//===-- Square root of IEEE 754 floating point numbers ----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC_SUPPORT_FPUTIL_GENERIC_SQRT_H #define LLVM_LIBC_SRC_SUPPORT_FPUTIL_GENERIC_SQRT_H #include "sqrt_80_bit_long_double.h" #include "src/__support/CPP/bit.h" #include "src/__support/CPP/type_traits.h" #include "src/__support/FPUtil/FEnvImpl.h" #include "src/__support/FPUtil/FPBits.h" #include "src/__support/FPUtil/PlatformDefs.h" #include "src/__support/UInt128.h" #include "src/__support/builtin_wrappers.h" #include "src/__support/common.h" namespace __llvm_libc { namespace fputil { namespace internal { template struct SpecialLongDouble { static constexpr bool VALUE = false; }; #if defined(SPECIAL_X86_LONG_DOUBLE) template <> struct SpecialLongDouble { static constexpr bool VALUE = true; }; #endif // SPECIAL_X86_LONG_DOUBLE template LIBC_INLINE void normalize(int &exponent, typename FPBits::UIntType &mantissa) { const int shift = unsafe_clz(mantissa) - (8 * sizeof(mantissa) - 1 - MantissaWidth::VALUE); exponent -= shift; mantissa <<= shift; } #ifdef LONG_DOUBLE_IS_DOUBLE template <> LIBC_INLINE void normalize(int &exponent, uint64_t &mantissa) { normalize(exponent, mantissa); } #elif !defined(SPECIAL_X86_LONG_DOUBLE) template <> LIBC_INLINE void normalize(int &exponent, UInt128 &mantissa) { const uint64_t hi_bits = static_cast(mantissa >> 64); const int shift = hi_bits ? (unsafe_clz(hi_bits) - 15) : (unsafe_clz(static_cast(mantissa)) + 49); exponent -= shift; mantissa <<= shift; } #endif } // namespace internal // Correctly rounded IEEE 754 SQRT for all rounding modes. // Shift-and-add algorithm. template LIBC_INLINE cpp::enable_if_t, T> sqrt(T x) { if constexpr (internal::SpecialLongDouble::VALUE) { // Special 80-bit long double. return x86::sqrt(x); } else { // IEEE floating points formats. using UIntType = typename FPBits::UIntType; constexpr UIntType ONE = UIntType(1) << MantissaWidth::VALUE; FPBits bits(x); if (bits.is_inf_or_nan()) { if (bits.get_sign() && (bits.get_mantissa() == 0)) { // sqrt(-Inf) = NaN return FPBits::build_quiet_nan(ONE >> 1); } else { // sqrt(NaN) = NaN // sqrt(+Inf) = +Inf return x; } } else if (bits.is_zero()) { // sqrt(+0) = +0 // sqrt(-0) = -0 return x; } else if (bits.get_sign()) { // sqrt( negative numbers ) = NaN return FPBits::build_quiet_nan(ONE >> 1); } else { int x_exp = bits.get_exponent(); UIntType x_mant = bits.get_mantissa(); // Step 1a: Normalize denormal input and append hidden bit to the mantissa if (bits.get_unbiased_exponent() == 0) { ++x_exp; // let x_exp be the correct exponent of ONE bit. internal::normalize(x_exp, x_mant); } else { x_mant |= ONE; } // Step 1b: Make sure the exponent is even. if (x_exp & 1) { --x_exp; x_mant <<= 1; } // After step 1b, x = 2^(x_exp) * x_mant, where x_exp is even, and // 1 <= x_mant < 4. So sqrt(x) = 2^(x_exp / 2) * y, with 1 <= y < 2. // Notice that the output of sqrt is always in the normal range. // To perform shift-and-add algorithm to find y, let denote: // y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be: // r(n) = 2^n ( x_mant - y(n)^2 ). // That leads to the following recurrence formula: // r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ] // with the initial conditions: y(0) = 1, and r(0) = x - 1. // So the nth digit y_n of the mantissa of sqrt(x) can be found by: // y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1) // 0 otherwise. UIntType y = ONE; UIntType r = x_mant - ONE; for (UIntType current_bit = ONE >> 1; current_bit; current_bit >>= 1) { r <<= 1; UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1) if (r >= tmp) { r -= tmp; y += current_bit; } } // We compute one more iteration in order to round correctly. bool lsb = y & 1; // Least significant bit bool rb = false; // Round bit r <<= 2; UIntType tmp = (y << 2) + 1; if (r >= tmp) { r -= tmp; rb = true; } // Remove hidden bit and append the exponent field. x_exp = ((x_exp >> 1) + FPBits::EXPONENT_BIAS); y = (y - ONE) | (static_cast(x_exp) << MantissaWidth::VALUE); switch (get_round()) { case FE_TONEAREST: // Round to nearest, ties to even if (rb && (lsb || (r != 0))) ++y; break; case FE_UPWARD: if (rb || (r != 0)) ++y; break; } return cpp::bit_cast(y); } } } } // namespace fputil } // namespace __llvm_libc #endif // LLVM_LIBC_SRC_SUPPORT_FPUTIL_GENERIC_SQRT_H