#ifdef SUPPORT_PCRE8
+static pcre_jit_stack* callback8(void *arg)
+{
+ return (pcre_jit_stack *)arg;
+}
+#endif
+
+#ifdef SUPPORT_PCRE16
+static pcre16_jit_stack* callback16(void *arg)
+{
+ return (pcre16_jit_stack *)arg;
+}
+#endif
+
+#ifdef SUPPORT_PCRE32
+static pcre32_jit_stack* callback32(void *arg)
+{
+ return (pcre32_jit_stack *)arg;
+}
+#endif
+
+#ifdef SUPPORT_PCRE8
+static pcre_jit_stack *stack8;
+
+static pcre_jit_stack *getstack8(void)
+{
+ if (!stack8)
+ stack8 = pcre_jit_stack_alloc(1, 1024 * 1024);
+ return stack8;
+}
+
+static void setstack8(pcre_extra *extra)
+{
+ if (!extra) {
+ if (stack8)
+ pcre_jit_stack_free(stack8);
+ stack8 = NULL;
+ return;
+ }
+
+ pcre_assign_jit_stack(extra, callback8, getstack8());
+}
+#endif /* SUPPORT_PCRE8 */
+
+#ifdef SUPPORT_PCRE16
+static pcre16_jit_stack *stack16;
+
+static pcre16_jit_stack *getstack16(void)
+{
+ if (!stack16)
+ stack16 = pcre16_jit_stack_alloc(1, 1024 * 1024);
+ return stack16;
+}
+
+static void setstack16(pcre16_extra *extra)
+{
+ if (!extra) {
+ if (stack16)
+ pcre16_jit_stack_free(stack16);
+ stack16 = NULL;
+ return;
+ }
+
+ pcre16_assign_jit_stack(extra, callback16, getstack16());
+}
+#endif /* SUPPORT_PCRE8 */
+
+#ifdef SUPPORT_PCRE32
+static pcre32_jit_stack *stack32;
+
+static pcre32_jit_stack *getstack32(void)
+{
+ if (!stack32)
+ stack32 = pcre32_jit_stack_alloc(1, 1024 * 1024);
+ return stack32;
+}
+
+static void setstack32(pcre32_extra *extra)
+{
+ if (!extra) {
+ if (stack32)
+ pcre32_jit_stack_free(stack32);
+ stack32 = NULL;
+ return;
+ }
+
+ pcre32_assign_jit_stack(extra, callback32, getstack32());
+}
+#endif /* SUPPORT_PCRE8 */
+
+#ifdef SUPPORT_PCRE16
+
+static int convert_utf8_to_utf16(const char *input, PCRE_UCHAR16 *output, int *offsetmap, int max_length)
+{
+ unsigned char *iptr = (unsigned char*)input;
+ PCRE_UCHAR16 *optr = output;
+ unsigned int c;
+
+ if (max_length == 0)
+ return 0;
+
+ while (*iptr && max_length > 1) {
+ c = 0;
+ if (offsetmap)
+ *offsetmap++ = (int)(iptr - (unsigned char*)input);
+
+ if (!(*iptr & 0x80))
+ c = *iptr++;
+ else if (!(*iptr & 0x20)) {
+ c = ((iptr[0] & 0x1f) << 6) | (iptr[1] & 0x3f);
+ iptr += 2;
+ } else if (!(*iptr & 0x10)) {
+ c = ((iptr[0] & 0x0f) << 12) | ((iptr[1] & 0x3f) << 6) | (iptr[2] & 0x3f);
+ iptr += 3;
+ } else if (!(*iptr & 0x08)) {
+ c = ((iptr[0] & 0x07) << 18) | ((iptr[1] & 0x3f) << 12) | ((iptr[2] & 0x3f) << 6) | (iptr[3] & 0x3f);
+ iptr += 4;
+ }
+
+ if (c < 65536) {
+ *optr++ = c;
+ max_length--;
+ } else if (max_length <= 2) {
+ *optr = '\0';
+ return (int)(optr - output);
+ } else {
+ c -= 0x10000;
+ *optr++ = 0xd800 | ((c >> 10) & 0x3ff);
+ *optr++ = 0xdc00 | (c & 0x3ff);
+ max_length -= 2;
+ if (offsetmap)
+ offsetmap++;
+ }
+ }
+ if (offsetmap)
+ *offsetmap = (int)(iptr - (unsigned char*)input);
+ *optr = '\0';
+ return (int)(optr - output);
+}
+
+static int copy_char8_to_char16(const char *input, PCRE_UCHAR16 *output, int max_length)
+{
+ unsigned char *iptr = (unsigned char*)input;
+ PCRE_UCHAR16 *optr = output;
+
+ if (max_length == 0)
+ return 0;
+
+ while (*iptr && max_length > 1) {
+ *optr++ = *iptr++;
+ max_length--;
+ }
+ *optr = '\0';
+ return (int)(optr - output);
+}
+
+#define REGTEST_MAX_LENGTH16 4096
+static PCRE_UCHAR16 regtest_buf16[REGTEST_MAX_LENGTH16];
+static int regtest_offsetmap16[REGTEST_MAX_LENGTH16];
+
+#endif /* SUPPORT_PCRE16 */
+
+#ifdef SUPPORT_PCRE32
+
+static int convert_utf8_to_utf32(const char *input, PCRE_UCHAR32 *output, int *offsetmap, int max_length)
+{
+ unsigned char *iptr = (unsigned char*)input;
+ PCRE_UCHAR32 *optr = output;
+ unsigned int c;
+
+ if (max_length == 0)
+ return 0;
+
+ while (*iptr && max_length > 1) {
+ c = 0;
+ if (offsetmap)
+ *offsetmap++ = (int)(iptr - (unsigned char*)input);
+
+ if (!(*iptr & 0x80))
+ c = *iptr++;
+ else if (!(*iptr & 0x20)) {
+ c = ((iptr[0] & 0x1f) << 6) | (iptr[1] & 0x3f);
+ iptr += 2;
+ } else if (!(*iptr & 0x10)) {
+ c = ((iptr[0] & 0x0f) << 12) | ((iptr[1] & 0x3f) << 6) | (iptr[2] & 0x3f);
+ iptr += 3;
+ } else if (!(*iptr & 0x08)) {
+ c = ((iptr[0] & 0x07) << 18) | ((iptr[1] & 0x3f) << 12) | ((iptr[2] & 0x3f) << 6) | (iptr[3] & 0x3f);
+ iptr += 4;
+ }
+
+ *optr++ = c;
+ max_length--;
+ }
+ if (offsetmap)
+ *offsetmap = (int)(iptr - (unsigned char*)input);
+ *optr = 0;
+ return (int)(optr - output);
+}
+
+static int copy_char8_to_char32(const char *input, PCRE_UCHAR32 *output, int max_length)
+{
+ unsigned char *iptr = (unsigned char*)input;
+ PCRE_UCHAR32 *optr = output;
+
+ if (max_length == 0)
+ return 0;
+
+ while (*iptr && max_length > 1) {
+ *optr++ = *iptr++;
+ max_length--;
+ }
+ *optr = '\0';
+ return (int)(optr - output);
+}
+
+#define REGTEST_MAX_LENGTH32 4096
+static PCRE_UCHAR32 regtest_buf32[REGTEST_MAX_LENGTH32];
+static int regtest_offsetmap32[REGTEST_MAX_LENGTH32];
+
+#endif /* SUPPORT_PCRE32 */
+
+static int check_ascii(const char *input)
+{
+ const unsigned char *ptr = (unsigned char *)input;
+ while (*ptr) {
+ if (*ptr > 127)
+ return 0;
+ ptr++;
+ }
+ return 1;
+}
+
+static int regression_tests(void)
+{
+ struct regression_test_case *current = regression_test_cases;
+ const char *error;
+ char *cpu_info;
+ int i, err_offs;
+ int is_successful, is_ascii_pattern, is_ascii_input;
+ int total = 0;
+ int successful = 0;
+ int successful_row = 0;
+ int counter = 0;
+ int study_mode;
+ int utf = 0, ucp = 0;
+ int disabled_flags = 0;
+#ifdef SUPPORT_PCRE8
+ pcre *re8;
+ pcre_extra *extra8;
+ pcre_extra dummy_extra8;
+ int ovector8_1[32];
+ int ovector8_2[32];
+ int return_value8[2];
+ unsigned char *mark8_1, *mark8_2;
+#endif
+#ifdef SUPPORT_PCRE16
+ pcre16 *re16;
+ pcre16_extra *extra16;
+ pcre16_extra dummy_extra16;
+ int ovector16_1[32];
+ int ovector16_2[32];
+ int return_value16[2];
+ PCRE_UCHAR16 *mark16_1, *mark16_2;
+ int length16;
+#endif
+#ifdef SUPPORT_PCRE32
+ pcre32 *re32;
+ pcre32_extra *extra32;
+ pcre32_extra dummy_extra32;
+ int ovector32_1[32];
+ int ovector32_2[32];
+ int return_value32[2];
+ PCRE_UCHAR32 *mark32_1, *mark32_2;
+ int length32;
+#endif
+
+ /* This test compares the behaviour of interpreter and JIT. Although disabling
+ utf or ucp may make tests fail, if the pcre_exec result is the SAME, it is
+ still considered successful from pcre_jit_test point of view. */
+
+#if defined SUPPORT_PCRE8
+ pcre_config(PCRE_CONFIG_JITTARGET, &cpu_info);
+#elif defined SUPPORT_PCRE16
+ pcre16_config(PCRE_CONFIG_JITTARGET, &cpu_info);
+#elif defined SUPPORT_PCRE32
+ pcre32_config(PCRE_CONFIG_JITTARGET, &cpu_info);
+#endif
+
+ printf("Running JIT regression tests\n");
+ printf(" target CPU of SLJIT compiler: %s\n", cpu_info);
+
+#if defined SUPPORT_PCRE8
+ pcre_config(PCRE_CONFIG_UTF8, &utf);
+ pcre_config(PCRE_CONFIG_UNICODE_PROPERTIES, &ucp);
+#elif defined SUPPORT_PCRE16
+ pcre16_config(PCRE_CONFIG_UTF16, &utf);
+ pcre16_config(PCRE_CONFIG_UNICODE_PROPERTIES, &ucp);
+#elif defined SUPPORT_PCRE16
+ pcre32_config(PCRE_CONFIG_UTF32, &utf);
+ pcre32_config(PCRE_CONFIG_UNICODE_PROPERTIES, &ucp);
+#endif
+
+ if (!utf)
+ disabled_flags |= PCRE_UTF8 | PCRE_UTF16 | PCRE_UTF32;
+ if (!ucp)
+ disabled_flags |= PCRE_UCP;
+#ifdef SUPPORT_PCRE8
+ printf(" in 8 bit mode with UTF-8 %s and ucp %s:\n", utf ? "enabled" : "disabled", ucp ? "enabled" : "disabled");
+#endif
+#ifdef SUPPORT_PCRE16
+ printf(" in 16 bit mode with UTF-16 %s and ucp %s:\n", utf ? "enabled" : "disabled", ucp ? "enabled" : "disabled");
+#endif
+#ifdef SUPPORT_PCRE32
+ printf(" in 32 bit mode with UTF-32 %s and ucp %s:\n", utf ? "enabled" : "disabled", ucp ? "enabled" : "disabled");
+#endif
+
+ while (current->pattern) {
+ /* printf("\nPattern: %s :\n", current->pattern); */
+ total++;
+ if (current->start_offset & F_PROPERTY) {
+ is_ascii_pattern = 0;
+ is_ascii_input = 0;
+ } else {
+ is_ascii_pattern = check_ascii(current->pattern);
+ is_ascii_input = check_ascii(current->input);
+ }
+
+ if (current->flags & PCRE_PARTIAL_SOFT)
+ study_mode = PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE;
+ else if (current->flags & PCRE_PARTIAL_HARD)
+ study_mode = PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE;
+ else
+ study_mode = PCRE_STUDY_JIT_COMPILE;
+ error = NULL;
+#ifdef SUPPORT_PCRE8
+ re8 = NULL;
+ if (!(current->start_offset & F_NO8))
+ re8 = pcre_compile(current->pattern,
+ current->flags & ~(PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD | disabled_flags),
+ &error, &err_offs, tables(0));
+
+ extra8 = NULL;
+ if (re8) {
+ error = NULL;
+ extra8 = pcre_study(re8, study_mode, &error);
+ if (!extra8) {
+ printf("\n8 bit: Cannot study pattern: %s\n", current->pattern);
+ pcre_free(re8);
+ re8 = NULL;
+ }
+ else if (!(extra8->flags & PCRE_EXTRA_EXECUTABLE_JIT)) {
+ printf("\n8 bit: JIT compiler does not support: %s\n", current->pattern);
+ pcre_free_study(extra8);
+ pcre_free(re8);
+ re8 = NULL;
+ }
+ extra8->flags |= PCRE_EXTRA_MARK;
+ } else if (((utf && ucp) || is_ascii_pattern) && !(current->start_offset & F_NO8))
+ printf("\n8 bit: Cannot compile pattern \"%s\": %s\n", current->pattern, error);
+#endif
+#ifdef SUPPORT_PCRE16
+ if ((current->flags & PCRE_UTF16) || (current->start_offset & F_FORCECONV))
+ convert_utf8_to_utf16(current->pattern, regtest_buf16, NULL, REGTEST_MAX_LENGTH16);
+ else
+ copy_char8_to_char16(current->pattern, regtest_buf16, REGTEST_MAX_LENGTH16);
+
+ re16 = NULL;
+ if (!(current->start_offset & F_NO16))
+ re16 = pcre16_compile(regtest_buf16,
+ current->flags & ~(PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD | disabled_flags),
+ &error, &err_offs, tables(0));
+
+ extra16 = NULL;
+ if (re16) {
+ error = NULL;
+ extra16 = pcre16_study(re16, study_mode, &error);
+ if (!extra16) {
+ printf("\n16 bit: Cannot study pattern: %s\n", current->pattern);
+ pcre16_free(re16);
+ re16 = NULL;
+ }
+ else if (!(extra16->flags & PCRE_EXTRA_EXECUTABLE_JIT)) {
+ printf("\n16 bit: JIT compiler does not support: %s\n", current->pattern);
+ pcre16_free_study(extra16);
+ pcre16_free(re16);
+ re16 = NULL;
+ }
+ extra16->flags |= PCRE_EXTRA_MARK;
+ } else if (((utf && ucp) || is_ascii_pattern) && !(current->start_offset & F_NO16))
+ printf("\n16 bit: Cannot compile pattern \"%s\": %s\n", current->pattern, error);
+#endif
+#ifdef SUPPORT_PCRE32
+ if ((current->flags & PCRE_UTF32) || (current->start_offset & F_FORCECONV))
+ convert_utf8_to_utf32(current->pattern, regtest_buf32, NULL, REGTEST_MAX_LENGTH32);
+ else
+ copy_char8_to_char32(current->pattern, regtest_buf32, REGTEST_MAX_LENGTH32);
+
+ re32 = NULL;
+ if (!(current->start_offset & F_NO32))
+ re32 = pcre32_compile(regtest_buf32,
+ current->flags & ~(PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD | disabled_flags),
+ &error, &err_offs, tables(0));
+
+ extra32 = NULL;
+ if (re32) {
+ error = NULL;
+ extra32 = pcre32_study(re32, study_mode, &error);
+ if (!extra32) {
+ printf("\n32 bit: Cannot study pattern: %s\n", current->pattern);
+ pcre32_free(re32);
+ re32 = NULL;
+ }
+ if (!(extra32->flags & PCRE_EXTRA_EXECUTABLE_JIT)) {
+ printf("\n32 bit: JIT compiler does not support: %s\n", current->pattern);
+ pcre32_free_study(extra32);
+ pcre32_free(re32);
+ re32 = NULL;
+ }
+ extra32->flags |= PCRE_EXTRA_MARK;
+ } else if (((utf && ucp) || is_ascii_pattern) && !(current->start_offset & F_NO32))
+ printf("\n32 bit: Cannot compile pattern \"%s\": %s\n", current->pattern, error);
+#endif
+
+ counter++;
+ if ((counter & 0x3) != 0) {
+#ifdef SUPPORT_PCRE8
+ setstack8(NULL);
+#endif
+#ifdef SUPPORT_PCRE16
+ setstack16(NULL);
+#endif
+#ifdef SUPPORT_PCRE32
+ setstack32(NULL);
+#endif
+ }
+
+#ifdef SUPPORT_PCRE8
+ return_value8[0] = -1000;
+ return_value8[1] = -1000;
+ for (i = 0; i < 32; ++i)
+ ovector8_1[i] = -2;
+ for (i = 0; i < 32; ++i)
+ ovector8_2[i] = -2;
+ if (re8) {
+ mark8_1 = NULL;
+ mark8_2 = NULL;
+ extra8->mark = &mark8_1;
+
+ if ((counter & 0x1) != 0) {
+ setstack8(extra8);
+ return_value8[0] = pcre_exec(re8, extra8, current->input, strlen(current->input), current->start_offset & OFFSET_MASK,
+ current->flags & (PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD), ovector8_1, 32);
+ } else
+ return_value8[0] = pcre_jit_exec(re8, extra8, current->input, strlen(current->input), current->start_offset & OFFSET_MASK,
+ current->flags & (PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD), ovector8_1, 32, getstack8());
+ memset(&dummy_extra8, 0, sizeof(pcre_extra));
+ dummy_extra8.flags = PCRE_EXTRA_MARK;
+ if (current->start_offset & F_STUDY) {
+ dummy_extra8.flags |= PCRE_EXTRA_STUDY_DATA;
+ dummy_extra8.study_data = extra8->study_data;
+ }
+ dummy_extra8.mark = &mark8_2;
+ return_value8[1] = pcre_exec(re8, &dummy_extra8, current->input, strlen(current->input), current->start_offset & OFFSET_MASK,
+ current->flags & (PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD), ovector8_2, 32);
+ }
+#endif
+
+#ifdef SUPPORT_PCRE16
+ return_value16[0] = -1000;
+ return_value16[1] = -1000;
+ for (i = 0; i < 32; ++i)
+ ovector16_1[i] = -2;
+ for (i = 0; i < 32; ++i)
+ ovector16_2[i] = -2;
+ if (re16) {
+ mark16_1 = NULL;
+ mark16_2 = NULL;
+ if ((current->flags & PCRE_UTF16) || (current->start_offset & F_FORCECONV))
+ length16 = convert_utf8_to_utf16(current->input, regtest_buf16, regtest_offsetmap16, REGTEST_MAX_LENGTH16);
+ else
+ length16 = copy_char8_to_char16(current->input, regtest_buf16, REGTEST_MAX_LENGTH16);
+ extra16->mark = &mark16_1;
+ if ((counter & 0x1) != 0) {
+ setstack16(extra16);
+ return_value16[0] = pcre16_exec(re16, extra16, regtest_buf16, length16, current->start_offset & OFFSET_MASK,
+ current->flags & (PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD), ovector16_1, 32);
+ } else
+ return_value16[0] = pcre16_jit_exec(re16, extra16, regtest_buf16, length16, current->start_offset & OFFSET_MASK,
+ current->flags & (PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD), ovector16_1, 32, getstack16());
+ memset(&dummy_extra16, 0, sizeof(pcre16_extra));
+ dummy_extra16.flags = PCRE_EXTRA_MARK;
+ if (current->start_offset & F_STUDY) {
+ dummy_extra16.flags |= PCRE_EXTRA_STUDY_DATA;
+ dummy_extra16.study_data = extra16->study_data;
+ }
+ dummy_extra16.mark = &mark16_2;
+ return_value16[1] = pcre16_exec(re16, &dummy_extra16, regtest_buf16, length16, current->start_offset & OFFSET_MASK,
+ current->flags & (PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD), ovector16_2, 32);
+ }
+#endif
+
+#ifdef SUPPORT_PCRE32
+ return_value32[0] = -1000;
+ return_value32[1] = -1000;
+ for (i = 0; i < 32; ++i)
+ ovector32_1[i] = -2;
+ for (i = 0; i < 32; ++i)
+ ovector32_2[i] = -2;
+ if (re32) {
+ mark32_1 = NULL;
+ mark32_2 = NULL;
+ if ((current->flags & PCRE_UTF32) || (current->start_offset & F_FORCECONV))
+ length32 = convert_utf8_to_utf32(current->input, regtest_buf32, regtest_offsetmap32, REGTEST_MAX_LENGTH32);
+ else
+ length32 = copy_char8_to_char32(current->input, regtest_buf32, REGTEST_MAX_LENGTH32);
+ extra32->mark = &mark32_1;
+ if ((counter & 0x1) != 0) {
+ setstack32(extra32);
+ return_value32[0] = pcre32_exec(re32, extra32, regtest_buf32, length32, current->start_offset & OFFSET_MASK,
+ current->flags & (PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD), ovector32_1, 32);
+ } else
+ return_value32[0] = pcre32_jit_exec(re32, extra32, regtest_buf32, length32, current->start_offset & OFFSET_MASK,
+ current->flags & (PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD), ovector32_1, 32, getstack32());
+ memset(&dummy_extra32, 0, sizeof(pcre32_extra));
+ dummy_extra32.flags = PCRE_EXTRA_MARK;
+ if (current->start_offset & F_STUDY) {
+ dummy_extra32.flags |= PCRE_EXTRA_STUDY_DATA;
+ dummy_extra32.study_data = extra32->study_data;
+ }
+ dummy_extra32.mark = &mark32_2;
+ return_value32[1] = pcre32_exec(re32, &dummy_extra32, regtest_buf32, length32, current->start_offset & OFFSET_MASK,
+ current->flags & (PCRE_NOTBOL | PCRE_NOTEOL | PCRE_NOTEMPTY | PCRE_NOTEMPTY_ATSTART | PCRE_PARTIAL_SOFT | PCRE_PARTIAL_HARD), ovector32_2, 32);
+ }
+#endif
+
+ /* printf("[%d-%d-%d|%d-%d|%d-%d|%d-%d]%s",
+ return_value8[0], return_value16[0],
+ ovector8_1[0], ovector8_1[1],
+ ovector16_1[0], ovector16_1[1],
+ ovector32_1[0], ovector32_1[1],
+ (current->flags & PCRE_CASELESS) ? "C" : ""); */
+
+ /* If F_DIFF is set, just run the test, but do not compare the results.
+ Segfaults can still be captured. */
+
+ is_successful = 1;
+ if (!(current->start_offset & F_DIFF)) {
+#if defined SUPPORT_UTF && ((defined(SUPPORT_PCRE8) + defined(SUPPORT_PCRE16) + defined(SUPPORT_PCRE32)) >= 2)
+ if (!(current->start_offset & F_FORCECONV)) {
+ int return_value;
+
+ /* All results must be the same. */
+#ifdef SUPPORT_PCRE8
+ if ((return_value = return_value8[0]) != return_value8[1]) {
+ printf("\n8 bit: Return value differs(J8:%d,I8:%d): [%d] '%s' @ '%s'\n",
+ return_value8[0], return_value8[1], total, current->pattern, current->input);
+ is_successful = 0;
+ } else
+#endif
+#ifdef SUPPORT_PCRE16
+ if ((return_value = return_value16[0]) != return_value16[1]) {
+ printf("\n16 bit: Return value differs(J16:%d,I16:%d): [%d] '%s' @ '%s'\n",
+ return_value16[0], return_value16[1], total, current->pattern, current->input);
+ is_successful = 0;
+ } else
+#endif
+#ifdef SUPPORT_PCRE32
+ if ((return_value = return_value32[0]) != return_value32[1]) {
+ printf("\n32 bit: Return value differs(J32:%d,I32:%d): [%d] '%s' @ '%s'\n",
+ return_value32[0], return_value32[1], total, current->pattern, current->input);
+ is_successful = 0;
+ } else
+#endif
+#if defined SUPPORT_PCRE8 && defined SUPPORT_PCRE16
+ if (return_value8[0] != return_value16[0]) {
+ printf("\n8 and 16 bit: Return value differs(J8:%d,J16:%d): [%d] '%s' @ '%s'\n",
+ return_value8[0], return_value16[0],
+ total, current->pattern, current->input);
+ is_successful = 0;
+ } else
+#endif
+#if defined SUPPORT_PCRE8 && defined SUPPORT_PCRE32
+ if (return_value8[0] != return_value32[0]) {
+ printf("\n8 and 32 bit: Return value differs(J8:%d,J32:%d): [%d] '%s' @ '%s'\n",
+ return_value8[0], return_value32[0],
+ total, current->pattern, current->input);
+ is_successful = 0;
+ } else
+#endif
+#if defined SUPPORT_PCRE16 && defined SUPPORT_PCRE32
+ if (return_value16[0] != return_value32[0]) {
+ printf("\n16 and 32 bit: Return value differs(J16:%d,J32:%d): [%d] '%s' @ '%s'\n",
+ return_value16[0], return_value32[0],
+ total, current->pattern, current->input);
+ is_successful = 0;
+ } else
+#endif
+ if (return_value >= 0 || return_value == PCRE_ERROR_PARTIAL) {
+ if (return_value == PCRE_ERROR_PARTIAL) {
+ return_value = 2;
+ } else {
+ return_value *= 2;
+ }
+#ifdef SUPPORT_PCRE8
+ return_value8[0] = return_value;
+#endif
+#ifdef SUPPORT_PCRE16
+ return_value16[0] = return_value;
+#endif
+#ifdef SUPPORT_PCRE32
+ return_value32[0] = return_value;
+#endif
+ /* Transform back the results. */
+ if (current->flags & PCRE_UTF8) {
+#ifdef SUPPORT_PCRE16
+ for (i = 0; i < return_value; ++i) {
+ if (ovector16_1[i] >= 0)
+ ovector16_1[i] = regtest_offsetmap16[ovector16_1[i]];
+ if (ovector16_2[i] >= 0)
+ ovector16_2[i] = regtest_offsetmap16[ovector16_2[i]];
+ }
+#endif
+#ifdef SUPPORT_PCRE32
+ for (i = 0; i < return_value; ++i) {
+ if (ovector32_1[i] >= 0)
+ ovector32_1[i] = regtest_offsetmap32[ovector32_1[i]];
+ if (ovector32_2[i] >= 0)
+ ovector32_2[i] = regtest_offsetmap32[ovector32_2[i]];
+ }
+#endif
+ }
+
+ for (i = 0; i < return_value; ++i) {
+#if defined SUPPORT_PCRE8 && defined SUPPORT_PCRE16
+ if (ovector8_1[i] != ovector8_2[i] || ovector8_1[i] != ovector16_1[i] || ovector8_1[i] != ovector16_2[i]) {
+ printf("\n8 and 16 bit: Ovector[%d] value differs(J8:%d,I8:%d,J16:%d,I16:%d): [%d] '%s' @ '%s' \n",
+ i, ovector8_1[i], ovector8_2[i], ovector16_1[i], ovector16_2[i],
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+#endif
+#if defined SUPPORT_PCRE8 && defined SUPPORT_PCRE32
+ if (ovector8_1[i] != ovector8_2[i] || ovector8_1[i] != ovector32_1[i] || ovector8_1[i] != ovector32_2[i]) {
+ printf("\n8 and 32 bit: Ovector[%d] value differs(J8:%d,I8:%d,J32:%d,I32:%d): [%d] '%s' @ '%s' \n",
+ i, ovector8_1[i], ovector8_2[i], ovector32_1[i], ovector32_2[i],
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+#endif
+#if defined SUPPORT_PCRE16 && defined SUPPORT_PCRE16
+ if (ovector16_1[i] != ovector16_2[i] || ovector16_1[i] != ovector16_1[i] || ovector16_1[i] != ovector16_2[i]) {
+ printf("\n16 and 16 bit: Ovector[%d] value differs(J16:%d,I16:%d,J32:%d,I32:%d): [%d] '%s' @ '%s' \n",
+ i, ovector16_1[i], ovector16_2[i], ovector16_1[i], ovector16_2[i],
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+#endif
+ }
+ }
+ } else
+#endif /* more than one of SUPPORT_PCRE8, SUPPORT_PCRE16 and SUPPORT_PCRE32 */
+ {
+ /* Only the 8 bit and 16 bit results must be equal. */
+#ifdef SUPPORT_PCRE8
+ if (return_value8[0] != return_value8[1]) {
+ printf("\n8 bit: Return value differs(%d:%d): [%d] '%s' @ '%s'\n",
+ return_value8[0], return_value8[1], total, current->pattern, current->input);
+ is_successful = 0;
+ } else if (return_value8[0] >= 0 || return_value8[0] == PCRE_ERROR_PARTIAL) {
+ if (return_value8[0] == PCRE_ERROR_PARTIAL)
+ return_value8[0] = 2;
+ else
+ return_value8[0] *= 2;
+
+ for (i = 0; i < return_value8[0]; ++i)
+ if (ovector8_1[i] != ovector8_2[i]) {
+ printf("\n8 bit: Ovector[%d] value differs(%d:%d): [%d] '%s' @ '%s'\n",
+ i, ovector8_1[i], ovector8_2[i], total, current->pattern, current->input);
+ is_successful = 0;
+ }
+ }
+#endif
+
+#ifdef SUPPORT_PCRE16
+ if (return_value16[0] != return_value16[1]) {
+ printf("\n16 bit: Return value differs(%d:%d): [%d] '%s' @ '%s'\n",
+ return_value16[0], return_value16[1], total, current->pattern, current->input);
+ is_successful = 0;
+ } else if (return_value16[0] >= 0 || return_value16[0] == PCRE_ERROR_PARTIAL) {
+ if (return_value16[0] == PCRE_ERROR_PARTIAL)
+ return_value16[0] = 2;
+ else
+ return_value16[0] *= 2;
+
+ for (i = 0; i < return_value16[0]; ++i)
+ if (ovector16_1[i] != ovector16_2[i]) {
+ printf("\n16 bit: Ovector[%d] value differs(%d:%d): [%d] '%s' @ '%s'\n",
+ i, ovector16_1[i], ovector16_2[i], total, current->pattern, current->input);
+ is_successful = 0;
+ }
+ }
+#endif
+
+#ifdef SUPPORT_PCRE32
+ if (return_value32[0] != return_value32[1]) {
+ printf("\n32 bit: Return value differs(%d:%d): [%d] '%s' @ '%s'\n",
+ return_value32[0], return_value32[1], total, current->pattern, current->input);
+ is_successful = 0;
+ } else if (return_value32[0] >= 0 || return_value32[0] == PCRE_ERROR_PARTIAL) {
+ if (return_value32[0] == PCRE_ERROR_PARTIAL)
+ return_value32[0] = 2;
+ else
+ return_value32[0] *= 2;
+
+ for (i = 0; i < return_value32[0]; ++i)
+ if (ovector32_1[i] != ovector32_2[i]) {
+ printf("\n32 bit: Ovector[%d] value differs(%d:%d): [%d] '%s' @ '%s'\n",
+ i, ovector32_1[i], ovector32_2[i], total, current->pattern, current->input);
+ is_successful = 0;
+ }
+ }
+#endif
+ }
+ }
+
+ if (is_successful) {
+#ifdef SUPPORT_PCRE8
+ if (!(current->start_offset & F_NO8) && ((utf && ucp) || is_ascii_input)) {
+ if (return_value8[0] < 0 && !(current->start_offset & F_NOMATCH)) {
+ printf("8 bit: Test should match: [%d] '%s' @ '%s'\n",
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+
+ if (return_value8[0] >= 0 && (current->start_offset & F_NOMATCH)) {
+ printf("8 bit: Test should not match: [%d] '%s' @ '%s'\n",
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+ }
+#endif
+#ifdef SUPPORT_PCRE16
+ if (!(current->start_offset & F_NO16) && ((utf && ucp) || is_ascii_input)) {
+ if (return_value16[0] < 0 && !(current->start_offset & F_NOMATCH)) {
+ printf("16 bit: Test should match: [%d] '%s' @ '%s'\n",
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+
+ if (return_value16[0] >= 0 && (current->start_offset & F_NOMATCH)) {
+ printf("16 bit: Test should not match: [%d] '%s' @ '%s'\n",
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+ }
+#endif
+#ifdef SUPPORT_PCRE32
+ if (!(current->start_offset & F_NO32) && ((utf && ucp) || is_ascii_input)) {
+ if (return_value32[0] < 0 && !(current->start_offset & F_NOMATCH)) {
+ printf("32 bit: Test should match: [%d] '%s' @ '%s'\n",
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+
+ if (return_value32[0] >= 0 && (current->start_offset & F_NOMATCH)) {
+ printf("32 bit: Test should not match: [%d] '%s' @ '%s'\n",
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+ }
+#endif
+ }
+
+ if (is_successful) {
+#ifdef SUPPORT_PCRE8
+ if (mark8_1 != mark8_2) {
+ printf("8 bit: Mark value mismatch: [%d] '%s' @ '%s'\n",
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+#endif
+#ifdef SUPPORT_PCRE16
+ if (mark16_1 != mark16_2) {
+ printf("16 bit: Mark value mismatch: [%d] '%s' @ '%s'\n",
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+#endif
+#ifdef SUPPORT_PCRE32
+ if (mark32_1 != mark32_2) {
+ printf("32 bit: Mark value mismatch: [%d] '%s' @ '%s'\n",
+ total, current->pattern, current->input);
+ is_successful = 0;
+ }
+#endif
+ }
+
+#ifdef SUPPORT_PCRE8
+ if (re8) {
+ pcre_free_study(extra8);
+ pcre_free(re8);
+ }
+#endif
+#ifdef SUPPORT_PCRE16
+ if (re16) {
+ pcre16_free_study(extra16);
+ pcre16_free(re16);
+ }
+#endif
+#ifdef SUPPORT_PCRE32
+ if (re32) {
+ pcre32_free_study(extra32);
+ pcre32_free(re32);
+ }
+#endif
+
+ if (is_successful) {
+ successful++;
+ successful_row++;
+ printf(".");
+ if (successful_row >= 60) {
+ successful_row = 0;
+ printf("\n");
+ }
+ } else
+ successful_row = 0;
+
+ fflush(stdout);
+ current++;
+ }
+ tables(1);
+#ifdef SUPPORT_PCRE8
+ setstack8(NULL);
+#endif
+#ifdef SUPPORT_PCRE16
+ setstack16(NULL);
+#endif
+#ifdef SUPPORT_PCRE32
+ setstack32(NULL);
+#endif
+
+ if (total == successful) {
+ printf("\nAll JIT regression tests are successfully passed.\n");
+ return 0;
+ } else {
+ printf("\nSuccessful test ratio: %d%% (%d failed)\n", successful * 100 / total, total - successful);
+ return 1;
+ }
+}
+
+/* End of pcre_jit_test.c */
diff --git a/pcre/pcre_maketables.c b/pcre/pcre_maketables.c
new file mode 100644
index 00000000000..610a669586b
--- /dev/null
+++ b/pcre/pcre_maketables.c
@@ -0,0 +1,151 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains the external function pcre_maketables(), which builds
+character tables for PCRE in the current locale. The file is compiled on its
+own as part of the PCRE library. However, it is also included in the
+compilation of dftables.c, in which case the macro DFTABLES is defined. */
+
+
+#ifndef DFTABLES
+# ifdef HAVE_CONFIG_H
+# include "config.h"
+# endif
+# include "pcre_internal.h"
+#endif
+
+
+/*************************************************
+* Create PCRE character tables *
+*************************************************/
+
+/* This function builds a set of character tables for use by PCRE and returns
+a pointer to them. They are build using the ctype functions, and consequently
+their contents will depend upon the current locale setting. When compiled as
+part of the library, the store is obtained via PUBL(malloc)(), but when
+compiled inside dftables, use malloc().
+
+Arguments: none
+Returns: pointer to the contiguous block of data
+*/
+
+#if defined COMPILE_PCRE8
+const unsigned char *
+pcre_maketables(void)
+#elif defined COMPILE_PCRE16
+const unsigned char *
+pcre16_maketables(void)
+#elif defined COMPILE_PCRE32
+const unsigned char *
+pcre32_maketables(void)
+#endif
+{
+unsigned char *yield, *p;
+int i;
+
+#ifndef DFTABLES
+yield = (unsigned char*)(PUBL(malloc))(tables_length);
+#else
+yield = (unsigned char*)malloc(tables_length);
+#endif
+
+if (yield == NULL) return NULL;
+p = yield;
+
+/* First comes the lower casing table */
+
+for (i = 0; i < 256; i++) *p++ = tolower(i);
+
+/* Next the case-flipping table */
+
+for (i = 0; i < 256; i++) *p++ = islower(i)? toupper(i) : tolower(i);
+
+/* Then the character class tables. Don't try to be clever and save effort on
+exclusive ones - in some locales things may be different. Note that the table
+for "space" includes everything "isspace" gives, including VT in the default
+locale. This makes it work for the POSIX class [:space:]. Note also that it is
+possible for a character to be alnum or alpha without being lower or upper,
+such as "male and female ordinals" (\xAA and \xBA) in the fr_FR locale (at
+least under Debian Linux's locales as of 12/2005). So we must test for alnum
+specially. */
+
+memset(p, 0, cbit_length);
+for (i = 0; i < 256; i++)
+ {
+ if (isdigit(i)) p[cbit_digit + i/8] |= 1 << (i&7);
+ if (isupper(i)) p[cbit_upper + i/8] |= 1 << (i&7);
+ if (islower(i)) p[cbit_lower + i/8] |= 1 << (i&7);
+ if (isalnum(i)) p[cbit_word + i/8] |= 1 << (i&7);
+ if (i == '_') p[cbit_word + i/8] |= 1 << (i&7);
+ if (isspace(i)) p[cbit_space + i/8] |= 1 << (i&7);
+ if (isxdigit(i))p[cbit_xdigit + i/8] |= 1 << (i&7);
+ if (isgraph(i)) p[cbit_graph + i/8] |= 1 << (i&7);
+ if (isprint(i)) p[cbit_print + i/8] |= 1 << (i&7);
+ if (ispunct(i)) p[cbit_punct + i/8] |= 1 << (i&7);
+ if (iscntrl(i)) p[cbit_cntrl + i/8] |= 1 << (i&7);
+ }
+p += cbit_length;
+
+/* Finally, the character type table. In this, we exclude VT from the white
+space chars, because Perl doesn't recognize it as such for \s and for comments
+within regexes. */
+
+for (i = 0; i < 256; i++)
+ {
+ int x = 0;
+ if (i != CHAR_VT && isspace(i)) x += ctype_space;
+ if (isalpha(i)) x += ctype_letter;
+ if (isdigit(i)) x += ctype_digit;
+ if (isxdigit(i)) x += ctype_xdigit;
+ if (isalnum(i) || i == '_') x += ctype_word;
+
+ /* Note: strchr includes the terminating zero in the characters it considers.
+ In this instance, that is ok because we want binary zero to be flagged as a
+ meta-character, which in this sense is any character that terminates a run
+ of data characters. */
+
+ if (strchr("\\*+?{^.$|()[", i) != 0) x += ctype_meta;
+ *p++ = x;
+ }
+
+return yield;
+}
+
+/* End of pcre_maketables.c */
diff --git a/pcre/pcre_newline.c b/pcre/pcre_newline.c
new file mode 100644
index 00000000000..b8f5a4de19c
--- /dev/null
+++ b/pcre/pcre_newline.c
@@ -0,0 +1,210 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains internal functions for testing newlines when more than
+one kind of newline is to be recognized. When a newline is found, its length is
+returned. In principle, we could implement several newline "types", each
+referring to a different set of newline characters. At present, PCRE supports
+only NLTYPE_FIXED, which gets handled without these functions, NLTYPE_ANYCRLF,
+and NLTYPE_ANY. The full list of Unicode newline characters is taken from
+http://unicode.org/unicode/reports/tr18/. */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "pcre_internal.h"
+
+
+
+/*************************************************
+* Check for newline at given position *
+*************************************************/
+
+/* It is guaranteed that the initial value of ptr is less than the end of the
+string that is being processed.
+
+Arguments:
+ ptr pointer to possible newline
+ type the newline type
+ endptr pointer to the end of the string
+ lenptr where to return the length
+ utf TRUE if in utf mode
+
+Returns: TRUE or FALSE
+*/
+
+BOOL
+PRIV(is_newline)(PCRE_PUCHAR ptr, int type, PCRE_PUCHAR endptr, int *lenptr,
+ BOOL utf)
+{
+pcre_uint32 c;
+(void)utf;
+#ifdef SUPPORT_UTF
+if (utf)
+ {
+ GETCHAR(c, ptr);
+ }
+else
+#endif /* SUPPORT_UTF */
+ c = *ptr;
+
+/* Note that this function is called only for ANY or ANYCRLF. */
+
+if (type == NLTYPE_ANYCRLF) switch(c)
+ {
+ case CHAR_LF: *lenptr = 1; return TRUE;
+ case CHAR_CR: *lenptr = (ptr < endptr - 1 && ptr[1] == CHAR_LF)? 2 : 1;
+ return TRUE;
+ default: return FALSE;
+ }
+
+/* NLTYPE_ANY */
+
+else switch(c)
+ {
+#ifdef EBCDIC
+ case CHAR_NEL:
+#endif
+ case CHAR_LF:
+ case CHAR_VT:
+ case CHAR_FF: *lenptr = 1; return TRUE;
+
+ case CHAR_CR:
+ *lenptr = (ptr < endptr - 1 && ptr[1] == CHAR_LF)? 2 : 1;
+ return TRUE;
+
+#ifndef EBCDIC
+#ifdef COMPILE_PCRE8
+ case CHAR_NEL: *lenptr = utf? 2 : 1; return TRUE;
+ case 0x2028: /* LS */
+ case 0x2029: *lenptr = 3; return TRUE; /* PS */
+#else /* COMPILE_PCRE16 || COMPILE_PCRE32 */
+ case CHAR_NEL:
+ case 0x2028: /* LS */
+ case 0x2029: *lenptr = 1; return TRUE; /* PS */
+#endif /* COMPILE_PCRE8 */
+#endif /* Not EBCDIC */
+
+ default: return FALSE;
+ }
+}
+
+
+
+/*************************************************
+* Check for newline at previous position *
+*************************************************/
+
+/* It is guaranteed that the initial value of ptr is greater than the start of
+the string that is being processed.
+
+Arguments:
+ ptr pointer to possible newline
+ type the newline type
+ startptr pointer to the start of the string
+ lenptr where to return the length
+ utf TRUE if in utf mode
+
+Returns: TRUE or FALSE
+*/
+
+BOOL
+PRIV(was_newline)(PCRE_PUCHAR ptr, int type, PCRE_PUCHAR startptr, int *lenptr,
+ BOOL utf)
+{
+pcre_uint32 c;
+(void)utf;
+ptr--;
+#ifdef SUPPORT_UTF
+if (utf)
+ {
+ BACKCHAR(ptr);
+ GETCHAR(c, ptr);
+ }
+else
+#endif /* SUPPORT_UTF */
+ c = *ptr;
+
+/* Note that this function is called only for ANY or ANYCRLF. */
+
+if (type == NLTYPE_ANYCRLF) switch(c)
+ {
+ case CHAR_LF:
+ *lenptr = (ptr > startptr && ptr[-1] == CHAR_CR)? 2 : 1;
+ return TRUE;
+
+ case CHAR_CR: *lenptr = 1; return TRUE;
+ default: return FALSE;
+ }
+
+/* NLTYPE_ANY */
+
+else switch(c)
+ {
+ case CHAR_LF:
+ *lenptr = (ptr > startptr && ptr[-1] == CHAR_CR)? 2 : 1;
+ return TRUE;
+
+#ifdef EBCDIC
+ case CHAR_NEL:
+#endif
+ case CHAR_VT:
+ case CHAR_FF:
+ case CHAR_CR: *lenptr = 1; return TRUE;
+
+#ifndef EBCDIC
+#ifdef COMPILE_PCRE8
+ case CHAR_NEL: *lenptr = utf? 2 : 1; return TRUE;
+ case 0x2028: /* LS */
+ case 0x2029: *lenptr = 3; return TRUE; /* PS */
+#else /* COMPILE_PCRE16 || COMPILE_PCRE32 */
+ case CHAR_NEL:
+ case 0x2028: /* LS */
+ case 0x2029: *lenptr = 1; return TRUE; /* PS */
+#endif /* COMPILE_PCRE8 */
+#endif /* NotEBCDIC */
+
+ default: return FALSE;
+ }
+}
+
+/* End of pcre_newline.c */
diff --git a/pcre/pcre_ord2utf8.c b/pcre/pcre_ord2utf8.c
new file mode 100644
index 00000000000..95f1beb963e
--- /dev/null
+++ b/pcre/pcre_ord2utf8.c
@@ -0,0 +1,94 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This file contains a private PCRE function that converts an ordinal
+character value into a UTF8 string. */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#define COMPILE_PCRE8
+
+#include "pcre_internal.h"
+
+/*************************************************
+* Convert character value to UTF-8 *
+*************************************************/
+
+/* This function takes an integer value in the range 0 - 0x10ffff
+and encodes it as a UTF-8 character in 1 to 4 pcre_uchars.
+
+Arguments:
+ cvalue the character value
+ buffer pointer to buffer for result - at least 6 pcre_uchars long
+
+Returns: number of characters placed in the buffer
+*/
+
+unsigned
+int
+PRIV(ord2utf)(pcre_uint32 cvalue, pcre_uchar *buffer)
+{
+#ifdef SUPPORT_UTF
+
+register int i, j;
+
+for (i = 0; i < PRIV(utf8_table1_size); i++)
+ if ((int)cvalue <= PRIV(utf8_table1)[i]) break;
+buffer += i;
+for (j = i; j > 0; j--)
+ {
+ *buffer-- = 0x80 | (cvalue & 0x3f);
+ cvalue >>= 6;
+ }
+*buffer = PRIV(utf8_table2)[i] | cvalue;
+return i + 1;
+
+#else
+
+(void)(cvalue); /* Keep compiler happy; this function won't ever be */
+(void)(buffer); /* called when SUPPORT_UTF is not defined. */
+return 0;
+
+#endif
+}
+
+/* End of pcre_ord2utf8.c */
diff --git a/pcre/pcre_printint.c b/pcre/pcre_printint.c
new file mode 100644
index 00000000000..10b575426b3
--- /dev/null
+++ b/pcre/pcre_printint.c
@@ -0,0 +1,766 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains a PCRE private debugging function for printing out the
+internal form of a compiled regular expression, along with some supporting
+local functions. This source file is used in two places:
+
+(1) It is #included by pcre_compile.c when it is compiled in debugging mode
+(PCRE_DEBUG defined in pcre_internal.h). It is not included in production
+compiles. In this case PCRE_INCLUDED is defined.
+
+(2) It is also compiled separately and linked with pcretest.c, which can be
+asked to print out a compiled regex for debugging purposes. */
+
+#ifndef PCRE_INCLUDED
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+/* For pcretest program. */
+#define PRIV(name) name
+
+/* We have to include pcre_internal.h because we need the internal info for
+displaying the results of pcre_study() and we also need to know about the
+internal macros, structures, and other internal data values; pcretest has
+"inside information" compared to a program that strictly follows the PCRE API.
+
+Although pcre_internal.h does itself include pcre.h, we explicitly include it
+here before pcre_internal.h so that the PCRE_EXP_xxx macros get set
+appropriately for an application, not for building PCRE. */
+
+#include "pcre.h"
+#include "pcre_internal.h"
+
+/* These are the funtions that are contained within. It doesn't seem worth
+having a separate .h file just for this. */
+
+#endif /* PCRE_INCLUDED */
+
+#ifdef PCRE_INCLUDED
+static /* Keep the following function as private. */
+#endif
+
+#if defined COMPILE_PCRE8
+void pcre_printint(pcre *external_re, FILE *f, BOOL print_lengths);
+#elif defined COMPILE_PCRE16
+void pcre16_printint(pcre *external_re, FILE *f, BOOL print_lengths);
+#elif defined COMPILE_PCRE32
+void pcre32_printint(pcre *external_re, FILE *f, BOOL print_lengths);
+#endif
+
+/* Macro that decides whether a character should be output as a literal or in
+hexadecimal. We don't use isprint() because that can vary from system to system
+(even without the use of locales) and we want the output always to be the same,
+for testing purposes. */
+
+#ifdef EBCDIC
+#define PRINTABLE(c) ((c) >= 64 && (c) < 255)
+#else
+#define PRINTABLE(c) ((c) >= 32 && (c) < 127)
+#endif
+
+/* The table of operator names. */
+
+static const char *priv_OP_names[] = { OP_NAME_LIST };
+
+/* This table of operator lengths is not actually used by the working code,
+but its size is needed for a check that ensures it is the correct size for the
+number of opcodes (thus catching update omissions). */
+
+static const pcre_uint8 priv_OP_lengths[] = { OP_LENGTHS };
+
+
+
+/*************************************************
+* Print single- or multi-byte character *
+*************************************************/
+
+static unsigned int
+print_char(FILE *f, pcre_uchar *ptr, BOOL utf)
+{
+pcre_uint32 c = *ptr;
+
+#ifndef SUPPORT_UTF
+
+(void)utf; /* Avoid compiler warning */
+if (PRINTABLE(c)) fprintf(f, "%c", (char)c);
+else if (c <= 0x80) fprintf(f, "\\x%02x", c);
+else fprintf(f, "\\x{%x}", c);
+return 0;
+
+#else
+
+#if defined COMPILE_PCRE8
+
+if (!utf || (c & 0xc0) != 0xc0)
+ {
+ if (PRINTABLE(c)) fprintf(f, "%c", (char)c);
+ else if (c < 0x80) fprintf(f, "\\x%02x", c);
+ else fprintf(f, "\\x{%02x}", c);
+ return 0;
+ }
+else
+ {
+ int i;
+ int a = PRIV(utf8_table4)[c & 0x3f]; /* Number of additional bytes */
+ int s = 6*a;
+ c = (c & PRIV(utf8_table3)[a]) << s;
+ for (i = 1; i <= a; i++)
+ {
+ /* This is a check for malformed UTF-8; it should only occur if the sanity
+ check has been turned off. Rather than swallow random bytes, just stop if
+ we hit a bad one. Print it with \X instead of \x as an indication. */
+
+ if ((ptr[i] & 0xc0) != 0x80)
+ {
+ fprintf(f, "\\X{%x}", c);
+ return i - 1;
+ }
+
+ /* The byte is OK */
+
+ s -= 6;
+ c |= (ptr[i] & 0x3f) << s;
+ }
+ fprintf(f, "\\x{%x}", c);
+ return a;
+ }
+
+#elif defined COMPILE_PCRE16
+
+if (!utf || (c & 0xfc00) != 0xd800)
+ {
+ if (PRINTABLE(c)) fprintf(f, "%c", (char)c);
+ else if (c <= 0x80) fprintf(f, "\\x%02x", c);
+ else fprintf(f, "\\x{%02x}", c);
+ return 0;
+ }
+else
+ {
+ /* This is a check for malformed UTF-16; it should only occur if the sanity
+ check has been turned off. Rather than swallow a low surrogate, just stop if
+ we hit a bad one. Print it with \X instead of \x as an indication. */
+
+ if ((ptr[1] & 0xfc00) != 0xdc00)
+ {
+ fprintf(f, "\\X{%x}", c);
+ return 0;
+ }
+
+ c = (((c & 0x3ff) << 10) | (ptr[1] & 0x3ff)) + 0x10000;
+ fprintf(f, "\\x{%x}", c);
+ return 1;
+ }
+
+#elif defined COMPILE_PCRE32
+
+if (!utf || (c & 0xfffff800u) != 0xd800u)
+ {
+ if (PRINTABLE(c)) fprintf(f, "%c", (char)c);
+ else if (c <= 0x80) fprintf(f, "\\x%02x", c);
+ else fprintf(f, "\\x{%x}", c);
+ return 0;
+ }
+else
+ {
+ /* This is a check for malformed UTF-32; it should only occur if the sanity
+ check has been turned off. Rather than swallow a surrogate, just stop if
+ we hit one. Print it with \X instead of \x as an indication. */
+ fprintf(f, "\\X{%x}", c);
+ return 0;
+ }
+
+#endif /* COMPILE_PCRE[8|16|32] */
+
+#endif /* SUPPORT_UTF */
+}
+
+/*************************************************
+* Print uchar string (regardless of utf) *
+*************************************************/
+
+static void
+print_puchar(FILE *f, PCRE_PUCHAR ptr)
+{
+while (*ptr != '\0')
+ {
+ register pcre_uint32 c = *ptr++;
+ if (PRINTABLE(c)) fprintf(f, "%c", c); else fprintf(f, "\\x{%x}", c);
+ }
+}
+
+/*************************************************
+* Find Unicode property name *
+*************************************************/
+
+static const char *
+get_ucpname(unsigned int ptype, unsigned int pvalue)
+{
+#ifdef SUPPORT_UCP
+int i;
+for (i = PRIV(utt_size) - 1; i >= 0; i--)
+ {
+ if (ptype == PRIV(utt)[i].type && pvalue == PRIV(utt)[i].value) break;
+ }
+return (i >= 0)? PRIV(utt_names) + PRIV(utt)[i].name_offset : "??";
+#else
+/* It gets harder and harder to shut off unwanted compiler warnings. */
+ptype = ptype * pvalue;
+return (ptype == pvalue)? "??" : "??";
+#endif
+}
+
+
+/*************************************************
+* Print Unicode property value *
+*************************************************/
+
+/* "Normal" properties can be printed from tables. The PT_CLIST property is a
+pseudo-property that contains a pointer to a list of case-equivalent
+characters. This is used only when UCP support is available and UTF mode is
+selected. It should never occur otherwise, but just in case it does, have
+something ready to print. */
+
+static void
+print_prop(FILE *f, pcre_uchar *code, const char *before, const char *after)
+{
+if (code[1] != PT_CLIST)
+ {
+ fprintf(f, "%s%s %s%s", before, priv_OP_names[*code], get_ucpname(code[1],
+ code[2]), after);
+ }
+else
+ {
+ const char *not = (*code == OP_PROP)? "" : "not ";
+#ifndef SUPPORT_UCP
+ fprintf(f, "%s%sclist %d%s", before, not, code[2], after);
+#else
+ const pcre_uint32 *p = PRIV(ucd_caseless_sets) + code[2];
+ fprintf (f, "%s%sclist", before, not);
+ while (*p < NOTACHAR) fprintf(f, " %04x", *p++);
+ fprintf(f, "%s", after);
+#endif
+ }
+}
+
+
+
+
+/*************************************************
+* Print compiled regex *
+*************************************************/
+
+/* Make this function work for a regex with integers either byte order.
+However, we assume that what we are passed is a compiled regex. The
+print_lengths flag controls whether offsets and lengths of items are printed.
+They can be turned off from pcretest so that automatic tests on bytecode can be
+written that do not depend on the value of LINK_SIZE. */
+
+#ifdef PCRE_INCLUDED
+static /* Keep the following function as private. */
+#endif
+#if defined COMPILE_PCRE8
+void
+pcre_printint(pcre *external_re, FILE *f, BOOL print_lengths)
+#elif defined COMPILE_PCRE16
+void
+pcre16_printint(pcre *external_re, FILE *f, BOOL print_lengths)
+#elif defined COMPILE_PCRE32
+void
+pcre32_printint(pcre *external_re, FILE *f, BOOL print_lengths)
+#endif
+{
+REAL_PCRE *re = (REAL_PCRE *)external_re;
+pcre_uchar *codestart, *code;
+BOOL utf;
+
+unsigned int options = re->options;
+int offset = re->name_table_offset;
+int count = re->name_count;
+int size = re->name_entry_size;
+
+if (re->magic_number != MAGIC_NUMBER)
+ {
+ offset = ((offset << 8) & 0xff00) | ((offset >> 8) & 0xff);
+ count = ((count << 8) & 0xff00) | ((count >> 8) & 0xff);
+ size = ((size << 8) & 0xff00) | ((size >> 8) & 0xff);
+ options = ((options << 24) & 0xff000000) |
+ ((options << 8) & 0x00ff0000) |
+ ((options >> 8) & 0x0000ff00) |
+ ((options >> 24) & 0x000000ff);
+ }
+
+code = codestart = (pcre_uchar *)re + offset + count * size;
+/* PCRE_UTF(16|32) have the same value as PCRE_UTF8. */
+utf = (options & PCRE_UTF8) != 0;
+
+for(;;)
+ {
+ pcre_uchar *ccode;
+ const char *flag = " ";
+ pcre_uint32 c;
+ unsigned int extra = 0;
+
+ if (print_lengths)
+ fprintf(f, "%3d ", (int)(code - codestart));
+ else
+ fprintf(f, " ");
+
+ switch(*code)
+ {
+/* ========================================================================== */
+ /* These cases are never obeyed. This is a fudge that causes a compile-
+ time error if the vectors OP_names or OP_lengths, which are indexed
+ by opcode, are not the correct length. It seems to be the only way to do
+ such a check at compile time, as the sizeof() operator does not work in
+ the C preprocessor. */
+
+ case OP_TABLE_LENGTH:
+ case OP_TABLE_LENGTH +
+ ((sizeof(priv_OP_names)/sizeof(const char *) == OP_TABLE_LENGTH) &&
+ (sizeof(priv_OP_lengths) == OP_TABLE_LENGTH)):
+ break;
+/* ========================================================================== */
+
+ case OP_END:
+ fprintf(f, " %s\n", priv_OP_names[*code]);
+ fprintf(f, "------------------------------------------------------------------\n");
+ return;
+
+ case OP_CHAR:
+ fprintf(f, " ");
+ do
+ {
+ code++;
+ code += 1 + print_char(f, code, utf);
+ }
+ while (*code == OP_CHAR);
+ fprintf(f, "\n");
+ continue;
+
+ case OP_CHARI:
+ fprintf(f, " /i ");
+ do
+ {
+ code++;
+ code += 1 + print_char(f, code, utf);
+ }
+ while (*code == OP_CHARI);
+ fprintf(f, "\n");
+ continue;
+
+ case OP_CBRA:
+ case OP_CBRAPOS:
+ case OP_SCBRA:
+ case OP_SCBRAPOS:
+ if (print_lengths) fprintf(f, "%3d ", GET(code, 1));
+ else fprintf(f, " ");
+ fprintf(f, "%s %d", priv_OP_names[*code], GET2(code, 1+LINK_SIZE));
+ break;
+
+ case OP_BRA:
+ case OP_BRAPOS:
+ case OP_SBRA:
+ case OP_SBRAPOS:
+ case OP_KETRMAX:
+ case OP_KETRMIN:
+ case OP_KETRPOS:
+ case OP_ALT:
+ case OP_KET:
+ case OP_ASSERT:
+ case OP_ASSERT_NOT:
+ case OP_ASSERTBACK:
+ case OP_ASSERTBACK_NOT:
+ case OP_ONCE:
+ case OP_ONCE_NC:
+ case OP_COND:
+ case OP_SCOND:
+ case OP_REVERSE:
+ if (print_lengths) fprintf(f, "%3d ", GET(code, 1));
+ else fprintf(f, " ");
+ fprintf(f, "%s", priv_OP_names[*code]);
+ break;
+
+ case OP_CLOSE:
+ fprintf(f, " %s %d", priv_OP_names[*code], GET2(code, 1));
+ break;
+
+ case OP_CREF:
+ case OP_NCREF:
+ fprintf(f, "%3d %s", GET2(code,1), priv_OP_names[*code]);
+ break;
+
+ case OP_RREF:
+ c = GET2(code, 1);
+ if (c == RREF_ANY)
+ fprintf(f, " Cond recurse any");
+ else
+ fprintf(f, " Cond recurse %d", c);
+ break;
+
+ case OP_NRREF:
+ c = GET2(code, 1);
+ if (c == RREF_ANY)
+ fprintf(f, " Cond nrecurse any");
+ else
+ fprintf(f, " Cond nrecurse %d", c);
+ break;
+
+ case OP_DEF:
+ fprintf(f, " Cond def");
+ break;
+
+ case OP_STARI:
+ case OP_MINSTARI:
+ case OP_POSSTARI:
+ case OP_PLUSI:
+ case OP_MINPLUSI:
+ case OP_POSPLUSI:
+ case OP_QUERYI:
+ case OP_MINQUERYI:
+ case OP_POSQUERYI:
+ flag = "/i";
+ /* Fall through */
+ case OP_STAR:
+ case OP_MINSTAR:
+ case OP_POSSTAR:
+ case OP_PLUS:
+ case OP_MINPLUS:
+ case OP_POSPLUS:
+ case OP_QUERY:
+ case OP_MINQUERY:
+ case OP_POSQUERY:
+ case OP_TYPESTAR:
+ case OP_TYPEMINSTAR:
+ case OP_TYPEPOSSTAR:
+ case OP_TYPEPLUS:
+ case OP_TYPEMINPLUS:
+ case OP_TYPEPOSPLUS:
+ case OP_TYPEQUERY:
+ case OP_TYPEMINQUERY:
+ case OP_TYPEPOSQUERY:
+ fprintf(f, " %s ", flag);
+ if (*code >= OP_TYPESTAR)
+ {
+ if (code[1] == OP_PROP || code[1] == OP_NOTPROP)
+ {
+ print_prop(f, code + 1, "", " ");
+ extra = 2;
+ }
+ else fprintf(f, "%s", priv_OP_names[code[1]]);
+ }
+ else extra = print_char(f, code+1, utf);
+ fprintf(f, "%s", priv_OP_names[*code]);
+ break;
+
+ case OP_EXACTI:
+ case OP_UPTOI:
+ case OP_MINUPTOI:
+ case OP_POSUPTOI:
+ flag = "/i";
+ /* Fall through */
+ case OP_EXACT:
+ case OP_UPTO:
+ case OP_MINUPTO:
+ case OP_POSUPTO:
+ fprintf(f, " %s ", flag);
+ extra = print_char(f, code + 1 + IMM2_SIZE, utf);
+ fprintf(f, "{");
+ if (*code != OP_EXACT && *code != OP_EXACTI) fprintf(f, "0,");
+ fprintf(f, "%d}", GET2(code,1));
+ if (*code == OP_MINUPTO || *code == OP_MINUPTOI) fprintf(f, "?");
+ else if (*code == OP_POSUPTO || *code == OP_POSUPTOI) fprintf(f, "+");
+ break;
+
+ case OP_TYPEEXACT:
+ case OP_TYPEUPTO:
+ case OP_TYPEMINUPTO:
+ case OP_TYPEPOSUPTO:
+ if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
+ {
+ print_prop(f, code + IMM2_SIZE + 1, " ", " ");
+ extra = 2;
+ }
+ else fprintf(f, " %s", priv_OP_names[code[1 + IMM2_SIZE]]);
+ fprintf(f, "{");
+ if (*code != OP_TYPEEXACT) fprintf(f, "0,");
+ fprintf(f, "%d}", GET2(code,1));
+ if (*code == OP_TYPEMINUPTO) fprintf(f, "?");
+ else if (*code == OP_TYPEPOSUPTO) fprintf(f, "+");
+ break;
+
+ case OP_NOTI:
+ flag = "/i";
+ /* Fall through */
+ case OP_NOT:
+ fprintf(f, " %s [^", flag);
+ extra = print_char(f, code + 1, utf);
+ fprintf(f, "]");
+ break;
+
+ case OP_NOTSTARI:
+ case OP_NOTMINSTARI:
+ case OP_NOTPOSSTARI:
+ case OP_NOTPLUSI:
+ case OP_NOTMINPLUSI:
+ case OP_NOTPOSPLUSI:
+ case OP_NOTQUERYI:
+ case OP_NOTMINQUERYI:
+ case OP_NOTPOSQUERYI:
+ flag = "/i";
+ /* Fall through */
+
+ case OP_NOTSTAR:
+ case OP_NOTMINSTAR:
+ case OP_NOTPOSSTAR:
+ case OP_NOTPLUS:
+ case OP_NOTMINPLUS:
+ case OP_NOTPOSPLUS:
+ case OP_NOTQUERY:
+ case OP_NOTMINQUERY:
+ case OP_NOTPOSQUERY:
+ fprintf(f, " %s [^", flag);
+ extra = print_char(f, code + 1, utf);
+ fprintf(f, "]%s", priv_OP_names[*code]);
+ break;
+
+ case OP_NOTEXACTI:
+ case OP_NOTUPTOI:
+ case OP_NOTMINUPTOI:
+ case OP_NOTPOSUPTOI:
+ flag = "/i";
+ /* Fall through */
+
+ case OP_NOTEXACT:
+ case OP_NOTUPTO:
+ case OP_NOTMINUPTO:
+ case OP_NOTPOSUPTO:
+ fprintf(f, " %s [^", flag);
+ extra = print_char(f, code + 1 + IMM2_SIZE, utf);
+ fprintf(f, "]{");
+ if (*code != OP_NOTEXACT && *code != OP_NOTEXACTI) fprintf(f, "0,");
+ fprintf(f, "%d}", GET2(code,1));
+ if (*code == OP_NOTMINUPTO || *code == OP_NOTMINUPTOI) fprintf(f, "?");
+ else
+ if (*code == OP_NOTPOSUPTO || *code == OP_NOTPOSUPTOI) fprintf(f, "+");
+ break;
+
+ case OP_RECURSE:
+ if (print_lengths) fprintf(f, "%3d ", GET(code, 1));
+ else fprintf(f, " ");
+ fprintf(f, "%s", priv_OP_names[*code]);
+ break;
+
+ case OP_REFI:
+ flag = "/i";
+ /* Fall through */
+ case OP_REF:
+ fprintf(f, " %s \\%d", flag, GET2(code,1));
+ ccode = code + priv_OP_lengths[*code];
+ goto CLASS_REF_REPEAT;
+
+ case OP_CALLOUT:
+ fprintf(f, " %s %d %d %d", priv_OP_names[*code], code[1], GET(code,2),
+ GET(code, 2 + LINK_SIZE));
+ break;
+
+ case OP_PROP:
+ case OP_NOTPROP:
+ print_prop(f, code, " ", "");
+ break;
+
+ /* OP_XCLASS can only occur in UTF or PCRE16 modes. However, there's no
+ harm in having this code always here, and it makes it less messy without
+ all those #ifdefs. */
+
+ case OP_CLASS:
+ case OP_NCLASS:
+ case OP_XCLASS:
+ {
+ int i;
+ unsigned int min, max;
+ BOOL printmap;
+ pcre_uint8 *map;
+
+ fprintf(f, " [");
+
+ if (*code == OP_XCLASS)
+ {
+ extra = GET(code, 1);
+ ccode = code + LINK_SIZE + 1;
+ printmap = (*ccode & XCL_MAP) != 0;
+ if ((*ccode++ & XCL_NOT) != 0) fprintf(f, "^");
+ }
+ else
+ {
+ printmap = TRUE;
+ ccode = code + 1;
+ }
+
+ /* Print a bit map */
+
+ if (printmap)
+ {
+ map = (pcre_uint8 *)ccode;
+ for (i = 0; i < 256; i++)
+ {
+ if ((map[i/8] & (1 << (i&7))) != 0)
+ {
+ int j;
+ for (j = i+1; j < 256; j++)
+ if ((map[j/8] & (1 << (j&7))) == 0) break;
+ if (i == '-' || i == ']') fprintf(f, "\\");
+ if (PRINTABLE(i)) fprintf(f, "%c", i);
+ else fprintf(f, "\\x%02x", i);
+ if (--j > i)
+ {
+ if (j != i + 1) fprintf(f, "-");
+ if (j == '-' || j == ']') fprintf(f, "\\");
+ if (PRINTABLE(j)) fprintf(f, "%c", j);
+ else fprintf(f, "\\x%02x", j);
+ }
+ i = j;
+ }
+ }
+ ccode += 32 / sizeof(pcre_uchar);
+ }
+
+ /* For an XCLASS there is always some additional data */
+
+ if (*code == OP_XCLASS)
+ {
+ pcre_uchar ch;
+ while ((ch = *ccode++) != XCL_END)
+ {
+ if (ch == XCL_PROP)
+ {
+ unsigned int ptype = *ccode++;
+ unsigned int pvalue = *ccode++;
+ fprintf(f, "\\p{%s}", get_ucpname(ptype, pvalue));
+ }
+ else if (ch == XCL_NOTPROP)
+ {
+ unsigned int ptype = *ccode++;
+ unsigned int pvalue = *ccode++;
+ fprintf(f, "\\P{%s}", get_ucpname(ptype, pvalue));
+ }
+ else
+ {
+ ccode += 1 + print_char(f, ccode, utf);
+ if (ch == XCL_RANGE)
+ {
+ fprintf(f, "-");
+ ccode += 1 + print_char(f, ccode, utf);
+ }
+ }
+ }
+ }
+
+ /* Indicate a non-UTF class which was created by negation */
+
+ fprintf(f, "]%s", (*code == OP_NCLASS)? " (neg)" : "");
+
+ /* Handle repeats after a class or a back reference */
+
+ CLASS_REF_REPEAT:
+ switch(*ccode)
+ {
+ case OP_CRSTAR:
+ case OP_CRMINSTAR:
+ case OP_CRPLUS:
+ case OP_CRMINPLUS:
+ case OP_CRQUERY:
+ case OP_CRMINQUERY:
+ fprintf(f, "%s", priv_OP_names[*ccode]);
+ extra += priv_OP_lengths[*ccode];
+ break;
+
+ case OP_CRRANGE:
+ case OP_CRMINRANGE:
+ min = GET2(ccode,1);
+ max = GET2(ccode,1 + IMM2_SIZE);
+ if (max == 0) fprintf(f, "{%u,}", min);
+ else fprintf(f, "{%u,%u}", min, max);
+ if (*ccode == OP_CRMINRANGE) fprintf(f, "?");
+ extra += priv_OP_lengths[*ccode];
+ break;
+
+ /* Do nothing if it's not a repeat; this code stops picky compilers
+ warning about the lack of a default code path. */
+
+ default:
+ break;
+ }
+ }
+ break;
+
+ case OP_MARK:
+ case OP_PRUNE_ARG:
+ case OP_SKIP_ARG:
+ case OP_THEN_ARG:
+ fprintf(f, " %s ", priv_OP_names[*code]);
+ print_puchar(f, code + 2);
+ extra += code[1];
+ break;
+
+ case OP_THEN:
+ fprintf(f, " %s", priv_OP_names[*code]);
+ break;
+
+ case OP_CIRCM:
+ case OP_DOLLM:
+ flag = "/m";
+ /* Fall through */
+
+ /* Anything else is just an item with no data, but possibly a flag. */
+
+ default:
+ fprintf(f, " %s %s", flag, priv_OP_names[*code]);
+ break;
+ }
+
+ code += priv_OP_lengths[*code] + extra;
+ fprintf(f, "\n");
+ }
+}
+
+/* End of pcre_printint.src */
diff --git a/pcre/pcre_refcount.c b/pcre/pcre_refcount.c
new file mode 100644
index 00000000000..79efa90f216
--- /dev/null
+++ b/pcre/pcre_refcount.c
@@ -0,0 +1,92 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2012 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains the external function pcre_refcount(), which is an
+auxiliary function that can be used to maintain a reference count in a compiled
+pattern data block. This might be helpful in applications where the block is
+shared by different users. */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "pcre_internal.h"
+
+
+/*************************************************
+* Maintain reference count *
+*************************************************/
+
+/* The reference count is a 16-bit field, initialized to zero. It is not
+possible to transfer a non-zero count from one host to a different host that
+has a different byte order - though I can't see why anyone in their right mind
+would ever want to do that!
+
+Arguments:
+ argument_re points to compiled code
+ adjust value to add to the count
+
+Returns: the (possibly updated) count value (a non-negative number), or
+ a negative error number
+*/
+
+#if defined COMPILE_PCRE8
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre_refcount(pcre *argument_re, int adjust)
+#elif defined COMPILE_PCRE16
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre16_refcount(pcre16 *argument_re, int adjust)
+#elif defined COMPILE_PCRE32
+PCRE_EXP_DEFN int PCRE_CALL_CONVENTION
+pcre32_refcount(pcre32 *argument_re, int adjust)
+#endif
+{
+REAL_PCRE *re = (REAL_PCRE *)argument_re;
+if (re == NULL) return PCRE_ERROR_NULL;
+if (re->magic_number != MAGIC_NUMBER) return PCRE_ERROR_BADMAGIC;
+if ((re->flags & PCRE_MODE) == 0) return PCRE_ERROR_BADMODE;
+re->ref_count = (-adjust > re->ref_count)? 0 :
+ (adjust + re->ref_count > 65535)? 65535 :
+ re->ref_count + adjust;
+return re->ref_count;
+}
+
+/* End of pcre_refcount.c */
diff --git a/pcre/pcre_scanner.cc b/pcre/pcre_scanner.cc
new file mode 100644
index 00000000000..6be2be6829b
--- /dev/null
+++ b/pcre/pcre_scanner.cc
@@ -0,0 +1,199 @@
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: Sanjay Ghemawat
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include
+#include
+
+#include "pcrecpp_internal.h"
+#include "pcre_scanner.h"
+
+using std::vector;
+
+namespace pcrecpp {
+
+Scanner::Scanner()
+ : data_(),
+ input_(data_),
+ skip_(NULL),
+ should_skip_(false),
+ skip_repeat_(false),
+ save_comments_(false),
+ comments_(NULL),
+ comments_offset_(0) {
+}
+
+Scanner::Scanner(const string& in)
+ : data_(in),
+ input_(data_),
+ skip_(NULL),
+ should_skip_(false),
+ skip_repeat_(false),
+ save_comments_(false),
+ comments_(NULL),
+ comments_offset_(0) {
+}
+
+Scanner::~Scanner() {
+ delete skip_;
+ delete comments_;
+}
+
+void Scanner::SetSkipExpression(const char* re) {
+ delete skip_;
+ if (re != NULL) {
+ skip_ = new RE(re);
+ should_skip_ = true;
+ skip_repeat_ = true;
+ ConsumeSkip();
+ } else {
+ skip_ = NULL;
+ should_skip_ = false;
+ skip_repeat_ = false;
+ }
+}
+
+void Scanner::Skip(const char* re) {
+ delete skip_;
+ if (re != NULL) {
+ skip_ = new RE(re);
+ should_skip_ = true;
+ skip_repeat_ = false;
+ ConsumeSkip();
+ } else {
+ skip_ = NULL;
+ should_skip_ = false;
+ skip_repeat_ = false;
+ }
+}
+
+void Scanner::DisableSkip() {
+ assert(skip_ != NULL);
+ should_skip_ = false;
+}
+
+void Scanner::EnableSkip() {
+ assert(skip_ != NULL);
+ should_skip_ = true;
+ ConsumeSkip();
+}
+
+int Scanner::LineNumber() const {
+ // TODO: Make it more efficient by keeping track of the last point
+ // where we computed line numbers and counting newlines since then.
+ // We could use std:count, but not all systems have it. :-(
+ int count = 1;
+ for (const char* p = data_.data(); p < input_.data(); ++p)
+ if (*p == '\n')
+ ++count;
+ return count;
+}
+
+int Scanner::Offset() const {
+ return (int)(input_.data() - data_.c_str());
+}
+
+bool Scanner::LookingAt(const RE& re) const {
+ int consumed;
+ return re.DoMatch(input_, RE::ANCHOR_START, &consumed, 0, 0);
+}
+
+
+bool Scanner::Consume(const RE& re,
+ const Arg& arg0,
+ const Arg& arg1,
+ const Arg& arg2) {
+ const bool result = re.Consume(&input_, arg0, arg1, arg2);
+ if (result && should_skip_) ConsumeSkip();
+ return result;
+}
+
+// helper function to consume *skip_ and honour save_comments_
+void Scanner::ConsumeSkip() {
+ const char* start_data = input_.data();
+ while (skip_->Consume(&input_)) {
+ if (!skip_repeat_) {
+ // Only one skip allowed.
+ break;
+ }
+ }
+ if (save_comments_) {
+ if (comments_ == NULL) {
+ comments_ = new vector;
+ }
+ // already pointing one past end, so no need to +1
+ int length = (int)(input_.data() - start_data);
+ if (length > 0) {
+ comments_->push_back(StringPiece(start_data, length));
+ }
+ }
+}
+
+
+void Scanner::GetComments(int start, int end, vector *ranges) {
+ // short circuit out if we've not yet initialized comments_
+ // (e.g., when save_comments is false)
+ if (!comments_) {
+ return;
+ }
+ // TODO: if we guarantee that comments_ will contain StringPieces
+ // that are ordered by their start, then we can do a binary search
+ // for the first StringPiece at or past start and then scan for the
+ // ones contained in the range, quit early (use equal_range or
+ // lower_bound)
+ for (vector::const_iterator it = comments_->begin();
+ it != comments_->end(); ++it) {
+ if ((it->data() >= data_.c_str() + start &&
+ it->data() + it->size() <= data_.c_str() + end)) {
+ ranges->push_back(*it);
+ }
+ }
+}
+
+
+void Scanner::GetNextComments(vector *ranges) {
+ // short circuit out if we've not yet initialized comments_
+ // (e.g., when save_comments is false)
+ if (!comments_) {
+ return;
+ }
+ for (vector::const_iterator it =
+ comments_->begin() + comments_offset_;
+ it != comments_->end(); ++it) {
+ ranges->push_back(*it);
+ ++comments_offset_;
+ }
+}
+
+} // namespace pcrecpp
diff --git a/pcre/pcre_scanner.h b/pcre/pcre_scanner.h
new file mode 100644
index 00000000000..5617e4515cb
--- /dev/null
+++ b/pcre/pcre_scanner.h
@@ -0,0 +1,172 @@
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: Sanjay Ghemawat
+//
+// Regular-expression based scanner for parsing an input stream.
+//
+// Example 1: parse a sequence of "var = number" entries from input:
+//
+// Scanner scanner(input);
+// string var;
+// int number;
+// scanner.SetSkipExpression("\\s+"); // Skip any white space we encounter
+// while (scanner.Consume("(\\w+) = (\\d+)", &var, &number)) {
+// ...;
+// }
+
+#ifndef _PCRE_SCANNER_H
+#define _PCRE_SCANNER_H
+
+#include
+#include
+#include
+
+#include
+#include
+
+namespace pcrecpp {
+
+class PCRECPP_EXP_DEFN Scanner {
+ public:
+ Scanner();
+ explicit Scanner(const std::string& input);
+ ~Scanner();
+
+ // Return current line number. The returned line-number is
+ // one-based. I.e. it returns 1 + the number of consumed newlines.
+ //
+ // Note: this method may be slow. It may take time proportional to
+ // the size of the input.
+ int LineNumber() const;
+
+ // Return the byte-offset that the scanner is looking in the
+ // input data;
+ int Offset() const;
+
+ // Return true iff the start of the remaining input matches "re"
+ bool LookingAt(const RE& re) const;
+
+ // Return true iff all of the following are true
+ // a. the start of the remaining input matches "re",
+ // b. if any arguments are supplied, matched sub-patterns can be
+ // parsed and stored into the arguments.
+ // If it returns true, it skips over the matched input and any
+ // following input that matches the "skip" regular expression.
+ bool Consume(const RE& re,
+ const Arg& arg0 = RE::no_arg,
+ const Arg& arg1 = RE::no_arg,
+ const Arg& arg2 = RE::no_arg
+ // TODO: Allow more arguments?
+ );
+
+ // Set the "skip" regular expression. If after consuming some data,
+ // a prefix of the input matches this RE, it is automatically
+ // skipped. For example, a programming language scanner would use
+ // a skip RE that matches white space and comments.
+ //
+ // scanner.SetSkipExpression("\\s+|//.*|/[*](.|\n)*?[*]/");
+ //
+ // Skipping repeats as long as it succeeds. We used to let people do
+ // this by writing "(...)*" in the regular expression, but that added
+ // up to lots of recursive calls within the pcre library, so now we
+ // control repetition explicitly via the function call API.
+ //
+ // You can pass NULL for "re" if you do not want any data to be skipped.
+ void Skip(const char* re); // DEPRECATED; does *not* repeat
+ void SetSkipExpression(const char* re);
+
+ // Temporarily pause "skip"ing. This
+ // Skip("Foo"); code ; DisableSkip(); code; EnableSkip()
+ // is similar to
+ // Skip("Foo"); code ; Skip(NULL); code ; Skip("Foo");
+ // but avoids creating/deleting new RE objects.
+ void DisableSkip();
+
+ // Reenable previously paused skipping. Any prefix of the input
+ // that matches the skip pattern is immediately dropped.
+ void EnableSkip();
+
+ /***** Special wrappers around SetSkip() for some common idioms *****/
+
+ // Arranges to skip whitespace, C comments, C++ comments.
+ // The overall RE is a disjunction of the following REs:
+ // \\s whitespace
+ // //.*\n C++ comment
+ // /[*](.|\n)*?[*]/ C comment (x*? means minimal repetitions of x)
+ // We get repetition via the semantics of SetSkipExpression, not by using *
+ void SkipCXXComments() {
+ SetSkipExpression("\\s|//.*\n|/[*](?:\n|.)*?[*]/");
+ }
+
+ void set_save_comments(bool comments) {
+ save_comments_ = comments;
+ }
+
+ bool save_comments() {
+ return save_comments_;
+ }
+
+ // Append to vector ranges the comments found in the
+ // byte range [start,end] (inclusive) of the input data.
+ // Only comments that were extracted entirely within that
+ // range are returned: no range splitting of atomically-extracted
+ // comments is performed.
+ void GetComments(int start, int end, std::vector *ranges);
+
+ // Append to vector ranges the comments added
+ // since the last time this was called. This
+ // functionality is provided for efficiency when
+ // interleaving scanning with parsing.
+ void GetNextComments(std::vector *ranges);
+
+ private:
+ std::string data_; // All the input data
+ StringPiece input_; // Unprocessed input
+ RE* skip_; // If non-NULL, RE for skipping input
+ bool should_skip_; // If true, use skip_
+ bool skip_repeat_; // If true, repeat skip_ as long as it works
+ bool save_comments_; // If true, aggregate the skip expression
+
+ // the skipped comments
+ // TODO: later consider requiring that the StringPieces be added
+ // in order by their start position
+ std::vector *comments_;
+
+ // the offset into comments_ that has been returned by GetNextComments
+ int comments_offset_;
+
+ // helper function to consume *skip_ and honour
+ // save_comments_
+ void ConsumeSkip();
+};
+
+} // namespace pcrecpp
+
+#endif /* _PCRE_SCANNER_H */
diff --git a/pcre/pcre_scanner_unittest.cc b/pcre/pcre_scanner_unittest.cc
new file mode 100644
index 00000000000..7de8d2e8d9a
--- /dev/null
+++ b/pcre/pcre_scanner_unittest.cc
@@ -0,0 +1,159 @@
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: Greg J. Badros
+//
+// Unittest for scanner, especially GetNextComments and GetComments()
+// functionality.
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include
+#include /* for strchr */
+#include
+#include
+
+#include "pcrecpp.h"
+#include "pcre_stringpiece.h"
+#include "pcre_scanner.h"
+
+#define FLAGS_unittest_stack_size 49152
+
+// Dies with a fatal error if the two values are not equal.
+#define CHECK_EQ(a, b) do { \
+ if ( (a) != (b) ) { \
+ fprintf(stderr, "%s:%d: Check failed because %s != %s\n", \
+ __FILE__, __LINE__, #a, #b); \
+ exit(1); \
+ } \
+} while (0)
+
+using std::vector;
+using pcrecpp::StringPiece;
+using pcrecpp::Scanner;
+
+static void TestScanner() {
+ const char input[] = "\n"
+ "alpha = 1; // this sets alpha\n"
+ "bravo = 2; // bravo is set here\n"
+ "gamma = 33; /* and here is gamma */\n";
+
+ const char *re = "(\\w+) = (\\d+);";
+
+ Scanner s(input);
+ string var;
+ int number;
+ s.SkipCXXComments();
+ s.set_save_comments(true);
+ vector comments;
+
+ s.Consume(re, &var, &number);
+ CHECK_EQ(var, "alpha");
+ CHECK_EQ(number, 1);
+ CHECK_EQ(s.LineNumber(), 3);
+ s.GetNextComments(&comments);
+ CHECK_EQ(comments.size(), 1);
+ CHECK_EQ(comments[0].as_string(), " // this sets alpha\n");
+ comments.resize(0);
+
+ s.Consume(re, &var, &number);
+ CHECK_EQ(var, "bravo");
+ CHECK_EQ(number, 2);
+ s.GetNextComments(&comments);
+ CHECK_EQ(comments.size(), 1);
+ CHECK_EQ(comments[0].as_string(), " // bravo is set here\n");
+ comments.resize(0);
+
+ s.Consume(re, &var, &number);
+ CHECK_EQ(var, "gamma");
+ CHECK_EQ(number, 33);
+ s.GetNextComments(&comments);
+ CHECK_EQ(comments.size(), 1);
+ CHECK_EQ(comments[0].as_string(), " /* and here is gamma */\n");
+ comments.resize(0);
+
+ s.GetComments(0, sizeof(input), &comments);
+ CHECK_EQ(comments.size(), 3);
+ CHECK_EQ(comments[0].as_string(), " // this sets alpha\n");
+ CHECK_EQ(comments[1].as_string(), " // bravo is set here\n");
+ CHECK_EQ(comments[2].as_string(), " /* and here is gamma */\n");
+ comments.resize(0);
+
+ s.GetComments(0, (int)(strchr(input, '/') - input), &comments);
+ CHECK_EQ(comments.size(), 0);
+ comments.resize(0);
+
+ s.GetComments((int)(strchr(input, '/') - input - 1), sizeof(input),
+ &comments);
+ CHECK_EQ(comments.size(), 3);
+ CHECK_EQ(comments[0].as_string(), " // this sets alpha\n");
+ CHECK_EQ(comments[1].as_string(), " // bravo is set here\n");
+ CHECK_EQ(comments[2].as_string(), " /* and here is gamma */\n");
+ comments.resize(0);
+
+ s.GetComments((int)(strchr(input, '/') - input - 1),
+ (int)(strchr(input + 1, '\n') - input + 1), &comments);
+ CHECK_EQ(comments.size(), 1);
+ CHECK_EQ(comments[0].as_string(), " // this sets alpha\n");
+ comments.resize(0);
+}
+
+static void TestBigComment() {
+ string input;
+ for (int i = 0; i < 1024; ++i) {
+ char buf[1024]; // definitely big enough
+ sprintf(buf, " # Comment %d\n", i);
+ input += buf;
+ }
+ input += "name = value;\n";
+
+ Scanner s(input.c_str());
+ s.SetSkipExpression("\\s+|#.*\n");
+
+ string name;
+ string value;
+ s.Consume("(\\w+) = (\\w+);", &name, &value);
+ CHECK_EQ(name, "name");
+ CHECK_EQ(value, "value");
+}
+
+// TODO: also test scanner and big-comment in a thread with a
+// small stack size
+
+int main(int argc, char** argv) {
+ TestScanner();
+ TestBigComment();
+
+ // Done
+ printf("OK\n");
+
+ return 0;
+}
diff --git a/pcre/pcre_string_utils.c b/pcre/pcre_string_utils.c
new file mode 100644
index 00000000000..10b53d5bcb4
--- /dev/null
+++ b/pcre/pcre_string_utils.c
@@ -0,0 +1,211 @@
+/*************************************************
+* Perl-Compatible Regular Expressions *
+*************************************************/
+
+/* PCRE is a library of functions to support regular expressions whose syntax
+and semantics are as close as possible to those of the Perl 5 language.
+
+ Written by Philip Hazel
+ Copyright (c) 1997-2013 University of Cambridge
+
+-----------------------------------------------------------------------------
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright notice,
+ this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ * Neither the name of the University of Cambridge nor the names of its
+ contributors may be used to endorse or promote products derived from
+ this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+POSSIBILITY OF SUCH DAMAGE.
+-----------------------------------------------------------------------------
+*/
+
+
+/* This module contains internal functions for comparing and finding the length
+of strings for different data item sizes. */
+
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include "pcre_internal.h"
+
+#ifndef COMPILE_PCRE8
+
+/*************************************************
+* Compare string utilities *
+*************************************************/
+
+/* The following two functions compares two strings. Basically a strcmp
+for non 8 bit characters.
+
+Arguments:
+ str1 first string
+ str2 second string
+
+Returns: 0 if both string are equal (like strcmp), 1 otherwise
+*/
+
+int
+PRIV(strcmp_uc_uc)(const pcre_uchar *str1, const pcre_uchar *str2)
+{
+pcre_uchar c1;
+pcre_uchar c2;
+
+while (*str1 != '\0' || *str2 != '\0')
+ {
+ c1 = *str1++;
+ c2 = *str2++;
+ if (c1 != c2)
+ return ((c1 > c2) << 1) - 1;
+ }
+/* Both length and characters must be equal. */
+return 0;
+}
+
+#ifdef COMPILE_PCRE32
+
+int
+PRIV(strcmp_uc_uc_utf)(const pcre_uchar *str1, const pcre_uchar *str2)
+{
+pcre_uchar c1;
+pcre_uchar c2;
+
+while (*str1 != '\0' || *str2 != '\0')
+ {
+ c1 = RAWUCHARINC(str1);
+ c2 = RAWUCHARINC(str2);
+ if (c1 != c2)
+ return ((c1 > c2) << 1) - 1;
+ }
+/* Both length and characters must be equal. */
+return 0;
+}
+
+#endif /* COMPILE_PCRE32 */
+
+int
+PRIV(strcmp_uc_c8)(const pcre_uchar *str1, const char *str2)
+{
+const pcre_uint8 *ustr2 = (pcre_uint8 *)str2;
+pcre_uchar c1;
+pcre_uchar c2;
+
+while (*str1 != '\0' || *ustr2 != '\0')
+ {
+ c1 = *str1++;
+ c2 = (pcre_uchar)*ustr2++;
+ if (c1 != c2)
+ return ((c1 > c2) << 1) - 1;
+ }
+/* Both length and characters must be equal. */
+return 0;
+}
+
+#ifdef COMPILE_PCRE32
+
+int
+PRIV(strcmp_uc_c8_utf)(const pcre_uchar *str1, const char *str2)
+{
+const pcre_uint8 *ustr2 = (pcre_uint8 *)str2;
+pcre_uchar c1;
+pcre_uchar c2;
+
+while (*str1 != '\0' || *ustr2 != '\0')
+ {
+ c1 = RAWUCHARINC(str1);
+ c2 = (pcre_uchar)*ustr2++;
+ if (c1 != c2)
+ return ((c1 > c2) << 1) - 1;
+ }
+/* Both length and characters must be equal. */
+return 0;
+}
+
+#endif /* COMPILE_PCRE32 */
+
+/* The following two functions compares two, fixed length
+strings. Basically an strncmp for non 8 bit characters.
+
+Arguments:
+ str1 first string
+ str2 second string
+ num size of the string
+
+Returns: 0 if both string are equal (like strcmp), 1 otherwise
+*/
+
+int
+PRIV(strncmp_uc_uc)(const pcre_uchar *str1, const pcre_uchar *str2, unsigned int num)
+{
+pcre_uchar c1;
+pcre_uchar c2;
+
+while (num-- > 0)
+ {
+ c1 = *str1++;
+ c2 = *str2++;
+ if (c1 != c2)
+ return ((c1 > c2) << 1) - 1;
+ }
+/* Both length and characters must be equal. */
+return 0;
+}
+
+int
+PRIV(strncmp_uc_c8)(const pcre_uchar *str1, const char *str2, unsigned int num)
+{
+const pcre_uint8 *ustr2 = (pcre_uint8 *)str2;
+pcre_uchar c1;
+pcre_uchar c2;
+
+while (num-- > 0)
+ {
+ c1 = *str1++;
+ c2 = (pcre_uchar)*ustr2++;
+ if (c1 != c2)
+ return ((c1 > c2) << 1) - 1;
+ }
+/* Both length and characters must be equal. */
+return 0;
+}
+
+/* The following function returns with the length of
+a zero terminated string. Basically an strlen for non 8 bit characters.
+
+Arguments:
+ str string
+
+Returns: length of the string
+*/
+
+unsigned int
+PRIV(strlen_uc)(const pcre_uchar *str)
+{
+unsigned int len = 0;
+while (*str++ != 0)
+ len++;
+return len;
+}
+
+#endif /* !COMPILE_PCRE8 */
+
+/* End of pcre_string_utils.c */
diff --git a/pcre/pcre_stringpiece.cc b/pcre/pcre_stringpiece.cc
new file mode 100644
index 00000000000..67c0f1fc0e5
--- /dev/null
+++ b/pcre/pcre_stringpiece.cc
@@ -0,0 +1,43 @@
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: wilsonh@google.com (Wilson Hsieh)
+//
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include
+#include "pcrecpp_internal.h"
+#include "pcre_stringpiece.h"
+
+std::ostream& operator<<(std::ostream& o, const pcrecpp::StringPiece& piece) {
+ return (o << piece.as_string());
+}
diff --git a/pcre/pcre_stringpiece.h b/pcre/pcre_stringpiece.h
new file mode 100644
index 00000000000..4ea32f62261
--- /dev/null
+++ b/pcre/pcre_stringpiece.h
@@ -0,0 +1,179 @@
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: Sanjay Ghemawat
+//
+// A string like object that points into another piece of memory.
+// Useful for providing an interface that allows clients to easily
+// pass in either a "const char*" or a "string".
+//
+// Arghh! I wish C++ literals were automatically of type "string".
+
+#ifndef _PCRE_STRINGPIECE_H
+#define _PCRE_STRINGPIECE_H
+
+#include
+#include
+#include // for ostream forward-declaration
+
+#if 0
+#define HAVE_TYPE_TRAITS
+#include
+#elif 0
+#define HAVE_TYPE_TRAITS
+#include
+#endif
+
+#include
+
+using std::memcmp;
+using std::strlen;
+using std::string;
+
+namespace pcrecpp {
+
+class PCRECPP_EXP_DEFN StringPiece {
+ private:
+ const char* ptr_;
+ int length_;
+
+ public:
+ // We provide non-explicit singleton constructors so users can pass
+ // in a "const char*" or a "string" wherever a "StringPiece" is
+ // expected.
+ StringPiece()
+ : ptr_(NULL), length_(0) { }
+ StringPiece(const char* str)
+ : ptr_(str), length_(static_cast(strlen(ptr_))) { }
+ StringPiece(const unsigned char* str)
+ : ptr_(reinterpret_cast(str)),
+ length_(static_cast(strlen(ptr_))) { }
+ StringPiece(const string& str)
+ : ptr_(str.data()), length_(static_cast(str.size())) { }
+ StringPiece(const char* offset, int len)
+ : ptr_(offset), length_(len) { }
+
+ // data() may return a pointer to a buffer with embedded NULs, and the
+ // returned buffer may or may not be null terminated. Therefore it is
+ // typically a mistake to pass data() to a routine that expects a NUL
+ // terminated string. Use "as_string().c_str()" if you really need to do
+ // this. Or better yet, change your routine so it does not rely on NUL
+ // termination.
+ const char* data() const { return ptr_; }
+ int size() const { return length_; }
+ bool empty() const { return length_ == 0; }
+
+ void clear() { ptr_ = NULL; length_ = 0; }
+ void set(const char* buffer, int len) { ptr_ = buffer; length_ = len; }
+ void set(const char* str) {
+ ptr_ = str;
+ length_ = static_cast(strlen(str));
+ }
+ void set(const void* buffer, int len) {
+ ptr_ = reinterpret_cast(buffer);
+ length_ = len;
+ }
+
+ char operator[](int i) const { return ptr_[i]; }
+
+ void remove_prefix(int n) {
+ ptr_ += n;
+ length_ -= n;
+ }
+
+ void remove_suffix(int n) {
+ length_ -= n;
+ }
+
+ bool operator==(const StringPiece& x) const {
+ return ((length_ == x.length_) &&
+ (memcmp(ptr_, x.ptr_, length_) == 0));
+ }
+ bool operator!=(const StringPiece& x) const {
+ return !(*this == x);
+ }
+
+#define STRINGPIECE_BINARY_PREDICATE(cmp,auxcmp) \
+ bool operator cmp (const StringPiece& x) const { \
+ int r = memcmp(ptr_, x.ptr_, length_ < x.length_ ? length_ : x.length_); \
+ return ((r auxcmp 0) || ((r == 0) && (length_ cmp x.length_))); \
+ }
+ STRINGPIECE_BINARY_PREDICATE(<, <);
+ STRINGPIECE_BINARY_PREDICATE(<=, <);
+ STRINGPIECE_BINARY_PREDICATE(>=, >);
+ STRINGPIECE_BINARY_PREDICATE(>, >);
+#undef STRINGPIECE_BINARY_PREDICATE
+
+ int compare(const StringPiece& x) const {
+ int r = memcmp(ptr_, x.ptr_, length_ < x.length_ ? length_ : x.length_);
+ if (r == 0) {
+ if (length_ < x.length_) r = -1;
+ else if (length_ > x.length_) r = +1;
+ }
+ return r;
+ }
+
+ string as_string() const {
+ return string(data(), size());
+ }
+
+ void CopyToString(string* target) const {
+ target->assign(ptr_, length_);
+ }
+
+ // Does "this" start with "x"
+ bool starts_with(const StringPiece& x) const {
+ return ((length_ >= x.length_) && (memcmp(ptr_, x.ptr_, x.length_) == 0));
+ }
+};
+
+} // namespace pcrecpp
+
+// ------------------------------------------------------------------
+// Functions used to create STL containers that use StringPiece
+// Remember that a StringPiece's lifetime had better be less than
+// that of the underlying string or char*. If it is not, then you
+// cannot safely store a StringPiece into an STL container
+// ------------------------------------------------------------------
+
+#ifdef HAVE_TYPE_TRAITS
+// This makes vector really fast for some STL implementations
+template<> struct __type_traits {
+ typedef __true_type has_trivial_default_constructor;
+ typedef __true_type has_trivial_copy_constructor;
+ typedef __true_type has_trivial_assignment_operator;
+ typedef __true_type has_trivial_destructor;
+ typedef __true_type is_POD_type;
+};
+#endif
+
+// allow StringPiece to be logged
+std::ostream& operator<<(std::ostream& o, const pcrecpp::StringPiece& piece);
+
+#endif /* _PCRE_STRINGPIECE_H */
diff --git a/pcre/pcre_stringpiece.h.in b/pcre/pcre_stringpiece.h.in
new file mode 100644
index 00000000000..369c10f31b7
--- /dev/null
+++ b/pcre/pcre_stringpiece.h.in
@@ -0,0 +1,179 @@
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: Sanjay Ghemawat
+//
+// A string like object that points into another piece of memory.
+// Useful for providing an interface that allows clients to easily
+// pass in either a "const char*" or a "string".
+//
+// Arghh! I wish C++ literals were automatically of type "string".
+
+#ifndef _PCRE_STRINGPIECE_H
+#define _PCRE_STRINGPIECE_H
+
+#include
+#include
+#include // for ostream forward-declaration
+
+#if @pcre_have_type_traits@
+#define HAVE_TYPE_TRAITS
+#include
+#elif @pcre_have_bits_type_traits@
+#define HAVE_TYPE_TRAITS
+#include
+#endif
+
+#include
+
+using std::memcmp;
+using std::strlen;
+using std::string;
+
+namespace pcrecpp {
+
+class PCRECPP_EXP_DEFN StringPiece {
+ private:
+ const char* ptr_;
+ int length_;
+
+ public:
+ // We provide non-explicit singleton constructors so users can pass
+ // in a "const char*" or a "string" wherever a "StringPiece" is
+ // expected.
+ StringPiece()
+ : ptr_(NULL), length_(0) { }
+ StringPiece(const char* str)
+ : ptr_(str), length_(static_cast(strlen(ptr_))) { }
+ StringPiece(const unsigned char* str)
+ : ptr_(reinterpret_cast(str)),
+ length_(static_cast(strlen(ptr_))) { }
+ StringPiece(const string& str)
+ : ptr_(str.data()), length_(static_cast(str.size())) { }
+ StringPiece(const char* offset, int len)
+ : ptr_(offset), length_(len) { }
+
+ // data() may return a pointer to a buffer with embedded NULs, and the
+ // returned buffer may or may not be null terminated. Therefore it is
+ // typically a mistake to pass data() to a routine that expects a NUL
+ // terminated string. Use "as_string().c_str()" if you really need to do
+ // this. Or better yet, change your routine so it does not rely on NUL
+ // termination.
+ const char* data() const { return ptr_; }
+ int size() const { return length_; }
+ bool empty() const { return length_ == 0; }
+
+ void clear() { ptr_ = NULL; length_ = 0; }
+ void set(const char* buffer, int len) { ptr_ = buffer; length_ = len; }
+ void set(const char* str) {
+ ptr_ = str;
+ length_ = static_cast(strlen(str));
+ }
+ void set(const void* buffer, int len) {
+ ptr_ = reinterpret_cast(buffer);
+ length_ = len;
+ }
+
+ char operator[](int i) const { return ptr_[i]; }
+
+ void remove_prefix(int n) {
+ ptr_ += n;
+ length_ -= n;
+ }
+
+ void remove_suffix(int n) {
+ length_ -= n;
+ }
+
+ bool operator==(const StringPiece& x) const {
+ return ((length_ == x.length_) &&
+ (memcmp(ptr_, x.ptr_, length_) == 0));
+ }
+ bool operator!=(const StringPiece& x) const {
+ return !(*this == x);
+ }
+
+#define STRINGPIECE_BINARY_PREDICATE(cmp,auxcmp) \
+ bool operator cmp (const StringPiece& x) const { \
+ int r = memcmp(ptr_, x.ptr_, length_ < x.length_ ? length_ : x.length_); \
+ return ((r auxcmp 0) || ((r == 0) && (length_ cmp x.length_))); \
+ }
+ STRINGPIECE_BINARY_PREDICATE(<, <);
+ STRINGPIECE_BINARY_PREDICATE(<=, <);
+ STRINGPIECE_BINARY_PREDICATE(>=, >);
+ STRINGPIECE_BINARY_PREDICATE(>, >);
+#undef STRINGPIECE_BINARY_PREDICATE
+
+ int compare(const StringPiece& x) const {
+ int r = memcmp(ptr_, x.ptr_, length_ < x.length_ ? length_ : x.length_);
+ if (r == 0) {
+ if (length_ < x.length_) r = -1;
+ else if (length_ > x.length_) r = +1;
+ }
+ return r;
+ }
+
+ string as_string() const {
+ return string(data(), size());
+ }
+
+ void CopyToString(string* target) const {
+ target->assign(ptr_, length_);
+ }
+
+ // Does "this" start with "x"
+ bool starts_with(const StringPiece& x) const {
+ return ((length_ >= x.length_) && (memcmp(ptr_, x.ptr_, x.length_) == 0));
+ }
+};
+
+} // namespace pcrecpp
+
+// ------------------------------------------------------------------
+// Functions used to create STL containers that use StringPiece
+// Remember that a StringPiece's lifetime had better be less than
+// that of the underlying string or char*. If it is not, then you
+// cannot safely store a StringPiece into an STL container
+// ------------------------------------------------------------------
+
+#ifdef HAVE_TYPE_TRAITS
+// This makes vector really fast for some STL implementations
+template<> struct __type_traits {
+ typedef __true_type has_trivial_default_constructor;
+ typedef __true_type has_trivial_copy_constructor;
+ typedef __true_type has_trivial_assignment_operator;
+ typedef __true_type has_trivial_destructor;
+ typedef __true_type is_POD_type;
+};
+#endif
+
+// allow StringPiece to be logged
+std::ostream& operator<<(std::ostream& o, const pcrecpp::StringPiece& piece);
+
+#endif /* _PCRE_STRINGPIECE_H */
diff --git a/pcre/pcre_stringpiece_unittest.cc b/pcre/pcre_stringpiece_unittest.cc
new file mode 100644
index 00000000000..c58e028cefe
--- /dev/null
+++ b/pcre/pcre_stringpiece_unittest.cc
@@ -0,0 +1,150 @@
+// Copyright 2003 and onwards Google Inc.
+// Author: Sanjay Ghemawat
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include
+#include