//===- LoopEmitter.cpp ----------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "LoopEmitter.h" #include "CodegenUtils.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" using namespace mlir; using namespace mlir::sparse_tensor; //===----------------------------------------------------------------------===// // File local shorthand macros //===----------------------------------------------------------------------===// #define CMPI(p, l, r) \ (builder.create(loc, arith::CmpIPredicate::p, (l), (r)) \ .getResult()) #define C_IDX(v) (constantIndex(builder, loc, (v))) #define YIELD(vs) (builder.create(loc, (vs))) #define ADDI(lhs, rhs) (builder.create(loc, (lhs), (rhs))) #define ANDI(lhs, rhs) (builder.create(loc, (lhs), (rhs))) #define SUBI(lhs, rhs) (builder.create(loc, (lhs), (rhs))) #define MULI(lhs, rhs) (builder.create(loc, (lhs), (rhs))) #define SELECT(c, l, r) (builder.create(loc, (c), (l), (r))) //===----------------------------------------------------------------------===// // File local helper functions. //===----------------------------------------------------------------------===// static Value genSliceOffset(OpBuilder &builder, Location loc, Value tensor, Level lvl) { auto enc = getSparseTensorEncoding(tensor.getType()); // FIXME: `toOrigDim` is deprecated return createOrFoldSliceOffsetOp(builder, loc, tensor, toOrigDim(enc, lvl)); } static Value genSliceStride(OpBuilder &builder, Location loc, Value tensor, Level lvl) { auto enc = getSparseTensorEncoding(tensor.getType()); // FIXME: `toOrigDim` is deprecated return createOrFoldSliceStrideOp(builder, loc, tensor, toOrigDim(enc, lvl)); } /// Converts a coordinate relative to the slice to the coordinate relative /// to the underlying tensor. // FIXME: that description says "sliceCrd -> tensorCrd"; but the function // name suggests it should be "tensorCrd -> sliceCrd". static Value toSliceCrd(OpBuilder &builder, Location loc, Value crd, Value offset, Value stride, Value tensor, Level lvl) { // tensorCrd = sliceCrd * stride + offset return ADDI(MULI(crd, stride), offset); } /// Generates code to compute the *absolute* offset of the slice based on the /// provide minimum coordinates in the slice. /// E.g., when reducing d0 + d1 + d2, we need two slices to fully reduced the /// expression, i,e, s1 = slice(T, d0), s2 = slice(s1, d1). The *absolute* /// offset is the offset computed relative to the initial tensors T. /// /// When isNonEmpty == true, the computed offset is meaningless and should not /// be used during runtime, the method generates code to return 0 currently in /// that case. /// /// offset = isNonEmpty && minCrd >= size ? minCrd - size + 1 : 0; static Value offsetFromMinCoord(OpBuilder &builder, Location loc, Value minCrd, Value size, Value isNonEmpty) { Value geSize = CMPI(uge, minCrd, size); Value pred = ANDI(isNonEmpty, geSize); // Computes minCrd - size + 1 Value mms = SUBI(ADDI(minCrd, C_IDX(1)), size); // This is the absolute offset related to the underly tensor. return SELECT(pred, mms, C_IDX(0)); } /// Converts a coordinate relative to the underlying tensor to the coordinate /// relative to the slice, returns a extra reminder value // FIXME: that description says "tensorCrd -> sliceCrd"; but the function // name suggests it should be "sliceCrd -> tensorCrd". static std::pair fromSliceCrd(OpBuilder &builder, Location loc, Value crd, Value offset, Value stride, Value tensor, Level lvl) { // sliceCrd = (tensorCrd - offset) / stride crd = SUBI(crd, offset); Value rem = builder.create(loc, crd, stride); crd = builder.create(loc, crd, stride); return std::make_pair(crd, rem); } std::pair LoopEmitter::genSliceLegitPredicate(OpBuilder &builder, Location loc, Value crd, TensorId tid, Level lvl) { assert(isSparseSlices[tid]); Value slice = tensors[tid]; Value offset = sliceOffsets[tid][lvl]; Value stride = sliceStrides[tid][lvl]; auto enc = getSparseTensorEncoding(slice.getType()); const auto [newCrd, crdRem] = fromSliceCrd(builder, loc, crd, offset, stride, slice, lvl); SmallVector conds; // at most 3 conditions // First, coord >= offset (skip the check if offset is known to be 0). if (auto staticOffset = enc.getStaticLvlSliceOffset(lvl); !(staticOffset.has_value() && *staticOffset == 0)) { auto geOffset = CMPI(uge, crd, offset); conds.push_back(geOffset); } // Second, coord_in_slice < length auto ltLength = CMPI(ult, newCrd, lvlSizes[tid][lvl]); conds.push_back(ltLength); // Third, rem == 0 (skip the check if stride is known to be 1). if (auto staticStride = enc.getStaticLvlSliceStride(lvl); !(staticStride.has_value() && *staticStride == 1)) { auto fitStride = CMPI(eq, crdRem, C_IDX(0)); conds.push_back(fitStride); } // Must meet all condition to be a valid coordinate in slice. auto pred = conds.front(); for (auto cond : ValueRange(conds).drop_front()) pred = ANDI(pred, cond); return {newCrd, pred}; } //===----------------------------------------------------------------------===// // Sparse tensor loop emitter class implementations //===----------------------------------------------------------------------===// Value LoopEmitter::genAddress(OpBuilder &builder, Location loc, TensorId tid, Level lvl, Value crd) { Value pos = lvl == 0 ? C_IDX(0) : posits[tid][lvl - 1]; Value mul = MULI(highs[tid][lvl], pos); if (isSparseSlices[tid]) crd = toSliceCrd(builder, loc, crd, sliceOffsets[tid][lvl], sliceStrides[tid][lvl], tensors[tid], lvl); Value add = ADDI(mul, crd); return add; } Value LoopEmitter::genSegmentHigh(OpBuilder &builder, Location loc, TensorId tid, Level lvl, Value pLo, Value pHi) { const auto coordinates = coordinatesBuffers[tid][lvl]; const auto sameCrd = genIndexLoad(builder, loc, coordinates, pLo); auto whileOp = builder.create( loc, builder.getIndexType(), pLo, /*beforeBuilder=*/ [pHi, coordinates, sameCrd](OpBuilder &builder, Location loc, ValueRange ivs) { const auto pos = ivs[0]; Value inBound = builder.create( loc, arith::CmpIPredicate::ult, pos, pHi); auto ifInBound = builder.create(loc, builder.getI1Type(), inBound, true); { OpBuilder::InsertionGuard guard(builder); // Load the next coordinates only when inbound (to avoid OOB // acccesses). builder.setInsertionPointToStart(ifInBound.thenBlock()); Value crd = genIndexLoad(builder, loc, coordinates, pos); Value isSameCrd = builder.create( loc, arith::CmpIPredicate::eq, crd, sameCrd); YIELD(isSameCrd); // Else, the position is out of bound, yield false to terminate the // loop. builder.setInsertionPointToStart(ifInBound.elseBlock()); YIELD(constantI1(builder, loc, false)); } builder.create(loc, ifInBound.getResults()[0], ivs); }, /*afterBuilder=*/ [](OpBuilder &builder, Location loc, ValueRange ivs) { // pos ++ Value nextPos = ADDI(ivs[0], C_IDX(1)); YIELD(nextPos); }); // Return the segment high. return whileOp.getResult(0); } Value LoopEmitter::genSparseCrd(OpBuilder &builder, Location loc, TensorId tid, Level dstLvl) { Value crd = C_IDX(0); const auto reassoc = getCollapseReassociation(tid, dstLvl); const unsigned reassocSize = reassoc.size(); for (unsigned i = 0; i < reassocSize; i++) { const Level srcLvl = reassoc[i]; // A load on the coordinates array yields the coordinate. const Value mem = coordinatesBuffers[tid][srcLvl]; /// FIXME: See the [CLARIFY_POSITS_LVL] note in the header. const Value pos = posits[tid][dstLvl]; const Value off = genIndexLoad(builder, loc, mem, pos); // Linearized the coordinates within the same collapse reassociation. crd = ADDI(crd, off); if (i != reassocSize - 1) { crd = MULI(crd, this->lvlSizes[tid][reassoc[i + 1]]); } } return crd; } LoopEmitter::LoopEmitter(ValueRange tensors, StringAttr loopTag, bool hasOutput, bool isSparseOut, ArrayRef topSort, DependentLvlGetter dimGetter) { initialize(tensors, loopTag, hasOutput, isSparseOut, topSort, dimGetter); } void LoopEmitter::initialize(ValueRange ts, StringAttr loopTag, bool hasOutput, bool isSparseOut, ArrayRef topSort, DependentLvlGetter dimGetter) { // First initialize the top-level type of the fields. this->loopTag = loopTag; this->hasOutput = hasOutput; this->isSparseOut = isSparseOut; const unsigned numTensors = ts.size(); this->tensors.assign(ts.begin(), ts.end()); this->lvlTypes.assign(numTensors, std::vector()); this->lvlSizes.assign(numTensors, std::vector()); this->highs.assign(numTensors, std::vector()); this->segHi.assign(numTensors, std::vector()); this->posits.assign(numTensors, std::vector()); this->coords.assign(numTensors, std::vector()); this->positionsBuffers.assign(numTensors, std::vector()); this->coordinatesBuffers.assign(numTensors, std::vector()); this->valBuffer.assign(numTensors, nullptr); this->collapseReassoc.assign(numTensors, nullptr); this->isSparseSlices.assign(numTensors, false); this->sliceOffsets.assign(numTensors, std::vector()); this->sliceStrides.assign(numTensors, std::vector()); const LoopOrd numLoops = topSort.size(); // These zeros will be overwritten below, but we need to initialize // them to something since we'll need random-access assignment. this->loopIdToOrd.assign(numLoops, 0); this->loopStack.reserve(numLoops); this->loopSeqStack.reserve(numLoops); // Index-reduction related fields. this->dependentLvlMap.assign( numTensors, std::vector>>()); this->slicePosBuffer.assign(numTensors, std::vector>()); this->sliceSizes.assign(numTensors, std::vector>()); this->sliceStack.assign(numTensors, std::vector()); this->levelReducedDep.assign(numTensors, std::vector()); // Initialize nested types of `TensorId`-indexed fields. for (TensorId tid = 0; tid < numTensors; tid++) { const Value t = tensors[tid]; // a scalar or 0-dimension tensors if (isZeroRankedTensorOrScalar(t.getType())) continue; auto rtp = getRankedTensorType(t); if (auto reshape = t.getDefiningOp(); isUniqueCOOType(rtp) && reshape) { // TODO: Supports more kinds of sparse tensors. // FIXME: We should instead lower reshape operations on sparse tensors to // view change. collapseReassoc[tid] = reshape.getReassociation(); rtp = reshape.getSrcType(); // Overwrites the tensor to the source tensor of reshape operations. tensors[tid] = reshape.getSrc(); } const SparseTensorType stt(rtp); const Level lvlRank = stt.getLvlRank(); // We always treat sparse output tensor as dense so that we always iterate // it based on lvl size. if (stt.hasEncoding() && !(isOutputTensor(tid) && isSparseOut)) { const auto enc = stt.getEncoding(); isSparseSlices[tid] = enc.isSlice(); for (auto lvlTp : enc.getLvlTypes()) lvlTypes[tid].push_back(lvlTp); } else { lvlTypes[tid].assign(lvlRank, DimLevelType::Dense); } // Initialize using empty value. lvlSizes[tid].assign(lvlRank, Value()); highs[tid].assign(lvlRank, Value()); segHi[tid].assign(lvlRank, Value()); posits[tid].assign(lvlRank, Value()); coords[tid].assign(lvlRank, Value()); positionsBuffers[tid].assign(lvlRank, Value()); coordinatesBuffers[tid].assign(lvlRank, Value()); sliceOffsets[tid].assign(lvlRank, Value()); sliceStrides[tid].assign(lvlRank, Value()); // Slice-driven loops related initialization. levelReducedDep[tid].assign(lvlRank, 0); dependentLvlMap[tid].assign(lvlRank, std::vector>()); slicePosBuffer[tid].assign(lvlRank, std::vector()); sliceSizes[tid].assign(lvlRank, std::vector()); sliceStack[tid].emplace_back(/*minCrd=*/Value(), /*offset=*/Value(), /*isNonEmpty*/ Value(), std::nullopt, 0); if (dimGetter) { auto reassoc = collapseReassoc[tid]; Level dstRank = reassoc ? reassoc.size() : lvlRank; for (Level l = 0; l < dstRank; l++) { dependentLvlMap[tid][l] = dimGetter(tid, l); unsigned depends = dependentLvlMap[tid][l].size(); if (depends == 0) continue; // TODO: View-base collapse and dependent index reduction are not // compatible right now. assert(!reassoc); // We need `depends - 1` slices to fully the affine expression. sliceSizes[tid][l].assign(depends - 1, nullptr); slicePosBuffer[tid][l].assign(depends - 1, nullptr); } } } // Construct the inverse of the `topSort` from the sparsifier. // This is needed to map `AffineDimExpr`s back to the `LoopOrd` // used in loop emitter. // FIXME: This map should be maintained outside loop emitter. for (LoopOrd n = 0; n < numLoops; n++) loopIdToOrd[topSort[n]] = n; } void LoopEmitter::initializeLoopEmit(OpBuilder &builder, Location loc, LoopEmitter::OutputUpdater updater) { // For every tensor: // * get the values buffer. // * For every level: // * get the positions and coordinates buffers // * get/compute the level-size, which is also used as the upper-bound // on positions. for (TensorId t = 0, numTensors = getNumTensors(); t < numTensors; t++) { const Value tensor = tensors[t]; const auto rtp = dyn_cast(tensor.getType()); if (!rtp) // Skips only scalar, zero ranked tensor still need to be bufferized and // (probably) filled with zeros by users. continue; // FIXME: the definition of `lvlRank` looks more like a dim-rank; // but the variable is used as a level everywhere below, which // suggests there may be some dim/lvl confusion going on here. const Level lvlRank = rtp.getRank(); const auto shape = rtp.getShape(); const auto enc = getSparseTensorEncoding(rtp); const Level cooStart = enc ? getCOOStart(enc) : lvlRank; // Scan all levels of current tensor. for (Level l = 0; l < lvlRank; l++) { // This should be called only once at beginning. assert(!positionsBuffers[t][l] && !coordinatesBuffers[t][l] && !highs[t][l]); const auto lvlTp = lvlTypes[t][l]; // Handle sparse storage schemes. if (isCompressedDLT(lvlTp) || isCompressedWithHiDLT(lvlTp)) { // Generate sparse primitives to obtain positions and coordinates. positionsBuffers[t][l] = genToPositions(builder, loc, tensor, l); coordinatesBuffers[t][l] = genToCoordinates(builder, loc, tensor, l, cooStart); } else if (isSingletonDLT(lvlTp)) { // Singleton level, fetch coordinates. coordinatesBuffers[t][l] = genToCoordinates(builder, loc, tensor, l, cooStart); } else { // Dense level, nothing to fetch. assert(isDenseDLT(lvlTp)); } // FIXME: `toOrigDim` is deprecated. For now this relies on the // 1:1 mapping between levels and dimensions, since nowhere else // in the code supports HigherOrdering yet either. Value lvlSz = mlir::linalg::createOrFoldDimOp(builder, loc, tensor, toOrigDim(enc, l)); // Find upper bound in current dimension. highs[t][l] = lvlSizes[t][l] = lvlSz; if (isSparseSlices[t]) { sliceOffsets[t][l] = genSliceOffset(builder, loc, tensors[t], l); sliceStrides[t][l] = genSliceStride(builder, loc, tensors[t], l); } } // Perform the required bufferization. Dense inputs materialize // from the input tensors. Sparse inputs use sparse primitives to obtain the // values. // Delegates extra output initialization to clients. bool isOutput = isOutputTensor(t); Type elementType = rtp.getElementType(); if (!enc) { // Non-annotated dense tensors. BaseMemRefType denseTp = MemRefType::get(shape, elementType); // TODO: if we unconditionally use fully dynamic layout here, it breaks // some vectorization passes which requires static stride = 1. // Is it possible to call vectorization pass after bufferization? if (llvm::isa_and_nonnull(tensor.getDefiningOp())) denseTp = bufferization::getMemRefTypeWithFullyDynamicLayout(rtp); Value denseVal = builder.create(loc, denseTp, tensor); // Dense outputs need special handling. if (isOutput && updater) denseVal = updater(builder, loc, denseVal, tensor); valBuffer[t] = denseVal; } else { // Annotated sparse tensors. // We also need the value buffer for all-dense annotated "sparse" tensors. valBuffer[t] = genToValues(builder, loc, tensor); } // NOTE: we can also prepare for 0 lvl here in advance, this will hoist // some loop preparation from tensor iteration, but will also (undesirably) // hoist the code ouside if-conditions. } Type indexType = builder.getIndexType(); Value c0 = constantZero(builder, loc, indexType); for (TensorId t = 0, e = tensors.size(); t < e; t++) { auto rtp = dyn_cast(tensors[t].getType()); if (!rtp) continue; Level lvlRank = SparseTensorType(rtp).getLvlRank(); for (Level lvl = 0; lvl < lvlRank; lvl++) { if (!dependentLvlMap[t][lvl].empty()) { ArrayRef> depLvls = dependentLvlMap[t][lvl]; // Needs at least two operands to form a non-trivial affine expression. assert(depLvls.size() > 1); Value size = c0; for (unsigned e = depLvls.size() - 1; e >= 1; e--) { auto [dt, dd] = depLvls[e]; size = ADDI(size, lvlSizes[dt][dd]); sliceSizes[t][lvl][e - 1] = size; } } } } localInsertPos = builder.getInsertionPoint()->getPrevNode(); } void LoopEmitter::enterNewLoopSeq(OpBuilder &builder, Location loc, ArrayRef tidLvls) { // TODO: sort assert(loopSeqStack.size() == loopStack.size()); // Prepares for all the tensors used in the current loop sequence. std::vector> slicedTids; for (auto [tid, lvl] : unpackTensorLevelRange(tidLvls)) { if (!dependentLvlMap[tid][lvl].empty()) { bool fullyRed = genSliceBegin(builder, loc, tid, lvl); slicedTids.emplace_back(tid, lvl, fullyRed); } else { prepareLoopOverTensorAtLvl(builder, loc, tid, lvl); } } // Universal Index starts from 0. loopSeqStack.emplace_back(C_IDX(0), std::move(slicedTids)); } void LoopEmitter::exitCurrentLoopSeq(OpBuilder &builder, Location loc) { assert(loopSeqStack.size() == loopStack.size() + 1); const auto &slicedTids = loopSeqStack.back().second; // Depending on whether the slice is resolved or not at current loop sequence, // end them in different ways. for (auto [tid, lvl, res] : slicedTids) { if (!res) { // If this is a unresolved-slice-driven loop, pops out the slice. assert(sliceStack[tid].back().slicedOnLvl == lvl); sliceStack[tid].pop_back(); } else { if (!isDenseDLT(lvlTypes[tid][lvl])) { // Else this is a resolved-slice, and advance posit similar to TACO. Value c1 = C_IDX(1), c2 = C_IDX(2); // pIdx += 2, we finished the current lvl, advance the pointer index of // the previous level by two to skip the [pLo, pHi] for current level. Value sPtrBuf = slicePosBuffer[tid][lvl].back(); Value curP = genIndexLoad(builder, loc, sPtrBuf, c1); // TODO: we could probably use an SSA value for it. Value nexP = ADDI(curP, c2); builder.create(loc, nexP, sPtrBuf, c1); } } } loopSeqStack.pop_back(); } Value LoopEmitter::genAffine(OpBuilder &builder, Location loc, AffineExpr a) { switch (a.getKind()) { case AffineExprKind::DimId: { // FIXME: since the one callsite in Sparsification passes in a // level-expression, the `getPosition` must in fact be a `Dimension`. // However, elsewhere we have been lead to expect that `loopIdToOrd` // should be indexed by `LoopId`... const auto loopId = a.cast().getPosition(); assert(loopId < loopIdToOrd.size()); return loopStack[loopIdToOrd[loopId]].iv; } case AffineExprKind::Add: { auto binOp = a.cast(); return ADDI(genAffine(builder, loc, binOp.getLHS()), genAffine(builder, loc, binOp.getRHS())); } case AffineExprKind::Mul: { auto binOp = a.cast(); return MULI(genAffine(builder, loc, binOp.getLHS()), genAffine(builder, loc, binOp.getRHS())); } case AffineExprKind::Constant: { int64_t c = a.cast().getValue(); return C_IDX(c); } default: llvm_unreachable("unexpected affine subscript"); } } Operation *LoopEmitter::emitForLoopOverTensorAtLvl( OpBuilder &builder, Location loc, TensorId tid, Level dstLvl, Value lo, Value hi, MutableArrayRef reduc, bool isParallel) { bool isSparseCond = isCompressedDLT(lvlTypes[tid][dstLvl]) || isCompressedWithHiDLT(lvlTypes[tid][dstLvl]) || isSingletonDLT(lvlTypes[tid][dstLvl]); const auto reassoc = getCollapseReassociation(tid, dstLvl); // TODO: support dynamic slices. // Uses the first dimension here to build the loop bound (which is also the // biggest range). const Level srcLvl = reassoc.front(); Value step = C_IDX(1); Operation *loop = nullptr; Value iv; if (isParallel) { assert(collapseReassoc[tid] == nullptr); scf::ParallelOp parOp = builder.create(loc, lo, hi, step, reduc); builder.setInsertionPointToStart(parOp.getBody()); assert(parOp.getNumReductions() == reduc.size()); iv = parOp.getInductionVars()[0]; // In-place update on the reduction variable vector. // Note that the init vals is not the actual reduction variables but instead // used as a "special handle" to (temporarily) represent them. The // expression on init vals will be moved into scf.reduce and replaced with // the block arguments when exiting the loop (see exitForLoop). This is // needed as we can not build the actual reduction block and get the actual // reduction varaible before users fill parallel loop body. for (int i = 0, e = reduc.size(); i < e; i++) reduc[i] = parOp.getInitVals()[i]; loop = parOp; } else { scf::ForOp forOp = builder.create(loc, lo, hi, step, reduc); builder.setInsertionPointToStart(forOp.getBody()); iv = forOp.getInductionVar(); // In-place update on the reduction variable vector. assert(forOp.getNumRegionIterArgs() == reduc.size()); for (int i = 0, e = reduc.size(); i < e; i++) reduc[i] = forOp.getRegionIterArg(i); loop = forOp; } assert(loop && iv); Value crd; if (isSparseCond) { assert(reassoc.size() == 1 || isUniqueCOOType(tensors[tid].getType())); // For COO, the position is the same across consecutive levels. /// FIXME: See the [CLARIFY_POSITS_LVL] note in the header. llvm::for_each(reassoc, [this, tid, iv](Level srcLvl) { posits[tid][srcLvl] = iv; }); crd = genSparseCrd(builder, loc, tid, dstLvl); } else { // Dense tensor, the coordinate is the inducation variable. crd = iv; } if (isSparseSlices[tid] && isSparseCond) { // For sparse level slices, we need to filter out invalid coordinates that // are not included in the slice. SmallVector types; for (Value red : reduc) types.push_back(red.getType()); auto [trans, pred] = genSliceLegitPredicate(builder, loc, crd, tid, srcLvl); bool hasReduc = !types.empty(); scf::IfOp ifOp = builder.create(loc, types, pred, /*else*/ hasReduc); if (hasReduc) { // scf.for (a) -> v // %s = scf.if (a) -> v // user-generated code. // else // yield a // yield %s YIELD(ifOp.getResults()); builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); // On mismatch. YIELD(reduc); } // Set the insertion point to matched branch. builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); crd = trans; } assert(crd); coords[tid][dstLvl] = crd; return loop; } Operation *LoopEmitter::emitWhileLoopOverSliceAtSparseLvl( OpBuilder &builder, Location loc, Value pLo, Value pHi, Value offset, Value sliceSize, TensorId tid, Level lvl, MutableArrayRef reduc) { // TODO: we should generalize the method to support iteration over for // normal slices as well to allow early break. Operation *insertPoint = nullptr; Operation *loop = genSliceLvlTraverseLoop( builder, loc, pLo, pHi, offset, sliceSize, tid, lvl, reduc, /*genYield=*/false, // unaware of the yield values from user yet [this, tid, lvl, reduc, offset, &insertPoint](OpBuilder &builder, Location loc, Value iv, MutableArrayRef innerReduc) { assert(innerReduc.size() == reduc.size()); // Updates users' reduction variable inplace for (unsigned i = 0, e = reduc.size(); i < e; i++) reduc[i] = innerReduc[i]; // Loads the coordinates. Value absC = genIndexLoad(builder, loc, coordinatesBuffers[tid][lvl], iv); // We need to substract the offset to get relative coordinates. // TODO: how to assert relC >=0 during runtime? insertPoint = builder.create(loc, absC, offset); posits[tid][lvl] = iv; coords[tid][lvl] = insertPoint->getResult(0); }) .first; // Sets the insertionn pointer inside loop body. builder.setInsertionPointAfter(insertPoint); return loop; } Operation *LoopEmitter::enterLoopOverTensorAtLvl(OpBuilder &builder, Location loc, ArrayRef tidLvls, MutableArrayRef reduc, bool isParallel) { // TODO: support multiple return on parallel for? assert(!isParallel || reduc.size() <= 1); bool isSparseCond = false, isSparseSliceCond = false; auto [tid, lvl] = unpackTensorLevel(tidLvls.front()); // Finds out the tensor level that we should use to generate loops. Amongs all // the tensor levels, there is at most one sparse tensor level. for (auto [t, l] : unpackTensorLevelRange(tidLvls)) { assert(lvlTypes[t].size() > l); // Must be a valid tid, dim pair assert(!coords[t][l] || // We cannot re-enter the same level !dependentLvlMap[t][l].empty()); // unless it is a slice-driver loop auto lvlType = lvlTypes[t][l]; // Must be a recognizable DLT. assert(isDenseDLT(lvlType) || isCompressedDLT(lvlType) || isCompressedWithHiDLT(lvlType) || isSingletonDLT(lvlType)); // This is a slice-driven loop on sparse level. if (!dependentLvlMap[t][l].empty() && !isDenseDLT(lvlType)) { assert(!isSparseSliceCond && !isSparseCond); isSparseSliceCond = true; tid = t; lvl = l; continue; } bool isSparse = isCompressedDLT(lvlType) || isSingletonDLT(lvlType) || isCompressedWithHiDLT(lvlType); // We can at most have one sparse input, otherwise, a while loop is // required to co-iterate multiple sparse tensors. assert(!isSparseCond || !isSparse); assert(!isSparseSliceCond || !isSparseCond); if (isSparse) { tid = t; lvl = l; } isSparseCond = isSparseCond || isSparse; } DimLevelType lvlType = lvlTypes[tid][lvl]; // TODO: Dense slice driven loop can be generated using for loop as well. assert(!isSparseSliceCond || !isDenseDLT(lvlType)); bool isDenseSliceCond = isDenseDLT(lvlType) && !dependentLvlMap[tid][lvl].empty(); // if the slice is fully reduced, we can now use TACO-based algorithm to // iterate it. Operation *l = nullptr; // At most one tensor used as condition in for loop; SmallVector condTidLvl; // There might be multiple dense slice driven tensor. SmallVector sliceDrivenInfo; // Generates loops differently depending on whether we need a slice-driven // loop or a simple level traversal loop. if (isSparseSliceCond) { bool fullyReduced = depFullyReduced(tid, lvl); if (!fullyReduced) { l = emitSliceDrivenLoopOverTensorAtLvl(builder, loc, tid, lvl, reduc); } else { // If the slice is fully reduced, we can now use TACO-based algorithm to // iterate it. l = emitWhileLoopOverSliceAtSparseLvl( builder, loc, posits[tid][lvl], highs[tid][lvl], getFinalSliceOnLvl(tid, lvl).offset, sliceSizes[tid][lvl].back(), tid, lvl, reduc); } levelReducedDep[tid][lvl]++; sliceDrivenInfo.emplace_back(tid, lvl, fullyReduced); } else { Value lo = isSparseCond ? posits[tid][lvl] // current offset : loopSeqStack.back().first; // universal index Value hi = highs[tid][lvl]; if (isDenseSliceCond) { bool fullyReduced = depFullyReduced(tid, lvl); Value sliceSz = sliceSizes[tid][lvl][sliceStack[tid].back().depth - 1]; // Adjust for loop hi for dense slice-driven loop. if (fullyReduced) { hi = sliceSz; condTidLvl.push_back(makeTensorLevel(tid, lvl)); } else { hi = SUBI(lvlSizes[tid][lvl], sliceSz); hi = ADDI(hi, C_IDX(1)); } } else { condTidLvl.push_back(makeTensorLevel(tid, lvl)); } l = emitForLoopOverTensorAtLvl(builder, loc, tid, lvl, lo, hi, reduc, isParallel); } Value iv = coords[tid][lvl]; for (auto [t, l] : unpackTensorLevelRange(tidLvls)) { // We only need to handle slice-driven loops on dense level here. // If it is a slice-driven loop on sparse level, it needs a while loop to // insert break statements, and it must have been handled correctly in L692. if (!dependentLvlMap[t][l].empty() && isDenseDLT(lvlTypes[t][l])) { // Pushes sliced levels to build correct LoopInfo. bool fullyReduc = depFullyReduced(t, l); SliceInfo &info = sliceStack[t].back(); if (fullyReduc) { posits[t][l] = genAddress(builder, loc, t, l, ADDI(info.offset, iv)); } else { // Puts sliced dense loop into LoopInfo so that LoopEmitter knows how to // exit it. sliceDrivenInfo.emplace_back(t, l, fullyReduc); // Update the slice information as we enter the new loop. assert(*info.slicedOnLvl == l); info.minCrd = info.offset = iv; info.isNonEmpty = constantI1(builder, loc, true); levelReducedDep[t][l]++; } } } // NOTE: we can also prepare for next dim here in advance // Pushes the loop into stack. loopStack.emplace_back(condTidLvl, sliceDrivenInfo, l, builder.getInsertionBlock(), iv, loopTag); // Emit extra locals. emitExtraLocalsForTensorsAtDenseLvls(builder, loc, tidLvls); return l; } Operation *LoopEmitter::enterFilterLoopOverTensorAtLvl( OpBuilder &builder, Location loc, TensorId tid, Level lvl, AffineExpr affine, MutableArrayRef reduc) { assert(isValidLevel(tid, lvl)); assert(!affine.isa() && !isDenseDLT(lvlTypes[tid][lvl])); // We can not re-enter the same level. assert(!coords[tid][lvl]); // TODO: We should instead use a whileOp for filter loop to allow early // break when exceeding (for ordered levels). // TODO: There are many other potiential opportunities that we might apply in // the future. E.g., we could use binary search to locate positions. const Value step = C_IDX(1); const Value pLo = posits[tid][lvl]; const Value pHi = highs[tid][lvl]; scf::ForOp forOp = builder.create(loc, pLo, pHi, step, reduc); // In-place update on the reduction variable vector. assert(forOp.getNumRegionIterArgs() == reduc.size()); for (int i = 0, e = reduc.size(); i < e; i++) reduc[i] = forOp.getRegionIterArg(i); builder.setInsertionPointToStart(forOp.getBody()); // The induction variable gives the position. const Value pos = forOp.getInductionVar(); posits[tid][lvl] = pos; // Generating a load on the coordinates array yields the crd. const Value mem = coordinatesBuffers[tid][lvl]; const Value crd = genIndexLoad(builder, loc, mem, pos); coords[tid][lvl] = crd; // Generate an if-condition to filter out coordinates that are not // equal to the result of the affine expression. Value expected = genAffine(builder, loc, affine); auto pred = CMPI(eq, crd, expected); SmallVector types; for (Value red : reduc) { types.push_back(red.getType()); } bool hasReduc = !types.empty(); scf::IfOp ifOp = builder.create(loc, types, pred, /*else*/ hasReduc); if (hasReduc) { // scf.for (a) -> v // %s = scf.if (a) -> v // user-generated code. // else // yield a // yield %s YIELD(ifOp.getResults()); builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); // On mismatch. YIELD(reduc); } // Set the insert point to matched branch. builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); // NOTE: we can also prepare for next lvl here in advance // Push the loop into stack loopStack.emplace_back(ArrayRef(makeTensorLevel(tid, lvl)), ArrayRef(), forOp, builder.getInsertionBlock(), coords[tid][lvl], nullptr); return forOp; } void LoopEmitter::genDenseAffineAddress(OpBuilder &builder, Location loc, TensorLevel tidLvl, AffineExpr lvlExpr) { auto [tid, lvl] = unpackTensorLevel(tidLvl); assert(isDenseDLT(lvlTypes[tid][lvl])); // For dense levels, the level-coordinate also serves as the position. Value lvlCrd = genAffine(builder, loc, lvlExpr); posits[tid][lvl] = genAddress(builder, loc, tid, lvl, lvlCrd); } Operation *LoopEmitter::enterCoIterationOverTensorsAtLvls( OpBuilder &builder, Location loc, ArrayRef tidLvls, bool needsUniv, MutableArrayRef reduc) { // NOTE: the slice driven tensor-related reduction variable must // appear before normal tensors. SmallVector types; SmallVector operands; // Construct the while-loop with a parameter for each coordinate. const Type indexType = builder.getIndexType(); for (auto [tid, lvl] : unpackTensorLevelRange(tidLvls)) { // TODO: support coiteration with slice driven tensors. const auto lvlTp = lvlTypes[tid][lvl]; assert(dependentLvlMap[tid][lvl].empty() && "TODO: not yet implemented"); if (isCompressedDLT(lvlTp) || isSingletonDLT(lvlTp) || isCompressedWithHiDLT(lvlTp)) { const auto reassoc = getCollapseReassociation(tid, lvl); for (unsigned i = 0, e = reassoc.size() - 1; i < e; i++) { if (!isUniqueDLT(lvlTypes[tid][reassoc[i]])) { // This is the segment high for each non-unique levels. types.push_back(indexType); operands.push_back(C_IDX(0)); } } const auto pos = posits[tid][reassoc.front()]; assert(pos); types.push_back(indexType); operands.push_back(pos); } } // The position where user-supplied reduction variable starts. for (Value rec : reduc) { types.push_back(rec.getType()); operands.push_back(rec); } if (needsUniv) { types.push_back(indexType); // Update universal index. operands.push_back(loopSeqStack.back().first); } assert(types.size() == operands.size()); scf::WhileOp whileOp = builder.create(loc, types, operands); SmallVector locs(types.size(), loc); Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs); Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs); // Build the "before" region, which effectively consists // of a conjunction of "i < upper" tests on all induction. builder.setInsertionPointToStart(&whileOp.getBefore().front()); Value cond; unsigned o = 0; for (auto [t, lvl] : unpackTensorLevelRange(tidLvls)) { const TensorId tid = t; // Why `t` can not be captured by lambda? const auto lvlTp = lvlTypes[tid][lvl]; if (isCompressedDLT(lvlTp) || isSingletonDLT(lvlTp) || isCompressedWithHiDLT(lvlTp)) { const auto reassoc = getCollapseReassociation(tid, lvl); assert(reassoc.size() == 1 || isUniqueCOOType(tensors[tid].getType())); for (unsigned i = 0, e = reassoc.size() - 1; i < e; i++) { if (!isUniqueDLT(lvlTypes[tid][reassoc[i]])) { // Links the SSA chain for segHi. segHi[tid][reassoc[i]] = after->getArgument(o++); } } Value op1 = before->getArgument(o); // We used the first level bound as the bound the collapsed set of levels. Value op2 = highs[tid][reassoc.front()]; Value opc = CMPI(ult, op1, op2); cond = cond ? ANDI(cond, opc) : opc; // Update positions Value pos = after->getArgument(o++); // For COO, the position is the same across consecutive levels. /// FIXME: See the [CLARIFY_POSITS_LVL] note in the header. llvm::for_each(reassoc, [this, tid, pos](Level srcLvl) { posits[tid][srcLvl] = pos; }); } } builder.create(loc, cond, before->getArguments()); // Generates while body. builder.setInsertionPointToStart(&whileOp.getAfter().front()); SmallVector> slicesPreds; unsigned i = 0; for (auto [tid, lvl] : unpackTensorLevelRange(tidLvls)) { // Prepares for next level. const auto lvlTp = lvlTypes[tid][lvl]; if (isCompressedDLT(lvlTp) || isSingletonDLT(lvlTp) || isCompressedWithHiDLT(lvlTp)) { coords[tid][lvl] = genSparseCrd(builder, loc, tid, lvl); if (isSparseSlices[tid]) { auto [trans, pred] = genSliceLegitPredicate(builder, loc, coords[tid][lvl], tid, lvl); slicesPreds.emplace_back(pred, i); // Updates to the relative coordinate to the slice. coords[tid][lvl] = trans; } i++; } } if (!slicesPreds.empty()) { // Skips invalid loop iteration when slice coordinate is inapplicable. SmallVector yields(after->getArguments()); // Generates a list of if statments // pos = in_slice ? pos : pos + 1 // TODO: instead of always picking pos + 1, we should set pos = high to // break to loop if the coordinates are larger than the slice size. // // This "idx" is the index into `llvm::zip(tids, lvls)` for (auto [pred, idx] : slicesPreds) { Value nextPos = ADDI(yields[idx], C_IDX(1)); yields[idx] = SELECT(pred, yields[idx], nextPos); } Value pred = slicesPreds.front().first; for (int i = 1, e = slicesPreds.size(); i < e; i++) { pred = ANDI(pred, slicesPreds[i].first); } auto ifOp = builder.create(loc, types, pred, /*else*/ true); ifOp->setAttr(getLoopEmitterLoopAttrName(), StringAttr::get(builder.getContext(), "slice")); YIELD(ifOp->getResults()); assert(types.size() == yields.size()); // If not all slices are legit builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); YIELD(yields); // If all slices are legit, start the user generated code. builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); } Value min; // Finds the minimum coordinate if (!needsUniv) { for (auto [tid, lvl] : unpackTensorLevelRange(tidLvls)) { const auto lvlTp = lvlTypes[tid][lvl]; if (isCompressedDLT(lvlTp) || isSingletonDLT(lvlTp) || isCompressedWithHiDLT(lvlTp)) { const auto crd = coords[tid][lvl]; if (min) { Value cmp = CMPI(ult, coords[tid][lvl], min); min = SELECT(cmp, coords[tid][lvl], min); } else { min = crd; } } } } else { assert(!min); // Otherwise, universal index is the minimal pos. min = after->getArguments().back(); } // Sets up the loop stack. loopStack.emplace_back(tidLvls, ArrayRef(), whileOp, builder.getInsertionBlock(), min, loopTag); assert(loopStack.size() == loopSeqStack.size()); for (auto [tid, dstLvl] : unpackTensorLevelRange(tidLvls)) { const auto reassoc = getCollapseReassociation(tid, dstLvl); assert(reassoc.size() == 1 || isUniqueCOOType(tensors[tid].getType())); // TODO: Refactors this into smaller functions. // NOTE: For all the collapsed level (except for the last one, that is why // the loop ends with `reassoc.size() - 1`), as each iteration is advanced // by the segment size of the last level, which does not always invalidate // the segment size for the previous levels, thus we need to propagate the // segment sizes across loop iterations and only forward if needed. // // E.g., for a COO tensor with the following coordinates array. // (0, 0, 1), // (0, 0, 2), // (1, 1, 1), // segHi[lvl=0] = segHi[lvl=1] = 2 // segHi[lvl=2] = 1, // the first iteration does not invalidate segHi[0] and segHi[1] for (unsigned i = 0, e = reassoc.size() - 1; i < e; i++) { const Level srcLvl = reassoc[i]; if (!isUniqueDLT(lvlTypes[tid][srcLvl])) { const Value pos = posits[tid][srcLvl]; const auto oldSegHi = segHi[tid][srcLvl]; assert(oldSegHi); Value newSegHi = builder.create( loc, arith::CmpIPredicate::uge, pos, oldSegHi); auto ifNewSegHi = builder.create(loc, builder.getIndexType(), newSegHi, true); { OpBuilder::InsertionGuard guard(builder); builder.setInsertionPointToStart(ifNewSegHi.thenBlock()); YIELD(genSegmentHigh(builder, loc, tid, srcLvl, pos, highs[tid][srcLvl])); // Else, resues the same segment high. builder.setInsertionPointToStart(ifNewSegHi.elseBlock()); YIELD(oldSegHi); } highs[tid][srcLvl + 1] = segHi[tid][srcLvl] = ifNewSegHi.getResult(0); } }; const auto srcLvl = reassoc.back(); if (!isUniqueDLT(lvlTypes[tid][srcLvl])) { segHi[tid][srcLvl] = genSegmentHigh( builder, loc, tid, srcLvl, posits[tid][srcLvl], highs[tid][srcLvl]); } } // Emits extra locals emitExtraLocalsForTensorsAtDenseLvls(builder, loc, tidLvls); // Updates reduction variables assert(after->getNumArguments() == o + reduc.size() + (needsUniv ? 1 : 0)); // In-place update on reduction variable. for (unsigned i = 0, e = reduc.size(); i < e; i++) reduc[i] = after->getArgument(o + i); return whileOp; } void LoopEmitter::prepareLoopOverTensorAtLvl(OpBuilder &builder, Location loc, TensorId tid, Level dstLvl) { assert(isValidLevel(tid, dstLvl)); const auto lvlTp = lvlTypes[tid][dstLvl]; if (isDenseDLT(lvlTp)) return; const Value c0 = C_IDX(0); const Value c1 = C_IDX(1); for (const Level srcLvl : getCollapseReassociation(tid, dstLvl)) { // Either the first level, or the previous level has been set. /// FIXME: See the [CLARIFY_POSITS_LVL] note in the header. assert(srcLvl == 0 || posits[tid][srcLvl - 1]); if (isDenseDLT(lvlTp)) continue; if (isCompressedDLT(lvlTp) || isCompressedWithHiDLT(lvlTp)) { const Value mem = positionsBuffers[tid][srcLvl]; Value pLo = srcLvl == 0 ? c0 : posits[tid][srcLvl - 1]; if (isCompressedWithHiDLT(lvlTp)) pLo = builder.create(loc, pLo, C_IDX(2)); posits[tid][srcLvl] = genIndexLoad(builder, loc, mem, pLo); const Value pHi = ADDI(pLo, c1); highs[tid][srcLvl] = genIndexLoad(builder, loc, mem, pHi); return; } if (isSingletonDLT(lvlTp)) { const Value pLo = srcLvl == 0 ? c0 : posits[tid][srcLvl - 1]; posits[tid][srcLvl] = pLo; // If we are coiterating non-unique levels, then use pHi=segHi; // otherwise use pHi=pLo+1. // NOTE: Just because the level is non-unique, that does not // guarantee that segHi is defined: because we only generate segHi // whenever coiterating, in order to improve code quality for the // non-coiterating cases. const auto parentSegHi = segHi[tid][srcLvl - 1]; highs[tid][srcLvl] = (!isUniqueDLT(lvlTypes[tid][srcLvl - 1]) && parentSegHi) ? parentSegHi : ADDI(pLo, c1); return; } } llvm_unreachable("Unrecognized level-type!"); } void LoopEmitter::emitExtraLocalsForTensorsAtDenseLvls( OpBuilder &builder, Location loc, ArrayRef tidLvls) { // Initialize dense positions. Note that we generate dense coordinates of the // output tensor unconditionally, since they may not appear in the lattice, // but may be needed for linearized codegen. for (auto [tid, lvl] : unpackTensorLevelRange(tidLvls)) { if (isDenseDLT(lvlTypes[tid][lvl])) { // Slice-driven dense level should have be handled already. if (!dependentLvlMap[tid][lvl].empty()) continue; auto enc = getSparseTensorEncoding(tensors[tid].getType()); if (enc && !isSparseOutput(tid)) { bool validPos = lvl == 0 || posits[tid][lvl - 1]; if (!validPos) { // We might not find the pos for the sparse output tensor as it is // unconditionally required by the sparsification. assert(isOutputTensor(tid)); continue; } posits[tid][lvl] = genAddress(builder, loc, tid, lvl, loopStack.back().iv); // NOTE: we can also prepare for next lvl here in advance } } } } void LoopEmitter::exitForLoop(RewriterBase &rewriter, Location loc, MutableArrayRef reduc) { const LoopInfo &loopInfo = loopStack.back(); rewriter.setInsertionPointToEnd(loopInfo.userCodeBlock); for (auto [tid, lvl, reduced] : loopInfo.sliceDrivenInfo) { SliceInfo &info = sliceStack[tid].back(); assert(isDenseDLT(lvlTypes[tid][lvl])); assert(*info.slicedOnLvl == lvl && !reduced); (void)reduced; // Resets slices pointers as the resolved slices are invalidated after we // moves forward to the next slice. invalidateSliceIterIdx(rewriter, loc, tid, lvl); info.minCrd = info.offset = info.isNonEmpty = Value(); levelReducedDep[tid][lvl]--; } if (auto forOp = llvm::dyn_cast(loopInfo.loop)) { if (!reduc.empty()) { assert(reduc.size() == forOp.getNumResults()); rewriter.create(loc, reduc); } // Exit the loop. rewriter.setInsertionPointAfter(forOp); // In-place update reduction variables. for (unsigned i = 0, e = forOp.getResults().size(); i < e; i++) reduc[i] = forOp.getResult(i); } else { auto parOp = llvm::cast(loopInfo.loop); if (!reduc.empty()) { assert(reduc.size() == parOp.getInitVals().size() && reduc.size() == 1); Operation *redExp = reduc.front().getDefiningOp(); // Reduction expression should have no use. assert(redExp->getUses().empty()); // This must be a binary operation. // NOTE: This is users' responsibilty to ensure the operation are // commutative. assert(redExp->getNumOperands() == 2 && redExp->getNumResults() == 1); Value redVal = parOp.getInitVals().front(); Value curVal; if (redExp->getOperand(0) == redVal) curVal = redExp->getOperand(1); else if (redExp->getOperand(1) == redVal) curVal = redExp->getOperand(0); // One of the operands must be the init value (which is also the // previous reduction value). assert(curVal); #ifndef NDEBUG // The reduction expression should be the only user of the reduction val // inside the parallel for. unsigned numUsers = 0; for (Operation *op : redVal.getUsers()) { if (op->getParentOp() == parOp) numUsers++; } assert(numUsers == 1); #endif // NDEBUG rewriter.setInsertionPointAfter(redExp); auto redOp = rewriter.create(loc, curVal); // Attach to the reduction op. Block *redBlock = &redOp.getRegion().getBlocks().front(); rewriter.setInsertionPointToEnd(redBlock); Operation *newRed = rewriter.clone(*redExp); // Replaces arguments of the reduction expression by using the block // arguments from scf.reduce. rewriter.updateRootInPlace( newRed, [&]() { newRed->setOperands(redBlock->getArguments()); }); // Erases the out-dated reduction expression. rewriter.eraseOp(redExp); rewriter.setInsertionPointToEnd(redBlock); rewriter.create(loc, newRed->getResult(0)); } rewriter.setInsertionPointAfter(parOp); // In-place update reduction variables. for (unsigned i = 0, e = parOp.getResults().size(); i < e; i++) reduc[i] = parOp.getResult(i); } // Finished iterating a tensor, clean up // We only do the clean up on for loop as while loops do not necessarily // finish the iteration on a sparse tensor for (auto [tid, lvl] : unpackTensorLevelRange(loopInfo.tidLvls)) { // Reset to null. coords[tid][lvl] = Value(); posits[tid][lvl] = Value(); // Dense level, high is fixed. if (!isDenseDLT(lvlTypes[tid][lvl])) highs[tid][lvl] = Value(); } } void LoopEmitter::exitWhileLoop(OpBuilder &builder, Location loc, MutableArrayRef reduc) { const LoopInfo &loopInfo = loopStack.back(); auto whileOp = llvm::cast(loopInfo.loop); builder.setInsertionPointToEnd(loopInfo.userCodeBlock); Value iv = loopInfo.iv; // Finalize the induction. Note that the induction could be performed // in the individual if-branches to avoid re-evaluating the conditions. // However, that would result in a rather elaborate forest of yield // instructions during code generation. Moreover, performing the induction // after the if-statements more closely resembles code generated by TACO. unsigned o = 0; SmallVector operands; unsigned delta = 0; for (auto [tid, lvl, resolved] : loopInfo.sliceDrivenInfo) { // TODO: handle dense. assert(isCompressedDLT(lvlTypes[tid][lvl])); levelReducedDep[tid][lvl]--; if (!resolved) { genSliceNextInduction(builder, loc, whileOp, tid, lvl, operands, o); continue; } // TODO: We need to distinguish coiterate loop with slice-driven loop and // fully reduced while op for iterating one slices. // FIXME: since we didn't implement coiteration, this must be iteration // just on fully resolved slice. assert(loopInfo.sliceDrivenInfo.size() == 1 && loopInfo.tidLvls.empty()); // The if guard to filter out out-range coordinates. assert(llvm::isa(builder.getInsertionBlock()->getParentOp())); posits[tid][lvl] = whileOp->getResult(o++); // FIXME: we are not using continue here since we do not support // coiteration on slices. But it need to be treated similarly as the // universal index. o++; // skip continue flag. // Since we did not push two results from whileOp. The size of the // operands vector is smaller than the actual number of return values from // the whileOp. // It is because we are actually generating yield in the IfOp inside the // whileOp to only iterates over inbound coordinates within the slices. delta += 2; }; Value one = C_IDX(1); for (auto [tid, dstLvl] : unpackTensorLevelRange(loopInfo.tidLvls)) { const auto lvlTp = lvlTypes[tid][dstLvl]; if (isCompressedDLT(lvlTp) || isSingletonDLT(lvlTp) || isCompressedWithHiDLT(lvlTp)) { const auto reassoc = getCollapseReassociation(tid, dstLvl); assert(reassoc.size() == 1 || isUniqueCOOType(tensors[tid].getType())); for (unsigned i = 0, e = reassoc.size() - 1; i < e; i++) { const Level srcLvl = reassoc[i]; if (!isUniqueDLT(lvlTypes[tid][srcLvl])) { operands.push_back(segHi[tid][srcLvl]); o++; } } const Value crd = coords[tid][dstLvl]; const Value pos = posits[tid][dstLvl]; Value cmp = CMPI(eq, crd, iv); // If the loop contains a coiteration with non-unique level, we fast // forward all the duplicated coords by setting the position to the // segment high. Value add = !isUniqueDLT(lvlTypes[tid][reassoc.back()]) ? segHi[tid][reassoc.back()] : ADDI(pos, one); operands.push_back(SELECT(cmp, add, pos)); // Following loops continue iteration from the break point of the // current while loop. const Value newPos = whileOp->getResult(o++); // We need to define a new local variable for `tid` to avoid // warnings about "captured structured bindings are a C++20 extension". // FIXME(wrengr): define a helper function to capture this idiom! const TensorId newTid = tid; llvm::for_each(reassoc, [this, newTid, newPos](Level srcLvl) { posits[newTid][srcLvl] = newPos; }); // The coordinate is invalid now. coords[tid][dstLvl] = nullptr; // The segment high is invalid now. segHi[tid][dstLvl] = nullptr; // highs remains unchanged. } } // Reduction value from users. for (auto &i : reduc) { operands.push_back(i); // In place update reduction variable. i = whileOp->getResult(o++); } // An (optional) universal index. if (operands.size() + delta < whileOp.getNumResults()) { assert(operands.size() + delta + 1 == whileOp.getNumResults()); // The last one is the universial index. operands.push_back(ADDI(iv, one)); // update the loop starting point of current loop sequence loopSeqStack.back().first = whileOp->getResult(o++); } assert(o == operands.size() + delta); YIELD(operands); builder.setInsertionPointAfter(whileOp); } void LoopEmitter::exitCurrentLoop(RewriterBase &rewriter, Location loc, MutableArrayRef reduc) { // Clean up the values, it would help use to discover potential bug at a // earlier stage (instead of silently using a wrong value). const LoopInfo &loopInfo = loopStack.back(); SmallVector red; if (llvm::isa(loopInfo.loop)) { exitWhileLoop(rewriter, loc, reduc); } else { exitForLoop(rewriter, loc, reduc); } assert(loopStack.size() == loopSeqStack.size()); loopStack.pop_back(); } //===----------------------------------------------------------------------===// // Slice-driven loop related methods. //===----------------------------------------------------------------------===// unsigned LoopEmitter::remDepOnLevel(TensorId tid, Level lvl) const { unsigned totalDependencies = dependentLvlMap[tid][lvl].size(); if (totalDependencies != 0) { assert(totalDependencies >= 2); return totalDependencies - levelReducedDep[tid][lvl]; } return totalDependencies; } const LoopEmitter::SliceInfo &LoopEmitter::getMostRecentSliceOnLvl(TensorId tid, Level lvl) { // Finds the most-recent slice using a reverse iteration. for (auto it = sliceStack[tid].rbegin(), ie = sliceStack[tid].rend(); it < ie; it++) { if (it->slicedOnLvl == lvl) { // the level matched return *it; } } llvm_unreachable("Failed to find sliceInfo"); } // Generates a while loop to iterate over a slice sparse level as follows. // // while(loopLo < loopHi) { // if (coords[loopLo] < offset + size) { // body_builder // } else { // break; // } // loopLo ++; // } std::pair LoopEmitter::genSliceLvlTraverseLoop( OpBuilder &builder, Location loc, Value loopLo, Value loopHi, Value offset, Value size, TensorId tid, Level lvl, ValueRange userReduc, bool genYield, LoopBodyBuilder bodyBuilder) { Value c1 = C_IDX(1); Value sliceHi = ADDI(offset, sliceSizes[tid][lvl].back()); SmallVector reduc = { loopLo, // loop lower bounds constantI1(builder, loc, true), // continue }; // Append user required reduction value. reduc.append(userReduc.begin(), userReduc.end()); scf::WhileOp whileOp = builder.create( loc, ValueRange(reduc).getTypes(), reduc, /*beforeBuilder=*/ [loopHi](OpBuilder &builder, Location loc, ValueRange args) { Value lo = args[0]; Value cont = args[1]; Value inBound = CMPI(ult, lo, loopHi); Value cond = ANDI(cont, inBound); // continue if not yet break nor out of bound. builder.create(loc, cond, args); }, /*afterBuilder=*/ [this, c1, tid, lvl, sliceHi, genYield, bodyBuilder](OpBuilder &builder, Location loc, ValueRange args) { Value iv = args[0]; Value coord = genIndexLoad(builder, loc, coordinatesBuffers[tid][lvl], iv); Value cont = CMPI(ult, coord, sliceHi); TypeRange types = args.drop_front(2).getTypes(); auto ifOp = builder.create(loc, types, cont, true); { // 2 reduction variable maintained by us. SmallVector ifRet = args.drop_front(2); assert(ifRet.size() == args.size() - 2); OpBuilder::InsertionGuard guard(builder); // If coord >= sliceHi. builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); YIELD(ifRet); // If coord < sliceHi. builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); // Delegates to users' callback. bodyBuilder(builder, loc, iv, ifRet); if (genYield) { builder.setInsertionPointToEnd(&ifOp.getThenRegion().front()); YIELD(ifRet); } } // Marks this speical ifOp to avoid sparisification finalizing it. ifOp->setAttr(getLoopEmitterLoopAttrName(), StringAttr::get(builder.getContext(), "slice")); // Insertion point restored to after ifOp. SmallVector yields; // Increase induction variable. yields.push_back(ADDI(iv, c1)); yields.push_back(cont); yields.append(ifOp.getResults().begin(), ifOp.getResults().end()); YIELD(yields); }); builder.setInsertionPointAfter(whileOp); return std::make_pair(whileOp, whileOp.getResults().drop_front(2)); } // Generates a loop nest that traverse all the unresolved levels in between. // TODO: it can only handle all compressed tensors. // // for(int i = 0; i < slicePos.size(); i+=2) { // loopLo = slicePos[i]; // loopHi = slicePos[i + 1]; // // // Then the same loop generated by genSliceLvlTraverse above. // while (loopLo < loopHI) { // if (pos[loopLo] < sliceHi) { // bodyBuilder(); // } else { // break; // } // loopLo ++; // } // } ValueRange LoopEmitter::genUnResolvedSliceTreeTraverse( OpBuilder &builder, Location loc, TensorId tid, ArrayRef unResLvls, std::optional> firstResLvl, ValueRange userReduc, LoopBodyBuilder bodyBuilder) { Value c0 = C_IDX(0), c1 = C_IDX(1), c2 = C_IDX(2); Value pos = c0; OpBuilder::InsertPoint ip; SmallVector innerArgs(userReduc.begin(), userReduc.end()); scf::ForOp outerMost = nullptr; // the outtermost loop. if (firstResLvl.has_value()) { // Overwrite position when the first level is fully resolved. pos = posits[firstResLvl->first][firstResLvl->second]; ip = builder.saveInsertionPoint(); } else { const SliceInfo &frontSlice = *unResLvls.back(); Level firstLvl = *frontSlice.slicedOnLvl; if (!lvlFullyResolved(tid, firstLvl)) { if (isCompressedDLT(lvlTypes[tid][firstLvl])) { unsigned depth = frontSlice.depth - 1; Value offset = frontSlice.offset; Value sPtrBuf = slicePosBuffer[tid][firstLvl][depth]; Value mSz = genIndexLoad(builder, loc, sPtrBuf, c0); // memSize outerMost = builder.create( loc, c2, mSz, c2, innerArgs, [this, c1, tid, firstLvl, offset, sPtrBuf, &ip, &pos, &innerArgs](OpBuilder &builder, Location loc, Value iv, ValueRange iterArgs) { // generate traversal for each level. Value loopLo = genIndexLoad(builder, loc, sPtrBuf, iv); Value loopHi = genIndexLoad(builder, loc, sPtrBuf, ADDI(iv, c1)); ValueRange itArgs = genSliceLvlTraverseLoop( builder, loc, loopLo, loopHi, offset, sliceSizes[tid][firstLvl].back(), tid, firstLvl, iterArgs, false, [&](OpBuilder &builder, Location, Value iv, MutableArrayRef reduc) { ip = builder.saveInsertionPoint(); pos = iv; innerArgs.assign(reduc.begin(), reduc.end()); }) .second; YIELD(itArgs); }); } else if (isDenseDLT(lvlTypes[tid][firstLvl])) { assert(firstLvl == 0); // This must be the first level. Value lb = frontSlice.offset; Value sliceSz = sliceSizes[tid][*frontSlice.slicedOnLvl][frontSlice.depth - 1]; Value ub = ADDI(lb, sliceSz); outerMost = builder.create( loc, lb, ub, c1, innerArgs, [&](OpBuilder &builder, Location loc, Value iv, ValueRange iterArgs) { ip = builder.saveInsertionPoint(); pos = iv; innerArgs.assign(iterArgs.begin(), iterArgs.end()); }); } // We generated the loop for the first slice above, now remove it. unResLvls = unResLvls.drop_back(); } } // Reset the insertion point into the loop body. builder.restoreInsertionPoint(ip); if (!unResLvls.empty()) { // Fills in dense slices levels in between. SmallVector lbs, ubs, steps, lvlSzs; for (const SliceInfo *slice : llvm::reverse(unResLvls)) { Level sliceLvl = *slice->slicedOnLvl; assert(isDenseDLT(lvlTypes[tid][sliceLvl])); Value offset = slice->offset; Value sliceSz = sliceSizes[tid][sliceLvl][slice->depth - 1]; lbs.push_back(offset); ubs.push_back(ADDI(offset, sliceSz)); steps.push_back(c1); lvlSzs.push_back(lvlSizes[tid][sliceLvl]); } auto denseNest = scf::buildLoopNest(builder, loc, lbs, ubs, steps, innerArgs, [&innerArgs, &lvlSzs, &pos, bodyBuilder]( OpBuilder &builder, Location loc, ValueRange ivs, ValueRange iterArgs) -> scf::ValueVector { for (auto em : llvm::enumerate(ivs)) { // Linearizes postion: pos = (pos * lvlsize) + // iv; pos = MULI(pos, lvlSzs[em.index()]); pos = ADDI(pos, em.value()); } innerArgs.assign(iterArgs.begin(), iterArgs.end()); // Generates user request loop body. bodyBuilder(builder, loc, pos, innerArgs); return innerArgs; }); if (!outerMost) { // If the outermost loop has not been set, this is the outermost loop. outerMost = denseNest.loops.front(); } else { // Otherwise we need to generate yield operations to link the SSA chain. YIELD(denseNest.results); } } else { assert(outerMost); // Generates user request loop body. bodyBuilder(builder, loc, pos, innerArgs); YIELD(innerArgs); } assert(outerMost); // Insert after current while operation. builder.setInsertionPointAfter(outerMost); return outerMost.getResults(); } void LoopEmitter::genResolvedSliceBegin(OpBuilder &builder, Location loc, TensorId tid, Level lvl) { Value c0 = C_IDX(0), c1 = C_IDX(1), c2 = C_IDX(2), c3 = C_IDX(3), c4 = C_IDX(4); if (isDenseDLT(lvlTypes[tid][lvl])) { // Dense slice begin is trivial. sliceStack[tid].emplace_back(/*minCoord=*/c0, /*offset=*/c0, /*nonEmpty=*/constantI1(builder, loc, true), lvl, /*depth=*/1); return; } Value size = sliceSizes[tid][lvl][0]; Value sPtrBuf = slicePosBuffer[tid][lvl][0]; Value pHi, pLo; if (lvl == 0) { pLo = c0; pHi = genIndexLoad(builder, loc, positionsBuffers[tid][0], c1); } else { pLo = genIndexLoad(builder, loc, positionsBuffers[tid][lvl], posits[tid][lvl - 1]); pHi = genIndexLoad(builder, loc, positionsBuffers[tid][lvl], ADDI(posits[tid][lvl - 1], c1)); } // Fills out pIdxBuffer[tid][lvl][0] with [/*memSize =*/4, 0, 0, pHi] builder.create(loc, c4, sPtrBuf, c0); // memSize = 4 builder.create(loc, c0, sPtrBuf, c1); // index = 0 builder.create(loc, pLo, sPtrBuf, c2); // pLo builder.create(loc, pHi, sPtrBuf, c3); // pHi // This is an non empty tensor if 0 < pHi. Value isNonEmpty = CMPI(ult, c0, pHi); // The minimal coord must be at the first on ordered level. // FIXME: Technically we should load the coord only when the slice is // nonempty. though we assume that even on empty sparse tensors, a non-empty // ptr/idx buffer is allocated for each level so it would not cause OOB to // avoid generating a ifOp here. Value minCrd = genIndexLoad(builder, loc, coordinatesBuffers[tid][0], c0); // FIXME: We need the relative offset related to the base slice. Value absOffset = offsetFromMinCoord(builder, loc, minCrd, size, isNonEmpty); sliceStack[tid].emplace_back(minCrd, absOffset, isNonEmpty, lvl, /*depth=*/1); } // Fills in the slicePosBuffer before slice-driven loop begin. // TODO: it can only handle all compressed tensors. // // // Loop generated by `genUnResolvedSliceTreeTraverse` // for(int i = 0; i < slicePos.size(); i+=2) { // loopLo = slicePos[i]; // loopHi = slicePos[i + 1]; // minCrd = max; // while (loopLo < loopHi) { // if (pos[loopLo] < sliceHi) { // // bodyBuilder // slicePos[tid].push_back(pos[loopLo]); // slicePos[tid].push_back(pos[loopLo + 1]); // minCrd = min(minCrd, crd[pos[loopLo]]); // } else { // break; // } // loopLo ++; // } // } void LoopEmitter::genUnResolvedSliceBegin(OpBuilder &builder, Location loc, TensorId tid, Level lvl) { Value c0 = C_IDX(0), c1 = C_IDX(1), c2 = C_IDX(2); unsigned depth = levelReducedDep[tid][lvl]; Value size = sliceSizes[tid][lvl][depth]; // Dense slice begin is trivial if (isDenseDLT(lvlTypes[tid][lvl])) { sliceStack[tid].emplace_back(c0, c0, constantI1(builder, loc, false), lvl, depth + 1); return; } assert(isCompressedDLT(lvlTypes[tid][lvl])); // Unhandled Cases: // // 1st, lvl = prevSlicedLvl, i.e., t[d0 + d1 + d2,...] (more than one // variable need to be reduced on the same level). // // 2nd, lvl > prevSliceLvl + 1, i.e., t[..., d2, d3 + d4] (having a // simple dim expression in between). assert(lvl == *sliceStack[tid].back().slicedOnLvl + 1); // Check slice stack integrity. assert(slicePosBuffer[tid][lvl - 1].size() == sliceStack[tid].back().depth); SmallVector unResSlices; std::optional> firstResLvl; for (Level curLvl = lvl; curLvl >= 1; curLvl--) { Level prevLvl = curLvl - 1; if (lvlFullyResolved(tid, prevLvl)) { firstResLvl = std::make_pair(tid, prevLvl); break; } unResSlices.push_back(&getMostRecentSliceOnLvl(tid, prevLvl)); if (!isDenseDLT(lvlTypes[tid][prevLvl])) { break; } } assert(!unResSlices.empty() && !lvlFullyResolved(tid, *unResSlices.front()->slicedOnLvl)); Value sPtrBuf = slicePosBuffer[tid][lvl].back(); SmallVector reduc = { constantI1(builder, loc, false), // isNonEmpty lvlSizes[tid][lvl], // minCoord c2, // memSize }; ValueRange result = genUnResolvedSliceTreeTraverse( builder, loc, tid, unResSlices, firstResLvl, reduc, [this, c1, c2, tid, lvl, sPtrBuf](OpBuilder &builder, Location loc, Value iv, MutableArrayRef reduc) { Value &nonEmpty = reduc[0]; Value &minCrd = reduc[1]; Value &curMemSz = reduc[2]; Value pHi = ADDI(iv, c1); Value sPLo = genIndexLoad(builder, loc, positionsBuffers[tid][lvl], iv); Value sPHi = genIndexLoad(builder, loc, positionsBuffers[tid][lvl], pHi); // isNonEmpty = isNonEmpty || lvlNonEmpty, i.e., as long as there is one // non-empty lvl, the slice is non-empty. Value lvlNonEmpty = CMPI(ult, sPLo, sPHi); nonEmpty = builder.create(loc, lvlNonEmpty, nonEmpty); // Update the minimum coordinate. auto ifNonEmpty = builder.create(loc, builder.getIndexType(), lvlNonEmpty, true); { // Generate Code as follows. // // if (nonEmpty) { // minCrd = min(minCrd, crd[pos[pLo]]); // } OpBuilder::InsertionGuard guard(builder); builder.setInsertionPointToStart(ifNonEmpty.thenBlock()); Value curC = genIndexLoad(builder, loc, coordinatesBuffers[tid][lvl], sPLo); Value isSmaller = CMPI(ult, curC, minCrd); Value newMin = SELECT(isSmaller, curC, minCrd); YIELD(newMin); builder.setInsertionPointToStart(ifNonEmpty.elseBlock()); YIELD(minCrd); } minCrd = ifNonEmpty.getResult(0); builder.create(loc, sPLo, sPtrBuf, curMemSz); Value nxtMemSize = ADDI(curMemSz, c1); builder.create(loc, sPHi, sPtrBuf, nxtMemSize); // curMemSize += 2 curMemSz = ADDI(curMemSz, c2); }); Value isNonEmpty = result[0]; Value minCrd = result[1]; // Two metadata [memSize, idx]. // TODO: Can use an SSA value for these two metadata builder.create(loc, result[2], sPtrBuf, c0); builder.create(loc, c0, sPtrBuf, c1); // FIXME: we need the relative offset related to the base slice. Value absOffset = offsetFromMinCoord(builder, loc, minCrd, size, isNonEmpty); sliceStack[tid].emplace_back(minCrd, absOffset, isNonEmpty, lvl, depth + 1); } bool LoopEmitter::genSliceBegin(OpBuilder &builder, Location loc, TensorId tid, Level lvl) { Value c1 = C_IDX(1), c2 = C_IDX(2); if (depFullyReduced(tid, lvl)) { // Do not need to prepare for slice driven loop on dense level after it is // fully reduced. if (isDenseDLT(lvlTypes[tid][lvl])) return true; // If constraints on the tensor is fully resolved. We do not need to // generates slice begin any more, instead we fall back to TACO-based // algorithm to (co)iterates over the slice. Value pLoPtr = genIndexLoad(builder, loc, slicePosBuffer[tid][lvl].back(), c1); pLoPtr = ADDI(pLoPtr, c2); Value pHiPtr = ADDI(pLoPtr, c1); posits[tid][lvl] = genIndexLoad(builder, loc, slicePosBuffer[tid][lvl].back(), pLoPtr); highs[tid][lvl] = genIndexLoad(builder, loc, slicePosBuffer[tid][lvl].back(), pHiPtr); return true; } // Only when the level is sorted, the next-non-empty slice can be computed // efficiently. const DimLevelType lvlType = lvlTypes[tid][lvl]; assert(isOrderedDLT(lvlType)); if (isSingletonDLT(lvlType)) { llvm_unreachable("TODO: dense level should be easy to support, while " "singleton level requres more efforts"); } assert(!dependentLvlMap[tid][lvl].empty()); assert(!sliceStack[tid].empty()); const SliceInfo &sliceInfo = sliceStack[tid].back(); auto baseEnc = getSparseTensorEncoding(tensors[tid].getType()); if (baseEnc.isSlice()) llvm_unreachable("TODO: not yet implemented"); // Generate caches required to fast compute next-non-empty slices with // increasing offset for slice-base loop. // We do not need cache for dense levels. if (slicePosBuffer[tid][lvl][0] == nullptr && !isDenseDLT(lvlType)) { OpBuilder::InsertionGuard guard(builder); // The buffer can be reused, and the size is loop invariant: it only depends // on the iteration graph's toposort. builder.setInsertionPointAfter(localInsertPos); Value bufSize = C_IDX(1); Value c2 = C_IDX(2); // Accumlates the size required to cache the pLo for the slice. // E.g., if we want to cache the pIdx for slice on the second // level. We at most need to a memref. // NOTE: this is apperantly an over-approximation when the previous // level is compressed, and we can compute a precise memory size // inside the loops. But that would also requires us to allocate/free // memorys in loops. // TODO: Maybe using allocaScopeOp inside the loop to resolve the issue? for (Level curLevel = lvl; curLevel >= 1 && !lvlFullyResolved(tid, curLevel - 1); curLevel--) { auto depth = remDepOnLevel(tid, curLevel - 1); assert(sliceSizes[tid][lvl].size() >= depth); Value sz = *(sliceSizes[tid][lvl].rbegin() + depth - 1); bufSize = MULI(bufSize, sz); } // For a pair of [pLo, pHi]. Note that we can not compress pHi because slice // creates segments in the index buffer so that the pHi for the current // level is no longer the pLo for the next level. bufSize = MULI(bufSize, c2); // Additional two metadata {memSize, idx} at head. bufSize = ADDI(bufSize, c2); llvm::for_each( slicePosBuffer[tid][lvl], [bufSize, loc, &builder](Value &cache) { cache = genAlloca(builder, loc, bufSize, builder.getIndexType()); }); } if (sliceInfo.isInitialTensor() || (lvl >= 1 && lvlFullyResolved(tid, lvl - 1))) { // First level or previous level has been full resolved. genResolvedSliceBegin(builder, loc, tid, lvl); } else { // The previous level has not been full resolved. genUnResolvedSliceBegin(builder, loc, tid, lvl); } return false; } void LoopEmitter::invalidateSliceIterIdx(OpBuilder &builder, Location loc, TensorId tid, Level lvl) { for (unsigned i = 0; i <= lvl; i++) { if (!isDenseDLT(lvlTypes[tid][i]) && !dependentLvlMap[tid][i].empty()) { builder.create(loc, C_IDX(0), slicePosBuffer[tid][i].back(), C_IDX(1)); } } } void LoopEmitter::genSliceNextInduction(OpBuilder &builder, Location loc, const Operation *op, TensorId tid, Level lvl, SmallVectorImpl &operands, unsigned &retIdx) { if (!isCompressedDLT(lvlTypes[tid][lvl])) llvm_unreachable("TODO"); // else generate code to compute next non empty slice. Value c0 = C_IDX(0), c1 = C_IDX(1), c2 = C_IDX(2); auto whileOp = llvm::cast(op); SliceInfo &info = sliceStack[tid].back(); assert(info.slicedOnLvl == lvl); // // We forward to the next non empty slice by // if (minCrd > offset) { // offset += 1 // } else { // minCrd = nextMinInSlice(); // offset = minCrd - size + 1; // } // // if (offset + size > parents.size) // isNonEmpty = false; // Value absOffset = info.offset; // Resets slices pointers as the resolved slices are invalidated after we // moves forward to the next slice. invalidateSliceIterIdx(builder, loc, tid, lvl); SmallVector reduc = {info.minCrd, info.isNonEmpty, absOffset}; Value sPtrBuf = slicePosBuffer[tid][lvl][info.depth - 1]; Value fastPathP = CMPI(ugt, info.minCrd, absOffset); auto ifOp = builder.create(loc, ValueRange(reduc).getTypes(), fastPathP, true); { OpBuilder::InsertionGuard guard(builder); // Take the fast path // if (minCrd > offset) { // return offset += 1 // } builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); reduc[2] = ADDI(absOffset, c1); // Yield offset + 1. YIELD(reduc); // else /*minCrd == offset*/ { // for (i = 0; i < slicePos.size(); i+=2) { // if (crd[pos[slicePos[i]]] == minCrd) { // slicePos[i]++; // } // minCrd=min(minCrd, crd[pos[slicePos[i]]]); // } // offset = minCrd - size + 1; // } builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); reduc[2] = absOffset; // restore value. Value pSt = c2; // pointer starting index Value mSz = genIndexLoad(builder, loc, sPtrBuf, c0); // memSize reduc[0] = lvlSizes[tid][lvl]; // next min coord reduc[1] = constantI1(builder, loc, false); // isNonEmpty auto loopArgs = static_cast(reduc).drop_back(); auto forOp = scf::buildLoopNest( builder, loc, pSt, mSz, c2, loopArgs, [this, tid, lvl, c1, sPtrBuf, &info](OpBuilder &builder, Location loc, ValueRange ivs, ValueRange iterArgs) -> scf::ValueVector { Value curMinCrd = iterArgs[0]; Value isNonEmpty = iterArgs[1]; Type idxTp = builder.getIndexType(); Value pLo = genIndexLoad(builder, loc, sPtrBuf, ivs.front()); Value pHi = genIndexLoad(builder, loc, sPtrBuf, ADDI(ivs.front(), c1)); // // if (pLo < pHi) // Only loads when inbound. // coord = load[pLo] // if coord == minCrd // pLo += 1 // // if (pLo < pHi) // curMinCrd = min(curMinCrd, load[pLo]) // Value pred = CMPI(ult, pLo, pHi); auto advPLo = builder.create(loc, idxTp, pred, true); /* if pLo < pHi */ { builder.setInsertionPointToStart(&advPLo.getThenRegion().front()); // coord = load[pLo] Value coord = genIndexLoad(builder, loc, coordinatesBuffers[tid][lvl], pLo); Value pred = CMPI(eq, coord, info.minCrd); auto ifEqual = builder.create(loc, idxTp, pred, true); /* if coord == minCrd */ { builder.setInsertionPointToStart( &ifEqual.getThenRegion().front()); Value newPlo = ADDI(pLo, c1); // Updates the cache. builder.create(loc, newPlo, sPtrBuf, ivs.front()); YIELD(newPlo); } /* else coord != minCrd */ { builder.setInsertionPointToStart( &ifEqual.getElseRegion().front()); YIELD(pLo); } builder.setInsertionPointAfter(ifEqual); YIELD(ifEqual.getResults()); } /* else pLo >= pHi */ { builder.setInsertionPointToStart(&advPLo.getElseRegion().front()); YIELD(pLo); } builder.setInsertionPointAfter(advPLo); pLo = advPLo.getResult(0); Value lvlNonEmpty = CMPI(ult, pLo, pHi); // Update minCrds auto newMin = builder.create(loc, idxTp, lvlNonEmpty, true); builder.setInsertionPointToStart(&newMin.getThenRegion().front()); YIELD(genIndexLoad(builder, loc, coordinatesBuffers[tid][lvl], pLo)); builder.setInsertionPointToStart(&newMin.getElseRegion().front()); YIELD(curMinCrd); builder.setInsertionPointAfter(newMin); // isNonEmpty = isNonEmpty || lvlNonEmpty isNonEmpty = builder.create(loc, lvlNonEmpty, isNonEmpty); curMinCrd = builder.create( loc, CMPI(ult, newMin.getResult(0), curMinCrd), newMin.getResult(0), curMinCrd); return {curMinCrd, isNonEmpty}; }); builder.setInsertionPointAfter(forOp.loops.front()); // minOffset = minCrd + 1 >= size ? minCrd + 1 - size : c0 Value tmp = ADDI(forOp.results.front(), c1); Value minOffset = SUBI(tmp, sliceSizes[tid][lvl][info.depth - 1]); Value p = CMPI(uge, tmp, sliceSizes[tid][lvl][info.depth - 1]); minOffset = SELECT(p, minOffset, c0); SmallVector yields; yields.assign(forOp.results.begin(), forOp.results.end()); yields.push_back(minOffset); YIELD(yields); } Value nextMinCrd = ifOp.getResults()[0]; Value nextNonEmpty = ifOp.getResults()[1]; // The next offset should at least be offset + 1; Value minOffset = ifOp.getResults()[2]; Value nxOffset = ADDI(info.offset, c1); Value maxPred = CMPI(ugt, minOffset, nxOffset); Value nextAbsOffset = SELECT(maxPred, minOffset, nxOffset); Value sliceUB = ADDI(nextAbsOffset, sliceSizes[tid][lvl][info.depth - 1]); // FIXME: this only works if there is only one parent. assert(info.depth - 1 == 0); // nextNonEmpty = nextNonEmpty && slice upper bound <= parent upperbound. nextNonEmpty = ANDI(nextNonEmpty, CMPI(ule, sliceUB, lvlSizes[tid][lvl])); // FIXME: compute relative offset. assert(info.depth - 1 == 0); Value nextRelOffset = nextAbsOffset; nextRelOffset = SELECT(nextNonEmpty, nextRelOffset, c0); operands.push_back(nextNonEmpty); operands.push_back(nextMinCrd); operands.push_back(nextAbsOffset); // we push the absolute offset. // Update the slice stack. info.isNonEmpty = whileOp.getResult(retIdx++); info.minCrd = whileOp.getResult(retIdx++); info.offset = whileOp.getResult(retIdx++); } Operation *LoopEmitter::emitSliceDrivenLoopOverTensorAtLvl( OpBuilder &builder, Location loc, TensorId tid, Level lvl, MutableArrayRef reduc) { assert(!depFullyReduced(tid, lvl)); SliceInfo &sliceInfo = sliceStack[tid].back(); assert(sliceInfo.slicedOnLvl == lvl); // The order matters! SmallVector operands{sliceInfo.isNonEmpty, sliceInfo.minCrd, sliceInfo.offset}; // number of reduction maintained by us. size_t numMetaReduc = operands.size(); // Append user-required reduction values. operands.append(reduc.begin(), reduc.end()); assert(operands.size() == numMetaReduc + reduc.size()); // while (slice.nonEmpty()) { // bodyBuilder(); // SliceNext(); // } auto whileOp = builder.create( loc, ValueRange(operands).getTypes(), operands, /*beforeBuilder=*/ [](OpBuilder &builder, Location loc, ValueRange args) { builder.create(loc, /*isNonEmpty*/ args[0], args); }, /*afterBuilder=*/ [this, tid, lvl, reduc, numMetaReduc, &sliceInfo](OpBuilder &builder, Location loc, ValueRange args) { assert(args.size() == reduc.size() + numMetaReduc); sliceInfo.isNonEmpty = args[0]; sliceInfo.minCrd = args[1]; sliceInfo.offset = args[2]; // The slice offset is used to coiterate with other tensors' // coordinates. Value c = sliceInfo.offset; if (sliceInfo.depth > 1) { // Coord is the relative offset related to its parents. // Update c = absOffset[lvl][depth] - absOffset[lvl][depth - 1] llvm_unreachable("TODO: not yet implement"); } coords[tid][lvl] = c; for (unsigned i = 0, e = reduc.size(); i < e; i++) reduc[i] = args[i + numMetaReduc]; }); // Set the insertion point to while loop body. builder.setInsertionPointToEnd(&whileOp.getAfter().front()); return whileOp; } #undef CMPI #undef C_IDX #undef YIELD #undef ADDI #undef ANDI #undef SUBI #undef MULI #undef SELECT