/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "apu.h" #include "apu_config.h" #include "apu_errno.h" #include #include #include #include "apr_strings.h" #include "apr_time.h" #include "apr_buckets.h" #include "apr_crypto_internal.h" #if APU_HAVE_CRYPTO #include #include #define LOG_PREFIX "apr_crypto_openssl: " struct apr_crypto_config_t { ENGINE *engine; }; struct apr_crypto_key_t { const EVP_CIPHER * cipher; unsigned char *key; int keyLen; int doPad; int ivSize; }; struct apr_crypto_block_t { const apr_crypto_t *factory; apr_pool_t *pool; EVP_CIPHER_CTX cipherCtx; int initialised; int ivSize; int blockSize; int doPad; }; /** * Shutdown the crypto library and release resources. */ static apr_status_t crypto_shutdown(apr_pool_t *pool) { ERR_free_strings(); EVP_cleanup(); ENGINE_cleanup(); return APR_SUCCESS; } static apr_status_t crypto_shutdown_helper(void *data) { apr_pool_t *pool = (apr_pool_t *) data; return crypto_shutdown(pool); } /** * Initialise the crypto library and perform one time initialisation. */ static apr_status_t crypto_init(apr_pool_t *pool, const apr_array_header_t *params) { CRYPTO_malloc_init(); ERR_load_crypto_strings(); /* SSL_load_error_strings(); */ OpenSSL_add_all_algorithms(); ENGINE_load_builtin_engines(); ENGINE_register_all_complete(); apr_pool_cleanup_register(pool, pool, crypto_shutdown_helper, apr_pool_cleanup_null); return APR_SUCCESS; } /** * @brief Clean encryption / decryption context. * @note After cleanup, a context is free to be reused if necessary. * @param driver - driver to use * @param ctx The block context to use. * @return Returns APR_ENOTIMPL if not supported. */ static apr_status_t crypto_block_cleanup(apr_crypto_block_t *ctx) { if (ctx->initialised) { EVP_CIPHER_CTX_cleanup(&ctx->cipherCtx); ctx->initialised = 0; } return APR_SUCCESS; } static apr_status_t crypto_block_cleanup_helper(void *data) { apr_crypto_block_t *block = (apr_crypto_block_t *) data; return crypto_block_cleanup(block); } /** * @brief Clean encryption / decryption factory. * @note After cleanup, a factory is free to be reused if necessary. * @param driver - driver to use * @param f The factory to use. * @return Returns APR_ENOTIMPL if not supported. */ static apr_status_t crypto_cleanup(apr_crypto_t *f) { if (f->config->engine) { ENGINE_finish(f->config->engine); ENGINE_free(f->config->engine); f->config->engine = NULL; } return APR_SUCCESS; } static apr_status_t crypto_cleanup_helper(void *data) { apr_crypto_t *f = (apr_crypto_t *) data; return crypto_cleanup(f); } /** * @brief Create a context for supporting encryption. Keys, certificates, * algorithms and other parameters will be set per context. More than * one context can be created at one time. A cleanup will be automatically * registered with the given pool to guarantee a graceful shutdown. * @param driver - driver to use * @param pool - process pool * @param params - array of key parameters * @param factory - factory pointer will be written here * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE * if the engine cannot be initialised. */ static apr_status_t crypto_factory(apr_pool_t *pool, const apr_array_header_t *params, apr_crypto_t **factory) { apr_crypto_config_t *config = NULL; struct apr_crypto_param_t *ents = params ? (struct apr_crypto_param_t *) params->elts : NULL; int i = 0; apr_crypto_t *f = apr_pcalloc(pool, sizeof(apr_crypto_t)); if (!f) { return APR_ENOMEM; } *factory = f; f->pool = pool; config = f->config = apr_pcalloc(pool, sizeof(apr_crypto_config_t)); if (!config) { return APR_ENOMEM; } f->result = apr_pcalloc(pool, sizeof(apu_err_t)); if (!f->result) { return APR_ENOMEM; } f->keys = apr_array_make(pool, 10, sizeof(apr_crypto_key_t)); apr_pool_cleanup_register(pool, f, crypto_cleanup_helper, apr_pool_cleanup_null); for (i = 0; params && i < params->nelts; i++) { switch (ents[i].type) { case APR_CRYPTO_ENGINE: config->engine = ENGINE_by_id(ents[i].path); if (!config->engine) { return APR_ENOENGINE; } if (!ENGINE_init(config->engine)) { ENGINE_free(config->engine); config->engine = NULL; return APR_EINITENGINE; } break; } } return APR_SUCCESS; } /** * @brief Create a key from the given passphrase. By default, the PBKDF2 * algorithm is used to generate the key from the passphrase. It is expected * that the same pass phrase will generate the same key, regardless of the * backend crypto platform used. The key is cleaned up when the context * is cleaned, and may be reused with multiple encryption or decryption * operations. * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If * *key is not NULL, *key must point at a previously created structure. * @param driver - driver to use * @param p The pool to use. * @param f The context to use. * @param pass The passphrase to use. * @param passLen The passphrase length in bytes * @param salt The salt to use. * @param saltLen The salt length in bytes * @param type 3DES_192, AES_128, AES_192, AES_256. * @param mode Electronic Code Book / Cipher Block Chaining. * @param doPad Pad if necessary. * @param key The key returned, see note. * @param ivSize The size of the initialisation vector will be returned, based * on whether an IV is relevant for this type of crypto. * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend * error occurred while generating the key. APR_ENOCIPHER if the type or mode * is not supported by the particular backend. APR_EKEYTYPE if the key type is * not known. APR_EPADDING if padding was requested but is not supported. * APR_ENOTIMPL if not implemented. */ static apr_status_t crypto_passphrase(apr_pool_t *p, const apr_crypto_t *f, const char *pass, apr_size_t passLen, const unsigned char * salt, apr_size_t saltLen, const apr_crypto_block_key_type_e type, const apr_crypto_block_key_mode_e mode, const int doPad, const int iterations, apr_crypto_key_t **k, apr_size_t *ivSize) { apr_crypto_key_t *key = *k; if (!key) { *k = key = apr_array_push(f->keys); } if (!key) { return APR_ENOMEM; } /* determine the cipher to be used */ switch (type) { case (KEY_3DES_192): /* A 3DES key */ if (mode == MODE_CBC) { key->cipher = EVP_des_ede3_cbc(); } else { key->cipher = EVP_des_ede3_ecb(); } break; case (KEY_AES_128): if (mode == MODE_CBC) { key->cipher = EVP_aes_128_cbc(); } else { key->cipher = EVP_aes_128_ecb(); } break; case (KEY_AES_192): if (mode == MODE_CBC) { key->cipher = EVP_aes_192_cbc(); } else { key->cipher = EVP_aes_192_ecb(); } break; case (KEY_AES_256): if (mode == MODE_CBC) { key->cipher = EVP_aes_256_cbc(); } else { key->cipher = EVP_aes_256_ecb(); } break; default: /* unknown key type, give up */ return APR_EKEYTYPE; } /* find the length of the key we need */ key->keyLen = EVP_CIPHER_key_length(key->cipher); /* make space for the key */ key->key = apr_pcalloc(p, key->keyLen); if (!key->key) { return APR_ENOMEM; } /* generate the key */ if (PKCS5_PBKDF2_HMAC_SHA1(pass, passLen, (unsigned char *) salt, saltLen, iterations, key->keyLen, key->key) == 0) { return APR_ENOKEY; } key->doPad = doPad; /* note: openssl incorrectly returns non zero IV size values for ECB * algorithms, so work around this by ignoring the IV size. */ if (MODE_ECB != mode) { key->ivSize = EVP_CIPHER_iv_length(key->cipher); } if (ivSize) { *ivSize = key->ivSize; } return APR_SUCCESS; } /** * @brief Initialise a context for encrypting arbitrary data using the given key. * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If * *ctx is not NULL, *ctx must point at a previously created structure. * @param p The pool to use. * @param f The block factory to use. * @param type 3DES_192, AES_128, AES_192, AES_256. * @param mode Electronic Code Book / Cipher Block Chaining. * @param key The key * @param keyLen The key length in bytes * @param iv Optional initialisation vector. * @param doPad Pad if necessary. * @param ctx The block context returned, see note. * @param blockSize The block size of the cipher. * @return Returns APR_ENOIV if an initialisation vector is required but not specified. * Returns APR_EINIT if the backend failed to initialise the context. Returns * APR_ENOTIMPL if not implemented. */ static apr_status_t crypto_block_encrypt_init(apr_pool_t *p, const apr_crypto_t *f, const apr_crypto_key_t *key, const unsigned char **iv, apr_crypto_block_t **ctx, apr_size_t *blockSize) { unsigned char *usedIv; apr_crypto_config_t *config = f->config; apr_crypto_block_t *block = *ctx; if (!block) { *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t)); } if (!block) { return APR_ENOMEM; } block->factory = f; block->pool = p; apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper, apr_pool_cleanup_null); /* create a new context for encryption */ EVP_CIPHER_CTX_init(&block->cipherCtx); block->initialised = 1; /* generate an IV, if necessary */ usedIv = NULL; if (key->ivSize) { if (iv == NULL) { return APR_ENOIV; } if (*iv == NULL) { usedIv = apr_pcalloc(p, key->ivSize); if (!usedIv) { return APR_ENOMEM; } if (!((RAND_status() == 1) && (RAND_bytes(usedIv, key->ivSize) == 1))) { return APR_ENOIV; } *iv = usedIv; } else { usedIv = (unsigned char *) *iv; } } /* set up our encryption context */ #if CRYPTO_OPENSSL_CONST_BUFFERS if (!EVP_EncryptInit_ex(&block->cipherCtx, key->cipher, config->engine, key->key, usedIv)) { #else if (!EVP_EncryptInit_ex(&block->cipherCtx, key->cipher, config->engine, (unsigned char *) key->key, (unsigned char *) usedIv)) { #endif return APR_EINIT; } /* Clear up any read padding */ if (!EVP_CIPHER_CTX_set_padding(&block->cipherCtx, key->doPad)) { return APR_EPADDING; } if (blockSize) { *blockSize = EVP_CIPHER_block_size(key->cipher); } return APR_SUCCESS; } /** * @brief Encrypt data provided by in, write it to out. * @note The number of bytes written will be written to outlen. If * out is NULL, outlen will contain the maximum size of the * buffer needed to hold the data, including any data * generated by apr_crypto_block_encrypt_finish below. If *out points * to NULL, a buffer sufficiently large will be created from * the pool provided. If *out points to a not-NULL value, this * value will be used as a buffer instead. * @param ctx The block context to use. * @param out Address of a buffer to which data will be written, * see note. * @param outlen Length of the output will be written here. * @param in Address of the buffer to read. * @param inlen Length of the buffer to read. * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if * not implemented. */ static apr_status_t crypto_block_encrypt(apr_crypto_block_t *ctx, unsigned char **out, apr_size_t *outlen, const unsigned char *in, apr_size_t inlen) { int outl = *outlen; unsigned char *buffer; /* are we after the maximum size of the out buffer? */ if (!out) { *outlen = inlen + EVP_MAX_BLOCK_LENGTH; return APR_SUCCESS; } /* must we allocate the output buffer from a pool? */ if (!*out) { buffer = apr_palloc(ctx->pool, inlen + EVP_MAX_BLOCK_LENGTH); if (!buffer) { return APR_ENOMEM; } *out = buffer; } #if CRYPT_OPENSSL_CONST_BUFFERS if (!EVP_EncryptUpdate(&ctx->cipherCtx, (*out), &outl, in, inlen)) { #else if (!EVP_EncryptUpdate(&ctx->cipherCtx, (*out), &outl, (unsigned char *) in, inlen)) { #endif return APR_ECRYPT; } *outlen = outl; return APR_SUCCESS; } /** * @brief Encrypt final data block, write it to out. * @note If necessary the final block will be written out after being * padded. Typically the final block will be written to the * same buffer used by apr_crypto_block_encrypt, offset by the * number of bytes returned as actually written by the * apr_crypto_block_encrypt() call. After this call, the context * is cleaned and can be reused by apr_crypto_block_encrypt_init(). * @param ctx The block context to use. * @param out Address of a buffer to which data will be written. This * buffer must already exist, and is usually the same * buffer used by apr_evp_crypt(). See note. * @param outlen Length of the output will be written here. * @return APR_ECRYPT if an error occurred. * @return APR_EPADDING if padding was enabled and the block was incorrectly * formatted. * @return APR_ENOTIMPL if not implemented. */ static apr_status_t crypto_block_encrypt_finish(apr_crypto_block_t *ctx, unsigned char *out, apr_size_t *outlen) { int len = *outlen; if (EVP_EncryptFinal_ex(&ctx->cipherCtx, out, &len) == 0) { return APR_EPADDING; } *outlen = len; return APR_SUCCESS; } /** * @brief Initialise a context for decrypting arbitrary data using the given key. * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If * *ctx is not NULL, *ctx must point at a previously created structure. * @param p The pool to use. * @param f The block factory to use. * @param key The key structure. * @param iv Optional initialisation vector. If the buffer pointed to is NULL, * an IV will be created at random, in space allocated from the pool. * If the buffer is not NULL, the IV in the buffer will be used. * @param ctx The block context returned, see note. * @param blockSize The block size of the cipher. * @return Returns APR_ENOIV if an initialisation vector is required but not specified. * Returns APR_EINIT if the backend failed to initialise the context. Returns * APR_ENOTIMPL if not implemented. */ static apr_status_t crypto_block_decrypt_init(apr_pool_t *p, const apr_crypto_t *f, const apr_crypto_key_t *key, const unsigned char *iv, apr_crypto_block_t **ctx, apr_size_t *blockSize) { apr_crypto_config_t *config = f->config; apr_crypto_block_t *block = *ctx; if (!block) { *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t)); } if (!block) { return APR_ENOMEM; } block->factory = f; block->pool = p; apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper, apr_pool_cleanup_null); /* create a new context for encryption */ EVP_CIPHER_CTX_init(&block->cipherCtx); block->initialised = 1; /* generate an IV, if necessary */ if (key->ivSize) { if (iv == NULL) { return APR_ENOIV; } } /* set up our encryption context */ #if CRYPTO_OPENSSL_CONST_BUFFERS if (!EVP_DecryptInit_ex(&block->cipherCtx, key->cipher, config->engine, key->key, iv)) { #else if (!EVP_DecryptInit_ex(&block->cipherCtx, key->cipher, config->engine, (unsigned char *) key->key, (unsigned char *) iv)) { #endif return APR_EINIT; } /* Clear up any read padding */ if (!EVP_CIPHER_CTX_set_padding(&block->cipherCtx, key->doPad)) { return APR_EPADDING; } if (blockSize) { *blockSize = EVP_CIPHER_block_size(key->cipher); } return APR_SUCCESS; } /** * @brief Decrypt data provided by in, write it to out. * @note The number of bytes written will be written to outlen. If * out is NULL, outlen will contain the maximum size of the * buffer needed to hold the data, including any data * generated by apr_crypto_block_final below. If *out points * to NULL, a buffer sufficiently large will be created from * the pool provided. If *out points to a not-NULL value, this * value will be used as a buffer instead. * @param ctx The block context to use. * @param out Address of a buffer to which data will be written, * see note. * @param outlen Length of the output will be written here. * @param in Address of the buffer to read. * @param inlen Length of the buffer to read. * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if * not implemented. */ static apr_status_t crypto_block_decrypt(apr_crypto_block_t *ctx, unsigned char **out, apr_size_t *outlen, const unsigned char *in, apr_size_t inlen) { int outl = *outlen; unsigned char *buffer; /* are we after the maximum size of the out buffer? */ if (!out) { *outlen = inlen + EVP_MAX_BLOCK_LENGTH; return APR_SUCCESS; } /* must we allocate the output buffer from a pool? */ if (!(*out)) { buffer = apr_palloc(ctx->pool, inlen + EVP_MAX_BLOCK_LENGTH); if (!buffer) { return APR_ENOMEM; } *out = buffer; } #if CRYPT_OPENSSL_CONST_BUFFERS if (!EVP_DecryptUpdate(&ctx->cipherCtx, *out, &outl, in, inlen)) { #else if (!EVP_DecryptUpdate(&ctx->cipherCtx, *out, &outl, (unsigned char *) in, inlen)) { #endif return APR_ECRYPT; } *outlen = outl; return APR_SUCCESS; } /** * @brief Decrypt final data block, write it to out. * @note If necessary the final block will be written out after being * padded. Typically the final block will be written to the * same buffer used by apr_evp_crypt, offset by the number of * bytes returned as actually written by the apr_evp_crypt() * call. After this call, the context is cleaned and can be * reused by apr_env_encrypt_init() or apr_env_decrypt_init(). * @param ctx The block context to use. * @param out Address of a buffer to which data will be written. This * buffer must already exist, and is usually the same * buffer used by apr_evp_crypt(). See note. * @param outlen Length of the output will be written here. * @return APR_ECRYPT if an error occurred. * @return APR_EPADDING if padding was enabled and the block was incorrectly * formatted. * @return APR_ENOTIMPL if not implemented. */ static apr_status_t crypto_block_decrypt_finish(apr_crypto_block_t *ctx, unsigned char *out, apr_size_t *outlen) { int len = *outlen; if (EVP_DecryptFinal_ex(&ctx->cipherCtx, out, &len) == 0) { return APR_EPADDING; } *outlen = len; return APR_SUCCESS; } /** * OpenSSL module. */ APU_MODULE_DECLARE_DATA const apr_crypto_driver_t apr_crypto_openssl_driver = { "openssl", crypto_init, crypto_factory, crypto_passphrase, crypto_block_encrypt_init, crypto_block_encrypt, crypto_block_encrypt_finish, crypto_block_decrypt_init, crypto_block_decrypt, crypto_block_decrypt_finish, crypto_block_cleanup, crypto_cleanup, crypto_shutdown }; #endif