//===-- Shared memory RPC client / server interface -------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a remote procedure call mechanism to communicate between // heterogeneous devices that can share an address space atomically. We provide // a client and a server to facilitate the remote call. The client makes request // to the server using a shared communication channel. We use separate atomic // signals to indicate which side, the client or the server is in ownership of // the buffer. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC_SUPPORT_RPC_RPC_H #define LLVM_LIBC_SRC_SUPPORT_RPC_RPC_H #include "rpc_util.h" #include "src/__support/CPP/atomic.h" #include "src/__support/CPP/functional.h" #include "src/__support/CPP/optional.h" #include "src/__support/GPU/utils.h" #include "src/string/memory_utils/memcpy_implementations.h" #include namespace __llvm_libc { namespace rpc { /// A list of opcodes that we use to invoke certain actions on the server. enum Opcode : uint16_t { NOOP = 0, PRINT_TO_STDERR = 1, EXIT = 2, TEST_INCREMENT = 3, TEST_INTERFACE = 4, TEST_STREAM = 5, }; /// A fixed size channel used to communicate between the RPC client and server. struct Buffer { uint64_t data[8]; }; static_assert(sizeof(Buffer) == 64, "Buffer size mismatch"); /// The information associated with a packet. This indicates which operations to /// perform and which threads are active in the slots. struct Header { uint64_t mask; uint16_t opcode; }; /// The data payload for the associated packet. We provide enough space for each /// thread in the cooperating lane to have a buffer. struct Payload { #if defined(LIBC_TARGET_ARCH_IS_GPU) Buffer slot[gpu::LANE_SIZE]; #else // Flexible array size allocated at runtime to the appropriate size. Buffer slot[]; #endif }; /// A packet used to share data between the client and server across an entire /// lane. We use a lane as the minimum granularity for execution. struct alignas(64) Packet { Header header; Payload payload; }; // TODO: This should be configured by the server and passed in. The general rule // of thumb is that you should have at least as many ports as possible // concurrent work items on the GPU to mitigate the lack offorward // progress guarantees on the GPU. constexpr uint64_t DEFAULT_PORT_COUNT = 64; /// A common process used to synchronize communication between a client and a /// server. The process contains a read-only inbox and a write-only outbox used /// for signaling ownership of the shared buffer between both sides. We assign /// ownership of the buffer to the client if the inbox and outbox bits match, /// otherwise it is owned by the server. /// /// This process is designed to allow the client and the server to exchange data /// using a fixed size packet in a mostly arbitrary order using the 'send' and /// 'recv' operations. The following restrictions to this scheme apply: /// - The client will always start with a 'send' operation. /// - The server will always start with a 'recv' operation. /// - Every 'send' or 'recv' call is mirrored by the other process. template struct Process { LIBC_INLINE Process() = default; LIBC_INLINE Process(const Process &) = delete; LIBC_INLINE Process &operator=(const Process &) = delete; LIBC_INLINE Process(Process &&) = default; LIBC_INLINE Process &operator=(Process &&) = default; LIBC_INLINE ~Process() = default; template friend struct Port; protected: uint64_t port_count; uint32_t lane_size; cpp::Atomic *inbox; cpp::Atomic *outbox; Packet *packet; cpp::Atomic lock[DEFAULT_PORT_COUNT] = {0}; public: /// Initialize the communication channels. LIBC_INLINE void reset(uint64_t port_count, uint32_t lane_size, void *buffer) { this->port_count = port_count; this->lane_size = lane_size; this->inbox = reinterpret_cast *>( advance(buffer, inbox_offset(port_count))); this->outbox = reinterpret_cast *>( advance(buffer, outbox_offset(port_count))); this->packet = reinterpret_cast(advance(buffer, buffer_offset(port_count))); } /// Allocate a memory buffer sufficient to store the following equivalent /// representation in memory. /// /// struct Equivalent { /// Atomic primary[port_count]; /// Atomic secondary[port_count]; /// Packet buffer[port_count]; /// }; LIBC_INLINE static uint64_t allocation_size(uint64_t port_count, uint32_t lane_size) { return buffer_offset(port_count) + buffer_bytes(port_count, lane_size); } protected: /// The length of the packet is flexible because the server needs to look up /// the lane size at runtime. This helper indexes at the proper offset. LIBC_INLINE Packet &get_packet(uint64_t index) { return *reinterpret_cast(advance( packet, index * align_up(sizeof(Header) + lane_size * sizeof(Buffer), alignof(Packet)))); } /// Retrieve the inbox state from memory shared between processes. LIBC_INLINE uint32_t load_inbox(uint64_t index) { return inbox[index].load(cpp::MemoryOrder::RELAXED); } /// Retrieve the outbox state from memory shared between processes. LIBC_INLINE uint32_t load_outbox(uint64_t index) { return outbox[index].load(cpp::MemoryOrder::RELAXED); } /// Signal to the other process that this one is finished with the buffer. /// Equivalent to loading outbox followed by store of the inverted value /// The outbox is write only by this warp and tracking the value locally is /// cheaper than calling load_outbox to get the value to store. LIBC_INLINE uint32_t invert_outbox(uint64_t index, uint32_t current_outbox) { uint32_t inverted_outbox = !current_outbox; outbox[index].store(inverted_outbox, cpp::MemoryOrder::RELAXED); return inverted_outbox; } /// Determines if this process needs to wait for ownership of the buffer. We /// invert the condition on one of the processes to indicate that if one /// process owns the buffer then the other does not. LIBC_INLINE static bool buffer_unavailable(uint32_t in, uint32_t out) { bool cond = in != out; return Invert ? !cond : cond; } /// Attempt to claim the lock at index. Return true on lock taken. /// lane_mask is a bitmap of the threads in the warp that would hold the /// single lock on success, e.g. the result of gpu::get_lane_mask() /// The lock is held when the zeroth bit of the uint32_t at lock[index] /// is set, and available when that bit is clear. Bits [1, 32) are zero. /// Or with one is a no-op when the lock is already held. [[clang::convergent]] LIBC_INLINE bool try_lock(uint64_t lane_mask, uint64_t index) { // On amdgpu, test and set to lock[index] and a sync_lane would suffice // On volta, need to handle differences between the threads running and // the threads that were detected in the previous call to get_lane_mask() // // All threads in lane_mask try to claim the lock. At most one can succeed. // There may be threads active which are not in lane mask which must not // succeed in taking the lock, as otherwise it will leak. This is handled // by making threads which are not in lane_mask or with 0, a no-op. uint32_t id = gpu::get_lane_id(); bool id_in_lane_mask = lane_mask & (1ul << id); // All threads in the warp call fetch_or. Possibly at the same time. bool before = lock[index].fetch_or(id_in_lane_mask, cpp::MemoryOrder::RELAXED); uint64_t packed = gpu::ballot(lane_mask, before); // If every bit set in lane_mask is also set in packed, every single thread // in the warp failed to get the lock. Ballot returns unset for threads not // in the lane mask. // // Cases, per thread: // mask==0 -> unspecified before, discarded by ballot -> 0 // mask==1 and before==0 (success), set zero by ballot -> 0 // mask==1 and before==1 (failure), set one by ballot -> 1 // // mask != packed implies at least one of the threads got the lock // atomic semantics of fetch_or mean at most one of the threads for the lock return lane_mask != packed; } /// Unlock the lock at index. We need a lane sync to keep this function /// convergent, otherwise the compiler will sink the store and deadlock. [[clang::convergent]] LIBC_INLINE void unlock(uint64_t lane_mask, uint64_t index) { // Wait for other threads in the warp to finish using the lock gpu::sync_lane(lane_mask); // Use exactly one thread to clear the bit at position 0 in lock[index] // Must restrict to a single thread to avoid one thread dropping the lock, // then an unrelated warp claiming the lock, then a second thread in this // warp dropping the lock again. uint32_t and_mask = ~(rpc::is_first_lane(lane_mask) ? 1 : 0); lock[index].fetch_and(and_mask, cpp::MemoryOrder::RELAXED); gpu::sync_lane(lane_mask); } /// Invokes a function accross every active buffer across the total lane size. LIBC_INLINE void invoke_rpc(cpp::function fn, Packet &packet) { if constexpr (is_process_gpu()) { fn(&packet.payload.slot[gpu::get_lane_id()]); } else { for (uint32_t i = 0; i < lane_size; i += gpu::get_lane_size()) if (packet.header.mask & 1ul << i) fn(&packet.payload.slot[i]); } } /// Alternate version that also provides the index of the current lane. LIBC_INLINE void invoke_rpc(cpp::function fn, Packet &packet) { if constexpr (is_process_gpu()) { fn(&packet.payload.slot[gpu::get_lane_id()], gpu::get_lane_id()); } else { for (uint32_t i = 0; i < lane_size; i += gpu::get_lane_size()) if (packet.header.mask & 1ul << i) fn(&packet.payload.slot[i], i); } } /// Number of bytes to allocate for an inbox or outbox. LIBC_INLINE static uint64_t mailbox_bytes(uint64_t port_count) { return port_count * sizeof(cpp::Atomic); } /// Number of bytes to allocate for the buffer containing the packets. LIBC_INLINE static uint64_t buffer_bytes(uint64_t port_count, uint32_t lane_size) { return is_process_gpu() ? port_count * sizeof(Packet) : port_count * align_up(sizeof(Header) + (lane_size * sizeof(Buffer)), alignof(Packet)); } /// Offset of the inbox in memory. This is the same as the outbox if inverted. LIBC_INLINE static uint64_t inbox_offset(uint64_t port_count) { return Invert ? mailbox_bytes(port_count) : 0; } /// Offset of the outbox in memory. This is the same as the inbox if inverted. LIBC_INLINE static uint64_t outbox_offset(uint64_t port_count) { return Invert ? 0 : mailbox_bytes(port_count); } /// Offset of the buffer containing the packets after the inbox and outbox. LIBC_INLINE static uint64_t buffer_offset(uint64_t port_count) { return align_up(2 * mailbox_bytes(port_count), alignof(Packet)); } }; /// The port provides the interface to communicate between the multiple /// processes. A port is conceptually an index into the memory provided by the /// underlying process that is guarded by a lock bit. template struct Port { LIBC_INLINE Port(Process &process, uint64_t lane_mask, uint64_t index, uint32_t out) : process(process), lane_mask(lane_mask), index(index), out(out), receive(false), owns_buffer(true) {} LIBC_INLINE ~Port() = default; private: LIBC_INLINE Port(const Port &) = delete; LIBC_INLINE Port &operator=(const Port &) = delete; LIBC_INLINE Port(Port &&) = default; LIBC_INLINE Port &operator=(Port &&) = default; friend struct Client; friend struct Server; friend class cpp::optional>; public: template LIBC_INLINE void recv(U use); template LIBC_INLINE void send(F fill); template LIBC_INLINE void send_and_recv(F fill, U use); template LIBC_INLINE void recv_and_send(W work); LIBC_INLINE void send_n(const void *const *src, uint64_t *size); LIBC_INLINE void send_n(const void *src, uint64_t size); template LIBC_INLINE void recv_n(void **dst, uint64_t *size, A &&alloc); LIBC_INLINE uint16_t get_opcode() const { return process.get_packet(index).header.opcode; } LIBC_INLINE void close() { // The server is passive, if it own the buffer when it closes we need to // give ownership back to the client. if (owns_buffer && T) out = process.invert_outbox(index, out); process.unlock(lane_mask, index); } private: Process &process; uint64_t lane_mask; uint64_t index; uint32_t out; bool receive; bool owns_buffer; }; /// The RPC client used to make requests to the server. struct Client : public Process { LIBC_INLINE Client() = default; LIBC_INLINE Client(const Client &) = delete; LIBC_INLINE Client &operator=(const Client &) = delete; LIBC_INLINE ~Client() = default; using Port = rpc::Port; template LIBC_INLINE cpp::optional try_open(); template LIBC_INLINE Port open(); }; /// The RPC server used to respond to the client. struct Server : public Process { LIBC_INLINE Server() = default; LIBC_INLINE Server(const Server &) = delete; LIBC_INLINE Server &operator=(const Server &) = delete; LIBC_INLINE ~Server() = default; using Port = rpc::Port; LIBC_INLINE cpp::optional try_open(); LIBC_INLINE Port open(); }; /// Applies \p fill to the shared buffer and initiates a send operation. template template LIBC_INLINE void Port::send(F fill) { uint32_t in = owns_buffer ? out ^ T : process.load_inbox(index); // We need to wait until we own the buffer before sending. while (Process::buffer_unavailable(in, out)) { sleep_briefly(); in = process.load_inbox(index); } // Apply the \p fill function to initialize the buffer and release the memory. process.invoke_rpc(fill, process.get_packet(index)); atomic_thread_fence(cpp::MemoryOrder::RELEASE); out = process.invert_outbox(index, out); owns_buffer = false; receive = false; } /// Applies \p use to the shared buffer and acknowledges the send. template template LIBC_INLINE void Port::recv(U use) { // We only exchange ownership of the buffer during a receive if we are waiting // for a previous receive to finish. if (receive) { out = process.invert_outbox(index, out); owns_buffer = false; } uint32_t in = owns_buffer ? out ^ T : process.load_inbox(index); // We need to wait until we own the buffer before receiving. while (Process::buffer_unavailable(in, out)) { sleep_briefly(); in = process.load_inbox(index); } atomic_thread_fence(cpp::MemoryOrder::ACQUIRE); // Apply the \p use function to read the memory out of the buffer. process.invoke_rpc(use, process.get_packet(index)); receive = true; owns_buffer = true; } /// Combines a send and receive into a single function. template template LIBC_INLINE void Port::send_and_recv(F fill, U use) { send(fill); recv(use); } /// Combines a receive and send operation into a single function. The \p work /// function modifies the buffer in-place and the send is only used to initiate /// the copy back. template template LIBC_INLINE void Port::recv_and_send(W work) { recv(work); send([](Buffer *) { /* no-op */ }); } /// Sends an arbitrarily sized data buffer \p src across the shared channel in /// multiples of the packet length. template LIBC_INLINE void Port::send_n(const void *const *src, uint64_t *size) { // TODO: We could send the first bytes in this call and potentially save an // extra send operation. // TODO: We may need a way for the CPU to send different strings per thread. uint64_t num_sends = 0; send([&](Buffer *buffer, uint32_t id) { reinterpret_cast(buffer->data)[0] = lane_value(size, id); num_sends = is_process_gpu() ? lane_value(size, id) : max(lane_value(size, id), num_sends); }); for (uint64_t idx = 0; idx < num_sends; idx += sizeof(Buffer::data)) { send([=](Buffer *buffer, uint32_t id) { const uint64_t len = lane_value(size, id) - idx > sizeof(Buffer::data) ? sizeof(Buffer::data) : lane_value(size, id) - idx; if (idx < lane_value(size, id)) inline_memcpy( buffer->data, reinterpret_cast(lane_value(src, id)) + idx, len); }); } gpu::sync_lane(process.get_packet(index).header.mask); } /// Helper routine to simplify the interface when sending from the GPU using /// thread private pointers to the underlying value. template LIBC_INLINE void Port::send_n(const void *src, uint64_t size) { static_assert(is_process_gpu(), "Only valid when running on the GPU"); const void **src_ptr = &src; uint64_t *size_ptr = &size; send_n(src_ptr, size_ptr); } /// Receives an arbitrarily sized data buffer across the shared channel in /// multiples of the packet length. The \p alloc function is called with the /// size of the data so that we can initialize the size of the \p dst buffer. template template LIBC_INLINE void Port::recv_n(void **dst, uint64_t *size, A &&alloc) { uint64_t num_recvs = 0; recv([&](Buffer *buffer, uint32_t id) { lane_value(size, id) = reinterpret_cast(buffer->data)[0]; lane_value(dst, id) = reinterpret_cast(alloc(lane_value(size, id))); num_recvs = is_process_gpu() ? lane_value(size, id) : max(lane_value(size, id), num_recvs); }); for (uint64_t idx = 0; idx < num_recvs; idx += sizeof(Buffer::data)) { recv([=](Buffer *buffer, uint32_t id) { uint64_t len = lane_value(size, id) - idx > sizeof(Buffer::data) ? sizeof(Buffer::data) : lane_value(size, id) - idx; if (idx < lane_value(size, id)) inline_memcpy(reinterpret_cast(lane_value(dst, id)) + idx, buffer->data, len); }); } return; } /// Attempts to open a port to use as the client. The client can only open a /// port if we find an index that is in a valid sending state. That is, there /// are send operations pending that haven't been serviced on this port. Each /// port instance uses an associated \p opcode to tell the server what to do. template [[clang::convergent]] LIBC_INLINE cpp::optional Client::try_open() { // Perform a naive linear scan for a port that can be opened to send data. for (uint64_t index = 0; index < port_count; ++index) { // Attempt to acquire the lock on this index. uint64_t lane_mask = gpu::get_lane_mask(); if (!try_lock(lane_mask, index)) continue; // The mailbox state must be read with the lock held. atomic_thread_fence(cpp::MemoryOrder::ACQUIRE); uint32_t in = load_inbox(index); uint32_t out = load_outbox(index); // Once we acquire the index we need to check if we are in a valid sending // state. if (buffer_unavailable(in, out)) { unlock(lane_mask, index); continue; } if (is_first_lane(lane_mask)) { get_packet(index).header.opcode = opcode; get_packet(index).header.mask = lane_mask; } gpu::sync_lane(lane_mask); return Port(*this, lane_mask, index, out); } return cpp::nullopt; } template LIBC_INLINE Client::Port Client::open() { for (;;) { if (cpp::optional p = try_open()) return cpp::move(p.value()); sleep_briefly(); } } /// Attempts to open a port to use as the server. The server can only open a /// port if it has a pending receive operation [[clang::convergent]] LIBC_INLINE cpp::optional Server::try_open() { // Perform a naive linear scan for a port that has a pending request. for (uint64_t index = 0; index < port_count; ++index) { uint32_t in = load_inbox(index); uint32_t out = load_outbox(index); // The server is passive, if there is no work pending don't bother // opening a port. if (buffer_unavailable(in, out)) continue; // Attempt to acquire the lock on this index. uint64_t lane_mask = gpu::get_lane_mask(); // Attempt to acquire the lock on this index. if (!try_lock(lane_mask, index)) continue; // The mailbox state must be read with the lock held. atomic_thread_fence(cpp::MemoryOrder::ACQUIRE); in = load_inbox(index); out = load_outbox(index); if (buffer_unavailable(in, out)) { unlock(lane_mask, index); continue; } return Port(*this, lane_mask, index, out); } return cpp::nullopt; } LIBC_INLINE Server::Port Server::open() { for (;;) { if (cpp::optional p = try_open()) return cpp::move(p.value()); sleep_briefly(); } } } // namespace rpc } // namespace __llvm_libc #endif