#include #include #include #include #include #include #include "elf.h" #include #include "kexec.h" #include "kexec-elf.h" #include "crashdump.h" static const int probe_debug = 0; uint16_t elf16_to_cpu(const struct mem_ehdr *ehdr, uint16_t value) { if (ehdr->ei_data == ELFDATA2LSB) { value = le16_to_cpu(value); } else if (ehdr->ei_data == ELFDATA2MSB) { value = be16_to_cpu(value); } return value; } uint32_t elf32_to_cpu(const struct mem_ehdr *ehdr, uint32_t value) { if (ehdr->ei_data == ELFDATA2LSB) { value = le32_to_cpu(value); } else if (ehdr->ei_data == ELFDATA2MSB) { value = be32_to_cpu(value); } return value; } uint64_t elf64_to_cpu(const struct mem_ehdr *ehdr, uint64_t value) { if (ehdr->ei_data == ELFDATA2LSB) { value = le64_to_cpu(value); } else if (ehdr->ei_data == ELFDATA2MSB) { value = be64_to_cpu(value); } return value; } uint16_t cpu_to_elf16(const struct mem_ehdr *ehdr, uint16_t value) { if (ehdr->ei_data == ELFDATA2LSB) { value = cpu_to_le16(value); } else if (ehdr->ei_data == ELFDATA2MSB) { value = cpu_to_be16(value); } return value; } uint32_t cpu_to_elf32(const struct mem_ehdr *ehdr, uint32_t value) { if (ehdr->ei_data == ELFDATA2LSB) { value = cpu_to_le32(value); } else if (ehdr->ei_data == ELFDATA2MSB) { value = cpu_to_be32(value); } return value; } uint64_t cpu_to_elf64(const struct mem_ehdr *ehdr, uint64_t value) { if (ehdr->ei_data == ELFDATA2LSB) { value = cpu_to_le64(value); } else if (ehdr->ei_data == ELFDATA2MSB) { value = cpu_to_be64(value); } return value; } #define ELF32_MAX 0xffffffff #define ELF64_MAX 0xffffffffffffffff #if ELF64_MAX > ULONG_MAX #undef ELF64_MAX #define ELF64_MAX ULONG_MAX #endif unsigned long elf_max_addr(const struct mem_ehdr *ehdr) { unsigned long max_addr = 0; if (ehdr->ei_class == ELFCLASS32) { max_addr = ELF32_MAX; } else if (ehdr->ei_class == ELFCLASS64) { max_addr = ELF64_MAX; } return max_addr; } static int build_mem_elf32_ehdr(const char *buf, off_t len, struct mem_ehdr *ehdr) { Elf32_Ehdr lehdr; if ((uintmax_t)len < (uintmax_t)sizeof(lehdr)) { /* Buffer is to small to be an elf executable */ if (probe_debug) { fprintf(stderr, "Buffer is to small to hold ELF header\n"); } return -1; } memcpy(&lehdr, buf, sizeof(lehdr)); if (elf16_to_cpu(ehdr, lehdr.e_ehsize) != sizeof(Elf32_Ehdr)) { /* Invalid Elf header size */ if (probe_debug) { fprintf(stderr, "Bad ELF header size\n"); } return -1; } if (elf32_to_cpu(ehdr, lehdr.e_entry) > UINT32_MAX) { /* entry is to large */ if (probe_debug) { fprintf(stderr, "ELF e_entry to large\n"); } return -1; } if (elf32_to_cpu(ehdr, lehdr.e_phoff) > UINT32_MAX) { /* phoff is to large */ if (probe_debug) { fprintf(stderr, "ELF e_phoff to large\n"); } return -1; } if (elf32_to_cpu(ehdr, lehdr.e_shoff) > UINT32_MAX) { /* shoff is to large */ if (probe_debug) { fprintf(stderr, "ELF e_shoff to large\n"); } return -1; } ehdr->e_type = elf16_to_cpu(ehdr, lehdr.e_type); ehdr->e_machine = elf16_to_cpu(ehdr, lehdr.e_machine); ehdr->e_version = elf32_to_cpu(ehdr, lehdr.e_version); ehdr->e_entry = elf32_to_cpu(ehdr, lehdr.e_entry); ehdr->e_phoff = elf32_to_cpu(ehdr, lehdr.e_phoff); ehdr->e_shoff = elf32_to_cpu(ehdr, lehdr.e_shoff); ehdr->e_flags = elf32_to_cpu(ehdr, lehdr.e_flags); ehdr->e_phnum = elf16_to_cpu(ehdr, lehdr.e_phnum); ehdr->e_shnum = elf16_to_cpu(ehdr, lehdr.e_shnum); ehdr->e_shstrndx = elf16_to_cpu(ehdr, lehdr.e_shstrndx); if ((ehdr->e_phnum > 0) && (elf16_to_cpu(ehdr, lehdr.e_phentsize) != sizeof(Elf32_Phdr))) { /* Invalid program header size */ if (probe_debug) { fprintf(stderr, "ELF bad program header size\n"); } return -1; } if ((ehdr->e_shnum > 0) && (elf16_to_cpu(ehdr, lehdr.e_shentsize) != sizeof(Elf32_Shdr))) { /* Invalid section header size */ if (probe_debug) { fprintf(stderr, "ELF bad section header size\n"); } return -1; } return 0; } static int build_mem_elf64_ehdr(const char *buf, off_t len, struct mem_ehdr *ehdr) { Elf64_Ehdr lehdr; if ((uintmax_t)len < (uintmax_t)sizeof(lehdr)) { /* Buffer is to small to be an elf executable */ if (probe_debug) { fprintf(stderr, "Buffer is to small to hold ELF header\n"); } return -1; } memcpy(&lehdr, buf, sizeof(lehdr)); if (elf16_to_cpu(ehdr, lehdr.e_ehsize) != sizeof(Elf64_Ehdr)) { /* Invalid Elf header size */ if (probe_debug) { fprintf(stderr, "Bad ELF header size\n"); } return -1; } if (elf32_to_cpu(ehdr, lehdr.e_entry) > UINT32_MAX) { /* entry is to large */ if (probe_debug) { fprintf(stderr, "ELF e_entry to large\n"); } return -1; } if (elf32_to_cpu(ehdr, lehdr.e_phoff) > UINT32_MAX) { /* phoff is to large */ if (probe_debug) { fprintf(stderr, "ELF e_phoff to large\n"); } return -1; } if (elf32_to_cpu(ehdr, lehdr.e_shoff) > UINT32_MAX) { /* shoff is to large */ if (probe_debug) { fprintf(stderr, "ELF e_shoff to large\n"); } return -1; } ehdr->e_type = elf16_to_cpu(ehdr, lehdr.e_type); ehdr->e_machine = elf16_to_cpu(ehdr, lehdr.e_machine); ehdr->e_version = elf32_to_cpu(ehdr, lehdr.e_version); ehdr->e_entry = elf64_to_cpu(ehdr, lehdr.e_entry); ehdr->e_phoff = elf64_to_cpu(ehdr, lehdr.e_phoff); ehdr->e_shoff = elf64_to_cpu(ehdr, lehdr.e_shoff); ehdr->e_flags = elf32_to_cpu(ehdr, lehdr.e_flags); ehdr->e_phnum = elf16_to_cpu(ehdr, lehdr.e_phnum); ehdr->e_shnum = elf16_to_cpu(ehdr, lehdr.e_shnum); ehdr->e_shstrndx = elf16_to_cpu(ehdr, lehdr.e_shstrndx); if ((ehdr->e_phnum > 0) && (elf16_to_cpu(ehdr, lehdr.e_phentsize) != sizeof(Elf64_Phdr))) { /* Invalid program header size */ if (probe_debug) { fprintf(stderr, "ELF bad program header size\n"); } return -1; } if ((ehdr->e_shnum > 0) && (elf16_to_cpu(ehdr, lehdr.e_shentsize) != sizeof(Elf64_Shdr))) { /* Invalid section header size */ if (probe_debug) { fprintf(stderr, "ELF bad section header size\n"); } return -1; } return 0; } static int build_mem_ehdr(const char *buf, off_t len, struct mem_ehdr *ehdr) { unsigned char e_ident[EI_NIDENT]; int result; memset(ehdr, 0, sizeof(*ehdr)); if ((uintmax_t)len < (uintmax_t)sizeof(e_ident)) { /* Buffer is to small to be an elf executable */ if (probe_debug) { fprintf(stderr, "Buffer is to small to hold ELF e_ident\n"); } return -1; } memcpy(e_ident, buf, sizeof(e_ident)); if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) { /* No ELF header magic */ if (probe_debug) { fprintf(stderr, "NO ELF header magic\n"); } return -1; } ehdr->ei_class = e_ident[EI_CLASS]; ehdr->ei_data = e_ident[EI_DATA]; if ( (ehdr->ei_class != ELFCLASS32) && (ehdr->ei_class != ELFCLASS64)) { /* Not a supported elf class */ if (probe_debug) { fprintf(stderr, "Not a supported ELF class\n"); } return -1; } if ( (ehdr->ei_data != ELFDATA2LSB) && (ehdr->ei_data != ELFDATA2MSB)) { /* Not a supported elf data type */ if (probe_debug) { fprintf(stderr, "Not a supported ELF data format\n"); } return -1; } result = -1; if (ehdr->ei_class == ELFCLASS32) { result = build_mem_elf32_ehdr(buf, len, ehdr); } else if (ehdr->ei_class == ELFCLASS64) { result = build_mem_elf64_ehdr(buf, len, ehdr); } if (result < 0) { return result; } if ((e_ident[EI_VERSION] != EV_CURRENT) || (ehdr->e_version != EV_CURRENT)) { if (probe_debug) { fprintf(stderr, "Unknown ELF version\n"); } /* Unknwon elf version */ return -1; } return 0; } static int build_mem_elf32_phdr(const char *buf, struct mem_ehdr *ehdr, int idx) { struct mem_phdr *phdr; const char *pbuf; Elf32_Phdr lphdr; pbuf = buf + ehdr->e_phoff + (idx * sizeof(lphdr)); phdr = &ehdr->e_phdr[idx]; memcpy(&lphdr, pbuf, sizeof(lphdr)); if ( (elf32_to_cpu(ehdr, lphdr.p_filesz) > UINT32_MAX) || (elf32_to_cpu(ehdr, lphdr.p_memsz) > UINT32_MAX) || (elf32_to_cpu(ehdr, lphdr.p_offset) > UINT32_MAX) || (elf32_to_cpu(ehdr, lphdr.p_paddr) > UINT32_MAX) || (elf32_to_cpu(ehdr, lphdr.p_vaddr) > UINT32_MAX) || (elf32_to_cpu(ehdr, lphdr.p_align) > UINT32_MAX)) { fprintf(stderr, "Program segment size out of range\n"); return -1; } phdr->p_type = elf32_to_cpu(ehdr, lphdr.p_type); phdr->p_paddr = elf32_to_cpu(ehdr, lphdr.p_paddr); phdr->p_vaddr = elf32_to_cpu(ehdr, lphdr.p_vaddr); phdr->p_filesz = elf32_to_cpu(ehdr, lphdr.p_filesz); phdr->p_memsz = elf32_to_cpu(ehdr, lphdr.p_memsz); phdr->p_offset = elf32_to_cpu(ehdr, lphdr.p_offset); phdr->p_flags = elf32_to_cpu(ehdr, lphdr.p_flags); phdr->p_align = elf32_to_cpu(ehdr, lphdr.p_align); return 0; } static int build_mem_elf64_phdr(const char *buf, struct mem_ehdr *ehdr, int idx) { struct mem_phdr *phdr; const char *pbuf; Elf64_Phdr lphdr; pbuf = buf + ehdr->e_phoff + (idx * sizeof(lphdr)); phdr = &ehdr->e_phdr[idx]; memcpy(&lphdr, pbuf, sizeof(lphdr)); if ( (elf64_to_cpu(ehdr, lphdr.p_filesz) > UINT64_MAX) || (elf64_to_cpu(ehdr, lphdr.p_memsz) > UINT64_MAX) || (elf64_to_cpu(ehdr, lphdr.p_offset) > UINT64_MAX) || (elf64_to_cpu(ehdr, lphdr.p_paddr) > UINT64_MAX) || (elf64_to_cpu(ehdr, lphdr.p_vaddr) > UINT64_MAX) || (elf64_to_cpu(ehdr, lphdr.p_align) > UINT64_MAX)) { fprintf(stderr, "Program segment size out of range\n"); return -1; } phdr->p_type = elf32_to_cpu(ehdr, lphdr.p_type); phdr->p_paddr = elf64_to_cpu(ehdr, lphdr.p_paddr); phdr->p_vaddr = elf64_to_cpu(ehdr, lphdr.p_vaddr); phdr->p_filesz = elf64_to_cpu(ehdr, lphdr.p_filesz); phdr->p_memsz = elf64_to_cpu(ehdr, lphdr.p_memsz); phdr->p_offset = elf64_to_cpu(ehdr, lphdr.p_offset); phdr->p_flags = elf32_to_cpu(ehdr, lphdr.p_flags); phdr->p_align = elf64_to_cpu(ehdr, lphdr.p_align); return 0; } static int build_mem_phdrs(const char *buf, off_t len, struct mem_ehdr *ehdr, uint32_t flags) { size_t phdr_size, mem_phdr_size, i; /* e_phnum is at most 65535 so calculating * the size of the program header cannot overflow. */ /* Is the program header in the file buffer? */ phdr_size = 0; if (ehdr->ei_class == ELFCLASS32) { phdr_size = sizeof(Elf32_Phdr); } else if (ehdr->ei_class == ELFCLASS64) { phdr_size = sizeof(Elf64_Phdr); } else { fprintf(stderr, "Invalid ei_class?\n"); return -1; } phdr_size *= ehdr->e_phnum; if ((uintmax_t)(ehdr->e_phoff + phdr_size) > (uintmax_t)len) { /* The program header did not fit in the file buffer */ if (probe_debug || (flags & ELF_SKIP_FILESZ_CHECK)) { fprintf(stderr, "ELF program headers truncated" " have %ju bytes need %ju bytes\n", (uintmax_t)len, (uintmax_t)(ehdr->e_phoff + phdr_size)); } return -1; } /* Allocate the e_phdr array */ mem_phdr_size = sizeof(ehdr->e_phdr[0]) * ehdr->e_phnum; ehdr->e_phdr = xmalloc(mem_phdr_size); for(i = 0; i < ehdr->e_phnum; i++) { struct mem_phdr *phdr; int result; result = -1; if (ehdr->ei_class == ELFCLASS32) { result = build_mem_elf32_phdr(buf, ehdr, i); } else if (ehdr->ei_class == ELFCLASS64) { result = build_mem_elf64_phdr(buf, ehdr, i); } if (result < 0) { return result; } /* Check the program headers to be certain * they are safe to use. * Skip the check if ELF_SKIP_FILESZ_CHECK is set. */ phdr = &ehdr->e_phdr[i]; if (!(flags & ELF_SKIP_FILESZ_CHECK) && (uintmax_t)(phdr->p_offset + phdr->p_filesz) > (uintmax_t)len) { /* The segment does not fit in the buffer */ if (probe_debug) { fprintf(stderr, "ELF segment not in file\n"); } return -1; } if (phdr->p_paddr != (unsigned long long)-1 && (phdr->p_paddr + phdr->p_memsz) < phdr->p_paddr) { /* The memory address wraps */ if (probe_debug) { fprintf(stderr, "ELF address wrap around\n"); } return -1; } /* Remember where the segment lives in the buffer */ phdr->p_data = buf + phdr->p_offset; } return 0; } static int build_mem_elf32_shdr(const char *buf, struct mem_ehdr *ehdr, int idx) { struct mem_shdr *shdr; const char *sbuf; int size_ok; Elf32_Shdr lshdr; sbuf = buf + ehdr->e_shoff + (idx * sizeof(lshdr)); shdr = &ehdr->e_shdr[idx]; memcpy(&lshdr, sbuf, sizeof(lshdr)); if ( (elf32_to_cpu(ehdr, lshdr.sh_flags) > UINT32_MAX) || (elf32_to_cpu(ehdr, lshdr.sh_addr) > UINT32_MAX) || (elf32_to_cpu(ehdr, lshdr.sh_offset) > UINT32_MAX) || (elf32_to_cpu(ehdr, lshdr.sh_size) > UINT32_MAX) || (elf32_to_cpu(ehdr, lshdr.sh_addralign) > UINT32_MAX) || (elf32_to_cpu(ehdr, lshdr.sh_entsize) > UINT32_MAX)) { fprintf(stderr, "Program section size out of range\n"); return -1; } shdr->sh_name = elf32_to_cpu(ehdr, lshdr.sh_name); shdr->sh_type = elf32_to_cpu(ehdr, lshdr.sh_type); shdr->sh_flags = elf32_to_cpu(ehdr, lshdr.sh_flags); shdr->sh_addr = elf32_to_cpu(ehdr, lshdr.sh_addr); shdr->sh_offset = elf32_to_cpu(ehdr, lshdr.sh_offset); shdr->sh_size = elf32_to_cpu(ehdr, lshdr.sh_size); shdr->sh_link = elf32_to_cpu(ehdr, lshdr.sh_link); shdr->sh_info = elf32_to_cpu(ehdr, lshdr.sh_info); shdr->sh_addralign = elf32_to_cpu(ehdr, lshdr.sh_addralign); shdr->sh_entsize = elf32_to_cpu(ehdr, lshdr.sh_entsize); /* Now verify sh_entsize */ size_ok = 0; switch(shdr->sh_type) { case SHT_SYMTAB: size_ok = shdr->sh_entsize == sizeof(Elf32_Sym); break; case SHT_RELA: size_ok = shdr->sh_entsize == sizeof(Elf32_Rela); break; case SHT_DYNAMIC: size_ok = shdr->sh_entsize == sizeof(Elf32_Dyn); break; case SHT_REL: size_ok = shdr->sh_entsize == sizeof(Elf32_Rel); break; case SHT_NOTE: case SHT_NULL: case SHT_PROGBITS: case SHT_HASH: case SHT_NOBITS: default: /* This is a section whose entsize requirements * I don't care about. If I don't know about * the section I can't care about it's entsize * requirements. */ size_ok = 1; break; } if (!size_ok) { fprintf(stderr, "Bad section header(%x) entsize: %lld\n", shdr->sh_type, shdr->sh_entsize); return -1; } return 0; } static int build_mem_elf64_shdr(const char *buf, struct mem_ehdr *ehdr, int idx) { struct mem_shdr *shdr; const char *sbuf; int size_ok; Elf64_Shdr lshdr; sbuf = buf + ehdr->e_shoff + (idx * sizeof(lshdr)); shdr = &ehdr->e_shdr[idx]; memcpy(&lshdr, sbuf, sizeof(lshdr)); if ( (elf64_to_cpu(ehdr, lshdr.sh_flags) > UINT64_MAX) || (elf64_to_cpu(ehdr, lshdr.sh_addr) > UINT64_MAX) || (elf64_to_cpu(ehdr, lshdr.sh_offset) > UINT64_MAX) || (elf64_to_cpu(ehdr, lshdr.sh_size) > UINT64_MAX) || (elf64_to_cpu(ehdr, lshdr.sh_addralign) > UINT64_MAX) || (elf64_to_cpu(ehdr, lshdr.sh_entsize) > UINT64_MAX)) { fprintf(stderr, "Program section size out of range\n"); return -1; } shdr->sh_name = elf32_to_cpu(ehdr, lshdr.sh_name); shdr->sh_type = elf32_to_cpu(ehdr, lshdr.sh_type); shdr->sh_flags = elf64_to_cpu(ehdr, lshdr.sh_flags); shdr->sh_addr = elf64_to_cpu(ehdr, lshdr.sh_addr); shdr->sh_offset = elf64_to_cpu(ehdr, lshdr.sh_offset); shdr->sh_size = elf64_to_cpu(ehdr, lshdr.sh_size); shdr->sh_link = elf32_to_cpu(ehdr, lshdr.sh_link); shdr->sh_info = elf32_to_cpu(ehdr, lshdr.sh_info); shdr->sh_addralign = elf64_to_cpu(ehdr, lshdr.sh_addralign); shdr->sh_entsize = elf64_to_cpu(ehdr, lshdr.sh_entsize); /* Now verify sh_entsize */ size_ok = 0; switch(shdr->sh_type) { case SHT_SYMTAB: size_ok = shdr->sh_entsize == sizeof(Elf64_Sym); break; case SHT_RELA: size_ok = shdr->sh_entsize == sizeof(Elf64_Rela); break; case SHT_DYNAMIC: size_ok = shdr->sh_entsize == sizeof(Elf64_Dyn); break; case SHT_REL: size_ok = shdr->sh_entsize == sizeof(Elf64_Rel); break; case SHT_NOTE: case SHT_NULL: case SHT_PROGBITS: case SHT_HASH: case SHT_NOBITS: default: /* This is a section whose entsize requirements * I don't care about. If I don't know about * the section I can't care about it's entsize * requirements. */ size_ok = 1; break; } if (!size_ok) { fprintf(stderr, "Bad section header(%x) entsize: %lld\n", shdr->sh_type, shdr->sh_entsize); return -1; } return 0; } static int build_mem_shdrs(const char *buf, off_t len, struct mem_ehdr *ehdr, uint32_t flags) { size_t shdr_size, mem_shdr_size, i; /* e_shnum is at most 65536 so calculating * the size of the section header cannot overflow. */ /* Is the program header in the file buffer? */ shdr_size = 0; if (ehdr->ei_class == ELFCLASS32) { shdr_size = sizeof(Elf32_Shdr); } else if (ehdr->ei_class == ELFCLASS64) { shdr_size = sizeof(Elf64_Shdr); } else { fprintf(stderr, "Invalid ei_class?\n"); return -1; } shdr_size *= ehdr->e_shnum; if ((uintmax_t)(ehdr->e_shoff + shdr_size) > (uintmax_t)len) { /* The section header did not fit in the file buffer */ if (probe_debug) { fprintf(stderr, "ELF section header does not fit in file\n"); } return -1; } /* Allocate the e_shdr array */ mem_shdr_size = sizeof(ehdr->e_shdr[0]) * ehdr->e_shnum; ehdr->e_shdr = xmalloc(mem_shdr_size); for(i = 0; i < ehdr->e_shnum; i++) { struct mem_shdr *shdr; int result; result = -1; if (ehdr->ei_class == ELFCLASS32) { result = build_mem_elf32_shdr(buf, ehdr, i); } else if (ehdr->ei_class == ELFCLASS64) { result = build_mem_elf64_shdr(buf, ehdr, i); } if (result < 0) { return result; } /* Check the section headers to be certain * they are safe to use. * Skip the check if ELF_SKIP_FILESZ_CHECK is set. */ shdr = &ehdr->e_shdr[i]; if (!(flags & ELF_SKIP_FILESZ_CHECK) && (shdr->sh_type != SHT_NOBITS) && (uintmax_t)(shdr->sh_offset + shdr->sh_size) > (uintmax_t)len) { /* The section does not fit in the buffer */ if (probe_debug) { fprintf(stderr, "ELF section %zd not in file\n", i); } return -1; } if ((shdr->sh_addr + shdr->sh_size) < shdr->sh_addr) { /* The memory address wraps */ if (probe_debug) { fprintf(stderr, "ELF address wrap around\n"); } return -1; } /* Remember where the section lives in the buffer */ shdr->sh_data = (unsigned char *)(buf + shdr->sh_offset); } return 0; } static void read_nhdr(const struct mem_ehdr *ehdr, ElfNN_Nhdr *hdr, const unsigned char *note) { memcpy(hdr, note, sizeof(*hdr)); hdr->n_namesz = elf32_to_cpu(ehdr, hdr->n_namesz); hdr->n_descsz = elf32_to_cpu(ehdr, hdr->n_descsz); hdr->n_type = elf32_to_cpu(ehdr, hdr->n_type); } static int build_mem_notes(struct mem_ehdr *ehdr) { const unsigned char *note_start, *note_end, *note; size_t note_size, i; /* First find the note segment or section */ note_start = note_end = NULL; for(i = 0; !note_start && (i < ehdr->e_phnum); i++) { struct mem_phdr *phdr = &ehdr->e_phdr[i]; /* * binutils <= 2.17 has a bug where it can create the * PT_NOTE segment with an offset of 0. Therefore * check p_offset > 0. * * See: http://sourceware.org/bugzilla/show_bug.cgi?id=594 */ if (phdr->p_type == PT_NOTE && phdr->p_offset) { note_start = (unsigned char *)phdr->p_data; note_end = note_start + phdr->p_filesz; } } for(i = 0; !note_start && (i < ehdr->e_shnum); i++) { struct mem_shdr *shdr = &ehdr->e_shdr[i]; if (shdr->sh_type == SHT_NOTE) { note_start = shdr->sh_data; note_end = note_start + shdr->sh_size; } } if (!note_start) { return 0; } /* Walk through and count the notes */ ehdr->e_notenum = 0; for(note = note_start; note < note_end; note+= note_size) { ElfNN_Nhdr hdr; read_nhdr(ehdr, &hdr, note); note_size = sizeof(hdr); note_size += _ALIGN(hdr.n_namesz, 4); note_size += _ALIGN(hdr.n_descsz, 4); ehdr->e_notenum += 1; } /* Now walk and normalize the notes */ ehdr->e_note = xmalloc(sizeof(*ehdr->e_note) * ehdr->e_notenum); for(i = 0, note = note_start; note < note_end; note+= note_size, i++) { const unsigned char *name, *desc; ElfNN_Nhdr hdr; read_nhdr(ehdr, &hdr, note); note_size = sizeof(hdr); name = note + note_size; note_size += _ALIGN(hdr.n_namesz, 4); desc = note + note_size; note_size += _ALIGN(hdr.n_descsz, 4); if (((note+note_size) > note_end) || ((note+note_size) < note_start)) { /* Something is very wrong here ! Most likely the note * header is invalid */ fprintf(stderr, "ELF Note corrupted !\n"); return -1; } if ((hdr.n_namesz != 0) && (name[hdr.n_namesz -1] != '\0')) { /* If note name string is not null terminated, just * warn user about it and continue processing. This * allows us to parse /proc/kcore on older kernels * where /proc/kcore elf notes were not null * terminated. It has been fixed in 2.6.19. */ fprintf(stderr, "Warning: Elf Note name is not null " "terminated\n"); } ehdr->e_note[i].n_type = hdr.n_type; ehdr->e_note[i].n_name = (char *)name; ehdr->e_note[i].n_desc = desc; ehdr->e_note[i].n_descsz = hdr.n_descsz; } return 0; } void free_elf_info(struct mem_ehdr *ehdr) { free(ehdr->e_phdr); free(ehdr->e_shdr); memset(ehdr, 0, sizeof(*ehdr)); } int build_elf_info(const char *buf, off_t len, struct mem_ehdr *ehdr, uint32_t flags) { int result; result = build_mem_ehdr(buf, len, ehdr); if (result < 0) { return result; } if ((ehdr->e_phoff > 0) && (ehdr->e_phnum > 0)) { result = build_mem_phdrs(buf, len, ehdr, flags); if (result < 0) { free_elf_info(ehdr); return result; } } if ((ehdr->e_shoff > 0) && (ehdr->e_shnum > 0)) { result = build_mem_shdrs(buf, len, ehdr, flags); if (result < 0) { free_elf_info(ehdr); return result; } } result = build_mem_notes(ehdr); if (result < 0) { free_elf_info(ehdr); return result; } return 0; }