//--------------------------------------------------------------------------------- // // Little Color Management System // Copyright (c) 1998-2020 Marti Maria Saguer // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // //--------------------------------------------------------------------------------- // #include "lcms2_internal.h" #define DSWAP(x, y) {cmsFloat64Number tmp = (x); (x)=(y); (y)=tmp;} // Initiate a vector void CMSEXPORT _cmsVEC3init(cmsVEC3* r, cmsFloat64Number x, cmsFloat64Number y, cmsFloat64Number z) { r -> n[VX] = x; r -> n[VY] = y; r -> n[VZ] = z; } // Vector subtraction void CMSEXPORT _cmsVEC3minus(cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b) { r -> n[VX] = a -> n[VX] - b -> n[VX]; r -> n[VY] = a -> n[VY] - b -> n[VY]; r -> n[VZ] = a -> n[VZ] - b -> n[VZ]; } // Vector cross product void CMSEXPORT _cmsVEC3cross(cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v) { r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ]; r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX]; r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY]; } // Vector dot product cmsFloat64Number CMSEXPORT _cmsVEC3dot(const cmsVEC3* u, const cmsVEC3* v) { return u->n[VX] * v->n[VX] + u->n[VY] * v->n[VY] + u->n[VZ] * v->n[VZ]; } // Euclidean length cmsFloat64Number CMSEXPORT _cmsVEC3length(const cmsVEC3* a) { return sqrt(a ->n[VX] * a ->n[VX] + a ->n[VY] * a ->n[VY] + a ->n[VZ] * a ->n[VZ]); } // Euclidean distance cmsFloat64Number CMSEXPORT _cmsVEC3distance(const cmsVEC3* a, const cmsVEC3* b) { cmsFloat64Number d1 = a ->n[VX] - b ->n[VX]; cmsFloat64Number d2 = a ->n[VY] - b ->n[VY]; cmsFloat64Number d3 = a ->n[VZ] - b ->n[VZ]; return sqrt(d1*d1 + d2*d2 + d3*d3); } // 3x3 Identity void CMSEXPORT _cmsMAT3identity(cmsMAT3* a) { _cmsVEC3init(&a-> v[0], 1.0, 0.0, 0.0); _cmsVEC3init(&a-> v[1], 0.0, 1.0, 0.0); _cmsVEC3init(&a-> v[2], 0.0, 0.0, 1.0); } static cmsBool CloseEnough(cmsFloat64Number a, cmsFloat64Number b) { return fabs(b - a) < (1.0 / 65535.0); } cmsBool CMSEXPORT _cmsMAT3isIdentity(const cmsMAT3* a) { cmsMAT3 Identity; int i, j; _cmsMAT3identity(&Identity); for (i=0; i < 3; i++) for (j=0; j < 3; j++) if (!CloseEnough(a ->v[i].n[j], Identity.v[i].n[j])) return FALSE; return TRUE; } // Multiply two matrices void CMSEXPORT _cmsMAT3per(cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b) { #define ROWCOL(i, j) \ a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j] _cmsVEC3init(&r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)); _cmsVEC3init(&r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)); _cmsVEC3init(&r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2)); #undef ROWCOL //(i, j) } // Inverse of a matrix b = a^(-1) cmsBool CMSEXPORT _cmsMAT3inverse(const cmsMAT3* a, cmsMAT3* b) { cmsFloat64Number det, c0, c1, c2; c0 = a -> v[1].n[1]*a -> v[2].n[2] - a -> v[1].n[2]*a -> v[2].n[1]; c1 = -a -> v[1].n[0]*a -> v[2].n[2] + a -> v[1].n[2]*a -> v[2].n[0]; c2 = a -> v[1].n[0]*a -> v[2].n[1] - a -> v[1].n[1]*a -> v[2].n[0]; det = a -> v[0].n[0]*c0 + a -> v[0].n[1]*c1 + a -> v[0].n[2]*c2; if (fabs(det) < MATRIX_DET_TOLERANCE) return FALSE; // singular matrix; can't invert b -> v[0].n[0] = c0/det; b -> v[0].n[1] = (a -> v[0].n[2]*a -> v[2].n[1] - a -> v[0].n[1]*a -> v[2].n[2])/det; b -> v[0].n[2] = (a -> v[0].n[1]*a -> v[1].n[2] - a -> v[0].n[2]*a -> v[1].n[1])/det; b -> v[1].n[0] = c1/det; b -> v[1].n[1] = (a -> v[0].n[0]*a -> v[2].n[2] - a -> v[0].n[2]*a -> v[2].n[0])/det; b -> v[1].n[2] = (a -> v[0].n[2]*a -> v[1].n[0] - a -> v[0].n[0]*a -> v[1].n[2])/det; b -> v[2].n[0] = c2/det; b -> v[2].n[1] = (a -> v[0].n[1]*a -> v[2].n[0] - a -> v[0].n[0]*a -> v[2].n[1])/det; b -> v[2].n[2] = (a -> v[0].n[0]*a -> v[1].n[1] - a -> v[0].n[1]*a -> v[1].n[0])/det; return TRUE; } // Solve a system in the form Ax = b cmsBool CMSEXPORT _cmsMAT3solve(cmsVEC3* x, cmsMAT3* a, cmsVEC3* b) { cmsMAT3 m, a_1; memmove(&m, a, sizeof(cmsMAT3)); if (!_cmsMAT3inverse(&m, &a_1)) return FALSE; // Singular matrix _cmsMAT3eval(x, &a_1, b); return TRUE; } // Evaluate a vector across a matrix void CMSEXPORT _cmsMAT3eval(cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v) { r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ]; r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ]; r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ]; }