//===- GPUToSPIRVPass.cpp - GPU to SPIR-V Passes --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a pass to convert a kernel function in the GPU Dialect // into a spirv.module operation. // //===----------------------------------------------------------------------===// #include "mlir/Conversion/GPUToSPIRV/GPUToSPIRVPass.h" #include "mlir/Conversion/ArithToSPIRV/ArithToSPIRV.h" #include "mlir/Conversion/FuncToSPIRV/FuncToSPIRV.h" #include "mlir/Conversion/GPUToSPIRV/GPUToSPIRV.h" #include "mlir/Conversion/MemRefToSPIRV/MemRefToSPIRV.h" #include "mlir/Dialect/GPU/IR/GPUDialect.h" #include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h" #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h" #include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h" namespace mlir { #define GEN_PASS_DEF_CONVERTGPUTOSPIRV #include "mlir/Conversion/Passes.h.inc" } // namespace mlir using namespace mlir; namespace { /// Pass to lower GPU Dialect to SPIR-V. The pass only converts the gpu.func ops /// inside gpu.module ops. i.e., the function that are referenced in /// gpu.launch_func ops. For each such function /// /// 1) Create a spirv::ModuleOp, and clone the function into spirv::ModuleOp /// (the original function is still needed by the gpu::LaunchKernelOp, so cannot /// replace it). /// /// 2) Lower the body of the spirv::ModuleOp. class GPUToSPIRVPass : public impl::ConvertGPUToSPIRVBase { public: explicit GPUToSPIRVPass(bool mapMemorySpace) : mapMemorySpace(mapMemorySpace) {} void runOnOperation() override; private: bool mapMemorySpace; }; } // namespace void GPUToSPIRVPass::runOnOperation() { MLIRContext *context = &getContext(); ModuleOp module = getOperation(); SmallVector gpuModules; OpBuilder builder(context); module.walk([&](gpu::GPUModuleOp moduleOp) { // Clone each GPU kernel module for conversion, given that the GPU // launch op still needs the original GPU kernel module. builder.setInsertionPoint(moduleOp.getOperation()); gpuModules.push_back(builder.clone(*moduleOp.getOperation())); }); // Run conversion for each module independently as they can have different // TargetEnv attributes. for (Operation *gpuModule : gpuModules) { // Map MemRef memory space to SPIR-V storage class first if requested. if (mapMemorySpace) { std::unique_ptr target = spirv::getMemorySpaceToStorageClassTarget(*context); spirv::MemorySpaceToStorageClassMap memorySpaceMap = spirv::mapMemorySpaceToVulkanStorageClass; spirv::MemorySpaceToStorageClassConverter converter(memorySpaceMap); RewritePatternSet patterns(context); spirv::populateMemorySpaceToStorageClassPatterns(converter, patterns); if (failed(applyFullConversion(gpuModule, *target, std::move(patterns)))) return signalPassFailure(); } auto targetAttr = spirv::lookupTargetEnvOrDefault(gpuModule); std::unique_ptr target = SPIRVConversionTarget::get(targetAttr); SPIRVConversionOptions options; options.use64bitIndex = this->use64bitIndex; SPIRVTypeConverter typeConverter(targetAttr, options); typeConverter.addConversion([&](gpu::MMAMatrixType type) -> Type { return convertMMAToSPIRVType(type); }); RewritePatternSet patterns(context); populateGPUToSPIRVPatterns(typeConverter, patterns); populateGpuWMMAToSPIRVConversionPatterns(typeConverter, patterns); // TODO: Change SPIR-V conversion to be progressive and remove the following // patterns. mlir::arith::populateArithToSPIRVPatterns(typeConverter, patterns); populateMemRefToSPIRVPatterns(typeConverter, patterns); populateFuncToSPIRVPatterns(typeConverter, patterns); if (failed(applyFullConversion(gpuModule, *target, std::move(patterns)))) return signalPassFailure(); } } std::unique_ptr> mlir::createConvertGPUToSPIRVPass(bool mapMemorySpace) { return std::make_unique(mapMemorySpace); }