/* for va_list */
#endif
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/*
* Define the structures used by the APR general-purpose library.
*/
/**
* @file apr_tables.h
* @brief APR Table library
*/
/**
* @defgroup APR_Table Table routines
* @ingroup APR
*
* Memory allocation stuff, like pools, arrays, and tables. Pools
* and tables are opaque structures to applications, but arrays are
* published.
* @{
*/
/** the table abstract data type */
typedef struct apr_table_t apr_table_t;
/** An opaque array type */
typedef struct apr_array_header_t apr_array_header_t;
struct apr_array_header_t {
/** The pool the array is allocated out of */
apr_pool_t *pool;
/** The amount of memory allocated for each element of the array */
int elt_size;
/** The number of active elements in the array */
int nelts;
/** The number of elements allocated in the array */
int nalloc;
/** The elements in the array */
char *elts;
};
/** The opaque string-content table type */
struct apr_table_t {
/* This has to be first to promote backwards compatibility with
* older modules which cast a apr_table_t * to an apr_array_header_t *...
* they should use the table_elts() function for most of the
* cases they do this for.
*/
/** The underlying array for the table */
apr_array_header_t a;
#ifdef MAKE_TABLE_PROFILE
/** Who created the array. */
void *creator;
#endif
};
/**
* The (opaque) structure for string-content tables.
*/
typedef struct apr_table_entry_t apr_table_entry_t;
/** The type for each entry in a string-content table */
struct apr_table_entry_t {
/** The key for the current table entry */
char *key; /* maybe NULL in future;
* check when iterating thru table_elts
*/
/** The value for the current table entry */
char *val;
/** A checksum for the key, for use by the apr_table internals */
apr_uint32_t key_checksum;
};
/**
* Get the elements from a table
* @param t The table
* @return An array containing the contents of the table
*/
#define apr_table_elts(t) ((const apr_array_header_t *)(t))
/**
* Determine if the table is empty
* @param t The table to check
* @return True if empty, Falso otherwise
*/
#define apr_is_empty_table(t) (((t) == NULL) \
|| (((apr_array_header_t *)(t))->nelts == 0))
/**
* Create an array
* @param p The pool to allocate the memory out of
* @param nelts the number of elements in the initial array
* @param elt_size The size of each element in the array.
* @return The new array
*/
APR_DECLARE(apr_array_header_t *) apr_array_make(apr_pool_t *p,
int nelts, int elt_size);
/**
* Add a new element to an array
* @param arr The array to add an element to.
* @return Location for the new element in the array.
* @remark If there are no free spots in the array, then this function will
* allocate new space for the new element.
*/
APR_DECLARE(void *) apr_array_push(apr_array_header_t *arr);
/**
* Concatenate two arrays together
* @param dst The destination array, and the one to go first in the combined
* array
* @param src The source array to add to the destination array
*/
APR_DECLARE(void) apr_array_cat(apr_array_header_t *dst,
const apr_array_header_t *src);
/**
* Copy the entire array
* @param p The pool to allocate the copy of the array out of
* @param arr The array to copy
* @return An exact copy of the array passed in
* @remark The alternate apr_array_copy_hdr copies only the header, and arranges
* for the elements to be copied if (and only if) the code subsequently
* does a push or arraycat.
*/
APR_DECLARE(apr_array_header_t *) apr_array_copy(apr_pool_t *p,
const apr_array_header_t *arr);
/**
* Copy the headers of the array, and arrange for the elements to be copied if
* and only if the code subsequently does a push or arraycat.
* @param p The pool to allocate the copy of the array out of
* @param arr The array to copy
* @return An exact copy of the array passed in
* @remark The alternate apr_array_copy copies the *entire* array.
*/
APR_DECLARE(apr_array_header_t *) apr_array_copy_hdr(apr_pool_t *p,
const apr_array_header_t *arr);
/**
* Append one array to the end of another, creating a new array in the process.
* @param p The pool to allocate the new array out of
* @param first The array to put first in the new array.
* @param second The array to put second in the new array.
* @param return A new array containing the data from the two arrays passed in.
*/
APR_DECLARE(apr_array_header_t *) apr_array_append(apr_pool_t *p,
const apr_array_header_t *first,
const apr_array_header_t *second);
/**
* Generates a new string from the apr_pool_t containing the concatenated
* sequence of substrings referenced as elements within the array. The string
* will be empty if all substrings are empty or null, or if there are no
* elements in the array. If sep is non-NUL, it will be inserted between
* elements as a separator.
* @param p The pool to allocate the string out of
* @param arr The array to generate the string from
* @param sep The separator to use
* @return A string containing all of the data in the array.
*/
APR_DECLARE(char *) apr_array_pstrcat(apr_pool_t *p,
const apr_array_header_t *arr,
const char sep);
/**
* Make a new table
* @param p The pool to allocate the pool out of
* @param nelts The number of elements in the initial table.
* @return The new table.
* @warning This table can only store text data
*/
APR_DECLARE(apr_table_t *) apr_table_make(apr_pool_t *p, int nelts);
/**
* Create a new table and copy another table into it
* @param p The pool to allocate the new table out of
* @param t The table to copy
* @return A copy of the table passed in
*/
APR_DECLARE(apr_table_t *) apr_table_copy(apr_pool_t *p,
const apr_table_t *t);
/**
* Delete all of the elements from a table
* @param t The table to clear
*/
APR_DECLARE(void) apr_table_clear(apr_table_t *t);
/**
* Get the value associated with a given key from the table. After this call,
* The data is still in the table
* @param t The table to search for the key
* @param key The key to search for
* @return The value associated with the key
*/
APR_DECLARE(const char *) apr_table_get(const apr_table_t *t, const char *key);
/**
* Add a key/value pair to a table, if another element already exists with the
* same key, this will over-write the old data.
* @param t The table to add the data to.
* @param key The key fo use
* @param val The value to add
* @remark When adding data, this function makes a copy of both the key and the
* value.
*/
APR_DECLARE(void) apr_table_set(apr_table_t *t, const char *key,
const char *val);
/**
* Add a key/value pair to a table, if another element already exists with the
* same key, this will over-write the old data.
* @param t The table to add the data to.
* @param key The key fo use
* @param val The value to add
* @warning When adding data, this function does not make a copy of the key or
* the value, so care should be taken to ensure that the values will
* not change after they have been added..
*/
APR_DECLARE(void) apr_table_setn(apr_table_t *t, const char *key,
const char *val);
/**
* Remove data from the table
* @param t The table to remove data from
* @param key The key of the data being removed
*/
APR_DECLARE(void) apr_table_unset(apr_table_t *t, const char *key);
/**
* Add data to a table by merging the value with data that has already been
* stored
* @param t The table to search for the data
* @param key The key to merge data for
* @param val The data to add
* @remark If the key is not found, then this function acts like apr_table_add
*/
APR_DECLARE(void) apr_table_merge(apr_table_t *t, const char *key,
const char *val);
/**
* Add data to a table by merging the value with data that has already been
* stored
* @param t The table to search for the data
* @param key The key to merge data for
* @param val The data to add
* @remark If the key is not found, then this function acts like apr_table_addn
*/
APR_DECLARE(void) apr_table_mergen(apr_table_t *t, const char *key,
const char *val);
/**
* Add data to a table, regardless of whether there is another element with the
* same key.
* @param t The table to add to
* @param key The key to use
* @param val The value to add.
* @remark When adding data, this function makes a copy of both the key and the
* value.
*/
APR_DECLARE(void) apr_table_add(apr_table_t *t, const char *key,
const char *val);
/**
* Add data to a table, regardless of whether there is another element with the
* same key.
* @param t The table to add to
* @param key The key to use
* @param val The value to add.
* @remark When adding data, this function does not make a copy of the key or the
* value, so care should be taken to ensure that the values will not
* change after they have been added..
*/
APR_DECLARE(void) apr_table_addn(apr_table_t *t, const char *key,
const char *val);
/**
* Merge two tables into one new table
* @param p The pool to use for the new table
* @param overlay The first table to put in the new table
* @param base The table to add at the end of the new table
* @return A new table containing all of the data from the two passed in
*/
APR_DECLARE(apr_table_t *) apr_table_overlay(apr_pool_t *p,
const apr_table_t *overlay,
const apr_table_t *base);
/**
* Iterate over a table running the provided function once for every
* element in the table. If there is data passed in as a vararg, then the
* function is only run on those elements whose key matches something in
* the vararg. If the vararg is NULL, then every element is run through the
* function. Iteration continues while the function returns non-zero.
* @param comp The function to run
* @param rec The data to pass as the first argument to the function
* @param t The table to iterate over
* @param ... The vararg. If this is NULL, then all elements in the table are
* run through the function, otherwise only those whose key matches
* are run.
*/
APR_DECLARE_NONSTD(void) apr_table_do(int (*comp)(void *, const char *, const char *),
void *rec, const apr_table_t *t, ...);
/**
* Iterate over a table running the provided function once for every
* element in the table. If there is data passed in as a vararg, then the
* function is only run on those element's whose key matches something in
* the vararg. If the vararg is NULL, then every element is run through the
* function. Iteration continues while the function returns non-zero.
* @param comp The function to run
* @param rec The data to pass as the first argument to the function
* @param t The table to iterate over
* @param vp The vararg table. If this is NULL, then all elements in the
* table are run through the function, otherwise only those
* whose key matches are run.
*/
APR_DECLARE(void) apr_table_vdo(int (*comp)(void *, const char *, const char *),
void *rec, const apr_table_t *t, va_list);
/** flag for overlap to use apr_table_setn */
#define APR_OVERLAP_TABLES_SET (0)
/** flag for overlap to use apr_table_mergen */
#define APR_OVERLAP_TABLES_MERGE (1)
/**
* For each element in table b, either use setn or mergen to add the data
* to table a. Which method is used is determined by the flags passed in.
* @param a The table to add the data to.
* @param b The table to iterate over, adding its data to table a
* @param flags How to add the table to table a. One of:
* APR_OVERLAP_TABLES_SET Use apr_table_setn
* APR_OVERLAP_TABLES_MERGE Use apr_table_mergen
* @remark This function is highly optimized, and uses less memory and CPU cycles
* than a function that just loops through table b calling other functions.
*/
/**
*
* Conceptually, apr_table_overlap does this:
*
* apr_array_header_t *barr = apr_table_elts(b);
* apr_table_entry_t *belt = (apr_table_entry_t *)barr->elts;
* int i;
*
* for (i = 0; i < barr->nelts; ++i) {
* if (flags & APR_OVERLAP_TABLES_MERGE) {
* apr_table_mergen(a, belt[i].key, belt[i].val);
* }
* else {
* apr_table_setn(a, belt[i].key, belt[i].val);
* }
* }
*
* Except that it is more efficient (less space and cpu-time) especially
* when b has many elements.
*
* Notice the assumptions on the keys and values in b -- they must be
* in an ancestor of a's pool. In practice b and a are usually from
* the same pool.
*
*/
APR_DECLARE(void) apr_table_overlap(apr_table_t *a, const apr_table_t *b,
unsigned flags);
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* ! APR_TABLES_H */