//===-- Nearest integer floating-point operations ---------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H #define LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H #include "FEnvImpl.h" #include "FPBits.h" #include "src/__support/CPP/type_traits.h" #include "src/__support/common.h" #include namespace __llvm_libc { namespace fputil { template , int> = 0> LIBC_INLINE T trunc(T x) { FPBits bits(x); // If x is infinity or NaN, return it. // If it is zero also we should return it as is, but the logic // later in this function takes care of it. But not doing a zero // check, we improve the run time of non-zero values. if (bits.is_inf_or_nan()) return x; int exponent = bits.get_exponent(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(MantissaWidth::VALUE)) return x; // If the exponent is such that abs(x) is less than 1, then return 0. if (exponent <= -1) { if (bits.get_sign()) return T(-0.0); else return T(0.0); } int trim_size = MantissaWidth::VALUE - exponent; bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size); return T(bits); } template , int> = 0> LIBC_INLINE T ceil(T x) { FPBits bits(x); // If x is infinity NaN or zero, return it. if (bits.is_inf_or_nan() || bits.is_zero()) return x; bool is_neg = bits.get_sign(); int exponent = bits.get_exponent(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(MantissaWidth::VALUE)) return x; if (exponent <= -1) { if (is_neg) return T(-0.0); else return T(1.0); } uint32_t trim_size = MantissaWidth::VALUE - exponent; bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size); T trunc_value = T(bits); // If x is already an integer, return it. if (trunc_value == x) return x; // If x is negative, the ceil operation is equivalent to the trunc operation. if (is_neg) return trunc_value; return trunc_value + T(1.0); } template , int> = 0> LIBC_INLINE T floor(T x) { FPBits bits(x); if (bits.get_sign()) { return -ceil(-x); } else { return trunc(x); } } template , int> = 0> LIBC_INLINE T round(T x) { using UIntType = typename FPBits::UIntType; FPBits bits(x); // If x is infinity NaN or zero, return it. if (bits.is_inf_or_nan() || bits.is_zero()) return x; bool is_neg = bits.get_sign(); int exponent = bits.get_exponent(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(MantissaWidth::VALUE)) return x; if (exponent == -1) { // Absolute value of x is greater than equal to 0.5 but less than 1. if (is_neg) return T(-1.0); else return T(1.0); } if (exponent <= -2) { // Absolute value of x is less than 0.5. if (is_neg) return T(-0.0); else return T(0.0); } uint32_t trim_size = MantissaWidth::VALUE - exponent; bool half_bit_set = bool(bits.get_mantissa() & (UIntType(1) << (trim_size - 1))); bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size); T trunc_value = T(bits); // If x is already an integer, return it. if (trunc_value == x) return x; if (!half_bit_set) { // Franctional part is less than 0.5 so round value is the // same as the trunc value. return trunc_value; } else { return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0); } } template , int> = 0> LIBC_INLINE T round_using_current_rounding_mode(T x) { using UIntType = typename FPBits::UIntType; FPBits bits(x); // If x is infinity NaN or zero, return it. if (bits.is_inf_or_nan() || bits.is_zero()) return x; bool is_neg = bits.get_sign(); int exponent = bits.get_exponent(); int rounding_mode = get_round(); // If the exponent is greater than the most negative mantissa // exponent, then x is already an integer. if (exponent >= static_cast(MantissaWidth::VALUE)) return x; if (exponent <= -1) { switch (rounding_mode) { case FE_DOWNWARD: return is_neg ? T(-1.0) : T(0.0); case FE_UPWARD: return is_neg ? T(-0.0) : T(1.0); case FE_TOWARDZERO: return is_neg ? T(-0.0) : T(0.0); case FE_TONEAREST: if (exponent <= -2 || bits.get_mantissa() == 0) return is_neg ? T(-0.0) : T(0.0); // abs(x) <= 0.5 else return is_neg ? T(-1.0) : T(1.0); // abs(x) > 0.5 default: __builtin_unreachable(); } } uint32_t trim_size = MantissaWidth::VALUE - exponent; FPBits new_bits = bits; new_bits.set_mantissa((bits.get_mantissa() >> trim_size) << trim_size); T trunc_value = T(new_bits); // If x is already an integer, return it. if (trunc_value == x) return x; UIntType trim_value = bits.get_mantissa() & ((UIntType(1) << trim_size) - 1); UIntType half_value = (UIntType(1) << (trim_size - 1)); // If exponent is 0, trimSize will be equal to the mantissa width, and // truncIsOdd` will not be correct. So, we handle it as a special case // below. UIntType trunc_is_odd = new_bits.get_mantissa() & (UIntType(1) << trim_size); switch (rounding_mode) { case FE_DOWNWARD: return is_neg ? trunc_value - T(1.0) : trunc_value; case FE_UPWARD: return is_neg ? trunc_value : trunc_value + T(1.0); case FE_TOWARDZERO: return trunc_value; case FE_TONEAREST: if (trim_value > half_value) { return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0); } else if (trim_value == half_value) { if (exponent == 0) return is_neg ? T(-2.0) : T(2.0); if (trunc_is_odd) return is_neg ? trunc_value - T(1.0) : trunc_value + T(1.0); else return trunc_value; } else { return trunc_value; } default: __builtin_unreachable(); } } namespace internal { template && cpp::is_integral_v, int> = 0> LIBC_INLINE I rounded_float_to_signed_integer(F x) { constexpr I INTEGER_MIN = (I(1) << (sizeof(I) * 8 - 1)); constexpr I INTEGER_MAX = -(INTEGER_MIN + 1); FPBits bits(x); auto set_domain_error_and_raise_invalid = []() { set_errno_if_required(EDOM); raise_except_if_required(FE_INVALID); }; if (bits.is_inf_or_nan()) { set_domain_error_and_raise_invalid(); return bits.get_sign() ? INTEGER_MIN : INTEGER_MAX; } int exponent = bits.get_exponent(); constexpr int EXPONENT_LIMIT = sizeof(I) * 8 - 1; if (exponent > EXPONENT_LIMIT) { set_domain_error_and_raise_invalid(); return bits.get_sign() ? INTEGER_MIN : INTEGER_MAX; } else if (exponent == EXPONENT_LIMIT) { if (bits.get_sign() == 0 || bits.get_mantissa() != 0) { set_domain_error_and_raise_invalid(); return bits.get_sign() ? INTEGER_MIN : INTEGER_MAX; } // If the control reaches here, then it means that the rounded // value is the most negative number for the signed integer type I. } // For all other cases, if `x` can fit in the integer type `I`, // we just return `x`. static_cast will convert the floating // point value to the exact integer value. return static_cast(x); } } // namespace internal template && cpp::is_integral_v, int> = 0> LIBC_INLINE I round_to_signed_integer(F x) { return internal::rounded_float_to_signed_integer(round(x)); } template && cpp::is_integral_v, int> = 0> LIBC_INLINE I round_to_signed_integer_using_current_rounding_mode(F x) { return internal::rounded_float_to_signed_integer( round_using_current_rounding_mode(x)); } } // namespace fputil } // namespace __llvm_libc #endif // LLVM_LIBC_SRC_SUPPORT_FPUTIL_NEAREST_INTEGER_OPERATIONS_H