/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "vp9/encoder/vp9_aq_cyclicrefresh.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vp9/encoder/vp9_segmentation.h" struct CYCLIC_REFRESH { // Percentage of blocks per frame that are targeted as candidates // for cyclic refresh. int percent_refresh; // Maximum q-delta as percentage of base q. int max_qdelta_perc; // Block size below which we don't apply cyclic refresh. BLOCK_SIZE min_block_size; // Superblock starting index for cycling through the frame. int sb_index; // Controls how long block will need to wait to be refreshed again, in // excess of the cycle time, i.e., in the case of all zero motion, block // will be refreshed every (100/percent_refresh + time_for_refresh) frames. int time_for_refresh; // // Target number of (8x8) blocks that are set for delta-q (segment 1). int target_num_seg_blocks; // Actual number of (8x8) blocks that were applied delta-q (segment 1). int actual_num_seg_blocks; // RD mult. parameters for segment 1. int rdmult; // Cyclic refresh map. signed char *map; // Thresholds applied to projected rate/distortion of the superblock. int64_t thresh_rate_sb; int64_t thresh_dist_sb; // Rate target ratio to set q delta. double rate_ratio_qdelta; }; CYCLIC_REFRESH *vp9_cyclic_refresh_alloc(int mi_rows, int mi_cols) { CYCLIC_REFRESH *const cr = vpx_calloc(1, sizeof(*cr)); if (cr == NULL) return NULL; cr->map = vpx_calloc(mi_rows * mi_cols, sizeof(*cr->map)); if (cr->map == NULL) { vpx_free(cr); return NULL; } return cr; } void vp9_cyclic_refresh_free(CYCLIC_REFRESH *cr) { vpx_free(cr->map); vpx_free(cr); } // Check if we should turn off cyclic refresh based on bitrate condition. static int apply_cyclic_refresh_bitrate(const VP9_COMMON *cm, const RATE_CONTROL *rc) { // Turn off cyclic refresh if bits available per frame is not sufficiently // larger than bit cost of segmentation. Segment map bit cost should scale // with number of seg blocks, so compare available bits to number of blocks. // Average bits available per frame = avg_frame_bandwidth // Number of (8x8) blocks in frame = mi_rows * mi_cols; const float factor = 0.5; const int number_blocks = cm->mi_rows * cm->mi_cols; // The condition below corresponds to turning off at target bitrates: // ~24kbps for CIF, 72kbps for VGA (at 30fps). // Also turn off at very small frame sizes, to avoid too large fraction of // superblocks to be refreshed per frame. Threshold below is less than QCIF. if (rc->avg_frame_bandwidth < factor * number_blocks || number_blocks / 64 < 5) return 0; else return 1; } // Check if this coding block, of size bsize, should be considered for refresh // (lower-qp coding). Decision can be based on various factors, such as // size of the coding block (i.e., below min_block size rejected), coding // mode, and rate/distortion. static int candidate_refresh_aq(const CYCLIC_REFRESH *cr, const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int use_rd, int64_t rate_sb) { if (use_rd) { MV mv = mbmi->mv[0].as_mv; // If projected rate is below the thresh_rate (well below target, // so undershoot expected), accept it for lower-qp coding. if (rate_sb < cr->thresh_rate_sb) return 1; // Otherwise, reject the block for lower-qp coding if any of the following: // 1) mode uses large mv // 2) mode is an intra-mode (we may want to allow some of this under // another thresh_dist) else if (mv.row > 32 || mv.row < -32 || mv.col > 32 || mv.col < -32 || !is_inter_block(mbmi)) return 0; else return 1; } else { // Rate/distortion not used for update. if (bsize < cr->min_block_size || mbmi->mv[0].as_int != 0 || !is_inter_block(mbmi)) return 0; else return 1; } } // Compute delta-q for the segment. static int compute_deltaq(const VP9_COMP *cpi, int q) { const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; const RATE_CONTROL *const rc = &cpi->rc; int deltaq = vp9_compute_qdelta_by_rate(rc, cpi->common.frame_type, q, cr->rate_ratio_qdelta, cpi->common.bit_depth); if ((-deltaq) > cr->max_qdelta_perc * q / 100) { deltaq = -cr->max_qdelta_perc * q / 100; } return deltaq; } // For the just encoded frame, estimate the bits, incorporating the delta-q // from segment 1. This function is called in the postencode (called from // rc_update_rate_correction_factors()). int vp9_cyclic_refresh_estimate_bits_at_q(const VP9_COMP *cpi, double correction_factor) { const VP9_COMMON *const cm = &cpi->common; const CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; int estimated_bits; int mbs = cm->MBs; int num8x8bl = mbs << 2; // Weight for segment 1: use actual number of blocks refreshed in // previous/just encoded frame. Note number of blocks here is in 8x8 units. double weight_segment = (double)cr->actual_num_seg_blocks / num8x8bl; // Compute delta-q that was used in the just encoded frame. int deltaq = compute_deltaq(cpi, cm->base_qindex); // Take segment weighted average for estimated bits. estimated_bits = (int)((1.0 - weight_segment) * vp9_estimate_bits_at_q(cm->frame_type, cm->base_qindex, mbs, correction_factor, cm->bit_depth) + weight_segment * vp9_estimate_bits_at_q(cm->frame_type, cm->base_qindex + deltaq, mbs, correction_factor, cm->bit_depth)); return estimated_bits; } // Prior to encoding the frame, estimate the bits per mb, for a given q = i and // a corresponding delta-q (for segment 1). This function is called in the // rc_regulate_q() to set the base qp index. int vp9_cyclic_refresh_rc_bits_per_mb(const VP9_COMP *cpi, int i, double correction_factor) { const VP9_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; int bits_per_mb; int num8x8bl = cm->MBs << 2; // Weight for segment 1 prior to encoding: take the target number for the // frame to be encoded. Number of blocks here is in 8x8 units. // Note that this is called in rc_regulate_q, which is called before the // cyclic_refresh_setup (which sets cr->target_num_seg_blocks). So a mismatch // may occur between the cr->target_num_seg_blocks value here and the // cr->target_num_seg_block set for encoding the frame. For the current use // case of fixed cr->percent_refresh and cr->time_for_refresh = 0, mismatch // does not occur/is very small. double weight_segment = (double)cr->target_num_seg_blocks / num8x8bl; // Compute delta-q corresponding to qindex i. int deltaq = compute_deltaq(cpi, i); // Take segment weighted average for bits per mb. bits_per_mb = (int)((1.0 - weight_segment) * vp9_rc_bits_per_mb(cm->frame_type, i, correction_factor, cm->bit_depth) + weight_segment * vp9_rc_bits_per_mb(cm->frame_type, i + deltaq, correction_factor, cm->bit_depth)); return bits_per_mb; } // Prior to coding a given prediction block, of size bsize at (mi_row, mi_col), // check if we should reset the segment_id, and update the cyclic_refresh map // and segmentation map. void vp9_cyclic_refresh_update_segment(VP9_COMP *const cpi, MB_MODE_INFO *const mbmi, int mi_row, int mi_col, BLOCK_SIZE bsize, int use_rd, int64_t rate_sb) { const VP9_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; const int bw = num_8x8_blocks_wide_lookup[bsize]; const int bh = num_8x8_blocks_high_lookup[bsize]; const int xmis = MIN(cm->mi_cols - mi_col, bw); const int ymis = MIN(cm->mi_rows - mi_row, bh); const int block_index = mi_row * cm->mi_cols + mi_col; const int refresh_this_block = candidate_refresh_aq(cr, mbmi, bsize, use_rd, rate_sb); // Default is to not update the refresh map. int new_map_value = cr->map[block_index]; int x = 0; int y = 0; // Check if we should reset the segment_id for this block. if (mbmi->segment_id > 0 && !refresh_this_block) mbmi->segment_id = 0; // Update the cyclic refresh map, to be used for setting segmentation map // for the next frame. If the block will be refreshed this frame, mark it // as clean. The magnitude of the -ve influences how long before we consider // it for refresh again. if (mbmi->segment_id == 1) { new_map_value = -cr->time_for_refresh; } else if (refresh_this_block) { // Else if it is accepted as candidate for refresh, and has not already // been refreshed (marked as 1) then mark it as a candidate for cleanup // for future time (marked as 0), otherwise don't update it. if (cr->map[block_index] == 1) new_map_value = 0; } else { // Leave it marked as block that is not candidate for refresh. new_map_value = 1; } // Update entries in the cyclic refresh map with new_map_value, and // copy mbmi->segment_id into global segmentation map. for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) { cr->map[block_index + y * cm->mi_cols + x] = new_map_value; cpi->segmentation_map[block_index + y * cm->mi_cols + x] = mbmi->segment_id; } } // Update the actual number of blocks that were applied the segment delta q. void vp9_cyclic_refresh_update_actual_count(struct VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; unsigned char *const seg_map = cpi->segmentation_map; int mi_row, mi_col; cr->actual_num_seg_blocks = 0; for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) for (mi_col = 0; mi_col < cm->mi_cols; mi_col++) { if (seg_map[mi_row * cm->mi_cols + mi_col] == 1) cr->actual_num_seg_blocks++; } } // Update the segmentation map, and related quantities: cyclic refresh map, // refresh sb_index, and target number of blocks to be refreshed. void vp9_cyclic_refresh_update_map(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; unsigned char *const seg_map = cpi->segmentation_map; int i, block_count, bl_index, sb_rows, sb_cols, sbs_in_frame; int xmis, ymis, x, y; vpx_memset(seg_map, 0, cm->mi_rows * cm->mi_cols); sb_cols = (cm->mi_cols + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; sb_rows = (cm->mi_rows + MI_BLOCK_SIZE - 1) / MI_BLOCK_SIZE; sbs_in_frame = sb_cols * sb_rows; // Number of target blocks to get the q delta (segment 1). block_count = cr->percent_refresh * cm->mi_rows * cm->mi_cols / 100; // Set the segmentation map: cycle through the superblocks, starting at // cr->mb_index, and stopping when either block_count blocks have been found // to be refreshed, or we have passed through whole frame. assert(cr->sb_index < sbs_in_frame); i = cr->sb_index; cr->target_num_seg_blocks = 0; do { int sum_map = 0; // Get the mi_row/mi_col corresponding to superblock index i. int sb_row_index = (i / sb_cols); int sb_col_index = i - sb_row_index * sb_cols; int mi_row = sb_row_index * MI_BLOCK_SIZE; int mi_col = sb_col_index * MI_BLOCK_SIZE; assert(mi_row >= 0 && mi_row < cm->mi_rows); assert(mi_col >= 0 && mi_col < cm->mi_cols); bl_index = mi_row * cm->mi_cols + mi_col; // Loop through all 8x8 blocks in superblock and update map. xmis = MIN(cm->mi_cols - mi_col, num_8x8_blocks_wide_lookup[BLOCK_64X64]); ymis = MIN(cm->mi_rows - mi_row, num_8x8_blocks_high_lookup[BLOCK_64X64]); for (y = 0; y < ymis; y++) { for (x = 0; x < xmis; x++) { const int bl_index2 = bl_index + y * cm->mi_cols + x; // If the block is as a candidate for clean up then mark it // for possible boost/refresh (segment 1). The segment id may get // reset to 0 later if block gets coded anything other than ZEROMV. if (cr->map[bl_index2] == 0) { sum_map++; } else if (cr->map[bl_index2] < 0) { cr->map[bl_index2]++; } } } // Enforce constant segment over superblock. // If segment is at least half of superblock, set to 1. if (sum_map >= xmis * ymis / 2) { for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) { seg_map[bl_index + y * cm->mi_cols + x] = 1; } cr->target_num_seg_blocks += xmis * ymis; } i++; if (i == sbs_in_frame) { i = 0; } } while (cr->target_num_seg_blocks < block_count && i != cr->sb_index); cr->sb_index = i; } // Set/update global/frame level cyclic refresh parameters. void vp9_cyclic_refresh_update_parameters(VP9_COMP *const cpi) { const RATE_CONTROL *const rc = &cpi->rc; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; cr->percent_refresh = 10; // Use larger delta-qp (increase rate_ratio_qdelta) for first few (~4) // periods of the refresh cycle, after a key frame. This corresponds to ~40 // frames with cr->percent_refresh = 10. if (rc->frames_since_key < 40) cr->rate_ratio_qdelta = 3.0; else cr->rate_ratio_qdelta = 2.0; } // Setup cyclic background refresh: set delta q and segmentation map. void vp9_cyclic_refresh_setup(VP9_COMP *const cpi) { VP9_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; struct segmentation *const seg = &cm->seg; const int apply_cyclic_refresh = apply_cyclic_refresh_bitrate(cm, rc); // Don't apply refresh on key frame or enhancement layer frames. if (!apply_cyclic_refresh || (cm->frame_type == KEY_FRAME) || (cpi->svc.temporal_layer_id > 0) || (cpi->svc.spatial_layer_id > 0)) { // Set segmentation map to 0 and disable. unsigned char *const seg_map = cpi->segmentation_map; vpx_memset(seg_map, 0, cm->mi_rows * cm->mi_cols); vp9_disable_segmentation(&cm->seg); if (cm->frame_type == KEY_FRAME) cr->sb_index = 0; return; } else { int qindex_delta = 0; int qindex2; const double q = vp9_convert_qindex_to_q(cm->base_qindex, cm->bit_depth); vp9_clear_system_state(); cr->max_qdelta_perc = 50; cr->min_block_size = BLOCK_8X8; cr->time_for_refresh = 0; // Set rate threshold to some fraction of target (and scaled by 256). cr->thresh_rate_sb = (rc->sb64_target_rate * 256) >> 2; // Distortion threshold, quadratic in Q, scale factor to be adjusted. cr->thresh_dist_sb = 8 * (int)(q * q); if (cpi->sf.use_nonrd_pick_mode) { // May want to be more conservative with thresholds in non-rd mode for now // as rate/distortion are derived from model based on prediction residual. cr->thresh_rate_sb = (rc->sb64_target_rate * 256); cr->thresh_dist_sb = 16 * (int)(q * q); } // Set up segmentation. // Clear down the segment map. vp9_enable_segmentation(&cm->seg); vp9_clearall_segfeatures(seg); // Select delta coding method. seg->abs_delta = SEGMENT_DELTADATA; // Note: setting temporal_update has no effect, as the seg-map coding method // (temporal or spatial) is determined in vp9_choose_segmap_coding_method(), // based on the coding cost of each method. For error_resilient mode on the // last_frame_seg_map is set to 0, so if temporal coding is used, it is // relative to 0 previous map. // seg->temporal_update = 0; // Segment 0 "Q" feature is disabled so it defaults to the baseline Q. vp9_disable_segfeature(seg, 0, SEG_LVL_ALT_Q); // Use segment 1 for in-frame Q adjustment. vp9_enable_segfeature(seg, 1, SEG_LVL_ALT_Q); // Set the q delta for segment 1. qindex_delta = compute_deltaq(cpi, cm->base_qindex); // Compute rd-mult for segment 1. qindex2 = clamp(cm->base_qindex + cm->y_dc_delta_q + qindex_delta, 0, MAXQ); cr->rdmult = vp9_compute_rd_mult(cpi, qindex2); vp9_set_segdata(seg, 1, SEG_LVL_ALT_Q, qindex_delta); // Update the segmentation and refresh map. vp9_cyclic_refresh_update_map(cpi); } } int vp9_cyclic_refresh_get_rdmult(const CYCLIC_REFRESH *cr) { return cr->rdmult; }