
http://www.littlecms.com

Copyright © 2011 Marti Maria Saguer, all rights reserved.

How to use the engine in your

applications
By Marti Maria. Ver 2.3

http://www.littlecms.com/�

2 Introduction

Table of Contents

Introduction .. 4

Documentation ... 5

What is new from lcms 1.x .. 6

Requeriments .. 7

Include files ... 7

Basic Concepts ... 8

Source code conventions .. 8

The const keyword .. 8

Basic Types .. 9

Step-by-step Example ... 10

Open the profiles .. 11

Identify the intended format of pixels .. 11

Create the transform ... 13

Rendering intents .. 13

Optimization .. 15

Apply the transform .. 15

Scanline padding ... 15

Scanline overlap .. 15

Finishing the color transform .. 16

Special profile types .. 17

Embedded profiles .. 17

Device-link profiles .. 17

Named color profiles ... 19

Built-in profiles .. 21

On-the-fly profiles ... 22

Proofing ... 26

Black point compensation ... 28

Black preserving intents .. 30

Error Logging ... 31

3 Introduction

Getting information from profiles ... 33

Textual information ... 33

Profile header fields .. 34

Profile Directory .. 35

Profile capabilities ... 35

Reading tags .. 36

Writing tags ... 37

The linked tag feature ... 37

Creating new profiles .. 37

Tone curves ... 38

Pipelines and Multi Processing elements .. 40

Clut element .. 41

Matrix element .. 42

Curve set element ... 42

Additions and the processing element plug-in ... 42

Helper functions .. 43

Colorimetric space conversions .. 43

Converting encoded values ... 43

Linear Bradford Chromatic Adaptation ... 44

Color difference functions ... 45

Delta-E metrics .. 45

PostScript generation .. 47

CIECAM02 .. 49

CGATS parser ... 52

Overview ... 52

Memory management .. 52

Additions ... 52

Strict CGATS ... 53

Gamut boundary description .. 54

Conclusion ... 55

4 Introduction

Introduction

Welcome to the Little Color Management System. With this library you can enable your
applications to use International Color Consortium (ICC) profiles. Little CMS does accept profiles
conformant with ICC 4.2 or below, and supports all features described in the ICC specification,
including addendums. Little CMS can operate with old V2 ICC profiles as well. The CMM does all
necessary adjustments and allows you to mix both kind of profiles.

This file has been written to present the Little CMS core library to “would-be” writers of
applications. It first describes the concepts on which the engine is based, and then how to use it to
obtain transformations, colorspace conversions and other color-related functionality. This
document doesn't even try to explain the basic concepts of color management. For a
comprehensive explanation, I would recommend the excellent color & gamma FAQs by Charles A.
Poynton:

http://www.poynton.com

 For more details about profile architecture, you can reach the latest ICC specs on:

http://www.color.org

PLEASE NOTE THAN Little CMS IS NOT AN ICC SUPPORTED LIBRARY

 I will assume the reader does have a working knowledge of the C programming language. This
doesn’t mean Little CMS can only be used by C applications, but it seems the easiest way to
present the API functionality. Little CMS 2 is meant to be portable to any C99 compliant compiler.

5 Introduction

Documentation

Little CMS documentation is hold in three different papers. This one you are reading is the tutorial.
Its goal is to introduce the engine and to guide you in its basic usage. It does not, however, give
details on all available functionality. For that purpose, you can use the API reference, which gives
information on all the constants, structures and functions in the engine. The third document is the
plug-in documentation. It details how to extend the engine to fit your particular purposes. You
need some experience in the core API to write plug-ins, therefore, the plug-in API reference is
somehow more advanced that the remaining two.

Aside documentation, there are sample programs that you can explore. Those are located in the
“utils” folder. Those programs are also handy in isolation. This is the list of utilities, each one is
documented elsewere.

• TifICC
• JpgICC
• TransICC
• LinkICC
• TiffDiff
• psicc

6 Introduction

What is new from lcms 1.x

First obvious question is “why should I upgrade to Little CMS 2”. Here are some clues:

• Little CMS 2.xx is a full v4 CMM, which can accept v2 profiles. Little CMS 1.xx was a v2
CMM which can deal with (some) V4 profiles. The difference is important, as 2.x handling
of PCS is different, definitively better and far more accurate.

• It does accept and understand floating point profiles (MPE) with DToBxx tags. (Yes, it
works!) It has 32 bits precision. (lcms 1.xx was 16 bits)

• It handles float and double formats directly. MPE profiles are evaluated in floating point
with no precision loss.

• It has plug-in architecture that allows you to change interpolation, add new proprietary
tags, add new “smart CMM” intents, etc.

• Is faster. In some combinations, has a x 6 throughput boost.
• Some new algorithms, incomplete state of adaptation, Jan Morovic’s segment maxima

gamut boundary descriptor, better K preservation…
• Historic issues, like faulty icc34.h, freeing profiles after creating transform, etc. All is

solved.

Little CMS 2 is almost a full rewrite of 1.x series, so there is no guarantee of backwards
compatibility. Having said this, if your application doesn’t make use of advanced features,
probably all what you need to do is to change the include file from lcms.h to lcms2.h and maybe to
do some minor tweaks on your code. Profile opening and transform creation functions are kept
the same, but there are some changes in the flags. Little CMS 2 does offer more ways to access
profiles, so it is certainly possible your code will get simplified. The basic parts where Little CMS 2
differs from 1.x series are:

• Transform flags
• Error handling
• Textual information retrieval
• New non-ICC intents
• Floating point modes
• Pipelines

On internal advanced functions, the underlying implementation has changed significantly. You still
can do all what lcms1 did, but in some cases by using a different approach. There are no longer
gamma curves or matrix-shaper functions. Even the LUT functions are gone. All that has been
superseded by:

• Gamma functions  Tone curves
• Matrix Shaper, LUT  Pipelines
• LUT resampling  Optimization engine

7 Introduction

There is no one-to-one correspondence between old and new functions, but most old functionality
can be implemented with new functions. Take a look on this document to find how to use the new
API.

Requeriments

In order to improve portability and minimize code complexity, LittleCMS 2.x requires a C99
compliant compiler. This requeriment has been relexed on Microsoft’s Visual Studio because its
wide adoption by industry (VC is not fully C99 compliant). Borland C 5.5 (available for free) has
been tested and found to work Ok. gcc and the Intel compiler does work ok.

Include files

Any application using LittleCMS 2 has to include just one header.

#include “lcms2.h”

The header has been renamed to lcms2.h in order to improve the adoption of version 2. In fact,
both Little CMS 1.x and 2.x can coexist installed in same machine. This is very important on
platforms like linux, where LittleCMS is nested deep in the dependency tree. Little CMS 2 no longer
relies on icc34.h or any file coming from ICC. All constants are now prefixed by “cms” and there is
one license for all package.

Lcms2.h does expose the API, and only the API. Unlike 1.xx series, all internal functions are no
longer accesible for client applications.

A special case are the LittleCMS plug-ins. Those constructs can access more functions that the API,
just because they are supposed to access Little CMS internals to add new functionality. There is a
specialized include file for that:

#include “lcms2_plugin.h”

This file should only be included when defining plug-ins. It defines some additional functions and is
described in the LittleCMS2.x Plugin API document.

8 Introduction

Basic Concepts

LittleCMS defines several kinds of structures, that are used to manage the various abstractions
required to access ICC profiles. The main structures are profiles and transforms. In a care of good
encapsulation, these objects are not directly accessible from a client application. Rather, the user
receives a 'handle' for each object it queries and wants to use. This handle is a stand-alone
reference; it cannot be used like a pointer to access directly the object's data. This approach is
used on other parts of the API as well, across a generic handle.

There are typedef's for such handles:

• cmsHPROFILE identifies a handle to an open profile.
• cmsHTRANSFORM identifies a handle to a transform.
• cmsHANDLE identifies a generic object.

Source code conventions

• All API functions and types have their label prefixed by 'cms' (lower-case). All plug-in
building aids are prefixed by ‘_cms’ (lower-case).

• Some functions does accepts flags. In such cases, you can build the flags specifier joining
the values with the bitwise-or operator '|'.

• Functions does report error by the return code.
• An important note is that the engine should not leak memory when returning an error,

e.g., querying the creation of an object will allocate several internal tables that will be
freed if a disk error occurs during a load.

The const keyword

‘const’ is your friend. Since Little CMS 2 requires now C99, I have enforced the use of const
whatever possible. My advice is to hint the compiler with const on all chances of constant objects;
it is very useful to find bugs. So, if the compiler complains on any Little CMS function because a
const parameter, don’t blame the API, revise your code and probably you would find a glitch.

9 Introduction

Basic Types

In order to guarantee portability, lcms2.h does define several base types. If you don’t need your
code to be portable, you can still use ‘int’, ‘long’ etc. But using Little CMS types you make sure
about the representation of the data. Here are the basic types. See the API reference for further
details.

Type Bits Signed Comment
cmsUInt8Number 8 No Byte
cmsInt8Number 8 Yes
cmsUInt16Number 16 No Word
cmsInt16Number 16 Yes
cmsUInt32Number 32 No Double word
cmsInt32Number 32 Yes Native int on most 32-bit architectures
cmsUInt64Number 64 No
cmsInt64Number 64 Yes
cmsFloat32Number 32 Yes IEEE float
cmsFloat64Number 64 Yes IEEE double
cmsBool ? No TRUE, FALSE Boolean type, which will be using the

native integer

10 Step-by-step Example

Step-by-step Example

Here is an example to show, step by step, how a client application can transform a bitmap
between two ICC profiles using the lcms API.

#include "lcms2.h"

int main(void)
{
 cmsHPROFILE hInProfile, hOutProfile;
 cmsHTRANSFORM hTransform;
 int i;

 hInProfile = cmsOpenProfileFromFile("HPSJTW.icc", "r");
 hOutProfile = cmsOpenProfileFromFile("sRGBColorSpace.icc", "r");

 hTransform = cmsCreateTransform(hInProfile,
 TYPE_BGR_8,
 hOutProfile,
 TYPE_BGR_8,
 INTENT_PERCEPTUAL, 0);

 cmsCloseProfile(hInProfile);
 cmsCloseProfile(hOutProfile);

 for (i=0; i < AllScanlinesTilesOrWatseverBlocksYouUse; i++)
 {
 cmsDoTransform(hTransform, YourInputBuffer,
 YourOutputBuffer,
 YourBuffersSizeInPixels);
 }

 cmsDeleteTransform(hTransform);

 return 0;
}

This is slightly different from the sample on 1.xx series, as Little CMS 2 allows you to close the
profiles after creating the transform. On 1.xx you have to keep profiles open on all transform life,
that is no longer required in Little CMS 2.x

11 Step-by-step Example

Open the profiles

You will need the profile handles for create the transform. In this example, I will create a
transform using a HP Scan Jet profile as input, and sRGB profile as output. This task can be done
by following lines:

cmsHPROFILE hInProfile, hOutProfile;

 hInProfile = cmsOpenProfileFromFile("HPSJTW.icc", "r")
 hOutProfile = cmsOpenProfileFromFile("sRGBColorSpace.icc", "r")

You surely have noticed a second parameter with a small "r". This parameter is used to set the
access mode. It describes the "opening mode" like the C function fopen(). If the function fails, it
return NULL. In this example we don’t check the return code because simplicity sake, but you
should do that if you care about segfaults!

WARNING! Opening with 'w' WILL OVERWRITE YOUR PROFILE! Don't do
this except if you want to create a NEW profile.

Opening a profile only will take a small fraction of memory. The BToA or AToB tables, which
usually are big, are only loaded at transform-time, and on demand. You can safely open a lot of
profiles if you wish to do so.

Little CMS is a standalone color engine, it knows nothing about where the profiles are placed. It
does assume nothing about a specific directory (as Windows does, currently expects profiles to be
located on SYSTEM32/SPOOL/DRIVERS/COLOR folder in main windows directory), so for get this
example working, you need to copy the profiles in the local directory.

Identify the intended format of pixels

Little CMS can handle a lot of formats:

• 8 and 16 bits per sample
• up to 15 channels
• extra (unused) channels like alpha
• swapped-channels like BGR
• endian-swapped 16 bps formats like PNG
• chunky and planar organization
• Reversed (negative) channels
• Floating-point numbers

12 Step-by-step Example

For describing such formats, lcms does use a 32-bit value, referred below as "formatters ". This is
just a 32-bit word holding information about the format in bits. Normally, you need not to worry
about how a format pecifier is built. There are several (most usual) encodings predefined as
constants, but there are a lot more. See the API reference for a complete list. Let’s now say that
there are specifiers for many color spaces encoded in 8 bits, in 16 bits and in floating-point. This
latter in 32 or 64 bits per channel. Here are some samples:

TYPE_RGB_DBL TYPE_CMYK_DBL TYPE_Lab_FLT
TYPE_XYZ_FLT TYPE_GRAY_8 TYPE_GRAY_16
TYPE_RGB_8 TYPE_RGB_8_PLANAR TYPE_BGR_16
TYPE_BGR_16_SE TYPE_RGBA_8 TYPE_CMY_8
TYPE_CMY_16_PLANAR .. etc...

For example, if you are transforming a windows .bmp to a bitmap for display, you will use
TYPE_BGR_8 for both, input and output buffers, windows does store images as B,G,R and not as
R,G,B. Another example, you need to convert from a CMYK separation to RGB in order to display;
then you would use TYPE_CMYK_8 on input and TYPE_BGR_8 on output. If you need to do the
separation from a TIFF, TYPE_RGB_8 on input and TYPE_CMYK_8 on output. Please note
TYPE_RGB_8 and TYPE_BGR_8 are *not* same.

The format specifiers are useful above color management. This will provide a way to handle a lot
of formats, converting them in a single, well-known one. For example, if you need to deal with
several pixel layouts coming from a file (TIFF for example), you can use a fixed output format,
say TYPE_BGR_8 and then, vary the input format on depending on the file parameters. Little CMS
also provides a flag for inhibit color management if you want speed and don't care about
profiles. see cmsFLAGS_NULLTRANSFORM for more info.

13 Step-by-step Example

Create the transform

When creating transform, you are giving to LittleCMS all information it needs about how to
translate your pixels. The syntax for simple transforms is:

cmsHTRANSFORM hTransform;

 hTransform = cmsCreateTransform(hInputProfile,
 TYPE_BGR_8,
 hOutputProfile,
 TYPE_BGR_8,
 INTENT_PERCEPTUAL, 0);

You give the profile handles, the format of your buffers, the rendering intent and a combination of
flags controlling the transform behaviour.

Rendering intents

It's out of scope of this document to define the exact meaning of rendering intents. I will try to
make a quick explanation here, but often the meaning of intents depends on the profile
manufacturer.

 INTENT_PERCEPTUAL:

Hue hopefully maintained (but not required), lightness and saturation sacrificed to
maintain the perceived color. White point changed to result in neutral grays.
Intended for images.

 INTENT_RELATIVE_COLORIMETRIC:

Within and outside gamut; same as Absolute Colorimetric. White point changed to
result in neutral grays.

 INTENT_SATURATION:

Hue and saturation maintained with lightnesssacrificed to maintain saturation.
White point changed to result in neutral grays. Intended for business graphics
(make it colorful charts, graphs, overheads, ...)

 INTENT_ABSOLUTE_COLORIMETRIC:

Within the destination device gamut; hue, lightness and saturation are
maintained. Outside the gamut; hue and lightness are maintained, saturation is
sacrificed. White point for source and destination; unchanged. Intended for spot
colors (Pantone, TruMatch, logo colors, ...)

14 Step-by-step Example

With Little CMS 2 there are additional intents. Those does not belong to the ICC spec, and
therefore they are labeled as “user” intents. In fact, by using plug-ins you can extend the list of
available intents.

LittleCMS 2.1 does add following non-ICC intents by default:

• INTENT_PRESERVE_K_ONLY_PERCEPTUAL
• INTENT_PRESERVE_K_ONLY_RELATIVE_COLORIMETRIC
• INTENT_PRESERVE_K_ONLY_SATURATION
• INTENT_PRESERVE_K_PLANE_PERCEPTUAL
• INTENT_PRESERVE_K_PLANE_RELATIVE_COLORIMETRIC
• INTENT_PRESERVE_K_PLANE_SATURATION

All those new intents deal with black preservation. They are described below, see the black
preservation section.

Not all profiles does support all intents, there is a function for inquiring which intents are really
supported for a given profile, but if you specify a intent that the profile doesn't handle, Little CMS
will select default intent instead.

This is the algorithm for selecting ICC intents:

 INTENT_PERCEPTUAL:

 If adequate table is present in profile,
 then, it is used. Else default intent of profiles is used

 INTENT_RELATIVE_COLORIMETRIC:

 If adequate table is present in profile,
 then, it is used. Else revert to perceptual
 intent.

 INTENT_SATURATION:

 If adequate table is present in profile,
 then, it is used. Else revert to perceptual
 intent.

 INTENT_ABSOLUTE_COLORIMETRIC:

 relative colorimetric intent is used
 with undoing of chromatic adaptation.

15 Step-by-step Example

Optimization

Little CMS tries to optimize profile chains whatever possible. There are some built-in optimization
schemes, and you can add new schemas by using a plug-in. This generally improves the
performance of the transform, but may introduce a small delay of 1-2 seconds when creating the
transform. If you are going to transform just few colors, you don't need this precalculations. Then,
the flag cmsFLAGS_NOOPTIMIZE in cmsCreateTransform() can be used to inhibit the optimization
process. See the API reference for a more detailed discussion of the flags.

Apply the transform

Next, you can translate your bitmap, calling repeatedly the processing function:

 cmsDoTransform(hTransform, YourInputBuffer,
 YourOutputBuffer,
 YourBuffersSize);

This function is intended to be quite fast. You can use this function for translating a scan line, a
tile, a strip, or whole image at time.

Scanline padding

Windows, stores the bitmaps in a particular way... for speed purposes, does align the scan lines to
double word boundaries, a bitmap has in windows always a size multiple of 4. This is OK, since no
matter if you waste a couple of bytes, but if you call cmsDoTransform() and passes it WHOLE
image, Little CMS doesn't know nothing about this extra padding bytes. It assumes that you are
passing a block of BGR triplets with no alignment at all. This result in a strange looking "lines" in
obtained bitmap. The solution most evident is to convert scan line by scan line instead of whole
image. This is as easy as to add a for() loop, and the time penalty is so low that is impossible to
detect.

Scanline overlap

It is safe to use same block for input and output, but only if the input and output are coded in
same format. For example, you can safely use only one buffer for RGB to RGB but you cannot use
same buffer for RGB as input and CMYK as output.

16 Step-by-step Example

Finishing the color transform

New with LittleCMS 2 is the ability to free profiles just after creating the transform. A open profile
may take big amounts of memory, so it is a good idea to free the resources as soon as you don’t
need them. Color transforms does take also resources, so you have to free them to avoid leaks.

This can be done by calling:

 cmsDeleteTransform(hTransform);
 cmsCloseProfile(hInputProfile);
 cmsCloseProfile(hOutputProfile);

Note that cmsDeleteTransform() does NOT automatically free associated profiles. This works in
such way to let programmers to use a open profile in more than one transform.

17 Special profile types

Special profile types

Aside the normal, file-based profiles, there are a number of situations where you may want
something different. Here are listed such special cases.

Embedded profiles

Some image file formats, like TIFF, JPEG or PNG, does include the ability of embed profiles. This
means that the input profile for the bitmap is stored inside the image file. LittleCMS provides a
specialised profile-opening function for deal with such profiles.

cmsHPROFILE cmsOpenProfileFromMem(const void * MemPtr,
 cmsUInt32Number dwSize);

This function works like cmsOpenProfileFromFile(), but assuming that you are given full profile in a
memory block rather than a filename. Here there is no "r", since these profiles are always read-
only. A successful call will return a handle to an opened profile that behaves just like any other
file-based. NULL if the function fails.

Memory based profiles does not waste more resources than memory, so you can have tons of
profiles opened sumultaneously by using this function. Once opened, you can safely FREE the
memory block. Little CMS keeps a temporary copy. You can retrieve information of this profile,
but generally these are minimal shaper-matrix profiles with little if none handy info present.

Be also warned that you may find WRONG profiles embedded, i.e., profiles marked as using
different colorspace that one the profile really manages. Little CMS is NOT likely to understand
these profiles since they will be wrong at all.

Device-link profiles

Device-link profiles are "smelted" profiles that represents a whole transform rather than single-
device profiles. In theory, device-link profiles may have greater precision that input/output chains
and are faster to load. If you plan to use device-link profiles, be warned there are drawbacks about
its inter-operability and the gain of speed is almost null. Perhaps their only advantage is when
restoration from CMYK with great precision is required, since CMYK to pcs CLUTs can become
very, very big.

18 Special profile types

For creating a device-link transform, you may open the device link profile as usual, using
cmsOpenProfileFromFile(). Then, create the transform with cmsCreateMultiprofileTransform.

hDeviceLink = cmsOpenProfileFromFile("MYDEVLINK.icc", "r");

hTransform = cmsCreateMultiprofileTransform(&hDevicelink,
 1,
 TYPE_RGB_8,
 TYPE_BGR_8,
 INTENT_PERCEPTUAL,
 0);

That's all. LittleCMS will understand and transparently handle the device-link profile. Note the first
parameter is an array of handles, so you can use ‘&’ in this particular case. Another option is to use
the device link profile as input and the output profile parameter equal to NULL:

 hDeviceLink = cmsOpenProfileFromFile("MYDEVLINK.icc", "r");

 hTransform = cmsCreateTransform(hDeviceLink, TYPE_RGB_8,
 NULL, TYPE_BGR_8,
 INTENT_PERCEPTUAL,
 0);

 There is also a function for dumping a transform into a devicelink profile.

cmsHPROFILE cmsTransform2DeviceLink(cmsHTRANSFORM hTransform,
 cmsFloat64Number Version,
 cmsUInt32Number dwFlags);

This profile can be used in any other transform or saved to disk/memory. Note that you must
specify the version number. That is required because v4 profiles may be implemented in a quite
different way of v2. Settinng proper version number will assure you compatibility with other
software. 4.2 is the latest ICC revision. 3.4 will assure compatibility with old software.

If you want to save information on which profiles has been used in the transform, you must
include the special flag cmsFLAGS_KEEP_SEQUENCE when creating the transform. This is done in
such way because the original profiles may hold multi localized descriptions, and the total memory
may be very big. Unless you need to create strictly compliant device links, you need not this flag.

19 Special profile types

Named color profiles

Named color profiles are a special kind of profiles handling
lists of spot colors. The typical example is PANTONE®.
LittleCMS deals with named color profiles like all other
types, except they must be in input stage and the encoding
supported is limited to a one single channel of 16-bit that
works as an index to the table.

Little CMS has no affiliation with PANTONE Company. PANTONE® is a trademark
of Pantone, Inc. PANTONE Color identification is solely for artistic purposes and
not intended to be used for specification.

Let's assume we have a Named color profile holding only 4 colors:

• CYAN
• MAGENTA
• YELLOW
• BLACK

 We create a transform using:

 hTransform = cmsCreateTransform(hNamedColorProfile,
 TYPE_NAMED_COLOR_INDEX,
 hOutputProfile,
 TYPE_BGR_8,
 INTENT_PERCEPTUAL, 0);

TYPE_NAMED_COLOR_INDEX is a special encoding for these profiles, it represents a single
channel holding the spot color index. In our case value 0 will be "CYAN", value 1 "MAGENTA" and
so one. For converting between string and index, you have to retrieve the list by using

cmsNAMEDCOLORLIST* cmsGetNamedColorList(cmsHTRANSFORM xform);

Then there are several function to deal with such lists. For example, there is an auxiliary function:

cmsInt32Number cmsNamedColorIndex(const cmsNAMEDCOLORLIST* v,
 const char* Name);

20 Special profile types

That will perform a look up on the spot colors database and return the color number or -1 if the
color was not found. Other additional functions for named color transforms are:

cmsUInt32Number cmsNamedColorCount(const cmsNAMEDCOLORLIST* v);

That returns the number of colors present on transform database.

cmsBool cmsNamedColorInfo(const cmsNAMEDCOLORLIST* NamedColorList,
 cmsUInt32Number nColor,
 char* Name,
 char* Prefix,
 char* Suffix,
 cmsUInt16Number* PCS,
 cmsUInt16Number* Colorant);

That returns extended information about a given color. Named color profiles does hold two
coordinates for each color, let's take our PANTONE example. This profile would contain for each
color the CMYK colorants plus its PCS coordinates, usually in Lab space. LittleCMS can work with
named color using both coordinates. Creating a transform with two profiles, if the input one is a
named color, then you obtain the translated color using PCS.

Example, named color  sRGB will give the color patches in sRGB

On the other hand, creating a multiprofile transform with only one named color profile returns the
device coordinates, that is, CMYK colorants in our PANTONE sample.

Example: Named color will give the CMYK amount for each spot color.

So, you can use a named color profile in two different ways, as output, giving the index and getting
the CMYK values or as input and getting the Lab for that color.

• A transform which involves only one named color profile will give the CMYK values for the
spot color on the printer the profile is describing. This would be the normal usage.

• A transform Named color -> another printer will give on the output printer the spot a color
as if they were printed in the printer named color profile is describing. This is useful for
soft proofing.

21 Special profile types

Built-in profiles

There are several built-in profiles that programmer can use without the need of any disk file.
These does include:

• sRGB profile
• L*a*b profiles
• XYZ profile
• Gray profiles
• RGB matrix-shaper.
• Linearization device link
• Ink-Limiting device link
• Adjust device link.
• NULL profile

Many of there are very useful for tricking & trapping. For example, creating a transform from sRGB
to Lab could be done without any disk file.

 Something like:

 hsRGB = cmsCreate_sRGBProfile();
 hLab = cmsCreateLabProfile()

 xform = cmsCreateTransform(hSRGB, TYPE_RGB_DBL, hLab,
 TYPE_Lab_DBL,
 INTENT_PERCEPTUAL, 0);

Then you can convert directly form double sRGB values (in 0..1.0 range) to Lab by using:

 double RGB[3];
 cmsCIELab Lab;

 RGB[0] = 0.1; RGB[1] = 0.2 RGB[2] = 0.3;
 cmsDoTransform(xform, RGB, &Lab, 1);

 .. get result on "Lab" variable ..

The NULL profile returns zero for any input color. This is useful for out-of-gamut warning. If you
need to know which pixels are out of gamut, but want only zeros or ones as result, you can use the
NULL profile as output and turn on the gamut warning feature.

22 Special profile types

Some of those built-ins does accept parameters. That means, the built in primitive does not
generate a unique profile but families of profiles with same functionality. I will call that “on the fly”
profiles. You can create your own RGB or Gray input profiles "on the fly". See next section on how
to do that.

On-the-fly profiles

There are several situations where it will be useful to build a minimal profile using adjusts only
available at run time. Surely you have seen the classical pattern-gray trick for adjusting gamma:
the end user moves a scroll bar and when pattern seems to match background gray, then gamma
is adjusted. Another trick is to use a black background with some gray rectangles. The user
chooses the most neutral grey, giving the white point or the temperature in °K. All these visual
gadgets are not part of LittleCMS, you must implement them by yourself if you like. But LittleCMS
will help you with a function for generating a virtual profile based on the results of these tests.

Another usage would be to build colorimetric descriptors for file images that does not include any
embedded profile, but does include fields for identifying original colorspace.

One example is TIFF files. The TIFF 6.0 spec talks about "RGB Image Colorimetry" (See section 20) a
"colorimetric" TIFF image has all needed parameters (WhitePointTag=318,
PrimaryChromacitiesTag=318, TransferFunction=301, TransferRange=342)

Obtain a emulated profile from such files is easy since the contents of these tags does match the
cmsCreateRGBProfile() parameters. Also PNG can come with information for build a virtual profile,
See the gAMA and cHRM chunks.

23 Special profile types

RGB virtual profiles

This is the main function for creating virtual RGB profiles:

cmsHPROFILE cmsCreateRGBProfile(const cmsCIExyY* WhitePoint,
 const cmsCIExyYTRIPLE* Primaries,
 cmsToneCurve* const TransferFunction[3]);

It takes as arguments the white point, the primaries and 3 tone curves. The profile emulated is
always operating in RGB space. Once created, a handle to a profile is returned. This opened profile
behaves like any other file or memory based profile. Virtual RGB profiles are implemented as
matrix-shaper, so they cannot compete against CLUT based ones, but generally are good enough
to provide a reasonable alternative to generic profiles. To simplify the parameters construction,
there are additional functions, for example:

cmsBool cmsWhitePointFromTemp(cmsCIExyY* WhitePoint,
 cmsFloat64Number TempK);

This function computes the xyY chromacity of white point using the temperature. Screen
manufacturers often includes a white point hard switch in monitors, but they refer as
"Temperature" instead of chromacity. Most extended temperatures are 5000K, 6500K and 9300K.

It returns TRUE if a valid white point can be computed, or FALSE if the temperature were non
valid. You must give a pointer to a cmsCIExyY struct for holding resulting white point. For
primaries, currently I don't know any trick or proof for identifying primaries, so here are a few
chromacities of most extended. Y is always 1.0

 RED GREEN BLUE
 x y x y x y

 NTSC
EBU(PAL/SECAM)
 SMPTE
 HDTV
 CIE

0.67, 0.33, 0.21, 0.71, 0.14, 0.08
0.64, 0.33, 0.29, 0.60, 0.15, 0.06
0.630, 0.340, 0.310, 0.595, 0.155, 0.070
0.670, 0.330, 0.210, 0.710, 0.150, 0.060
0.7355,0.2645,0.2658,0.7243,0.1669,0.0085

These are TRUE primaries, not colorants. Little CMS does include a white-point balancing and a
chromatic adaptation using a method called Bradford Transform for D50 adaptation.

The tone curves can be generated by any tone curve creation function. The simplest one is
cmsBuildGamma, which creates a pure-exponential function like CRT gamma. See the tone curves
section for more information on how to create such curves.

24 Special profile types

Gray virtual profiles

Another kind of profiles that can be built on runtime are gray scale profiles. This can be
accomplished by the function:

cmsHPROFILE cmsCreateGrayProfile(const cmsCIExyY* WhitePoint,
 const cmsToneCurve* TransferFunction);

This one is somehow easier, since it only takes one curve (the transfer function) and the media
white point. Of course gray scale does not need primaries, since they are monochrome. The
primary here is the white point itself.

Linearization device links

This is a very handy type of virtual profiles. It may be use for several things, like linearizing printers
or applying curves to RGB images. They basically apply a transform that is channel-independent.
That is, each channel response is independent of the rest of channels. That may be understood as
applying curves to each channel, but the response can be tabulated and is not restricted to curves.

cmsHPROFILE cmsCreateLinearizationDeviceLink(
 cmsColorSpaceSignature ColorSpace,
 cmsToneCurve* const TransferFunctions[]);

You need to specify the color space the profile is operating, which must be the same on input and
output, and the tone curves to apply to each channel. The number of channels is implicit in the
color space.

Ink limiting device links

Intended mainly for CMYK. It uses the hypercube algorithm. Works on CMYK  CMYK, and the
parameter specifies the total amount of ink in %. Black ink is never reduced, CMY are reduced
proportionally to meet the limits.

cmsHPROFILE cmsCreateInkLimitingDeviceLink(
 cmsColorSpaceSignature ColorSpace,
 cmsFloat64Number Limit);

The Color Space parameter is provided for future extensions. Currently it only supports CMYK.

25 Special profile types

Bright, Contrast, Hue, Saturation and white point.

Provided for compatibility with previous versions. With this function you can adjust Brightness,
Contrast, Hue and Saturation in a color transform. Additionally you can modify the color
temperature. It mimics the controls found on most monitors. Operates on L*a*b*  L*a*b*, so this
profile should be inserted into input and output profiles.

cmsHPROFILE cmsCreateBCHSWabstractProfile(int nLUTPoints,
 cmsFloat64Number Bright,
 cmsFloat64Number Contrast,
 cmsFloat64Number Hue,
 cmsFloat64Number Saturation,
 int TempSrc,
 int TempDest);

Ranges are:

Bright: 0=no op, < 0 decrease, > 0 increase
Contrast: 1=no op, < 1 decrease, > 1 increase
Saturation: 0=no op, < 0 decrease, > 1 increase
Hue: 0=no op, up to 360º, hue displacement

26 Proofing

Proofing

An additional ability of Little CMS is to
create "proofing" transforms.

A proofing transform does emulate the
colors that would appear as the image
were rendered on a specific device. That
is, for example, with a proofing
transform I can see how will look a
photo of my little daughter if rendered
on my HP printer. Since most printer
profiles does include some sort of
gamut-remapping, it is likely colors will
not look as the original. Using a proofing
transform, it can be done by using the
appropriate function. Note that this is
an important feature for final users, it is
worth of all color-management stuff if
the final media is not cheap.

 The creation of a proofing transform involves three profiles, the input and output ones as
cmsCreateTransform() plus another, representing the emulated profile.

cmsHTRANSFORM cmsCreateProofingTransform(cmsHPROFILE Input,
 cmsUInt32Number InputFormat,
 cmsHPROFILE Output,
 cmsUInt32Number OutputFormat,
 cmsHPROFILE Proofing,
 cmsUInt32Number Intent,
 cmsUInt32Number ProofingIntent,
 cmsUInt32Number dwFlags);

Also, there is another parameter for specifying the intent for the proof. The Intent here represents
the intent the user will select when printing, and the proofing intent represent the intent system is
using for showing the proofed color. Since some printers can archive colors that displays cannot
render (darker ones) some gamut-remapping must be done to accommodate such colors.
Normally INTENT_ABSOLUTE_COLORIMETRIC is to be used: it is likely the user wants to see the
exact colors on screen, cutting off these unrepresentable colors.

INTENT_RELATIVE_COLORIMETRIC could serve as well.

27 Proofing

Proofing transforms can also be used to show the colors that are out of the printer gamut. You can
activate this feature by using the cmsFLAGS_GAMUTCHECK flag in dwFlags field.

Then, the function:

void cmsSetAlarmCodes(cmsUInt16Number NewAlarm[cmsMAXCHANNELS]);

Can be used to define the out-of-gamut marker. Range is 0..0xffff

For activating the preview or gamut check features, you MUST include the corresponding flags

 cmsFLAGS_SOFTPROOFING
 cmsFLAGS_GAMUTCHECK

This is done in such way because the user usually wants to compare with/without softproofing.
Then, you can share same code. If any of the flags is present, the transform does the proofing
stuff. If not, the transform ignores the proofing profile/intent and behaves like a normal input-
output transform. In practical usage, you need only to associate the check boxes of "softproofing"
and "gamut check" with these flags.

28 Black point compensation

Black point compensation

Black Point Compensation (BPC) controls whether to adjust for differences in black points when
converting colors between color spaces. When Black Point Compensation is enabled, color
transforms map white to white and luminance of black to luminance of black. The black point
compensation feature does work better in conjunction with relative colorimetric intent.
Perceptual intent should make no difference, although it may affect some (wrong) profiles.

 The mechanics are simple. BPC does scale full image across gray axis in order to accommodate the
darkest tone origin media can render to darkest tone destination media can render. Let's take an
example. You have a separation (CMYK image) for, say, SWOP. Then you want to translate this
separation to another media on another printer. The destination media/printer can deliver a
black darker that original SWOP. Now you have several options.

a) Use perceptual intent, and let profile do the gamut remapping for you. Some users
complain about the profiles moving too much the colors. This is the "normal" ICC way.

b) Use relative colorimetric. This will not move any color, but depending on different media
you would end with "flat" images, taking only a fraction of available grays or a "collapsed"
images, with loss of detail in dark shadows.

29 Black point compensation

c) Use relative colorimetric + black point compensation. This is the discussion theme. Colors
are unmoved *except* gray balance that is scaled in order to accommodate to the
dynamic range of new media. Is not a smart CMM, but a fist step letting the CMM to do
some remapping.

 The algorithm used for black point compensation is a XYZ linear scaling in order to match
endpoints. You can enable the BPC feature by using this in the dwFlags field, it works on
softproofs too.

cmsFLAGS_BLACKPOINTCOMPENSATION

30 Black preserving intents

Black preserving intents

Black preservation deals with CMYK  CMYK transforms, and is intended to preserve, as much as
possible, the black (K) channel whilst matching color by using CMY inks. There is a tradeoff
between accuracy and black preservation, so you lost some accuracy in order to preserve the
original separation. Not to be a big problem in most cases, benefits of keeping K channel are
huge!

No, this does not belong to normal ICC workflow. ICC has tried to address such need but still there
is nothing in the spec.

Let's see what the issue is. Suppose we work in
press. Press are very tied to standards, US press uses
SWOP and European folks are more toward FOGRA.
Japanese people use other standards like TOYO, for
example. Each standard is very well detailed and
presses are setup to faithfully emulate any of these
standards.

Ok, let's imagine you got an image ad, looking like
that. This is a very usual flier; now just imagine
instead of getting it in PDF, you get it as a raster file.
Say in a CMYK TIFF, ready for a SWOP press. And you
want to print in on a FOGRA27!!

If I convert from SWOP to FOGRA27, the ICC profiles
totally mess up the K channel, so a portion of the picture
that originally is using only black ink, after the conversion,
gets Cyan, Magenta, Yellow and well, a little bit of black
as well. Now please realize what happens on all the text
in the Flier.

LittleCMS 2 has added two different modes to deal with that: Black-ink-only preservation and
black-plane preservation. The first is simple and effective: do all the colorimetric transforms but
keep only K (preserving L*) where the source image is only black. The second mode is fair more
complex and tries to preserve the WHOLE K plane.

http://3.bp.blogspot.com/_kLEwhjORzt8/SoWVFn7VTrI/AAAAAAAAAC0/8KW6v4a2T9g/s1600-h/fogra2.jpg�
http://3.bp.blogspot.com/_kLEwhjORzt8/SoWVbctudtI/AAAAAAAAAC8/brjxj0tieqM/s1600-h/fogra3.jpg�

31 Error Logging

Error Logging

Error handling has changed drastically with Little CMS2. This is mostly because most operations
that can fail, can also report the status. So, in Little CMS2, there are no longer error handlers.
When a function fails, it just return the failure status. For example, if a color transform cannot be
created, the function returns NULL instead of a valid handle.

So, you have to check the return of the function for error handling. This approach is more robust
and can deal with multithreaded environments. Also, the memory management is easier in this
way and a failing function should not leak any resources. With Little CMS2, leaked resurces are
bugs, that was not so clear with 1.x

For debugging purposes, it may be handy to know what is making that function to fail. And here
goes the error logging. Some Little CMS 2 functions does have a error logging facility. When they
are going to fail, they call a user-defined hook. This hook does recive an ASCII text in english with
some clues about the error. This is the error logging callback, and you can set it up by calling
following function:

void cmsSetLogErrorHandler(cmsLogErrorHandlerFunction Fn);

To be accepted by this function, your hook should be defined as this example:

void MyLogErrorHandler(cmsContext ContextID,
 cmsUInt32Number ErrorCode, const char *Text)
{
 printf(“%s\n”, Text);
}

If you take a look on the parameters, you will see a context identifier, an error code and the
descriptive text. The context id is giving the environment. That is the same pointer you passed to
the low level or THR function. In this way you can share same hook for different threads, for
example. Please note in some special situations ContextID can be NULL.

The numeric code gives some clue on the nature of the message. Can be used to give some sort of
information to end user, but it does not fully describe the nature of error. Think on it as families of
errors.

Again, the error logging is a debug feature. It should NOT be used to notify end user about errors.
Unless you want to confuse your use with arcane messages, it is better to just say “the profile
cannot be open” instead of a criptic “corrupted MPE in DToA2 tag”. On the other side, this
message can be of great aid for developers to locate why this particular profile is failing.

32

Table of numeric Error Codes

Notes:

It is important to note a single function call may trigger more than a single error logging entry. In
our anterior sample, opening a profile with corrupted data would trigger an event for corrupted
profile and another for invalid tag.

The logging function should NOT terminate the program, as this obviously can leave unfreed
resources. It is the programmer's responsability to check each function return code to make sure it
didn't fail.

cmsERROR_UNDEFINED 0
cmsERROR_FILE 1
cmsERROR_RANGE 2
cmsERROR_INTERNAL 3
cmsERROR_NULL 4
cmsERROR_READ 5
cmsERROR_SEEK 6
cmsERROR_WRITE 7
cmsERROR_UNKNOWN_EXTENSION 8
cmsERROR_COLORSPACE_CHECK 9
cmsERROR_ALREADY_DEFINED 10
cmsERROR_BAD_SIGNATURE 11
cmsERROR_CORRUPTION_DETECTED 12
cmsERROR_NOT_SUITABLE 13

33 Getting information from profiles

Getting information from profiles

Textual information

In versions prior to 4.0, the ICC format defined a required tag 'desc' which stored ASCII, Unicode,
and Script Code versions of the profile description for display purposes. However, this structure
allowed the profile to be localized for one language only through Unicode or Script Code. Profile
vendors had to ship many localized versions to different countries. It also created problems when
a document with localized profiles embedded in it was shipped to a system using a different
language. With the adoption of V4 spec as basis, LittleCMS solves all those issues honoring a new
tag type: ‘mluc’ and multi localized Unicode. There is a full part of the API to deal with this stuff,
but if you don’t care about the details and all you want is to display the right string, LittleCMS 2
provides a simplified interface for that purpose.

There are four kinds of textual information you may want to retrieve:

typedef enum {
 cmsInfoDescription = 0,
 cmsInfoManufacturer = 1,
 cmsInfoModel = 2,
 cmsInfoCopyright = 3
} cmsInfoType;

And here you have two functions to get the requiered information, either in UNICODE or in plain
ASCII.

cmsUInt32Number cmsGetProfileInfo(cmsHPROFILE hProfile, cmsInfoType Info,
 const char LanguageCode[3],
 const char CountryCode[3],
 wchar_t* Buffer,
 cmsUInt32Number BufferSize);

cmsUInt32Number cmsGetProfileInfoASCII(cmsHPROFILE hProfile,
 cmsInfoType Info,
 const char LanguageCode[3],
 const char CountryCode[3],
 char* Buffer,
 cmsUInt32Number BufferSize);

Note that ASCII is strictly 7 bits, so you need to use wide chars if you want to preserve the
information in the profile. The localization trick is done by using the lenguage and country codes,
which you are supposed to supply. Those are two or three ASCII letters. Language and country
codes are a lot, you can get the full list here:

Language Code: first name language code from ISO-639/2.
 http://lcweb.loc.gov/standards/iso639-2/iso639jac.html

34 Getting information from profiles

Country Code: first name region code from ISO-3166.
 http://www.iso.ch/iso/en/prods-services/iso3166ma/index.html

In practice, “en” for “english” and “US” for “united states” are implemented in most profiles. It is
Ok to set a language and a country even if the profile does not implement such specific language
and country. LittleCMS will search for a proper match.

If you don’t care and want just to take the first string in the profile, you can use:

cmsNoLanguage

For the language and

cmsNoCountry

For the country

This will force to get the very first string, without any searching. A note of warning on that: you will
get an string, but the language would be any, and probably that is not what you want. It is better
to specify a default for language, and let LittleCMS to choose any other country (or language!) if
what you ask for is not available.

Profile header fields

These are the functions to access all members of ICC profile header. There are counter-parts to set
the header members on profile creation. See the API reference for more details.

cmsUInt32Number cmsGetHeaderFlags(cmsHPROFILE hProfile);
void cmsGetHeaderAttributes(cmsUInt64Number* Flags,
cmsHPROFILE hProfile);
void cmsGetHeaderProfileID(cmsHPROFILE hProfile,
cmsUInt8Number* ProfileID);
cmsBool cmsGetHeaderCreationDateTime(struct tm *Dest,
cmsHPROFILE hProfile);
cmsUInt32Number cmsGetHeaderRenderingIntent(cmsHPROFILE hProfile);

cmsUInt32Number cmsGetHeaderManufacturer(cmsHPROFILE hProfile);
cmsUInt32Number cmsGetHeaderModel(cmsHPROFILE hProfile);

cmsColorSpaceSignature cmsGetPCS(cmsHPROFILE hProfile);
cmsColorSpaceSignature cmsGetColorSpace(cmsHPROFILE hProfile);
cmsProfileClassSignature cmsGetDeviceClass(cmsHPROFILE hProfile);

cmsFloat64Number cmsGetProfileVersion(cmsHPROFILE hProfile);
cmsUInt32Number cmsGetEncodedICCversion(cmsHPROFILE hProfile);

35 Getting information from profiles

Profile Directory

You can iterate across the profile directory to list all available tags. There is a function to check if a
given tag is present on directory. There is a limit of 100 different tags per profile. Not to be a
problem, since actual ICC spec defines less than that number.

cmsInt32Number cmsGetTagCount(cmsHPROFILE hProfile);
cmsTagSignature cmsGetTagSignature(cmsHPROFILE hProfile,
cmsUInt32Number n);
cmsBool cmsIsTag(cmsHPROFILE hProfile, cmsTagSignature sig);

Profile capabilities

Some special functions can check the profile internal implementation:

#define LCMS_USED_AS_INPUT 0
#define LCMS_USED_AS_OUTPUT 1
#define LCMS_USED_AS_PROOF 2

 cmsBool cmsIsIntentSupported(cmsHPROFILE hProfile,
 cmsUInt32Number Intent,
 int UsedDirection);

 cmsBool cmsIsMatrixShaper(cmsHPROFILE hProfile);

 cmsBool cmsIsCLUT(cmsHPROFILE hProfile,
 cmsUInt32Number Intent,
 int UsedDirection);

This one helps on inquiring if a determinate intent is supported by an opened profile. You must
give a handle to profile, the intent and a third parameter specifying how the profile would be
used. The function does return TRUE if intent is supported or FALSE if not. If the intent is not
supported, Little CMS will use default intent (usually perceptual).

36 Getting information from profiles

Reading tags

The low level interface for reading tags is as simple as a single function. In Little CMS 2 you can
read a tag from an open profile by doing:

Tag = cmsReadTag(hProfile, TagSignature);

Little CMS will return (if found) a pointer to a structure holding the tag. Simple, but not simpler as
the structure is not the contents of the tag, but the result of parsing the tag. For example, reading
a cmsSigAToB0 tag results as a Pipeline structure ready to be used by all the cmsPipeline functions.
The memory belongs to the profile and is set free on closing the profile. In this way there are no
memory duplicates and you can safely re-use the same tag as many times as you wish. Writing
tags is almost the same, you just specify a pointer to the structure and the tag name and Little
CMS will do all serialization for you. Process under the hood may be very complex, if you realize v2
and v4 of the ICC spec are using different representations of same structures.

Anyway, you may decide all that is useless and your want just to write/read bytes to the profile, in
this case the raw variants are for you.

cmsInt32Number cmsReadRawTag(cmsHPROFILE hProfile,
 cmsTagSignature sig,
 void* Buffer, cmsUInt32Number BufferSize);

That’s alike, but different in two important aspects. 1st, ther memory is not owned by the profile,
but for you, so you have to allocate the neccesary amount of memory. To know the size, pass
NULL as buffer and 0 as buffer size. The function returns the number of needed bytes.

The second important point is, this is raw data. No processing is performed, so you can effectively
read wrong or broken profiles with this function. Obviously, then you have to interpret all those
bytes!

IMPORTANT NOTE: There is a direct relationship tag type  Little CMS type.
On the API reference, there is a table listing all tag types and the Little CMS
type used to read/write.

37 Creating new profiles

Writing tags

Writing tags is almost the same. You just provide a pointer to the structure and the tag name.
LittleCMS does all serialization.

cmsBool cmsWriteTag(cmsHPROFILE hProfile,
 cmsTagSignature sig, const void* data);

Function returns TRUE on success, FALSE on error.

cmsBool cmsWriteRawTag(cmsHPROFILE hProfile, cmsTagSignature sig,
 const void* data, cmsUInt32Number Size);

The RAW version does the same but without any interpretation of the data. Please note it is fair
easy to deal with “cooked” structures, since there are primitives for allocating, deleting and
modifying data. For RAW data you are responsible of everything. If you want to deal with a private
tag, you may want to write a plug-in instead of messing up with raw data.

The linked tag feature

Some profile creators may want to reuse the same values for several different tags. To do that you
may want to use the linked tag feature.

cmsBool cmsLinkTag(cmsHPROFILE hProfile,
 cmsTagSignature sig, cmsTagSignature dest);

After this call, a new tag of signature ‘sig’ is created. The entry, however, points to the same
location as tag ‘dest’.

Creating new profiles

Use this function to create an empty profile, ready to be populated.

cmsHPROFILE cmsCreateProfilePlaceholder(cmsContext ContextID);

In addition, when you open a profile with 'w' as access mode, you got a simpler Lab identity. That
is, a profile marked as Lab colorspace that passes input untouched to output. You can use that as a
basis of new profiles, by setting colorspace, device class, PCS and then add the required tags.

38 Tone curves

Tone curves

Tone curves are a powerful tool to model 1D transformations. LittleCMS 2 provides several
primitives to create, group and apply such tool. Tone Curves in LittleCMS can be bounded and
unbounded, specified as math expressions or by means of tables. Tone Curve primitives does
support:

• Tabulated curves
• Parametric curves
• Segmented curves

Tabulated curves were introduced as curveType in ICC version 2. In Version 4 of the ICC Profile
Specification, parametricCurveType was introduced as an alternative to curveType for the
representation of one-dimensional transfer functions. Either type can be used for the TRC tags or
for the A-curves, B-curves, and M-curves embedded in lutAtoBType or lutBtoAType tags. In
contrast to the older curveType, the new V. 4 type defines curves by closed-form expressions,
rather than by 1D Look-Up Tables. Each curve is a scalar function of a scalar variable, but the
expressions also involve constants, or parameters, which are encoded in the corresponding profile
tags.

The V4 Profile specification supports five different Function Types, requiring between 1 and 7
parameters. The Specification places no restrictions on the values of these parameters, aside from
those imposed by the format. According to Clause 10.15, the parameters are encoded in the
s15Fixed16Number format. Thus, the values can range from –32768 to almost +32768 (actually
32768 – 1/65536) in steps of 1/65536, or 0.0000152587890625. These restrictions are quite mild
and, in practice, are hardly noticeable.

In Types 1, 2, 3, and 4, the domain is divided into two segments, and the power law is employed
only in the higher segment. For instance, the definition of Type 1 is:

 y = f1(x) = 0, 0 ≤ x < –b/a

 = sγ –b/a ≤ x ≤ 1

In normal usage, a will be positive and b will be negative, so that the segment boundary, –b/a,
occurs at a positive value of x. The function is identically zero in the lower segment

Type 2 curves have a similar structure, with a segment boundary at x = –b/a, so the same analysis
applies. However, in Types 3 and 4, the segment boundary is defined by an independent

39 Tone curves

parameter, d. In the absence of restrictions, it is quite possible for d to be less than –b/a. There
can then be values of x in the higher segment (x > d) at which s = ax + b will be negative.

Types 3 and 4 do not enjoy a similar guarantee. Here is the definition of Type 3:

 y = f3(x) = cx, 0 ≤ x < d

 = sγ, d ≤ x ≤ 1

Type 4 is defined as follows:

 y = f4(x) = cx + f, 0 ≤ x < d

 = sγ + e, d ≤ x ≤ 1

Where e and f are additional parameters. See the API reference for more details on supported
parametric curves.

Recently, the multiProcessElementsType introduced new curve types to the ICC specification,
including formula curves (defined similarly to the parametricCurveType) and sampled curve
segments. The issues of imaginary numbers, continuity, and smoothness discussed above also
apply to MPE segmented curves. However, continuity and smoothness may have different
considerations since MPE curves are unbounded and segmented curves are most likely be used to
perform the clipping that is required to set up inputs to following CLUT elements.

You can add new types of parametric curves by using the tone curve plug-in, but you have to be
carefull on that, since the obtained profiles will not be compliant with the ICC spec. See the
Plug_in API for more details.

40 Pipelines and Multi Processing elements

Pipelines and Multi Processing elements

Previously, all internal handling of profiles was done by using several, unrelated structures. We
had a LUT, a MatrixShaper and then customized adjustments hardcoded in certain places. That
was not a very good idea in terms of flexibility and maintainability, so in version 2, I joined all that
together in a more general and flexible concept: the pipelines.

That is just what the name suggests. A pipeline is a construct that has several steps, the stages,
which are evaluated in order. You can feed some values to the pipeline and then get the results
after the evaluation. Moreover, pipelines can be optimized for performance. If a given pipeline
contains, for example, only matrices, a suitable optimization would be to multiply all matrices and
therefore simplify several steps in a single matrix.

All processing in LittleCMS 2 is performed by means of pipelines. And this has been a valuable tool
in order to implement new things, like multi processing elements type. What is that? Let’s see the
full story…

In November 2006 the ICC approved the multiProcessingElements Tag type as part of the Floating
Point Encoding Range addendum to the ICC profile Specification. This new tag type’s primary
purposes were to overcome limited precision in ICC profiles by allowing for the direct encoding of
floating point data in an ICC profile, remove bounding restrictions for both device side and PCS
encoding ranges, and provide for backwards compatibility to the existing ICC profile specification.

Eight new tags that use this new Tag type are defined to allow for the optional substitution of the
tags that define rendering intents in an ICC profile. D2Bx/B2Dx tags can now exist in a profile in
addition to A2Bx/B2Ax tags. A CMM can now optionally first look for D2Bx/B2Dx tags and use
them instead of the A2Bx/B2Ax tags or Matrix/TRC tags. Explicit definition of the absolute
rendering intent is also now possible through the use of D2B3 and B2D3 tags.

The eight new tags are optional which means that existing Color Management systems can ignore
them as private tags. This allows for profiles to be built and embedded in images, or otherwise
used in workflows that do not support the use of these new tags without breaking those
workflows. It is hoped that the use and adoption of these tags will be made easier because their
presence shouldn’t break existing workflows.

The D2Bx/B2Dx tags all make use of the new multiProcessingElements tag type. Important aspects
of this tag type include:

• This tag type provides for an arbitrary sequence of processing elements to perform the
device to PCS or PCS to device conversion. Processing elements can be thought of as
transformation steps that convert input channel data to output channel data.

• All the processing elements encode data using 32-bit IEEE 754 floating-point encoding.
• The absolute rendering intent can be encoded with D2B3/B2D3 tags.

41 Pipelines and Multi Processing elements

• The initial repertoire of processing elements includes N-dimensional lookup tables, NxM
matrices, sets of one dimensional segmented curves, and two future expansion elements.

• The PCS for D2Bx/B2Dx tags is the floating point equivalent of the PCS in A2Bx/B2Ax tags.
When D2Bx tags are connected to B2Dx tags no clipping is performed in the PCS.

• D2Bx tags can be connected to B2Ax or Matrix/TRC based tags with appropriate clipping of
the PCS values as needed, and A2Bx or Matrix/TRC based tags can be connected to B2Dx
tags.

• The CMM performs NO manipulation of data between processing elements. The CMM
simply passes the results from one processing element to the next processing element.

• Generally, up to 65535 channels of floating point data can be passed between processing
elements.

• Processing element types are not required to support the upper limit of 65535 input and
65535 output channels.

• The channel usage of the first and last elements in a D2Bx/B2Dx tag must agree with the
channel usage requirements of both the containing D2Bx/B2Dx tag and the profile header.
(Note: Currently the color fields of the profile header limit the maximum number of
channels to 15).

The fall back behavior of using A2Bx/B2Ax tags is prescribed if processing elements are
encountered that are unknown to the CMM. This allows for a graceful handling for future
expansion of the processing element repertoire.

The device encoding range for D2Bx and B2Dx tags is unbounded, but conversions and clipping
may need to be made to be compatible with A2Bx and B2Ax tags. The equivalent device encoding
range of A2Bx and B2Ax tags is converted to the range of 0.0 to 1.0 when applying D2Bx and B2Dx
tags.

The initial repertoire of processing element includes N-dimensional lookup tables, NxM matrices,
and sets of one dimensional segmented curves. These all use 32-bit IEEE 754 floating-point
encoding for processing and data storage purposes. An arbitrary number of these elements can
be combined in any order to accomplish the purpose of defining a transform. Output channels
from preceding elements are direct inputs to succeeding elements.

Clut element

The CLUT element is used to store N-dimensional lookup tables. They can accept up to 15 input
channels (constrained by the allowed ‘Number of grid points in each dimension’ in the CLUT
element encoding) and output up to 65535 channels. The CLUT input range is from 0.0 to 1.0 since
using grid points represents the sampled range, and clipping is prescribed for values outside this
range. Scaling/conversion may need to be performed by a processing element before a CLUT
element to get values into the range from 0.0 to 1.0. The output range of a CLUT element is the
entire floating-point encoding range.

42 Pipelines and Multi Processing elements

Matrix element

The matrix element can be used to store an NxM matrix with a constant offset vector. The input
and output dimensions need not be the same, and up to 65535 channels can be used for both
input and output. The input and output range is the entire floating-point encoding range.

Curve set element

The curve set element encodes multiple one dimensional curves. Up to 65535 separate curves can
be defined. The curves are segmented to allow the entire floating-point encoding range to be
used as both input and output. Up to 65535 segments are possible for each curve with positions
and definitions of each segment definable. Each segment can be defined as a formula or sampled
curve segment. Formula segments define a function type and provide parameters to the function.
Sampled segments are equally spaced sample points defining a 1 dimensional look up table.

Additions and the processing element plug-in

Possible additions to the processing element repertoire are also under consideration within the
ICC. Two future expansion element types were included for expansion purposes. These elements
encode a single signature value and have no prescribed operations. They simply pass the channel
data to the next processing element.

43 Helper functions

Helper functions

 Here are some functions that may be useful.

cmsUInt32Number cmsChannelsOf(cmsColorSpaceSignature ColorSpace);

 Colorimetric space conversions

void cmsXYZ2xyY(cmsCIExyY* Dest, const cmsCIEXYZ* Source);
void cmsxyY2XYZ(cmsCIEXYZ* Dest, const cmsCIExyY* Source);
void cmsXYZ2Lab(const cmsCIEXYZ* WhitePoint, cmsCIELab* Lab, const
cmsCIEXYZ* xyz);
void cmsLab2XYZ(const cmsCIEXYZ* WhitePoint, cmsCIEXYZ* xyz, const
cmsCIELab* Lab);
void cmsLab2LCh(cmsCIELCh*LCh, const cmsCIELab* Lab);
void cmsLCh2Lab(cmsCIELab* Lab, const cmsCIELCh* LCh);

Converting encoded values

void cmsLabEncoded2Float(cmsCIELab* Lab, const cmsUInt16Number wLab[3]);
void cmsLabEncoded2FloatV2(cmsCIELab* Lab, const cmsUInt16Number
wLab[3]);
void cmsFloat2LabEncoded(cmsUInt16Number wLab[3], const cmsCIELab* Lab);
void cmsFloat2LabEncodedV2(cmsUInt16Number wLab[3], const cmsCIELab*
Lab);
void cmsXYZEncoded2Float(cmsCIEXYZ* fxyz, const cmsUInt16Number XYZ[3]);
void cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3], const cmsCIEXYZ* fXYZ);

44 Linear Bradford Chromatic Adaptation

Linear Bradford Chromatic Adaptation

In color science, chromatic adaptation is the estimation of the representation of an object under a
different light source than the one in which it was recorded. A common application is to find a
chromatic adaptation transform (CAT) that will make the recording of a neutral object appear
neutral while keeping other colors also looking realistic. This function implements the so called
Bradford chromatic adaptation, but simplified in the blue zone to be linear and reversible. You can
get CAT02 as well by using CAM02 appearance model.

cmsBool cmsAdaptToIlluminant(cmsCIEXYZ* Result,
 const cmsCIEXYZ* SourceWhitePt,
 const cmsCIEXYZ* Illuminant,
 const cmsCIEXYZ* Value);

45 Color difference functions

Color difference functions

You don't have to spend too long in the color management world before you come across the
term Delta-E. As with many things color, it seems simple to understand at first, yet the closer you
look, the more elusive it gets.

Delta-E (dE) is a single number that represents the 'distance' between two colors.

The idea is that a dE of 1.0 is the smallest color difference the human eye can see. So any dE less
than 1.0 is imperceptible and it stands to reason that any dE greater than 1.0 is noticeable.
Unfortunately it's not that simple. Some color differences greater than 1 are perfectly acceptable,
maybe even unnoticeable. Also, the same dE color difference between two yellows and two blues
may not look like the same difference to the eye and there are other places where it can fall down.

It's perfectly understandable that we would want to have a system to show errors. After all, we've
spent the money on the instruments; shouldn't we get numbers from them? Delta-E numbers can
be used for:

• how far off is a print or proof from the original
• how much has a device drifted
• how effective is a particular profile for printing or proofing
• removes subjectivity (as much as possible)

Delta-E metrics

These functions does compute the difference between two Lab colors, using several difference
spaces

cmsFloat64Number cmsDeltaE(const cmsCIELab* Lab1,
 const cmsCIELab* Lab2);

The L*a*b* color space was devised in 1976 and, at the same time delta-E 1976 (dE76) came into
being. If you can imagine attaching a string to a color point in 3D Lab space, dE76 describes the
sphere that is described by all the possible directions you could pull the string. If you hear people
speak of just plain 'delta-E' they are probably referring to dE76. It is also known as dE-Lab and dE-
ab. One problem with dE76 is that Lab itself is not 'perceptually uniform' as its creators had
intended. So different amounts of visual color shift in different color areas of Lab might have the
same dE76 number. Conversely, the same amount of color shift might result in different dE76
values. Another issue is that the eye is most sensitive to hue differences, then chroma and finally
lightness and dE76 does not take this into account.

46 Color difference functions

cmsFloat64Number cmsCMCdeltaE(const cmsCIELab* Lab1,
 const cmsCIELab* Lab2,
 cmsFloat64Number l, cmsFloat64Number c);

cmsFloat64Number cmsBFDdeltaE(const cmsCIELab* Lab1,
 const cmsCIELab* Lab2);

In 1984 the CMC (Colour Measurement Committee of the Society of Dyes and Colourists of Great
Britain) developed and adopted an equation based on LCH numbers. Intended for the textiles
industry, CMC l:c allows the setting of lightness (l) and chroma (c) factors. As the eye is more
sensitive to chroma, the default ratio for l:c is 2:1 allowing for 2x the difference in lightness than
chroma (numbers). There is also a 'commercial factor' (cf) which allows an overall varying of the
size of the tolerance region according to accuracy requirements. A cf=1.0 means that a delta-E
CMC value <1.0 is acceptable.

CMC l:c is designed to be used with D65 and the CIE Supplementary Observer. Commonly-used
values for l:c are 2:1 for acceptability and 1:1 for the threshold of imperceptibility.

cmsFloat64Number cmsCIE94DeltaE(const cmsCIELab* Lab1,
 const cmsCIELab* Lab2);

A technical committee of the CIE (TC1-29) published an equation in 1995 called CIE94. The
equation is similar to CMC but the weighting functions are largely based on RIT/DuPont tolerance
data derived from automotive paint experiments where sample surfaces are smooth. It also has
ratios, labeled Kl (lightness) and Kc (chroma) and the commercial factor (cf) but these tend to be
preset in software and are not often exposed for the user. That is the case in Little CMS.

cmsFloat64Number cmsCIE2000DeltaE(const cmsCIELab* Lab1,
 const cmsCIELab* Lab2,
 cmsFloat64Number Kl,
 cmsFloat64Number Kc,
 cmsFloat64Number Kh);

Delta-E 2000 is the first major revision of the dE94 equation. Unlike dE94, which assumes that L*
correctly reflects the perceived differences in lightness, dE2000 varies the weighting of L*
depending on where in the lightness range the color falls. dE2000 is still under consideration and
does not seem to be widely supported in graphics arts applications.

47 PostScript generation

PostScript generation

The PostScript language does not support ICC technology. That is, it does not have constructs
which allows the specification of an ICC profile in a PostScript file. Instead, from Level 2 (1989) on,
PostScript contains its own color description system and from Level 3 (to be precise, from Level 2
version 2016) on, it has its own color management system, complete with profiles, rendering
intents and CMM. This system, called PostScript Color Management (PCM) operates only during
printing, within a PostScript RIP.

When PostScript code is transferred to the rip for printing, in the printing stream the CSA,
containing the information for converting colors from the source space to the XYZ space, is also
inserted. Alternatively, an EPS with a built-in CSA can be saved.

A CRD that resides in the RIP contains the information to change the XYZ coordinates into the ink
percentages for that printer.

When the PostScript code with its CSA arrives at the rip, the PostScript interpreter (which acts as a
color engine) converts the source colors into XYZ and from XYZ to the colors of the printer. This
process is defined by the rip programmer using what PostScript calls "color rendering procedures".

The selection of the suitable CRD is the task of the PostScript interpreter, which operates as
programmed. Many rips allow the selection of different CRDs according to print resolution, type of
paper and rendering intent.

If the PostScript printing stream or the EPS has no inserted CSA, the rip may use a default CSA. If
the rip has no resident CRD, or does not wish to use it, another may be downloaded, by the
operator or by the application itself.

These functions do translate input and output profiles into Color Space Arrays (CSA) and Color
Rendering Dictionaries (CRD)

Unified method to access postscript color resources

typedef enum { cmsPS_RESOURCE_CSA,
 cmsPS_RESOURCE_CRD } cmsPSResourceType;

cmsUInt32Number cmsGetPostScriptColorResource(cmsContext ContextID,
 cmsPSResourceType Type,
 cmsHPROFILE hProfile,
 cmsUInt32Number Intent,
 cmsUInt32Number dwFlags,
 cmsIOHANDLER* io);

48 PostScript generation

Compatibility methods:

cmsUInt32Number cmsGetPostScriptCSA(cmsContext ContextID,
 cmsHPROFILE hProfile,
 cmsUInt32Number Intent,
 cmsUInt32Number dwFlags,
 void* Buffer,
 cmsUInt32Number dwBufferLen);

cmsUInt32Number cmsGetPostScriptCRD(cmsContext ContextID,
 cmsHPROFILE hProfile,
 cmsUInt32Number Intent,
 cmsUInt32Number dwFlags,
 void* Buffer,
 cmsUInt32Number dwBufferLen);

• CRD are equivalent to output (printer) profiles. Can be loaded into printer at startup and
can be stored as resources.

• CSA are equivalent to input and workspace profiles, and are intended to be included in the
document definition.

These functions does generate the PostScript equivalents. Since the lenght of the resultant
PostScript code is unknown in advance, you can call the functions with len=0 and Buffer=NULL to
get the lenght. After that, you need to allocate enough memory to contain the whole block

 Example:

Size = cmsGetPostScriptCSA(hProfile, INTENT_PERCEPTUAL, NULL, 0);
 if (Size == 0) error()

 Block = malloc(Size);
 cmsGetPostScriptCSA(hProfile, INTENT_PERCEPTUAL, Block, Size);

Devicelink profiles are supported, as long as input colorspace matches Lab/XYZ for CSA or output
colorspace matches Lab/XYZ for CRD. This can be used in conjuntion with
cmsCreateMultiprofileTransform(), and cmsTransform2DeviceLink() to embed complex color flow
into PostScript.

 WARNING: Precision of PostScript is limited to 8 bits per sample. If you can
choose between normal transforms and CSA/CRD, normal transforms will give
more accurancy. However, there are situations where there is no chance.

49 CIECAM02

CIECAM02

Published in 2002 by the CIE Technical Committee 8-01 (Color Appearance Modeling for Color
Management Systems), as of 2010 CIECAM02 is the most recent color appearance model ratified
by the CIE, and the successor of CIECAM97s.

The model input data are the adapting field luminance in cd/m2 normally taken to be 20% of the
luminance of white in the adapting field), La , the relative tristimulus values of the stimulus, XYZ,
the relative tristimulus values of white in the same viewing conditions, "white Point", and the
relative luminance of the background, Yb . Relative tristimulus values should be expressed on a
scale from Y = 0 for a perfect black to Y = 100 for a perfect reflecting diffuser.

All CIE tristimulus values are obtained using the CIE
1931 Standard Colorimetric Observer (2°).

The inner circle is the stimulus, from which the
tristimulus values should be measured in CIE XYZ
using the 2° standard observer. The intermediate
circle is the proximal field, extending out another 2°.
The outer circle is the background, reaching out to
10°, from which the relative luminance (Yb) need be
measured. If the proximal field is the same color as
the background, the background is considered to be
adjacent to the stimulus. Beyond the circles which
comprise the display field (display area, viewing area)
is the surround field (or peripheral area), which can
be considered to be the entire room. The totality of the proximal field, background, and surround
is called the adapting field (the field of view that supports adaptation—extends to the limit of
vision).

 typedef struct {

 cmsCIEXYZ whitePoint;
 double Yb;
 double La;
 int surround;
 double D_value;

 } cmsViewingConditions;

http://en.wikipedia.org/w/index.php?title=Color_appearance_model&action=edit&redlink=1�
http://en.wikipedia.org/wiki/International_Commission_on_Illumination�
http://en.wikipedia.org/wiki/CIE_1931_color_space�

50 CIECAM02

 Surround can be one of these:

#define AVG_SURROUND 1
#define DIM_SURROUND 2
#define DARK_SURROUND 3

 D_value (adaptation degree) is any value between 0 and 1

The functions for dealing with CAM02 appearance model are:

cmsHANDLE cmsCIECAM02Init(cmsContext ContextID,
 const cmsViewingConditions* pVC);

void cmsCIECAM02Done(cmsHANDLE hModel);

void cmsCIECAM02Forward(cmsHANDLE hModel,
 const cmsCIEXYZ* pIn, cmsJCh* pOut);

void cmsCIECAM02Reverse(cmsHANDLE hModel,
 const cmsJCh* pIn, cmsCIEXYZ* pOut);

51 CIECAM02

For example, to convert XYZ values from a given viewing condition to another:

• Create descriptions of both viewing conditions by using cmsCIECAM02Init
• Convert XYZ to JCh using cmsCIECAM02Forward for viewing condition 1
• Convert JCh back to XYZ using cmsCIECAM02Reverse for viewing condition 2
• when done, free both descriptions

 cmsViewingConditions vc1, vc2;
 cmsJCh Out;
 cmsCIEXYZ In;
 cmsHANDLE h1, h2;

 vc.whitePoint.X = 98.88;
 vc.whitePoint.Y = 90.00;
 vc.whitePoint.Z = 32.03;
 vc.Yb = 18;
 vc.La = 200;
 vc.surround = AVG_SURROUND;
 vc.D_value = 1.0;

 h1 = cmsCIECAM02Init(0, &vc);

 vc2.whitePoint.X = 98.88;
 vc2.whitePoint.Y = 100.00;
 vc2.whitePoint.Z = 32.03;
 vc2.Yb = 20;
 vc2.La = 20;
 vc2.surround = AVG_SURROUND;
 vc2.D_value = 1.0;

 h2 = cmsCIECAM02Init(0, &vc);

 In.X= 19.31;
 In.Y= 23.93;
 In.Z =10.14;

 cmsCIECAM02Forward(h1, &In, &Out);
 cmsCIECAM02Reverse(h2, &Out, &In);

 cmsCIECAM02Done(h1);
 cmsCIECAM02Done(h2);

 See the CIECAM02 paper on CIE site for further details.

52 CGATS parser

CGATS parser

Overview

This module intends to be an all-purpose parser for CGATS format. It allows reading, decoding,
writing and to some extent modifying CGATS files. It supports latest CGATS.17 like multi table
extensions and some additional features not yet described in the spec.

Memory management

In order to simplify the task, a memory manager is integrated within the parser. In this way, users
of the module need NOT to free any memory but the parser at whole. That is, user allocates a
parser and obtains a handle to it. Then, several functions accessing this handle may return
pointers to memory blocks. Those memory chunks are maintained by the parser, and may be
dereferenced in the lifetime of the parser. As soon as the user frees the parser by using
cmsIT8Free, all memory chunks are automatically freed. This methodology has proven to be both
simple and effective to deal with the complexities of associated memory.

Additions

Several additions to CGATS.17 are provided in this parser. Those are not part of the CGATS
standard, but at the design time, we thought them would be very useful.

.INCLUDE “url_or_filename”
$INCLUDE “url_or_filename”

Works like #include in C language. That is, the directive will be replaced on parsing time with the
contents of the file or URL referenced. Files may be nested.

0x 0b Hexadecimal and binary constants

Any numeric constant prefixed by “0x” will be understood as a hexadecimal constant. Also any
numeric constant prefixed by “0b” will be understood as a binary number.

53 CGATS parser

Examples:

PROPERTY 12 # That’s ok
PROPERTY A_PROPERTY # That’s ok too
PROPERTY “A PROPERTY” # That’s ok, and contains whitespaces
PROPERTY A PROPERTY # Wrong!

COEFFICIENT_A “1.2345”
HEX_VALUE “0x1234”
WITH_EXPONENT “1.2E4”

Strict CGATS

CGATS requires KEYWORD if the identifier is not in the predefined list. However, for simplicity
sake, I would relax this requeriment. There is a special compilation toggle to turn off this feature.

CMS_STRICT_CGATS

54 Gamut boundary description

Gamut boundary description

The determination of gamut boundaries is a task that can be carried out for a number of motives.
It can be done simply for the purpose of understanding what range of colors is present in a given
image. It can be done to see what range of colors is achievable on a given color reproduction
medium. It can also be done to see what color gamut is predicted by a characterization model and,
hence, to see how well that model is suited for the calculation of gamut boundaries.

LittleCMS 2 implements Jan Morovic’s
“Segment Maxima” algorithm.

Using this method, the gamut boundary of
a color reproduction medium (or an image
from it) is described by a table containing
the most extreme colors for each segment
of color space. This segmentation can be
carried out either in terms of L*, C*, and
hab, or spherical coordinates whereby
spherical coordinates can be calculated
from orthogonal CIELAB coordinates.

A gamut boundary descriptor can be created, accessed and freed across following functions.

cmsHANDLE cmsGBDAlloc(cmsContext ContextID);
void cmsGBDFree(cmsHANDLE hGBD);
cmsBool cmsGDBAddPoint(cmsHANDLE hGBD, const cmsCIELab* Lab);
cmsBool cmsGDBCompute(cmsHANDLE hGDB, cmsUInt32Number dwFlags);
int cmsGDBCheckPoint(cmsHANDLE hGBD, const cmsCIELab* Lab);

You first allocate an empty GBD by using the cmsGBDAlloc function, then add all known points
with cmsGDBAddPoint and then interpolate missing sectors by calling the cmsGDBCompute
function. After that you can check points to be on gamut by using cmsGDBCheckPoint function.
GBD internal structure is hidden across a generic handle. Flags are not currently used on version
2.1

For more info on that, you can find a detailed description of the algorithm in

“Calculating medium and image gamut boundaries for gamut mapping”
Ján Morovi *, M. Ronnier Luo
Colour & Imaging Institute, Kingsway House, Kingsway, Derby DE22 3HL, United Kingdom

55 Conclusion

Conclusion

That's almost all you must know to begin experimenting with profiles, just a couple of words about
the possibilities ICC profiles can give to programmers. ColorSpace profiles are valuable tools for
converting from/to exotic file formats. I'm using LittleCMS to read Lab TIFF using the popular Sam
Leffler's TIFFLib. Also, the ability to deal with CMYK separations are much better that the
infamous 1-CMY method. Abstract profiles can be used to manipulate color of images, contrast,
brightness and true-gray reductions can be done fast and accurately. Grayscale conversions can be
done exceptionally well, and even in tweaked colorspaces that does emulate more gray levels that
the output device can effectively render.

LittleCMS does all calculation on floating point basis, you can take advantage of that precision for
HDR images. Some formats (TIFF for example) do support this. Photoshop CS4 as well. That can be
used to efficiently emulate more than 8 bits per sample. You probably will not notice this effect on
screen, but it can be seen on printed or film media.

There is a huge quantity of profiles moving around the net, and there is very good software for
generating them, so future compatibility seems to be assured.

I thank you for your time and consideration.

 Enjoy!

56 Conclusion

Sample 1: How to convert RGB to CMYK

This is easy. Just use a transform between RGB profile to CMYK profile.

#include "lcms2.h"

int main(void)
{

 cmsHPROFILE hInProfile, hOutProfile;
 cmsHTRANSFORM hTransform;
 int i;

 hInProfile = cmsOpenProfileFromFile("sRGBColorSpace.ICM", "r");
 hOutProfile = cmsOpenProfileFromFile("MyCmyk.ICM", "r");

 hTransform = cmsCreateTransform(hInProfile,
 TYPE_RGB_8,
 hOutProfile,
 TYPE_CMYK_8,
 INTENT_PERCEPTUAL, 0);

 cmsCloseProfile(hInProfile);
 cmsCloseProfile(hOutProfile);

 for (i=0; i < AllScanlinesTilesOrWatseverBlocksYouUse; i++)
 {
 cmsDoTransform(hTransform, YourInputBuffer,
 YourOutputBuffer,
 YourBuffersSizeInPixels);
 }

 cmsDeleteTransform(hTransform);

 return 0;
}

57 Conclusion

58 Conclusion

Sample 2: How to convert from CMYK to RGB.

Just exchange profiles and format descriptors:

#include "lcms2.h"

int main(void)
{

 cmsHPROFILE hInProfile, hOutProfile;
 cmsHTRANSFORM hTransform;
 int i;

 hInProfile = cmsOpenProfileFromFile("MyCmyk.icc", "r");
 hOutProfile = cmsOpenProfileFromFile("sRGBColorSpace.icc", "r");

 hTransform = cmsCreateTransform(hInProfile,
 TYPE_CMYK_8,
 hOutProfile,
 TYPE_RGB_8,
 INTENT_PERCEPTUAL, 0);

 cmsCloseProfile(hInProfile);
 cmsCloseProfile(hOutProfile);

 for (i=0; i < AllScanlinesTilesOrWatseverBlocksYouUse; i++)
 {
 cmsDoTransform(hTransform, YourInputBuffer,
 YourOutputBuffer,
 YourBuffersSizeInPixels);
 }

 cmsDeleteTransform(hTransform);

 return 0;
}

59 Conclusion

Sample 3: How to deal with Lab/XYZ spaces

This is more elaborated. There is a Lab identity Built-In profile involved.

#include "lcms2.h"

// Converts Lab(D50) to sRGB:

int main(void)
{

 cmsHPROFILE hInProfile, hOutProfile;
 cmsHTRANSFORM hTransform;
 int i;
 cmsUInt8Number RGB[3];
 cmsCIELab Lab;

 hInProfile = cmsCreateLab4Profile(NULL);
 hOutProfile = cmsOpenProfileFromFile("sRGBColorSpace.icc", "r");

 hTransform = cmsCreateTransform(hInProfile,
 TYPE_Lab_DBL,
 hOutProfile,
 TYPE_RGB_8,
 INTENT_PERCEPTUAL, 0);

 cmsCloseProfile(hInProfile);
 cmsCloseProfile(hOutProfile);

 for (i=0; i < AllLabValuesToConvert; i++)
 {
 // Fill in the Float Lab

 Lab.L = Your L;
 Lab.a = Your a;
 Lab.b = Your b;

 cmsDoTransform(hTransform, &Lab, RGB, 1);

 .. Do whatsever with the RGB values in RGB[3]
 }

 cmsDeleteTransform(hTransform);

 return 0;
}

	Introduction
	Documentation
	What is new from lcms 1.x
	Requeriments
	Include files
	Basic Concepts
	Source code conventions
	The const keyword
	Basic Types

	Step-by-step Example
	Open the profiles
	Identify the intended format of pixels
	Rendering intents
	Optimization
	Scanline padding
	Scanline overlap

	Finishing the color transform

	Special profile types
	Embedded profiles
	Named color profiles
	Built-in profiles
	On-the-fly profiles
	RGB virtual profiles
	Gray virtual profiles
	Linearization device links
	Ink limiting device links
	Bright, Contrast, Hue, Saturation and white point.

	Proofing
	Black point compensation
	Black preserving intents
	Error Logging
	Getting information from profiles
	Textual information
	Profile header fields
	Profile Directory
	Profile capabilities
	Reading tags
	Writing tags
	The linked tag feature

	Creating new profiles
	Tone curves
	Pipelines and Multi Processing elements
	Clut element
	Matrix element
	Curve set element
	Additions and the processing element plug-in

	Helper functions
	Colorimetric space conversions
	Converting encoded values

	Linear Bradford Chromatic Adaptation
	Color difference functions
	Delta-E metrics

	PostScript generation
	CIECAM02
	CGATS parser
	Overview
	Memory management
	Additions
	Strict CGATS

	Gamut boundary description
	Conclusion

