
http://www.littlecms.com

Copyright © 2011 Marti Maria Saguer, all rights reserved.

Plug-in API 2.3
By Marti Maria

http://www.littlecms.com/�

2 Introduction

Contents

Introduction .. 4

Using plug-ins from the core engine ... 5

Plug-in packages .. 6

Example: .. 7

Multiple plug-ins with same entry point ... 8

Placing plug-ins in a separate DLL (Windows® only) ... 8

Requirements .. 9

Plugin structure ... 9

Memory management plugin ... 11

Interpolation plug-in ... 13

16 bits interpolation. ... 15

Floating point interpolation. ... 15

Interpolation parameters .. 16

Parametric curves plug-in ... 18

Formatters Plug-in ... 21

Tag type handler plug-in ... 23

Tag plug-in ... 24

Intent plug-in ... 29

Support functions for intent plug-ins .. 30

Multi Process Elements plug-in. .. 32

Optimization plug-in. ... 36

Plug-in support API .. 40

I/O handlers ... 40

Read/Write functions .. 41

Type base helper functions. .. 42

Alignment & misc. functions. .. 43

Fixed point helper functions ... 44

Date/time helper functions ... 46

Error Logging API ... 47

3 Introduction

Memory management API .. 48

Vector & Matrix API .. 51

VEC3 vectors .. 51

MAT3 matrices .. 54

Conclusion ... 56

4 Introduction

Introduction

In computing, a plug-in consists of a computer program that interacts with a host to provide a
certain, usually very specific, function "on demand". One of the main improvements in Little CMS
2.x is the ability to use such plug-in architecture. By using plug-ins you can use the normal API to
access customized functionality. Licensing is another compelling reason; you can move all your
intellectual property into plug-ins and be able to upgrade the core Little CMS library, keeping it in
the open source side.

There are 9 types of plug-ins currently supported:

• Memory management
• Interpolation
• Tone curve types
• Formatters
• Tag types
• Tags
• Rendering intents
• Multi processing elements
• Optimizations

This manual details how to write any of those 9 types of plug-ins. It does not discuss how to use
them, as plug-ins are basically extensions of the base system and as such, works in the same way.

The way Plug-in architecture is designed hides the internal implementation to
the user. A plug-in user only sees a single object, which is the entry point for all
plug-in libraries. This is done in such way for plug-in collections coming for 3rd
parties: They publish the entry point, and the users of those collections need
only to “plug” this entry point into the core engine to get the intended
functionality.

5 Using plug-ins from the core engine

Using plug-ins from the core engine

Plug-ins are “plugged” to Little CMS by using a single function:

cmsBool cmsPlugin(void* Plugin);

The "Plugin" parameter may hold one or several plug-ins, as defined by the plug-in developer. To
write plug-ins, there is an additional include file lcms2_plugin.h, which declares functions not in
the public API but in the plug-in internal API. For example I/O access, matrix manipulation, and all
the types needed to populate the plug-in structures. Those functions begin with the prefix "_cms"
(note the leading underscore) to denote those are extended functionality and should not be called
by the application directly. Plug-in registering may take some memory. If you want to do a total
cleanup before exit and therefore free this memory you may want to call:

void cmsUnregisterPlugins(void);

This function returns Little CMS to its pristine default state, as no plug-ins were declared. There is
no way to unregister a single plug-in, as a single call to cmsPlugin() function may register many
different plug-ins simultaneously, so there is no way to identify which plug-in to unregister.

6 Using plug-ins from the core engine

Plug-in packages

Despite it is declared as a void pointer, cmsPlugIn needs some structured data to deal with. Let’s
take a look on the internals of the structure accepted by cmsPlugin()

typedef struct _cmsPluginBaseStruct {

 cmsUInt32Number Magic;
 cmsUInt32Number ExpectedVersion;
 cmsUInt32Number Type;
 struct _cmsPluginBaseStruct* Next;

} cmsPluginBase;

Your package has to export a pointer to such structure. On depending on the plug-in type, there
may be some extra fields after this base.

For example, a tag plug-in definition has this structure:

typedef struct {

 cmsPluginBase base;
 cmsTagSignature Signature;
 cmsTagDescriptor Descriptor;

} cmsPluginTag;

As you can see, the cmsPluginBase struct always begin the definition block.

7 Using plug-ins from the core engine

Example:

Imagine you are a printer vendor and want to include in your profiles a private tag for storing the
ink consumption. So, you register a private tag with the ICC, and you get the private signature
"inkc". Ok, now you want to store this tag as a Lut16Type, so it will be driven by PCS and will
return one channel giving the relative ink consumption by color. Writing a plug-in in Little CMS 2
will allow cmsReadTag and cmsWriteTag to deal with you new data exactly as any other standard
tag.

To do so, you have to fill a cmsPluginTag structure to declare the plug-in. This structure includes
the base, which is common to all plug-ins:

cmsPluginTag plugin;

plugin.base.Magic = cmsPluginMagicNumber;
plugin.base.ExpectedVersion = 2000;
plugin.base.Type = cmsPluginTagSig;
plugin.base.Next = NULL;

That latter identifies your plug-in as "tag type". Now you have to set the additional fields that only
apply to “tag definition” plug-ins. This can be done with following code:

plugin.Signature = inkc_constant;
plugin.Descriptor.ElemCount = 1;
plugin.Descriptor.nSupportedTypes = 1;
plugin.Descriptor.SupportedTypes[0] = cmsSigLut16Type;

This adds some additional info about the type used by your tag:

• How many elements of that type the tag is going to hold (usually one)
• In how many different types the tag may come (again, usually one)
• And then the needed type(s).

That is all. You can “plug” the new functionality to Little CMS by calling:

cmsPlugin(&plugin);

8 Using plug-ins from the core engine

Multiple plug-ins with same entry point

As a plug-in writer, you may want to encapsulate several plug-in in the same package. This is easy
with the way Little CMS deals with plug-ins. In the “Next” field of base plug-in, you can place a
pointer to the next plug-in you want to register:

cmsPluginTag plugin;

plugin.base.Magic = cmsPluginMagicNumber;
plugin.base.ExpectedVersion = 2000;
plugin.base.Type = cmsPluginTagSig;
plugin.base.Next = (cmsPluginBase*) &secondPlugin;

In this way, your package may have unlimited plug-ins, and all will be registered with a single call
to cmsPlugin. Last plug-in in the chain must have a NULL in the “Next” field.

 Placing plug-ins in a separate DLL (Windows® only)

The plug-in API is exported by the main lcms2.dll using PASCAL convention. This is the normal way
DLL does work. That means, you can place your plug-in packages in a separate DLL and therefore
you can keep the standard, non-customized Little CMS DLL safe for future upgrades. Of course you
can also put the plug-ins in a single DLL, but keeping both systems isolated can be handy. In this
way lcms2.dll can be upgraded to a new revision and your plug-in DLL, if properly written, will
keep working. All the details are handled by the header files. All what you have to do is to compile
your plug-in DLL using the CMS_DLL toggle, as plug-in package is basically a client of the core
engine. When placing plug-ins in a separate DLL, make sure to handle memory with the provided
Plug-in memory management API. Failure to do so may yield unexpected results.

9 Requirements

Requirements

Little CMS requires C99 to compile, and to write plug-ins your compiler should support following
include files (they are very common)

#include <stdlib.h>
#include <math.h>
#include <stdarg.h>
#include <memory.h>
#include <string.h>

You have not to include any of those files, just the file lcms2_plugin.h, which will take care of
including all necessary requirements.

#include “lcms2_plugin.h”

Plugin structure

Any plug-in should be declared with at least these common fields. On depending on the type,
additional fields would be required.

typedef struct _cmsPluginBaseStruct {

 cmsUInt32Number Magic;
 cmsUInt32Number ExpectedVersion;
 cmsUInt32Number Type;
 struct _cmsPluginBaseStruct* Next;

} cmsPluginBase;

Magic:

Identifies the structure as a Little CMS 2 plug-in. It must contain following value:

cmsPluginMagicNumber 0x61637070 'acpp'

10 Plugin structure

ExpectedVersion:

The expected Little CMS version; 2030 in current release. Little CMS core will accept plug-
ins with expected version less or equal that the core version. If a plug-in is marked for a
version greater that the core, plug-in will be rejected. That means downgrading core
engine may disable certain plug-ins (as it should be).

Type:

It defines behaviour of plug-in. There are 9 plug-in types currently defined:

Type Hex ASCII
cmsPluginMemHandlerSig 0x6D656D48 'memH'
cmsPluginInterpolationSig 0x696E7048 'inpH'
cmsPluginParametricCurveSig 0x70617248 'parH'
cmsPluginFormattersSig 0x66726D48 'frmH
cmsPluginTagTypeSig 0x74797048 'typH'
cmsPluginTagSig 0x74616748 'tagH'
cmsPluginRenderingIntentSig 0x696E7448 'intH'
cmsPluginMultiProcessElementSig 0x6D706548 'mpeH'
cmsPluginOptimizationSig 0x6F707448 'optH'

Next:

Points to the next plug-in header in multi plug-in packages. Set it to NULL to mark end of
chain.

11 Memory management plugin

Memory management plugin

By using this plug-in type, a programmer can override memory management done by Little CMS.
Multiple occurrences of this type of plug-in are allowed, but each time a plug-in of this type is set,
it replaces the old one.

Type:

cmsPluginMemHandlerSig 0x6D656D48 'memH'

Plug-in header structure:

typedef struct {

 cmsPluginBase base;

 // Required
 void * (* MallocPtr)(cmsContext ContextID, cmsUInt32Number size);
 void (* FreePtr)(cmsContext ContextID, void *Ptr);
 void * (* ReallocPtr)(cmsContext ContextID, void* Ptr,
 cmsUInt32Number NewSize);
 // Optional
 void * (* MallocZeroPtr)(cmsContext ContextID, cmsUInt32Number size);
 void * (* CallocPtr)(cmsContext ContextID, cmsUInt32Number num,
 cmsUInt32Number size);
 void * (* DupPtr)(cmsContext ContextID, const void* Org,
 cmsUInt32Number size);

} cmsPluginMemHandler;

Setting optional function pointers to NULL forces Little CMS to use MallocPtr, FreePtr and
ReallocPtr functions for all operation. If you provide all set of functions, Little CMS will use the
optional memory operations when possible. This works in such way to allow optimizations when
using advanced memory managers. All functions get called with a ContextID that identifies the
calling environment. It may be zero on certain special cases. This ContextID is provided by the user
when calling Little CMS API functions.

Plug-ins should NOT call those functions directly. They should manage memory by calling the plug-
in memory management API, described below. This API does call this plug-in to do its functionality.
Changing memory managers with ongoing operations may yield unexpected results.

12 Memory management plugin

Example:

#include “lcms2_plugin.h”

static void* my_malloc(cmsContext ContextID, cmsUInt32Number size)
{
 return malloc(size);
}

static void my_free(cmsContext ContextID, void *Ptr)
{
 free(Ptr);
}

static void* my_realloc(cmsContext ContextID,
 void *Ptr, cmsUInt32Number new_size)
{
 return realloc(Ptr, new_size);
}

cmsPluginMemHandler MemHandler = {{
 cmsPluginMagicNumber,
 2000,
 cmsPluginMemHandlerSig,
 NULL
 },
 my_malloc,
 my_free,
 my_realloc,
 NULL,
 NULL,
 NULL };

This example changes the internal Little CMS memory management to use plain C malloc(), free()
and realloc() functions. This is indeed a bad idea, as the internal memory manager does some
extra checks to make sure no overflow exploits are being tried, but you may want to use this
capability to do other things, like use your own memory manager or to access out-of board
memory in embedded systems. In the test bed application, a customized memory manager which
adds extra levels of check is being used. You can refer to this program for a more sophisticated
example of memory manager replacement.

13 Interpolation plug-in

Interpolation plug-in

By using this plug-in type, programmer may change or increase the interpolation done by Little
CMS. To fully understand what means this, it is necessary to clarify some concepts now.

Little CMS internal operation is based on pipelines. Each pipeline may contain a number of stages.
Those stages may be of several kinds, and there are two kinds which need interpolation. One is
tone curves, where a 1D curve is applied to each channel. The second kind is multidimensional
lookup tables (CLUT) where a number of channels are interpolated across a multidimensional grid.
In each one of those cases, the final value is interpolated across a number of nodes. By using the
interpolation plug-in you can change the algorithm that applies in such cases. Please note that
does NOT apply to the whole pipeline, only to the specific steps that are using interpolation. If you
want to accelerate the pipeline evaluation by using some sort of ASIC or GPU, that is certainly
possible by using the optimization or the applier plug-ins, but not changing the interpolation.

The structure is based on the idea of interpolator factory. That is, the programmer supplies a call
back function. When Little CMS needs to do some interpolation, it calls this function specifying the
number of input and output channels, the base type (16 bits or floating point) and gives some
hints about the use it want to do to the routine, like to use a trilinear-like. The factory then should
return a function pointer if the plug-in implements this particular interpolation or NULL to regret.
In this case, the default interpolator provided by Little CMS will be used instead. Only one factory
can be set at time. Further calls to cmsPlugin with this type will replace the behavior of previous
plug-in. Interpolators have no states and no memory, and therefore cannot hold private data.

Type:

cmsPluginInterpolationSig 0x696E7048 'inpH'

There is a limitation on the maximum input dimensions:

#define MAX_INPUT_DIMENSIONS 8

That is indeed necessary because tables of more than those dimensions are so huge that grown
out of control when node count increases.

14 Interpolation plug-in

 Plug-in header structure:

typedef struct {

 cmsPluginBase base;
 cmsInterpFnFactory InterpolatorsFactory;

} cmsPluginInterpolation;

This is the definition of the factory

cmsInterpFunction (* cmsInterpFnFactory)(cmsUInt32Number nInputChannels,
 cmsUInt32Number nOutputChannels,
 cmsUInt32Number dwFlags);

And here are the possible flags

#define CMS_LERP_FLAGS_16BITS 0x0000
#define CMS_LERP_FLAGS_FLOAT 0x0001
#define CMS_LERP_FLAGS_TRILINEAR 0x0100

Since the interpolators may have different parameter types on float and 16 bits, the factory
returns a union of pointers, although at the end this behaves just a single pointer.

typedef union {
 _cmsInterpFn16 Lerp16;
 _cmsInterpFnFloat LerpFloat;
} cmsInterpFunction;

Interpolators for 16 bits and floating point are very alike. They have, however, some differences
due the fact 16 bits are primarily intended for performance (throughput)

15 Interpolation plug-in

16 bits interpolation.

The returned function has to perform precision-limited interpolation and is supposed to be quite
fast. Reference Implementations are tetrahedral or trilinear, and plug-ins may choose to
implement any other interpolation algorithm.

void (* _cmsInterpFn16)(register const cmsUInt16Number Input[],
 register cmsUInt16Number Output[],
 register const struct _cms_interp_struc* p);

Floating point interpolation.

The returned function has to perform full precision interpolation using floats. This is not a time
critical function. Reference Implementations are tetrahedral or trilinear, and plug-ins may choose
to implement any other interpolation algorithm.

void (* _cmsInterpFnFloat)(cmsFloat32Number const Input[],
 cmsFloat32Number Output[],
 const struct _cms_interp_struc* p);

16 Interpolation plug-in

Interpolation parameters

When an interpolator is called, Little CMS provides a pointer to several pre-computed parameters
to help the interpolation task. Is up to the interpolator to use such parameters or ignore them.

typedef struct _cms_interp_struc {

 cmsContext ContextID;

 cmsUInt32Number dwFlags;
 cmsUInt32Number nInputs;
 cmsUInt32Number nOutputs;
 cmsUInt32Number nSamples[MAX_INPUT_DIMENSIONS];
 cmsUInt32Number Domain[MAX_INPUT_DIMENSIONS];
 cmsUInt32Number opta[MAX_INPUT_DIMENSIONS];
 const void * Table;

 cmsInterpFunction Interpolation;

 } cmsInterpParams;

dwFlags : A copy of the flags specified when requesting the interpolation
nInputs, nOutputs: Channels on input and output.
nSamples[]: Number of grid points in each input dimension
Domain[]: Number of grid points minus one in each input dimension.
Opta[]: The result of multiplying Domain[n]*Opta[n-1] (offset in the table in base type).
Table: Points to a portion of memory holding the table of gridpoints
Interpolation: points to the interpolator itself

17 Interpolation plug-in

Example:

void LinLerp1Dfloat(const cmsFloat32Number Value[],
 cmsFloat32Number Output[],
 const cmsInterpParams* p)
{
 cmsFloat32Number y1, y0;
 cmsFloat32Number val2, rest;
 int cell0, cell1;
 const cmsFloat32Number* LutTable = p ->Table;

 if (Value[0] == 1.0) {
 Output[0] = LutTable[p -> Domain[0]]; return; }

 val2 = p -> Domain[0] * Value[0];
 cell0 = (int) floor(val2);
 cell1 = (int) ceil(val2);
 rest = val2 - cell0;
 y0 = LutTable[cell0] ;
 y1 = LutTable[cell1] ;

 Output[0] = y0 + (y1 - y0) * rest;
}

cmsInterpFunction
my_Interpolators_Factory(cmsUInt32Number nInputChannels,
 cmsUInt32Number nOutputChannels,
 cmsUInt32Number dwFlags)
{
 cmsInterpFunction Interpolation;
 cmsBool IsFloat = (dwFlags & CMS_LERP_FLAGS_FLOAT);

 memset(&Interpolation, 0, sizeof(Interpolation));

 if (nInputChannels == 1 && nOutputChannels == 1 && IsFloat) {

 Interpolation.LerpFloat = LinLerp1Dfloat;
 }

 return Interpolation;
}

cmsPluginInterpolation Plugin = {
 { cmsPluginMagicNumber,
 2000,
 cmsPluginInterpolationSig,
 NULL },
 my_Interpolators_Factory };

18 Parametric curves plug-in

Parametric curves plug-in

By using this plug-in type, programmer may increase or replace the list of supported parametric
tone curves. You can access this new type by using cmsBuildParametricToneCurve, as well as
“curves” pipeline stage. Each call to cmsPlugin with this type will add new curves to the list if the
type ID is not used. If the type ID already exists, the tone curve implementation is replaced.

Type:

cmsPluginParametricCurveSig 0x70617248 'parH'

There is a limit on the number of curves a single plug-in can describe:

#define MAX_TYPES_IN_LCMS_PLUGIN 20

If you need more curves types, you can use two linked plug-ins, as described above.

Structure:

typedef struct {
 cmsPluginBase base;

 cmsUInt32Number nFunctions;
 cmsUInt32Number FunctionTypes[MAX_TYPES_IN_LCMS_PLUGIN];
 cmsUInt32Number ParameterCount[MAX_TYPES_IN_LCMS_PLUGIN];

 cmsParametricCurveEvaluator Evaluator;

} cmsPluginParametricCurves;

 Evaluator:

 callback for user-supplied parametric curves.

May implement more than one type, and have to implement evaluation of the curve in both,
forward and reverse directions.

19 Parametric curves plug-in

cmsFloat64Number (* cmsParametricCurveEvaluator)
 (cmsInt32Number Type,
 const cmsFloat64Number Params[10],
 cmsFloat64Number R);

Note the Type parameter is described as signed. A negative type means same function but
analytically inverted. Max. number of params is 10. Each parametric curve plug-in may implement
an arbitrary number of curve types, up to 20:

Since Little CMS can work as unbounded CMM, the domain of R is effectively from minus infinite
to infinite. However, the normal, in-range domain is 0…1.0, so you have to normalize your function
to get values of R = [0...1.0] and deal with remaining cases if you want your function to be able to
work in unbounded mode.

FunctionTypes:

 Id’s for each parametric curve described by the plug-in

ParameterCount:

 Number of parameters for each parametric curve described by the plug-in

20 Parametric curves plug-in

Example:

#include “lcms2_plugin.h”

#define TYPE_SINH 1000

static
cmsFloat64Number my_fns(cmsInt32Number Type,
 const cmsFloat64Number Params[],
 cmsFloat64Number R)
{
 switch (Type) {

 case TYPE_SINH:
 Val = Params[0]* sinh(R);
 break;

 case -TYPE_SINH:
 Val = asinh(R) / Params[0];
 break;
 }

 return Val;
}

cmsPluginParametricCurves NewCurvePlugin = {
 {
 cmsPluginMagicNumber,
 2000,
 cmsPluginParametricCurveSig,
 NULL
 },
 1,
 {TYPE_SINH},
 {1},
 my_fns};

This example adds a new parametric curve under the ID number of 1000. This is a basic hyperbolic
function, the hyperbolic sine "sinh" multiplied by the first parameter. Math expression of function
is 𝑓(𝑥) = 𝑝0 sinh(𝑥) the implementation adds an analytical reversing of the curve when
parametric curve is requested with a negative id.

21 Formatters Plug-in

Formatters Plug-in

Little CMS can handle a lot of formats of image data. For describing such formats, Little CMS does
use a 32-bit value, referred below as format specifier. Each bit in those 32 bits has specific
meaning:

 O TTTTT U Y F P X S EEE CCCC BBB

O: Reserved, internal use only
T: Pixel type
F: Flavor 0=MinIsBlack(Chocolate) 1=MinIsWhite(Vanilla)
P: Planar? 0=Chunky, 1=Planar
X: swap 16 bps endianess?
S: Do swap? ie, BGR, KYMC
E: Extra samples
C: Channels (Samples per pixel)
B: bytes per sample
Y: Swap first - changes ABGR to BGRA and KCMY to CMYK

This plug-in adds new format handlers, replacing them if they already exist.

Type:

cmsPluginFormattersSig 0x66726D48 'frmH'

 Plug-in may implement an arbitrary number of formatters by implementing a format factory.

Structure:

typedef struct {
 cmsPluginBase base;
 cmsFormatterFactory FormattersFactory;

} cmsPluginFormatters;

22 Formatters Plug-in

typedef enum { cmsFormatterInput=0,
 cmsFormatterOutput=1 } cmsFormatterDirection;

#define CMS_PACK_FLAGS_16BITS 0x0000
#define CMS_PACK_FLAGS_FLOAT 0x0001

Factory callback:

cmsFormatter (* cmsFormatterFactory)(cmsUInt32Number Type,
 cmsFormatterDirection Dir,
 cmsUInt32Number dwFlags);

The factory have to return a cmsFormatter type. This type holds a pointer to a formatter that can
be either 16 bits or 32 bit float.

typedef union {

 cmsFormatter16 Fmt16;
 cmsFormatterFloat FmtFloat;

} cmsFormatter;

Formatters dealing with floats (bps = 4) or double (bps = 0) types are requested via FormatterFloat
callback. Others come across Formatter16 callback.

cmsUInt8Number* (* cmsFormatter16)
 (register struct _cmstransform_struct* CMMcargo,
 register cmsUInt16Number Values[],
 register cmsUInt8Number* Buffer,
 register cmsUInt32Number Stride);

cmsUInt8Number* (* cmsFormatterFloat)
 (struct _cmstransform_struct* CMMcargo,
 cmsFloat32Number Values[],
 cmsUInt8Number* Buffer,
 cmsUInt32Number Stride);

23 Formatters Plug-in

Example:
unsigned char* my_Unroll8(register void* nfo,
 register cmsUInt16Number wIn[],
 register cmsUInt8Number* accum,
 register cmsUInt32Number Stride)
{
 wIn[0] = accum[0]) << 8;
 wIn[1] = (accum[1] + 128) << 8;
 wIn[2] = (accum[2] + 128) << 8;
 return accum + 3;
}

cmsFormatter my_FormatterFactory(cmsUInt32Number Type,
 cmsFormatterDirection Dir,
 cmsUInt32Number dwFlags)
{
 cmsFormatter Result = { NULL };

 if ((Type == TYPE_My_Lab) &&
 !(dwFlags & CMS_PACK_FLAGS_FLOAT) &&
 (Dir == cmsFormatterInput)) {
 Result.Fmt16 = my_Unroll8;
 }
 return Result;
}

cmsPluginFormatters Plugin = { {cmsPluginMagicNumber,
 2000,
 cmsPluginFormattersSig,
 NULL},
 my_FormatterFactory };

This example implements decoding a new format of Lab values. The format comes as L [0..FF] and
a and b as signed chars.

24 Tag plug-in

Tag plug-in

This is the tag plugin, which identifies new tags with existing types. This plug-in has been discussed
as an example at the beginning of this document.

cmsPluginTagSig 0x74616748 'tagH'

Each Plug-in implements a single tag:

typedef struct {
 cmsPluginBase base;

 cmsTagSignature Signature;
 cmsTagDescriptor Descriptor;

} cmsPluginTag;

This function should return the desired type for this tag, given the version of profile and the data
being serialized.

typedef struct {

 cmsUInt32Number ElemCount; // If this tag needs an array
 // how many elements should keep

 // For reading.
 cmsUInt32Number nSupportedTypes; // In how many types this tag can come

 cmsTagTypeSignature SupportedTypes[MAX_TYPES_IN_LCMS_PLUGIN];

 // For writting
 cmsTagTypeSignature (* DecideType)(double ICCVersion, const void *Data);

} cmsTagDescriptor;

DecideType: Callback to select the type based on the version of the ICC profile. It got called on
writing operations. ‘data’ is a pointer to the tag contents, i.e., the data supplied by the user to
cmsWriteTag().

25 Tag plug-in

Example:

#define inkc_constant 0x696E6B43

cmsPluginTag plugin = {
 {cmsPluginMagicNumber,
 2000,
 cmsPluginTagSig, NULL},
 {inkc_constant,
 1, 1, {cmsSigLut16Type}, NULL}
 };

26 Tag type handler plug-in

Tag type handler plug-in

Tag type plug-in complements tag plug-in by adding new types. Types are responsible of the
structure returned when cmsReadTag is called. Each type is free to return anything it wants, and it
is up to the caller to know in advance what is the type contained in the tag.

Type:

cmsPluginTagTypeSig 0x74797048 'typH'

Each plug-in implements a single type

typedef struct {

 cmsPluginBase base;
 cmsTagTypeHandler Handler;

} cmsPluginTagType;

To add a new type, programmer has to implement several callbacks for reading, writing,
duplicating and setting free the in-memory representation of the type. When designing a new
type, the first step should be to create a structure to hold the representation of data. This
structure may be the same as used to serialize on disk, but usually that is not the case. Once the
programmer has written all callback functions, she has to fill the handler structure with pointers to
those routines.

There is a copy of ContextID in the tag type handler structure. This member is there for simplicity
sake, and the plug-in developer may read this value, but needs not to initialize it. Little CMS will
set this member to proper value when invoking the plug-in.

27 Tag type handler plug-in

The type handler structure:

typedef struct _cms_typehandler_struct {

 cmsTagTypeSignature Signature; // The signature of the type

 // Allocates and reads items
 void * (* ReadPtr)(struct _cms_typehandler_struct* self,
 cmsIOHANDLER* io,
 cmsUInt32Number* nItems,
 cmsUInt32Number SizeOfTag);

 // Writes n Items
 cmsBool (* WritePtr)(struct _cms_typehandler_struct* self,
 cmsIOHANDLER* io,
 void* Ptr,
 cmsUInt32Number nItems);

 // Duplicate an item or array of items
 void* (* DupPtr)(struct _cms_typehandler_struct* self,
 const void *Ptr,
 cmsUInt32Number n);

 // Free all resources
 void (* FreePtr)(struct _cms_typehandler_struct* self, void *Ptr);

 // The calling thread
 cmsContext ContextID;

} cmsTagTypeHandler;

Signature: Identifies the type being implemented by the plug-in.
ReadPtr: Pointer to read function.
WritePtr: Pointer to write callback
DupPtr: Pointer to Duplicate callback
FreePtr: Pointer to Free callback
ContextID: (ReadOnly) contains the context for the last function accessing the plug-in

28 Tag type handler plug-in

Example:
void *Type_int_Read(struct _cms_typehandler_struct* self,
 cmsIOHANDLER* io,

 cmsUInt32Number* nItems,
 cmsUInt32Number SizeOfTag)

{
 int* Ptr = (int*) _cmsMalloc(self ->ContextID, sizeof(int));
 if (Ptr == NULL) return NULL;
 if (!_cmsReadIntU32Number(io, Ptr)) return NULL;
 *nItems = 1;
 return Ptr;
}

cmsBool Type_int_Write(struct _cms_typehandler_struct* self,
 cmsIOHANDLER* io,
 void* Ptr, cmsUInt32Number nItems)
{
 return _cmsWriteUInt32Number(io, *(cmsUInt32Number*) Ptr);
}

void* Type_int_Dup(struct _cms_typehandler_struct* self,
 const void *Ptr, cmsUInt32Number n)
{
 return _cmsDupMem(self ->ContextID, Ptr, n * sizeof(int));
}

void Type_int_Free(struct _cms_typehandler_struct* self,
 void* Ptr)
{
 _cmsFree(self ->ContextID, Ptr);
}

cmsPluginTagType Plugin = { {cmsPluginMagicNumber,
 2000,
 cmsPluginTagTypeSig,
 NULL},
 { SigIntType,
 Type_int_Read,
 Type_int_Write,
 Type_int_Dup,
 Type_int_Free,
 NULL
 }};

29 Intent plug-in

Intent plug-in

This plug-in implements new rendering intents. To do so, the callback has to join all profiles
specified in the array in a single pipeline doing any necessary adjustments. Any custom intent in
the chain redirects to the custom callback. If more than one custom intent is found, the one
located first is invoked. Usually users should use only one custom intent, so mixing custom intents
in same multiprofile transform is not supported.

cmsPluginRenderingIntentSig 0x696E7448 'intH'

Each plug-in defines a single intent number.

typedef struct {

 cmsPluginBase base;

 cmsUInt32Number Intent;
 cmsIntentFn Link;
 char Description[256];

} cmsPluginRenderingIntent;

Plug-in has to specify a linker callback that accepts a chain of profiles and return a pipeline
implementing the new intent. All significant modificators are passed as parameters.

cmsPipeline* (* cmsIntentFn)(cmsContext ContextID,
 cmsUInt32Number nProfiles,
 cmsUInt32Number Intents[],
 cmsHPROFILE hProfiles[],
 cmsBool BPC[],
 cmsFloat64Number AdaptationStates[],
 cmsUInt32Number dwFlags);

30 Intent plug-in

Support functions for intent plug-ins

 The default ICC intents (perceptual, saturation, rel.col and abs.col)

2.0

cmsPipeline* _cmsDefaultICCintents(cmsContext ContextID,
 cmsUInt32Number nProfiles,
 cmsUInt32Number Intents[],
 cmsHPROFILE hProfiles[],
 cmsBool BPC[],
 cmsFloat64Number AdaptationStates[],
 cmsUInt32Number dwFlags);

This function implements the standard ICC intents perceptual, relative colorimetric, saturation and
absolute colorimetric. Can be used as a basis for custom intents.

Parameters:
ContextID: Pointer to a user-defined context cargo.
nProfiles: Number of profiles in the chain
Intents[]: Intent to apply on each profile to profile joint.
hProfiles[]: Handles to open profiles
BPC[]: Array of black point compensation states for each profile to profile joint
AdaptationStates[]: Array of observer adaptation states for each profile to profile joint.
dwFlags: color transform flags (see Little CMS API for further details)

Returns:

A pointer to a newly created pipeline holding the color transform on success, NULL on
error.

31 Intent plug-in

Example:

cmsPipeline* MyNewIntent(cmsContext ContextID,
 cmsUInt32Number nProfiles,
 cmsUInt32Number TheIntents[],
 cmsHPROFILE hProfiles[],
 cmsBool BPC[],
 cmsFloat64Number AdaptationStates[],
 cmsUInt32Number dwFlags)
{
 cmsPipeline* Result;
 cmsUInt32Number ICCIntents[256];
 cmsUInt32Number i;

 for (i=0; i < nProfiles; i++)
 ICCIntents[i] = (TheIntents[i] == 300) ? INTENT_PERCEPTUAL :
 TheIntents[i];

 if (cmsGetColorSpace(hProfiles[0]) != cmsSigGrayData ||
 cmsGetColorSpace(hProfiles[nProfiles-1]) != cmsSigGrayData)
 return _cmsDefaultICCintents(ContextID, nProfiles,
 ICCintents, hProfiles,
 BPC, AdaptationStates,
 dwFlags);

 Result = cmsPipelineAlloc(ContextID, 1, 1);
 if (Result == NULL) return NULL;

 cmsPipelineInsertStage(Result, cmsAT_BEGIN,
 cmsStageAllocIdentity(ContextID, 1));

 return Result;
}

cmsPluginRenderingIntent RIPlugin =
 {cmsPluginMagicNumber,
 2000,
 cmsPluginRenderingIntentSig,
 NULL},
 300,
 MyNewIntent,
 “bypass gray to gray rendering intent” };

This example creates a new rendering intent, at intent number 300, that is identical to perceptual
intent for all color spaces but gray to gray transforms, in this case it bypasses the data. Note that it
has to clear all occurrences of intent 300 in the intents array to avoid infinite recursion.

32 Stages

Stages

When dealing with pipelines, there is the possibility for the programmer to create new,
customized stages that cannot be modeled by using any of the yet existing steps. Additionally,
there is a plug-in type that allows saving such user defined stages as multi profile elements in
DToB/BToD tags.

Creating new stage types
To create a new Stage type, following function must be used:

2.0

cmsStage* _cmsStageAllocPlaceholder(cmsContext ContextID,
 cmsStageSignature Type,
 cmsUInt32Number InputChannels,
 cmsUInt32Number OutputChannels,
 _cmsStageEvalFn EvalPtr,
 _cmsStageDupElemFn DupElemPtr,
 _cmsStageFreeElemFn FreePtr,
 void* Data);

Parameters:

ContextID: Pointer to a user-defined context cargo.
Type: Identifier for the new stage type.
InputChannels, OutputChannels: Number of channels for this stage.
EvalPtr: Callback to evaluate the stage.
DupElemPtr: If user data is being used, callback to duplicate the data.
FreePtr: If user data is being used, callback to set data free.
Data: Pointer to user-defined data or NULL if no data is needed.

Returns:
A pointer to the newly created stage on success, NULL on error.

The Stage element can accept private data. If so, you need to supply callback functions to
duplicate and free private data.

typedef void (* _cmsStageEvalFn) (const cmsFloat32Number In[],
 cmsFloat32Number Out[],
 const cmsStage* mpe);

typedef void*(* _cmsStageDupElemFn) (cmsStage* mpe);

typedef void (* _cmsStageFreeElemFn) (cmsStage* mpe);

33 Stages

Example:

void EvaluateNegate(const cmsFloat32Number In[],
 cmsFloat32Number Out[],
 const cmsStage *mpe)
{
 Out[0] = 1.0 - In[0];
 Out[1] = 1.0 - In[1];
 Out[2] = 1.0 - In[2];
}

#define SigNegate ((cmsStageSignature)0x6E202020)

cmsStage* StageAllocNegate(cmsContext ContextID)
{
 return _cmsStageAllocPlaceholder(ContextID,
 SigNegateType, 3, 3, EvaluateNegate,
 NULL, NULL, NULL);
}

This example creates a stage that reverses the input (negative). It works on 3  3 channels.

34 Stages

Stages plug-in.

This plug-in type allows programmer to add new multi-process elements in the MPE tag, and in
this way extend the types documented in “Floating-Point Device Encoding Range” addendum to
ICC spec 4.2.

Using this plug-in allows such new stages to be stored on profiles.

Type:

cmsPluginMultiProcessElementSig 0x6D706548 'mpeH'

Plug-in structure:

typedef struct {
 cmsPluginBase base;
 cmsTagTypeHandler Handler;

} cmsPluginMultiProcessElement;

To describe the serialization, the same structure as tag type handler is being used, although there
are some differences:

- DupPtr and FreePtr of cmsTagTypeHandler are not used and have to be set to NULL.
- ReadPtr must call cmsStageAllocPlaceholder to create the stage
- WritePtr can access the stage internals by using all cmsStage functions.

o cmsStageInputChannels
o cmsStageOutputChannels
o cmsStageType
o cmsStageData

35 Stages

Example (as a continuation of previous sample):
void *Type_negate_Read(struct _cms_typehandler_struct* self,
 cmsIOHANDLER* io,

 cmsUInt32Number* nItems,
 cmsUInt32Number SizeOfTag)

{
 cmsUInt16Number Chans;
 if (!_cmsReadUInt16Number(io, &Chans)) return NULL;
 if (Chans != 3) return NULL;

 *nItems = 1;
 return StageAllocNegate(self -> ContextID);
}

cmsBool Type_negate_Write(struct _cms_typehandler_struct* self,
 cmsIOHANDLER* io,
 void* Ptr, cmsUInt32Number nItems)
{

 if (!_cmsWriteUInt16Number(io, 3)) return FALSE;
 return TRUE;
}

cmsPluginMultiProcessElement Plugin = {
 {cmsPluginMagicNumber,
 2000,
 cmsPluginMultiProcessElementSig,
 NULL},
 { SigNegate,
 Type_negate_Read,
 Type_negate_Write,
 NULL,
 NULL,
 NULL
 }};

This example creates a new multi processing element that saves our “negate” stage on DToB/BToD
tags. To do so, cmsWriteTag() should be called with a pipeline containing “negate” stages.

36 Optimization plug-in.

Optimization plug-in.

Using this plug-in, additional optimization strategies may be implemented.

To create transforms, Little CMS does create chains of operators by using pipelines. Once created,
those pipelines are passed to the optimization engine to remove redundancies and perform any
optimizations that would increase the performance/throughput of the pipeline. The optimization
engine consist on series of algorithms that are applied to the pipeline chain, if suitable. By using
optimization plug-in, a programmer can add new optimization algorithms to the existing list.
Formats suitable for optimization are 8 and 16 bits. No optimization is possible on floating-point
data.

The optimization algorith can decide to implement the evaluation of resulting pipeline in any way
it wants. To do so, it has to register a specilized callback that would be responsible of evaluating
the optimized version of LUT. This callback has this form:

cmsOPTeval16Fn:

void <OptimizationCallback>(register const cmsUInt16Number In[],
 register cmsUInt16Number Out[],
 register const void* Data);

It is also posible to allocate and maintain an amount of user-supplied data, used only by the
optimization callback. The plug-in writer, then, have to supply two additional callbacks. One for
duplicating this data and another to free any resource associated with this data.

typedef void (* _cmsOPTfreeDataFn)(cmsContext ContextID, void* Data);

typedef void* (* _cmsOPTdupDataFn)(cmsContext ContextID, const void* Data);

Those last functions are optional, and only required if the optimization callback is using private
data. It is the optimization algorithm which have to setup the optimized callbacack and possible
user defined data. For that purpose, there is a specialized function:

37 Optimization plug-in.

2.0

void _cmsPipelineSetOptimizationParameters (cmsPipeline* Lut,
 _cmsOPTeval16Fn Eval16,
 void* PrivateData,
 _cmsOPTfreeDataFn FreePrivateDataFn,
 _cmsOPTdupDataFn DupPrivateDataFn);

Establishes the optimization parameters for a given pipeline. Private data may be NULL, and that
means the optimized callback needs no additional data. If not NULL, the Free and Dup callbacks
must be specified as well.

Parameters:

Lut: Pipeline to be optimized
Eval16: User-supplied callback for fast evaluation of pipeline
PrivateData: Initial private data, NULL if not used.
FreePrivateDataFn: User-supplied callback to free private data, NULL if not used.
PrivateDataFn: User-supplied callback to duplicate private data, NULL if not used.

Returns:
None

The optimization plug-in exports the optimizer algorith as a function callback. That function have
to return TRUE if any optimization is done on the LUT, this terminates the optimization search. Or
FALSE if it is unable to optimize and want to give a chanceto the rest of optimization algorithms.

Type:

cmsPluginOptimizationSig 0x6F707448 'optH'

Structure:

typedef struct {

 cmsPluginBase base;
 _cmsOPToptimizeFn OptimizePtr; // Optimization algorith entry point

} cmsPluginOptimization;

38 Optimization plug-in.

Optimization algorithm callback:

cmsBool (* _cmsOPToptimizeFn)(cmsPipeline** Lut,
 cmsUInt32Number Intent,
 cmsUInt32Number* InputFormat,
 cmsUInt32Number* OutputFormat,
 cmsUInt32Number* dwFlags);

This function may be used to set the optional evaluator and a block of private data. If private data
is being used, an optional duplicator and free functions should also be specified in order to
duplicate the pipeline construct. Use NULL to inhibit such functionality.

39 Optimization plug-in.

Example:

cmsBool MyOptimize(cmsPipeline** Lut,
 cmsUInt32Number Intent,
 cmsUInt32Number* InputFormat,
 cmsUInt32Number* OutputFormat,
 cmsUInt32Number* dwFlags)
{
 cmsStage* mpe;

 // Only curves in this LUT?
 for (mpe = cmsPipelineGetPtrToFirstStage(Src);
 mpe != NULL;
 mpe = cmsStageNext(mpe)) {
 if (cmsStageType(mpe) != cmsSigCurveSetElemType)
 return FALSE;
 }

 *dwFlags |= cmsFLAGS_NOCACHE;
 _cmsPipelineSetOptimizationParameters(*Lut,
 FastEvaluateCurves, NULL, NULL, NULL);

 Return TRUE;
}

cmsPluginOptimization Plugin = {
 {cmsPluginMagicNumber,
 2000,
 cmsPluginOptimizationSig,
 NULL},
 MyOptimize};

This example detects whatever the pipeline contains only curves and in this case provides a
hypothetical fast evaluator (not listed). Note that the plug-in also inhibits the 1-pixel cache,
because the “FastEvaluateCurves” function is supposed to be faster than caching.

40 Plug-in support API

Plug-in support API

I/O handlers

IO handlers are abstractions used to deal with files or streams. All reading/writing of ICC profiles,
PostScript resources and CGATS are done across IO handlers. IO handlers do support random
access. The IO handler API allows you to access the low level functions, as well as to write new
handlers for specialized devices.

IO handler structure.

struct _cms_io_handler {

 void* stream;
 cmsContext ContextID;
 cmsUInt32Number UsedSpace;
 cmsUInt32Number ReportedSize;

 char PhysicalFile[cmsMAX_PATH];

 cmsUInt32Number (* Read)(struct _cms_io_handler* iohandler, void *Buffer,
 cmsUInt32Number size,
 cmsUInt32Number count);
 cmsBool (* Seek)(struct _cms_io_handler* iohandler,
 cmsUInt32Number offset);
 cmsBool (* Close)(struct _cms_io_handler* iohandler);
 cmsUInt32Number (* Tell)(struct _cms_io_handler* iohandler);
 cmsBool (* Write)(struct _cms_io_handler* iohandler,
 cmsUInt32Number size, const void* Buffer);
};

41 Plug-in support API

Read/Write functions
2.0

cmsBool _cmsReadUInt8Number(cmsIOHANDLER* io, cmsUInt8Number* n);
cmsBool _cmsReadUInt16Number(cmsIOHANDLER* io, cmsUInt16Number* n);
cmsBool _cmsReadUInt32Number(cmsIOHANDLER* io, cmsUInt32Number* n);
cmsBool _cmsReadFloat32Number(cmsIOHANDLER* io, cmsFloat32Number* n);
cmsBool _cmsReadUInt64Number(cmsIOHANDLER* io, cmsUInt64Number* n);
cmsBool _cmsRead15Fixed16Number(cmsIOHANDLER* io, cmsFloat64Number* n);
cmsBool _cmsReadXYZNumber(cmsIOHANDLER* io, cmsCIEXYZ* XYZ);
cmsBool _cmsReadUInt16Array(cmsIOHANDLER* io, cmsUInt32Number n,
 cmsUInt16Number* Array);

Reads several types from the given IOHANDLER.

Parameters:

Io: pointer to the cmsIOHANDLER object.
Param: Pointer to an object to receive the result.

Returns:
TRUE on success, FALSE on error.

2.0

cmsBool _cmsWriteUInt8Number(cmsIOHANDLER* io, cmsUInt8Number n);
cmsBool _cmsWriteUInt16Number(cmsIOHANDLER* io, cmsUInt16Number n);
cmsBool _cmsWriteUInt32Number(cmsIOHANDLER* io, cmsUInt32Number n);
cmsBool _cmsWriteFloat32Number(cmsIOHANDLER* io, cmsFloat32Number n);
cmsBool _cmsWriteUInt64Number(cmsIOHANDLER* io, cmsUInt64Number n);
cmsBool _cmsWrite15Fixed16Number(cmsIOHANDLER* io, cmsFloat64Number n);
cmsBool _cmsWriteXYZNumber(cmsIOHANDLER* io, const cmsCIEXYZ* XYZ);
cmsBool _cmsWriteUInt16Array(cmsIOHANDLER* io, cmsUInt32Number n,
 const cmsUInt16Number* Array);

Writes several types to the given IOHANDLER.

Parameters:
Io: pointer to the cmsIOHANDLER object.
Param: Object to write.

Returns:
TRUE on success, FALSE on error.

42 Plug-in support API

Type base helper functions.
2.0

 cmsTagTypeSignature _cmsReadTypeBase(cmsIOHANDLER* io);

Reads a cmsTagTypeSignature from the given IOHANDLER.

Parameters:
Io: pointer to an cmsIOHANDLER object.

Returns:

cmsTagTypeSignature or 0 on error.

2.0

 cmsBool _cmsWriteTypeBase(cmsIOHANDLER* io, cmsTagTypeSignature sig);

Writes s a cmsTagTypeSignature to the given IOHANDLER.

Parameters:

Io: pointer to an cmsIOHANDLER object.
Sig: cmsTagTypeSignature to be written.

Returns:
TRUE on success, FALSE on error.

43 Plug-in support API

Alignment & misc. functions.
2.0

cmsBool _cmsReadAlignment(cmsIOHANDLER* io);

Skips bytes on the given IOHANDLER until a 32-bit aligned position.

Parameters:
Io: pointer to a cmsIOHANDLER object.

Returns:
TRUE on success, FALSE on error.

2.0

cmsBool _cmsWriteAlignment(cmsIOHANDLER* io);

Writes zeros on the given IOHANDLER until a 32-bit aligned position.

Parameters:
Io: pointer to cmsIOHANDLER object.

Returns:
TRUE on success, FALSE on error.

 2.0

cmsBool _cmsIOPrintf(cmsIOHANDLER* io, const char* frm, ...);

Outputs printf-like strings to the given IOHANDLER. To deal with text streams. 2K at most

Parameters:
Io: pointer to cmsIOHANDLER object.
Frm: format string (printf-like)
…: optional parameters (printf-like)

Returns:
TRUE on success, FALSE on error.

44 Plug-in support API

Fixed point helper functions
2.0

cmsFloat64Number _cms8Fixed8toDouble(cmsUInt16Number fixed8);

Converts from 8.8 fixed point to cmsFloat64Number.

Parameters:
fixed8: 8.8 encoded fixed point value.

Returns:

cmsFloat64Number holding the value.

2.0

cmsUInt16Number _cmsDoubleTo8Fixed8(cmsFloat64Number val);

Converts from cmsFloat64Number to 8.8 fixed point, rounding properly.

Parameters:
Val: cmsFloat64Number holding the value.

Returns:

 8.8 encoded fixed point value.
2.0

cmsFloat64Number _cms15Fixed16toDouble(cmsS15Fixed16Number fix32);

Converts from 15.16 (signed) fixed point to cmsFloat64Number.

Parameters:
Fix32: 15.16 (signed) fixed point encoded fixed point value.

Returns:

cmsFloat64Number holding the value.

45 Plug-in support API

2.0

cmsS15Fixed16Number _cmsDoubleTo15Fixed16(cmsFloat64Number v);

Converts from cmsFloat64Number to 15.16 fixed point, rounding properly.

Parameters:
V: cmsFloat64Number holding the value.

Returns:

15.16 (signed) fixed point encoded fixed point value.

46 Plug-in support API

Date/time helper functions
2.0

void _cmsEncodeDateTimeNumber(cmsDateTimeNumber *Dest,
 const struct tm *Source);

Decodes from the standard “C” struct tm to ICC date and time format.

Parameters:
Dest: a pointer to a cmsDateTimeNumber structure.
Source: a pointer to a struct tm structure.

Returns:

None

2.0

void _cmsDecodeDateTimeNumber(const cmsDateTimeNumber *Source,
 struct tm *Dest);

Decodes from ICC date and time format to the standard “C” struct tm.

Parameters:
Source: a pointer to a cmsDateTimeNumber structure.
Dest: a pointer to a struct tm structure.

Returns:
None

47 Plug-in support API

Error Logging API

For debugging purposes, it may be handy to know what is making a function to fail. This function
add traces to let developer what is going on.

cmsERROR_UNDEFINED 0
cmsERROR_FILE 1
cmsERROR_RANGE 2
cmsERROR_INTERNAL 3
cmsERROR_NULL 4
cmsERROR_READ 5
cmsERROR_SEEK 6
cmsERROR_WRITE 7
cmsERROR_UNKNOWN_EXTENSION 8
cmsERROR_COLORSPACE_CHECK 9
cmsERROR_ALREADY_DEFINED 10
cmsERROR_BAD_SIGNATURE 11
cmsERROR_CORRUPTION_DETECTED 12
cmsERROR_NOT_SUITABLE 13
Table 1

2.0

void cmsSignalError(cmsContext ContextID, cmsUInt32Number ErrorCode,
 const char *ErrorText, ...);

Parameters:

ContextID: Pointer to a user-defined context cargo.
ErrorCode: Error family, as stated in Table 1
ErrorText: Error description, printf-like
…: additional printf-like parameters.

Returns:

None

Warning: As this function uses a variable number of parameters, implementing such function on
Windows DLL, which uses the PASCAL calling convention, is undefined for some compilers. Then,
for example, Borland C++ 5.5 does not support this function. If you are using such compiler and
want to place your plug-ins in a separate DLL, you cannot use this function at all. If you need this
functionality in your plug-in, consider to use any other compiler instead, or link your plug-ins
within the Little CMS DLL.

48 Plug-in support API

Memory management API

Those are the memory management primitives as used by the core engine. It uses the memory
management plug-in if defined.

2.0

void* _cmsMalloc(cmsContext ContextID, cmsUInt32Number size);

Allocate size bytes of uninitialized memory.

Parameters:
ContextID: Pointer to a user-defined context cargo.
Size: amount of memory to allocate in bytes

Returns:

Pointer to newly allocated block, or NULL on error.

2.0

void _cmsFree(cmsContext ContextID, void* Ptr);

Cause the space pointed to by Ptr to be deallocated; that is, made available for further allocation.
If ptr is a null pointer, no action will occur.

Parameters:

ContextID: Pointer to a user-defined context cargo.
Ptr: pointer to memory block.

Returns:
None

49 Plug-in support API

2.0

void* _cmsMallocZero(cmsContext ContextID, cmsUInt32Number size);

Allocate size bytes of memory. Initialize it to zero.

Parameters:
ContextID: Pointer to a user-defined context cargo.
Size: amount of memory to allocate in bytes

Returns:

Pointer to newly allocated block, or NULL on error.

2.0

void* _cmsCalloc(cmsContext ContextID, cmsUInt32Number num,
 cmsUInt32Number size);

Allocate space for an array of num elements each of whose size in bytes is size. The space shall be
initialized to all bits 0.

Parameters:
ContextID: Pointer to a user-defined context cargo.
Num: number of array elements
Size: Array element size in bytes

Returns:
Pointer to newly allocated block, or NULL on error.

2.0

void* _cmsRealloc(cmsContext ContextID, void* Ptr, cmsUInt32Number NewSize);

The size of the memory block pointed to by the Ptr parameter is changed to the NewSize bytes,
expanding or reducing the amount of memory available in the block.

Parameters:
ContextID: Pointer to a user-defined context cargo.
Ptr: pointer to memory block.
NewSize: number of bytes.

Returns:
Pointer to newly allocated block, or NULL on error.

50 Plug-in support API

2.0

void* _cmsDupMem(cmsContext ContextID, const void* Org, cmsUInt32Number size);

Duplicates the contents of memory at “Org” into a new block

Parameters:

ContextID: Pointer to a user-defined context cargo.
Org: pointer to source memory block.
Size: number of bytes to duplicate.

Returns:
Pointer to newly allocated copy, or NULL on error.

51 Plug-in support API

Vector & Matrix API

Those are low-level primitives to opearate with 3-component vectors and 3x3 matrices.

VEC3 vectors

Vectors are defined as using 64-bit floating point numbers (cmsFloat64Numbers)

typedef struct {
 cmsFloat64Number n[3];

 } cmsVEC3;

2.0

void _cmsVEC3init(cmsVEC3* r,
 cmsFloat64Number x,
 cmsFloat64Number y,
 cmsFloat64Number z);

Populates a vector.

Parameters:

 r: a pointer to a cmsVEC3 object to receive the result

x, y, z: components of the vector.
b: A pointer to second cmsVEC3 object.

Returns:
None

2.0

void _cmsVEC3minus(cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b);

Vector subtraction.

Parameters:

 r: a pointer to a cmsVEC3 object to receive the result

a: A pointer to first cmsVEC3 object.
b: A pointer to second cmsVEC3 object.

Returns:
None

52 Plug-in support API

2.0

void _cmsVEC3cross(cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v);

Vector cross product.

Parameters:

 r: a pointer to a cmsVEC3 object to receive the result.

u: A pointer to first cmsVEC3 object.
v: A pointer to second cmsVEC3 object.

Returns:
None

2.0

cmsFloat64Number _cmsVEC3dot(const cmsVEC3* u, const cmsVEC3* v);

Vector dot product

Parameters:

u: A pointer to first cmsVEC3 object.
v: A pointer to second cmsVEC3 object.

Returns:
Dot product 𝑢 ∙ 𝑣

2.0

cmsFloat64Number _cmsVEC3length(const cmsVEC3* a);

Euclidean length of 3D vector

Parameters:

a: A pointer to first cmsVEC3 object.
b: A pointer to second cmsVEC3 object.

Returns:
Euclidean length �x2 + y2 + z2

53 Plug-in support API

2.0

cmsFloat64Number _cmsVEC3distance(const cmsVEC3* a, const cmsVEC3* b);

Returns euclidean distance between two 3D points.

Parameters:

a: A pointer to first cmsVEC3 object.
b: A pointer to second cmsVEC3 object.

Returns:
 Euclidean distance √𝑎2 + 𝑏2

54 Plug-in support API

MAT3 matrices

 3x3 Matrices are formed by 3 VEC3 vectors. The Plugin API provides several low-level primitives
for 3x3 Matrix math.

typedef struct {
 cmsVEC3 v[3];

 } cmsMAT3;

2.0

void _cmsMAT3identity(cmsMAT3* a);

Fills “a” with identity matrix

Parameters:

a: A pointer to a cmsMAT3 object.

Returns:

None

2.0

cmsBool _cmsMAT3isIdentity(const cmsMAT3* a);

Return true if “a” is close enough to be interpreted as identity. Else return false

Parameters:

a: A pointer to a cmsMAT3 object.

Returns:

TRUE on identity, FALSE on non-identity.

55 Plug-in support API

2.0

void _cmsMAT3per(cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b);

Multiply two matrices.

Parameters:

 r: a pointer to a cmsMAT3 object to receive the result.
a: A pointer to first cmsMAT3 object.
b: A pointer to second cmsMAT3 object.

Returns:
None

2.0

cmsBool _cmsMAT3inverse(const cmsMAT3* a, cmsMAT3* b);

Inverse of a matrix 𝑏 = 𝑎−1. Returns false if singular matrix

Parameters:

a: A pointer to the cmsMAT3 to be inverted.
b: A pointer to a cmsMAT3 object to store the result.

Returns:
TRUE on success, FALSE on error.

2.0

cmsBool _cmsMAT3solve(cmsVEC3* x, cmsMAT3* a, cmsVEC3* b);

Solves a system in the form 𝐴𝑥 = 𝑏. Returns FALSE if singular matrix

Parameters:

 x: a pointer to a cmsVEC3 object to receive the result.
a: A pointer to first cmsVEC3 object.
b: A pointer to second cmsVEC3 object.

Returns:
TRUE on success, FALSE on error.

56 Conclusion

2.0

void _cmsMAT3eval(cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v);

Evaluates a matrix and stores the result in “r”.

Parameters:

 r: a pointer to a cmsVEC3 object to receive the result.
a: A pointer to the cmsMAT3 object containing the transformation matrix.
v: a pointer to a cmsVEC3 object to be evaluated.

Returns:

None

Conclusion

Little CMS 2.x plug-in system is a convenient way to enhance the CMM functionality in many
aspects, but there are chances you don’t need to use plug-in to add new functionality at all. If you
can stay in the standard Little CMS API, I would recommend avoiding writing plug-ins. Avoiding
plug-ins is convenient because backwards compatibility, clarity and maintainability. The normal
API has been designed with easy-to-use goals; on the other hand, on plug-in API functionality is
the most desirable attribute.

If you decide to write extensions, please note there are many ways to do that. One example would
be to write functions using the plug-in API, but without exporting any plug-in. This is ok if you need
to use low-level functions that are not present in the normal API.

	Introduction
	Using plug-ins from the core engine
	Plug-in packages
	Example:
	Multiple plug-ins with same entry point
	Placing plug-ins in a separate DLL (Windows® only)

	Requirements
	Plugin structure
	Memory management plugin
	Interpolation plug-in
	16 bits interpolation.
	Floating point interpolation.
	Interpolation parameters

	Parametric curves plug-in
	Formatters Plug-in
	Tag plug-in
	Tag type handler plug-in
	Intent plug-in
	Support functions for intent plug-ins

	Stages
	Creating new stage types
	Stages plug-in.

	Optimization plug-in.
	Plug-in support API
	I/O handlers
	Read/Write functions
	Type base helper functions.
	Alignment & misc. functions.
	Fixed point helper functions
	Date/time helper functions
	Error Logging API
	Memory management API
	Vector & Matrix API
	VEC3 vectors
	MAT3 matrices

	Conclusion

