//===-- Utility class to test different flavors of [l|ll]round --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H #define LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "test/UnitTest/FPMatcher.h" #include "test/UnitTest/Test.h" #include "utils/MPFRWrapper/MPFRUtils.h" #include #include namespace mpfr = __llvm_libc::testing::mpfr; static constexpr int ROUNDING_MODES[4] = {FE_UPWARD, FE_DOWNWARD, FE_TOWARDZERO, FE_TONEAREST}; template class RoundToIntegerTestTemplate : public __llvm_libc::testing::Test { public: typedef I (*RoundToIntegerFunc)(F); private: using FPBits = __llvm_libc::fputil::FPBits; using UIntType = typename FPBits::UIntType; const F zero = F(__llvm_libc::fputil::FPBits::zero()); const F neg_zero = F(__llvm_libc::fputil::FPBits::neg_zero()); const F inf = F(__llvm_libc::fputil::FPBits::inf()); const F neg_inf = F(__llvm_libc::fputil::FPBits::neg_inf()); const F nan = F(__llvm_libc::fputil::FPBits::build_quiet_nan(1)); static constexpr I INTEGER_MIN = I(1) << (sizeof(I) * 8 - 1); static constexpr I INTEGER_MAX = -(INTEGER_MIN + 1); void test_one_input(RoundToIntegerFunc func, F input, I expected, bool expectError) { libc_errno = 0; __llvm_libc::fputil::clear_except(FE_ALL_EXCEPT); ASSERT_EQ(func(input), expected); if (expectError) { ASSERT_FP_EXCEPTION(FE_INVALID); ASSERT_MATH_ERRNO(EDOM); } else { ASSERT_FP_EXCEPTION(0); ASSERT_MATH_ERRNO(0); } } static inline mpfr::RoundingMode to_mpfr_rounding_mode(int mode) { switch (mode) { case FE_UPWARD: return mpfr::RoundingMode::Upward; case FE_DOWNWARD: return mpfr::RoundingMode::Downward; case FE_TOWARDZERO: return mpfr::RoundingMode::TowardZero; case FE_TONEAREST: return mpfr::RoundingMode::Nearest; default: __builtin_unreachable(); } } public: void SetUp() override { if (math_errhandling & MATH_ERREXCEPT) { // We will disable all exceptions so that the test will not // crash with SIGFPE. We can still use fetestexcept to check // if the appropriate flag was raised. __llvm_libc::fputil::disable_except(FE_ALL_EXCEPT); } } void do_infinity_and_na_n_test(RoundToIntegerFunc func) { test_one_input(func, inf, INTEGER_MAX, true); test_one_input(func, neg_inf, INTEGER_MIN, true); // This is currently never enabled, the // LLVM_LIBC_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR CMake option in // libc/CMakeLists.txt is not forwarded to C++. #if LIBC_COPT_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR // Result is not well-defined, we always returns INTEGER_MAX test_one_input(func, nan, INTEGER_MAX, true); #endif // LIBC_COPT_IMPLEMENTATION_DEFINED_TEST_BEHAVIOR } void testInfinityAndNaN(RoundToIntegerFunc func) { if (TestModes) { for (int mode : ROUNDING_MODES) { __llvm_libc::fputil::set_round(mode); do_infinity_and_na_n_test(func); } } else { do_infinity_and_na_n_test(func); } } void do_round_numbers_test(RoundToIntegerFunc func) { test_one_input(func, zero, I(0), false); test_one_input(func, neg_zero, I(0), false); test_one_input(func, F(1.0), I(1), false); test_one_input(func, F(-1.0), I(-1), false); test_one_input(func, F(10.0), I(10), false); test_one_input(func, F(-10.0), I(-10), false); test_one_input(func, F(1234.0), I(1234), false); test_one_input(func, F(-1234.0), I(-1234), false); // The rest of this this function compares with an equivalent MPFR function // which rounds floating point numbers to long values. There is no MPFR // function to round to long long or wider integer values. So, we will // the remaining tests only if the width of I less than equal to that of // long. if (sizeof(I) > sizeof(long)) return; constexpr int EXPONENT_LIMIT = sizeof(I) * 8 - 1; // We start with 1.0 so that the implicit bit for x86 long doubles // is set. FPBits bits(F(1.0)); bits.set_unbiased_exponent(EXPONENT_LIMIT + FPBits::EXPONENT_BIAS); bits.set_sign(1); bits.set_mantissa(0); F x = F(bits); long mpfr_result; bool erangeflag = mpfr::round_to_long(x, mpfr_result); ASSERT_FALSE(erangeflag); test_one_input(func, x, mpfr_result, false); } void testRoundNumbers(RoundToIntegerFunc func) { if (TestModes) { for (int mode : ROUNDING_MODES) { __llvm_libc::fputil::set_round(mode); do_round_numbers_test(func); } } else { do_round_numbers_test(func); } } void do_fractions_test(RoundToIntegerFunc func, int mode) { constexpr F FRACTIONS[] = {0.5, -0.5, 0.115, -0.115, 0.715, -0.715}; for (F x : FRACTIONS) { long mpfr_long_result; bool erangeflag; if (TestModes) erangeflag = mpfr::round_to_long(x, to_mpfr_rounding_mode(mode), mpfr_long_result); else erangeflag = mpfr::round_to_long(x, mpfr_long_result); ASSERT_FALSE(erangeflag); I mpfr_result = mpfr_long_result; test_one_input(func, x, mpfr_result, false); } } void testFractions(RoundToIntegerFunc func) { if (TestModes) { for (int mode : ROUNDING_MODES) { __llvm_libc::fputil::set_round(mode); do_fractions_test(func, mode); } } else { // Passing 0 for mode has no effect as it is not used in doFractionsTest // when `TestModes` is false; do_fractions_test(func, 0); } } void testIntegerOverflow(RoundToIntegerFunc func) { // This function compares with an equivalent MPFR function which rounds // floating point numbers to long values. There is no MPFR function to // round to long long or wider integer values. So, we will peform the // comparisons in this function only if the width of I less than equal to // that of long. if (sizeof(I) > sizeof(long)) return; constexpr int EXPONENT_LIMIT = sizeof(I) * 8 - 1; // We start with 1.0 so that the implicit bit for x86 long doubles // is set. FPBits bits(F(1.0)); bits.set_unbiased_exponent(EXPONENT_LIMIT + FPBits::EXPONENT_BIAS); bits.set_sign(1); bits.set_mantissa(UIntType(0x1) << (__llvm_libc::fputil::MantissaWidth::VALUE - 1)); F x = F(bits); if (TestModes) { for (int m : ROUNDING_MODES) { __llvm_libc::fputil::set_round(m); long mpfr_long_result; bool erangeflag = mpfr::round_to_long(x, to_mpfr_rounding_mode(m), mpfr_long_result); ASSERT_TRUE(erangeflag); test_one_input(func, x, INTEGER_MIN, true); } } else { long mpfr_long_result; bool erangeflag = mpfr::round_to_long(x, mpfr_long_result); ASSERT_TRUE(erangeflag); test_one_input(func, x, INTEGER_MIN, true); } } void testSubnormalRange(RoundToIntegerFunc func) { constexpr UIntType COUNT = 1000001; constexpr UIntType STEP = (FPBits::MAX_SUBNORMAL - FPBits::MIN_SUBNORMAL) / COUNT; for (UIntType i = FPBits::MIN_SUBNORMAL; i <= FPBits::MAX_SUBNORMAL; i += STEP) { F x = F(FPBits(i)); if (x == F(0.0)) continue; // All subnormal numbers should round to zero. if (TestModes) { if (x > 0) { __llvm_libc::fputil::set_round(FE_UPWARD); test_one_input(func, x, I(1), false); __llvm_libc::fputil::set_round(FE_DOWNWARD); test_one_input(func, x, I(0), false); __llvm_libc::fputil::set_round(FE_TOWARDZERO); test_one_input(func, x, I(0), false); __llvm_libc::fputil::set_round(FE_TONEAREST); test_one_input(func, x, I(0), false); } else { __llvm_libc::fputil::set_round(FE_UPWARD); test_one_input(func, x, I(0), false); __llvm_libc::fputil::set_round(FE_DOWNWARD); test_one_input(func, x, I(-1), false); __llvm_libc::fputil::set_round(FE_TOWARDZERO); test_one_input(func, x, I(0), false); __llvm_libc::fputil::set_round(FE_TONEAREST); test_one_input(func, x, I(0), false); } } else { test_one_input(func, x, 0L, false); } } } void testNormalRange(RoundToIntegerFunc func) { // This function compares with an equivalent MPFR function which rounds // floating point numbers to long values. There is no MPFR function to // round to long long or wider integer values. So, we will peform the // comparisons in this function only if the width of I less than equal to // that of long. if (sizeof(I) > sizeof(long)) return; constexpr UIntType COUNT = 1000001; constexpr UIntType STEP = (FPBits::MAX_NORMAL - FPBits::MIN_NORMAL) / COUNT; for (UIntType i = FPBits::MIN_NORMAL; i <= FPBits::MAX_NORMAL; i += STEP) { F x = F(FPBits(i)); // In normal range on x86 platforms, the long double implicit 1 bit can be // zero making the numbers NaN. We will skip them. if (isnan(x)) { continue; } if (TestModes) { for (int m : ROUNDING_MODES) { long mpfr_long_result; bool erangeflag = mpfr::round_to_long(x, to_mpfr_rounding_mode(m), mpfr_long_result); I mpfr_result = mpfr_long_result; __llvm_libc::fputil::set_round(m); if (erangeflag) test_one_input(func, x, x > 0 ? INTEGER_MAX : INTEGER_MIN, true); else test_one_input(func, x, mpfr_result, false); } } else { long mpfr_long_result; bool erangeflag = mpfr::round_to_long(x, mpfr_long_result); I mpfr_result = mpfr_long_result; if (erangeflag) test_one_input(func, x, x > 0 ? INTEGER_MAX : INTEGER_MIN, true); else test_one_input(func, x, mpfr_result, false); } } } }; #define LIST_ROUND_TO_INTEGER_TESTS_HELPER(F, I, func, TestModes) \ using LlvmLibcRoundToIntegerTest = \ RoundToIntegerTestTemplate; \ TEST_F(LlvmLibcRoundToIntegerTest, InfinityAndNaN) { \ testInfinityAndNaN(&func); \ } \ TEST_F(LlvmLibcRoundToIntegerTest, RoundNumbers) { \ testRoundNumbers(&func); \ } \ TEST_F(LlvmLibcRoundToIntegerTest, Fractions) { testFractions(&func); } \ TEST_F(LlvmLibcRoundToIntegerTest, IntegerOverflow) { \ testIntegerOverflow(&func); \ } \ TEST_F(LlvmLibcRoundToIntegerTest, SubnormalRange) { \ testSubnormalRange(&func); \ } \ TEST_F(LlvmLibcRoundToIntegerTest, NormalRange) { testNormalRange(&func); } #define LIST_ROUND_TO_INTEGER_TESTS(F, I, func) \ LIST_ROUND_TO_INTEGER_TESTS_HELPER(F, I, func, false) #define LIST_ROUND_TO_INTEGER_TESTS_WITH_MODES(F, I, func) \ LIST_ROUND_TO_INTEGER_TESTS_HELPER(F, I, func, true) #endif // LLVM_LIBC_TEST_SRC_MATH_ROUNDTOINTEGERTEST_H