# RUN: %PYTHON %s | FileCheck %s from mlir.ir import * from mlir.dialects import sparse_tensor as st def run(f): print("\nTEST:", f.__name__) f() return f # CHECK-LABEL: TEST: testEncodingAttr1D @run def testEncodingAttr1D(): with Context() as ctx: parsed = Attribute.parse('#sparse_tensor.encoding<{' ' lvlTypes = [ "compressed" ],' ' posWidth = 16,' ' crdWidth = 32' '}>') # CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ], posWidth = 16, crdWidth = 32 }> print(parsed) casted = st.EncodingAttr(parsed) # CHECK: equal: True print(f"equal: {casted == parsed}") # CHECK: lvl_types: [] print(f"lvl_types: {casted.lvl_types}") # CHECK: dim_ordering: None print(f"dim_ordering: {casted.dim_ordering}") # CHECK: pos_width: 16 print(f"pos_width: {casted.pos_width}") # CHECK: crd_width: 32 print(f"crd_width: {casted.crd_width}") created = st.EncodingAttr.get(casted.lvl_types, None, None, 0, 0) # CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ] }> print(created) # CHECK: created_equal: False print(f"created_equal: {created == casted}") # Verify that the factory creates an instance of the proper type. # CHECK: is_proper_instance: True print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}") # CHECK: created_pos_width: 0 print(f"created_pos_width: {created.pos_width}") # CHECK-LABEL: TEST: testEncodingAttr2D @run def testEncodingAttr2D(): with Context() as ctx: parsed = Attribute.parse('#sparse_tensor.encoding<{' ' lvlTypes = [ "dense", "compressed" ],' ' dimOrdering = affine_map<(d0, d1) -> (d1, d0)>,' ' posWidth = 8,' ' crdWidth = 32' '}>') # CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, posWidth = 8, crdWidth = 32 }> print(parsed) casted = st.EncodingAttr(parsed) # CHECK: equal: True print(f"equal: {casted == parsed}") # CHECK: lvl_types: [, ] print(f"lvl_types: {casted.lvl_types}") # CHECK: dim_ordering: (d0, d1) -> (d1, d0) print(f"dim_ordering: {casted.dim_ordering}") # CHECK: pos_width: 8 print(f"pos_width: {casted.pos_width}") # CHECK: crd_width: 32 print(f"crd_width: {casted.crd_width}") created = st.EncodingAttr.get(casted.lvl_types, casted.dim_ordering, casted.higher_ordering, 8, 32) # CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, posWidth = 8, crdWidth = 32 }> print(created) # CHECK: created_equal: True print(f"created_equal: {created == casted}") # CHECK-LABEL: TEST: testEncodingAttrOnTensorType @run def testEncodingAttrOnTensorType(): with Context() as ctx, Location.unknown(): encoding = st.EncodingAttr( Attribute.parse('#sparse_tensor.encoding<{' ' lvlTypes = [ "compressed" ], ' ' posWidth = 64,' ' crdWidth = 32' '}>')) tt = RankedTensorType.get((1024,), F32Type.get(), encoding=encoding) # CHECK: tensor<1024xf32, #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ], posWidth = 64, crdWidth = 32 }>> print(tt) # CHECK: #sparse_tensor.encoding<{ lvlTypes = [ "compressed" ], posWidth = 64, crdWidth = 32 }> print(tt.encoding) assert tt.encoding == encoding