// The latest version of this library is available on GitHub; // https://github.com/sheredom/utf8.h // This is free and unencumbered software released into the public domain. // // Anyone is free to copy, modify, publish, use, compile, sell, or // distribute this software, either in source code form or as a compiled // binary, for any purpose, commercial or non-commercial, and by any // means. // // In jurisdictions that recognize copyright laws, the author or authors // of this software dedicate any and all copyright interest in the // software to the public domain. We make this dedication for the benefit // of the public at large and to the detriment of our heirs and // successors. We intend this dedication to be an overt act of // relinquishment in perpetuity of all present and future rights to this // software under copyright law. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR // OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // OTHER DEALINGS IN THE SOFTWARE. // // For more information, please refer to #ifndef SHEREDOM_UTF8_H_INCLUDED #define SHEREDOM_UTF8_H_INCLUDED #if defined(_MSC_VER) #pragma warning(push) // disable 'bytes padding added after construct' warning #pragma warning(disable : 4820) #endif #include #include #if defined(_MSC_VER) #pragma warning(pop) #endif #if defined(_MSC_VER) typedef __int32 utf8_int32_t; #else #include typedef int32_t utf8_int32_t; #endif #if defined(__clang__) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wold-style-cast" #pragma clang diagnostic ignored "-Wcast-qual" #endif #ifdef __cplusplus extern "C" { #endif #if defined(__clang__) || defined(__GNUC__) #define utf8_nonnull __attribute__((nonnull)) #define utf8_pure __attribute__((pure)) #define utf8_restrict __restrict__ #define utf8_weak __attribute__((weak)) #elif defined(_MSC_VER) #define utf8_nonnull #define utf8_pure #define utf8_restrict __restrict #define utf8_weak __inline #else #error Non clang, non gcc, non MSVC compiler found! #endif #ifdef __cplusplus #define utf8_null NULL #else #define utf8_null 0 #endif // Return less than 0, 0, greater than 0 if src1 < src2, src1 == src2, src1 > // src2 respectively, case insensitive. utf8_nonnull utf8_pure utf8_weak int utf8casecmp(const void *src1, const void *src2); // Append the utf8 string src onto the utf8 string dst. utf8_nonnull utf8_weak void *utf8cat(void *utf8_restrict dst, const void *utf8_restrict src); // Find the first match of the utf8 codepoint chr in the utf8 string src. utf8_nonnull utf8_pure utf8_weak void *utf8chr(const void *src, utf8_int32_t chr); // Return less than 0, 0, greater than 0 if src1 < src2, // src1 == src2, src1 > src2 respectively. utf8_nonnull utf8_pure utf8_weak int utf8cmp(const void *src1, const void *src2); // Copy the utf8 string src onto the memory allocated in dst. utf8_nonnull utf8_weak void *utf8cpy(void *utf8_restrict dst, const void *utf8_restrict src); // Number of utf8 codepoints in the utf8 string src that consists entirely // of utf8 codepoints not from the utf8 string reject. utf8_nonnull utf8_pure utf8_weak size_t utf8cspn(const void *src, const void *reject); // Duplicate the utf8 string src by getting its size, malloc'ing a new buffer // copying over the data, and returning that. Or 0 if malloc failed. utf8_nonnull utf8_weak void *utf8dup(const void *src); // Number of utf8 codepoints in the utf8 string str, // excluding the null terminating byte. utf8_nonnull utf8_pure utf8_weak size_t utf8len(const void *str); // Return less than 0, 0, greater than 0 if src1 < src2, src1 == src2, src1 > // src2 respectively, case insensitive. Checking at most n bytes of each utf8 // string. utf8_nonnull utf8_pure utf8_weak int utf8ncasecmp(const void *src1, const void *src2, size_t n); // Append the utf8 string src onto the utf8 string dst, // writing at most n+1 bytes. Can produce an invalid utf8 // string if n falls partway through a utf8 codepoint. utf8_nonnull utf8_weak void *utf8ncat(void *utf8_restrict dst, const void *utf8_restrict src, size_t n); // Return less than 0, 0, greater than 0 if src1 < src2, // src1 == src2, src1 > src2 respectively. Checking at most n // bytes of each utf8 string. utf8_nonnull utf8_pure utf8_weak int utf8ncmp(const void *src1, const void *src2, size_t n); // Copy the utf8 string src onto the memory allocated in dst. // Copies at most n bytes. If there is no terminating null byte in // the first n bytes of src, the string placed into dst will not be // null-terminated. If the size (in bytes) of src is less than n, // extra null terminating bytes are appended to dst such that at // total of n bytes are written. Can produce an invalid utf8 // string if n falls partway through a utf8 codepoint. utf8_nonnull utf8_weak void *utf8ncpy(void *utf8_restrict dst, const void *utf8_restrict src, size_t n); // Similar to utf8dup, except that at most n bytes of src are copied. If src is // longer than n, only n bytes are copied and a null byte is added. // // Returns a new string if successful, 0 otherwise utf8_nonnull utf8_weak void *utf8ndup(const void *src, size_t n); // Locates the first occurence in the utf8 string str of any byte in the // utf8 string accept, or 0 if no match was found. utf8_nonnull utf8_pure utf8_weak void *utf8pbrk(const void *str, const void *accept); // Find the last match of the utf8 codepoint chr in the utf8 string src. utf8_nonnull utf8_pure utf8_weak void *utf8rchr(const void *src, int chr); // Number of bytes in the utf8 string str, // including the null terminating byte. utf8_nonnull utf8_pure utf8_weak size_t utf8size(const void *str); // Number of utf8 codepoints in the utf8 string src that consists entirely // of utf8 codepoints from the utf8 string accept. utf8_nonnull utf8_pure utf8_weak size_t utf8spn(const void *src, const void *accept); // The position of the utf8 string needle in the utf8 string haystack. utf8_nonnull utf8_pure utf8_weak void *utf8str(const void *haystack, const void *needle); // The position of the utf8 string needle in the utf8 string haystack, case // insensitive. utf8_nonnull utf8_pure utf8_weak void *utf8casestr(const void *haystack, const void *needle); // Return 0 on success, or the position of the invalid // utf8 codepoint on failure. utf8_nonnull utf8_pure utf8_weak void *utf8valid(const void *str); // Sets out_codepoint to the next utf8 codepoint in str, and returns the address // of the utf8 codepoint after the current one in str. utf8_nonnull utf8_weak void * utf8codepoint(const void *utf8_restrict str, utf8_int32_t *utf8_restrict out_codepoint); // Returns the size of the given codepoint in bytes. utf8_weak size_t utf8codepointsize(utf8_int32_t chr); // Write a codepoint to the given string, and return the address to the next // place after the written codepoint. Pass how many bytes left in the buffer to // n. If there is not enough space for the codepoint, this function returns // null. utf8_nonnull utf8_weak void *utf8catcodepoint(void *utf8_restrict str, utf8_int32_t chr, size_t n); // Returns 1 if the given character is lowercase, or 0 if it is not. utf8_weak int utf8islower(utf8_int32_t chr); // Returns 1 if the given character is uppercase, or 0 if it is not. utf8_weak int utf8isupper(utf8_int32_t chr); // Transform the given string into all lowercase codepoints. utf8_nonnull utf8_weak void utf8lwr(void *utf8_restrict str); // Transform the given string into all uppercase codepoints. utf8_nonnull utf8_weak void utf8upr(void *utf8_restrict str); // Make a codepoint lower case if possible. utf8_weak utf8_int32_t utf8lwrcodepoint(utf8_int32_t cp); // Make a codepoint upper case if possible. utf8_weak utf8_int32_t utf8uprcodepoint(utf8_int32_t cp); #undef utf8_weak #undef utf8_pure #undef utf8_nonnull int utf8casecmp(const void *src1, const void *src2) { utf8_int32_t src1_cp, src2_cp, src1_orig_cp, src2_orig_cp; for (;;) { src1 = utf8codepoint(src1, &src1_cp); src2 = utf8codepoint(src2, &src2_cp); // Take a copy of src1 & src2 src1_orig_cp = src1_cp; src2_orig_cp = src2_cp; // Lower the srcs if required src1_cp = utf8lwrcodepoint(src1_cp); src2_cp = utf8lwrcodepoint(src2_cp); // Check if the lowered codepoints match if ((0 == src1_orig_cp) && (0 == src2_orig_cp)) { return 0; } else if (src1_cp == src2_cp) { continue; } // If they don't match, then we return which of the original's are less if (src1_orig_cp < src2_orig_cp) { return -1; } else if (src1_orig_cp > src2_orig_cp) { return 1; } } } void *utf8cat(void *utf8_restrict dst, const void *utf8_restrict src) { char *d = (char *)dst; const char *s = (const char *)src; // find the null terminating byte in dst while ('\0' != *d) { d++; } // overwriting the null terminating byte in dst, append src byte-by-byte while ('\0' != *s) { *d++ = *s++; } // write out a new null terminating byte into dst *d = '\0'; return dst; } void *utf8chr(const void *src, utf8_int32_t chr) { char c[5] = {'\0', '\0', '\0', '\0', '\0'}; if (0 == chr) { // being asked to return position of null terminating byte, so // just run s to the end, and return! const char *s = (const char *)src; while ('\0' != *s) { s++; } return (void *)s; } else if (0 == ((utf8_int32_t)0xffffff80 & chr)) { // 1-byte/7-bit ascii // (0b0xxxxxxx) c[0] = (char)chr; } else if (0 == ((utf8_int32_t)0xfffff800 & chr)) { // 2-byte/11-bit utf8 code point // (0b110xxxxx 0b10xxxxxx) c[0] = 0xc0 | (char)(chr >> 6); c[1] = 0x80 | (char)(chr & 0x3f); } else if (0 == ((utf8_int32_t)0xffff0000 & chr)) { // 3-byte/16-bit utf8 code point // (0b1110xxxx 0b10xxxxxx 0b10xxxxxx) c[0] = 0xe0 | (char)(chr >> 12); c[1] = 0x80 | (char)((chr >> 6) & 0x3f); c[2] = 0x80 | (char)(chr & 0x3f); } else { // if (0 == ((int)0xffe00000 & chr)) { // 4-byte/21-bit utf8 code point // (0b11110xxx 0b10xxxxxx 0b10xxxxxx 0b10xxxxxx) c[0] = 0xf0 | (char)(chr >> 18); c[1] = 0x80 | (char)((chr >> 12) & 0x3f); c[2] = 0x80 | (char)((chr >> 6) & 0x3f); c[3] = 0x80 | (char)(chr & 0x3f); } // we've made c into a 2 utf8 codepoint string, one for the chr we are // seeking, another for the null terminating byte. Now use utf8str to // search return utf8str(src, c); } int utf8cmp(const void *src1, const void *src2) { const unsigned char *s1 = (const unsigned char *)src1; const unsigned char *s2 = (const unsigned char *)src2; while (('\0' != *s1) || ('\0' != *s2)) { if (*s1 < *s2) { return -1; } else if (*s1 > *s2) { return 1; } s1++; s2++; } // both utf8 strings matched return 0; } int utf8coll(const void *src1, const void *src2); void *utf8cpy(void *utf8_restrict dst, const void *utf8_restrict src) { char *d = (char *)dst; const char *s = (const char *)src; // overwriting anything previously in dst, write byte-by-byte // from src while ('\0' != *s) { *d++ = *s++; } // append null terminating byte *d = '\0'; return dst; } size_t utf8cspn(const void *src, const void *reject) { const char *s = (const char *)src; size_t chars = 0; while ('\0' != *s) { const char *r = (const char *)reject; size_t offset = 0; while ('\0' != *r) { // checking that if *r is the start of a utf8 codepoint // (it is not 0b10xxxxxx) and we have successfully matched // a previous character (0 < offset) - we found a match if ((0x80 != (0xc0 & *r)) && (0 < offset)) { return chars; } else { if (*r == s[offset]) { // part of a utf8 codepoint matched, so move our checking // onwards to the next byte offset++; r++; } else { // r could be in the middle of an unmatching utf8 code point, // so we need to march it on to the next character beginning, do { r++; } while (0x80 == (0xc0 & *r)); // reset offset too as we found a mismatch offset = 0; } } } // the current utf8 codepoint in src did not match reject, but src // could have been partway through a utf8 codepoint, so we need to // march it onto the next utf8 codepoint starting byte do { s++; } while ((0x80 == (0xc0 & *s))); chars++; } return chars; } size_t utf8size(const void *str); void *utf8dup(const void *src) { const char *s = (const char *)src; char *n = utf8_null; // figure out how many bytes (including the terminator) we need to copy first size_t bytes = utf8size(src); n = (char *)malloc(bytes); if (utf8_null == n) { // out of memory so we bail return utf8_null; } else { bytes = 0; // copy src byte-by-byte into our new utf8 string while ('\0' != s[bytes]) { n[bytes] = s[bytes]; bytes++; } // append null terminating byte n[bytes] = '\0'; return n; } } void *utf8fry(const void *str); size_t utf8len(const void *str) { const unsigned char *s = (const unsigned char *)str; size_t length = 0; while ('\0' != *s) { if (0xf0 == (0xf8 & *s)) { // 4-byte utf8 code point (began with 0b11110xxx) s += 4; } else if (0xe0 == (0xf0 & *s)) { // 3-byte utf8 code point (began with 0b1110xxxx) s += 3; } else if (0xc0 == (0xe0 & *s)) { // 2-byte utf8 code point (began with 0b110xxxxx) s += 2; } else { // if (0x00 == (0x80 & *s)) { // 1-byte ascii (began with 0b0xxxxxxx) s += 1; } // no matter the bytes we marched s forward by, it was // only 1 utf8 codepoint length++; } return length; } int utf8ncasecmp(const void *src1, const void *src2, size_t n) { utf8_int32_t src1_cp, src2_cp, src1_orig_cp, src2_orig_cp; do { const unsigned char *const s1 = (const unsigned char *)src1; const unsigned char *const s2 = (const unsigned char *)src2; // first check that we have enough bytes left in n to contain an entire // codepoint if (0 == n) { return 0; } if ((1 == n) && ((0xc0 == (0xe0 & *s1)) || (0xc0 == (0xe0 & *s2)))) { const utf8_int32_t c1 = (0xe0 & *s1); const utf8_int32_t c2 = (0xe0 & *s2); if (c1 < c2) { return -1; } else if (c1 > c2) { return 1; } else { return 0; } } if ((2 >= n) && ((0xe0 == (0xf0 & *s1)) || (0xe0 == (0xf0 & *s2)))) { const utf8_int32_t c1 = (0xf0 & *s1); const utf8_int32_t c2 = (0xf0 & *s2); if (c1 < c2) { return -1; } else if (c1 > c2) { return 1; } else { return 0; } } if ((3 >= n) && ((0xf0 == (0xf8 & *s1)) || (0xf0 == (0xf8 & *s2)))) { const utf8_int32_t c1 = (0xf8 & *s1); const utf8_int32_t c2 = (0xf8 & *s2); if (c1 < c2) { return -1; } else if (c1 > c2) { return 1; } else { return 0; } } src1 = utf8codepoint(src1, &src1_cp); src2 = utf8codepoint(src2, &src2_cp); n -= utf8codepointsize(src1_cp); // Take a copy of src1 & src2 src1_orig_cp = src1_cp; src2_orig_cp = src2_cp; // Lower srcs if required src1_cp = utf8lwrcodepoint(src1_cp); src2_cp = utf8lwrcodepoint(src2_cp); // Check if the lowered codepoints match if ((0 == src1_orig_cp) && (0 == src2_orig_cp)) { return 0; } else if (src1_cp == src2_cp) { continue; } // If they don't match, then we return which of the original's are less if (src1_orig_cp < src2_orig_cp) { return -1; } else if (src1_orig_cp > src2_orig_cp) { return 1; } } while (0 < n); // both utf8 strings matched return 0; } void *utf8ncat(void *utf8_restrict dst, const void *utf8_restrict src, size_t n) { char *d = (char *)dst; const char *s = (const char *)src; // find the null terminating byte in dst while ('\0' != *d) { d++; } // overwriting the null terminating byte in dst, append src byte-by-byte // stopping if we run out of space do { *d++ = *s++; } while (('\0' != *s) && (0 != --n)); // write out a new null terminating byte into dst *d = '\0'; return dst; } int utf8ncmp(const void *src1, const void *src2, size_t n) { const unsigned char *s1 = (const unsigned char *)src1; const unsigned char *s2 = (const unsigned char *)src2; while ((('\0' != *s1) || ('\0' != *s2)) && (0 != n--)) { if (*s1 < *s2) { return -1; } else if (*s1 > *s2) { return 1; } s1++; s2++; } // both utf8 strings matched return 0; } void *utf8ncpy(void *utf8_restrict dst, const void *utf8_restrict src, size_t n) { char *d = (char *)dst; const char *s = (const char *)src; // overwriting anything previously in dst, write byte-by-byte // from src do { *d++ = *s++; } while (('\0' != *s) && (0 != --n)); // append null terminating byte while (0 != n) { *d++ = '\0'; n--; } return dst; } void *utf8ndup(const void *src, size_t n) { const char *s = (const char *)src; char *c = utf8_null; size_t bytes = 0; // Find the end of the string or stop when n is reached while ('\0' != s[bytes] && bytes < n) { bytes++; } // In case bytes is actually less than n, we need to set it // to be used later in the copy byte by byte. n = bytes; c = (char *)malloc(bytes + 1); if (utf8_null == c) { // out of memory so we bail return utf8_null; } bytes = 0; // copy src byte-by-byte into our new utf8 string while ('\0' != s[bytes] && bytes < n) { c[bytes] = s[bytes]; bytes++; } // append null terminating byte c[bytes] = '\0'; return c; } void *utf8rchr(const void *src, int chr) { const char *s = (const char *)src; const char *match = utf8_null; char c[5] = {'\0', '\0', '\0', '\0', '\0'}; if (0 == chr) { // being asked to return position of null terminating byte, so // just run s to the end, and return! while ('\0' != *s) { s++; } return (void *)s; } else if (0 == ((int)0xffffff80 & chr)) { // 1-byte/7-bit ascii // (0b0xxxxxxx) c[0] = (char)chr; } else if (0 == ((int)0xfffff800 & chr)) { // 2-byte/11-bit utf8 code point // (0b110xxxxx 0b10xxxxxx) c[0] = 0xc0 | (char)(chr >> 6); c[1] = 0x80 | (char)(chr & 0x3f); } else if (0 == ((int)0xffff0000 & chr)) { // 3-byte/16-bit utf8 code point // (0b1110xxxx 0b10xxxxxx 0b10xxxxxx) c[0] = 0xe0 | (char)(chr >> 12); c[1] = 0x80 | (char)((chr >> 6) & 0x3f); c[2] = 0x80 | (char)(chr & 0x3f); } else { // if (0 == ((int)0xffe00000 & chr)) { // 4-byte/21-bit utf8 code point // (0b11110xxx 0b10xxxxxx 0b10xxxxxx 0b10xxxxxx) c[0] = 0xf0 | (char)(chr >> 18); c[1] = 0x80 | (char)((chr >> 12) & 0x3f); c[2] = 0x80 | (char)((chr >> 6) & 0x3f); c[3] = 0x80 | (char)(chr & 0x3f); } // we've created a 2 utf8 codepoint string in c that is // the utf8 character asked for by chr, and a null // terminating byte while ('\0' != *s) { size_t offset = 0; while (s[offset] == c[offset]) { offset++; } if ('\0' == c[offset]) { // we found a matching utf8 code point match = s; s += offset; } else { s += offset; // need to march s along to next utf8 codepoint start // (the next byte that doesn't match 0b10xxxxxx) if ('\0' != *s) { do { s++; } while (0x80 == (0xc0 & *s)); } } } // return the last match we found (or 0 if no match was found) return (void *)match; } void *utf8pbrk(const void *str, const void *accept) { const char *s = (const char *)str; while ('\0' != *s) { const char *a = (const char *)accept; size_t offset = 0; while ('\0' != *a) { // checking that if *a is the start of a utf8 codepoint // (it is not 0b10xxxxxx) and we have successfully matched // a previous character (0 < offset) - we found a match if ((0x80 != (0xc0 & *a)) && (0 < offset)) { return (void *)s; } else { if (*a == s[offset]) { // part of a utf8 codepoint matched, so move our checking // onwards to the next byte offset++; a++; } else { // r could be in the middle of an unmatching utf8 code point, // so we need to march it on to the next character beginning, do { a++; } while (0x80 == (0xc0 & *a)); // reset offset too as we found a mismatch offset = 0; } } } // we found a match on the last utf8 codepoint if (0 < offset) { return (void *)s; } // the current utf8 codepoint in src did not match accept, but src // could have been partway through a utf8 codepoint, so we need to // march it onto the next utf8 codepoint starting byte do { s++; } while ((0x80 == (0xc0 & *s))); } return utf8_null; } size_t utf8size(const void *str) { const char *s = (const char *)str; size_t size = 0; while ('\0' != s[size]) { size++; } // we are including the null terminating byte in the size calculation size++; return size; } size_t utf8spn(const void *src, const void *accept) { const char *s = (const char *)src; size_t chars = 0; while ('\0' != *s) { const char *a = (const char *)accept; size_t offset = 0; while ('\0' != *a) { // checking that if *r is the start of a utf8 codepoint // (it is not 0b10xxxxxx) and we have successfully matched // a previous character (0 < offset) - we found a match if ((0x80 != (0xc0 & *a)) && (0 < offset)) { // found a match, so increment the number of utf8 codepoints // that have matched and stop checking whether any other utf8 // codepoints in a match chars++; s += offset; break; } else { if (*a == s[offset]) { offset++; a++; } else { // a could be in the middle of an unmatching utf8 codepoint, // so we need to march it on to the next character beginning, do { a++; } while (0x80 == (0xc0 & *a)); // reset offset too as we found a mismatch offset = 0; } } } // if a got to its terminating null byte, then we didn't find a match. // Return the current number of matched utf8 codepoints if ('\0' == *a) { return chars; } } return chars; } void *utf8str(const void *haystack, const void *needle) { const char *h = (const char *)haystack; // if needle has no utf8 codepoints before the null terminating // byte then return haystack if ('\0' == *((const char *)needle)) { return (void *)haystack; } while ('\0' != *h) { const char *maybeMatch = h; const char *n = (const char *)needle; while (*h == *n && (*h != '\0' && *n != '\0')) { n++; h++; } if ('\0' == *n) { // we found the whole utf8 string for needle in haystack at // maybeMatch, so return it return (void *)maybeMatch; } else { // h could be in the middle of an unmatching utf8 codepoint, // so we need to march it on to the next character beginning, if ('\0' != *h) { do { h++; } while (0x80 == (0xc0 & *h)); } } } // no match return utf8_null; } void *utf8casestr(const void *haystack, const void *needle) { const void *h = haystack; // if needle has no utf8 codepoints before the null terminating // byte then return haystack if ('\0' == *((const char *)needle)) { return (void *)haystack; } for (;;) { const void *maybeMatch = h; const void *n = needle; utf8_int32_t h_cp, n_cp; h = utf8codepoint(h, &h_cp); n = utf8codepoint(n, &n_cp); while ((0 != h_cp) && (0 != n_cp)) { h_cp = utf8lwrcodepoint(h_cp); n_cp = utf8lwrcodepoint(n_cp); // if we find a mismatch, bail out! if (h_cp != n_cp) { break; } h = utf8codepoint(h, &h_cp); n = utf8codepoint(n, &n_cp); } if (0 == n_cp) { // we found the whole utf8 string for needle in haystack at // maybeMatch, so return it return (void *)maybeMatch; } if (0 == h_cp) { // no match return utf8_null; } } } void *utf8valid(const void *str) { const char *s = (const char *)str; while ('\0' != *s) { if (0xf0 == (0xf8 & *s)) { // ensure each of the 3 following bytes in this 4-byte // utf8 codepoint began with 0b10xxxxxx if ((0x80 != (0xc0 & s[1])) || (0x80 != (0xc0 & s[2])) || (0x80 != (0xc0 & s[3]))) { return (void *)s; } // ensure that our utf8 codepoint ended after 4 bytes if (0x80 == (0xc0 & s[4])) { return (void *)s; } // ensure that the top 5 bits of this 4-byte utf8 // codepoint were not 0, as then we could have used // one of the smaller encodings if ((0 == (0x07 & s[0])) && (0 == (0x30 & s[1]))) { return (void *)s; } // 4-byte utf8 code point (began with 0b11110xxx) s += 4; } else if (0xe0 == (0xf0 & *s)) { // ensure each of the 2 following bytes in this 3-byte // utf8 codepoint began with 0b10xxxxxx if ((0x80 != (0xc0 & s[1])) || (0x80 != (0xc0 & s[2]))) { return (void *)s; } // ensure that our utf8 codepoint ended after 3 bytes if (0x80 == (0xc0 & s[3])) { return (void *)s; } // ensure that the top 5 bits of this 3-byte utf8 // codepoint were not 0, as then we could have used // one of the smaller encodings if ((0 == (0x0f & s[0])) && (0 == (0x20 & s[1]))) { return (void *)s; } // 3-byte utf8 code point (began with 0b1110xxxx) s += 3; } else if (0xc0 == (0xe0 & *s)) { // ensure the 1 following byte in this 2-byte // utf8 codepoint began with 0b10xxxxxx if (0x80 != (0xc0 & s[1])) { return (void *)s; } // ensure that our utf8 codepoint ended after 2 bytes if (0x80 == (0xc0 & s[2])) { return (void *)s; } // ensure that the top 4 bits of this 2-byte utf8 // codepoint were not 0, as then we could have used // one of the smaller encodings if (0 == (0x1e & s[0])) { return (void *)s; } // 2-byte utf8 code point (began with 0b110xxxxx) s += 2; } else if (0x00 == (0x80 & *s)) { // 1-byte ascii (began with 0b0xxxxxxx) s += 1; } else { // we have an invalid 0b1xxxxxxx utf8 code point entry return (void *)s; } } return utf8_null; } void *utf8codepoint(const void *utf8_restrict str, utf8_int32_t *utf8_restrict out_codepoint) { const char *s = (const char *)str; if (0xf0 == (0xf8 & s[0])) { // 4 byte utf8 codepoint *out_codepoint = ((0x07 & s[0]) << 18) | ((0x3f & s[1]) << 12) | ((0x3f & s[2]) << 6) | (0x3f & s[3]); s += 4; } else if (0xe0 == (0xf0 & s[0])) { // 3 byte utf8 codepoint *out_codepoint = ((0x0f & s[0]) << 12) | ((0x3f & s[1]) << 6) | (0x3f & s[2]); s += 3; } else if (0xc0 == (0xe0 & s[0])) { // 2 byte utf8 codepoint *out_codepoint = ((0x1f & s[0]) << 6) | (0x3f & s[1]); s += 2; } else { // 1 byte utf8 codepoint otherwise *out_codepoint = s[0]; s += 1; } return (void *)s; } size_t utf8codepointsize(utf8_int32_t chr) { if (0 == ((utf8_int32_t)0xffffff80 & chr)) { return 1; } else if (0 == ((utf8_int32_t)0xfffff800 & chr)) { return 2; } else if (0 == ((utf8_int32_t)0xffff0000 & chr)) { return 3; } else { // if (0 == ((int)0xffe00000 & chr)) { return 4; } } void *utf8catcodepoint(void *utf8_restrict str, utf8_int32_t chr, size_t n) { char *s = (char *)str; if (0 == ((utf8_int32_t)0xffffff80 & chr)) { // 1-byte/7-bit ascii // (0b0xxxxxxx) if (n < 1) { return utf8_null; } s[0] = (char)chr; s += 1; } else if (0 == ((utf8_int32_t)0xfffff800 & chr)) { // 2-byte/11-bit utf8 code point // (0b110xxxxx 0b10xxxxxx) if (n < 2) { return utf8_null; } s[0] = 0xc0 | (char)(chr >> 6); s[1] = 0x80 | (char)(chr & 0x3f); s += 2; } else if (0 == ((utf8_int32_t)0xffff0000 & chr)) { // 3-byte/16-bit utf8 code point // (0b1110xxxx 0b10xxxxxx 0b10xxxxxx) if (n < 3) { return utf8_null; } s[0] = 0xe0 | (char)(chr >> 12); s[1] = 0x80 | (char)((chr >> 6) & 0x3f); s[2] = 0x80 | (char)(chr & 0x3f); s += 3; } else { // if (0 == ((int)0xffe00000 & chr)) { // 4-byte/21-bit utf8 code point // (0b11110xxx 0b10xxxxxx 0b10xxxxxx 0b10xxxxxx) if (n < 4) { return utf8_null; } s[0] = 0xf0 | (char)(chr >> 18); s[1] = 0x80 | (char)((chr >> 12) & 0x3f); s[2] = 0x80 | (char)((chr >> 6) & 0x3f); s[3] = 0x80 | (char)(chr & 0x3f); s += 4; } return s; } int utf8islower(utf8_int32_t chr) { return chr != utf8uprcodepoint(chr); } int utf8isupper(utf8_int32_t chr) { return chr != utf8lwrcodepoint(chr); } void utf8lwr(void *utf8_restrict str) { void *p, *pn; utf8_int32_t cp; p = (char *)str; pn = utf8codepoint(p, &cp); while (cp != 0) { const utf8_int32_t lwr_cp = utf8lwrcodepoint(cp); const size_t size = utf8codepointsize(lwr_cp); if (lwr_cp != cp) { utf8catcodepoint(p, lwr_cp, size); } p = pn; pn = utf8codepoint(p, &cp); } } void utf8upr(void *utf8_restrict str) { void *p, *pn; utf8_int32_t cp; p = (char *)str; pn = utf8codepoint(p, &cp); while (cp != 0) { const utf8_int32_t lwr_cp = utf8uprcodepoint(cp); const size_t size = utf8codepointsize(lwr_cp); if (lwr_cp != cp) { utf8catcodepoint(p, lwr_cp, size); } p = pn; pn = utf8codepoint(p, &cp); } } utf8_int32_t utf8lwrcodepoint(utf8_int32_t cp) { if (((0x0041 <= cp) && (0x005a >= cp)) || ((0x00c0 <= cp) && (0x00d6 >= cp)) || ((0x00d8 <= cp) && (0x00de >= cp)) || ((0x0391 <= cp) && (0x03a1 >= cp)) || ((0x03a3 <= cp) && (0x03ab >= cp))) { cp += 32; } else if (((0x0100 <= cp) && (0x012f >= cp)) || ((0x0132 <= cp) && (0x0137 >= cp)) || ((0x014a <= cp) && (0x0177 >= cp)) || ((0x0182 <= cp) && (0x0185 >= cp)) || ((0x01a0 <= cp) && (0x01a5 >= cp)) || ((0x01de <= cp) && (0x01ef >= cp)) || ((0x01f8 <= cp) && (0x021f >= cp)) || ((0x0222 <= cp) && (0x0233 >= cp)) || ((0x0246 <= cp) && (0x024f >= cp)) || ((0x03d8 <= cp) && (0x03ef >= cp))) { cp |= 0x1; } else if (((0x0139 <= cp) && (0x0148 >= cp)) || ((0x0179 <= cp) && (0x017e >= cp)) || ((0x01af <= cp) && (0x01b0 >= cp)) || ((0x01b3 <= cp) && (0x01b6 >= cp)) || ((0x01cd <= cp) && (0x01dc >= cp))) { cp += 1; cp &= ~0x1; } else { switch (cp) { default: break; case 0x0178: cp = 0x00ff; break; case 0x0243: cp = 0x0180; break; case 0x018e: cp = 0x01dd; break; case 0x023d: cp = 0x019a; break; case 0x0220: cp = 0x019e; break; case 0x01b7: cp = 0x0292; break; case 0x01c4: cp = 0x01c6; break; case 0x01c7: cp = 0x01c9; break; case 0x01ca: cp = 0x01cc; break; case 0x01f1: cp = 0x01f3; break; case 0x01f7: cp = 0x01bf; break; case 0x0187: cp = 0x0188; break; case 0x018b: cp = 0x018c; break; case 0x0191: cp = 0x0192; break; case 0x0198: cp = 0x0199; break; case 0x01a7: cp = 0x01a8; break; case 0x01ac: cp = 0x01ad; break; case 0x01af: cp = 0x01b0; break; case 0x01b8: cp = 0x01b9; break; case 0x01bc: cp = 0x01bd; break; case 0x01f4: cp = 0x01f5; break; case 0x023b: cp = 0x023c; break; case 0x0241: cp = 0x0242; break; case 0x03fd: cp = 0x037b; break; case 0x03fe: cp = 0x037c; break; case 0x03ff: cp = 0x037d; break; case 0x037f: cp = 0x03f3; break; case 0x0386: cp = 0x03ac; break; case 0x0388: cp = 0x03ad; break; case 0x0389: cp = 0x03ae; break; case 0x038a: cp = 0x03af; break; case 0x038c: cp = 0x03cc; break; case 0x038e: cp = 0x03cd; break; case 0x038f: cp = 0x03ce; break; case 0x0370: cp = 0x0371; break; case 0x0372: cp = 0x0373; break; case 0x0376: cp = 0x0377; break; case 0x03f4: cp = 0x03d1; break; case 0x03cf: cp = 0x03d7; break; case 0x03f9: cp = 0x03f2; break; case 0x03f7: cp = 0x03f8; break; case 0x03fa: cp = 0x03fb; break; }; } return cp; } utf8_int32_t utf8uprcodepoint(utf8_int32_t cp) { if (((0x0061 <= cp) && (0x007a >= cp)) || ((0x00e0 <= cp) && (0x00f6 >= cp)) || ((0x00f8 <= cp) && (0x00fe >= cp)) || ((0x03b1 <= cp) && (0x03c1 >= cp)) || ((0x03c3 <= cp) && (0x03cb >= cp))) { cp -= 32; } else if (((0x0100 <= cp) && (0x012f >= cp)) || ((0x0132 <= cp) && (0x0137 >= cp)) || ((0x014a <= cp) && (0x0177 >= cp)) || ((0x0182 <= cp) && (0x0185 >= cp)) || ((0x01a0 <= cp) && (0x01a5 >= cp)) || ((0x01de <= cp) && (0x01ef >= cp)) || ((0x01f8 <= cp) && (0x021f >= cp)) || ((0x0222 <= cp) && (0x0233 >= cp)) || ((0x0246 <= cp) && (0x024f >= cp)) || ((0x03d8 <= cp) && (0x03ef >= cp))) { cp &= ~0x1; } else if (((0x0139 <= cp) && (0x0148 >= cp)) || ((0x0179 <= cp) && (0x017e >= cp)) || ((0x01af <= cp) && (0x01b0 >= cp)) || ((0x01b3 <= cp) && (0x01b6 >= cp)) || ((0x01cd <= cp) && (0x01dc >= cp))) { cp -= 1; cp |= 0x1; } else { switch (cp) { default: break; case 0x00ff: cp = 0x0178; break; case 0x0180: cp = 0x0243; break; case 0x01dd: cp = 0x018e; break; case 0x019a: cp = 0x023d; break; case 0x019e: cp = 0x0220; break; case 0x0292: cp = 0x01b7; break; case 0x01c6: cp = 0x01c4; break; case 0x01c9: cp = 0x01c7; break; case 0x01cc: cp = 0x01ca; break; case 0x01f3: cp = 0x01f1; break; case 0x01bf: cp = 0x01f7; break; case 0x0188: cp = 0x0187; break; case 0x018c: cp = 0x018b; break; case 0x0192: cp = 0x0191; break; case 0x0199: cp = 0x0198; break; case 0x01a8: cp = 0x01a7; break; case 0x01ad: cp = 0x01ac; break; case 0x01b0: cp = 0x01af; break; case 0x01b9: cp = 0x01b8; break; case 0x01bd: cp = 0x01bc; break; case 0x01f5: cp = 0x01f4; break; case 0x023c: cp = 0x023b; break; case 0x0242: cp = 0x0241; break; case 0x037b: cp = 0x03fd; break; case 0x037c: cp = 0x03fe; break; case 0x037d: cp = 0x03ff; break; case 0x03f3: cp = 0x037f; break; case 0x03ac: cp = 0x0386; break; case 0x03ad: cp = 0x0388; break; case 0x03ae: cp = 0x0389; break; case 0x03af: cp = 0x038a; break; case 0x03cc: cp = 0x038c; break; case 0x03cd: cp = 0x038e; break; case 0x03ce: cp = 0x038f; break; case 0x0371: cp = 0x0370; break; case 0x0373: cp = 0x0372; break; case 0x0377: cp = 0x0376; break; case 0x03d1: cp = 0x03f4; break; case 0x03d7: cp = 0x03cf; break; case 0x03f2: cp = 0x03f9; break; case 0x03f8: cp = 0x03f7; break; case 0x03fb: cp = 0x03fa; break; }; } return cp; } #undef utf8_restrict #undef utf8_null #ifdef __cplusplus } // extern "C" #endif #if defined(__clang__) #pragma clang diagnostic pop #endif #endif // SHEREDOM_UTF8_H_INCLUDED