/* * Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved. * Copyright (C) 2004-2011 Red Hat, Inc. All rights reserved. * * This file is part of LVM2. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU Lesser General Public License v.2.1. * * You should have received a copy of the GNU Lesser General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "lib/misc/lib.h" #include "lib/cache/lvmcache.h" #include "lib/commands/toolcontext.h" #include "lib/device/dev-cache.h" #include "lib/locking/locking.h" #include "lib/metadata/metadata.h" #include "lib/mm/memlock.h" #include "lib/datastruct/str_list.h" #include "lib/format_text/format-text.h" #include "lib/config/config.h" #include "lib/cache/lvmetad.h" #include "daemons/lvmetad/lvmetad-client.h" #define CACHE_LOCKED 0x00000002 /* One per device */ struct lvmcache_info { struct dm_list list; /* Join VG members together */ struct dm_list mdas; /* list head for metadata areas */ struct dm_list das; /* list head for data areas */ struct dm_list bas; /* list head for bootloader areas */ struct lvmcache_vginfo *vginfo; /* NULL == unknown */ struct label *label; const struct format_type *fmt; struct device *dev; uint64_t device_size; /* Bytes */ uint32_t ext_version; /* Extension version */ uint32_t ext_flags; /* Extension flags */ uint32_t status; }; /* One per VG */ struct lvmcache_vginfo { struct dm_list list; /* Join these vginfos together */ struct dm_list infos; /* List head for lvmcache_infos */ const struct format_type *fmt; char *vgname; /* "" == orphan */ uint32_t status; char vgid[ID_LEN + 1]; char _padding[7]; struct lvmcache_vginfo *next; /* Another VG with same name? */ char *creation_host; char *system_id; char *lock_type; uint32_t mda_checksum; size_t mda_size; int seqno; int independent_metadata_location; /* metadata read from independent areas */ int scan_summary_mismatch; /* vgsummary from devs had mismatching seqno or checksum */ }; static struct dm_hash_table *_pvid_hash = NULL; static struct dm_hash_table *_vgid_hash = NULL; static struct dm_hash_table *_vgname_hash = NULL; static struct dm_hash_table *_lock_hash = NULL; static DM_LIST_INIT(_vginfos); static DM_LIST_INIT(_found_duplicate_devs); static DM_LIST_INIT(_unused_duplicate_devs); static int _scanning_in_progress = 0; static int _has_scanned = 0; static int _vgs_locked = 0; static int _vg_global_lock_held = 0; /* Global lock held when cache wiped? */ static int _found_duplicate_pvs = 0; /* If we never see a duplicate PV we can skip checking for them later. */ int lvmcache_init(struct cmd_context *cmd) { /* * FIXME add a proper lvmcache_locking_reset() that * resets the cache so no previous locks are locked */ _vgs_locked = 0; dm_list_init(&_vginfos); dm_list_init(&_found_duplicate_devs); dm_list_init(&_unused_duplicate_devs); if (!(_vgname_hash = dm_hash_create(128))) return 0; if (!(_vgid_hash = dm_hash_create(128))) return 0; if (!(_pvid_hash = dm_hash_create(128))) return 0; if (!(_lock_hash = dm_hash_create(128))) return 0; /* * Reinitialising the cache clears the internal record of * which locks are held. The global lock can be held during * this operation so its state must be restored afterwards. */ if (_vg_global_lock_held) { lvmcache_lock_vgname(VG_GLOBAL, 0); _vg_global_lock_held = 0; } return 1; } void lvmcache_seed_infos_from_lvmetad(struct cmd_context *cmd) { if (!lvmetad_used() || _has_scanned) return; dev_cache_scan(); if (!lvmetad_pv_list_to_lvmcache(cmd)) { stack; return; } _has_scanned = 1; } static void _update_cache_info_lock_state(struct lvmcache_info *info, int locked) { if (locked) info->status |= CACHE_LOCKED; else info->status &= ~CACHE_LOCKED; } static void _update_cache_vginfo_lock_state(struct lvmcache_vginfo *vginfo, int locked) { struct lvmcache_info *info; dm_list_iterate_items(info, &vginfo->infos) _update_cache_info_lock_state(info, locked); } static void _update_cache_lock_state(const char *vgname, int locked) { struct lvmcache_vginfo *vginfo; if (!(vginfo = lvmcache_vginfo_from_vgname(vgname, NULL))) return; _update_cache_vginfo_lock_state(vginfo, locked); } void lvmcache_lock_vgname(const char *vgname, int read_only __attribute__((unused))) { if (dm_hash_lookup(_lock_hash, vgname)) log_error(INTERNAL_ERROR "Nested locking attempted on VG %s.", vgname); if (!dm_hash_insert(_lock_hash, vgname, (void *) 1)) log_error("Cache locking failure for %s", vgname); if (strcmp(vgname, VG_GLOBAL)) { _update_cache_lock_state(vgname, 1); _vgs_locked++; } } int lvmcache_vgname_is_locked(const char *vgname) { if (!_lock_hash) return 0; return dm_hash_lookup(_lock_hash, is_orphan_vg(vgname) ? VG_ORPHANS : vgname) ? 1 : 0; } void lvmcache_unlock_vgname(const char *vgname) { if (!dm_hash_lookup(_lock_hash, vgname)) log_error(INTERNAL_ERROR "Attempt to unlock unlocked VG %s.", vgname); if (strcmp(vgname, VG_GLOBAL)) _update_cache_lock_state(vgname, 0); dm_hash_remove(_lock_hash, vgname); /* FIXME Do this per-VG */ if (strcmp(vgname, VG_GLOBAL) && !--_vgs_locked) { dev_size_seqno_inc(); /* invalidate all cached dev sizes */ } } int lvmcache_vgs_locked(void) { return _vgs_locked; } /* * When lvmcache sees a duplicate PV, this is set. * process_each_pv() can avoid searching for duplicates * by checking this and seeing that no duplicate PVs exist. * * * found_duplicate_pvs tells the process_each_pv code * to search the devices list for duplicates, so that * devices can be processed together with their * duplicates (while processing the VG, rather than * reporting pv->dev under the VG, and its duplicate * outside the VG context.) */ int lvmcache_found_duplicate_pvs(void) { return _found_duplicate_pvs; } int lvmcache_get_unused_duplicate_devs(struct cmd_context *cmd, struct dm_list *head) { struct device_list *devl, *devl2; dm_list_iterate_items(devl, &_unused_duplicate_devs) { if (!(devl2 = dm_pool_alloc(cmd->mem, sizeof(*devl2)))) { log_error("device_list element allocation failed"); return 0; } devl2->dev = devl->dev; dm_list_add(head, &devl2->list); } return 1; } void lvmcache_remove_unchosen_duplicate(struct device *dev) { struct device_list *devl; dm_list_iterate_items(devl, &_unused_duplicate_devs) { if (devl->dev == dev) { dm_list_del(&devl->list); return; } } } static void _destroy_duplicate_device_list(struct dm_list *head) { struct device_list *devl, *devl2; dm_list_iterate_items_safe(devl, devl2, head) { dm_list_del(&devl->list); dm_free(devl); } dm_list_init(head); } static void _vginfo_attach_info(struct lvmcache_vginfo *vginfo, struct lvmcache_info *info) { if (!vginfo) return; info->vginfo = vginfo; dm_list_add(&vginfo->infos, &info->list); } static void _vginfo_detach_info(struct lvmcache_info *info) { if (!dm_list_empty(&info->list)) { dm_list_del(&info->list); dm_list_init(&info->list); } info->vginfo = NULL; } /* If vgid supplied, require a match. */ struct lvmcache_vginfo *lvmcache_vginfo_from_vgname(const char *vgname, const char *vgid) { struct lvmcache_vginfo *vginfo; if (!vgname) return lvmcache_vginfo_from_vgid(vgid); if (!_vgname_hash) { log_debug_cache(INTERNAL_ERROR "Internal lvmcache is no yet initialized."); return NULL; } if (!(vginfo = dm_hash_lookup(_vgname_hash, vgname))) { log_debug_cache("lvmcache has no info for vgname \"%s\"%s" FMTVGID ".", vgname, (vgid) ? " with VGID " : "", (vgid) ? : ""); return NULL; } if (vgid) do if (!strncmp(vgid, vginfo->vgid, ID_LEN)) return vginfo; while ((vginfo = vginfo->next)); if (!vginfo) log_debug_cache("lvmcache has not found vgname \"%s\"%s" FMTVGID ".", vgname, (vgid) ? " with VGID " : "", (vgid) ? : ""); return vginfo; } const struct format_type *lvmcache_fmt_from_vgname(struct cmd_context *cmd, const char *vgname, const char *vgid, unsigned revalidate_labels) { struct lvmcache_vginfo *vginfo; struct lvmcache_info *info; struct dm_list *devh, *tmp; struct dm_list devs; struct device_list *devl; struct volume_group *vg; const struct format_type *fmt; char vgid_found[ID_LEN + 1] __attribute__((aligned(8))); if (!(vginfo = lvmcache_vginfo_from_vgname(vgname, vgid))) { if (!lvmetad_used()) return NULL; /* too bad */ /* If we don't have the info but we have lvmetad, we can ask * there before failing. */ if ((vg = lvmetad_vg_lookup(cmd, vgname, vgid))) { fmt = vg->fid->fmt; release_vg(vg); return fmt; } return NULL; } /* * If this function is called repeatedly, only the first one needs to revalidate. */ if (!revalidate_labels) goto out; /* * This function is normally called before reading metadata so * we check cached labels here. Unfortunately vginfo is volatile. */ dm_list_init(&devs); dm_list_iterate_items(info, &vginfo->infos) { if (!(devl = dm_malloc(sizeof(*devl)))) { log_error("device_list element allocation failed"); return NULL; } devl->dev = info->dev; dm_list_add(&devs, &devl->list); } memcpy(vgid_found, vginfo->vgid, sizeof(vgid_found)); dm_list_iterate_safe(devh, tmp, &devs) { devl = dm_list_item(devh, struct device_list); label_read(devl->dev); dm_list_del(&devl->list); dm_free(devl); } /* If vginfo changed, caller needs to rescan */ if (!(vginfo = lvmcache_vginfo_from_vgname(vgname, vgid_found)) || strncmp(vginfo->vgid, vgid_found, ID_LEN)) return NULL; out: return vginfo->fmt; } struct lvmcache_vginfo *lvmcache_vginfo_from_vgid(const char *vgid) { struct lvmcache_vginfo *vginfo; char id[ID_LEN + 1] __attribute__((aligned(8))); if (!_vgid_hash || !vgid) { log_debug_cache(INTERNAL_ERROR "Internal cache cannot lookup vgid."); return NULL; } /* vgid not necessarily NULL-terminated */ (void) dm_strncpy(id, vgid, sizeof(id)); if (!(vginfo = dm_hash_lookup(_vgid_hash, id))) { log_debug_cache("lvmcache has no info for vgid \"%s\"", id); return NULL; } return vginfo; } const char *lvmcache_vgname_from_vgid(struct dm_pool *mem, const char *vgid) { struct lvmcache_vginfo *vginfo; const char *vgname = NULL; if ((vginfo = lvmcache_vginfo_from_vgid(vgid))) vgname = vginfo->vgname; if (mem && vgname) return dm_pool_strdup(mem, vgname); return vgname; } const char *lvmcache_vgid_from_vgname(struct cmd_context *cmd, const char *vgname) { struct lvmcache_vginfo *vginfo; if (!(vginfo = dm_hash_lookup(_vgname_hash, vgname))) return_NULL; if (!vginfo->next) return dm_pool_strdup(cmd->mem, vginfo->vgid); /* * There are multiple VGs with this name to choose from. * Return an error because we don't know which VG is intended. */ return NULL; } /* * If valid_only is set, data will only be returned if the cached data is * known still to be valid. * * When the device being worked with is known, pass that dev as the second arg. * This ensures that when duplicates exist, the wrong dev isn't used. */ struct lvmcache_info *lvmcache_info_from_pvid(const char *pvid, struct device *dev, int valid_only) { struct lvmcache_info *info; char id[ID_LEN + 1] __attribute__((aligned(8))); if (!_pvid_hash || !pvid) return NULL; (void) dm_strncpy(id, pvid, sizeof(id)); if (!(info = dm_hash_lookup(_pvid_hash, id))) return NULL; /* * When handling duplicate PVs, more than one device can have this pvid. */ if (dev && info->dev && (info->dev != dev)) { log_debug_cache("Ignoring lvmcache info for dev %s because dev %s was requested for PVID %s.", dev_name(info->dev), dev_name(dev), id); return NULL; } return info; } const struct format_type *lvmcache_fmt_from_info(struct lvmcache_info *info) { return info->fmt; } const char *lvmcache_vgname_from_info(struct lvmcache_info *info) { if (info->vginfo) return info->vginfo->vgname; return NULL; } char *lvmcache_vgname_from_pvid(struct cmd_context *cmd, const char *pvid) { struct lvmcache_info *info; char *vgname; if (!lvmcache_device_from_pvid(cmd, (const struct id *)pvid, NULL)) { log_error("Couldn't find device with uuid %s.", pvid); return NULL; } info = lvmcache_info_from_pvid(pvid, NULL, 0); if (!info) return_NULL; if (!(vgname = dm_pool_strdup(cmd->mem, info->vginfo->vgname))) { log_errno(ENOMEM, "vgname allocation failed"); return NULL; } return vgname; } /* * Check if any PVs in vg->pvs have the same PVID as any * entries in _unused_duplicate_devices. */ int vg_has_duplicate_pvs(struct volume_group *vg) { struct pv_list *pvl; struct device_list *devl; dm_list_iterate_items(pvl, &vg->pvs) { dm_list_iterate_items(devl, &_unused_duplicate_devs) { if (id_equal(&pvl->pv->id, (const struct id *)devl->dev->pvid)) return 1; } } return 0; } static int _dev_in_device_list(struct device *dev, struct dm_list *head) { struct device_list *devl; dm_list_iterate_items(devl, head) { if (devl->dev == dev) return 1; } return 0; } int lvmcache_dev_is_unchosen_duplicate(struct device *dev) { return _dev_in_device_list(dev, &_unused_duplicate_devs); } /* * Treat some duplicate devs as if they were filtered out by filters. * The actual filters are evaluated too early, before a complete * picture of all PVs is available, to eliminate these duplicates. * * By removing some duplicates from unused_duplicate_devs here, we remove * the restrictions that are placed on using duplicate devs or VGs with * duplicate devs. * * In cases where we know that two duplicates refer to the same underlying * storage, and we know which dev path to use, it's best for us to just * use that one preferred device path and ignore the others. It is the cases * where we are unsure whether dups refer to the same underlying storage where * we need to keep the unused duplicate referenced in the * unused_duplicate_devs list, and restrict what we allow done with it. * * In the case of md components, we usually filter these out in filter-md, * but in the special case of md superblocks <= 1.0 where the superblock * is at the end of the device, filter-md doesn't always eliminate them * first, so we eliminate them here. * * There may other kinds of duplicates that we want to eliminate at * this point (using the knowledge from the scan) that we couldn't * eliminate in the filters prior to the scan. */ static void _filter_duplicate_devs(struct cmd_context *cmd) { struct dev_types *dt = cmd->dev_types; struct lvmcache_info *info; struct device_list *devl, *devl2; dm_list_iterate_items_safe(devl, devl2, &_unused_duplicate_devs) { if (!(info = lvmcache_info_from_pvid(devl->dev->pvid, NULL, 0))) continue; if (MAJOR(info->dev->dev) == dt->md_major) { log_debug_devs("Ignoring md component duplicate %s", dev_name(devl->dev)); dm_list_del(&devl->list); dm_free(devl); } } if (dm_list_empty(&_unused_duplicate_devs)) _found_duplicate_pvs = 0; } static void _warn_duplicate_devs(struct cmd_context *cmd) { char uuid[64] __attribute__((aligned(8))); struct lvmcache_info *info; struct device_list *devl, *devl2; dm_list_iterate_items_safe(devl, devl2, &_unused_duplicate_devs) { if (!id_write_format((const struct id *)devl->dev->pvid, uuid, sizeof(uuid))) stack; log_warn("WARNING: Not using device %s for PV %s.", dev_name(devl->dev), uuid); } dm_list_iterate_items_safe(devl, devl2, &_unused_duplicate_devs) { /* info for the preferred device that we're actually using */ if (!(info = lvmcache_info_from_pvid(devl->dev->pvid, NULL, 0))) continue; if (!id_write_format((const struct id *)info->dev->pvid, uuid, sizeof(uuid))) stack; log_warn("WARNING: PV %s prefers device %s because %s.", uuid, dev_name(info->dev), info->dev->duplicate_prefer_reason); } } /* * Compare _found_duplicate_devs entries with the corresponding duplicate dev * in lvmcache. There may be multiple duplicates in _found_duplicate_devs for * a given pvid. If a dev from _found_duplicate_devs is preferred over the dev * in lvmcache, then drop the dev in lvmcache and rescan the preferred dev to * add it to lvmcache. * * _found_duplicate_devs: duplicate devs found during initial scan. * These are compared to lvmcache devs to see if any are preferred. * * _unused_duplicate_devs: duplicate devs not chosen to be used. * These are _found_duplicate_devs entries that were not chosen, * or unpreferred lvmcache devs that were dropped. * * del_cache_devs: devices to drop from lvmcache * add_cache_devs: devices to scan to add to lvmcache */ static void _choose_preferred_devs(struct cmd_context *cmd, struct dm_list *del_cache_devs, struct dm_list *add_cache_devs) { const char *reason; struct dm_list altdevs; struct dm_list new_unused; struct dev_types *dt = cmd->dev_types; struct device_list *devl, *devl_safe, *alt, *del; struct lvmcache_info *info; struct device *dev1, *dev2; uint32_t dev1_major, dev1_minor, dev2_major, dev2_minor; uint64_t info_size, dev1_size, dev2_size; int in_subsys1, in_subsys2; int is_dm1, is_dm2; int has_fs1, has_fs2; int has_lv1, has_lv2; int same_size1, same_size2; int prev_unchosen1, prev_unchosen2; int change; dm_list_init(&new_unused); /* * Create a list of all alternate devs for the same pvid: altdevs. */ next: dm_list_init(&altdevs); alt = NULL; dm_list_iterate_items_safe(devl, devl_safe, &_found_duplicate_devs) { if (!alt) { dm_list_move(&altdevs, &devl->list); alt = devl; } else { if (!strcmp(alt->dev->pvid, devl->dev->pvid)) dm_list_move(&altdevs, &devl->list); } } if (!alt) { _destroy_duplicate_device_list(&_unused_duplicate_devs); dm_list_splice(&_unused_duplicate_devs, &new_unused); return; } /* * Find the device for the pvid that's currently in lvmcache. */ if (!(info = lvmcache_info_from_pvid(alt->dev->pvid, NULL, 0))) { /* This shouldn't happen */ log_warn("WARNING: PV %s on duplicate device %s not found in cache.", alt->dev->pvid, dev_name(alt->dev)); goto next; } /* * Compare devices for the given pvid to find one that's preferred. * "dev1" is the currently preferred device, starting with the device * currently in lvmcache. */ dev1 = info->dev; dm_list_iterate_items(devl, &altdevs) { dev2 = devl->dev; if (dev1 == dev2) { /* This shouldn't happen */ log_warn("Same duplicate device repeated %s", dev_name(dev1)); continue; } prev_unchosen1 = _dev_in_device_list(dev1, &_unused_duplicate_devs); prev_unchosen2 = _dev_in_device_list(dev2, &_unused_duplicate_devs); if (!prev_unchosen1 && !prev_unchosen2) { /* * The cmd list saves the unchosen preference across * lvmcache_destroy. Sometimes a single command will * fill lvmcache, destroy it, and refill it, and we * want the same duplicate preference to be preserved * in each instance of lvmcache for a single command. */ prev_unchosen1 = _dev_in_device_list(dev1, &cmd->unused_duplicate_devs); prev_unchosen2 = _dev_in_device_list(dev2, &cmd->unused_duplicate_devs); } dev1_major = MAJOR(dev1->dev); dev1_minor = MINOR(dev1->dev); dev2_major = MAJOR(dev2->dev); dev2_minor = MINOR(dev2->dev); if (!dev_get_size(dev1, &dev1_size)) dev1_size = 0; if (!dev_get_size(dev2, &dev2_size)) dev2_size = 0; has_lv1 = (dev1->flags & DEV_USED_FOR_LV) ? 1 : 0; has_lv2 = (dev2->flags & DEV_USED_FOR_LV) ? 1 : 0; in_subsys1 = dev_subsystem_part_major(dt, dev1); in_subsys2 = dev_subsystem_part_major(dt, dev2); is_dm1 = dm_is_dm_major(dev1_major); is_dm2 = dm_is_dm_major(dev2_major); has_fs1 = dm_device_has_mounted_fs(dev1_major, dev1_minor); has_fs2 = dm_device_has_mounted_fs(dev2_major, dev2_minor); info_size = info->device_size >> SECTOR_SHIFT; same_size1 = (dev1_size == info_size); same_size2 = (dev2_size == info_size); log_debug_cache("PV %s compare duplicates: %s %u:%u. %s %u:%u.", devl->dev->pvid, dev_name(dev1), dev1_major, dev1_minor, dev_name(dev2), dev2_major, dev2_minor); log_debug_cache("PV %s: wants size %llu. %s is %llu. %s is %llu.", devl->dev->pvid, (unsigned long long)info_size, dev_name(dev1), (unsigned long long)dev1_size, dev_name(dev2), (unsigned long long)dev2_size); log_debug_cache("PV %s: %s was prev %s. %s was prev %s.", devl->dev->pvid, dev_name(dev1), prev_unchosen1 ? "not chosen" : "", dev_name(dev2), prev_unchosen2 ? "not chosen" : ""); log_debug_cache("PV %s: %s %s subsystem. %s %s subsystem.", devl->dev->pvid, dev_name(dev1), in_subsys1 ? "is in" : "is not in", dev_name(dev2), in_subsys2 ? "is in" : "is not in"); log_debug_cache("PV %s: %s %s dm. %s %s dm.", devl->dev->pvid, dev_name(dev1), is_dm1 ? "is" : "is not", dev_name(dev2), is_dm2 ? "is" : "is not"); log_debug_cache("PV %s: %s %s mounted fs. %s %s mounted fs.", devl->dev->pvid, dev_name(dev1), has_fs1 ? "has" : "has no", dev_name(dev2), has_fs2 ? "has" : "has no"); log_debug_cache("PV %s: %s %s LV. %s %s LV.", devl->dev->pvid, dev_name(dev1), has_lv1 ? "is used for" : "is not used for", dev_name(dev2), has_lv2 ? "is used for" : "is not used for"); change = 0; if (prev_unchosen1 && !prev_unchosen2) { /* change to 2 (NB when unchosen is set we unprefer) */ change = 1; reason = "of previous preference"; } else if (prev_unchosen2 && !prev_unchosen1) { /* keep 1 (NB when unchosen is set we unprefer) */ reason = "of previous preference"; } else if (has_lv1 && !has_lv2) { /* keep 1 */ reason = "device is used by LV"; } else if (has_lv2 && !has_lv1) { /* change to 2 */ change = 1; reason = "device is used by LV"; } else if (same_size1 && !same_size2) { /* keep 1 */ reason = "device size is correct"; } else if (same_size2 && !same_size1) { /* change to 2 */ change = 1; reason = "device size is correct"; } else if (has_fs1 && !has_fs2) { /* keep 1 */ reason = "device has fs mounted"; } else if (has_fs2 && !has_fs1) { /* change to 2 */ change = 1; reason = "device has fs mounted"; } else if (is_dm1 && !is_dm2) { /* keep 1 */ reason = "device is in dm subsystem"; } else if (is_dm2 && !is_dm1) { /* change to 2 */ change = 1; reason = "device is in dm subsystem"; } else if (in_subsys1 && !in_subsys2) { /* keep 1 */ reason = "device is in subsystem"; } else if (in_subsys2 && !in_subsys1) { /* change to 2 */ change = 1; reason = "device is in subsystem"; } else { reason = "device was seen first"; } if (change) { dev1 = dev2; alt = devl; } dev1->duplicate_prefer_reason = reason; } if (dev1 != info->dev) { log_debug_cache("PV %s: switching to device %s instead of device %s.", dev1->pvid, dev_name(dev1), dev_name(info->dev)); /* * Move the preferred device from altdevs to add_cache_devs. * Create a del_cache_devs entry for the current lvmcache * device to drop. */ dm_list_move(add_cache_devs, &alt->list); if ((del = dm_zalloc(sizeof(*del)))) { del->dev = info->dev; dm_list_add(del_cache_devs, &del->list); } } else { log_debug_cache("PV %s: keeping current device %s.", dev1->pvid, dev_name(info->dev)); } /* * alt devs not chosen are moved to _unused_duplicate_devs. * del_cache_devs being dropped are moved to _unused_duplicate_devs * after being dropped. So, _unused_duplicate_devs represents all * duplicates not being used in lvmcache. */ dm_list_splice(&new_unused, &altdevs); goto next; } /* * The initial label_scan at the start of the command is done without * holding VG locks. Then for each VG identified during the label_scan, * vg_read(vgname) is called while holding the VG lock. The labels * and metadata on this VG's devices could have changed between the * initial unlocked label_scan and the current vg_read(). So, we reread * the labels/metadata for each device in the VG now that we hold the * lock, and use this for processing the VG. * * A label scan is ultimately creating associations between devices * and VGs so that when vg_read wants to get VG metadata, it knows * which devices to read. * * It's possible that a VG is being modified during the first label * scan, causing the scan to see inconsistent metadata on different * devs in the VG. It's possible that those modifications are * adding/removing devs from the VG, in which case the device/VG * associations in lvmcache after the scan are not correct. * NB. It's even possible the VG was removed completely between * label scan and here, in which case we'd not find the VG in * lvmcache after this rescan. * * A scan will also create in incorrect/incomplete picture of a VG * when devices have no metadata areas. The scan does not use * VG metadata to figure out that a dev with no metadata belongs * to a particular VG, so a device with no mdas will not be linked * to that VG after a scan. * * (In the special case where VG metadata is stored in files on the * file system (configured in lvm.conf), the * vginfo->independent_metadata_location flag is set during label scan. * When we get here to rescan, we are revalidating the device to VG * mapping from label scan by repeating the label scan on a subset of * devices. If we see independent_metadata_location is set from the * initial label scan, we know that there is nothing to do because * there is no device to VG mapping to revalidate, since the VG metadata * comes directly from files.) */ int lvmcache_label_rescan_vg(struct cmd_context *cmd, const char *vgname, const char *vgid) { struct dm_list devs; struct device_list *devl, *devl2; struct lvmcache_vginfo *vginfo; struct lvmcache_info *info; if (lvmetad_used()) return 1; dm_list_init(&devs); if (!(vginfo = lvmcache_vginfo_from_vgname(vgname, vgid))) return_0; /* * When the VG metadata is from an independent location, * then rescanning the devices in the VG won't find the * metadata, and will destroy the vginfo/info associations * that were created during label scan when the * independent locations were read. */ if (vginfo->independent_metadata_location) return 1; dm_list_iterate_items(info, &vginfo->infos) { if (!(devl = dm_malloc(sizeof(*devl)))) { log_error("device_list element allocation failed"); return 0; } devl->dev = info->dev; dm_list_add(&devs, &devl->list); } /* Delete info for each dev, deleting the last info will delete vginfo. */ dm_list_iterate_items(devl, &devs) lvmcache_del_dev(devl->dev); /* Dropping the last info struct is supposed to drop vginfo. */ if ((vginfo = lvmcache_vginfo_from_vgname(vgname, vgid))) log_warn("VG info not dropped before rescan of %s", vgname); /* FIXME: should we also rescan unused_duplicate_devs for devs being rescanned here and then repeat resolving the duplicates? */ label_scan_devs(cmd, cmd->filter, &devs); dm_list_iterate_items_safe(devl, devl2, &devs) { dm_list_del(&devl->list); dm_free(devl); } if (!(vginfo = lvmcache_vginfo_from_vgname(vgname, vgid))) { log_warn("VG info not found after rescan of %s", vgname); return 0; } return 1; } /* * Uses label_scan to populate lvmcache with 'vginfo' struct for each VG * and associated 'info' structs for those VGs. Only VG summary information * is used to assemble the vginfo/info during the scan, so the resulting * representation of VG/PV state is incomplete and even incorrect. * Specifically, PVs with no MDAs are considered orphans and placed in the * orphan vginfo by lvmcache_label_scan. This is corrected during the * processing phase as each vg_read() uses VG metadata for each VG to correct * the lvmcache state, i.e. it moves no-MDA PVs from the orphan vginfo onto * the correct vginfo. Once vg_read() is finished for all VGs, all of the * incorrectly placed PVs should have been moved from the orphan vginfo * onto their correct vginfo's, and the orphan vginfo should (in theory) * represent only real orphan PVs. (Note: if lvmcache_label_scan is run * after vg_read udpates to lvmcache state, then the lvmcache will be * incorrect again, so do not run lvmcache_label_scan during the * processing phase.) * * TODO: in this label scan phase, don't stash no-MDA PVs into the * orphan VG. We know that's a fiction, and it can have harmful/damaging * results. Instead, put them into a temporary list where they can be * pulled from later when vg_read uses metadata to resolve which VG * they actually belong to. */ int lvmcache_label_scan(struct cmd_context *cmd) { struct dm_list del_cache_devs; struct dm_list add_cache_devs; struct lvmcache_info *info; struct lvmcache_vginfo *vginfo; struct device_list *devl; struct format_type *fmt; int vginfo_count = 0; int r = 0; if (lvmetad_used()) { if (!label_scan_setup_bcache()) return 0; return 1; } log_debug_cache("Finding VG info"); /* Avoid recursion when a PVID can't be found! */ if (_scanning_in_progress) return 0; _scanning_in_progress = 1; /* FIXME: can this happen? */ if (!cmd->full_filter) { log_error("label scan is missing full filter"); goto out; } if (!refresh_filters(cmd)) log_error("Scan failed to refresh device filter."); /* * Duplicates found during this label scan are added to _found_duplicate_devs(). */ _destroy_duplicate_device_list(&_found_duplicate_devs); /* * Do the actual scanning. This populates lvmcache * with infos/vginfos based on reading headers from * each device, and a vg summary from each mda. * * Note that this will *skip* scanning a device if * an info struct already exists in lvmcache for * the device. */ label_scan(cmd); /* * _choose_preferred_devs() returns: * * . del_cache_devs: a list of devs currently in lvmcache that should * be removed from lvmcache because they will be replaced with * alternative devs for the same PV. * * . add_cache_devs: a list of devs that are preferred over devs in * lvmcache for the same PV. These devices should be rescanned to * populate lvmcache from them. * * First remove lvmcache info for the devs to be dropped, then rescan * the devs that are preferred to add them to lvmcache. * * Keep a complete list of all devs that are unused by moving the * del_cache_devs onto _unused_duplicate_devs. */ if (!dm_list_empty(&_found_duplicate_devs)) { dm_list_init(&del_cache_devs); dm_list_init(&add_cache_devs); log_debug_cache("Resolving duplicate devices"); _choose_preferred_devs(cmd, &del_cache_devs, &add_cache_devs); dm_list_iterate_items(devl, &del_cache_devs) { log_debug_cache("Drop duplicate device %s in lvmcache", dev_name(devl->dev)); if ((info = lvmcache_info_from_pvid(devl->dev->pvid, NULL, 0))) lvmcache_del(info); } dm_list_iterate_items(devl, &add_cache_devs) { log_debug_cache("Rescan preferred device %s for lvmcache", dev_name(devl->dev)); label_read(devl->dev); } dm_list_splice(&_unused_duplicate_devs, &del_cache_devs); /* * This may remove some entries from the unused_duplicates list for * devs that we know are the same underlying dev. */ _filter_duplicate_devs(cmd); /* * Warn about remaining duplicates that may actually be separate copies of * the same device. */ _warn_duplicate_devs(cmd); if (!_found_duplicate_pvs && lvmetad_used()) { log_warn("WARNING: Disabling lvmetad cache which does not support duplicate PVs."); lvmetad_set_disabled(cmd, LVMETAD_DISABLE_REASON_DUPLICATES); } } /* Perform any format-specific scanning e.g. text files */ if (cmd->independent_metadata_areas) dm_list_iterate_items(fmt, &cmd->formats) if (fmt->ops->scan && !fmt->ops->scan(fmt, NULL)) goto out; r = 1; out: _scanning_in_progress = 0; dm_list_iterate_items(vginfo, &_vginfos) { if (is_orphan_vg(vginfo->vgname)) continue; vginfo_count++; } log_debug_cache("Found VG info for %d VGs", vginfo_count); return r; } /* * When not using lvmetad, lvmcache_label_scan() detects duplicates in * the basic label_scan(), then filters out some dups, and chooses * preferred duplicates to use. * * When using lvmetad, pvscan --cache does not use lvmcache_label_scan(), * only label_scan() which detects the duplicates. This function is used * after pvscan's label_scan() to filter out some dups, print any warnings, * and disable lvmetad if any dups are left. */ void lvmcache_pvscan_duplicate_check(struct cmd_context *cmd) { struct device_list *devl; /* Check if label_scan() detected any dups. */ if (!_found_duplicate_pvs) return; /* * Once all the dups are identified, they are moved from the * "found" list to the "unused" list to sort out. */ dm_list_splice(&_unused_duplicate_devs, &_found_duplicate_devs); /* * Remove items from the dups list that we know are the same * underlying dev, e.g. md components, that we want to just ignore. */ _filter_duplicate_devs(cmd); /* * If no more dups after ignoring some, then we can use lvmetad. */ if (!_found_duplicate_pvs) return; /* Duplicates are found where we would have to pick one, so disable lvmetad. */ dm_list_iterate_items(devl, &_unused_duplicate_devs) log_warn("WARNING: found device with duplicate %s", dev_name(devl->dev)); log_warn("WARNING: Disabling lvmetad cache which does not support duplicate PVs."); lvmetad_set_disabled(cmd, LVMETAD_DISABLE_REASON_DUPLICATES); lvmetad_make_unused(cmd); } int lvmcache_get_vgnameids(struct cmd_context *cmd, int include_internal, struct dm_list *vgnameids) { struct vgnameid_list *vgnl; struct lvmcache_vginfo *vginfo; dm_list_iterate_items(vginfo, &_vginfos) { if (!include_internal && is_orphan_vg(vginfo->vgname)) continue; if (!(vgnl = dm_pool_alloc(cmd->mem, sizeof(*vgnl)))) { log_error("vgnameid_list allocation failed."); return 0; } vgnl->vgid = dm_pool_strdup(cmd->mem, vginfo->vgid); vgnl->vg_name = dm_pool_strdup(cmd->mem, vginfo->vgname); if (!vgnl->vgid || !vgnl->vg_name) { log_error("vgnameid_list member allocation failed."); return 0; } dm_list_add(vgnameids, &vgnl->list); } return 1; } struct dm_list *lvmcache_get_vgids(struct cmd_context *cmd, int include_internal) { struct dm_list *vgids; struct lvmcache_vginfo *vginfo; // TODO plug into lvmetad here automagically? lvmcache_label_scan(cmd); if (!(vgids = str_list_create(cmd->mem))) { log_error("vgids list allocation failed"); return NULL; } dm_list_iterate_items(vginfo, &_vginfos) { if (!include_internal && is_orphan_vg(vginfo->vgname)) continue; if (!str_list_add(cmd->mem, vgids, dm_pool_strdup(cmd->mem, vginfo->vgid))) { log_error("strlist allocation failed"); return NULL; } } return vgids; } struct dm_list *lvmcache_get_vgnames(struct cmd_context *cmd, int include_internal) { struct dm_list *vgnames; struct lvmcache_vginfo *vginfo; lvmcache_label_scan(cmd); if (!(vgnames = str_list_create(cmd->mem))) { log_errno(ENOMEM, "vgnames list allocation failed"); return NULL; } dm_list_iterate_items(vginfo, &_vginfos) { if (!include_internal && is_orphan_vg(vginfo->vgname)) continue; if (!str_list_add(cmd->mem, vgnames, dm_pool_strdup(cmd->mem, vginfo->vgname))) { log_errno(ENOMEM, "strlist allocation failed"); return NULL; } } return vgnames; } struct dm_list *lvmcache_get_pvids(struct cmd_context *cmd, const char *vgname, const char *vgid) { struct dm_list *pvids; struct lvmcache_vginfo *vginfo; struct lvmcache_info *info; if (!(pvids = str_list_create(cmd->mem))) { log_error("pvids list allocation failed"); return NULL; } if (!(vginfo = lvmcache_vginfo_from_vgname(vgname, vgid))) return pvids; dm_list_iterate_items(info, &vginfo->infos) { if (!str_list_add(cmd->mem, pvids, dm_pool_strdup(cmd->mem, info->dev->pvid))) { log_error("strlist allocation failed"); return NULL; } } return pvids; } int lvmcache_get_vg_devs(struct cmd_context *cmd, struct lvmcache_vginfo *vginfo, struct dm_list *devs) { struct lvmcache_info *info; struct device_list *devl; dm_list_iterate_items(info, &vginfo->infos) { if (!(devl = dm_pool_zalloc(cmd->mem, sizeof(*devl)))) return_0; devl->dev = info->dev; dm_list_add(devs, &devl->list); } return 1; } static struct device *_device_from_pvid(const struct id *pvid, uint64_t *label_sector) { struct lvmcache_info *info; if ((info = lvmcache_info_from_pvid((const char *) pvid, NULL, 0))) { if (info->label && label_sector) *label_sector = info->label->sector; return info->dev; } return NULL; } struct device *lvmcache_device_from_pvid(struct cmd_context *cmd, const struct id *pvid, uint64_t *label_sector) { struct device *dev; dev = _device_from_pvid(pvid, label_sector); if (dev) return dev; log_debug_devs("No device with uuid %s.", (const char *)pvid); return NULL; } const char *lvmcache_pvid_from_devname(struct cmd_context *cmd, const char *devname) { struct device *dev; if (!(dev = dev_cache_get(devname, cmd->filter))) { log_error("%s: Couldn't find device. Check your filters?", devname); return NULL; } if (!label_read(dev)) return NULL; return dev->pvid; } int lvmcache_pvid_in_unchosen_duplicates(const char *pvid) { struct device_list *devl; dm_list_iterate_items(devl, &_unused_duplicate_devs) { if (!strncmp(devl->dev->pvid, pvid, ID_LEN)) return 1; } return 0; } static int _free_vginfo(struct lvmcache_vginfo *vginfo) { struct lvmcache_vginfo *primary_vginfo, *vginfo2; int r = 1; vginfo2 = primary_vginfo = lvmcache_vginfo_from_vgname(vginfo->vgname, NULL); if (vginfo == primary_vginfo) { dm_hash_remove(_vgname_hash, vginfo->vgname); if (vginfo->next && !dm_hash_insert(_vgname_hash, vginfo->vgname, vginfo->next)) { log_error("_vgname_hash re-insertion for %s failed", vginfo->vgname); r = 0; } } else while (vginfo2) { if (vginfo2->next == vginfo) { vginfo2->next = vginfo->next; break; } vginfo2 = vginfo2->next; } dm_free(vginfo->system_id); dm_free(vginfo->vgname); dm_free(vginfo->creation_host); if (*vginfo->vgid && _vgid_hash && lvmcache_vginfo_from_vgid(vginfo->vgid) == vginfo) dm_hash_remove(_vgid_hash, vginfo->vgid); dm_list_del(&vginfo->list); dm_free(vginfo); return r; } /* * vginfo must be info->vginfo unless info is NULL */ static int _drop_vginfo(struct lvmcache_info *info, struct lvmcache_vginfo *vginfo) { if (info) _vginfo_detach_info(info); /* vginfo still referenced? */ if (!vginfo || is_orphan_vg(vginfo->vgname) || !dm_list_empty(&vginfo->infos)) return 1; if (!_free_vginfo(vginfo)) return_0; return 1; } void lvmcache_del(struct lvmcache_info *info) { if (info->dev->pvid[0] && _pvid_hash) dm_hash_remove(_pvid_hash, info->dev->pvid); _drop_vginfo(info, info->vginfo); info->label->labeller->ops->destroy_label(info->label->labeller, info->label); label_destroy(info->label); dm_free(info); } void lvmcache_del_dev(struct device *dev) { struct lvmcache_info *info; if ((info = lvmcache_info_from_pvid((const char *)dev->pvid, dev, 0))) lvmcache_del(info); } /* * vginfo must be info->vginfo unless info is NULL (orphans) */ static int _lvmcache_update_vgid(struct lvmcache_info *info, struct lvmcache_vginfo *vginfo, const char *vgid) { if (!vgid || !vginfo || !strncmp(vginfo->vgid, vgid, ID_LEN)) return 1; if (vginfo && *vginfo->vgid) dm_hash_remove(_vgid_hash, vginfo->vgid); if (!vgid) { /* FIXME: unreachable code path */ log_debug_cache("lvmcache: %s: clearing VGID", info ? dev_name(info->dev) : vginfo->vgname); return 1; } (void) dm_strncpy(vginfo->vgid, vgid, sizeof(vginfo->vgid)); if (!dm_hash_insert(_vgid_hash, vginfo->vgid, vginfo)) { log_error("_lvmcache_update: vgid hash insertion failed: %s", vginfo->vgid); return 0; } if (!is_orphan_vg(vginfo->vgname)) log_debug_cache("lvmcache %s: VG %s: set VGID to " FMTVGID ".", (info) ? dev_name(info->dev) : "", vginfo->vgname, vginfo->vgid); return 1; } static int _insert_vginfo(struct lvmcache_vginfo *new_vginfo, const char *vgid, uint32_t vgstatus, const char *creation_host, struct lvmcache_vginfo *primary_vginfo) { struct lvmcache_vginfo *last_vginfo = primary_vginfo; char uuid_primary[64] __attribute__((aligned(8))); char uuid_new[64] __attribute__((aligned(8))); int use_new = 0; /* Pre-existing VG takes precedence. Unexported VG takes precedence. */ if (primary_vginfo) { if (!id_write_format((const struct id *)vgid, uuid_new, sizeof(uuid_new))) return_0; if (!id_write_format((const struct id *)&primary_vginfo->vgid, uuid_primary, sizeof(uuid_primary))) return_0; /* * vginfo is kept for each VG with the same name. * They are saved with the vginfo->next list. * These checks just decide the ordering of * that list. * * FIXME: it should no longer matter what order * the vginfo's are kept in, so we can probably * remove these comparisons and reordering entirely. * * If Primary not exported, new exported => keep * Else Primary exported, new not exported => change * Else Primary has hostname for this machine => keep * Else Primary has no hostname, new has one => change * Else New has hostname for this machine => change * Else Keep primary. */ if (!(primary_vginfo->status & EXPORTED_VG) && (vgstatus & EXPORTED_VG)) log_verbose("Cache: Duplicate VG name %s: " "Existing %s takes precedence over " "exported %s", new_vginfo->vgname, uuid_primary, uuid_new); else if ((primary_vginfo->status & EXPORTED_VG) && !(vgstatus & EXPORTED_VG)) { log_verbose("Cache: Duplicate VG name %s: " "%s takes precedence over exported %s", new_vginfo->vgname, uuid_new, uuid_primary); use_new = 1; } else if (primary_vginfo->creation_host && !strcmp(primary_vginfo->creation_host, primary_vginfo->fmt->cmd->hostname)) log_verbose("Cache: Duplicate VG name %s: " "Existing %s (created here) takes precedence " "over %s", new_vginfo->vgname, uuid_primary, uuid_new); else if (!primary_vginfo->creation_host && creation_host) { log_verbose("Cache: Duplicate VG name %s: " "%s (with creation_host) takes precedence over %s", new_vginfo->vgname, uuid_new, uuid_primary); use_new = 1; } else if (creation_host && !strcmp(creation_host, primary_vginfo->fmt->cmd->hostname)) { log_verbose("Cache: Duplicate VG name %s: " "%s (created here) takes precedence over %s", new_vginfo->vgname, uuid_new, uuid_primary); use_new = 1; } else { log_verbose("Cache: Duplicate VG name %s: " "Prefer existing %s vs new %s", new_vginfo->vgname, uuid_primary, uuid_new); } if (!use_new) { while (last_vginfo->next) last_vginfo = last_vginfo->next; last_vginfo->next = new_vginfo; return 1; } dm_hash_remove(_vgname_hash, primary_vginfo->vgname); } if (!dm_hash_insert(_vgname_hash, new_vginfo->vgname, new_vginfo)) { log_error("cache_update: vg hash insertion failed: %s", new_vginfo->vgname); return 0; } if (primary_vginfo) new_vginfo->next = primary_vginfo; return 1; } static int _lvmcache_update_vgname(struct lvmcache_info *info, const char *vgname, const char *vgid, uint32_t vgstatus, const char *creation_host, const struct format_type *fmt) { struct lvmcache_vginfo *vginfo, *primary_vginfo; char mdabuf[32]; if (!vgname || (info && info->vginfo && !strcmp(info->vginfo->vgname, vgname))) return 1; /* Remove existing vginfo entry */ if (info) _drop_vginfo(info, info->vginfo); if (!(vginfo = lvmcache_vginfo_from_vgname(vgname, vgid))) { /* * Create a vginfo struct for this VG and put the vginfo * into the hash table. */ if (!(vginfo = dm_zalloc(sizeof(*vginfo)))) { log_error("lvmcache_update_vgname: list alloc failed"); return 0; } if (!(vginfo->vgname = dm_strdup(vgname))) { dm_free(vginfo); log_error("cache vgname alloc failed for %s", vgname); return 0; } dm_list_init(&vginfo->infos); /* * A different VG (different uuid) can exist with the same name. * In this case, the two VGs will have separate vginfo structs, * but the second will be linked onto the existing vginfo->next, * not in the hash. */ primary_vginfo = lvmcache_vginfo_from_vgname(vgname, NULL); if (!_insert_vginfo(vginfo, vgid, vgstatus, creation_host, primary_vginfo)) { dm_free(vginfo->vgname); dm_free(vginfo); return 0; } /* Ensure orphans appear last on list_iterate */ if (is_orphan_vg(vgname)) dm_list_add(&_vginfos, &vginfo->list); else dm_list_add_h(&_vginfos, &vginfo->list); } if (info) _vginfo_attach_info(vginfo, info); else if (!_lvmcache_update_vgid(NULL, vginfo, vgid)) /* Orphans */ return_0; _update_cache_vginfo_lock_state(vginfo, lvmcache_vgname_is_locked(vgname)); /* FIXME Check consistency of list! */ vginfo->fmt = fmt; if (info) { if (info->mdas.n) sprintf(mdabuf, " with %u mda(s)", dm_list_size(&info->mdas)); else mdabuf[0] = '\0'; log_debug_cache("lvmcache %s: now in VG %s%s%s%s%s.", dev_name(info->dev), vgname, vginfo->vgid[0] ? " (" : "", vginfo->vgid[0] ? vginfo->vgid : "", vginfo->vgid[0] ? ")" : "", mdabuf); } else log_debug_cache("lvmcache: Initialised VG %s.", vgname); return 1; } static int _lvmcache_update_vgstatus(struct lvmcache_info *info, uint32_t vgstatus, const char *creation_host, const char *lock_type, const char *system_id) { if (!info || !info->vginfo) return 1; if ((info->vginfo->status & EXPORTED_VG) != (vgstatus & EXPORTED_VG)) log_debug_cache("lvmcache %s: VG %s %s exported.", dev_name(info->dev), info->vginfo->vgname, vgstatus & EXPORTED_VG ? "now" : "no longer"); info->vginfo->status = vgstatus; if (!creation_host) goto set_lock_type; if (info->vginfo->creation_host && !strcmp(creation_host, info->vginfo->creation_host)) goto set_lock_type; dm_free(info->vginfo->creation_host); if (!(info->vginfo->creation_host = dm_strdup(creation_host))) { log_error("cache creation host alloc failed for %s.", creation_host); return 0; } log_debug_cache("lvmcache %s: VG %s: set creation host to %s.", dev_name(info->dev), info->vginfo->vgname, creation_host); set_lock_type: if (!lock_type) goto set_system_id; if (info->vginfo->lock_type && !strcmp(lock_type, info->vginfo->lock_type)) goto set_system_id; dm_free(info->vginfo->lock_type); if (!(info->vginfo->lock_type = dm_strdup(lock_type))) { log_error("cache lock_type alloc failed for %s", lock_type); return 0; } log_debug_cache("lvmcache %s: VG %s: set lock_type to %s.", dev_name(info->dev), info->vginfo->vgname, lock_type); set_system_id: if (!system_id) goto out; if (info->vginfo->system_id && !strcmp(system_id, info->vginfo->system_id)) goto out; dm_free(info->vginfo->system_id); if (!(info->vginfo->system_id = dm_strdup(system_id))) { log_error("cache system_id alloc failed for %s", system_id); return 0; } log_debug_cache("lvmcache %s: VG %s: set system_id to %s.", dev_name(info->dev), info->vginfo->vgname, system_id); out: return 1; } int lvmcache_add_orphan_vginfo(const char *vgname, struct format_type *fmt) { return _lvmcache_update_vgname(NULL, vgname, vgname, 0, "", fmt); } /* * FIXME: get rid of other callers of this function which call it * in odd cases to "fix up" some bit of lvmcache state. Make those * callers fix up what they need to directly, and leave this function * with one purpose and caller. */ int lvmcache_update_vgname_and_id(struct lvmcache_info *info, struct lvmcache_vgsummary *vgsummary) { const char *vgname = vgsummary->vgname; const char *vgid = (char *)&vgsummary->vgid; struct lvmcache_vginfo *vginfo; if (!vgname && !info->vginfo) { log_error(INTERNAL_ERROR "NULL vgname handed to cache"); /* FIXME Remove this */ vgname = info->fmt->orphan_vg_name; vgid = vgname; } /* If PV without mdas is already in a real VG, don't make it orphan */ if (is_orphan_vg(vgname) && info->vginfo && mdas_empty_or_ignored(&info->mdas) && !is_orphan_vg(info->vginfo->vgname) && critical_section()) return 1; /* * Creates a new vginfo struct for this vgname/vgid if none exists, * and attaches the info struct for the dev to the vginfo. * Puts the vginfo into the vgname hash table. */ if (!_lvmcache_update_vgname(info, vgname, vgid, vgsummary->vgstatus, vgsummary->creation_host, info->fmt)) { log_error("Failed to update VG %s info in lvmcache.", vgname); return 0; } /* * Puts the vginfo into the vgid hash table. */ if (!_lvmcache_update_vgid(info, info->vginfo, vgid)) { log_error("Failed to update VG %s info in lvmcache.", vgname); return 0; } /* * FIXME: identify which case this is and why this is needed, then * change that so it doesn't use this function and we can remove * this special case. * (I think this distinguishes the scan path, where these things * are set from the vg_read path where lvmcache_update_vg() is * called which calls this function without seqno/mda_size/mda_checksum.) */ if (!vgsummary->seqno && !vgsummary->mda_size && !vgsummary->mda_checksum) return 1; if (!(vginfo = info->vginfo)) return 1; if (!vginfo->seqno) { vginfo->seqno = vgsummary->seqno; log_debug_cache("lvmcache %s: VG %s: set seqno to %d", dev_name(info->dev), vginfo->vgname, vginfo->seqno); } else if (vgsummary->seqno != vginfo->seqno) { log_warn("Scan of VG %s from %s found metadata seqno %d vs previous %d.", vgname, dev_name(info->dev), vgsummary->seqno, vginfo->seqno); vginfo->scan_summary_mismatch = 1; /* If we don't return success, this dev info will be removed from lvmcache, and then we won't be able to rescan it or repair it. */ return 1; } if (!vginfo->mda_size) { vginfo->mda_checksum = vgsummary->mda_checksum; vginfo->mda_size = vgsummary->mda_size; log_debug_cache("lvmcache %s: VG %s: set mda_checksum to %x mda_size to %zu", dev_name(info->dev), vginfo->vgname, vginfo->mda_checksum, vginfo->mda_size); } else if ((vginfo->mda_size != vgsummary->mda_size) || (vginfo->mda_checksum != vgsummary->mda_checksum)) { log_warn("Scan of VG %s from %s found mda_checksum %x mda_size %zu vs previous %x %zu", vgname, dev_name(info->dev), vgsummary->mda_checksum, vgsummary->mda_size, vginfo->mda_checksum, vginfo->mda_size); vginfo->scan_summary_mismatch = 1; /* If we don't return success, this dev info will be removed from lvmcache, and then we won't be able to rescan it or repair it. */ return 1; } /* * If a dev has an unmatching checksum, ignore the other * info from it, keeping the info we already saved. */ if (!_lvmcache_update_vgstatus(info, vgsummary->vgstatus, vgsummary->creation_host, vgsummary->lock_type, vgsummary->system_id)) { log_error("Failed to update VG %s info in lvmcache.", vgname); return 0; } return 1; } int lvmcache_update_vg(struct volume_group *vg, unsigned precommitted) { struct pv_list *pvl; struct lvmcache_info *info; char pvid_s[ID_LEN + 1] __attribute__((aligned(8))); struct lvmcache_vgsummary vgsummary = { .vgname = vg->name, .vgstatus = vg->status, .vgid = vg->id, .system_id = vg->system_id, .lock_type = vg->lock_type }; dm_list_iterate_items(pvl, &vg->pvs) { (void) dm_strncpy(pvid_s, (char *) &pvl->pv->id, sizeof(pvid_s)); /* FIXME Could pvl->pv->dev->pvid ever be different? */ if ((info = lvmcache_info_from_pvid(pvid_s, pvl->pv->dev, 0)) && !lvmcache_update_vgname_and_id(info, &vgsummary)) return_0; } return 1; } /* * We can see multiple different devices with the * same pvid, i.e. duplicates. * * There may be different reasons for seeing two * devices with the same pvid: * - multipath showing two paths to the same thing * - one device copied to another, e.g. with dd, * also referred to as cloned devices. * - a "subsystem" taking a device and creating * another device of its own that represents the * underlying device it is using, e.g. using dm * to create an identity mapping of a PV. * * Given duplicate devices, we have to choose one * of them to be the "preferred" dev, i.e. the one * that will be referenced in lvmcache, by pv->dev. * We can keep the existing dev, that's currently * used in lvmcache, or we can replace the existing * dev with the new duplicate. * * Regardless of which device is preferred, we need * to print messages explaining which devices were * found so that a user can sort out for themselves * what has happened if the preferred device is not * the one they are interested in. * * If a user wants to use the non-preferred device, * they will need to filter out the device that * lvm is preferring. * * The dev_subsystem calls check if the major number * of the dev is part of a subsystem like DM/MD/DRBD. * A dev that's part of a subsystem is preferred over a * duplicate of that dev that is not part of a * subsystem. * * FIXME: there may be other reasons to prefer one * device over another: * * . are there other use/open counts we could check * beyond the holders? * * . check if either is bad/usable and prefer * the good one? * * . prefer the one with smaller minor number? * Might avoid disturbing things due to a new * transient duplicate? */ static struct lvmcache_info * _create_info(struct labeller *labeller, struct device *dev) { struct lvmcache_info *info; struct label *label; if (!(label = label_create(labeller))) return_NULL; if (!(info = dm_zalloc(sizeof(*info)))) { log_error("lvmcache_info allocation failed"); label_destroy(label); return NULL; } info->dev = dev; info->fmt = labeller->fmt; label->info = info; info->label = label; dm_list_init(&info->list); lvmcache_del_mdas(info); lvmcache_del_das(info); lvmcache_del_bas(info); return info; } struct lvmcache_info *lvmcache_add(struct labeller *labeller, const char *pvid, struct device *dev, const char *vgname, const char *vgid, uint32_t vgstatus) { char pvid_s[ID_LEN + 1] __attribute__((aligned(8))); char uuid[64] __attribute__((aligned(8))); struct lvmcache_vgsummary vgsummary = { 0 }; struct lvmcache_info *info; struct lvmcache_info *info_lookup; struct device_list *devl; int created = 0; (void) dm_strncpy(pvid_s, pvid, sizeof(pvid_s)); if (!id_write_format((const struct id *)&pvid_s, uuid, sizeof(uuid))) stack; /* * Find existing info struct in _pvid_hash or create a new one. * * Don't pass the known "dev" as an arg here. The mismatching * devs for the duplicate case is checked below. */ info = lvmcache_info_from_pvid(pvid_s, NULL, 0); if (!info) info = lvmcache_info_from_pvid(dev->pvid, NULL, 0); if (!info) { info = _create_info(labeller, dev); created = 1; } if (!info) return_NULL; /* * If an existing info struct was found, check if any values are new. */ if (!created) { if (info->dev != dev) { log_debug_cache("PV %s on %s was already found on %s.", uuid, dev_name(dev), dev_name(info->dev)); strncpy(dev->pvid, pvid_s, sizeof(dev->pvid)); /* * Keep the existing PV/dev in lvmcache, and save the * new duplicate in the list of duplicates. After * scanning is complete, compare the duplicate devs * with those in lvmcache to check if one of the * duplicates is preferred and if so switch lvmcache to * use it. */ if (!(devl = dm_zalloc(sizeof(*devl)))) return_NULL; devl->dev = dev; dm_list_add(&_found_duplicate_devs, &devl->list); _found_duplicate_pvs = 1; return NULL; } if (info->dev->pvid[0] && pvid[0] && strcmp(pvid_s, info->dev->pvid)) { /* This happens when running pvcreate on an existing PV. */ log_verbose("Changing pvid on dev %s from %s to %s", dev_name(info->dev), info->dev->pvid, pvid_s); } if (info->label->labeller != labeller) { log_verbose("Changing labeller on dev %s from %s to %s", dev_name(info->dev), info->label->labeller->fmt->name, labeller->fmt->name); label_destroy(info->label); if (!(info->label = label_create(labeller))) return_NULL; info->label->info = info; } } /* * Add or update the _pvid_hash mapping, pvid to info. */ info_lookup = dm_hash_lookup(_pvid_hash, pvid_s); if ((info_lookup == info) && !strcmp(info->dev->pvid, pvid_s)) goto update_vginfo; if (info->dev->pvid[0]) dm_hash_remove(_pvid_hash, info->dev->pvid); strncpy(info->dev->pvid, pvid_s, sizeof(info->dev->pvid)); if (!dm_hash_insert(_pvid_hash, pvid_s, info)) { log_error("Adding pvid to hash failed %s", pvid_s); return NULL; } update_vginfo: vgsummary.vgstatus = vgstatus; vgsummary.vgname = vgname; if (vgid) strncpy((char *)&vgsummary.vgid, vgid, sizeof(vgsummary.vgid)); if (!lvmcache_update_vgname_and_id(info, &vgsummary)) { if (created) { dm_hash_remove(_pvid_hash, pvid_s); strcpy(info->dev->pvid, ""); dm_free(info->label); dm_free(info); } return NULL; } return info; } static void _lvmcache_destroy_entry(struct lvmcache_info *info) { _vginfo_detach_info(info); info->dev->pvid[0] = 0; label_destroy(info->label); dm_free(info); } static void _lvmcache_destroy_vgnamelist(struct lvmcache_vginfo *vginfo) { struct lvmcache_vginfo *next; do { next = vginfo->next; if (!_free_vginfo(vginfo)) stack; } while ((vginfo = next)); } static void _lvmcache_destroy_lockname(struct dm_hash_node *n) { char *vgname; if (!dm_hash_get_data(_lock_hash, n)) return; vgname = dm_hash_get_key(_lock_hash, n); if (!strcmp(vgname, VG_GLOBAL)) _vg_global_lock_held = 1; else log_error(INTERNAL_ERROR "Volume Group %s was not unlocked", dm_hash_get_key(_lock_hash, n)); } void lvmcache_destroy(struct cmd_context *cmd, int retain_orphans, int reset) { struct dm_hash_node *n; log_debug_cache("Dropping VG info"); _has_scanned = 0; if (_vgid_hash) { dm_hash_destroy(_vgid_hash); _vgid_hash = NULL; } if (_pvid_hash) { dm_hash_iter(_pvid_hash, (dm_hash_iterate_fn) _lvmcache_destroy_entry); dm_hash_destroy(_pvid_hash); _pvid_hash = NULL; } if (_vgname_hash) { dm_hash_iter(_vgname_hash, (dm_hash_iterate_fn) _lvmcache_destroy_vgnamelist); dm_hash_destroy(_vgname_hash); _vgname_hash = NULL; } if (_lock_hash) { if (reset) _vg_global_lock_held = 0; else dm_hash_iterate(n, _lock_hash) _lvmcache_destroy_lockname(n); dm_hash_destroy(_lock_hash); _lock_hash = NULL; } if (!dm_list_empty(&_vginfos)) log_error(INTERNAL_ERROR "_vginfos list should be empty"); dm_list_init(&_vginfos); /* * Copy the current _unused_duplicate_devs into a cmd list before * destroying _unused_duplicate_devs. * * One command can init/populate/destroy lvmcache multiple times. Each * time it will encounter duplicates and choose the preferrred devs. * We want the same preferred devices to be chosen each time, so save * the unpreferred devs here so that _choose_preferred_devs can use * this to make the same choice each time. */ dm_list_init(&cmd->unused_duplicate_devs); lvmcache_get_unused_duplicate_devs(cmd, &cmd->unused_duplicate_devs); _destroy_duplicate_device_list(&_unused_duplicate_devs); _destroy_duplicate_device_list(&_found_duplicate_devs); /* should be empty anyway */ _found_duplicate_pvs = 0; if (retain_orphans) { struct format_type *fmt; lvmcache_init(cmd); dm_list_iterate_items(fmt, &cmd->formats) { if (!lvmcache_add_orphan_vginfo(fmt->orphan_vg_name, fmt)) stack; } } } int lvmcache_fid_add_mdas(struct lvmcache_info *info, struct format_instance *fid, const char *id, int id_len) { return fid_add_mdas(fid, &info->mdas, id, id_len); } int lvmcache_fid_add_mdas_pv(struct lvmcache_info *info, struct format_instance *fid) { return lvmcache_fid_add_mdas(info, fid, info->dev->pvid, ID_LEN); } int lvmcache_fid_add_mdas_vg(struct lvmcache_vginfo *vginfo, struct format_instance *fid) { struct lvmcache_info *info; dm_list_iterate_items(info, &vginfo->infos) { if (!lvmcache_fid_add_mdas_pv(info, fid)) return_0; } return 1; } int lvmcache_populate_pv_fields(struct lvmcache_info *info, struct volume_group *vg, struct physical_volume *pv) { struct data_area_list *da; if (!info->label) { log_error("No cached label for orphan PV %s", pv_dev_name(pv)); return 0; } pv->label_sector = info->label->sector; pv->dev = info->dev; pv->fmt = info->fmt; pv->size = info->device_size >> SECTOR_SHIFT; pv->vg_name = FMT_TEXT_ORPHAN_VG_NAME; memcpy(&pv->id, &info->dev->pvid, sizeof(pv->id)); if (!pv->size) { log_error("PV %s size is zero.", dev_name(info->dev)); return 0; } /* Currently only support exactly one data area */ if (dm_list_size(&info->das) != 1) { log_error("Must be exactly one data area (found %d) on PV %s", dm_list_size(&info->das), dev_name(info->dev)); return 0; } /* Currently only support one bootloader area at most */ if (dm_list_size(&info->bas) > 1) { log_error("Must be at most one bootloader area (found %d) on PV %s", dm_list_size(&info->bas), dev_name(info->dev)); return 0; } dm_list_iterate_items(da, &info->das) pv->pe_start = da->disk_locn.offset >> SECTOR_SHIFT; dm_list_iterate_items(da, &info->bas) { pv->ba_start = da->disk_locn.offset >> SECTOR_SHIFT; pv->ba_size = da->disk_locn.size >> SECTOR_SHIFT; } return 1; } int lvmcache_check_format(struct lvmcache_info *info, const struct format_type *fmt) { if (info->fmt != fmt) { log_error("PV %s is a different format (seqno %s)", dev_name(info->dev), info->fmt->name); return 0; } return 1; } void lvmcache_del_mdas(struct lvmcache_info *info) { if (info->mdas.n) del_mdas(&info->mdas); dm_list_init(&info->mdas); } void lvmcache_del_das(struct lvmcache_info *info) { if (info->das.n) del_das(&info->das); dm_list_init(&info->das); } void lvmcache_del_bas(struct lvmcache_info *info) { if (info->bas.n) del_bas(&info->bas); dm_list_init(&info->bas); } int lvmcache_add_mda(struct lvmcache_info *info, struct device *dev, uint64_t start, uint64_t size, unsigned ignored) { return add_mda(info->fmt, NULL, &info->mdas, dev, start, size, ignored); } int lvmcache_add_da(struct lvmcache_info *info, uint64_t start, uint64_t size) { return add_da(NULL, &info->das, start, size); } int lvmcache_add_ba(struct lvmcache_info *info, uint64_t start, uint64_t size) { return add_ba(NULL, &info->bas, start, size); } void lvmcache_update_pv(struct lvmcache_info *info, struct physical_volume *pv, const struct format_type *fmt) { info->device_size = pv->size << SECTOR_SHIFT; info->fmt = fmt; } int lvmcache_update_das(struct lvmcache_info *info, struct physical_volume *pv) { struct data_area_list *da; if (info->das.n) { if (!pv->pe_start) dm_list_iterate_items(da, &info->das) pv->pe_start = da->disk_locn.offset >> SECTOR_SHIFT; del_das(&info->das); } else dm_list_init(&info->das); if (!add_da(NULL, &info->das, pv->pe_start << SECTOR_SHIFT, 0 /*pv->size << SECTOR_SHIFT*/)) return_0; return 1; } int lvmcache_update_bas(struct lvmcache_info *info, struct physical_volume *pv) { struct data_area_list *ba; if (info->bas.n) { if (!pv->ba_start && !pv->ba_size) dm_list_iterate_items(ba, &info->bas) { pv->ba_start = ba->disk_locn.offset >> SECTOR_SHIFT; pv->ba_size = ba->disk_locn.size >> SECTOR_SHIFT; } del_das(&info->bas); } else dm_list_init(&info->bas); if (!add_ba(NULL, &info->bas, pv->ba_start << SECTOR_SHIFT, pv->ba_size << SECTOR_SHIFT)) return_0; return 1; } int lvmcache_foreach_pv(struct lvmcache_vginfo *vginfo, int (*fun)(struct lvmcache_info *, void *), void *baton) { struct lvmcache_info *info; dm_list_iterate_items(info, &vginfo->infos) { if (!fun(info, baton)) return_0; } return 1; } int lvmcache_foreach_mda(struct lvmcache_info *info, int (*fun)(struct metadata_area *, void *), void *baton) { struct metadata_area *mda; dm_list_iterate_items(mda, &info->mdas) { if (!fun(mda, baton)) return_0; } return 1; } unsigned lvmcache_mda_count(struct lvmcache_info *info) { return dm_list_size(&info->mdas); } int lvmcache_foreach_da(struct lvmcache_info *info, int (*fun)(struct disk_locn *, void *), void *baton) { struct data_area_list *da; dm_list_iterate_items(da, &info->das) { if (!fun(&da->disk_locn, baton)) return_0; } return 1; } int lvmcache_foreach_ba(struct lvmcache_info *info, int (*fun)(struct disk_locn *, void *), void *baton) { struct data_area_list *ba; dm_list_iterate_items(ba, &info->bas) { if (!fun(&ba->disk_locn, baton)) return_0; } return 1; } struct label *lvmcache_get_dev_label(struct device *dev) { struct lvmcache_info *info; if ((info = lvmcache_info_from_pvid(dev->pvid, NULL, 0))) { /* dev would be different for a duplicate */ if (info->dev == dev) return info->label; } return NULL; } int lvmcache_has_dev_info(struct device *dev) { if (lvmcache_info_from_pvid(dev->pvid, NULL, 0)) return 1; return 0; } /* * The lifetime of the label returned is tied to the lifetime of the * lvmcache_info which is the same as lvmcache itself. */ struct label *lvmcache_get_label(struct lvmcache_info *info) { return info->label; } uint64_t lvmcache_device_size(struct lvmcache_info *info) { return info->device_size; } void lvmcache_set_device_size(struct lvmcache_info *info, uint64_t size) { info->device_size = size; } struct device *lvmcache_device(struct lvmcache_info *info) { return info->dev; } void lvmcache_set_ext_version(struct lvmcache_info *info, uint32_t version) { info->ext_version = version; } uint32_t lvmcache_ext_version(struct lvmcache_info *info) { return info->ext_version; } void lvmcache_set_ext_flags(struct lvmcache_info *info, uint32_t flags) { info->ext_flags = flags; } uint32_t lvmcache_ext_flags(struct lvmcache_info *info) { return info->ext_flags; } int lvmcache_is_orphan(struct lvmcache_info *info) { if (!info->vginfo) return 1; /* FIXME? */ return is_orphan_vg(info->vginfo->vgname); } int lvmcache_vgid_is_cached(const char *vgid) { struct lvmcache_vginfo *vginfo; if (lvmetad_used()) return 1; vginfo = lvmcache_vginfo_from_vgid(vgid); if (!vginfo || !vginfo->vgname) return 0; if (is_orphan_vg(vginfo->vgname)) return 0; return 1; } void lvmcache_set_independent_location(const char *vgname) { struct lvmcache_vginfo *vginfo; if ((vginfo = lvmcache_vginfo_from_vgname(vgname, NULL))) vginfo->independent_metadata_location = 1; } /* * Return true iff it is impossible to find out from this info alone whether the * PV in question is or is not an orphan. */ int lvmcache_uncertain_ownership(struct lvmcache_info *info) { return mdas_empty_or_ignored(&info->mdas); } uint64_t lvmcache_smallest_mda_size(struct lvmcache_info *info) { if (!info) return UINT64_C(0); return find_min_mda_size(&info->mdas); } const struct format_type *lvmcache_fmt(struct lvmcache_info *info) { return info->fmt; } int lvmcache_lookup_mda(struct lvmcache_vgsummary *vgsummary) { struct lvmcache_vginfo *vginfo; if (!vgsummary->mda_size) return 0; /* FIXME Index the checksums */ dm_list_iterate_items(vginfo, &_vginfos) { if (vgsummary->mda_checksum == vginfo->mda_checksum && vgsummary->mda_size == vginfo->mda_size && !is_orphan_vg(vginfo->vgname)) { vgsummary->vgname = vginfo->vgname; vgsummary->creation_host = vginfo->creation_host; vgsummary->vgstatus = vginfo->status; vgsummary->seqno = vginfo->seqno; /* vginfo->vgid has 1 extra byte then vgsummary->vgid */ memcpy(&vgsummary->vgid, vginfo->vgid, sizeof(vgsummary->vgid)); return 1; } } return 0; } int lvmcache_contains_lock_type_sanlock(struct cmd_context *cmd) { struct lvmcache_vginfo *vginfo; dm_list_iterate_items(vginfo, &_vginfos) { if (vginfo->lock_type && !strcmp(vginfo->lock_type, "sanlock")) return 1; } return 0; } void lvmcache_get_max_name_lengths(struct cmd_context *cmd, unsigned *pv_max_name_len, unsigned *vg_max_name_len) { struct lvmcache_vginfo *vginfo; struct lvmcache_info *info; unsigned len; *vg_max_name_len = 0; *pv_max_name_len = 0; dm_list_iterate_items(vginfo, &_vginfos) { len = strlen(vginfo->vgname); if (*vg_max_name_len < len) *vg_max_name_len = len; dm_list_iterate_items(info, &vginfo->infos) { len = strlen(dev_name(info->dev)); if (*pv_max_name_len < len) *pv_max_name_len = len; } } } int lvmcache_vg_is_foreign(struct cmd_context *cmd, const char *vgname, const char *vgid) { struct lvmcache_vginfo *vginfo; int ret = 0; if (lvmetad_used()) return lvmetad_vg_is_foreign(cmd, vgname, vgid); if ((vginfo = lvmcache_vginfo_from_vgid(vgid))) ret = !is_system_id_allowed(cmd, vginfo->system_id); return ret; } /* * Example of reading four devs in sequence from the same VG: * * dev1: * lvmcache: creates vginfo with initial values * * dev2: all checksums match. * mda_header checksum matches vginfo from dev1 * metadata checksum matches vginfo from dev1 * metadata is not parsed, and the vgsummary values copied * from lvmcache from dev1 and passed back to lvmcache for dev2. * lvmcache: attach info for dev2 to existing vginfo * * dev3: mda_header and metadata have unmatching checksums. * mda_header checksum matches vginfo from dev1 * metadata checksum doesn't match vginfo from dev1 * produces read error in config.c * lvmcache: info for dev3 is deleted, FIXME: use a defective state * * dev4: mda_header and metadata have matching checksums, but * does not match checksum in lvmcache from prev dev. * mda_header checksum doesn't match vginfo from dev1 * lvmcache_lookup_mda returns 0, no vgname, no checksum_only * lvmcache: update_vgname_and_id sees checksum from dev4 does not * match vginfo from dev1, so vginfo->scan_summary_mismatch is set. * attach info for dev4 to existing vginfo * * dev5: config parsing error. * lvmcache: info for dev5 is deleted, FIXME: use a defective state */ int lvmcache_scan_mismatch(struct cmd_context *cmd, const char *vgname, const char *vgid) { struct lvmcache_vginfo *vginfo; if (!vgname || !vgid) return 1; if ((vginfo = lvmcache_vginfo_from_vgid(vgid))) return vginfo->scan_summary_mismatch; return 1; }