//===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" #include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/MemRef/Utils/MemRefUtils.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/Matchers.h" #include using namespace mlir; using namespace mlir::bufferization; //===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===// FailureOr mlir::bufferization::castOrReallocMemRefValue(OpBuilder &b, Value value, MemRefType destType) { auto srcType = llvm::cast(value.getType()); // Element type, rank and memory space must match. if (srcType.getElementType() != destType.getElementType()) return failure(); if (srcType.getMemorySpace() != destType.getMemorySpace()) return failure(); if (srcType.getRank() != destType.getRank()) return failure(); // In case the affine maps are different, we may need to use a copy if we go // from dynamic to static offset or stride (the canonicalization cannot know // at this point that it is really cast compatible). auto isGuaranteedCastCompatible = [](MemRefType source, MemRefType target) { int64_t sourceOffset, targetOffset; SmallVector sourceStrides, targetStrides; if (failed(getStridesAndOffset(source, sourceStrides, sourceOffset)) || failed(getStridesAndOffset(target, targetStrides, targetOffset))) return false; auto dynamicToStatic = [](int64_t a, int64_t b) { return ShapedType::isDynamic(a) && !ShapedType::isDynamic(b); }; if (dynamicToStatic(sourceOffset, targetOffset)) return false; for (auto it : zip(sourceStrides, targetStrides)) if (dynamicToStatic(std::get<0>(it), std::get<1>(it))) return false; return true; }; // Note: If `areCastCompatible`, a cast is valid, but may fail at runtime. To // ensure that we only generate casts that always succeed at runtime, we check // a fix extra conditions in `isGuaranteedCastCompatible`. if (memref::CastOp::areCastCompatible(srcType, destType) && isGuaranteedCastCompatible(srcType, destType)) { Value casted = b.create(value.getLoc(), destType, value); return casted; } auto loc = value.getLoc(); SmallVector dynamicOperands; for (int i = 0; i < destType.getRank(); ++i) { if (destType.getShape()[i] != ShapedType::kDynamic) continue; auto index = b.createOrFold(loc, i); Value size = b.create(loc, value, index); dynamicOperands.push_back(size); } // TODO: Use alloc/memcpy callback from BufferizationOptions if called via // BufferizableOpInterface impl of ToMemrefOp. Value copy = b.create(loc, destType, dynamicOperands); b.create(loc, value, copy); return copy; } /// Try to fold to_memref(to_tensor(x)). If x's type and the result type of the /// to_memref op are different, a memref.cast is needed. LogicalResult mlir::bufferization::foldToMemrefToTensorPair(RewriterBase &rewriter, ToMemrefOp toMemref) { auto memrefToTensor = toMemref.getTensor().getDefiningOp(); if (!memrefToTensor) return failure(); Type srcType = memrefToTensor.getMemref().getType(); Type destType = toMemref.getType(); // Directly rewrite if the type did not change. if (srcType == destType) { rewriter.replaceOp(toMemref, memrefToTensor.getMemref()); return success(); } auto rankedSrcType = llvm::dyn_cast(srcType); auto rankedDestType = llvm::dyn_cast(destType); auto unrankedSrcType = llvm::dyn_cast(srcType); // Ranked memref -> Ranked memref cast. if (rankedSrcType && rankedDestType) { FailureOr replacement = castOrReallocMemRefValue( rewriter, memrefToTensor.getMemref(), rankedDestType); if (failed(replacement)) return failure(); rewriter.replaceOp(toMemref, *replacement); return success(); } // Unranked memref -> Ranked memref cast: May require a copy. // TODO: Not implemented at the moment. if (unrankedSrcType && rankedDestType) return failure(); // Unranked memref -> unranked memref cast // Ranked memref -> unranked memref cast: No copy needed. assert(memref::CastOp::areCastCompatible(srcType, destType) && "expected that types are cast compatible"); rewriter.replaceOpWithNewOp(toMemref, destType, memrefToTensor.getMemref()); return success(); } void mlir::bufferization::populateDynamicDimSizes( OpBuilder &b, Location loc, Value shapedValue, SmallVector &dynamicDims) { auto shapedType = llvm::cast(shapedValue.getType()); for (int64_t i = 0; i < shapedType.getRank(); ++i) { if (shapedType.isDynamicDim(i)) { if (llvm::isa(shapedType)) { dynamicDims.push_back(b.create(loc, shapedValue, i)); } else { assert(llvm::isa(shapedType) && "expected tensor"); dynamicDims.push_back(b.create(loc, shapedValue, i)); } } } } //===----------------------------------------------------------------------===// // AllocTensorOp //===----------------------------------------------------------------------===// LogicalResult AllocTensorOp::bufferize(RewriterBase &rewriter, const BufferizationOptions &options) { OpBuilder::InsertionGuard g(rewriter); Location loc = getLoc(); // Nothing to do for dead AllocTensorOps. if (getOperation()->getUses().empty()) { rewriter.eraseOp(getOperation()); return success(); } // Get "copy" buffer. Value copyBuffer; if (getCopy()) { FailureOr maybeCopyBuffer = getBuffer(rewriter, getCopy(), options); if (failed(maybeCopyBuffer)) return failure(); copyBuffer = *maybeCopyBuffer; } // Create memory allocation. auto allocType = bufferization::getBufferType(getResult(), options); if (failed(allocType)) return failure(); SmallVector dynamicDims = getDynamicSizes(); if (getCopy()) { assert(dynamicDims.empty() && "expected either `copy` or `dynamicDims`"); populateDynamicDimSizes(rewriter, loc, copyBuffer, dynamicDims); } FailureOr alloc = options.createAlloc( rewriter, loc, allocType->cast(), dynamicDims); if (failed(alloc)) return failure(); // Create memory copy (if any). if (getCopy()) { if (failed(options.createMemCpy(rewriter, loc, copyBuffer, *alloc))) return failure(); } // Should the buffer be deallocated? bool dealloc = shouldDeallocateOpResult(llvm::cast(getResult()), options); // Replace op. replaceOpWithBufferizedValues(rewriter, getOperation(), *alloc); // Create buffer deallocation (if requested). if (!dealloc) return success(); rewriter.setInsertionPoint(rewriter.getInsertionBlock()->getTerminator()); if (failed(options.createDealloc(rewriter, loc, *alloc))) return failure(); return success(); } bool AllocTensorOp::resultBufferizesToMemoryWrite(OpResult opResult, const AnalysisState &state) { // AllocTensorOps do not write unless they have a `copy` value. return static_cast(getCopy()); } bool AllocTensorOp::bufferizesToMemoryRead(OpOperand &opOperand, const AnalysisState &state) { assert(opOperand.getOperandNumber() == getNumOperands() - 1 && "expected copy operand"); return true; } bool AllocTensorOp::bufferizesToMemoryWrite(OpOperand &opOperand, const AnalysisState &state) { assert(opOperand.getOperandNumber() == getNumOperands() - 1 && "expected copy operand"); return false; } AliasingOpResultList AllocTensorOp::getAliasingOpResults(OpOperand &opOperand, const AnalysisState &state) { // This is a new allocation. It does not alias with any other buffer. return {}; } FailureOr AllocTensorOp::getBufferType( Value value, const BufferizationOptions &options, const DenseMap &fixedTypes) { assert(value == getResult() && "invalid value"); // Compute memory space of this allocation. Attribute memorySpace; if (getMemorySpace().has_value()) { memorySpace = *getMemorySpace(); } else if (getCopy()) { auto copyBufferType = bufferization::getBufferType(getCopy(), options, fixedTypes); if (failed(copyBufferType)) return failure(); memorySpace = copyBufferType->getMemorySpace(); } else if (options.defaultMemorySpace.has_value()) { memorySpace = *options.defaultMemorySpace; } else { return getOperation()->emitError("could not infer memory space"); } return getMemRefTypeWithStaticIdentityLayout(getType(), memorySpace); } LogicalResult AllocTensorOp::verify() { if (getCopy() && !getDynamicSizes().empty()) return emitError("dynamic sizes not needed when copying a tensor"); if (!getCopy() && getType().getNumDynamicDims() != static_cast(getDynamicSizes().size())) return emitError("expected ") << getType().getNumDynamicDims() << " dynamic sizes"; if (getCopy() && getCopy().getType() != getType()) return emitError("expected that `copy` and return type match"); // For sparse tensor allocation, we require that none of its // uses escapes the function boundary directly. if (sparse_tensor::getSparseTensorEncoding(getType())) { for (auto &use : getOperation()->getUses()) if (isa( use.getOwner())) return emitError("sparse tensor allocation should not escape function"); } return success(); } void AllocTensorOp::build(OpBuilder &builder, OperationState &result, RankedTensorType type, ValueRange dynamicSizes) { build(builder, result, type, dynamicSizes, /*copy=*/Value(), /*size_hint=*/Value(), /*memory_space=*/IntegerAttr()); } void AllocTensorOp::build(OpBuilder &builder, OperationState &result, RankedTensorType type, ValueRange dynamicSizes, Value copy) { build(builder, result, type, dynamicSizes, copy, /*size_hint=*/Value(), /*memory_space=*/IntegerAttr()); } void AllocTensorOp::build(OpBuilder &builder, OperationState &result, TensorType type, ValueRange dynamicSizes, Value copy, IntegerAttr memorySpace) { build(builder, result, type, dynamicSizes, copy, /*size_hint=*/Value(), memorySpace); } namespace { /// Change the type of the result of a `bufferization.alloc_tensor` by making /// the result type statically sized along dimension that in the original /// operation where defined as dynamic, but the size was defined using a /// `constant` op. For example: /// /// %c5 = arith.constant 5: index /// %0 = bufferization.alloc_tensor(%arg0, %c5) : tensor /// /// to /// /// %0 = bufferization.alloc_tensor(%arg0) : tensor struct ReplaceStaticShapeDims : OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(AllocTensorOp op, PatternRewriter &rewriter) const override { if (op.getCopy()) return failure(); SmallVector newShape = llvm::to_vector(op.getType().getShape()); SmallVector newDynamicSizes; unsigned int dynValCounter = 0; for (int64_t i = 0; i < op.getType().getRank(); ++i) { if (!op.isDynamicDim(i)) continue; Value value = op.getDynamicSizes()[dynValCounter++]; APInt intVal; if (matchPattern(value, m_ConstantInt(&intVal))) { newShape[i] = intVal.getSExtValue(); } else { newDynamicSizes.push_back(value); } } RankedTensorType newType = RankedTensorType::get( newShape, op.getType().getElementType(), op.getType().getEncoding()); if (newType == op.getType()) return failure(); auto newOp = rewriter.create( op.getLoc(), newType, newDynamicSizes, /*copy=*/Value()); rewriter.replaceOpWithNewOp(op, op.getType(), newOp); return success(); } }; struct FoldDimOfAllocTensorOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(tensor::DimOp dimOp, PatternRewriter &rewriter) const override { std::optional maybeConstantIndex = dimOp.getConstantIndex(); auto allocTensorOp = dimOp.getSource().getDefiningOp(); if (!allocTensorOp || !maybeConstantIndex) return failure(); if (!allocTensorOp.getType().isDynamicDim(*maybeConstantIndex)) return failure(); rewriter.replaceOp( dimOp, allocTensorOp.getDynamicSize(rewriter, *maybeConstantIndex)); return success(); } }; } // namespace void AllocTensorOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *ctx) { results.add(ctx); } LogicalResult AllocTensorOp::reifyResultShapes( OpBuilder &builder, ReifiedRankedShapedTypeDims &reifiedReturnShapes) { auto shapes = llvm::to_vector<4>( llvm::map_range(llvm::seq(0, getType().getRank()), [&](int64_t dim) -> OpFoldResult { if (isDynamicDim(dim)) return getDynamicSize(builder, dim); return builder.getIndexAttr(getStaticSize(dim)); })); reifiedReturnShapes.emplace_back(std::move(shapes)); return success(); } ParseResult AllocTensorOp::parse(OpAsmParser &parser, OperationState &result) { SmallVector dynamicSizesOperands; if (parser.parseLParen() || parser.parseOperandList(dynamicSizesOperands) || parser.parseRParen()) return failure(); ParseResult copyKeyword = parser.parseOptionalKeyword("copy"); OpAsmParser::UnresolvedOperand copyOperand; if (copyKeyword.succeeded()) if (parser.parseLParen() || parser.parseOperand(copyOperand) || parser.parseRParen()) return failure(); ParseResult sizeHintKeyword = parser.parseOptionalKeyword("size_hint"); OpAsmParser::UnresolvedOperand sizeHintOperand; if (sizeHintKeyword.succeeded()) if (parser.parseEqual() || parser.parseOperand(sizeHintOperand)) return failure(); if (parser.parseOptionalAttrDict(result.attributes) || parser.parseColon()) return failure(); TensorType type; if (parser.parseCustomTypeWithFallback(type)) return failure(); result.addTypes(type); Type indexType = parser.getBuilder().getIndexType(); if (parser.resolveOperands(dynamicSizesOperands, indexType, result.operands)) return failure(); if (copyKeyword.succeeded()) if (parser.resolveOperand(copyOperand, type, result.operands)) return failure(); if (sizeHintKeyword.succeeded()) if (parser.resolveOperand(sizeHintOperand, indexType, result.operands)) return failure(); result.addAttribute(AllocTensorOp::getOperandSegmentSizeAttr(), parser.getBuilder().getDenseI32ArrayAttr( {static_cast(dynamicSizesOperands.size()), static_cast(copyKeyword.succeeded()), static_cast(sizeHintKeyword.succeeded())})); return success(); } void AllocTensorOp::print(OpAsmPrinter &p) { p << "(" << getDynamicSizes() << ")"; if (getCopy()) p << " copy(" << getCopy() << ")"; if (getSizeHint()) p << " size_hint=" << getSizeHint(); p.printOptionalAttrDict((*this)->getAttrs(), /*elidedAttrs=*/{ AllocTensorOp::getOperandSegmentSizeAttr()}); p << " : "; auto type = getResult().getType(); if (auto validType = llvm::dyn_cast<::mlir::TensorType>(type)) p.printStrippedAttrOrType(validType); else p << type; } Value AllocTensorOp::getDynamicSize(OpBuilder &b, unsigned idx) { assert(isDynamicDim(idx) && "expected dynamic dim"); if (getCopy()) return b.create(getLoc(), getCopy(), idx); return getOperand(getIndexOfDynamicSize(idx)); } //===----------------------------------------------------------------------===// // CloneOp //===----------------------------------------------------------------------===// void CloneOp::getEffects( SmallVectorImpl> &effects) { effects.emplace_back(MemoryEffects::Read::get(), getInput(), SideEffects::DefaultResource::get()); effects.emplace_back(MemoryEffects::Write::get(), getOutput(), SideEffects::DefaultResource::get()); effects.emplace_back(MemoryEffects::Allocate::get(), getOutput(), SideEffects::DefaultResource::get()); } OpFoldResult CloneOp::fold(FoldAdaptor adaptor) { return succeeded(memref::foldMemRefCast(*this)) ? getResult() : Value(); } namespace { /// Merge the clone and its source (by converting the clone to a cast) when /// possible. struct SimplifyClones : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(CloneOp cloneOp, PatternRewriter &rewriter) const override { if (cloneOp.use_empty()) { rewriter.eraseOp(cloneOp); return success(); } Value source = cloneOp.getInput(); // Aims to find the dealloc op for the canonical source // which otherwise could prevent removal of unnecessary allocs. Value canonicalSource = source; while (auto iface = dyn_cast_or_null( canonicalSource.getDefiningOp())) canonicalSource = iface.getViewSource(); std::optional maybeCloneDeallocOp = memref::findDealloc(cloneOp.getOutput()); // Skip if either of them has > 1 deallocate operations. if (!maybeCloneDeallocOp.has_value()) return failure(); std::optional maybeSourceDeallocOp = memref::findDealloc(canonicalSource); if (!maybeSourceDeallocOp.has_value()) return failure(); Operation *cloneDeallocOp = *maybeCloneDeallocOp; Operation *sourceDeallocOp = *maybeSourceDeallocOp; // If both are deallocated in the same block, their in-block lifetimes // might not fully overlap, so we cannot decide which one to drop. if (cloneDeallocOp && sourceDeallocOp && cloneDeallocOp->getBlock() == sourceDeallocOp->getBlock()) return failure(); Block *currentBlock = cloneOp->getBlock(); Operation *redundantDealloc = nullptr; if (cloneDeallocOp && cloneDeallocOp->getBlock() == currentBlock) { redundantDealloc = cloneDeallocOp; } else if (sourceDeallocOp && sourceDeallocOp->getBlock() == currentBlock) { redundantDealloc = sourceDeallocOp; } if (!redundantDealloc) return failure(); // Safety check that there are no other deallocations inbetween // cloneOp and redundantDealloc, as otherwise we might deallocate an alias // of source before the uses of the clone. With alias information, we could // restrict this to only fail of the dealloc's operand is an alias // of the source. for (Operation *pos = cloneOp->getNextNode(); pos != redundantDealloc; pos = pos->getNextNode()) { auto effectInterface = dyn_cast(pos); if (!effectInterface) continue; if (effectInterface.hasEffect()) return failure(); } rewriter.replaceOpWithNewOp(cloneOp, cloneOp.getType(), source); rewriter.eraseOp(redundantDealloc); return success(); } }; } // namespace void CloneOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // DeallocTensorOp //===----------------------------------------------------------------------===// LogicalResult DeallocTensorOp::bufferize(RewriterBase &rewriter, const BufferizationOptions &options) { FailureOr buffer = getBuffer(rewriter, getTensor(), options); if (failed(buffer)) return failure(); if (failed(options.createDealloc(rewriter, getLoc(), *buffer))) return failure(); rewriter.eraseOp(getOperation()); return success(); } //===----------------------------------------------------------------------===// // ToTensorOp //===----------------------------------------------------------------------===// bool ToTensorOp::isWritable(Value value, const AnalysisState &state) { return getWritable(); } OpFoldResult ToTensorOp::fold(FoldAdaptor) { if (auto toMemref = getMemref().getDefiningOp()) // Approximate alias analysis by conservatively folding only when no there // is no interleaved operation. if (toMemref->getBlock() == this->getOperation()->getBlock() && toMemref->getNextNode() == this->getOperation()) return toMemref.getTensor(); return {}; } namespace { struct DimOfToTensorFolder : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(tensor::DimOp dimOp, PatternRewriter &rewriter) const override { auto memrefToTensorOp = dimOp.getSource().getDefiningOp(); if (!memrefToTensorOp) return failure(); rewriter.replaceOpWithNewOp( dimOp, memrefToTensorOp.getMemref(), dimOp.getIndex()); return success(); } }; } // namespace void ToTensorOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // ToMemrefOp //===----------------------------------------------------------------------===// OpFoldResult ToMemrefOp::fold(FoldAdaptor) { if (auto memrefToTensor = getTensor().getDefiningOp()) if (memrefToTensor.getMemref().getType() == getType()) return memrefToTensor.getMemref(); return {}; } namespace { /// Replace tensor.cast + to_memref by to_memref + memref.cast. struct ToMemrefOfCast : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ToMemrefOp toMemref, PatternRewriter &rewriter) const final { auto tensorCastOperand = toMemref.getOperand().getDefiningOp(); if (!tensorCastOperand) return failure(); auto srcTensorType = llvm::dyn_cast( tensorCastOperand.getOperand().getType()); if (!srcTensorType) return failure(); auto memrefType = MemRefType::get(srcTensorType.getShape(), srcTensorType.getElementType()); Value memref = rewriter.create(toMemref.getLoc(), memrefType, tensorCastOperand.getOperand()); rewriter.replaceOpWithNewOp(toMemref, toMemref.getType(), memref); return success(); } }; /// Canonicalize bufferization.to_tensor + bufferization.to_memref. Insert a /// cast if necessary. struct ToMemrefToTensorFolding : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ToMemrefOp toMemref, PatternRewriter &rewriter) const final { return foldToMemrefToTensorPair(rewriter, toMemref); } }; /// Fold a load on a to_memref operation into an tensor.extract on the /// corresponding tensor. struct LoadOfToMemref : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(memref::LoadOp load, PatternRewriter &rewriter) const override { auto toMemref = load.getMemref().getDefiningOp(); if (!toMemref) return failure(); rewriter.replaceOpWithNewOp(load, toMemref.getTensor(), load.getIndices()); return success(); } }; /// Fold dim of a to_memref into the dim of the tensor. struct DimOfCastOp : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(memref::DimOp dimOp, PatternRewriter &rewriter) const override { auto castOp = dimOp.getSource().getDefiningOp(); if (!castOp) return failure(); Value newSource = castOp.getOperand(); rewriter.replaceOpWithNewOp(dimOp, newSource, dimOp.getIndex()); return success(); } }; } // namespace void ToMemrefOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } LogicalResult ToMemrefOp::bufferize(RewriterBase &rewriter, const BufferizationOptions &options) { // Fold to_memref(to_tensor(x)) to x. Insert a cast if necessary. (void)foldToMemrefToTensorPair(rewriter, *this); // Note: The return value of `bufferize` indicates whether there was an error // or not. (And not whether the pattern matched or not.) return success(); } std::optional CloneOp::buildDealloc(OpBuilder &builder, Value alloc) { return builder.create(alloc.getLoc(), alloc) .getOperation(); } std::optional CloneOp::buildClone(OpBuilder &builder, Value alloc) { return builder.create(alloc.getLoc(), alloc).getResult(); } //===----------------------------------------------------------------------===// // TableGen'd op method definitions //===----------------------------------------------------------------------===// #define GET_OP_CLASSES #include "mlir/Dialect/Bufferization/IR/BufferizationOps.cpp.inc"