/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "apu.h" #include "apu_config.h" #include "apu_errno.h" #include #include #include "apr_strings.h" #include "apr_time.h" #include "apr_buckets.h" #include "apr_crypto_internal.h" #if APU_HAVE_CRYPTO #include #ifdef HAVE_NSS_NSS_H #include #endif #ifdef HAVE_NSS_H #include #endif #ifdef HAVE_NSS_PK11PUB_H #include #endif #ifdef HAVE_PK11PUB_H #include #endif struct apr_crypto_config_t { }; struct apr_crypto_key_t { CK_MECHANISM_TYPE cipherMech; SECOidTag cipherOid; PK11SymKey *symKey; int ivSize; }; struct apr_crypto_block_t { const apr_crypto_t *factory; apr_pool_t *pool; PK11Context *ctx; apr_crypto_key_t *key; int blockSize; }; /** * Shutdown the crypto library and release resources. * * It is safe to shut down twice. */ static apr_status_t crypto_shutdown(apr_pool_t *pool) { if (NSS_IsInitialized()) { SECStatus s = NSS_Shutdown(); if (s != SECSuccess) { return APR_EINIT; } } return APR_SUCCESS; } static apr_status_t crypto_shutdown_helper(void *data) { apr_pool_t *pool = (apr_pool_t *) data; return crypto_shutdown(pool); } /** * Initialise the crypto library and perform one time initialisation. */ static apr_status_t crypto_init(apr_pool_t *pool, const apr_array_header_t *params, int *rc) { SECStatus s; const char *dir = NULL; const char *keyPrefix = NULL; const char *certPrefix = NULL; const char *secmod = NULL; PRUint32 flags = 0; struct apr_crypto_param_t *ents = params ? (struct apr_crypto_param_t *)params->elts : NULL; int i = 0; /* sanity check - we can only initialise NSS once */ if (NSS_IsInitialized()) { return APR_EREINIT; } apr_pool_cleanup_register(pool, pool, crypto_shutdown_helper, apr_pool_cleanup_null); for (i = 0; params && i < params->nelts; i++) { switch (ents[i].type) { case APR_CRYPTO_CA_TYPE_DIR: dir = ents[i].path; break; case APR_CRYPTO_CERT_TYPE_KEY3_DB: keyPrefix = ents[i].path; break; case APR_CRYPTO_CA_TYPE_CERT7_DB: certPrefix = ents[i].path; break; case APR_CRYPTO_CA_TYPE_SECMOD: secmod = ents[i].path; break; default: return APR_EINIT; } } if (keyPrefix || certPrefix || secmod) { s = NSS_Initialize(dir, certPrefix, keyPrefix, secmod, flags); } else if (dir) { s = NSS_InitReadWrite(dir); } else { s = NSS_NoDB_Init(NULL); } if (s != SECSuccess) { if (rc) { *rc = PR_GetError(); } return APR_ECRYPT; } return APR_SUCCESS; } /** * @brief Clean encryption / decryption context. * @note After cleanup, a context is free to be reused if necessary. * @param driver - driver to use * @param ctx The block context to use. * @return Returns APR_ENOTIMPL if not supported. */ static apr_status_t crypto_block_cleanup(apr_crypto_block_t *block) { if (block->ctx) { PK11_DestroyContext(block->ctx, PR_TRUE); block->ctx = NULL; } return APR_SUCCESS; } static apr_status_t crypto_block_cleanup_helper(void *data) { apr_crypto_block_t *block = (apr_crypto_block_t *) data; return crypto_block_cleanup(block); } /** * @brief Clean encryption / decryption factory. * @note After cleanup, a factory is free to be reused if necessary. * @param driver - driver to use * @param f The factory to use. * @return Returns APR_ENOTIMPL if not supported. */ static apr_status_t crypto_cleanup(apr_crypto_t *f) { apr_crypto_key_t *key; if (f->keys) { while ((key = apr_array_pop(f->keys))) { if (key->symKey) { PK11_FreeSymKey(key->symKey); key->symKey = NULL; } } } return APR_SUCCESS; } static apr_status_t crypto_cleanup_helper(void *data) { apr_crypto_t *f = (apr_crypto_t *) data; return crypto_cleanup(f); } /** * @brief Create a context for supporting encryption. Keys, certificates, * algorithms and other parameters will be set per context. More than * one context can be created at one time. A cleanup will be automatically * registered with the given pool to guarantee a graceful shutdown. * @param driver - driver to use * @param pool - process pool * @param params - array of key parameters * @param factory - factory pointer will be written here * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE * if the engine cannot be initialised. */ static apr_status_t crypto_factory(apr_pool_t *pool, const apr_array_header_t *params, apr_crypto_t **factory) { apr_crypto_config_t *config = NULL; /* struct apr_crypto_param_t *ents = params ? (struct apr_crypto_param_t *)params->elts : NULL; */ /* int i = 0; */ apr_crypto_t *f; f = apr_pcalloc(pool, sizeof(apr_crypto_t)); if (!f) { return APR_ENOMEM; } *factory = f; f->pool = pool; config = f->config = apr_pcalloc(pool, sizeof(apr_crypto_config_t)); if (!config) { return APR_ENOMEM; } f->result = apr_pcalloc(pool, sizeof(apu_err_t)); if (!f->result) { return APR_ENOMEM; } f->keys = apr_array_make(pool, 10, sizeof(apr_crypto_key_t)); apr_pool_cleanup_register(pool, f, crypto_cleanup_helper, apr_pool_cleanup_null); /* for (i = 0; params && i < params->nelts; i++) { switch (ents[i].type) { default: f->result->rc = -1; f->result->reason = "The NSS module currently supports " "no per factory initialisation parameters at this time, but " "may do in future."; return APR_EINIT; } } */ return APR_SUCCESS; } /** * @brief Create a key from the given passphrase. By default, the PBKDF2 * algorithm is used to generate the key from the passphrase. It is expected * that the same pass phrase will generate the same key, regardless of the * backend crypto platform used. The key is cleaned up when the context * is cleaned, and may be reused with multiple encryption or decryption * operations. * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If * *key is not NULL, *key must point at a previously created structure. * @param driver - driver to use * @param p The pool to use. * @param f The context to use. * @param pass The passphrase to use. * @param passLen The passphrase length in bytes * @param salt The salt to use. * @param saltLen The salt length in bytes * @param type 3DES_192, AES_128, AES_192, AES_256. * @param mode Electronic Code Book / Cipher Block Chaining. * @param doPad Pad if necessary. * @param key The key returned, see note. * @param ivSize The size of the initialisation vector will be returned, based * on whether an IV is relevant for this type of crypto. * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend * error occurred while generating the key. APR_ENOCIPHER if the type or mode * is not supported by the particular backend. APR_EKEYTYPE if the key type is * not known. APR_EPADDING if padding was requested but is not supported. * APR_ENOTIMPL if not implemented. */ static apr_status_t crypto_passphrase(apr_pool_t *p, const apr_crypto_t *f, const char *pass, apr_size_t passLen, const unsigned char * salt, apr_size_t saltLen, const apr_crypto_block_key_type_e type, const apr_crypto_block_key_mode_e mode, const int doPad, const int iterations, apr_crypto_key_t **k, apr_size_t *ivSize) { apr_status_t rv = APR_SUCCESS; PK11SlotInfo * slot; SECItem passItem; SECItem saltItem; SECAlgorithmID *algid; void *wincx = NULL; /* what is wincx? */ apr_crypto_key_t *key = *k; if (!key) { *k = key = apr_array_push(f->keys); } if (!key) { return APR_ENOMEM; } /* decide on what cipher mechanism we will be using */ switch (type) { case (KEY_3DES_192) : if (MODE_CBC == mode) { key->cipherOid = SEC_OID_DES_EDE3_CBC; } else if (MODE_ECB == mode) { return APR_ENOCIPHER; /* No OID for CKM_DES3_ECB; */ } break; case (KEY_AES_128) : if (MODE_CBC == mode) { key->cipherOid = SEC_OID_AES_128_CBC; } else { key->cipherOid = SEC_OID_AES_128_ECB; } break; case (KEY_AES_192) : if (MODE_CBC == mode) { key->cipherOid = SEC_OID_AES_192_CBC; } else { key->cipherOid = SEC_OID_AES_192_ECB; } break; case (KEY_AES_256) : if (MODE_CBC == mode) { key->cipherOid = SEC_OID_AES_256_CBC; } else { key->cipherOid = SEC_OID_AES_256_ECB; } break; default: /* unknown key type, give up */ return APR_EKEYTYPE; } /* AES_128_CBC --> CKM_AES_CBC --> CKM_AES_CBC_PAD */ key->cipherMech = PK11_AlgtagToMechanism(key->cipherOid); if (key->cipherMech == CKM_INVALID_MECHANISM) { return APR_ENOCIPHER; } if (doPad) { CK_MECHANISM_TYPE paddedMech; paddedMech = PK11_GetPadMechanism(key->cipherMech); if (CKM_INVALID_MECHANISM == paddedMech || key->cipherMech == paddedMech) { return APR_EPADDING; } key->cipherMech = paddedMech; } /* Turn the raw passphrase and salt into SECItems */ passItem.data = (unsigned char*)pass; passItem.len = passLen; saltItem.data = (unsigned char*)salt; saltItem.len = saltLen; /* generate the key */ /* pbeAlg and cipherAlg are the same. NSS decides the keylength. */ algid = PK11_CreatePBEV2AlgorithmID(key->cipherOid, key->cipherOid, SEC_OID_HMAC_SHA1, 0, iterations, &saltItem); if (algid) { slot = PK11_GetBestSlot(key->cipherMech, wincx); if (slot) { key->symKey = PK11_PBEKeyGen(slot, algid, &passItem, PR_FALSE, wincx); PK11_FreeSlot(slot); } SECOID_DestroyAlgorithmID(algid, PR_TRUE); } /* sanity check? */ if (!key->symKey) { PRErrorCode perr = PORT_GetError(); if (perr) { f->result->rc = perr; f->result->msg = PR_ErrorToName(perr); rv = APR_ENOKEY; } } key->ivSize = PK11_GetIVLength(key->cipherMech); if (ivSize) { *ivSize = key->ivSize; } return rv; } /** * @brief Initialise a context for encrypting arbitrary data using the given key. * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If * *ctx is not NULL, *ctx must point at a previously created structure. * @param p The pool to use. * @param f The block factory to use. * @param key The key structure. * @param iv Optional initialisation vector. If the buffer pointed to is NULL, * an IV will be created at random, in space allocated from the pool. * If the buffer pointed to is not NULL, the IV in the buffer will be * used. * @param ctx The block context returned, see note. * @param blockSize The block size of the cipher. * @return Returns APR_ENOIV if an initialisation vector is required but not specified. * Returns APR_EINIT if the backend failed to initialise the context. Returns * APR_ENOTIMPL if not implemented. */ static apr_status_t crypto_block_encrypt_init(apr_pool_t *p, const apr_crypto_t *f, const apr_crypto_key_t *key, const unsigned char **iv, apr_crypto_block_t **ctx, apr_size_t *blockSize) { PRErrorCode perr; SECItem * secParam; SECItem ivItem; unsigned char * usedIv; apr_crypto_block_t *block = *ctx; if (!block) { *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t)); } if (!block) { return APR_ENOMEM; } block->factory = f; block->pool = p; apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper, apr_pool_cleanup_null); if (key->ivSize) { if (iv == NULL) { return APR_ENOIV; } if (*iv == NULL) { usedIv = apr_pcalloc(p, key->ivSize); if (!usedIv) { return APR_ENOMEM; } SECStatus s = PK11_GenerateRandom(usedIv, key->ivSize); if (s != SECSuccess) { return APR_ENOIV; } *iv = usedIv; } else { usedIv = (unsigned char *)*iv; } ivItem.data = usedIv; ivItem.len = key->ivSize; secParam = PK11_ParamFromIV(key->cipherMech, &ivItem); } else { secParam = PK11_GenerateNewParam(key->cipherMech, key->symKey); } block->blockSize = PK11_GetBlockSize(key->cipherMech, secParam); block->ctx = PK11_CreateContextBySymKey(key->cipherMech, CKA_ENCRYPT, key->symKey, secParam); /* did an error occur? */ perr = PORT_GetError(); if (perr || !block->ctx) { f->result->rc = perr; f->result->msg = PR_ErrorToName(perr); return APR_EINIT; } if (blockSize) { *blockSize = PK11_GetBlockSize(key->cipherMech, secParam); } return APR_SUCCESS; } /** * @brief Encrypt data provided by in, write it to out. * @note The number of bytes written will be written to outlen. If * out is NULL, outlen will contain the maximum size of the * buffer needed to hold the data, including any data * generated by apr_crypto_block_encrypt_finish below. If *out points * to NULL, a buffer sufficiently large will be created from * the pool provided. If *out points to a not-NULL value, this * value will be used as a buffer instead. * @param ctx The block context to use. * @param out Address of a buffer to which data will be written, * see note. * @param outlen Length of the output will be written here. * @param in Address of the buffer to read. * @param inlen Length of the buffer to read. * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if * not implemented. */ static apr_status_t crypto_block_encrypt(apr_crypto_block_t *block, unsigned char **out, apr_size_t *outlen, const unsigned char *in, apr_size_t inlen) { unsigned char *buffer; int outl = (int) *outlen; if (!out) { *outlen = inlen + block->blockSize; return APR_SUCCESS; } if (!*out) { buffer = apr_palloc(block->pool, inlen + block->blockSize); if (!buffer) { return APR_ENOMEM; } *out = buffer; } SECStatus s = PK11_CipherOp(block->ctx, *out, &outl, inlen, (unsigned char*)in, inlen); if (s != SECSuccess) { PRErrorCode perr = PORT_GetError(); if (perr) { block->factory->result->rc = perr; block->factory->result->msg = PR_ErrorToName(perr); } return APR_ECRYPT; } *outlen = outl; return APR_SUCCESS; } /** * @brief Encrypt final data block, write it to out. * @note If necessary the final block will be written out after being * padded. Typically the final block will be written to the * same buffer used by apr_crypto_block_encrypt, offset by the * number of bytes returned as actually written by the * apr_crypto_block_encrypt() call. After this call, the context * is cleaned and can be reused by apr_crypto_block_encrypt_init(). * @param ctx The block context to use. * @param out Address of a buffer to which data will be written. This * buffer must already exist, and is usually the same * buffer used by apr_evp_crypt(). See note. * @param outlen Length of the output will be written here. * @return APR_ECRYPT if an error occurred. * @return APR_EPADDING if padding was enabled and the block was incorrectly * formatted. * @return APR_ENOTIMPL if not implemented. */ static apr_status_t crypto_block_encrypt_finish(apr_crypto_block_t *block, unsigned char *out, apr_size_t *outlen) { apr_status_t rv = APR_SUCCESS; unsigned int outl = *outlen; SECStatus s = PK11_DigestFinal(block->ctx, out, &outl, block->blockSize); *outlen = outl; if (s != SECSuccess) { PRErrorCode perr = PORT_GetError(); if (perr) { block->factory->result->rc = perr; block->factory->result->msg = PR_ErrorToName(perr); } rv = APR_ECRYPT; } crypto_block_cleanup(block); return rv; } /** * @brief Initialise a context for decrypting arbitrary data using the given key. * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If * *ctx is not NULL, *ctx must point at a previously created structure. * @param p The pool to use. * @param f The block factory to use. * @param key The key structure. * @param iv Optional initialisation vector. If the buffer pointed to is NULL, * an IV will be created at random, in space allocated from the pool. * If the buffer pointed to is not NULL, the IV in the buffer will be * used. * @param ctx The block context returned, see note. * @param blockSize The block size of the cipher. * @return Returns APR_ENOIV if an initialisation vector is required but not specified. * Returns APR_EINIT if the backend failed to initialise the context. Returns * APR_ENOTIMPL if not implemented. */ static apr_status_t crypto_block_decrypt_init(apr_pool_t *p, const apr_crypto_t *f, const apr_crypto_key_t *key, const unsigned char *iv, apr_crypto_block_t **ctx, apr_size_t *blockSize) { PRErrorCode perr; SECItem * secParam; apr_crypto_block_t *block = *ctx; if (!block) { *ctx = block = apr_pcalloc(p, sizeof(apr_crypto_block_t)); } if (!block) { return APR_ENOMEM; } block->factory = f; block->pool = p; apr_pool_cleanup_register(p, block, crypto_block_cleanup_helper, apr_pool_cleanup_null); if (key->ivSize) { SECItem ivItem; if (iv == NULL) { return APR_ENOIV; /* Cannot initialise without an IV */ } ivItem.data = (unsigned char*)iv; ivItem.len = key->ivSize; secParam = PK11_ParamFromIV(key->cipherMech, &ivItem); } else { secParam = PK11_GenerateNewParam(key->cipherMech, key->symKey); } block->blockSize = PK11_GetBlockSize(key->cipherMech, secParam); block->ctx = PK11_CreateContextBySymKey(key->cipherMech, CKA_DECRYPT, key->symKey, secParam); /* did an error occur? */ perr = PORT_GetError(); if (perr || !block->ctx) { f->result->rc = perr; f->result->msg = PR_ErrorToName(perr); return APR_EINIT; } if (blockSize) { *blockSize = PK11_GetBlockSize(key->cipherMech, secParam); } return APR_SUCCESS; } /** * @brief Decrypt data provided by in, write it to out. * @note The number of bytes written will be written to outlen. If * out is NULL, outlen will contain the maximum size of the * buffer needed to hold the data, including any data * generated by apr_crypto_block_final below. If *out points * to NULL, a buffer sufficiently large will be created from * the pool provided. If *out points to a not-NULL value, this * value will be used as a buffer instead. * @param ctx The block context to use. * @param out Address of a buffer to which data will be written, * see note. * @param outlen Length of the output will be written here. * @param in Address of the buffer to read. * @param inlen Length of the buffer to read. * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if * not implemented. */ static apr_status_t crypto_block_decrypt(apr_crypto_block_t *block, unsigned char **out, apr_size_t *outlen, const unsigned char *in, apr_size_t inlen) { unsigned char *buffer; int outl = (int) *outlen; if (!out) { *outlen = inlen + block->blockSize; return APR_SUCCESS; } if (!*out) { buffer = apr_palloc(block->pool, inlen + block->blockSize); if (!buffer) { return APR_ENOMEM; } *out = buffer; } SECStatus s = PK11_CipherOp(block->ctx, *out, &outl, inlen, (unsigned char*)in, inlen); if (s != SECSuccess) { PRErrorCode perr = PORT_GetError(); if (perr) { block->factory->result->rc = perr; block->factory->result->msg = PR_ErrorToName(perr); } return APR_ECRYPT; } *outlen = outl; return APR_SUCCESS; } /** * @brief Encrypt final data block, write it to out. * @note If necessary the final block will be written out after being * padded. Typically the final block will be written to the * same buffer used by apr_evp_crypt, offset by the number of * bytes returned as actually written by the apr_evp_crypt() * call. After this call, the context is cleaned and can be * reused by apr_env_encrypt_init() or apr_env_decrypt_init(). * @param ctx The block context to use. * @param out Address of a buffer to which data will be written. This * buffer must already exist, and is usually the same * buffer used by apr_evp_crypt(). See note. * @param outlen Length of the output will be written here. * @return APR_ECRYPT if an error occurred. * @return APR_EPADDING if padding was enabled and the block was incorrectly * formatted. * @return APR_ENOTIMPL if not implemented. */ static apr_status_t crypto_block_decrypt_finish(apr_crypto_block_t *block, unsigned char *out, apr_size_t *outlen) { apr_status_t rv = APR_SUCCESS; unsigned int outl = *outlen; SECStatus s = PK11_DigestFinal(block->ctx, out, &outl, block->blockSize); *outlen = outl; if (s != SECSuccess) { PRErrorCode perr = PORT_GetError(); if (perr) { block->factory->result->rc = perr; block->factory->result->msg = PR_ErrorToName(perr); } rv = APR_ECRYPT; } crypto_block_cleanup(block); return rv; } /** * OpenSSL module. */ APU_MODULE_DECLARE_DATA const apr_crypto_driver_t apr_crypto_nss_driver = { "nss", crypto_init, crypto_factory, crypto_passphrase, crypto_block_encrypt_init, crypto_block_encrypt, crypto_block_encrypt_finish, crypto_block_decrypt_init, crypto_block_decrypt, crypto_block_decrypt_finish, crypto_block_cleanup, crypto_cleanup, crypto_shutdown }; #endif