//===-- Single-precision general inverse trigonometric functions ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC_MATH_GENERIC_INV_TRIGF_UTILS_H #define LLVM_LIBC_SRC_MATH_GENERIC_INV_TRIGF_UTILS_H #include "math_utils.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PolyEval.h" #include "src/__support/FPUtil/nearest_integer.h" #include "src/__support/common.h" #include namespace __llvm_libc { // PI and PI / 2 constexpr double M_MATH_PI = 0x1.921fb54442d18p+1; constexpr double M_MATH_PI_2 = 0x1.921fb54442d18p+0; // atan table size constexpr int ATAN_T_BITS = 4; constexpr int ATAN_T_SIZE = 1 << ATAN_T_BITS; // N[Table[ArcTan[x], {x, 1/8, 8/8, 1/8}], 40] extern const double ATAN_T[ATAN_T_SIZE]; extern const double ATAN_K[5]; // The main idea of the function is to use formula // atan(u) + atan(v) = atan((u+v)/(1-uv)) // x should be positive, normal finite value LIBC_INLINE double atan_eval(double x) { using FPB = fputil::FPBits; // Added some small value to umin and umax mantissa to avoid possible rounding // errors. FPB::UIntType umin = FPB::create_value(false, FPB::EXPONENT_BIAS - ATAN_T_BITS - 1, 0x100000000000UL) .uintval(); FPB::UIntType umax = FPB::create_value(false, FPB::EXPONENT_BIAS + ATAN_T_BITS, 0xF000000000000UL) .uintval(); FPB bs(x); bool sign = bs.get_sign(); auto x_abs = bs.uintval() & FPB::FloatProp::EXP_MANT_MASK; if (x_abs <= umin) { double pe = __llvm_libc::fputil::polyeval(x * x, 0.0, ATAN_K[1], ATAN_K[2], ATAN_K[3], ATAN_K[4]); return fputil::multiply_add(pe, x, x); } if (x_abs >= umax) { double one_over_x_m = -1.0 / x; double one_over_x2 = one_over_x_m * one_over_x_m; double pe = __llvm_libc::fputil::polyeval(one_over_x2, ATAN_K[0], ATAN_K[1], ATAN_K[2], ATAN_K[3]); return fputil::multiply_add(pe, one_over_x_m, sign ? (-M_MATH_PI_2) : (M_MATH_PI_2)); } double pos_x = FPB(x_abs).get_val(); bool one_over_x = pos_x > 1.0; if (one_over_x) { pos_x = 1.0 / pos_x; } double near_x = fputil::nearest_integer(pos_x * ATAN_T_SIZE); int val = static_cast(near_x); near_x *= 1.0 / ATAN_T_SIZE; double v = (pos_x - near_x) / fputil::multiply_add(near_x, pos_x, 1.0); double v2 = v * v; double pe = __llvm_libc::fputil::polyeval(v2, ATAN_K[0], ATAN_K[1], ATAN_K[2], ATAN_K[3], ATAN_K[4]); double result; if (one_over_x) result = M_MATH_PI_2 - fputil::multiply_add(pe, v, ATAN_T[val - 1]); else result = fputil::multiply_add(pe, v, ATAN_T[val - 1]); return sign ? -result : result; } // > Q = fpminimax(asin(x)/x, [|0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20|], // [|1, D...|], [0, 0.5]); constexpr double ASIN_COEFFS[10] = {0x1.5555555540fa1p-3, 0x1.333333512edc2p-4, 0x1.6db6cc1541b31p-5, 0x1.f1caff324770ep-6, 0x1.6e43899f5f4f4p-6, 0x1.1f847cf652577p-6, 0x1.9b60f47f87146p-7, 0x1.259e2634c494fp-6, -0x1.df946fa875ddp-8, 0x1.02311ecf99c28p-5}; // Evaluate P(x^2) - 1, where P(x^2) ~ asin(x)/x LIBC_INLINE double asin_eval(double xsq) { double x4 = xsq * xsq; double r1 = fputil::polyeval(x4, ASIN_COEFFS[0], ASIN_COEFFS[2], ASIN_COEFFS[4], ASIN_COEFFS[6], ASIN_COEFFS[8]); double r2 = fputil::polyeval(x4, ASIN_COEFFS[1], ASIN_COEFFS[3], ASIN_COEFFS[5], ASIN_COEFFS[7], ASIN_COEFFS[9]); return fputil::multiply_add(xsq, r2, r1); } } // namespace __llvm_libc #endif // LLVM_LIBC_SRC_MATH_GENERIC_INV_TRIGF_UTILS_H