/* * Copyright (c) 2010 Broadcom Corporation * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include void sdioh_sdio_set_host_pm_flags(int flag); static struct sdio_func *cfg80211_sdio_func; static struct wl_dev *wl_cfg80211_dev; static const u8 ether_bcast[ETH_ALEN] = {255, 255, 255, 255, 255, 255}; u32 wl_dbg_level = WL_DBG_ERR; #define WL_4329_FW_FILE "brcm/bcm4329-fullmac-4.bin" #define WL_4329_NVRAM_FILE "brcm/bcm4329-fullmac-4.txt" /* ** cfg80211_ops api/callback list */ static s32 wl_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, u32 *flags, struct vif_params *params); static s32 __wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request, struct cfg80211_ssid *this_ssid); static s32 wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request); static s32 wl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed); static s32 wl_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params); static s32 wl_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev); static s32 wl_cfg80211_get_station(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_info *sinfo); static s32 wl_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, s32 timeout); static s32 wl_cfg80211_set_bitrate_mask(struct wiphy *wiphy, struct net_device *dev, const u8 *addr, const struct cfg80211_bitrate_mask *mask); static int wl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev, u16 reason_code); static s32 wl_cfg80211_set_tx_power(struct wiphy *wiphy, enum nl80211_tx_power_setting type, s32 dbm); static s32 wl_cfg80211_get_tx_power(struct wiphy *wiphy, s32 *dbm); static s32 wl_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool unicast, bool multicast); static s32 wl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params); static s32 wl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr); static s32 wl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params * params)); static s32 wl_cfg80211_config_default_mgmt_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx); static s32 wl_cfg80211_resume(struct wiphy *wiphy); static s32 wl_cfg80211_suspend(struct wiphy *wiphy); static s32 wl_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa); static s32 wl_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa); static s32 wl_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *dev); /* ** event & event Q handlers for cfg80211 interfaces */ static s32 wl_create_event_handler(struct wl_priv *wl); static void wl_destroy_event_handler(struct wl_priv *wl); static s32 wl_event_handler(void *data); static void wl_init_eq(struct wl_priv *wl); static void wl_flush_eq(struct wl_priv *wl); static void wl_lock_eq(struct wl_priv *wl); static void wl_unlock_eq(struct wl_priv *wl); static void wl_init_eq_lock(struct wl_priv *wl); static void wl_init_eloop_handler(struct wl_event_loop *el); static struct wl_event_q *wl_deq_event(struct wl_priv *wl); static s32 wl_enq_event(struct wl_priv *wl, u32 type, const wl_event_msg_t *msg, void *data); static void wl_put_event(struct wl_event_q *e); static void wl_wakeup_event(struct wl_priv *wl); static s32 wl_notify_connect_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_notify_roaming_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_notify_scan_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_bss_connect_done(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data, bool completed); static s32 wl_bss_roaming_done(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); static s32 wl_notify_mic_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data); /* ** register/deregister sdio function */ struct sdio_func *wl_cfg80211_get_sdio_func(void); static void wl_clear_sdio_func(void); /* ** ioctl utilites */ static s32 wl_dev_bufvar_get(struct net_device *dev, s8 *name, s8 *buf, s32 buf_len); static __used s32 wl_dev_bufvar_set(struct net_device *dev, s8 *name, s8 *buf, s32 len); static s32 wl_dev_intvar_set(struct net_device *dev, s8 *name, s32 val); static s32 wl_dev_intvar_get(struct net_device *dev, s8 *name, s32 *retval); static s32 wl_dev_ioctl(struct net_device *dev, u32 cmd, void *arg, u32 len); /* ** cfg80211 set_wiphy_params utilities */ static s32 wl_set_frag(struct net_device *dev, u32 frag_threshold); static s32 wl_set_rts(struct net_device *dev, u32 frag_threshold); static s32 wl_set_retry(struct net_device *dev, u32 retry, bool l); /* ** wl profile utilities */ static s32 wl_update_prof(struct wl_priv *wl, const wl_event_msg_t *e, void *data, s32 item); static void *wl_read_prof(struct wl_priv *wl, s32 item); static void wl_init_prof(struct wl_profile *prof); /* ** cfg80211 connect utilites */ static s32 wl_set_wpa_version(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_auth_type(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_set_cipher(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_key_mgmt(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_set_set_sharedkey(struct net_device *dev, struct cfg80211_connect_params *sme); static s32 wl_get_assoc_ies(struct wl_priv *wl); static void wl_clear_assoc_ies(struct wl_priv *wl); static void wl_ch_to_chanspec(int ch, struct wl_join_params *join_params, size_t *join_params_size); /* ** information element utilities */ static __used s32 wl_add_ie(struct wl_priv *wl, u8 t, u8 l, u8 *v); static s32 wl_mode_to_nl80211_iftype(s32 mode); static struct wireless_dev *wl_alloc_wdev(s32 sizeof_iface, struct device *dev); static void wl_free_wdev(struct wl_priv *wl); static s32 wl_inform_bss(struct wl_priv *wl); static s32 wl_inform_single_bss(struct wl_priv *wl, struct wl_bss_info *bi); static s32 wl_update_bss_info(struct wl_priv *wl); static s32 wl_add_keyext(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, const u8 *mac_addr, struct key_params *params); /* ** key indianess swap utilities */ static void swap_key_from_BE(struct wl_wsec_key *key); static void swap_key_to_BE(struct wl_wsec_key *key); /* ** wl_priv memory init/deinit utilities */ static s32 wl_init_priv_mem(struct wl_priv *wl); static void wl_deinit_priv_mem(struct wl_priv *wl); static void wl_delay(u32 ms); /* ** store/restore cfg80211 instance data */ static void wl_set_drvdata(struct wl_dev *dev, void *data); static void *wl_get_drvdata(struct wl_dev *dev); /* ** ibss mode utilities */ static bool wl_is_ibssmode(struct wl_priv *wl); /* ** dongle up/down , default configuration utilities */ static bool wl_is_linkdown(struct wl_priv *wl, const wl_event_msg_t *e); static bool wl_is_linkup(struct wl_priv *wl, const wl_event_msg_t *e); static bool wl_is_nonetwork(struct wl_priv *wl, const wl_event_msg_t *e); static void wl_link_down(struct wl_priv *wl); static s32 wl_dongle_mode(struct net_device *ndev, s32 iftype); static s32 __wl_cfg80211_up(struct wl_priv *wl); static s32 __wl_cfg80211_down(struct wl_priv *wl); static s32 wl_dongle_probecap(struct wl_priv *wl); static void wl_init_conf(struct wl_conf *conf); /* ** dongle configuration utilities */ #ifndef EMBEDDED_PLATFORM static s32 wl_dongle_mode(struct net_device *ndev, s32 iftype); static s32 wl_dongle_country(struct net_device *ndev, u8 ccode); static s32 wl_dongle_up(struct net_device *ndev, u32 up); static s32 wl_dongle_power(struct net_device *ndev, u32 power_mode); static s32 wl_dongle_glom(struct net_device *ndev, u32 glom, u32 dongle_align); static s32 wl_dongle_offload(struct net_device *ndev, s32 arpoe, s32 arp_ol); static s32 wl_pattern_atoh(s8 *src, s8 *dst); static s32 wl_dongle_filter(struct net_device *ndev, u32 filter_mode); static s32 wl_update_wiphybands(struct wl_priv *wl); #endif /* !EMBEDDED_PLATFORM */ static s32 wl_dongle_eventmsg(struct net_device *ndev); static s32 wl_dongle_scantime(struct net_device *ndev, s32 scan_assoc_time, s32 scan_unassoc_time, s32 scan_passive_time); static s32 wl_config_dongle(struct wl_priv *wl, bool need_lock); static s32 wl_dongle_roam(struct net_device *ndev, u32 roamvar, u32 bcn_timeout); /* ** iscan handler */ static void wl_iscan_timer(unsigned long data); static void wl_term_iscan(struct wl_priv *wl); static s32 wl_init_iscan(struct wl_priv *wl); static s32 wl_iscan_thread(void *data); static s32 wl_dev_iovar_setbuf(struct net_device *dev, s8 *iovar, void *param, s32 paramlen, void *bufptr, s32 buflen); static s32 wl_dev_iovar_getbuf(struct net_device *dev, s8 *iovar, void *param, s32 paramlen, void *bufptr, s32 buflen); static s32 wl_run_iscan(struct wl_iscan_ctrl *iscan, struct wlc_ssid *ssid, u16 action); static s32 wl_do_iscan(struct wl_priv *wl); static s32 wl_wakeup_iscan(struct wl_iscan_ctrl *iscan); static s32 wl_invoke_iscan(struct wl_priv *wl); static s32 wl_get_iscan_results(struct wl_iscan_ctrl *iscan, u32 *status, struct wl_scan_results **bss_list); static void wl_notify_iscan_complete(struct wl_iscan_ctrl *iscan, bool aborted); static void wl_init_iscan_eloop(struct wl_iscan_eloop *el); static s32 wl_iscan_done(struct wl_priv *wl); static s32 wl_iscan_pending(struct wl_priv *wl); static s32 wl_iscan_inprogress(struct wl_priv *wl); static s32 wl_iscan_aborted(struct wl_priv *wl); /* ** fw/nvram downloading handler */ static void wl_init_fw(struct wl_fw_ctrl *fw); /* * find most significant bit set */ static __used u32 wl_find_msb(u16 bit16); /* * update pmklist to dongle */ static __used s32 wl_update_pmklist(struct net_device *dev, struct wl_pmk_list *pmk_list, s32 err); static void wl_set_mpc(struct net_device *ndev, int mpc); /* * debufs support */ static int wl_debugfs_add_netdev_params(struct wl_priv *wl); static void wl_debugfs_remove_netdev(struct wl_priv *wl); #define WL_PRIV_GET() \ ({ \ struct wl_iface *ci; \ if (unlikely(!(wl_cfg80211_dev && \ (ci = wl_get_drvdata(wl_cfg80211_dev))))) { \ WL_ERR("wl_cfg80211_dev is unavailable\n"); \ BUG(); \ } \ ci_to_wl(ci); \ }) #define CHECK_SYS_UP() \ do { \ struct wl_priv *wl = wiphy_to_wl(wiphy); \ if (unlikely(!test_bit(WL_STATUS_READY, &wl->status))) { \ WL_INFO("device is not ready : status (%d)\n", \ (int)wl->status); \ return -EIO; \ } \ } while (0) extern int dhd_wait_pend8021x(struct net_device *dev); #define CHAN2G(_channel, _freq, _flags) { \ .band = IEEE80211_BAND_2GHZ, \ .center_freq = (_freq), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel, _flags) { \ .band = IEEE80211_BAND_5GHZ, \ .center_freq = 5000 + (5 * (_channel)), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define RATE_TO_BASE100KBPS(rate) (((rate) * 10) / 2) #define RATETAB_ENT(_rateid, _flags) \ { \ .bitrate = RATE_TO_BASE100KBPS(_rateid), \ .hw_value = (_rateid), \ .flags = (_flags), \ } static struct ieee80211_rate __wl_rates[] = { RATETAB_ENT(WLC_RATE_1M, 0), RATETAB_ENT(WLC_RATE_2M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(WLC_RATE_5M5, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(WLC_RATE_11M, IEEE80211_RATE_SHORT_PREAMBLE), RATETAB_ENT(WLC_RATE_6M, 0), RATETAB_ENT(WLC_RATE_9M, 0), RATETAB_ENT(WLC_RATE_12M, 0), RATETAB_ENT(WLC_RATE_18M, 0), RATETAB_ENT(WLC_RATE_24M, 0), RATETAB_ENT(WLC_RATE_36M, 0), RATETAB_ENT(WLC_RATE_48M, 0), RATETAB_ENT(WLC_RATE_54M, 0), }; #define wl_a_rates (__wl_rates + 4) #define wl_a_rates_size 8 #define wl_g_rates (__wl_rates + 0) #define wl_g_rates_size 12 static struct ieee80211_channel __wl_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0), }; static struct ieee80211_channel __wl_5ghz_a_channels[] = { CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(52, 0), CHAN5G(56, 0), CHAN5G(60, 0), CHAN5G(64, 0), CHAN5G(100, 0), CHAN5G(104, 0), CHAN5G(108, 0), CHAN5G(112, 0), CHAN5G(116, 0), CHAN5G(120, 0), CHAN5G(124, 0), CHAN5G(128, 0), CHAN5G(132, 0), CHAN5G(136, 0), CHAN5G(140, 0), CHAN5G(149, 0), CHAN5G(153, 0), CHAN5G(157, 0), CHAN5G(161, 0), CHAN5G(165, 0), CHAN5G(184, 0), CHAN5G(188, 0), CHAN5G(192, 0), CHAN5G(196, 0), CHAN5G(200, 0), CHAN5G(204, 0), CHAN5G(208, 0), CHAN5G(212, 0), CHAN5G(216, 0), }; static struct ieee80211_channel __wl_5ghz_n_channels[] = { CHAN5G(32, 0), CHAN5G(34, 0), CHAN5G(36, 0), CHAN5G(38, 0), CHAN5G(40, 0), CHAN5G(42, 0), CHAN5G(44, 0), CHAN5G(46, 0), CHAN5G(48, 0), CHAN5G(50, 0), CHAN5G(52, 0), CHAN5G(54, 0), CHAN5G(56, 0), CHAN5G(58, 0), CHAN5G(60, 0), CHAN5G(62, 0), CHAN5G(64, 0), CHAN5G(66, 0), CHAN5G(68, 0), CHAN5G(70, 0), CHAN5G(72, 0), CHAN5G(74, 0), CHAN5G(76, 0), CHAN5G(78, 0), CHAN5G(80, 0), CHAN5G(82, 0), CHAN5G(84, 0), CHAN5G(86, 0), CHAN5G(88, 0), CHAN5G(90, 0), CHAN5G(92, 0), CHAN5G(94, 0), CHAN5G(96, 0), CHAN5G(98, 0), CHAN5G(100, 0), CHAN5G(102, 0), CHAN5G(104, 0), CHAN5G(106, 0), CHAN5G(108, 0), CHAN5G(110, 0), CHAN5G(112, 0), CHAN5G(114, 0), CHAN5G(116, 0), CHAN5G(118, 0), CHAN5G(120, 0), CHAN5G(122, 0), CHAN5G(124, 0), CHAN5G(126, 0), CHAN5G(128, 0), CHAN5G(130, 0), CHAN5G(132, 0), CHAN5G(134, 0), CHAN5G(136, 0), CHAN5G(138, 0), CHAN5G(140, 0), CHAN5G(142, 0), CHAN5G(144, 0), CHAN5G(145, 0), CHAN5G(146, 0), CHAN5G(147, 0), CHAN5G(148, 0), CHAN5G(149, 0), CHAN5G(150, 0), CHAN5G(151, 0), CHAN5G(152, 0), CHAN5G(153, 0), CHAN5G(154, 0), CHAN5G(155, 0), CHAN5G(156, 0), CHAN5G(157, 0), CHAN5G(158, 0), CHAN5G(159, 0), CHAN5G(160, 0), CHAN5G(161, 0), CHAN5G(162, 0), CHAN5G(163, 0), CHAN5G(164, 0), CHAN5G(165, 0), CHAN5G(166, 0), CHAN5G(168, 0), CHAN5G(170, 0), CHAN5G(172, 0), CHAN5G(174, 0), CHAN5G(176, 0), CHAN5G(178, 0), CHAN5G(180, 0), CHAN5G(182, 0), CHAN5G(184, 0), CHAN5G(186, 0), CHAN5G(188, 0), CHAN5G(190, 0), CHAN5G(192, 0), CHAN5G(194, 0), CHAN5G(196, 0), CHAN5G(198, 0), CHAN5G(200, 0), CHAN5G(202, 0), CHAN5G(204, 0), CHAN5G(206, 0), CHAN5G(208, 0), CHAN5G(210, 0), CHAN5G(212, 0), CHAN5G(214, 0), CHAN5G(216, 0), CHAN5G(218, 0), CHAN5G(220, 0), CHAN5G(222, 0), CHAN5G(224, 0), CHAN5G(226, 0), CHAN5G(228, 0), }; static struct ieee80211_supported_band __wl_band_2ghz = { .band = IEEE80211_BAND_2GHZ, .channels = __wl_2ghz_channels, .n_channels = ARRAY_SIZE(__wl_2ghz_channels), .bitrates = wl_g_rates, .n_bitrates = wl_g_rates_size, }; static struct ieee80211_supported_band __wl_band_5ghz_a = { .band = IEEE80211_BAND_5GHZ, .channels = __wl_5ghz_a_channels, .n_channels = ARRAY_SIZE(__wl_5ghz_a_channels), .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size, }; static struct ieee80211_supported_band __wl_band_5ghz_n = { .band = IEEE80211_BAND_5GHZ, .channels = __wl_5ghz_n_channels, .n_channels = ARRAY_SIZE(__wl_5ghz_n_channels), .bitrates = wl_a_rates, .n_bitrates = wl_a_rates_size, }; static const u32 __wl_cipher_suites[] = { WLAN_CIPHER_SUITE_WEP40, WLAN_CIPHER_SUITE_WEP104, WLAN_CIPHER_SUITE_TKIP, WLAN_CIPHER_SUITE_CCMP, WLAN_CIPHER_SUITE_AES_CMAC, }; static void swap_key_from_BE(struct wl_wsec_key *key) { key->index = cpu_to_le32(key->index); key->len = cpu_to_le32(key->len); key->algo = cpu_to_le32(key->algo); key->flags = cpu_to_le32(key->flags); key->rxiv.hi = cpu_to_le32(key->rxiv.hi); key->rxiv.lo = cpu_to_le16(key->rxiv.lo); key->iv_initialized = cpu_to_le32(key->iv_initialized); } static void swap_key_to_BE(struct wl_wsec_key *key) { key->index = le32_to_cpu(key->index); key->len = le32_to_cpu(key->len); key->algo = le32_to_cpu(key->algo); key->flags = le32_to_cpu(key->flags); key->rxiv.hi = le32_to_cpu(key->rxiv.hi); key->rxiv.lo = le16_to_cpu(key->rxiv.lo); key->iv_initialized = le32_to_cpu(key->iv_initialized); } static s32 wl_dev_ioctl(struct net_device *dev, u32 cmd, void *arg, u32 len) { struct ifreq ifr; struct wl_ioctl ioc; mm_segment_t fs; s32 err = 0; memset(&ioc, 0, sizeof(ioc)); ioc.cmd = cmd; ioc.buf = arg; ioc.len = len; strcpy(ifr.ifr_name, dev->name); ifr.ifr_data = (caddr_t)&ioc; fs = get_fs(); set_fs(get_ds()); err = dev->netdev_ops->ndo_do_ioctl(dev, &ifr, SIOCDEVPRIVATE); set_fs(fs); return err; } static s32 wl_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct wl_priv *wl = wiphy_to_wl(wiphy); struct wireless_dev *wdev; s32 infra = 0; s32 err = 0; WL_TRACE("Enter\n"); CHECK_SYS_UP(); switch (type) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: WL_ERR("type (%d) : currently we do not support this type\n", type); return -EOPNOTSUPP; case NL80211_IFTYPE_ADHOC: wl->conf->mode = WL_MODE_IBSS; infra = 0; break; case NL80211_IFTYPE_STATION: wl->conf->mode = WL_MODE_BSS; infra = 1; break; default: err = -EINVAL; goto done; } infra = cpu_to_le32(infra); err = wl_dev_ioctl(ndev, WLC_SET_INFRA, &infra, sizeof(infra)); if (unlikely(err)) { WL_ERR("WLC_SET_INFRA error (%d)\n", err); err = -EAGAIN; } else { wdev = ndev->ieee80211_ptr; wdev->iftype = type; } WL_INFO("IF Type = %s\n", (wl->conf->mode == WL_MODE_IBSS) ? "Adhoc" : "Infra"); done: WL_TRACE("Exit\n"); return err; } static void wl_iscan_prep(struct wl_scan_params *params, struct wlc_ssid *ssid) { memcpy(params->bssid, ether_bcast, ETH_ALEN); params->bss_type = DOT11_BSSTYPE_ANY; params->scan_type = 0; params->nprobes = -1; params->active_time = -1; params->passive_time = -1; params->home_time = -1; params->channel_num = 0; params->nprobes = cpu_to_le32(params->nprobes); params->active_time = cpu_to_le32(params->active_time); params->passive_time = cpu_to_le32(params->passive_time); params->home_time = cpu_to_le32(params->home_time); if (ssid && ssid->SSID_len) memcpy(¶ms->ssid, ssid, sizeof(wlc_ssid_t)); } static s32 wl_dev_iovar_setbuf(struct net_device *dev, s8 * iovar, void *param, s32 paramlen, void *bufptr, s32 buflen) { s32 iolen; iolen = bcm_mkiovar(iovar, param, paramlen, bufptr, buflen); BUG_ON(!iolen); return wl_dev_ioctl(dev, WLC_SET_VAR, bufptr, iolen); } static s32 wl_dev_iovar_getbuf(struct net_device *dev, s8 * iovar, void *param, s32 paramlen, void *bufptr, s32 buflen) { s32 iolen; iolen = bcm_mkiovar(iovar, param, paramlen, bufptr, buflen); BUG_ON(!iolen); return wl_dev_ioctl(dev, WLC_GET_VAR, bufptr, buflen); } static s32 wl_run_iscan(struct wl_iscan_ctrl *iscan, struct wlc_ssid *ssid, u16 action) { s32 params_size = (WL_SCAN_PARAMS_FIXED_SIZE + offsetof(wl_iscan_params_t, params)); struct wl_iscan_params *params; s32 err = 0; if (ssid && ssid->SSID_len) params_size += sizeof(struct wlc_ssid); params = kzalloc(params_size, GFP_KERNEL); if (unlikely(!params)) return -ENOMEM; BUG_ON(params_size >= WLC_IOCTL_SMLEN); wl_iscan_prep(¶ms->params, ssid); params->version = cpu_to_le32(ISCAN_REQ_VERSION); params->action = cpu_to_le16(action); params->scan_duration = cpu_to_le16(0); /* params_size += offsetof(wl_iscan_params_t, params); */ err = wl_dev_iovar_setbuf(iscan->dev, "iscan", params, params_size, iscan->ioctl_buf, WLC_IOCTL_SMLEN); if (unlikely(err)) { if (err == -EBUSY) { WL_INFO("system busy : iscan canceled\n"); } else { WL_ERR("error (%d)\n", err); } } kfree(params); return err; } static s32 wl_do_iscan(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl_to_iscan(wl); struct net_device *ndev = wl_to_ndev(wl); struct wlc_ssid ssid; s32 passive_scan; s32 err = 0; /* Broadcast scan by default */ memset(&ssid, 0, sizeof(ssid)); iscan->state = WL_ISCAN_STATE_SCANING; passive_scan = wl->active_scan ? 0 : 1; err = wl_dev_ioctl(wl_to_ndev(wl), WLC_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan)); if (unlikely(err)) { WL_ERR("error (%d)\n", err); return err; } wl_set_mpc(ndev, 0); wl->iscan_kickstart = true; wl_run_iscan(iscan, &ssid, WL_SCAN_ACTION_START); mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 __wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request, struct cfg80211_ssid *this_ssid) { struct wl_priv *wl = ndev_to_wl(ndev); struct cfg80211_ssid *ssids; struct wl_scan_req *sr = wl_to_sr(wl); s32 passive_scan; bool iscan_req; bool spec_scan; s32 err = 0; if (unlikely(test_bit(WL_STATUS_SCANNING, &wl->status))) { WL_ERR("Scanning already : status (%d)\n", (int)wl->status); return -EAGAIN; } if (unlikely(test_bit(WL_STATUS_SCAN_ABORTING, &wl->status))) { WL_ERR("Scanning being aborted : status (%d)\n", (int)wl->status); return -EAGAIN; } if (test_bit(WL_STATUS_CONNECTING, &wl->status)) { WL_ERR("Connecting : status (%d)\n", (int)wl->status); return -EAGAIN; } iscan_req = false; spec_scan = false; if (request) { /* scan bss */ ssids = request->ssids; if (wl->iscan_on && (!ssids || !ssids->ssid_len)) iscan_req = true; } else { /* scan in ibss */ /* we don't do iscan in ibss */ ssids = this_ssid; } wl->scan_request = request; set_bit(WL_STATUS_SCANNING, &wl->status); if (iscan_req) { err = wl_do_iscan(wl); if (likely(!err)) return err; else goto scan_out; } else { WL_SCAN("ssid \"%s\", ssid_len (%d)\n", ssids->ssid, ssids->ssid_len); memset(&sr->ssid, 0, sizeof(sr->ssid)); sr->ssid.SSID_len = min_t(u8, sizeof(sr->ssid.SSID), ssids->ssid_len); if (sr->ssid.SSID_len) { memcpy(sr->ssid.SSID, ssids->ssid, sr->ssid.SSID_len); sr->ssid.SSID_len = cpu_to_le32(sr->ssid.SSID_len); spec_scan = true; } else { WL_SCAN("Broadcast scan\n"); } passive_scan = wl->active_scan ? 0 : 1; err = wl_dev_ioctl(ndev, WLC_SET_PASSIVE_SCAN, &passive_scan, sizeof(passive_scan)); if (unlikely(err)) { WL_ERR("WLC_SET_PASSIVE_SCAN error (%d)\n", err); goto scan_out; } wl_set_mpc(ndev, 0); err = wl_dev_ioctl(ndev, WLC_SCAN, &sr->ssid, sizeof(sr->ssid)); if (err) { if (err == -EBUSY) { WL_INFO("system busy : scan for \"%s\" canceled\n", sr->ssid.SSID); } else { WL_ERR("WLC_SCAN error (%d)\n", err); } wl_set_mpc(ndev, 1); goto scan_out; } } return 0; scan_out: clear_bit(WL_STATUS_SCANNING, &wl->status); wl->scan_request = NULL; return err; } static s32 wl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_scan_request *request) { s32 err = 0; WL_TRACE("Enter\n"); CHECK_SYS_UP(); err = __wl_cfg80211_scan(wiphy, ndev, request, NULL); if (unlikely(err)) WL_ERR("scan error (%d)\n", err); WL_TRACE("Exit\n"); return err; } static s32 wl_dev_intvar_set(struct net_device *dev, s8 *name, s32 val) { s8 buf[WLC_IOCTL_SMLEN]; u32 len; s32 err = 0; val = cpu_to_le32(val); len = bcm_mkiovar(name, (char *)(&val), sizeof(val), buf, sizeof(buf)); BUG_ON(!len); err = wl_dev_ioctl(dev, WLC_SET_VAR, buf, len); if (unlikely(err)) WL_ERR("error (%d)\n", err); return err; } static s32 wl_dev_intvar_get(struct net_device *dev, s8 *name, s32 *retval) { union { s8 buf[WLC_IOCTL_SMLEN]; s32 val; } var; u32 len; u32 data_null; s32 err = 0; len = bcm_mkiovar(name, (char *)(&data_null), 0, (char *)(&var), sizeof(var.buf)); BUG_ON(!len); err = wl_dev_ioctl(dev, WLC_GET_VAR, &var, len); if (unlikely(err)) WL_ERR("error (%d)\n", err); *retval = le32_to_cpu(var.val); return err; } static s32 wl_set_rts(struct net_device *dev, u32 rts_threshold) { s32 err = 0; err = wl_dev_intvar_set(dev, "rtsthresh", rts_threshold); if (unlikely(err)) WL_ERR("Error (%d)\n", err); return err; } static s32 wl_set_frag(struct net_device *dev, u32 frag_threshold) { s32 err = 0; err = wl_dev_intvar_set(dev, "fragthresh", frag_threshold); if (unlikely(err)) WL_ERR("Error (%d)\n", err); return err; } static s32 wl_set_retry(struct net_device *dev, u32 retry, bool l) { s32 err = 0; u32 cmd = (l ? WLC_SET_LRL : WLC_SET_SRL); retry = cpu_to_le32(retry); err = wl_dev_ioctl(dev, cmd, &retry, sizeof(retry)); if (unlikely(err)) { WL_ERR("cmd (%d) , error (%d)\n", cmd, err); return err; } return err; } static s32 wl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct wl_priv *wl = wiphy_to_wl(wiphy); struct net_device *ndev = wl_to_ndev(wl); s32 err = 0; WL_TRACE("Enter\n"); CHECK_SYS_UP(); if (changed & WIPHY_PARAM_RTS_THRESHOLD && (wl->conf->rts_threshold != wiphy->rts_threshold)) { wl->conf->rts_threshold = wiphy->rts_threshold; err = wl_set_rts(ndev, wl->conf->rts_threshold); if (!err) goto done; } if (changed & WIPHY_PARAM_FRAG_THRESHOLD && (wl->conf->frag_threshold != wiphy->frag_threshold)) { wl->conf->frag_threshold = wiphy->frag_threshold; err = wl_set_frag(ndev, wl->conf->frag_threshold); if (!err) goto done; } if (changed & WIPHY_PARAM_RETRY_LONG && (wl->conf->retry_long != wiphy->retry_long)) { wl->conf->retry_long = wiphy->retry_long; err = wl_set_retry(ndev, wl->conf->retry_long, true); if (!err) goto done; } if (changed & WIPHY_PARAM_RETRY_SHORT && (wl->conf->retry_short != wiphy->retry_short)) { wl->conf->retry_short = wiphy->retry_short; err = wl_set_retry(ndev, wl->conf->retry_short, false); if (!err) goto done; } done: WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_join_ibss(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_ibss_params *params) { struct wl_priv *wl = wiphy_to_wl(wiphy); struct wl_join_params join_params; size_t join_params_size = 0; s32 err = 0; s32 wsec = 0; s32 bcnprd; WL_TRACE("Enter\n"); CHECK_SYS_UP(); if (params->ssid) WL_CONN("SSID: %s\n", params->ssid); else { WL_CONN("SSID: NULL, Not supported\n"); return -EOPNOTSUPP; } if (params->bssid) WL_CONN("BSSID: %02X %02X %02X %02X %02X %02X\n", params->bssid[0], params->bssid[1], params->bssid[2], params->bssid[3], params->bssid[4], params->bssid[5]); else WL_CONN("No BSSID specified\n"); if (params->channel) WL_CONN("channel: %d\n", params->channel->center_freq); else WL_CONN("no channel specified\n"); if (params->channel_fixed) WL_CONN("fixed channel required\n"); else WL_CONN("no fixed channel required\n"); if (params->ie && params->ie_len) WL_CONN("ie len: %d\n", params->ie_len); else WL_CONN("no ie specified\n"); if (params->beacon_interval) WL_CONN("beacon interval: %d\n", params->beacon_interval); else WL_CONN("no beacon interval specified\n"); if (params->basic_rates) WL_CONN("basic rates: %08X\n", params->basic_rates); else WL_CONN("no basic rates specified\n"); if (params->privacy) WL_CONN("privacy required\n"); else WL_CONN("no privacy required\n"); /* Configure Privacy for starter */ if (params->privacy) wsec |= WEP_ENABLED; err = wl_dev_intvar_set(dev, "wsec", wsec); if (unlikely(err)) { WL_ERR("wsec failed (%d)\n", err); goto done; } /* Configure Beacon Interval for starter */ if (params->beacon_interval) bcnprd = cpu_to_le32(params->beacon_interval); else bcnprd = cpu_to_le32(100); err = wl_dev_ioctl(dev, WLC_SET_BCNPRD, &bcnprd, sizeof(bcnprd)); if (unlikely(err)) { WL_ERR("WLC_SET_BCNPRD failed (%d)\n", err); goto done; } /* Configure required join parameter */ memset(&join_params, 0, sizeof(wl_join_params_t)); /* SSID */ join_params.ssid.SSID_len = (params->ssid_len > 32) ? 32 : params->ssid_len; memcpy(join_params.ssid.SSID, params->ssid, join_params.ssid.SSID_len); join_params.ssid.SSID_len = cpu_to_le32(join_params.ssid.SSID_len); join_params_size = sizeof(join_params.ssid); wl_update_prof(wl, NULL, &join_params.ssid, WL_PROF_SSID); /* BSSID */ if (params->bssid) { memcpy(join_params.params.bssid, params->bssid, ETH_ALEN); join_params_size = sizeof(join_params.ssid) + WL_ASSOC_PARAMS_FIXED_SIZE; } else { memcpy(join_params.params.bssid, ether_bcast, ETH_ALEN); } wl_update_prof(wl, NULL, &join_params.params.bssid, WL_PROF_BSSID); /* Channel */ if (params->channel) { u32 target_channel; wl->channel = ieee80211_frequency_to_channel( params->channel->center_freq); if (params->channel_fixed) { /* adding chanspec */ wl_ch_to_chanspec(wl->channel, &join_params, &join_params_size); } /* set channel for starter */ target_channel = cpu_to_le32(wl->channel); err = wl_dev_ioctl(dev, WLC_SET_CHANNEL, &target_channel, sizeof(target_channel)); if (unlikely(err)) { WL_ERR("WLC_SET_CHANNEL failed (%d)\n", err); goto done; } } else wl->channel = 0; wl->ibss_starter = false; err = wl_dev_ioctl(dev, WLC_SET_SSID, &join_params, join_params_size); if (unlikely(err)) { WL_ERR("WLC_SET_SSID failed (%d)\n", err); goto done; } set_bit(WL_STATUS_CONNECTING, &wl->status); done: WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_leave_ibss(struct wiphy *wiphy, struct net_device *dev) { struct wl_priv *wl = wiphy_to_wl(wiphy); s32 err = 0; WL_TRACE("Enter\n"); CHECK_SYS_UP(); wl_link_down(wl); WL_TRACE("Exit\n"); return err; } static s32 wl_set_wpa_version(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = ndev_to_wl(dev); struct wl_security *sec; s32 val = 0; s32 err = 0; if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_1) val = WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED; else if (sme->crypto.wpa_versions & NL80211_WPA_VERSION_2) val = WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED; else val = WPA_AUTH_DISABLED; WL_CONN("setting wpa_auth to 0x%0x\n", val); err = wl_dev_intvar_set(dev, "wpa_auth", val); if (unlikely(err)) { WL_ERR("set wpa_auth failed (%d)\n", err); return err; } sec = wl_read_prof(wl, WL_PROF_SEC); sec->wpa_versions = sme->crypto.wpa_versions; return err; } static s32 wl_set_auth_type(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = ndev_to_wl(dev); struct wl_security *sec; s32 val = 0; s32 err = 0; switch (sme->auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: val = 0; WL_CONN("open system\n"); break; case NL80211_AUTHTYPE_SHARED_KEY: val = 1; WL_CONN("shared key\n"); break; case NL80211_AUTHTYPE_AUTOMATIC: val = 2; WL_CONN("automatic\n"); break; case NL80211_AUTHTYPE_NETWORK_EAP: WL_CONN("network eap\n"); default: val = 2; WL_ERR("invalid auth type (%d)\n", sme->auth_type); break; } err = wl_dev_intvar_set(dev, "auth", val); if (unlikely(err)) { WL_ERR("set auth failed (%d)\n", err); return err; } sec = wl_read_prof(wl, WL_PROF_SEC); sec->auth_type = sme->auth_type; return err; } static s32 wl_set_set_cipher(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = ndev_to_wl(dev); struct wl_security *sec; s32 pval = 0; s32 gval = 0; s32 err = 0; if (sme->crypto.n_ciphers_pairwise) { switch (sme->crypto.ciphers_pairwise[0]) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: pval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: pval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: pval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: pval = AES_ENABLED; break; default: WL_ERR("invalid cipher pairwise (%d)\n", sme->crypto.ciphers_pairwise[0]); return -EINVAL; } } if (sme->crypto.cipher_group) { switch (sme->crypto.cipher_group) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: gval = WEP_ENABLED; break; case WLAN_CIPHER_SUITE_TKIP: gval = TKIP_ENABLED; break; case WLAN_CIPHER_SUITE_CCMP: gval = AES_ENABLED; break; case WLAN_CIPHER_SUITE_AES_CMAC: gval = AES_ENABLED; break; default: WL_ERR("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } WL_CONN("pval (%d) gval (%d)\n", pval, gval); err = wl_dev_intvar_set(dev, "wsec", pval | gval); if (unlikely(err)) { WL_ERR("error (%d)\n", err); return err; } sec = wl_read_prof(wl, WL_PROF_SEC); sec->cipher_pairwise = sme->crypto.ciphers_pairwise[0]; sec->cipher_group = sme->crypto.cipher_group; return err; } static s32 wl_set_key_mgmt(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = ndev_to_wl(dev); struct wl_security *sec; s32 val = 0; s32 err = 0; if (sme->crypto.n_akm_suites) { err = wl_dev_intvar_get(dev, "wpa_auth", &val); if (unlikely(err)) { WL_ERR("could not get wpa_auth (%d)\n", err); return err; } if (val & (WPA_AUTH_PSK | WPA_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA_AUTH_PSK; break; default: WL_ERR("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } else if (val & (WPA2_AUTH_PSK | WPA2_AUTH_UNSPECIFIED)) { switch (sme->crypto.akm_suites[0]) { case WLAN_AKM_SUITE_8021X: val = WPA2_AUTH_UNSPECIFIED; break; case WLAN_AKM_SUITE_PSK: val = WPA2_AUTH_PSK; break; default: WL_ERR("invalid cipher group (%d)\n", sme->crypto.cipher_group); return -EINVAL; } } WL_CONN("setting wpa_auth to %d\n", val); err = wl_dev_intvar_set(dev, "wpa_auth", val); if (unlikely(err)) { WL_ERR("could not set wpa_auth (%d)\n", err); return err; } } sec = wl_read_prof(wl, WL_PROF_SEC); sec->wpa_auth = sme->crypto.akm_suites[0]; return err; } static s32 wl_set_set_sharedkey(struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = ndev_to_wl(dev); struct wl_security *sec; struct wl_wsec_key key; s32 val; s32 err = 0; WL_CONN("key len (%d)\n", sme->key_len); if (sme->key_len) { sec = wl_read_prof(wl, WL_PROF_SEC); WL_CONN("wpa_versions 0x%x cipher_pairwise 0x%x\n", sec->wpa_versions, sec->cipher_pairwise); if (! (sec->wpa_versions & (NL80211_WPA_VERSION_1 | NL80211_WPA_VERSION_2)) && (sec->cipher_pairwise & (WLAN_CIPHER_SUITE_WEP40 | WLAN_CIPHER_SUITE_WEP104))) { memset(&key, 0, sizeof(key)); key.len = (u32) sme->key_len; key.index = (u32) sme->key_idx; if (unlikely(key.len > sizeof(key.data))) { WL_ERR("Too long key length (%u)\n", key.len); return -EINVAL; } memcpy(key.data, sme->key, key.len); key.flags = WL_PRIMARY_KEY; switch (sec->cipher_pairwise) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; break; default: WL_ERR("Invalid algorithm (%d)\n", sme->crypto.ciphers_pairwise[0]); return -EINVAL; } /* Set the new key/index */ WL_CONN("key length (%d) key index (%d) algo (%d)\n", key.len, key.index, key.algo); WL_CONN("key \"%s\"\n", key.data); swap_key_from_BE(&key); err = wl_dev_ioctl(dev, WLC_SET_KEY, &key, sizeof(key)); if (unlikely(err)) { WL_ERR("WLC_SET_KEY error (%d)\n", err); return err; } if (sec->auth_type == NL80211_AUTHTYPE_OPEN_SYSTEM) { WL_CONN("set auth_type to shared key\n"); val = 1; /* shared key */ err = wl_dev_intvar_set(dev, "auth", val); if (unlikely(err)) { WL_ERR("set auth failed (%d)\n", err); return err; } } } } return err; } static s32 wl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_connect_params *sme) { struct wl_priv *wl = wiphy_to_wl(wiphy); struct ieee80211_channel *chan = sme->channel; struct wl_join_params join_params; size_t join_params_size; s32 err = 0; WL_TRACE("Enter\n"); CHECK_SYS_UP(); if (unlikely(!sme->ssid)) { WL_ERR("Invalid ssid\n"); return -EOPNOTSUPP; } if (chan) { wl->channel = ieee80211_frequency_to_channel(chan->center_freq); WL_CONN("channel (%d), center_req (%d)\n", wl->channel, chan->center_freq); } else wl->channel = 0; WL_INFO("ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len); err = wl_set_wpa_version(dev, sme); if (unlikely(err)) return err; err = wl_set_auth_type(dev, sme); if (unlikely(err)) return err; err = wl_set_set_cipher(dev, sme); if (unlikely(err)) return err; err = wl_set_key_mgmt(dev, sme); if (unlikely(err)) return err; err = wl_set_set_sharedkey(dev, sme); if (unlikely(err)) return err; wl_update_prof(wl, NULL, sme->bssid, WL_PROF_BSSID); /* ** Join with specific BSSID and cached SSID ** If SSID is zero join based on BSSID only */ memset(&join_params, 0, sizeof(join_params)); join_params_size = sizeof(join_params.ssid); join_params.ssid.SSID_len = min(sizeof(join_params.ssid.SSID), sme->ssid_len); memcpy(&join_params.ssid.SSID, sme->ssid, join_params.ssid.SSID_len); join_params.ssid.SSID_len = cpu_to_le32(join_params.ssid.SSID_len); wl_update_prof(wl, NULL, &join_params.ssid, WL_PROF_SSID); if (sme->bssid) memcpy(join_params.params.bssid, sme->bssid, ETH_ALEN); else memcpy(join_params.params.bssid, ether_bcast, ETH_ALEN); if (join_params.ssid.SSID_len < IEEE80211_MAX_SSID_LEN) { WL_CONN("ssid \"%s\", len (%d)\n", join_params.ssid.SSID, join_params.ssid.SSID_len); } wl_ch_to_chanspec(wl->channel, &join_params, &join_params_size); err = wl_dev_ioctl(dev, WLC_SET_SSID, &join_params, join_params_size); if (unlikely(err)) { WL_ERR("error (%d)\n", err); return err; } set_bit(WL_STATUS_CONNECTING, &wl->status); WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *dev, u16 reason_code) { struct wl_priv *wl = wiphy_to_wl(wiphy); scb_val_t scbval; s32 err = 0; WL_TRACE("Enter. Reason code = %d\n", reason_code); CHECK_SYS_UP(); clear_bit(WL_STATUS_CONNECTED, &wl->status); scbval.val = reason_code; memcpy(&scbval.ea, wl_read_prof(wl, WL_PROF_BSSID), ETH_ALEN); scbval.val = cpu_to_le32(scbval.val); err = wl_dev_ioctl(dev, WLC_DISASSOC, &scbval, sizeof(scb_val_t)); if (unlikely(err)) WL_ERR("error (%d)\n", err); wl->link_up = false; WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_set_tx_power(struct wiphy *wiphy, enum nl80211_tx_power_setting type, s32 dbm) { struct wl_priv *wl = wiphy_to_wl(wiphy); struct net_device *ndev = wl_to_ndev(wl); u16 txpwrmw; s32 err = 0; s32 disable = 0; WL_TRACE("Enter\n"); CHECK_SYS_UP(); switch (type) { case NL80211_TX_POWER_AUTOMATIC: break; case NL80211_TX_POWER_LIMITED: if (dbm < 0) { WL_ERR("TX_POWER_LIMITED - dbm is negative\n"); err = -EINVAL; goto done; } break; case NL80211_TX_POWER_FIXED: if (dbm < 0) { WL_ERR("TX_POWER_FIXED - dbm is negative\n"); err = -EINVAL; goto done; } break; } /* Make sure radio is off or on as far as software is concerned */ disable = WL_RADIO_SW_DISABLE << 16; disable = cpu_to_le32(disable); err = wl_dev_ioctl(ndev, WLC_SET_RADIO, &disable, sizeof(disable)); if (unlikely(err)) WL_ERR("WLC_SET_RADIO error (%d)\n", err); if (dbm > 0xffff) txpwrmw = 0xffff; else txpwrmw = (u16) dbm; err = wl_dev_intvar_set(ndev, "qtxpower", (s32) (bcm_mw_to_qdbm(txpwrmw))); if (unlikely(err)) WL_ERR("qtxpower error (%d)\n", err); wl->conf->tx_power = dbm; done: WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_get_tx_power(struct wiphy *wiphy, s32 *dbm) { struct wl_priv *wl = wiphy_to_wl(wiphy); struct net_device *ndev = wl_to_ndev(wl); s32 txpwrdbm; u8 result; s32 err = 0; WL_TRACE("Enter\n"); CHECK_SYS_UP(); err = wl_dev_intvar_get(ndev, "qtxpower", &txpwrdbm); if (unlikely(err)) { WL_ERR("error (%d)\n", err); goto done; } result = (u8) (txpwrdbm & ~WL_TXPWR_OVERRIDE); *dbm = (s32) bcm_qdbm_to_mw(result); done: WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_config_default_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool unicast, bool multicast) { u32 index; s32 wsec; s32 err = 0; WL_TRACE("Enter\n"); WL_CONN("key index (%d)\n", key_idx); CHECK_SYS_UP(); err = wl_dev_ioctl(dev, WLC_GET_WSEC, &wsec, sizeof(wsec)); if (unlikely(err)) { WL_ERR("WLC_GET_WSEC error (%d)\n", err); goto done; } wsec = le32_to_cpu(wsec); if (wsec & WEP_ENABLED) { /* Just select a new current key */ index = (u32) key_idx; index = cpu_to_le32(index); err = wl_dev_ioctl(dev, WLC_SET_KEY_PRIMARY, &index, sizeof(index)); if (unlikely(err)) WL_ERR("error (%d)\n", err); } done: WL_TRACE("Exit\n"); return err; } static s32 wl_add_keyext(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, const u8 *mac_addr, struct key_params *params) { struct wl_wsec_key key; s32 err = 0; memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; /* Instead of bcast for ea address for default wep keys, driver needs it to be Null */ if (!is_multicast_ether_addr(mac_addr)) memcpy((char *)&key.ea, (void *)mac_addr, ETH_ALEN); key.len = (u32) params->key_len; /* check for key index change */ if (key.len == 0) { /* key delete */ swap_key_from_BE(&key); err = wl_dev_ioctl(dev, WLC_SET_KEY, &key, sizeof(key)); if (unlikely(err)) { WL_ERR("key delete error (%d)\n", err); return err; } } else { if (key.len > sizeof(key.data)) { WL_ERR("Invalid key length (%d)\n", key.len); return -EINVAL; } WL_CONN("Setting the key index %d\n", key.index); memcpy(key.data, params->key, key.len); if (params->cipher == WLAN_CIPHER_SUITE_TKIP) { u8 keybuf[8]; memcpy(keybuf, &key.data[24], sizeof(keybuf)); memcpy(&key.data[24], &key.data[16], sizeof(keybuf)); memcpy(&key.data[16], keybuf, sizeof(keybuf)); } /* if IW_ENCODE_EXT_RX_SEQ_VALID set */ if (params->seq && params->seq_len == 6) { /* rx iv */ u8 *ivptr; ivptr = (u8 *) params->seq; key.rxiv.hi = (ivptr[5] << 24) | (ivptr[4] << 16) | (ivptr[3] << 8) | ivptr[2]; key.rxiv.lo = (ivptr[1] << 8) | ivptr[0]; key.iv_initialized = true; } switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; WL_CONN("WLAN_CIPHER_SUITE_WEP40\n"); break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; WL_CONN("WLAN_CIPHER_SUITE_WEP104\n"); break; case WLAN_CIPHER_SUITE_TKIP: key.algo = CRYPTO_ALGO_TKIP; WL_CONN("WLAN_CIPHER_SUITE_TKIP\n"); break; case WLAN_CIPHER_SUITE_AES_CMAC: key.algo = CRYPTO_ALGO_AES_CCM; WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n"); break; case WLAN_CIPHER_SUITE_CCMP: key.algo = CRYPTO_ALGO_AES_CCM; WL_CONN("WLAN_CIPHER_SUITE_CCMP\n"); break; default: WL_ERR("Invalid cipher (0x%x)\n", params->cipher); return -EINVAL; } swap_key_from_BE(&key); dhd_wait_pend8021x(dev); err = wl_dev_ioctl(dev, WLC_SET_KEY, &key, sizeof(key)); if (unlikely(err)) { WL_ERR("WLC_SET_KEY error (%d)\n", err); return err; } } return err; } static s32 wl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, struct key_params *params) { struct wl_wsec_key key; s32 val; s32 wsec; s32 err = 0; u8 keybuf[8]; WL_TRACE("Enter\n"); WL_CONN("key index (%d)\n", key_idx); CHECK_SYS_UP(); if (mac_addr) { WL_TRACE("Exit"); return wl_add_keyext(wiphy, dev, key_idx, mac_addr, params); } memset(&key, 0, sizeof(key)); key.len = (u32) params->key_len; key.index = (u32) key_idx; if (unlikely(key.len > sizeof(key.data))) { WL_ERR("Too long key length (%u)\n", key.len); err = -EINVAL; goto done; } memcpy(key.data, params->key, key.len); key.flags = WL_PRIMARY_KEY; switch (params->cipher) { case WLAN_CIPHER_SUITE_WEP40: key.algo = CRYPTO_ALGO_WEP1; WL_CONN("WLAN_CIPHER_SUITE_WEP40\n"); break; case WLAN_CIPHER_SUITE_WEP104: key.algo = CRYPTO_ALGO_WEP128; WL_CONN("WLAN_CIPHER_SUITE_WEP104\n"); break; case WLAN_CIPHER_SUITE_TKIP: memcpy(keybuf, &key.data[24], sizeof(keybuf)); memcpy(&key.data[24], &key.data[16], sizeof(keybuf)); memcpy(&key.data[16], keybuf, sizeof(keybuf)); key.algo = CRYPTO_ALGO_TKIP; WL_CONN("WLAN_CIPHER_SUITE_TKIP\n"); break; case WLAN_CIPHER_SUITE_AES_CMAC: key.algo = CRYPTO_ALGO_AES_CCM; WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n"); break; case WLAN_CIPHER_SUITE_CCMP: key.algo = CRYPTO_ALGO_AES_CCM; WL_CONN("WLAN_CIPHER_SUITE_CCMP\n"); break; default: WL_ERR("Invalid cipher (0x%x)\n", params->cipher); err = -EINVAL; goto done; } /* Set the new key/index */ swap_key_from_BE(&key); err = wl_dev_ioctl(dev, WLC_SET_KEY, &key, sizeof(key)); if (unlikely(err)) { WL_ERR("WLC_SET_KEY error (%d)\n", err); goto done; } val = WEP_ENABLED; err = wl_dev_intvar_get(dev, "wsec", &wsec); if (unlikely(err)) { WL_ERR("get wsec error (%d)\n", err); goto done; } wsec &= ~(WEP_ENABLED); wsec |= val; err = wl_dev_intvar_set(dev, "wsec", wsec); if (unlikely(err)) { WL_ERR("set wsec error (%d)\n", err); goto done; } val = 1; /* assume shared key. otherwise 0 */ val = cpu_to_le32(val); err = wl_dev_ioctl(dev, WLC_SET_AUTH, &val, sizeof(val)); if (unlikely(err)) WL_ERR("WLC_SET_AUTH error (%d)\n", err); done: WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr) { struct wl_wsec_key key; s32 err = 0; s32 val; s32 wsec; WL_TRACE("Enter\n"); CHECK_SYS_UP(); memset(&key, 0, sizeof(key)); key.index = (u32) key_idx; key.flags = WL_PRIMARY_KEY; key.algo = CRYPTO_ALGO_OFF; WL_CONN("key index (%d)\n", key_idx); /* Set the new key/index */ swap_key_from_BE(&key); err = wl_dev_ioctl(dev, WLC_SET_KEY, &key, sizeof(key)); if (unlikely(err)) { if (err == -EINVAL) { if (key.index >= DOT11_MAX_DEFAULT_KEYS) /* we ignore this key index in this case */ WL_ERR("invalid key index (%d)\n", key_idx); } else WL_ERR("WLC_SET_KEY error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; goto done; } val = 0; err = wl_dev_intvar_get(dev, "wsec", &wsec); if (unlikely(err)) { WL_ERR("get wsec error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; goto done; } wsec &= ~(WEP_ENABLED); wsec |= val; err = wl_dev_intvar_set(dev, "wsec", wsec); if (unlikely(err)) { WL_ERR("set wsec error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; goto done; } val = 0; /* assume open key. otherwise 1 */ val = cpu_to_le32(val); err = wl_dev_ioctl(dev, WLC_SET_AUTH, &val, sizeof(val)); if (unlikely(err)) { WL_ERR("WLC_SET_AUTH error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; } done: WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx, bool pairwise, const u8 *mac_addr, void *cookie, void (*callback) (void *cookie, struct key_params * params)) { struct key_params params; struct wl_wsec_key key; struct wl_priv *wl = wiphy_to_wl(wiphy); struct wl_security *sec; s32 wsec; s32 err = 0; WL_TRACE("Enter\n"); WL_CONN("key index (%d)\n", key_idx); CHECK_SYS_UP(); memset(&key, 0, sizeof(key)); key.index = key_idx; swap_key_to_BE(&key); memset(¶ms, 0, sizeof(params)); params.key_len = (u8) min_t(u8, WLAN_MAX_KEY_LEN, key.len); memcpy(params.key, key.data, params.key_len); err = wl_dev_ioctl(dev, WLC_GET_WSEC, &wsec, sizeof(wsec)); if (unlikely(err)) { WL_ERR("WLC_GET_WSEC error (%d)\n", err); /* Ignore this error, may happen during DISASSOC */ err = -EAGAIN; goto done; } wsec = le32_to_cpu(wsec); switch (wsec) { case WEP_ENABLED: sec = wl_read_prof(wl, WL_PROF_SEC); if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP40) { params.cipher = WLAN_CIPHER_SUITE_WEP40; WL_CONN("WLAN_CIPHER_SUITE_WEP40\n"); } else if (sec->cipher_pairwise & WLAN_CIPHER_SUITE_WEP104) { params.cipher = WLAN_CIPHER_SUITE_WEP104; WL_CONN("WLAN_CIPHER_SUITE_WEP104\n"); } break; case TKIP_ENABLED: params.cipher = WLAN_CIPHER_SUITE_TKIP; WL_CONN("WLAN_CIPHER_SUITE_TKIP\n"); break; case AES_ENABLED: params.cipher = WLAN_CIPHER_SUITE_AES_CMAC; WL_CONN("WLAN_CIPHER_SUITE_AES_CMAC\n"); break; default: WL_ERR("Invalid algo (0x%x)\n", wsec); err = -EINVAL; goto done; } callback(cookie, ¶ms); done: WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_config_default_mgmt_key(struct wiphy *wiphy, struct net_device *dev, u8 key_idx) { WL_INFO("Not supported\n"); CHECK_SYS_UP(); return -EOPNOTSUPP; } static s32 wl_cfg80211_get_station(struct wiphy *wiphy, struct net_device *dev, u8 *mac, struct station_info *sinfo) { struct wl_priv *wl = wiphy_to_wl(wiphy); scb_val_t scb_val; int rssi; s32 rate; s32 err = 0; u8 *bssid = wl_read_prof(wl, WL_PROF_BSSID); WL_TRACE("Enter\n"); CHECK_SYS_UP(); if (unlikely (memcmp(mac, bssid, ETH_ALEN))) { WL_ERR("Wrong Mac address cfg_mac-%X:%X:%X:%X:%X:%X" "wl_bssid-%X:%X:%X:%X:%X:%X\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5], bssid[0], bssid[1], bssid[2], bssid[3], bssid[4], bssid[5]); err = -ENOENT; goto done; } /* Report the current tx rate */ err = wl_dev_ioctl(dev, WLC_GET_RATE, &rate, sizeof(rate)); if (err) { WL_ERR("Could not get rate (%d)\n", err); } else { rate = le32_to_cpu(rate); sinfo->filled |= STATION_INFO_TX_BITRATE; sinfo->txrate.legacy = rate * 5; WL_CONN("Rate %d Mbps\n", rate / 2); } if (test_bit(WL_STATUS_CONNECTED, &wl->status)) { scb_val.val = 0; err = wl_dev_ioctl(dev, WLC_GET_RSSI, &scb_val, sizeof(scb_val_t)); if (unlikely(err)) { WL_ERR("Could not get rssi (%d)\n", err); } rssi = le32_to_cpu(scb_val.val); sinfo->filled |= STATION_INFO_SIGNAL; sinfo->signal = rssi; WL_CONN("RSSI %d dBm\n", rssi); } done: WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, s32 timeout) { s32 pm; s32 err = 0; WL_TRACE("Enter\n"); CHECK_SYS_UP(); pm = enabled ? PM_FAST : PM_OFF; pm = cpu_to_le32(pm); WL_INFO("power save %s\n", (pm ? "enabled" : "disabled")); err = wl_dev_ioctl(dev, WLC_SET_PM, &pm, sizeof(pm)); if (unlikely(err)) { if (err == -ENODEV) WL_ERR("net_device is not ready yet\n"); else WL_ERR("error (%d)\n", err); } WL_TRACE("Exit\n"); return err; } static __used u32 wl_find_msb(u16 bit16) { u32 ret = 0; if (bit16 & 0xff00) { ret += 8; bit16 >>= 8; } if (bit16 & 0xf0) { ret += 4; bit16 >>= 4; } if (bit16 & 0xc) { ret += 2; bit16 >>= 2; } if (bit16 & 2) ret += bit16 & 2; else if (bit16) ret += bit16; return ret; } static s32 wl_cfg80211_set_bitrate_mask(struct wiphy *wiphy, struct net_device *dev, const u8 *addr, const struct cfg80211_bitrate_mask *mask) { struct wl_rateset rateset; s32 rate; s32 val; s32 err_bg; s32 err_a; u32 legacy; s32 err = 0; WL_TRACE("Enter\n"); CHECK_SYS_UP(); /* addr param is always NULL. ignore it */ /* Get current rateset */ err = wl_dev_ioctl(dev, WLC_GET_CURR_RATESET, &rateset, sizeof(rateset)); if (unlikely(err)) { WL_ERR("could not get current rateset (%d)\n", err); goto done; } rateset.count = le32_to_cpu(rateset.count); legacy = wl_find_msb(mask->control[IEEE80211_BAND_2GHZ].legacy); if (!legacy) legacy = wl_find_msb(mask->control[IEEE80211_BAND_5GHZ].legacy); val = wl_g_rates[legacy - 1].bitrate * 100000; if (val < rateset.count) /* Select rate by rateset index */ rate = rateset.rates[val] & 0x7f; else /* Specified rate in bps */ rate = val / 500000; WL_CONN("rate %d mbps\n", rate / 2); /* * * Set rate override, * Since the is a/b/g-blind, both a/bg_rate are enforced. */ err_bg = wl_dev_intvar_set(dev, "bg_rate", rate); err_a = wl_dev_intvar_set(dev, "a_rate", rate); if (unlikely(err_bg && err_a)) { WL_ERR("could not set fixed rate (%d) (%d)\n", err_bg, err_a); err = err_bg | err_a; } done: WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_resume(struct wiphy *wiphy) { struct wl_priv *wl = wiphy_to_wl(wiphy); struct net_device *ndev = wl_to_ndev(wl); /* * Check for WL_STATUS_READY before any function call which * could result is bus access. Don't block the resume for * any driver error conditions */ WL_TRACE("Enter\n"); #if defined(CONFIG_PM_SLEEP) atomic_set(&dhd_mmc_suspend, false); #endif /* defined(CONFIG_PM_SLEEP) */ if (test_bit(WL_STATUS_READY, &wl->status)) { /* Turn on Watchdog timer */ wl_os_wd_timer(ndev, dhd_watchdog_ms); wl_invoke_iscan(wiphy_to_wl(wiphy)); } WL_TRACE("Exit\n"); return 0; } static s32 wl_cfg80211_suspend(struct wiphy *wiphy) { struct wl_priv *wl = wiphy_to_wl(wiphy); struct net_device *ndev = wl_to_ndev(wl); WL_TRACE("Enter\n"); /* * Check for WL_STATUS_READY before any function call which * could result is bus access. Don't block the suspend for * any driver error conditions */ /* * While going to suspend if associated with AP disassociate * from AP to save power while system is in suspended state */ if (test_bit(WL_STATUS_CONNECTED, &wl->status) && test_bit(WL_STATUS_READY, &wl->status)) { WL_INFO("Disassociating from AP" " while entering suspend state\n"); wl_link_down(wl); /* * Make sure WPA_Supplicant receives all the event * generated due to DISASSOC call to the fw to keep * the state fw and WPA_Supplicant state consistent */ rtnl_unlock(); wl_delay(500); rtnl_lock(); } set_bit(WL_STATUS_SCAN_ABORTING, &wl->status); if (test_bit(WL_STATUS_READY, &wl->status)) wl_term_iscan(wl); if (wl->scan_request) { /* Indidate scan abort to cfg80211 layer */ WL_INFO("Terminating scan in progress\n"); cfg80211_scan_done(wl->scan_request, true); wl->scan_request = NULL; } clear_bit(WL_STATUS_SCANNING, &wl->status); clear_bit(WL_STATUS_SCAN_ABORTING, &wl->status); clear_bit(WL_STATUS_CONNECTING, &wl->status); clear_bit(WL_STATUS_CONNECTED, &wl->status); /* Inform SDIO stack not to switch off power to the chip */ sdioh_sdio_set_host_pm_flags(MMC_PM_KEEP_POWER); /* Turn off watchdog timer */ if (test_bit(WL_STATUS_READY, &wl->status)) { WL_INFO("Terminate watchdog timer and enable MPC\n"); wl_set_mpc(ndev, 1); wl_os_wd_timer(ndev, 0); } #if defined(CONFIG_PM_SLEEP) atomic_set(&dhd_mmc_suspend, true); #endif /* defined(CONFIG_PM_SLEEP) */ WL_TRACE("Exit\n"); return 0; } static __used s32 wl_update_pmklist(struct net_device *dev, struct wl_pmk_list *pmk_list, s32 err) { int i, j; WL_CONN("No of elements %d\n", pmk_list->pmkids.npmkid); for (i = 0; i < pmk_list->pmkids.npmkid; i++) { WL_CONN("PMKID[%d]: %pM =\n", i, &pmk_list->pmkids.pmkid[i].BSSID); for (j = 0; j < WLAN_PMKID_LEN; j++) WL_CONN("%02x\n", pmk_list->pmkids.pmkid[i].PMKID[j]); } if (likely(!err)) wl_dev_bufvar_set(dev, "pmkid_info", (char *)pmk_list, sizeof(*pmk_list)); return err; } static s32 wl_cfg80211_set_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa) { struct wl_priv *wl = wiphy_to_wl(wiphy); s32 err = 0; int i; WL_TRACE("Enter\n"); CHECK_SYS_UP(); for (i = 0; i < wl->pmk_list->pmkids.npmkid; i++) if (!memcmp(pmksa->bssid, &wl->pmk_list->pmkids.pmkid[i].BSSID, ETH_ALEN)) break; if (i < WL_NUM_PMKIDS_MAX) { memcpy(&wl->pmk_list->pmkids.pmkid[i].BSSID, pmksa->bssid, ETH_ALEN); memcpy(&wl->pmk_list->pmkids.pmkid[i].PMKID, pmksa->pmkid, WLAN_PMKID_LEN); if (i == wl->pmk_list->pmkids.npmkid) wl->pmk_list->pmkids.npmkid++; } else err = -EINVAL; WL_CONN("set_pmksa,IW_PMKSA_ADD - PMKID: %pM =\n", &wl->pmk_list->pmkids.pmkid[wl->pmk_list->pmkids.npmkid].BSSID); for (i = 0; i < WLAN_PMKID_LEN; i++) WL_CONN("%02x\n", wl->pmk_list->pmkids.pmkid[wl->pmk_list->pmkids.npmkid]. PMKID[i]); err = wl_update_pmklist(dev, wl->pmk_list, err); WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_del_pmksa(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_pmksa *pmksa) { struct wl_priv *wl = wiphy_to_wl(wiphy); struct _pmkid_list pmkid; s32 err = 0; int i; WL_TRACE("Enter\n"); CHECK_SYS_UP(); memcpy(&pmkid.pmkid[0].BSSID, pmksa->bssid, ETH_ALEN); memcpy(&pmkid.pmkid[0].PMKID, pmksa->pmkid, WLAN_PMKID_LEN); WL_CONN("del_pmksa,IW_PMKSA_REMOVE - PMKID: %pM =\n", &pmkid.pmkid[0].BSSID); for (i = 0; i < WLAN_PMKID_LEN; i++) WL_CONN("%02x\n", pmkid.pmkid[0].PMKID[i]); for (i = 0; i < wl->pmk_list->pmkids.npmkid; i++) if (!memcmp (pmksa->bssid, &wl->pmk_list->pmkids.pmkid[i].BSSID, ETH_ALEN)) break; if ((wl->pmk_list->pmkids.npmkid > 0) && (i < wl->pmk_list->pmkids.npmkid)) { memset(&wl->pmk_list->pmkids.pmkid[i], 0, sizeof(pmkid_t)); for (; i < (wl->pmk_list->pmkids.npmkid - 1); i++) { memcpy(&wl->pmk_list->pmkids.pmkid[i].BSSID, &wl->pmk_list->pmkids.pmkid[i + 1].BSSID, ETH_ALEN); memcpy(&wl->pmk_list->pmkids.pmkid[i].PMKID, &wl->pmk_list->pmkids.pmkid[i + 1].PMKID, WLAN_PMKID_LEN); } wl->pmk_list->pmkids.npmkid--; } else err = -EINVAL; err = wl_update_pmklist(dev, wl->pmk_list, err); WL_TRACE("Exit\n"); return err; } static s32 wl_cfg80211_flush_pmksa(struct wiphy *wiphy, struct net_device *dev) { struct wl_priv *wl = wiphy_to_wl(wiphy); s32 err = 0; WL_TRACE("Enter\n"); CHECK_SYS_UP(); memset(wl->pmk_list, 0, sizeof(*wl->pmk_list)); err = wl_update_pmklist(dev, wl->pmk_list, err); WL_TRACE("Exit\n"); return err; } static struct cfg80211_ops wl_cfg80211_ops = { .change_virtual_intf = wl_cfg80211_change_iface, .scan = wl_cfg80211_scan, .set_wiphy_params = wl_cfg80211_set_wiphy_params, .join_ibss = wl_cfg80211_join_ibss, .leave_ibss = wl_cfg80211_leave_ibss, .get_station = wl_cfg80211_get_station, .set_tx_power = wl_cfg80211_set_tx_power, .get_tx_power = wl_cfg80211_get_tx_power, .add_key = wl_cfg80211_add_key, .del_key = wl_cfg80211_del_key, .get_key = wl_cfg80211_get_key, .set_default_key = wl_cfg80211_config_default_key, .set_default_mgmt_key = wl_cfg80211_config_default_mgmt_key, .set_power_mgmt = wl_cfg80211_set_power_mgmt, .set_bitrate_mask = wl_cfg80211_set_bitrate_mask, .connect = wl_cfg80211_connect, .disconnect = wl_cfg80211_disconnect, .suspend = wl_cfg80211_suspend, .resume = wl_cfg80211_resume, .set_pmksa = wl_cfg80211_set_pmksa, .del_pmksa = wl_cfg80211_del_pmksa, .flush_pmksa = wl_cfg80211_flush_pmksa }; static s32 wl_mode_to_nl80211_iftype(s32 mode) { s32 err = 0; switch (mode) { case WL_MODE_BSS: return NL80211_IFTYPE_STATION; case WL_MODE_IBSS: return NL80211_IFTYPE_ADHOC; default: return NL80211_IFTYPE_UNSPECIFIED; } return err; } static struct wireless_dev *wl_alloc_wdev(s32 sizeof_iface, struct device *dev) { struct wireless_dev *wdev; s32 err = 0; wdev = kzalloc(sizeof(*wdev), GFP_KERNEL); if (unlikely(!wdev)) { WL_ERR("Could not allocate wireless device\n"); return ERR_PTR(-ENOMEM); } wdev->wiphy = wiphy_new(&wl_cfg80211_ops, sizeof(struct wl_priv) + sizeof_iface); if (unlikely(!wdev->wiphy)) { WL_ERR("Couldn not allocate wiphy device\n"); err = -ENOMEM; goto wiphy_new_out; } set_wiphy_dev(wdev->wiphy, dev); wdev->wiphy->max_scan_ssids = WL_NUM_SCAN_MAX; wdev->wiphy->max_num_pmkids = WL_NUM_PMKIDS_MAX; wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC); wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &__wl_band_2ghz; wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_a; /* Set * it as 11a by default. * This will be updated with * 11n phy tables in * "ifconfig up" * if phy has 11n capability */ wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM; wdev->wiphy->cipher_suites = __wl_cipher_suites; wdev->wiphy->n_cipher_suites = ARRAY_SIZE(__wl_cipher_suites); #ifndef WL_POWERSAVE_DISABLED wdev->wiphy->flags |= WIPHY_FLAG_PS_ON_BY_DEFAULT; /* enable power * save mode * by default */ #else wdev->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; #endif /* !WL_POWERSAVE_DISABLED */ err = wiphy_register(wdev->wiphy); if (unlikely(err < 0)) { WL_ERR("Couldn not register wiphy device (%d)\n", err); goto wiphy_register_out; } return wdev; wiphy_register_out: wiphy_free(wdev->wiphy); wiphy_new_out: kfree(wdev); return ERR_PTR(err); } static void wl_free_wdev(struct wl_priv *wl) { struct wireless_dev *wdev = wl_to_wdev(wl); if (unlikely(!wdev)) { WL_ERR("wdev is invalid\n"); return; } wiphy_unregister(wdev->wiphy); wiphy_free(wdev->wiphy); kfree(wdev); wl_to_wdev(wl) = NULL; } static s32 wl_inform_bss(struct wl_priv *wl) { struct wl_scan_results *bss_list; struct wl_bss_info *bi = NULL; /* must be initialized */ s32 err = 0; int i; bss_list = wl->bss_list; if (unlikely(bss_list->version != WL_BSS_INFO_VERSION)) { WL_ERR("Version %d != WL_BSS_INFO_VERSION\n", bss_list->version); return -EOPNOTSUPP; } WL_SCAN("scanned AP count (%d)\n", bss_list->count); bi = next_bss(bss_list, bi); for_each_bss(bss_list, bi, i) { err = wl_inform_single_bss(wl, bi); if (unlikely(err)) break; } return err; } static s32 wl_inform_single_bss(struct wl_priv *wl, struct wl_bss_info *bi) { struct wiphy *wiphy = wl_to_wiphy(wl); struct ieee80211_channel *notify_channel; struct cfg80211_bss *bss; struct ieee80211_supported_band *band; s32 err = 0; u16 channel; u32 freq; u64 notify_timestamp; u16 notify_capability; u16 notify_interval; u8 *notify_ie; size_t notify_ielen; s32 notify_signal; if (unlikely(le32_to_cpu(bi->length) > WL_BSS_INFO_MAX)) { WL_ERR("Bss info is larger than buffer. Discarding\n"); return 0; } channel = bi->ctl_ch ? bi->ctl_ch : CHSPEC_CHANNEL(le16_to_cpu(bi->chanspec)); if (channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(channel, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); notify_timestamp = jiffies_to_msecs(jiffies)*1000; /* uSec */ notify_capability = le16_to_cpu(bi->capability); notify_interval = le16_to_cpu(bi->beacon_period); notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset); notify_ielen = le16_to_cpu(bi->ie_length); notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100; WL_CONN("bssid: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n", bi->BSSID[0], bi->BSSID[1], bi->BSSID[2], bi->BSSID[3], bi->BSSID[4], bi->BSSID[5]); WL_CONN("Channel: %d(%d)\n", channel, freq); WL_CONN("Capability: %X\n", notify_capability); WL_CONN("Beacon interval: %d\n", notify_interval); WL_CONN("Signal: %d\n", notify_signal); WL_CONN("notify_timestamp: %#018llx\n", notify_timestamp); bss = cfg80211_inform_bss(wiphy, notify_channel, (const u8 *)bi->BSSID, notify_timestamp, notify_capability, notify_interval, notify_ie, notify_ielen, notify_signal, GFP_KERNEL); if (unlikely(!bss)) { WL_ERR("cfg80211_inform_bss_frame error\n"); return -EINVAL; } return err; } static s32 wl_inform_ibss(struct wl_priv *wl, struct net_device *dev, const u8 *bssid) { struct wiphy *wiphy = wl_to_wiphy(wl); struct ieee80211_channel *notify_channel; struct wl_bss_info *bi = NULL; struct ieee80211_supported_band *band; u8 *buf = NULL; s32 err = 0; u16 channel; u32 freq; u64 notify_timestamp; u16 notify_capability; u16 notify_interval; u8 *notify_ie; size_t notify_ielen; s32 notify_signal; WL_TRACE("Enter\n"); buf = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (buf == NULL) { WL_ERR("kzalloc() failed\n"); err = -ENOMEM; goto CleanUp; } *(u32 *)buf = cpu_to_le32(WL_BSS_INFO_MAX); err = wl_dev_ioctl(dev, WLC_GET_BSS_INFO, buf, WL_BSS_INFO_MAX); if (unlikely(err)) { WL_ERR("WLC_GET_BSS_INFO failed: %d\n", err); goto CleanUp; } bi = (wl_bss_info_t *)(buf + 4); channel = bi->ctl_ch ? bi->ctl_ch : CHSPEC_CHANNEL(le16_to_cpu(bi->chanspec)); if (channel <= CH_MAX_2G_CHANNEL) band = wiphy->bands[IEEE80211_BAND_2GHZ]; else band = wiphy->bands[IEEE80211_BAND_5GHZ]; freq = ieee80211_channel_to_frequency(channel, band->band); notify_channel = ieee80211_get_channel(wiphy, freq); notify_timestamp = jiffies_to_msecs(jiffies)*1000; /* uSec */ notify_capability = le16_to_cpu(bi->capability); notify_interval = le16_to_cpu(bi->beacon_period); notify_ie = (u8 *)bi + le16_to_cpu(bi->ie_offset); notify_ielen = le16_to_cpu(bi->ie_length); notify_signal = (s16)le16_to_cpu(bi->RSSI) * 100; WL_CONN("channel: %d(%d)\n", channel, freq); WL_CONN("capability: %X\n", notify_capability); WL_CONN("beacon interval: %d\n", notify_interval); WL_CONN("signal: %d\n", notify_signal); WL_CONN("notify_timestamp: %#018llx\n", notify_timestamp); cfg80211_inform_bss(wiphy, notify_channel, bssid, notify_timestamp, notify_capability, notify_interval, notify_ie, notify_ielen, notify_signal, GFP_KERNEL); CleanUp: kfree(buf); WL_TRACE("Exit\n"); return err; } static bool wl_is_linkup(struct wl_priv *wl, const wl_event_msg_t *e) { u32 event = be32_to_cpu(e->event_type); u32 status = be32_to_cpu(e->status); if (event == WLC_E_SET_SSID && status == WLC_E_STATUS_SUCCESS) { WL_CONN("Processing set ssid\n"); wl->link_up = true; return true; } return false; } static bool wl_is_linkdown(struct wl_priv *wl, const wl_event_msg_t *e) { u32 event = be32_to_cpu(e->event_type); u16 flags = be16_to_cpu(e->flags); if (event == WLC_E_LINK && (!(flags & WLC_EVENT_MSG_LINK))) { WL_CONN("Processing link down\n"); return true; } return false; } static bool wl_is_nonetwork(struct wl_priv *wl, const wl_event_msg_t *e) { u32 event = be32_to_cpu(e->event_type); u32 status = be32_to_cpu(e->status); u16 flags = be16_to_cpu(e->flags); if (event == WLC_E_LINK && status == WLC_E_STATUS_NO_NETWORKS) { WL_CONN("Processing Link %s & no network found\n", flags & WLC_EVENT_MSG_LINK ? "up" : "down"); return true; } if (event == WLC_E_SET_SSID && status != WLC_E_STATUS_SUCCESS) { WL_CONN("Processing connecting & no network found\n"); return true; } return false; } static s32 wl_notify_connect_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { s32 err = 0; if (wl_is_linkup(wl, e)) { WL_CONN("Linkup\n"); if (wl_is_ibssmode(wl)) { wl_update_prof(wl, NULL, (void *)e->addr, WL_PROF_BSSID); wl_inform_ibss(wl, ndev, e->addr); cfg80211_ibss_joined(ndev, e->addr, GFP_KERNEL); clear_bit(WL_STATUS_CONNECTING, &wl->status); set_bit(WL_STATUS_CONNECTED, &wl->status); } else wl_bss_connect_done(wl, ndev, e, data, true); } else if (wl_is_linkdown(wl, e)) { WL_CONN("Linkdown\n"); if (wl_is_ibssmode(wl)) { if (test_and_clear_bit(WL_STATUS_CONNECTED, &wl->status)) wl_link_down(wl); } else { if (test_and_clear_bit(WL_STATUS_CONNECTED, &wl->status)) { cfg80211_disconnected(ndev, 0, NULL, 0, GFP_KERNEL); wl_link_down(wl); } } wl_init_prof(wl->profile); } else if (wl_is_nonetwork(wl, e)) { if (wl_is_ibssmode(wl)) clear_bit(WL_STATUS_CONNECTING, &wl->status); else wl_bss_connect_done(wl, ndev, e, data, false); } return err; } static s32 wl_notify_roaming_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { s32 err = 0; u32 event = be32_to_cpu(e->event_type); u32 status = be32_to_cpu(e->status); if (event == WLC_E_ROAM && status == WLC_E_STATUS_SUCCESS) { if (test_bit(WL_STATUS_CONNECTED, &wl->status)) wl_bss_roaming_done(wl, ndev, e, data); else wl_bss_connect_done(wl, ndev, e, data, true); } return err; } static __used s32 wl_dev_bufvar_set(struct net_device *dev, s8 *name, s8 *buf, s32 len) { struct wl_priv *wl = ndev_to_wl(dev); u32 buflen; buflen = bcm_mkiovar(name, buf, len, wl->ioctl_buf, WL_IOCTL_LEN_MAX); BUG_ON(!buflen); return wl_dev_ioctl(dev, WLC_SET_VAR, wl->ioctl_buf, buflen); } static s32 wl_dev_bufvar_get(struct net_device *dev, s8 *name, s8 *buf, s32 buf_len) { struct wl_priv *wl = ndev_to_wl(dev); u32 len; s32 err = 0; len = bcm_mkiovar(name, NULL, 0, wl->ioctl_buf, WL_IOCTL_LEN_MAX); BUG_ON(!len); err = wl_dev_ioctl(dev, WLC_GET_VAR, (void *)wl->ioctl_buf, WL_IOCTL_LEN_MAX); if (unlikely(err)) { WL_ERR("error (%d)\n", err); return err; } memcpy(buf, wl->ioctl_buf, buf_len); return err; } static s32 wl_get_assoc_ies(struct wl_priv *wl) { struct net_device *ndev = wl_to_ndev(wl); struct wl_assoc_ielen *assoc_info; struct wl_connect_info *conn_info = wl_to_conn(wl); u32 req_len; u32 resp_len; s32 err = 0; wl_clear_assoc_ies(wl); err = wl_dev_bufvar_get(ndev, "assoc_info", wl->extra_buf, WL_ASSOC_INFO_MAX); if (unlikely(err)) { WL_ERR("could not get assoc info (%d)\n", err); return err; } assoc_info = (struct wl_assoc_ielen *)wl->extra_buf; req_len = assoc_info->req_len; resp_len = assoc_info->resp_len; if (req_len) { err = wl_dev_bufvar_get(ndev, "assoc_req_ies", wl->extra_buf, WL_ASSOC_INFO_MAX); if (unlikely(err)) { WL_ERR("could not get assoc req (%d)\n", err); return err; } conn_info->req_ie_len = req_len; conn_info->req_ie = kmemdup(wl->extra_buf, conn_info->req_ie_len, GFP_KERNEL); } else { conn_info->req_ie_len = 0; conn_info->req_ie = NULL; } if (resp_len) { err = wl_dev_bufvar_get(ndev, "assoc_resp_ies", wl->extra_buf, WL_ASSOC_INFO_MAX); if (unlikely(err)) { WL_ERR("could not get assoc resp (%d)\n", err); return err; } conn_info->resp_ie_len = resp_len; conn_info->resp_ie = kmemdup(wl->extra_buf, conn_info->resp_ie_len, GFP_KERNEL); } else { conn_info->resp_ie_len = 0; conn_info->resp_ie = NULL; } WL_CONN("req len (%d) resp len (%d)\n", conn_info->req_ie_len, conn_info->resp_ie_len); return err; } static void wl_clear_assoc_ies(struct wl_priv *wl) { struct wl_connect_info *conn_info = wl_to_conn(wl); kfree(conn_info->req_ie); conn_info->req_ie = NULL; conn_info->req_ie_len = 0; kfree(conn_info->resp_ie); conn_info->resp_ie = NULL; conn_info->resp_ie_len = 0; } static void wl_ch_to_chanspec(int ch, struct wl_join_params *join_params, size_t *join_params_size) { chanspec_t chanspec = 0; if (ch != 0) { join_params->params.chanspec_num = 1; join_params->params.chanspec_list[0] = ch; if (join_params->params.chanspec_list[0] <= CH_MAX_2G_CHANNEL) chanspec |= WL_CHANSPEC_BAND_2G; else chanspec |= WL_CHANSPEC_BAND_5G; chanspec |= WL_CHANSPEC_BW_20; chanspec |= WL_CHANSPEC_CTL_SB_NONE; *join_params_size += WL_ASSOC_PARAMS_FIXED_SIZE + join_params->params.chanspec_num * sizeof(chanspec_t); join_params->params.chanspec_list[0] &= WL_CHANSPEC_CHAN_MASK; join_params->params.chanspec_list[0] |= chanspec; join_params->params.chanspec_list[0] = cpu_to_le16(join_params->params.chanspec_list[0]); join_params->params.chanspec_num = cpu_to_le32(join_params->params.chanspec_num); WL_CONN("join_params->params.chanspec_list[0]= %#X," "channel %d, chanspec %#X\n", join_params->params.chanspec_list[0], ch, chanspec); } } static s32 wl_update_bss_info(struct wl_priv *wl) { struct wl_bss_info *bi; struct wlc_ssid *ssid; struct bcm_tlv *tim; u16 beacon_interval; u8 dtim_period; size_t ie_len; u8 *ie; s32 err = 0; WL_TRACE("Enter\n"); if (wl_is_ibssmode(wl)) return err; ssid = (struct wlc_ssid *)wl_read_prof(wl, WL_PROF_SSID); *(u32 *)wl->extra_buf = cpu_to_le32(WL_EXTRA_BUF_MAX); err = wl_dev_ioctl(wl_to_ndev(wl), WLC_GET_BSS_INFO, wl->extra_buf, WL_EXTRA_BUF_MAX); if (unlikely(err)) { WL_ERR("Could not get bss info %d\n", err); goto update_bss_info_out; } bi = (struct wl_bss_info *)(wl->extra_buf + 4); err = wl_inform_single_bss(wl, bi); if (unlikely(err)) goto update_bss_info_out; ie = ((u8 *)bi) + bi->ie_offset; ie_len = bi->ie_length; beacon_interval = cpu_to_le16(bi->beacon_period); tim = bcm_parse_tlvs(ie, ie_len, WLAN_EID_TIM); if (tim) dtim_period = tim->data[1]; else { /* * active scan was done so we could not get dtim * information out of probe response. * so we speficially query dtim information to dongle. */ u32 var; err = wl_dev_intvar_get(wl_to_ndev(wl), "dtim_assoc", &var); if (unlikely(err)) { WL_ERR("wl dtim_assoc failed (%d)\n", err); goto update_bss_info_out; } dtim_period = (u8)var; } wl_update_prof(wl, NULL, &beacon_interval, WL_PROF_BEACONINT); wl_update_prof(wl, NULL, &dtim_period, WL_PROF_DTIMPERIOD); update_bss_info_out: WL_TRACE("Exit"); return err; } static s32 wl_bss_roaming_done(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { struct wl_connect_info *conn_info = wl_to_conn(wl); s32 err = 0; WL_TRACE("Enter\n"); wl_get_assoc_ies(wl); wl_update_prof(wl, NULL, &e->addr, WL_PROF_BSSID); wl_update_bss_info(wl); cfg80211_roamed(ndev, NULL, (u8 *)wl_read_prof(wl, WL_PROF_BSSID), conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, GFP_KERNEL); WL_CONN("Report roaming result\n"); set_bit(WL_STATUS_CONNECTED, &wl->status); WL_TRACE("Exit\n"); return err; } static s32 wl_bss_connect_done(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data, bool completed) { struct wl_connect_info *conn_info = wl_to_conn(wl); s32 err = 0; WL_TRACE("Enter\n"); if (test_and_clear_bit(WL_STATUS_CONNECTING, &wl->status)) { if (completed) { wl_get_assoc_ies(wl); wl_update_prof(wl, NULL, &e->addr, WL_PROF_BSSID); wl_update_bss_info(wl); } cfg80211_connect_result(ndev, (u8 *)wl_read_prof(wl, WL_PROF_BSSID), conn_info->req_ie, conn_info->req_ie_len, conn_info->resp_ie, conn_info->resp_ie_len, completed ? WLAN_STATUS_SUCCESS : WLAN_STATUS_AUTH_TIMEOUT, GFP_KERNEL); if (completed) set_bit(WL_STATUS_CONNECTED, &wl->status); WL_CONN("Report connect result - connection %s\n", completed ? "succeeded" : "failed"); } WL_TRACE("Exit\n"); return err; } static s32 wl_notify_mic_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { u16 flags = be16_to_cpu(e->flags); enum nl80211_key_type key_type; rtnl_lock(); if (flags & WLC_EVENT_MSG_GROUP) key_type = NL80211_KEYTYPE_GROUP; else key_type = NL80211_KEYTYPE_PAIRWISE; cfg80211_michael_mic_failure(ndev, (u8 *)&e->addr, key_type, -1, NULL, GFP_KERNEL); rtnl_unlock(); return 0; } static s32 wl_notify_scan_status(struct wl_priv *wl, struct net_device *ndev, const wl_event_msg_t *e, void *data) { struct channel_info channel_inform; struct wl_scan_results *bss_list; u32 len = WL_SCAN_BUF_MAX; s32 err = 0; bool scan_abort = false; WL_TRACE("Enter\n"); if (wl->iscan_on && wl->iscan_kickstart) { WL_TRACE("Exit\n"); return wl_wakeup_iscan(wl_to_iscan(wl)); } if (unlikely(!test_and_clear_bit(WL_STATUS_SCANNING, &wl->status))) { WL_ERR("Scan complete while device not scanning\n"); scan_abort = true; err = -EINVAL; goto scan_done_out; } err = wl_dev_ioctl(ndev, WLC_GET_CHANNEL, &channel_inform, sizeof(channel_inform)); if (unlikely(err)) { WL_ERR("scan busy (%d)\n", err); scan_abort = true; goto scan_done_out; } channel_inform.scan_channel = le32_to_cpu(channel_inform.scan_channel); if (unlikely(channel_inform.scan_channel)) { WL_CONN("channel_inform.scan_channel (%d)\n", channel_inform.scan_channel); } wl->bss_list = wl->scan_results; bss_list = wl->bss_list; memset(bss_list, 0, len); bss_list->buflen = cpu_to_le32(len); err = wl_dev_ioctl(ndev, WLC_SCAN_RESULTS, bss_list, len); if (unlikely(err)) { WL_ERR("%s Scan_results error (%d)\n", ndev->name, err); err = -EINVAL; scan_abort = true; goto scan_done_out; } bss_list->buflen = le32_to_cpu(bss_list->buflen); bss_list->version = le32_to_cpu(bss_list->version); bss_list->count = le32_to_cpu(bss_list->count); err = wl_inform_bss(wl); if (err) { scan_abort = true; goto scan_done_out; } scan_done_out: if (wl->scan_request) { WL_SCAN("calling cfg80211_scan_done\n"); cfg80211_scan_done(wl->scan_request, scan_abort); wl_set_mpc(ndev, 1); wl->scan_request = NULL; } WL_TRACE("Exit\n"); return err; } static void wl_init_conf(struct wl_conf *conf) { conf->mode = (u32)-1; conf->frag_threshold = (u32)-1; conf->rts_threshold = (u32)-1; conf->retry_short = (u32)-1; conf->retry_long = (u32)-1; conf->tx_power = -1; } static void wl_init_prof(struct wl_profile *prof) { memset(prof, 0, sizeof(*prof)); } static void wl_init_eloop_handler(struct wl_event_loop *el) { memset(el, 0, sizeof(*el)); el->handler[WLC_E_SCAN_COMPLETE] = wl_notify_scan_status; el->handler[WLC_E_LINK] = wl_notify_connect_status; el->handler[WLC_E_ROAM] = wl_notify_roaming_status; el->handler[WLC_E_MIC_ERROR] = wl_notify_mic_status; el->handler[WLC_E_SET_SSID] = wl_notify_connect_status; } static s32 wl_init_priv_mem(struct wl_priv *wl) { wl->scan_results = kzalloc(WL_SCAN_BUF_MAX, GFP_KERNEL); if (unlikely(!wl->scan_results)) { WL_ERR("Scan results alloc failed\n"); goto init_priv_mem_out; } wl->conf = kzalloc(sizeof(*wl->conf), GFP_KERNEL); if (unlikely(!wl->conf)) { WL_ERR("wl_conf alloc failed\n"); goto init_priv_mem_out; } wl->profile = kzalloc(sizeof(*wl->profile), GFP_KERNEL); if (unlikely(!wl->profile)) { WL_ERR("wl_profile alloc failed\n"); goto init_priv_mem_out; } wl->bss_info = kzalloc(WL_BSS_INFO_MAX, GFP_KERNEL); if (unlikely(!wl->bss_info)) { WL_ERR("Bss information alloc failed\n"); goto init_priv_mem_out; } wl->scan_req_int = kzalloc(sizeof(*wl->scan_req_int), GFP_KERNEL); if (unlikely(!wl->scan_req_int)) { WL_ERR("Scan req alloc failed\n"); goto init_priv_mem_out; } wl->ioctl_buf = kzalloc(WL_IOCTL_LEN_MAX, GFP_KERNEL); if (unlikely(!wl->ioctl_buf)) { WL_ERR("Ioctl buf alloc failed\n"); goto init_priv_mem_out; } wl->extra_buf = kzalloc(WL_EXTRA_BUF_MAX, GFP_KERNEL); if (unlikely(!wl->extra_buf)) { WL_ERR("Extra buf alloc failed\n"); goto init_priv_mem_out; } wl->iscan = kzalloc(sizeof(*wl->iscan), GFP_KERNEL); if (unlikely(!wl->iscan)) { WL_ERR("Iscan buf alloc failed\n"); goto init_priv_mem_out; } wl->fw = kzalloc(sizeof(*wl->fw), GFP_KERNEL); if (unlikely(!wl->fw)) { WL_ERR("fw object alloc failed\n"); goto init_priv_mem_out; } wl->pmk_list = kzalloc(sizeof(*wl->pmk_list), GFP_KERNEL); if (unlikely(!wl->pmk_list)) { WL_ERR("pmk list alloc failed\n"); goto init_priv_mem_out; } return 0; init_priv_mem_out: wl_deinit_priv_mem(wl); return -ENOMEM; } static void wl_deinit_priv_mem(struct wl_priv *wl) { kfree(wl->scan_results); wl->scan_results = NULL; kfree(wl->bss_info); wl->bss_info = NULL; kfree(wl->conf); wl->conf = NULL; kfree(wl->profile); wl->profile = NULL; kfree(wl->scan_req_int); wl->scan_req_int = NULL; kfree(wl->ioctl_buf); wl->ioctl_buf = NULL; kfree(wl->extra_buf); wl->extra_buf = NULL; kfree(wl->iscan); wl->iscan = NULL; kfree(wl->fw); wl->fw = NULL; kfree(wl->pmk_list); wl->pmk_list = NULL; } static s32 wl_create_event_handler(struct wl_priv *wl) { sema_init(&wl->event_sync, 0); wl->event_tsk = kthread_run(wl_event_handler, wl, "wl_event_handler"); if (IS_ERR(wl->event_tsk)) { wl->event_tsk = NULL; WL_ERR("failed to create event thread\n"); return -ENOMEM; } return 0; } static void wl_destroy_event_handler(struct wl_priv *wl) { if (wl->event_tsk) { send_sig(SIGTERM, wl->event_tsk, 1); kthread_stop(wl->event_tsk); wl->event_tsk = NULL; } } static void wl_term_iscan(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl_to_iscan(wl); if (wl->iscan_on && iscan->tsk) { iscan->state = WL_ISCAN_STATE_IDLE; send_sig(SIGTERM, iscan->tsk, 1); kthread_stop(iscan->tsk); iscan->tsk = NULL; } } static void wl_notify_iscan_complete(struct wl_iscan_ctrl *iscan, bool aborted) { struct wl_priv *wl = iscan_to_wl(iscan); struct net_device *ndev = wl_to_ndev(wl); if (unlikely(!test_and_clear_bit(WL_STATUS_SCANNING, &wl->status))) { WL_ERR("Scan complete while device not scanning\n"); return; } if (likely(wl->scan_request)) { WL_SCAN("ISCAN Completed scan: %s\n", aborted ? "Aborted" : "Done"); cfg80211_scan_done(wl->scan_request, aborted); wl_set_mpc(ndev, 1); wl->scan_request = NULL; } wl->iscan_kickstart = false; } static s32 wl_wakeup_iscan(struct wl_iscan_ctrl *iscan) { if (likely(iscan->state != WL_ISCAN_STATE_IDLE)) { WL_SCAN("wake up iscan\n"); up(&iscan->sync); return 0; } return -EIO; } static s32 wl_get_iscan_results(struct wl_iscan_ctrl *iscan, u32 *status, struct wl_scan_results **bss_list) { struct wl_iscan_results list; struct wl_scan_results *results; struct wl_iscan_results *list_buf; s32 err = 0; memset(iscan->scan_buf, 0, WL_ISCAN_BUF_MAX); list_buf = (struct wl_iscan_results *)iscan->scan_buf; results = &list_buf->results; results->buflen = WL_ISCAN_RESULTS_FIXED_SIZE; results->version = 0; results->count = 0; memset(&list, 0, sizeof(list)); list.results.buflen = cpu_to_le32(WL_ISCAN_BUF_MAX); err = wl_dev_iovar_getbuf(iscan->dev, "iscanresults", &list, WL_ISCAN_RESULTS_FIXED_SIZE, iscan->scan_buf, WL_ISCAN_BUF_MAX); if (unlikely(err)) { WL_ERR("error (%d)\n", err); return err; } results->buflen = le32_to_cpu(results->buflen); results->version = le32_to_cpu(results->version); results->count = le32_to_cpu(results->count); WL_SCAN("results->count = %d\n", results->count); WL_SCAN("results->buflen = %d\n", results->buflen); *status = le32_to_cpu(list_buf->status); *bss_list = results; return err; } static s32 wl_iscan_done(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl->iscan; s32 err = 0; iscan->state = WL_ISCAN_STATE_IDLE; rtnl_lock(); wl_inform_bss(wl); wl_notify_iscan_complete(iscan, false); rtnl_unlock(); return err; } static s32 wl_iscan_pending(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl->iscan; s32 err = 0; /* Reschedule the timer */ mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 wl_iscan_inprogress(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl->iscan; s32 err = 0; rtnl_lock(); wl_inform_bss(wl); wl_run_iscan(iscan, NULL, WL_SCAN_ACTION_CONTINUE); rtnl_unlock(); /* Reschedule the timer */ mod_timer(&iscan->timer, jiffies + iscan->timer_ms * HZ / 1000); iscan->timer_on = 1; return err; } static s32 wl_iscan_aborted(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl->iscan; s32 err = 0; iscan->state = WL_ISCAN_STATE_IDLE; rtnl_lock(); wl_notify_iscan_complete(iscan, true); rtnl_unlock(); return err; } static s32 wl_iscan_thread(void *data) { struct sched_param param = {.sched_priority = MAX_RT_PRIO - 1 }; struct wl_iscan_ctrl *iscan = (struct wl_iscan_ctrl *)data; struct wl_priv *wl = iscan_to_wl(iscan); struct wl_iscan_eloop *el = &iscan->el; u32 status; int err = 0; sched_setscheduler(current, SCHED_FIFO, ¶m); allow_signal(SIGTERM); status = WL_SCAN_RESULTS_PARTIAL; while (likely(!down_interruptible(&iscan->sync))) { if (kthread_should_stop()) break; if (iscan->timer_on) { del_timer_sync(&iscan->timer); iscan->timer_on = 0; } rtnl_lock(); err = wl_get_iscan_results(iscan, &status, &wl->bss_list); if (unlikely(err)) { status = WL_SCAN_RESULTS_ABORTED; WL_ERR("Abort iscan\n"); } rtnl_unlock(); el->handler[status] (wl); } if (iscan->timer_on) { del_timer_sync(&iscan->timer); iscan->timer_on = 0; } WL_SCAN("ISCAN thread terminated\n"); return 0; } static void wl_iscan_timer(unsigned long data) { struct wl_iscan_ctrl *iscan = (struct wl_iscan_ctrl *)data; if (iscan) { iscan->timer_on = 0; WL_SCAN("timer expired\n"); wl_wakeup_iscan(iscan); } } static s32 wl_invoke_iscan(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl_to_iscan(wl); int err = 0; if (wl->iscan_on && !iscan->tsk) { iscan->state = WL_ISCAN_STATE_IDLE; sema_init(&iscan->sync, 0); iscan->tsk = kthread_run(wl_iscan_thread, iscan, "wl_iscan"); if (IS_ERR(iscan->tsk)) { WL_ERR("Could not create iscan thread\n"); iscan->tsk = NULL; return -ENOMEM; } } return err; } static void wl_init_iscan_eloop(struct wl_iscan_eloop *el) { memset(el, 0, sizeof(*el)); el->handler[WL_SCAN_RESULTS_SUCCESS] = wl_iscan_done; el->handler[WL_SCAN_RESULTS_PARTIAL] = wl_iscan_inprogress; el->handler[WL_SCAN_RESULTS_PENDING] = wl_iscan_pending; el->handler[WL_SCAN_RESULTS_ABORTED] = wl_iscan_aborted; el->handler[WL_SCAN_RESULTS_NO_MEM] = wl_iscan_aborted; } static s32 wl_init_iscan(struct wl_priv *wl) { struct wl_iscan_ctrl *iscan = wl_to_iscan(wl); int err = 0; if (wl->iscan_on) { iscan->dev = wl_to_ndev(wl); iscan->state = WL_ISCAN_STATE_IDLE; wl_init_iscan_eloop(&iscan->el); iscan->timer_ms = WL_ISCAN_TIMER_INTERVAL_MS; init_timer(&iscan->timer); iscan->timer.data = (unsigned long) iscan; iscan->timer.function = wl_iscan_timer; sema_init(&iscan->sync, 0); iscan->tsk = kthread_run(wl_iscan_thread, iscan, "wl_iscan"); if (IS_ERR(iscan->tsk)) { WL_ERR("Could not create iscan thread\n"); iscan->tsk = NULL; return -ENOMEM; } iscan->data = wl; } return err; } static void wl_init_fw(struct wl_fw_ctrl *fw) { fw->status = 0; /* init fw loading status. 0 means nothing was loaded yet */ } static s32 wl_init_priv(struct wl_priv *wl) { struct wiphy *wiphy = wl_to_wiphy(wl); s32 err = 0; wl->scan_request = NULL; wl->pwr_save = !!(wiphy->flags & WIPHY_FLAG_PS_ON_BY_DEFAULT); wl->iscan_on = true; /* iscan on & off switch. we enable iscan per default */ wl->roam_on = false; /* roam on & off switch. we enable roam per default */ wl->iscan_kickstart = false; wl->active_scan = true; /* we do active scan for specific scan per default */ wl->dongle_up = false; /* dongle is not up yet */ wl_init_eq(wl); err = wl_init_priv_mem(wl); if (unlikely(err)) return err; if (unlikely(wl_create_event_handler(wl))) return -ENOMEM; wl_init_eloop_handler(&wl->el); mutex_init(&wl->usr_sync); err = wl_init_iscan(wl); if (unlikely(err)) return err; wl_init_fw(wl->fw); wl_init_conf(wl->conf); wl_init_prof(wl->profile); wl_link_down(wl); return err; } static void wl_deinit_priv(struct wl_priv *wl) { wl_destroy_event_handler(wl); wl->dongle_up = false; /* dongle down */ wl_flush_eq(wl); wl_link_down(wl); wl_term_iscan(wl); wl_deinit_priv_mem(wl); } s32 wl_cfg80211_attach(struct net_device *ndev, void *data) { struct wireless_dev *wdev; struct wl_priv *wl; struct wl_iface *ci; s32 err = 0; if (unlikely(!ndev)) { WL_ERR("ndev is invalid\n"); return -ENODEV; } wl_cfg80211_dev = kzalloc(sizeof(struct wl_dev), GFP_KERNEL); if (unlikely(!wl_cfg80211_dev)) { WL_ERR("wl_cfg80211_dev is invalid\n"); return -ENOMEM; } WL_INFO("func %p\n", wl_cfg80211_get_sdio_func()); wdev = wl_alloc_wdev(sizeof(struct wl_iface), &wl_cfg80211_get_sdio_func()->dev); if (IS_ERR(wdev)) return -ENOMEM; wdev->iftype = wl_mode_to_nl80211_iftype(WL_MODE_BSS); wl = wdev_to_wl(wdev); wl->wdev = wdev; wl->pub = data; ci = (struct wl_iface *)wl_to_ci(wl); ci->wl = wl; ndev->ieee80211_ptr = wdev; SET_NETDEV_DEV(ndev, wiphy_dev(wdev->wiphy)); wdev->netdev = ndev; err = wl_init_priv(wl); if (unlikely(err)) { WL_ERR("Failed to init iwm_priv (%d)\n", err); goto cfg80211_attach_out; } wl_set_drvdata(wl_cfg80211_dev, ci); return err; cfg80211_attach_out: wl_free_wdev(wl); return err; } void wl_cfg80211_detach(void) { struct wl_priv *wl; wl = WL_PRIV_GET(); wl_deinit_priv(wl); wl_free_wdev(wl); wl_set_drvdata(wl_cfg80211_dev, NULL); kfree(wl_cfg80211_dev); wl_cfg80211_dev = NULL; wl_clear_sdio_func(); } static void wl_wakeup_event(struct wl_priv *wl) { up(&wl->event_sync); } static s32 wl_event_handler(void *data) { struct wl_priv *wl = (struct wl_priv *)data; struct sched_param param = {.sched_priority = MAX_RT_PRIO - 1 }; struct wl_event_q *e; sched_setscheduler(current, SCHED_FIFO, ¶m); allow_signal(SIGTERM); while (likely(!down_interruptible(&wl->event_sync))) { if (kthread_should_stop()) break; e = wl_deq_event(wl); if (unlikely(!e)) { WL_ERR("event queue empty...\n"); BUG(); } WL_INFO("event type (%d)\n", e->etype); if (wl->el.handler[e->etype]) { wl->el.handler[e->etype] (wl, wl_to_ndev(wl), &e->emsg, e->edata); } else { WL_INFO("Unknown Event (%d): ignoring\n", e->etype); } wl_put_event(e); } WL_INFO("was terminated\n"); return 0; } void wl_cfg80211_event(struct net_device *ndev, const wl_event_msg_t * e, void *data) { u32 event_type = be32_to_cpu(e->event_type); struct wl_priv *wl = ndev_to_wl(ndev); if (likely(!wl_enq_event(wl, event_type, e, data))) wl_wakeup_event(wl); } static void wl_init_eq(struct wl_priv *wl) { wl_init_eq_lock(wl); INIT_LIST_HEAD(&wl->eq_list); } static void wl_flush_eq(struct wl_priv *wl) { struct wl_event_q *e; wl_lock_eq(wl); while (!list_empty(&wl->eq_list)) { e = list_first_entry(&wl->eq_list, struct wl_event_q, eq_list); list_del(&e->eq_list); kfree(e); } wl_unlock_eq(wl); } /* * retrieve first queued event from head */ static struct wl_event_q *wl_deq_event(struct wl_priv *wl) { struct wl_event_q *e = NULL; wl_lock_eq(wl); if (likely(!list_empty(&wl->eq_list))) { e = list_first_entry(&wl->eq_list, struct wl_event_q, eq_list); list_del(&e->eq_list); } wl_unlock_eq(wl); return e; } /* ** push event to tail of the queue */ static s32 wl_enq_event(struct wl_priv *wl, u32 event, const wl_event_msg_t *msg, void *data) { struct wl_event_q *e; s32 err = 0; e = kzalloc(sizeof(struct wl_event_q), GFP_KERNEL); if (unlikely(!e)) { WL_ERR("event alloc failed\n"); return -ENOMEM; } e->etype = event; memcpy(&e->emsg, msg, sizeof(wl_event_msg_t)); if (data) { } wl_lock_eq(wl); list_add_tail(&e->eq_list, &wl->eq_list); wl_unlock_eq(wl); return err; } static void wl_put_event(struct wl_event_q *e) { kfree(e); } void wl_cfg80211_sdio_func(void *func) { cfg80211_sdio_func = (struct sdio_func *)func; } static void wl_clear_sdio_func(void) { cfg80211_sdio_func = NULL; } struct sdio_func *wl_cfg80211_get_sdio_func(void) { return cfg80211_sdio_func; } static s32 wl_dongle_mode(struct net_device *ndev, s32 iftype) { s32 infra = 0; s32 err = 0; switch (iftype) { case NL80211_IFTYPE_MONITOR: case NL80211_IFTYPE_WDS: WL_ERR("type (%d) : currently we do not support this mode\n", iftype); err = -EINVAL; return err; case NL80211_IFTYPE_ADHOC: infra = 0; break; case NL80211_IFTYPE_STATION: infra = 1; break; default: err = -EINVAL; WL_ERR("invalid type (%d)\n", iftype); return err; } infra = cpu_to_le32(infra); err = wl_dev_ioctl(ndev, WLC_SET_INFRA, &infra, sizeof(infra)); if (unlikely(err)) { WL_ERR("WLC_SET_INFRA error (%d)\n", err); return err; } return 0; } #ifndef EMBEDDED_PLATFORM static s32 wl_dongle_country(struct net_device *ndev, u8 ccode) { s32 err = 0; return err; } static s32 wl_dongle_up(struct net_device *ndev, u32 up) { s32 err = 0; err = wl_dev_ioctl(ndev, WLC_UP, &up, sizeof(up)); if (unlikely(err)) { WL_ERR("WLC_UP error (%d)\n", err); } return err; } static s32 wl_dongle_power(struct net_device *ndev, u32 power_mode) { s32 err = 0; err = wl_dev_ioctl(ndev, WLC_SET_PM, &power_mode, sizeof(power_mode)); if (unlikely(err)) { WL_ERR("WLC_SET_PM error (%d)\n", err); } return err; } static s32 wl_dongle_glom(struct net_device *ndev, u32 glom, u32 dongle_align) { s8 iovbuf[WL_EVENTING_MASK_LEN + 12]; /* Room for "event_msgs" + '\0' + bitvec */ s32 err = 0; /* Match Host and Dongle rx alignment */ bcm_mkiovar("bus:txglomalign", (char *)&dongle_align, 4, iovbuf, sizeof(iovbuf)); err = wl_dev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf)); if (unlikely(err)) { WL_ERR("txglomalign error (%d)\n", err); goto dongle_glom_out; } /* disable glom option per default */ bcm_mkiovar("bus:txglom", (char *)&glom, 4, iovbuf, sizeof(iovbuf)); err = wl_dev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf)); if (unlikely(err)) { WL_ERR("txglom error (%d)\n", err); goto dongle_glom_out; } dongle_glom_out: return err; } static s32 wl_dongle_offload(struct net_device *ndev, s32 arpoe, s32 arp_ol) { s8 iovbuf[WL_EVENTING_MASK_LEN + 12]; /* Room for "event_msgs" + '\0' + bitvec */ s32 err = 0; /* Set ARP offload */ bcm_mkiovar("arpoe", (char *)&arpoe, 4, iovbuf, sizeof(iovbuf)); err = wl_dev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf)); if (err) { if (err == -EOPNOTSUPP) WL_INFO("arpoe is not supported\n"); else WL_ERR("arpoe error (%d)\n", err); goto dongle_offload_out; } bcm_mkiovar("arp_ol", (char *)&arp_ol, 4, iovbuf, sizeof(iovbuf)); err = wl_dev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf)); if (err) { if (err == -EOPNOTSUPP) WL_INFO("arp_ol is not supported\n"); else WL_ERR("arp_ol error (%d)\n", err); goto dongle_offload_out; } dongle_offload_out: return err; } static s32 wl_pattern_atoh(s8 *src, s8 *dst) { int i; if (strncmp(src, "0x", 2) != 0 && strncmp(src, "0X", 2) != 0) { WL_ERR("Mask invalid format. Needs to start with 0x\n"); return -1; } src = src + 2; /* Skip past 0x */ if (strlen(src) % 2 != 0) { WL_ERR("Mask invalid format. Needs to be of even length\n"); return -1; } for (i = 0; *src != '\0'; i++) { char num[3]; strncpy(num, src, 2); num[2] = '\0'; dst[i] = (u8) simple_strtoul(num, NULL, 16); src += 2; } return i; } static s32 wl_dongle_filter(struct net_device *ndev, u32 filter_mode) { s8 iovbuf[WL_EVENTING_MASK_LEN + 12]; /* Room for "event_msgs" + '\0' + bitvec */ const s8 *str; struct wl_pkt_filter pkt_filter; struct wl_pkt_filter *pkt_filterp; s32 buf_len; s32 str_len; u32 mask_size; u32 pattern_size; s8 buf[256]; s32 err = 0; /* add a default packet filter pattern */ str = "pkt_filter_add"; str_len = strlen(str); strncpy(buf, str, str_len); buf[str_len] = '\0'; buf_len = str_len + 1; pkt_filterp = (struct wl_pkt_filter *)(buf + str_len + 1); /* Parse packet filter id. */ pkt_filter.id = cpu_to_le32(100); /* Parse filter polarity. */ pkt_filter.negate_match = cpu_to_le32(0); /* Parse filter type. */ pkt_filter.type = cpu_to_le32(0); /* Parse pattern filter offset. */ pkt_filter.u.pattern.offset = cpu_to_le32(0); /* Parse pattern filter mask. */ mask_size = cpu_to_le32(wl_pattern_atoh("0xff", (char *)pkt_filterp->u.pattern. mask_and_pattern)); /* Parse pattern filter pattern. */ pattern_size = cpu_to_le32(wl_pattern_atoh("0x00", (char *)&pkt_filterp->u. pattern. mask_and_pattern [mask_size])); if (mask_size != pattern_size) { WL_ERR("Mask and pattern not the same size\n"); err = -EINVAL; goto dongle_filter_out; } pkt_filter.u.pattern.size_bytes = mask_size; buf_len += WL_PKT_FILTER_FIXED_LEN; buf_len += (WL_PKT_FILTER_PATTERN_FIXED_LEN + 2 * mask_size); /* Keep-alive attributes are set in local * variable (keep_alive_pkt), and * then memcpy'ed into buffer (keep_alive_pktp) since there is no * guarantee that the buffer is properly aligned. */ memcpy((char *)pkt_filterp, &pkt_filter, WL_PKT_FILTER_FIXED_LEN + WL_PKT_FILTER_PATTERN_FIXED_LEN); err = wl_dev_ioctl(ndev, WLC_SET_VAR, buf, buf_len); if (err) { if (err == -EOPNOTSUPP) { WL_INFO("filter not supported\n"); } else { WL_ERR("filter (%d)\n", err); } goto dongle_filter_out; } /* set mode to allow pattern */ bcm_mkiovar("pkt_filter_mode", (char *)&filter_mode, 4, iovbuf, sizeof(iovbuf)); err = wl_dev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf)); if (err) { if (err == -EOPNOTSUPP) { WL_INFO("filter_mode not supported\n"); } else { WL_ERR("filter_mode (%d)\n", err); } goto dongle_filter_out; } dongle_filter_out: return err; } #endif /* !EMBEDDED_PLATFORM */ static s32 wl_dongle_eventmsg(struct net_device *ndev) { s8 iovbuf[WL_EVENTING_MASK_LEN + 12]; /* Room for "event_msgs" + '\0' + bitvec */ s8 eventmask[WL_EVENTING_MASK_LEN]; s32 err = 0; WL_TRACE("Enter\n"); /* Setup event_msgs */ bcm_mkiovar("event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf)); err = wl_dev_ioctl(ndev, WLC_GET_VAR, iovbuf, sizeof(iovbuf)); if (unlikely(err)) { WL_ERR("Get event_msgs error (%d)\n", err); goto dongle_eventmsg_out; } memcpy(eventmask, iovbuf, WL_EVENTING_MASK_LEN); setbit(eventmask, WLC_E_SET_SSID); setbit(eventmask, WLC_E_ROAM); setbit(eventmask, WLC_E_PRUNE); setbit(eventmask, WLC_E_AUTH); setbit(eventmask, WLC_E_REASSOC); setbit(eventmask, WLC_E_REASSOC_IND); setbit(eventmask, WLC_E_DEAUTH_IND); setbit(eventmask, WLC_E_DISASSOC_IND); setbit(eventmask, WLC_E_DISASSOC); setbit(eventmask, WLC_E_JOIN); setbit(eventmask, WLC_E_ASSOC_IND); setbit(eventmask, WLC_E_PSK_SUP); setbit(eventmask, WLC_E_LINK); setbit(eventmask, WLC_E_NDIS_LINK); setbit(eventmask, WLC_E_MIC_ERROR); setbit(eventmask, WLC_E_PMKID_CACHE); setbit(eventmask, WLC_E_TXFAIL); setbit(eventmask, WLC_E_JOIN_START); setbit(eventmask, WLC_E_SCAN_COMPLETE); bcm_mkiovar("event_msgs", eventmask, WL_EVENTING_MASK_LEN, iovbuf, sizeof(iovbuf)); err = wl_dev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf)); if (unlikely(err)) { WL_ERR("Set event_msgs error (%d)\n", err); goto dongle_eventmsg_out; } dongle_eventmsg_out: WL_TRACE("Exit\n"); return err; } static s32 wl_dongle_roam(struct net_device *ndev, u32 roamvar, u32 bcn_timeout) { s8 iovbuf[32]; s32 roamtrigger[2]; s32 roam_delta[2]; s32 err = 0; /* * Setup timeout if Beacons are lost and roam is * off to report link down */ if (roamvar) { bcm_mkiovar("bcn_timeout", (char *)&bcn_timeout, sizeof(bcn_timeout), iovbuf, sizeof(iovbuf)); err = wl_dev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf)); if (unlikely(err)) { WL_ERR("bcn_timeout error (%d)\n", err); goto dongle_rom_out; } } /* * Enable/Disable built-in roaming to allow supplicant * to take care of roaming */ WL_INFO("Internal Roaming = %s\n", roamvar ? "Off" : "On"); bcm_mkiovar("roam_off", (char *)&roamvar, sizeof(roamvar), iovbuf, sizeof(iovbuf)); err = wl_dev_ioctl(ndev, WLC_SET_VAR, iovbuf, sizeof(iovbuf)); if (unlikely(err)) { WL_ERR("roam_off error (%d)\n", err); goto dongle_rom_out; } roamtrigger[0] = WL_ROAM_TRIGGER_LEVEL; roamtrigger[1] = WLC_BAND_ALL; err = wl_dev_ioctl(ndev, WLC_SET_ROAM_TRIGGER, (void *)roamtrigger, sizeof(roamtrigger)); if (unlikely(err)) { WL_ERR("WLC_SET_ROAM_TRIGGER error (%d)\n", err); goto dongle_rom_out; } roam_delta[0] = WL_ROAM_DELTA; roam_delta[1] = WLC_BAND_ALL; err = wl_dev_ioctl(ndev, WLC_SET_ROAM_DELTA, (void *)roam_delta, sizeof(roam_delta)); if (unlikely(err)) { WL_ERR("WLC_SET_ROAM_DELTA error (%d)\n", err); goto dongle_rom_out; } dongle_rom_out: return err; } static s32 wl_dongle_scantime(struct net_device *ndev, s32 scan_assoc_time, s32 scan_unassoc_time, s32 scan_passive_time) { s32 err = 0; err = wl_dev_ioctl(ndev, WLC_SET_SCAN_CHANNEL_TIME, &scan_assoc_time, sizeof(scan_assoc_time)); if (err) { if (err == -EOPNOTSUPP) WL_INFO("Scan assoc time is not supported\n"); else WL_ERR("Scan assoc time error (%d)\n", err); goto dongle_scantime_out; } err = wl_dev_ioctl(ndev, WLC_SET_SCAN_UNASSOC_TIME, &scan_unassoc_time, sizeof(scan_unassoc_time)); if (err) { if (err == -EOPNOTSUPP) WL_INFO("Scan unassoc time is not supported\n"); else WL_ERR("Scan unassoc time error (%d)\n", err); goto dongle_scantime_out; } err = wl_dev_ioctl(ndev, WLC_SET_SCAN_PASSIVE_TIME, &scan_passive_time, sizeof(scan_passive_time)); if (err) { if (err == -EOPNOTSUPP) WL_INFO("Scan passive time is not supported\n"); else WL_ERR("Scan passive time error (%d)\n", err); goto dongle_scantime_out; } dongle_scantime_out: return err; } s32 wl_config_dongle(struct wl_priv *wl, bool need_lock) { #ifndef DHD_SDALIGN #define DHD_SDALIGN 32 #endif struct net_device *ndev; struct wireless_dev *wdev; s32 err = 0; if (wl->dongle_up) return err; ndev = wl_to_ndev(wl); wdev = ndev->ieee80211_ptr; if (need_lock) rtnl_lock(); #ifndef EMBEDDED_PLATFORM err = wl_dongle_up(ndev, 0); if (unlikely(err)) goto default_conf_out; err = wl_dongle_country(ndev, 0); if (unlikely(err)) goto default_conf_out; err = wl_dongle_power(ndev, PM_FAST); if (unlikely(err)) goto default_conf_out; err = wl_dongle_glom(ndev, 0, DHD_SDALIGN); if (unlikely(err)) goto default_conf_out; wl_dongle_offload(ndev, 1, 0xf); wl_dongle_filter(ndev, 1); #endif /* !EMBEDDED_PLATFORM */ wl_dongle_scantime(ndev, WL_SCAN_CHANNEL_TIME, WL_SCAN_UNASSOC_TIME, WL_SCAN_PASSIVE_TIME); err = wl_dongle_eventmsg(ndev); if (unlikely(err)) goto default_conf_out; err = wl_dongle_roam(ndev, (wl->roam_on ? 0 : 1), WL_BEACON_TIMEOUT); if (unlikely(err)) goto default_conf_out; err = wl_dongle_mode(ndev, wdev->iftype); if (unlikely(err && err != -EINPROGRESS)) goto default_conf_out; err = wl_dongle_probecap(wl); if (unlikely(err)) goto default_conf_out; /* -EINPROGRESS: Call commit handler */ default_conf_out: if (need_lock) rtnl_unlock(); wl->dongle_up = true; return err; } static s32 wl_update_wiphybands(struct wl_priv *wl) { struct wiphy *wiphy; s32 phy_list; s8 phy; s32 err = 0; err = wl_dev_ioctl(wl_to_ndev(wl), WLC_GET_PHYLIST, &phy_list, sizeof(phy_list)); if (unlikely(err)) { WL_ERR("error (%d)\n", err); return err; } phy = ((char *)&phy_list)[1]; WL_INFO("%c phy\n", phy); if (phy == 'n' || phy == 'a') { wiphy = wl_to_wiphy(wl); wiphy->bands[IEEE80211_BAND_5GHZ] = &__wl_band_5ghz_n; } return err; } static s32 __wl_cfg80211_up(struct wl_priv *wl) { s32 err = 0; set_bit(WL_STATUS_READY, &wl->status); wl_debugfs_add_netdev_params(wl); err = wl_config_dongle(wl, false); if (unlikely(err)) return err; wl_invoke_iscan(wl); return err; } static s32 __wl_cfg80211_down(struct wl_priv *wl) { set_bit(WL_STATUS_SCAN_ABORTING, &wl->status); wl_term_iscan(wl); if (wl->scan_request) { cfg80211_scan_done(wl->scan_request, true); /* May need to perform this to cover rmmod */ /* wl_set_mpc(wl_to_ndev(wl), 1); */ wl->scan_request = NULL; } clear_bit(WL_STATUS_READY, &wl->status); clear_bit(WL_STATUS_SCANNING, &wl->status); clear_bit(WL_STATUS_SCAN_ABORTING, &wl->status); clear_bit(WL_STATUS_CONNECTING, &wl->status); clear_bit(WL_STATUS_CONNECTED, &wl->status); wl_debugfs_remove_netdev(wl); return 0; } s32 wl_cfg80211_up(void) { struct wl_priv *wl; s32 err = 0; wl = WL_PRIV_GET(); mutex_lock(&wl->usr_sync); err = __wl_cfg80211_up(wl); mutex_unlock(&wl->usr_sync); return err; } s32 wl_cfg80211_down(void) { struct wl_priv *wl; s32 err = 0; wl = WL_PRIV_GET(); mutex_lock(&wl->usr_sync); err = __wl_cfg80211_down(wl); mutex_unlock(&wl->usr_sync); return err; } static s32 wl_dongle_probecap(struct wl_priv *wl) { s32 err = 0; err = wl_update_wiphybands(wl); if (unlikely(err)) return err; return err; } static void *wl_read_prof(struct wl_priv *wl, s32 item) { switch (item) { case WL_PROF_SEC: return &wl->profile->sec; case WL_PROF_BSSID: return &wl->profile->bssid; case WL_PROF_SSID: return &wl->profile->ssid; } WL_ERR("invalid item (%d)\n", item); return NULL; } static s32 wl_update_prof(struct wl_priv *wl, const wl_event_msg_t *e, void *data, s32 item) { s32 err = 0; struct wlc_ssid *ssid; switch (item) { case WL_PROF_SSID: ssid = (wlc_ssid_t *) data; memset(wl->profile->ssid.SSID, 0, sizeof(wl->profile->ssid.SSID)); memcpy(wl->profile->ssid.SSID, ssid->SSID, ssid->SSID_len); wl->profile->ssid.SSID_len = ssid->SSID_len; break; case WL_PROF_BSSID: if (data) memcpy(wl->profile->bssid, data, ETH_ALEN); else memset(wl->profile->bssid, 0, ETH_ALEN); break; case WL_PROF_SEC: memcpy(&wl->profile->sec, data, sizeof(wl->profile->sec)); break; case WL_PROF_BEACONINT: wl->profile->beacon_interval = *(u16 *)data; break; case WL_PROF_DTIMPERIOD: wl->profile->dtim_period = *(u8 *)data; break; default: WL_ERR("unsupported item (%d)\n", item); err = -EOPNOTSUPP; break; } return err; } static bool wl_is_ibssmode(struct wl_priv *wl) { return wl->conf->mode == WL_MODE_IBSS; } static __used s32 wl_add_ie(struct wl_priv *wl, u8 t, u8 l, u8 *v) { struct wl_ie *ie = wl_to_ie(wl); s32 err = 0; if (unlikely(ie->offset + l + 2 > WL_TLV_INFO_MAX)) { WL_ERR("ei crosses buffer boundary\n"); return -ENOSPC; } ie->buf[ie->offset] = t; ie->buf[ie->offset + 1] = l; memcpy(&ie->buf[ie->offset + 2], v, l); ie->offset += l + 2; return err; } static void wl_link_down(struct wl_priv *wl) { struct net_device *dev = NULL; s32 err = 0; WL_TRACE("Enter\n"); clear_bit(WL_STATUS_CONNECTED, &wl->status); if (wl->link_up) { dev = wl_to_ndev(wl); WL_INFO("Call WLC_DISASSOC to stop excess roaming\n "); err = wl_dev_ioctl(dev, WLC_DISASSOC, NULL, 0); if (unlikely(err)) WL_ERR("WLC_DISASSOC failed (%d)\n", err); wl->link_up = false; } WL_TRACE("Exit\n"); } static void wl_lock_eq(struct wl_priv *wl) { spin_lock_irq(&wl->eq_lock); } static void wl_unlock_eq(struct wl_priv *wl) { spin_unlock_irq(&wl->eq_lock); } static void wl_init_eq_lock(struct wl_priv *wl) { spin_lock_init(&wl->eq_lock); } static void wl_delay(u32 ms) { if (ms < 1000 / HZ) { cond_resched(); mdelay(ms); } else { msleep(ms); } } static void wl_set_drvdata(struct wl_dev *dev, void *data) { dev->driver_data = data; } static void *wl_get_drvdata(struct wl_dev *dev) { return dev->driver_data; } s32 wl_cfg80211_read_fw(s8 *buf, u32 size) { const struct firmware *fw_entry; struct wl_priv *wl; wl = WL_PRIV_GET(); fw_entry = wl->fw->fw_entry; if (fw_entry->size < wl->fw->ptr + size) size = fw_entry->size - wl->fw->ptr; memcpy(buf, &fw_entry->data[wl->fw->ptr], size); wl->fw->ptr += size; return size; } void wl_cfg80211_release_fw(void) { struct wl_priv *wl; wl = WL_PRIV_GET(); release_firmware(wl->fw->fw_entry); wl->fw->ptr = 0; } void *wl_cfg80211_request_fw(s8 *file_name) { struct wl_priv *wl; const struct firmware *fw_entry = NULL; s32 err = 0; WL_INFO("file name : \"%s\"\n", file_name); wl = WL_PRIV_GET(); if (!test_bit(WL_FW_LOADING_DONE, &wl->fw->status)) { err = request_firmware(&wl->fw->fw_entry, file_name, &wl_cfg80211_get_sdio_func()->dev); if (unlikely(err)) { WL_ERR("Could not download fw (%d)\n", err); goto req_fw_out; } set_bit(WL_FW_LOADING_DONE, &wl->fw->status); fw_entry = wl->fw->fw_entry; if (fw_entry) { WL_INFO("fw size (%zd), data (%p)\n", fw_entry->size, fw_entry->data); } } else if (!test_bit(WL_NVRAM_LOADING_DONE, &wl->fw->status)) { err = request_firmware(&wl->fw->fw_entry, file_name, &wl_cfg80211_get_sdio_func()->dev); if (unlikely(err)) { WL_ERR("Could not download nvram (%d)\n", err); goto req_fw_out; } set_bit(WL_NVRAM_LOADING_DONE, &wl->fw->status); fw_entry = wl->fw->fw_entry; if (fw_entry) { WL_INFO("nvram size (%zd), data (%p)\n", fw_entry->size, fw_entry->data); } } else { WL_INFO("Downloading already done. Nothing to do more\n"); err = -EPERM; } req_fw_out: if (unlikely(err)) { return NULL; } wl->fw->ptr = 0; return (void *)fw_entry->data; } s8 *wl_cfg80211_get_fwname(void) { struct wl_priv *wl; wl = WL_PRIV_GET(); strcpy(wl->fw->fw_name, WL_4329_FW_FILE); return wl->fw->fw_name; } s8 *wl_cfg80211_get_nvramname(void) { struct wl_priv *wl; wl = WL_PRIV_GET(); strcpy(wl->fw->nvram_name, WL_4329_NVRAM_FILE); return wl->fw->nvram_name; } static void wl_set_mpc(struct net_device *ndev, int mpc) { s32 err = 0; struct wl_priv *wl = ndev_to_wl(ndev); if (test_bit(WL_STATUS_READY, &wl->status)) { err = wl_dev_intvar_set(ndev, "mpc", mpc); if (unlikely(err)) { WL_ERR("fail to set mpc\n"); return; } WL_INFO("MPC : %d\n", mpc); } } static int wl_debugfs_add_netdev_params(struct wl_priv *wl) { char buf[10+IFNAMSIZ]; struct dentry *fd; s32 err = 0; sprintf(buf, "netdev:%s", wl_to_ndev(wl)->name); wl->debugfsdir = debugfs_create_dir(buf, wl_to_wiphy(wl)->debugfsdir); fd = debugfs_create_u16("beacon_int", S_IRUGO, wl->debugfsdir, (u16 *)&wl->profile->beacon_interval); if (!fd) { err = -ENOMEM; goto err_out; } fd = debugfs_create_u8("dtim_period", S_IRUGO, wl->debugfsdir, (u8 *)&wl->profile->dtim_period); if (!fd) { err = -ENOMEM; goto err_out; } err_out: return err; } static void wl_debugfs_remove_netdev(struct wl_priv *wl) { debugfs_remove_recursive(wl->debugfsdir); wl->debugfsdir = NULL; }