Jerasure: A Library in C Facilitating Erasure Coding forrage
Applications

Version 2.0

James S. Plarik Kevin M. Greenan

Technical Report UT-EECS-14-721
Department of Electrical Engineering and Computer Science
University of Tennessee
Knoxuville, TN 37996

http://www.cs.utk.edu/ ~ plank/plank/papers/UT-EECS-14-721.html
Source codehttps://bitbucket.org/jimplank/jerasure

This describes revision 2.0 of the code.

Abstract

This paper descibes version 2.0jefasure, a library in C that supports erasure coding in storage eatdins.
In this paper, we describe both the techniques and algasitiptas the interface to the code. Thus, this serves as a

quasi-tutorial and a programmer’s guide.

Version 2.0 does not change the interfacgadisure 1.2 What it does is change the software for doing the Galois
Field back-end. It now uses GF-Complete, which is much mesetfle and powerful than the previous Galois Field
arithmetic library. In particular, it leverages Intel SIMBstructions so that Reed-Solomon coding may be blazingly

fast.
In order to usgerasure, you must first download and install GF-Complete. Both lilmmare posted and main-

tained at bitbucket.com.

If You Use This Library or Document

Please send me an email to let me know how it goes. One of the iwayhich | am evaluated both internally and
externally is by the impact of my work, and if you have founi$tibrary and/or this document useful, | would like to

be able to document it. Please send maplank@cs.utk.edu
The library itself is protected by the New BSD License. Itiisef to use and modify within the bounds of that

License. None of the techniques implemented in this libreye been patented.

*plank@cs.utk.edu , 865-974-4397, This material is based upon work supporyeithd National Science Foundation under grants CNS-
0615221 and CNS-1034216. Kevin Greenan works at Box, IncogmAltos, CA.

Finding the Code
Please download the code from:
https://bitbucket.org/jimplank/jerasure
Before you compilgerasure, you must download, compile and install GF-Complete. Taatailable from
https://bitbucket.org/jimplank/gf-complete
Both libraries useutoconf, which means that you go through the following steps fronmtiaén directory:
UNIX> ./configure
UNIX> make

UNIX> sudo make install

The example programs are in the directeyamples The source code is in the directarc.

History of Jerasure

This is the third major revision gérasure. Jerasures revision history is as follows:

e Revision 1.0: James S. Plank, September, 2007 [Pla07b].

e Revision 1.2; James S. Plank, Scott Simmerman and Catherisshuman. August, 2008 [PSS08]. This
revision added Blaum-Roth and Liber8tion coding to thedilgr an example encoder and decoder, and beefed
up examples.

e Revision 1.2A: This is identical to revision 1.2, exceptses the new BSD license instead of the Gnu LGPL
license. Itis available astar file in http://web.eecs.utk.edu/ ~ plank/plank/papers/Jerasure-1.2A tar

e Revision 2.0: James S. Plank and Kevin Greenan, Januar,[B@14]. This revision changes the back end
implementation of Galois Fields to GF-Completes:/bitbucket.org/jimplank/gf-complete), which
allows jerasure to leverage SIMD operations for extremely fast encoding decbding. All of the examples
have been updated, and a few examples have been added tostertmhow one may tweak the underlying
Galois Field to exploit further features of GF-Complete.

CONTENTS

Contents

1

10

11

12

Introduction
The Modules of the Library
Matrix-Based Coding In General

Bit-Matrix Coding In General
4.1 Using a schedule rather than a bit-matrix oo Lo

MDS Codes
Part 1 of the Library: Galois Field Arithmetic

Part 2 of the Library: Kernel Routines

7.1 Matrix/Bitmatrix/Schedule Creation Routines,
7.2 EncodingRoULINES e e e e e
7.3 Decoding ROULINES e e e e e e
7.4 DotProductRoUtiNeS e e e
7.5 Basic Matrix Operations e e e
7.6 Statistics e e e
7.7 Example Programsto DemonstrateUse e

Part 3 of the Library: Classic Reed-Solomon Coding Routins

8.1 Vandermonde Distribution Matrices e e
8.2 Procedures Related to Reed-Solomon Coding OptimizeRAD-6
8.3 Example Programsto DemonstrateUse e

Part 4 of the Library: Cauchy Reed-Solomon Coding Routines

9.1 TheProceduresincauchy.c e
9.2 Example Programsto DemonstrateUse
9.3 Extending the Parameter Space for Optimal Cauchy RANDaiices

Part 5 of the Library: Minimal Density RAID-6 Coding
10.1 Example Programto Demonstrate Use o i e

Example Encoder and Decoder
11.1 Judicious Selection of Buffer and PacketSizes L

Changing the Underlying Galois Field

1 INTRODUCTION 4

1 Introduction

Erasure coding for storage applications is growing in intigroce as storage systems grow in size and complexity. This
paper describgigrasure, a library in C that supports erasure coding applicatidesasure has been designed to be
modular, fast and flexible. It is our hope that storage desigand programmers will findrasure to be a convenient
tool to add fault tolerance to their storage systems.

Jerasuresupports dorizontalmode of erasure codes. We assume that we halevices that hold data. To that,
we will addm devices whose contents will be calculated from the originddvices. If the erasure code i#@aximum
Distance Separable (MDS$pde, then the entire system will be able to tolerate thedbasym devices.

X=X

5.0 .oe.sTX-8 5.5

(k+m) devices with up to The contents of the original
k data devices. m coding devices. m erasures. k devices are recalculated.
(a) Encoding. (b) Decoding.

Figure 1: The act oéncodingtakes the contents @f data devices and encodes themmrtoding devices. The act
of decodingtakes some subset of the collection(éf+ m) total devices and from them recalcalates the original
devices of data.

As depicted in Figure 1, the act of encoding takes the oridirdata devices, and from them calculatesoding
devices. The act of decoding takes the collectioiikof- m) devices with erasures, and from the surviving devices
recalculates the contents of the origikalata devices.

Most codes have a third parametey which is theword size The description of a code views each device as
havingw bits worth of data. The data devices are dendigdhroughD,_; and the coding devices are denotégd
throughC,,,—1. Each deviceD; or C; holdsw bits, denoted!; o, . . . d; w—1 @ndc; o, . .. ¢; »—1. In reality of course,
devices hold megabytes of data. To map the description ofla tmits realization in a real system, we do one of two
things:

1. Whenw € {8, 16, 32}, we can consider each collectionofbits to be a byte, short word or word respectively.
Consider the case when= 8. We may view each device to holél bytes. The first byte of each coding device
will be encoded with the first byte of each data device. Theseédyte of each coding device will be encoded
with the second byte of each data device. And so on. This is$tewdard Reed-Solomon coding works, and it
should be clear how it works when = 16 orw = 32.

2. Most other codes work by defining each codingcitto be the bitwise exclusive-or (XOR) of some subset of
the other bits. To implement these codes in a real systemssuenze that the device is composedopackets
of equal size. Now each packet is calculated to be the bitesistusive-or of some subset of the other packets.
In this way, we can take advantage of the fact that we can perKkOR operations on whole computer words
rather than on bits.

The process is illustrated in Figure 2. In this figure, we assthatk = 4, m = 2 andw = 4. Suppose that a
code is defined such that coding bit, is goverened by the equation:

c1,0 =do,o D di,1 ©dao ®dss,

2 THE MODULES OF THE LIBRARY 5

where is the XOR operation. Figure 2 shows how the coding packeesponding ta; ¢ is calculated from
the data packets correspondingii, di1 1, d2,2 andds 3. We call the size of each packet thacket sizeand
the size ofw packets to be theoding block sizeThe packetsize must be a multiple of the computer’s worel siz
so obviously, the coding block size will be a multiplew# packetsize.

D, D, D, D; G, C,

N\

N\
N\

Figure 2: Although codes are described on systems bits, their implementation employsacketsthat are much
larger. Each packet in the implementation corresponds tib af bhe description. This figure is showing how the
equatiorncy o = do,o @ di1,1 ® do,2 ® ds 3 is realized in an implementation.

2 The Modules of the Library

This library is broken into five modules, each with its own éeefile and implementation in C. Typically, when using
a code, one only needs three of these moduakis, jerasure and one of the others. The modules are:

1. galois.h/galois.c These are wrappers around GF-Complete so jdrasure’s interface from version 1.2 is
maintained.

2. jerasure.h/jerasure.c These are kernel routines that are common to most erasdes.cdhey do not depend
on any module other thagalois They include support for matrix-based coding and decqdiitgnatrix-based
coding and decoding, conversion of bit-matrices to schesjuhatrix and bit-matrix inversion.

3. reed.sol.h/reedsol.c These are procedures for creating generator matriceg$teraatic Reed-Solomon cod-
ing [RS60, Pla97, PD05]. They also include the optimizedieoer of Reed-Solomon encoding for RAID-6 as
discussed in [Anv07].

4. cauchy.h/cauchy.c These are procedures for performing Cauchy Reed-Solomdimg [BKK*95, PX06],
which employs a different matrix construction than clag®&ed-Solomon coding. We include support for
creating optimal Cauchy generator matrices for RAID-6, fimatreating generator matrices that are better than
those currently published.

5. liberation.h/liberation.c: These are procedures for performing RAID-6 coding and decpwith minimal
density MDS codes [PBV11] — the RAID-6 Liberation codes [l8h Blaum-Roth codes [BR99] and the
RAID-6 Liber8tion code [Pla09]. These are bit-matrix cotlest perform much better than the Reed-Solomon
variants and better than EVENODD coding [BBBM95]. In somsesa they even outperform RDP [CE®],
which is the best currently known RAID-6 code.

Each module is described in its own section below. Additiignthere are example programs that show the usage
of each module.

3 MATRIX-BASED CODING IN GENERAL 6

3 Matrix-Based Coding In General
The mechanics of matrix-based coding are explained in gietatl in [Pla97]. We give a high-level overview here.

Authors’ Caveat: We are using old nomenclature of “distribution matricesy standard coding theory,
the “distribution matrix” is the transpose of the Generatwratrix. In the next revision gérasure, we
will update the nomenclature to be more consistent withsitasoding theory.

Suppose we havk data words andn coding words, each composedwfbits. We can describe the state of a
matrix-based coding system by a matrix-vector product g@éctkd in Figure 3. The matrix is calleddistribution
matrix and is a(k + m) x k matrix. The elements of the matrix are numbersGR'(2*) for some value ofw.
This means that they are integers between 02hd- 1, and arithmetic is performed using Galois Field arithmetic
addition is equal to XOR, and multiplication is implemented variety of ways. The Galois Field arithmetic library
in [Pla07a] has procedures which implement Galois Fielitharétic.

1jfoJo]|o]-]oO D,
of1]o]o]-]o0 D,
oJol1]o0]|-]oO D,
ojlo]o]1]-]o0 D;
. _
ojo]oj]o|-]1 Dy,
/Yo.o 1Yo,/ X0z /Ya,.? | Xoas G
Koo | Xis | Xiz| Xis |-+ | Xiks Dy, &
Data
Distribution Matrix Data & Coding

Figure 3: Using a matrix-vector product to describe a codiygiem.

The topk rows of the distribution matrix compsosekax k identity matrix. The remainingn rows are called
the coding matrix and are defined in a variety of ways [Rab89, Pre89, BRE, PD05]. The distribution matrix is
multiplied by a vector that contains the data words and gialgroduct vector containing both the data and the coding
words. Therefore, to encode, we need to perfotrdot products of the coding matrix with the data.

To decode, we note that each word in the system has a coridiggonw of the distribution matrix. When devices
fail, we create a decoding matrix frolnrows of the distribution that correspond to non-failed desgi Note that this
matrix multiplied by the original data equals tkesurvivors whose rows we selected. If we invert this matrig an
multiply it by both sides of the equation, then we are givereaadling equation — the inverted matrix multiplied by
the survivors equals the original data.

4 Bit-Matrix Coding In General

Bit-matrix coding is first described in the original CauchgeRl-Solomon coding paper [BK#95]. To encode and
decode with a bit-matrix, we expand a distribution matrixGt#'(2*) by a factor ofw in each direction to yield

4 BIT-MATRIX CODING IN GENERAL 7

aw(k + m) x wk matrix which we call éinary distribution matrix (BDM)We multiply that by avk element vector,
which is composed o bits from each data device. The product iw@ + m) element vector composed of bits
from each data and coding device. This is depicted in Figuteid useful to visualize the matrix as being composed
of w x w sub-matrices.

k (w x w) bit matrices
w element bit vectors

8 I {000 \< D,

g _ -

b olr1]ol|~]o D, D,

o | | -

~

2

: olo| 1 0 D, D,
ololol-l1] « U = [[p,

-g Xoo | Xou | Xoz | = [Xox, D, C,

< -

g L

E Xl,{) X/,l X},z Xl,k-l, Data CI

N -

5

& Koo Xor1 | X2 | -+ Ponsi C,..

5 L
Binary Distribution Matrix Data +

Coding

Figure 4: Describing a coding system with a bit-matrix-eegroduct.

As with the matrix-vector product i/ F'(2™), each row of the product corresponds to a row of the BDM, and is
computed as the dot product of that row and the data bitseSithelements are bits, we may perform the dot product
by taking the XOR of each data bit whose element in the matridv is one. In other words, rather than performing
the dot product with additions and multiplications, we peni it only with XORs. Moreover, the performance of this
dot product is directly related to the number of ones in tive réherefore, it behooves us to find matrices with few
ones.

Decoding with bit-matrices is the same as with matrices GVE(2"), except now each device correspondsto
rows of the matrix, rather than one. Also keep in mind thattarbthis description corresponds to a packet in the
implementation.

While the classic construction of bit-matrices starts veititandard distribution matrix iG'F'(2"), it is possible
to construct bit-matrices that have no relation to Galo&d-arithmetic yet still have desired coding and decoding
properties. The minimal density RAID-6 codes work in thistfen.

4.1 Using a schedule rather than a bit-matrix

Consider the act of encoding with a bit-matrix. We give annegke in Figure 5, wheré = 3, w = 5, and we are
calculating the contents of one coding device. The stréoghard way to encode is to calculate the five dot products
for each of the five bits of the coding device, and we can dolihataversing each of the five rows, performing XORs
where there are ones in the matrix.

5 MDS CODES 8

i

Figure 5: An example super-row of a bit-matrix for= 3, w = 5.

Since the matrix is sparse, it is more efficient to precomthéeoding operations, rather than traversing the matrix
each time one encodes. The data structure that we use teseapencoding is achedulewhich is a list of 5-tuples:

< op, 84, Sp, dq, dp >,

whereop is an operation code: 0 for copy and 1 for XOf is the id of the source device anglis the bit of the source

device. The last two elements; andd, are the destination device and bit. By convention, we idgdgvices using

integers from zeroté + m — 1. Anid ¢ < k identifies data devic®,, and an idi > k identifies coding devic€’; .
A schedule for encoding using the bit-matrix in Figure 5 iewh in Figure 6.

<0,0,0,3,0>,<1,1,1,3,0>,< 1,2,2,3,0 >, co,0 =doo®d1,1 Ddao

<0,0,1,3,1><1,1,2,3,1>,<1,2,3,3,1 >, co,1 = do,1 Ddi2 Ddags

<0,0,2,3,2>,<1,1,2,3,2>,<1,1,3,3,2>,<1,2,4,3,2>, | co2=do2Pdi2Pd13Bdaa

<0,0,3,3,3>,<1,1,4,3,3>,<1,2,0,3,3 >, co,3 =do3z®d14aDdag

<0,0,4,3,4>,<1,1,0,3,4>,<1,2,0,3,4>,<1,2,1,3,4> . | coa =dpa B d1,0Bdoo®da
(a) (b)

Figure 6: A schedule of bit-matrix operations for the bittrhain Figure 5. (a) shows the schedule, and (b) shows the
dot-product equations corresponding to each line of thecale.

As noted in [HDRTO05, Pla08], one can derive schedules fontatrix encoding and decoding that make use of
common expressions in the dot products, and therefore aforpethe bit-matrix-vector product with fewer XOR op-
erations than simply traversing the bit-matrix. This is FRBP encoding works with optimal performance [CEGY],
even though there are more thiam ones in the lastv rows of its BDM. We term such schedulirsgnartscheduling,
and scheduling by simply traversing the mattixmbscheduling.

There are additional techniques for scheduling that wotkeb¢han what we have implemented here [HLCO7,
Pla10, PSR12]. Embedding these witfgnasure is the topic of future work.

5 MDS Codes

A code is MDS if it can recover the data following the failureamy m devices. If a matrix-vector product is used
to define the code, then it is MDS if every combinationkofows composes an invertible matrix. If a bit-matrix is
used, then we definesuper-rowto be a row’s worth ofv x w submatrices. The code is MDS if every combination
of k£ super-rows composes an invertible matrix. Again, one mayegge an MDS code using standard techniques
such as employing a Vandermonde matrix [PDO5] or Cauchyixmpgab89, BKK95]. However, there are other
constructions that also yield MDS matrices, such as EVEN@D#ing [BBBM95, BBV96], RDP coding [CEG04,
Bla06], the STAR code [HX05], and the minimal density RAI:@&des [PBV11].

6 PART 1 OF THE LIBRARY: GALOIS FIELD ARITHMETIC 9

6 Part 1 of the Library: Galois Field Arithmetic

The filesgalois.h and galois.ccontain procedures for Galois Field arithmeticG#'(2*) for 1 < w < 32. They
contains procedures for single arithmetic operationsXfoR-ing a region of bytes, and for performing multiplicatio
of a region of bytes by a constant@F'(2%), GF(2'6) andGF(23?). They are wrappers around GF-Complete, and
can inherit all of the functionality and flexibility of GF-@aplete.

For the purposes gérasure, the following procedures fromalois.handgalois.care used:

galoissingle multiply(int a, int b, int w) andgalois single divide(int a, int b, int w) : These perform multi-
plication and division on single elemergsndb of GF(2%).

galoisregion_xor(char *rl, char *r2, char *r3, int nbytes) : This XORs two regions of bytes] andr2 and
places the sum ir3. Note thatr3 may be equal tol or r2 if we are replacing one of the regions by the sum.
Nbytesmust be a multiple of the machind@ng word size.

galoisw08_region_multiply(char *region, int multby, int nbytes, char *r2, in t add): This multiplies an
entire region of bytes by the constantiltby in GF(28). If r2 is NULL thenregionis overwritten. Otherwise,

if add is zero, the products are placedrix If add is non-zero, then the products are XOR'd with the bytes
inr2.

galoiswl16_region_multiply() andgaloisw32region_multiply() are identical tayalois wO8_region_multiply() ,
except they are id/ F'(216) andG F(23?) respectively.

galois changetechnique(gft *gf, int w) : This allows you to create your own custom implementatioBalois
Field arithmetic from GF-Complete. To do this, please a@ate gf_from _argv() or gf_init _hard() from the
GF-Complete manual. Those procedures allow you to cregft¢,@nd then you cafjalois changetechnique()
with this gf_t to makejerasure use it.

galoisinit _field() and galois.init_compositefield() will create gf_t pointers using the parameters from GF-
Complete. We recommend, however, that youarsate gf_from _argv() or gf_init _hard() instead.

galoisgetfield_ptr(int w) returns a pointer to thgf_t that is currently being used hgrasure for the given
value ofw.

In section 12, we go over some example programs that chaeg@dlois Field. We don’t do it here, because we
feel it clutters up the description at this point.

7 Part 2 of the Library: Kernel Routines

The filesjerasure.h andjerasure.c implement procedures that are common to many aspects afigodie give
example programs that make use of them in Section 7.7 below.

Before describing the procedures that compesasure.c, we detail the arguments that are common to multiple
procedures:

intk: The number of data devices.
int m: The number of coding devices.

int w: The word size of the code.

PART 2 OF THE LIBRARY: KERNEL ROUTINES 10

e int packetsize The packet size as defined in section 1. This must be a natiiigizeof(long)

e int size: The total number of bytes per device to encode/decode. mhg& be a multiple ogizeof(long) If a
bit-matrix is being employed, then it must be a multiplgoatketsize * w If one desires to encode data blocks
that do not conform to these restrictions, than one mustipadata blocks with zeroes so that the restrictions
are met.

e int *matrix : This is an array wittk*m elements that represents the coding matrix — i.e. thenfastws of
the distribution matrix. Its elements must be between 0 2hd- 1. The element in row and columnyj is
in matrix[i*k+j] .

e int*bitmatrix : Thisis an array ofv*m*w*k elements that compose the lash rows of the BDM. The element
in row ¢ and columry is in bitmatrix[i*k*w+j]

e char **data _ptrs: This is an array ok pointers tosizebytes worth of data. Each of these must be long word
aligned.

e char **coding _ptrs: This is an array om pointers tosize bytes worth of coding data. Each of these must be
long word aligned.

e int *erasures: This is an array of id’s of erased devices. Id’'s are numbeta®en 0 andk+m-1 as described
in Section 4.1. If there are erasures, then elements 0 through 1 of erasuresidentify the erased devices,
anderasuresg] must equal -1.

e int *erased: This is an alternative way of specifying erasures. Itkis-m element array. Elementf the array
represents the device with id If erasedf] equals 0, then deviceis working. If erasedf] equals 1, then it is
erased.

e int **schedule: This is an array of 5-element integer arrays. It represaistshedule as defined in Section 4.1.
If there areo operations in the schedule, thechedulemust have at least+ 1 elements, andchedulep][0]
should equal -1.

e int ***cache: Whenm equals 2, there are few enough combinations of failuresahatcan precompute all
possible decoding schedules. This is held indaehevariable. We will not describe its structure — just that it
is an(int ***) .

e introw _k_ones Whenm > 1 and the first row of the coding matrix is composed of all ortesnthere are times
when we can improve the performance of decoding by not faligwhe methodology described in Section 3.
This is true when coding device zero is one of the survivard,raore than one data device has been erased. In
this case, it is better to decode all but one of the data dedsealescribed in Section 3, but decode the last data
device using the other data devices and coding device zerothls reason, some of the decoding procedures
take a paramateow _k_ones which should be one if the first row ofiatrix is all ones. The same optimization
is available when the firgb rows ofbitmatrix composeék identity matrices frow_k_onesshould be set to one
when this is true as well.

e int *decoding_matrix: This is ak x k matrix orwk x wk bit-matrix that is used to decode. It is the matrix
constructed by employing relevant rows of the distributieaitrix and inverting it.

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 11

e int *dm _ids: As described in Section 3, we create the decoding matrixelgcngk rows of the distribution

7.1

matrix that correspond to surviving devices, and then iivgthat matrix. This yieldslecodingmatrix. The
product ofdecodingmatrix and these survivors is the original datém_ids is a vector withk elements that
contains the id’s of the devices corresponding to the rowth®flecoding matrix. In other words, this contains
the id’s of the survivors. When decoding with a bit-matdix_ids still hask elements — these are the id’s of
the survivors that correspond to thesuper-rows of the decoding matrix.

Matrix/Bitmatrix/Schedule Creation Routines

When we use an argument from the list above, we omit its typbrievity.

e int *jerasure _matrix _to_bitmatrix(k, m, w, matrix) : This converts an x k matrix in GF'(2*) to awm x wk

7.2

bit-matrix, using the technigue described in [BKBS5]. If matrix is a coding matrix for an MDS code, then
the returned bit-matrix will also describe an MDS code.

int **jerasure _dumb_bitmatrix to_schedule(k, m, w, bitmatrix): This converts the given bit-matrix into a
schedule of coding operations using the straightforwachrt@ue of simply traversing each row of the matrix
and scheduling XOR operations whenever a one is encountered

int **jerasure _smart_bitmatrix to_schedule(k, m, w, bitmatrix). This converts the given bit-matrix into a

schedule of coding operations using the optimization dlesdrin [Pla08]. Basically, it tries to use encoded
bits (or decoded bits) rather than simply the data (or simgivbits to reduce the number of XORs. Note, that
when a smart schedule is employed for decoding, we don’t teesedecifyrow_k_ones because the schedule
construction technique automatically finds this optimiat

int ***jerasure _generateschedulecache(k, m, w, bitmatrix, int smart): This only works whemn = 2. In

this case, it generates schedules for every combinatioimglesand double-disk erasure decoding. It returns a
cache of these schedules.sthart is one, therjerasure_smart_bitmatrix _to_schedule()is used to create the
schedule. Otherwisggrasure_dumb_bitmatrix _to_schedule()is used.

void jerasure_free_schedule(schedule)This frees all allocated memeory for a schedule that istedday either
jerasure_.dumb_bitmatrix _to_schedule()or jerasure_smart_bitmatrix _to_schedule()

void jerasure_free_schedulecache(k, m, cache)This frees all allocated data for a schedule cache created b
jerasure_generateschedulecache()

Encoding Routines

void jerasure_do_parity(k, data _ptrs, char *parity _ptr, size): This calculates the parity clizebytes of data
from each ofk regions of memory accessed tgta ptrs. It puts the result into theize bytes pointed to by
parity _ptr. Like each ofdata_ptrs, parity _ptr must be long word aligned, argize must be a multiple of
sizeof(long)

void jerasure_matrix _,encode(k, m, w, matrix, dataptrs, coding_ptrs, size} This encodes with a matrix
in GF(2*) as described in Section 3 abovemust bec {8,16, 32}.

void jerasure_bitmatrix _encode(k, m, w, bitmatrix, data ptrs, coding_ptrs, size, packetsize) This encodes
with a bit-matrix. Noww may be any number between 1 and 32.

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 12

e void jerasure_scheduleencode(k, m, w, schedule, datptrs, coding_ptrs, size, packetsize) This encodes
with a schedule created from eitherasure_.dumb_bitmatrix _to_schedule()or jerasure_smart_bitmatrix _to-
_schedule()

7.3 Decoding Routines

Each of these returns an integer which is zero on successfarnguccessful. Decoding can be unsuccessful if there
are too many erasures.

e int jerasure_matrix _decode(k, m, w matrix, row k_ones, erasures, datatrs, coding_ptrs, size} This de-
codes using a matrix iFF'(2*), w € {8,16,32}. This works by creating a decoding matrix and performing
the matrix/vector product, then re-encoding any eraseéhgadkevices. When it is done, the decoding matrix
is discarded. If you want access to the decoding matrix, yaulsl usejerasure_make_decodingmatrix()
below.

e int jerasure bitmatrix _decode(k, m, w bitmatrix, row_k_ones, erasures, datatrs, coding_ptrs, size, pack-
etsize) This decodes with a bit-matrix rather than a matrix. Noteldes not do any scheduling — it simply
creates the decoding bit-matrix and uses that directly tode. Again, it discards the decoding bit-matrix when
itis done.

e intjerasure_scheduledecodelazy(k, m, w bitmatrix, erasures, dataptrs, coding_ptrs, size, packetsize, int
smart): This decodes by creating a schedule from the decodingxreatd using that to decode. $Mmart is
one, therjerasure_smart_bitmatrix _to_schedule()is used to create the schedule. Otherwjs&sure_dumb-
_bitmatrix _to_schedule()is used. Note, there is mow_k_ones because imart is one, the schedule created
will find that optimization anyway. This procedure is a bibHa, because it does a little more than simply create
the decoding matrix — it creates it and then adds rows thaidetailed coding devices from the survivors. It
derives its schedule from that matrix. This technique is &siployed when creating a schedule cache using
jerasure_generateschedulecache() The schedule and all data structures that were allocatetefading are
freed when this procedure finishes.

e intjerasure_scheduledecodecache(k, m, w cache, erasures, datptrs, coding ptrs, size, packetsize)This
uses the schedule cache to decode when 2.

e int jerasure_make_decoding matrix(k, m, w matrix, erased, decodingmatrix, dm _ids): This does not de-
code, but instead creates the decoding matrix. Note thhtdsaioding matrix anddm_ids should be allocated
and passed to this procedure, which will fill them Becodingmatrix should have:? integers, andim_ids
should havek integers.

e int jerasure _make_decodingbitmatrix(k, m, w matrix, erased, decoding matrix, dm _ids): This does not
decode, but instead creates the decoding bit-matrix. Admenthdecodingmatrix anddm_ids should be al-
located and passed to this procedure, which will fill them Timis time decodingmatrix should havek?w?
integers, whiledm_ids still hask integers.

e int *jerasure _erasuresto_erased(k, m, erasures) This converts the specification efasuresdefined above
into the specification ofrasedalso defined above.

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 13

7.4 Dot Product Routines

e void jerasure_matrix _dotprod(k, w, int *matrix _row, int *src _ids, int dest.id, data_ptrs, coding_ptrs, size}
This performs the multiplication of one row of an encodiregdding matrix times data/survivors. The id’s of
the source devices (corresponding to the id’s of the vedtonents) are irsrc_ids. The id of the destination
device is indestid. w must bec {8, 16,32}. When a one is encountered in the matrix, the proper XOR/copy
operation is performed. Otherwise, the operation is miigétion by the matrix element iz F(2*) and an
XOR into the destination.

¢ void jerasure_bitmatrix _dotprod(k, w, int *bitmatrix _row, int *src _ids, int dest.id, data_ptrs, coding_ptrs,
size, packetsize) This is the analogous procedure for bit-matrices. It penfow dot products according to
thew rows of the matrix specified hyitmatrix _row.

¢ void jerasure_do_scheduledoperations(char **ptrs, schedule, packetsize)This performs a schedule on the
pointers specified bptrs. Althoughw is not specified, it performs the schedulew(packetsizg bytes. It is
assumed thattrs is the right size to matchchedule Typically, this isk + m.

7.5 Basic Matrix Operations

e intjerasure_invert_matrix(int *mat, int *inv, int rows, intw) : This inverts afows x rows) matrixinGF'(2*).
It puts the result innv, which must be allocated to contaiows? integers. The matrixnat is destroyed after
the inversion. It returns 0 on success, or -1 if the matrix m@snvertible.

e int jerasure_invert_bitmatrix(int *mat, int *inv, int rows) : This is the analogous procedure for bit-matrices.
Obviously, one can cajerasure_invert_matrix() with w = 1, but this procedure is faster.

e int jerasure_invertible _matrix(int *mat, int rows, int w) : This does not perform the inversion, but simply
returns 1 or 0, depending on whethmaat is invertible. It destroysnat.

e int jerasure_invertible _bitmatrix(int *mat, int rows) : This is the analogous procedure for bit-matrices.

e void jerasure_print _matrix(int *matrix, int rows, int cols, int w) : This prints a matrix composed of elements
in GF(2*) on standard output. It usesto determine spacing.

e void jerasure_print _bitmatrix(int *matrix, int rows, int cols, int w) : This prints a bit-matrix on standard
output. It inserts a space between evergharacters, and a blank line after evaryines. Thus super-rows and
super-columns are easy to identify.

e int *jerasure _matrix _multiply(int *m1, int *m2, int r1, int c1, int r2, int c2, int w): This performs matrix
multiplication inGF(2*). The matrixm1 should be arl x c1) matrix, andm2 should be ar@ x c2) matrix.
Obviously,cl should equat2. It will return a (1 x ¢2) matrix equal to the product.

7.6 Statistics
Finally, jerasure.ckeeps track of three quantities:

e The number of bytes that have been XOR'd ugiadpis region_xor().

e The number of bytes that have been multiplied by a consta@tA(2*), usinggalois w08_region_multiply() ,
galoisw16_region_multiply() orgaloisw32 region_multiply() .

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 14

e The number of bytes that have been copied usiegncpy().

There is one procedure that allows access to those values:

¢ void jerasure_get stats(double *fill_in): The argumentill _.in should be an array of threubles. The proce-
dure will fill in the array with the three values above in theder. The unit is bytes. After callingrasure_get-
_stats(), the counters that keep track of the quantities are resetrto z

The procedurgaloisw08_region_multiply() and its kin have a parameter that causes it to XOR the prodtltt w
another region with the same overhead as simply perforrhmgiultiplication. For that reason, when these procedures
are called with this functionality enabled, the resultinQXs are not counted with the XOR’s performed wgtois-
_region_xor().

7.7 Example Programs to Demonstrate Use

In the Examplesdirectory, there are eight programs that demonstrateyneagry procedure call iferasure.c. They
are namederasure Ox for 0 < x < 8. There are also programs to demonstrate Reed-Solomong;adauchy
Reed-Solomon coding and Liberation coding. Finally, treeeprograms that encode and decode files.

All of the example programs, with the exception of the enc@ael decoder emit HTML as output. Many may be
read easily as text, but some of them format better with a welser.

e jerasure 0l.c This takes three parameterse andw. It creates am x ¢ matrix in GF(2%), where the element

in row 4, columnj is equal to2“*7 in GF(2*). Rows and columns are zero-indexed. Here is an example —
athough it emits HTML, it is readable easily as text:

UNIX> jerasure_01 3 15 8
<HTML><TITLE>jerasure_01 3 15 8</TITLE>
<h3>jerasure_01 3 15 8</h3>
<pr‘e>

1 2 4 8 16 32 64 128 29 58 116 232 205 135 19
38 76 152 45 90 180 117 234 201 143 3 6 12 24 48
96 192 157 39 78 156 37 74 148 53 106 212 181 119 238
UNIX>

This demonstrates usagejefasure_print _matrix() andgalois.single.multiply() .

e jerasure 02.c This takes three parameters:c andw. It creates the same matrix asjérasure_01, and then
converts it to aw x cw bit-matrix and prints it out. Example:

UNIX> jerasure_01 3 10 4

<HTML><TITLE>jerasure_01 3 10 4</TITLE>
<h3>jerasure_01 3 10 4</h3>

<pr‘e>

1 2 4 8 3 61211 5 10

7141513 9 1 2 4 8 3

6 12 11 510 7 14 15 13 9

UNIX> jerasure_02 3 10 4

<HTML><TITLE>jerasure_02 3 10 4</TITLE>
<h3>jerasure_02 3 10 4</h3>

<pr‘e>

1000 0001 0010 0100 1001 0011 0110 1101 1010 O101
0100 1001 0011 0110 1101 1010 0101 1011 0111 1111
0010 0100 1001 0011 0110 1101 1010 0101 1011 0111

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 15

0001 0010 0100 1001 0011 0110 1101 1010 0101 1011

1011 0111 1111 1110 1100 1000 0001 0010 0100 1001
1110 1100 1000 0001 0010 0100 1001 0011 0110 1101
1111 1110 1100 1000 0001 0010 0100 1001 0011 0110
0111 1111 1110 1100 1000 0001 0010 0100 1001 0011

0011 0110 1101 1010 0101 1011 0111 1111 1110 1100
1010 0101 1011 0111 1111 1110 1100 1000 0001 0010
1101 1010 0101 1011 0111 1111 1110 1100 1000 0001
0110 1101 1010 0101 1011 0111 1111 1110 1100 1000
UNIX>

This demonstrates usagejefasure_print _bitmatrix() andjerasure_matrix _to_bitmatrix() .

e jerasure 03.c This takes three parametefsandw. It creates & x k Cauchy matrix inGF(2*), and tests
invertibility.

The parametet must be less tha?. The element in row, columnj is set to:

v
o (2w —j—1)

where division is inGF(2*), & is XOR and subtraction is regular integer subtraction. When 2¥~1, there
will be ¢ andj such that @ (2 — j — 1) = 0. When that happens, we set that matrix element to zero.

After creating the matrix and printing it, we test whethesiinvertible. Ifk < 2¢~1, then it will be invertible.
Otherwise it will not. Then, if it is invertible, it prints thinverse, then multplies the inverse by the original
matrix and prints the product which is the identity matrixafples:

UNIX> jerasure_03 4 3
<HTML><TITLE>jerasure_03 4 3</TITLE>
<h3>jerasure_03 4 3</h3>

<pr‘e>

The Cauchy Matrix:

4327

Inverse times matrix (should be identity):
1
0
0
0
UNIX> jerasure_03 5 3

<HTML><TITLE>jerasure_03 5 3</TITLE>
<h3>jerasure_03 5 3</h3>

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 16

<pre>
The Cauchy Matrix:
43276

DN W
anNn~N b
P whN
oOhrhwWN
A OPFP O

Invertible: No
UNIX>

This demonstrates usagejefasure_print _matrix() , jerasure_invertible _matrix() , jerasure_invert_matrix()
andjerasure_matrix _multiply() .

e jerasure 04.c This does the exact same thingjassure_03, except it usegerasure_matrix _to_bitmatrix()
to convert the Cauchy matrix to a bit-matrix, and then useshibkmatrix operations to test invertibility and to
invert the matrix. Examples:

UNIX> jerasure_04 4 3
<HTML><TITLE>jerasure_04 4 3</TITLE>
<h3>jerasure_04 4 3</h3>

<pre>

The Cauchy Bit-Matrix:

010 101 001 111

011 111 101 100

101 011 010 110

101 010 111 o01
111 011 100 101
011 101 110 010

001 111 010 101
101 100 011 111
010 110 101 011

111 001 101 010
100 101 111 011
110 010 011 101

Invertible: Yes

Inverse:

100 001 110 101
010 101 001 111
001 010 100 011

001 100 101 110
101 010 111 O01
010 001 011 100

110 101 100 001
001 111 010 101
100 011 001 010

101 110 001 100
111 001 101 010

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 17

011 100 010 001

Inverse times matrix (should be identity):
100 000 000 000
010 000 000 000
001 000 000 000

000 100 000 000
000 010 000 000
000 001 000 000

000 000 100 000
000 000 010 000
000 000 001 000

000 000 000 100

000 000 000 010

000 000 000 001

UNIX> jerasure_04 5 3
<HTML><TITLE>jerasure_04 5 3</TITLE>
<h3>jerasure_04 5 3</h3>
<pre>

The Cauchy Bit-Matrix:
010 101 001 111 011
011 111 101 100 110
101 011 010 110 111

101 010 111 001 110
111 011 100 101 001
011 101 110 010 100

001 111 010 101 100
101 100 011 111 010
010 110 101 011 001

111 001 101 010 000
100 101 111 011 000
110 010 011 101 000

011 110 100 000 010
110 001 010 000 011
111 100 001 000 101

Invertible: No
UNIX>

This demonstrates usagejefasure_print _bitmatrix() , jerasure_matrix _to_bitmatrix() , jerasure_invertible _-
bitmatrix() , jerasure_invert _bitmatrix() andjerasure_matrix _multiply() .

e jerasure_05.c This takes five parameterk; m, w, size and an integeseedo a random number generator, and
performs a basic Reed-Solomon coding exampl& i2"). w must be either 8, 16 or 32, and the sém m
must be less than or equal 28. The total number of bytes for each device is givensbye which must be a
multiple of sizeof(long) It first sets up amn x & Cauchy coding matrix where elemenyj is:

1
i®(m+7)

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 18

where division is inGF(2%), @ is XOR, and addition is standard integer addition. It primt$ thesemn rows.
The program then creatésdata devices each witfize bytes of random data and encodes them intooding
devices usingerasure_matrix _.encode() It prints out the data and coding in hexadecimal- one bytefise-
sented by 2 hex digits. Next, it erasesrandom devices from the collection of data and coding deaviaed
prints the resulting state. Then it decodes the erasedekeugingerasure_matrix _decode()and prints the re-
stored state. Next, it shows what the decoding matrix loikeshen the firsin devices are erased. This matrix
is the inverse of the last rows of the distribution matrix. And finally, it usg@srasure_matrix _dotprod() to
show how to explicitly calculate the first data device frora tthers when the first devices have been erased.

Here is an example fap = 8 with 3 data devices and 4 coding devices each with a size ofésby

UNIX> jerasure_05 3 4 8 8 100

<HTML><TITLE>jerasure_05 3 4 8 8 100</TITLE>

<h3>jerasure_05 3 4 8 8 100</h3>

<pre>

The Coding Matrix (the last m rows of the Generator Matrix G™T):

71 167 122
167 71 186
122 186 71
186 122 167

Encoding Complete:

Data

DO : 8b e3 eb 02 03 5f c5 99
D1 : 14 2f f4 2b e7 72 85 b3
D2 : 85 eb 30 9a ee d4 5d bl

Erased 4 random devices:

Data

DO : 8b e3 eb 02 03 5f c5 99
D1 : 00 00 00O 00 OO OO 00 00
D2 : 85 eb 30 9a ee d4 5d bl

State of the system after decoding:

Data

DO : 8b e3 eb 02 03 5f c5 99
D1 : 14 2f f4 2b e7 72 85 b3
D2 : 85 eb 30 9a ee d4 5d bl

Suppose we erase the first 4 devices.

130 25 182
252 221 25
108 252 130
And dm_ids:

4 5 6

Coding
CO : ab 09 6d 49 24 e2 6e ae
Cl : ee ee bb 70 26 c2 b3 9c
C2 : 69 cO 33 e8 l1la d8 c8 e3
C3 : 4b b3 6¢c 32 45 ae 92 5b

Coding
CO : 00 00 00 00 00 00 00 00
C1 : 00 00 00 00 00 0O 00 OO0
C2 : 69 cO 33 e8 1a d8 c8 e3
C3 : 00 00 00 00 00 00 00 00

Coding
CO : ab 09 6d 49 24 e2 6e ae
Cl : ee ee bb 70 26 c2 b3 9c
C2 : 69 cO 33 e8 la d8 c8 e3
C3 : 4b b3 6¢c 32 45 ae 92 5b

Here is the decoding mat rix:

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 19

After calling jerasure_matrix_dotprod, we calculate the v alue of device #0 to be:
DO : 8b e3 eb 02 03 5f c5 99

UNIX>

Referring back to the conceptual model in Figure 3, it shddlear in this encoding how the firstbits of C
are calculated from the first bits of each data device:

byte0 of Cy = (71 x byte0 of Dy) @ (167 x byte0 of Dy) @ (122 x byte0 of D5)

where multiplication is inG'F(28).

However, keep in mind that the implementation actually genis dot products on groups of bytes at a time. So
in this example, where each device holds 8 bytes, the dougtdslactually:

8 bytes ofCy = (71 x 8 bytes ofDy) @ (167 x 8 bytes ofD;) @ (122 x 8 bytes ofDs)

This is accomplished usirgplois w08 _region_multiply() .
Here is a similar example, this time with = 16 and each device holding 16 bytes:

UNIX> jerasure_05 3 4 16 16 102

<HTML><TITLE>jerasure_05 3 4 16 16 102</TITLE>

<h3>jerasure_05 3 4 16 16 102</h3>

<pr‘e>

The Coding Matrix (the last m rows of the Generator Matrix G™T):

52231 20482 30723
20482 52231 27502
30723 27502 52231
27502 30723 20482

Encoding Complete:

Data Coding

DO : 5596 1e69 b292 a935 f0la 77b8 b22e 9a70 CO : 122e 518d c2c7 3 15¢ 9¢76 2591 laba 397c
D1 : f5ad 3ee2 fa7a 2ef7 5aa6 ad44 f41f cfad C1 : 7741 f8c4 765c a 408 7f07 b937 b493 2730
D2 : 4988 470e 24c8 182a a7f4 45b2 ed4e0 3969 C2 : 9b0d c474 e654 3 87a e4b7 d5fb 2d8c cdb5

C3 : ebh25 24d4 6e49 e736 4c9e 7ab6 0cd2 d2fa

Erased 4 random devices:

Data Coding

DO : 0000 0000 0000 0000 0000 0000 0000 0000 CO : 0000 0000 0000 O 000 0000 0000 0000 0000
D1 : f5ad 3ee2 fa7a 2ef7 5aa6 ad44 f41f cfad C1l : 7741 f8c4 765c a 408 7f07 b937 b493 2730
D2 : 4988 470e 24c8 182a a7f4 45b2 ede0 3969 C2 : 0000 0000 0000 O 000 0000 0000 0000 0000

C3 : 0000 0000 0000 0000 0000 0000 0000 0000

State of the system after decoding:

Data Coding

DO : 5596 1e69 b292 a935 f0la 77b8 b22e 9a70 CO : 122e 518d c2c7 3 15¢ 9¢76 2591 laba 397c
D1 : f5ad 3ee2 fa7a 2ef7 5aa6 ad44 f41f cfad C1 : 7741 f8c4 765c a 408 7f07 b937 b493 2730
D2 : 4988 470e 24c8 182a a7f4 45b2 ed4e0 3969 C2 : 9b0d c474 e654 3 87a e4b7 d5fb 2d8c cdb5

C3 : eb25 24d4 6e49 e736 4c9e 7ab6 0cd2 d2fa

7 PART 2 OF THE LIBRARY: KERNEL ROUTINES 20

Suppose we erase the first 4 devices. Here is the decoding mat rix:

130 260 427
252 448 260
108 252 130

And dm_ids:
4 5 6
After calling jerasure_matrix_dotprod, we calculate the v alue of device #0 to be:

DO : 5596 1e69 b292 a935 fOla 77b8 b22e 9a70

UNIX>

In this encoding, the 8 16-bit half-words 6% are calculated as:

(52231 x 8 half-words of D) @ (20482 x 8 half-words ofD;) & (30723 x 8 half-words ofD5)

usinggaloiswl16_region_multiply() .

This program demonstrates usaggevhsure_matrix _encode() jerasure_matrix _decode() jerasure_print _-
matrix() , jerasure_make_decodingmatrix() andjerasure_matrix _dotprod().

e jerasure 06.c This takes five parameterg;, m, w, packetsizeandseed and performs a similar example to
jerasure_05, except it uses Cauchy Reed-Solomon coding#(2*), converting the coding matrix to a bit-
matrix. The output this time is formatted HTME.+ m must be less than or equal 28’ andpacketsizenust
be a multiple ofsizeof(long) It sets up each device to hold a totahkof packetsize bytes. Here, packets are
numberedy, throughp,,—; for each device. It then performs the same encoding and degad the previous
example but with the corresponding bit-matrix procedures.

The HTML file athttp://web.eecs.utk.edu/ ~ plank/plank/jerasure/j06_3_4 3 8 100.html shows the out-
put of

UNIX> jerasure_06 3 4 3 8 100

In this encoding, the first packet 6% is computed according to the six ones in the first row of theraprhatrix:
Copo = Dopo © Dop1 © Dop2 © D1p2 & Dapo & Dap2

These dotproducts are accomplished wghois region_xor() .

This program demonstrates usaggerhsure_bitmatrix _encode() jerasure_bitmatrix _decode() jerasure.-
print _bitmatrix() , jerasure_make_decodingbitmatrix() andjerasure_bitmatrix _dotprod().

e jerasure 07.c This takes four parameterg:;, m, w andseed It performs the same coding/decoding as in
jerasure_06, except it uses bit-matrix scheduling instead of bit-nxatperations. Theacketsizas set at
sizeof(long)bytes. It creates a “dumb” and “smart” schedule for encodamgodes with them and prints out
how many XORs each took. The smart schedule will outperftwgrdumb one.

Next, it erasesn random devices and decodes usiggasure_scheduledecodelazy(). Finally, it shows how
to usejerasure_do_scheduledoperations()in case you need to do so explicitly.

The HTML file athttp://web.eecs.utk.edu/ ~plank/plank/jerasure/j07_3_4 3_102.html shows the out-
put of

8 PART 3 OF THE LIBRARY: CLASSIC REED-SOLOMON CODING ROUTINE 21

UNIX> jerasure_07 3 4 3 102

This demonstrates usaggerfasure_.dumb_bitmatrix _to_schedule() jerasure_smart_bitmatrix _to_schedule()
jerasure_scheduleencode() jerasure_scheduledecodelazy(), jerasure_do_scheduledoperations()andjera-
sure_get stats().

e jerasure 08.c This takes three parameters; w and aseed and performs a simple RAID-6 example using
a schedule cache. Agaipacketsizds sizeof(long) It sets up a RAID-6 coding matrix whose first row is
composed of ones, and where the element in coljimithe second row is equal & in GF(2*). It converts
this to a bit-matrix and creates a smart encoding scheddl@achedule cache for decoding.

It then encodes twice — first with the smart schedule, and ti#nthe schedule cache, by setting the two

coding devices as the erased devices. Next it deletes tvwdonadevices and uses the schedule cache to decode

them. Next, it deletes the first coding devices and recalesiiausingerasure_do_parity() to demonstrate that
procedure. Finally, it frees the smart schedule and thedsdbeache.

Example - the output of the following command istitp:/iweb.eecs.utk.edu/ ~ plank/plank/jerasure/
j08_7_7_100.html

UNIX> jerasure_08 7 7 100

This demonstrates usage jefasure_generateschedulecache() jerasure_smart_bitmatrix _to_schedule()
jerasure_scheduleencode() jerasure_scheduledecodecache() jerasure_free_schedule() jerasure_free_-
schedulecache() jerasure_get stats()andjerasure_do_parity() .

8 Part 3 of the Library: Classic Reed-Solomon Coding Routine

The filesreed_sol.handreed_sol.cimplement procedures that are specific to classic Vandedmoratrix-based Reed-
Solomon coding, and for Reed-Solomon coding optimized falR6. Refer to [Pla97, PDO5] for a description of
classic Reed-Solomon coding and to [Anv07] for Reed-Soloonuarling optimized for RAID-6. Where not specified,
the parameters are as described in Section 7.

8.1 Vandermonde Distribution Matrices

There are three procedures for generating distributionicestbased on an extended Vandermonde mat@dig2).
It is anticipated that only the first of these will be neededdading applications, but we include the other two in case
a user wants to look at or modify these matrices.

¢ int *reed _soLvandermonde.coding-matrix(k, m, w) : This returns the last: rows of the distribution matrix
in GF(2"), based on an extended Vandermonde matrix. Thissis & & matrix that can be used with the
matrix routines injerasure.c. The first row of this matrix is guaranteed to be all ones. Tist fiolumn is also
guaranteed to be all ones.

¢ int *reed _sol extendedvandermondematrix(int rows, int cols, w): This creates an extended Vandermonde
matrix with rows rows andcolscolumns inGF(2%).

e int *reed _solbig_vandermondedistribution _matrix(int rows, int cols, w): This converts the extended matrix
above into a distribution matrix so that the toplsrows compose an identity matrix, and the remaining rows
are in the format returned brged sol. vandermonde coding matrix() .

8 PART 3 OF THE LIBRARY: CLASSIC REED-SOLOMON CODING ROUTINE 22

8.2

Procedures Related to Reed-Solomon Coding Optimizedrf®AID-6

In RAID-6, m is equal to two. The first coding devicg, is calculated from the others using parity, and the second
coding deviceq) is calculated from the data devic&s using:

k-1
Q= Z 2'D;
i=0

where all arithmetic is iz F'(2). The reason that this is an optimization is that one may implk& multiplication
by two in an optimized fashion. The following proceduresliete this optimization.

8.3

int reed_solr6_encode(k, w, dataptrs, coding_ptrs, size} This encodes using the optimizatian.must be

8, 16 or 32. Notem is not needed because it is assumed to equal two, and no nsat@eded because it is
implicit.

int *reed _soLr6 _coding.matrix(k, w) : Again,w must be 8, 16 or 32. There is no optimization for decoding.

Therefore, this procedure returns the last two rows of thritlution matrix for RAID-6 for decoding purposes.
The first of these rows will be all ones. The second of theses mily have27 in columnj.

reed solgalois w08 region_multby _2(char *region, int nbytes): This performs the fast multiplication by two
in GF(2%) using Anvin’s optimization [Anv07]. region must be long-word aligned, antbytes must be a
multiple of the word size.

reed_solgaloiswl16_region_multby _2(char *region, int nbytes): This performs the fast multiplication by two
in GF(219).

reed_solgalois w32 region_multby _2(char *region, int nbytes): This performs the fast multiplication by two
in GF(23%).

Example Programs to Demonstrate Use

There are four example programs to demonstrate the use pfaledures imeed_sol.

reed.solL0l.c This takes three parameters; m andw. It performs a classic Reed-Solomon codingkof
devices onton devices, using a Vandermonde-based distribution matrix#(2"). w must be 8, 16 or 32.
Each device is set up to hosizeof(long)bytes. It useseed solvandermonde coding matrix() to generate
the distribution matrix, and then procedures frigrasure.cto perform the coding and decoding.

Example:

UNIX> reed_sol_01 7 7 8 105
<HTML><TITLE>reed_sol_01 7 7 8 105</title>
<h3>reed_sol_01 7 7 8 105</h3>

<pre>

Last m rows of the generator Matrix (G'T):

1 1 1 1 1 1 1
1 199 210 240 105 121 248
1 70 91 245 56 142 167
1 170 114 42 87 78 231
1 38 236 53 233 175 65

1 64 174 232 52 237 39
1 187 104 210 211 105 186

Encoding Complete:

DO : 6f c1 a7 58 a0 b4 17 74
D1 : 82 13 7f cO 9f 3f db a4

D2 : b5 90 6d dO 92 ea ac 98
D3 : 44 6a 2b 39 ab da 31 6a
D4 : 72 63 74 64 2b 84 a4 5a
D5 : 48 af 72 7d 98 55 86 63
D6 : 6f c4 72 80 ad b9 1la 81

Erased 7 random devices:

Data

DO : 6f c1 a7 58 a0 b4 17 74
D1 : 00 00 00O 00 OO OO 00 00
D2 : 00 00 00 00 00 OO0 00 00
D3 : 00 00 00 00 00 00 00 00
D4 : 72 63 74 64 2b 84 a4 5a
D5 : 00 00 00 00 OO OO 00 00
D6 : 00 00 00 00 00O OO 00 00

State of the system after decoding:

Data

DO : 6f c1l a7 58 a0 b4 17 74
D1 : 82 13 7f cO 9f 3f db a4
D2 : b5 90 6d dO 92 ea ac 98
D3 : 44 6a 2b 39 ab da 31 6a
D4 : 72 63 74 64 2b 84 a4 5a
D5 : 48 af 72 7d 98 55 86 63
D6 : 6f c4 72 80 ad b9 1la 81

UNIX>

8 PART 3 OF THE LIBRARY: CLASSIC REED-SOLOMON CODING ROUTINE

Coding
CO : 49 20 ea e8 18 d3 69 9a
Cl : 31 dl1 63 ef Ob 1d 6¢ Oe
C2 : 0f 05 89 46 fb 75 5d c5
C3 :0d 37 03 fO 80 cd c7 69
C4 : 63 43 €9 cc 2a ae 18 5¢c
C5 : 4f €9 37 1b 88 4f cO d7
C6 : d2 af 66 51 82 ba el 10

Coding
CO : 00 00 00 00 00 00 00 00
C1 : 00 00 00 00 00 00 00 OO0
C2 : 0f 05 89 46 fb 75 5d c5
C3 : 0d 37 03 fO 80 cd c7 69
C4 : 63 43 €9 cc 2a ae 18 5¢
C5 : 4f €9 37 1b 88 4f cO d7
C6 : d2 af 66 51 82 ba el 10

Coding
CO : 49 20 ea e8 18 d3 69 9a
Cl : 31 d1 63 ef Ob 1d 6¢c Oe
C2 : 0f 05 89 46 fb 75 5d ¢5
C3 : 0d 37 03 f0 80 cd c7 69
C4 : 63 43 €9 cc 2a ae 18 5¢
C5 : 4f €9 37 1b 88 4f cO d7
C6 : d2 af 66 51 82 ba el 10

23

This demonstrates usage jefasure_matrix _.encode() jerasure_matrix _decode() jerasure_print _matrix()
andreed_solL.vandermondecoding matrix() .

e reed sol02.c This takes three parametefs:m andw. It creates and prints three matricesGi#’(2*):

1. A(k+m) x k extended Vandermonde matrix.

2. The(k + m) x k distribution matrix created by converting the extendeddéamonde matrix into one
where the firstc rows are an identity matrix. Then rokis converted so that it is all ones, and the first
column is also converted so that it is all ones.

3. Them x k coding matrix, which is lastn rows of the above matrix. This is the matrix which is passed
to the encoding/decoding proceduregayhisure.c. Note that since the first row of this matrix is all ones,
you may setnt row _k_onesof the decoding procedures to one.

Note also thatv may have any value from 1 to 32.
Example:

8 PART 3 OF THE LIBRARY: CLASSIC REED-SOLOMON CODING ROUTINE 24

UNIX> reed_sol_02 6 4 11
<HTML><TITLE>reed_sol_02 6 4 1i</title>
<h3>reed_sol_02 6 4 11</h3>

<pr‘e>

Extended Vandermonde Matrix:

0 0 0 0
1 1 1 1
4 8 16 32

5 15 17 51
16 64 256 1024
17 85 257 1285
20 120 272 1632
21 107 273 1911
64 512 10 80

0 0 0 1

ORRRPRRERRRERR
OO ~NOOUOAWNEO

Vandermonde Generator Matrix (G'T):

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 1 1 1 1

1 1879 1231 1283 682 1538
1 1366 1636 1480 683 934
1 1023 2045 1027 2044 1026

Vandermonde Coding Matrix:

1 1 1 1 1 1
1 1879 1231 1283 682 1538
1 1366 1636 1480 683 934
1 1023 2045 1027 2044 1026

UNIX>

This demonstrates usagerebd sol extendedvandermonde matrix() , reed_sol_big_vandermonde.coding -
matrix() , reed_sol vandermonde coding matrix() andjerasure_print _matrix() .

e reed.solL03.c This takes three parameteks:w andseed It performs RAID-6 coding using Anvin’'s optimiza-
tion [Anv07] in GF(2%), wherew must be 8, 16 or 32. It then decodes uge@sure_matrix _decode()

Example:

UNIX> reed_sol_03 9 8 100
<HTML><TITLE>reed_sol_03 9 8 100</title>
<h3>reed_sol_03 9 8 100</h3>

<pre>

Last 2 rows of the Generator Matrix:

1 1 1 1 1 1 1 1 1
1 2 4 8 16 32 64 128 29

Encoding Complete:

8 PART 3 OF THE LIBRARY: CLASSIC REED-SOLOMON CODING ROUTINE 25

Data Coding

DO : 8b 03 14 e7 85 ee 42 ¢5 CO : fb 97 87 2f 48 f5 68 8c
D1 : 7d 58 3a 05 ea bl a7 77 Cl : 6e 3e bf 62 de b6 9e Oc
D2 : 44 24 26 69 c3 47 b9 49

D3 : 16 5b 8e 56 5d b3 6d 0Od

D4 : b2 45 30 84 25 51 42 73

D5 : 48 ff 19 2d ba 26 c1 37

D6 : 3c 88 be 06 68 25 d9 71

D7 : f5 dd 8d e7 fa b6 51 12

D8 : 6¢c 5¢c 1b ba b4 ba 52 5d

Erased 2 random devices:

Data Coding

DO : 8b 03 14 e7 85 ee 42 ¢5 CO : fb 97 87 2f 48 f5 68 8¢
D1 : 7d 58 3a 05 ea bl a7 77 Cl : 6e 3e bf 62 de b6 9e Oc
D2 : 44 24 26 69 c3 47 b9 49

D3 : 16 5b 8e 56 5d b3 6d 0Od

D4 : b2 45 30 84 25 51 42 73

D5 : 00 00 00 00 00 00 00 00

D6 : 3c 88 be 06 68 25 d9 71

D7 : 00 00 00O 00 00O 00 00 00

D8 : 6¢c 5¢ 1b ba b4 ba 52 5d

State of the system after decoding:

Data Coding

DO : 8b 03 14 e7 85 ee 42 ¢5 CO : fb 97 87 2f 48 f5 68 8c
D1 : 7d 58 3a 05 ea bl a7 77 Cl : 6e 3e bf 62 de b6 9e Oc
D2 : 44 24 26 69 c3 47 b9 49

D3 : 16 5b 8e 56 5d b3 6d 0Od

D4 : b2 45 30 84 25 51 42 73

D5 : 48 ff 19 2d ba 26 c1 37

D6 : 3c 88 be 06 68 25 d9 71

D7 : f5 dd 8d e7 fa b6 51 12

D8 : 6¢c 5¢c 1b ba b4 ba 52 5d

UNIX>
This demonstrates usage @fed solr6_encode() reed solr6_coding matrix(), jerasure_matrix _decode()
andjerasure_print _matrix() .

e reed sol04.c This simply demonstrates doing fast multiplication by tmaG F'(2%) for w € {8,16,32}. It
has two parameters: andseed

UNIX> reed_sol_04 16 100
<HTML><TITLE>reed_sol_04 16 100</title>
<h3>reed_sol_04 16 100</h3>

<pr‘e>

Short O: 907 2 = 1814
Short 1: 59156 *2 = 56867
Short 2: 61061 *2 = 52481
Short 3: 50498 *2 = 39567
Short 4: 22653 *2 = 45306
Short 5: 1338 2 = 2676
Short 6: 45546 *2 = 29663

9 PART 4 OF THE LIBRARY: CAUCHY REED-SOLOMON CODING ROUTINES 26

Short 7: 30631 *2 = 61262
UNIX>

This demonstrates usagereed sol galois wO8_region_multby _2(), reed sol galois w16_region_multby _2()
andreed sol galois w32 region_multby _2().

9 Part 4 of the Library: Cauchy Reed-Solomon Coding Routines

The filescauchy.handcauchy.cimplement procedures that are specific to Cauchy Reed-Swicoding. See [BKK 95,
PX06] for detailed descriptions of this kind of coding. Th®gedures ifjerasure.h/jerasure.cdo the coding and
decoding. The procedures here simply create coding mathe don’t use the Cauchy matrices described in [PX06],
because there is a simple heuristic that creates betteicestr

e Construct the usual Cauchy matiX such thatV/[i, j] =
and the addition is regular integer addition.

1 e . . w)
BTy where division is ove&G F'(2V), & is XOR

e For each columrj, divide each element (iG'F'(2*)) by M0, j]. This has the effect of turning each elementin
row O to one.

e Next, for each row > 0 of the matrix, do the following:

— Count the number of ones in the bit representation of the row.

— Count the number of ones in the bit representation of the iivided by elemeni/[i, j] for each;.

— Whichever value of gives the minimal number of ones, if it improves the numbesrods in the original
row, divide rowi by M|i, j].

While this does not guarantee an optimal number of onespit#jly generates a good matrix. For example,
suppos& = m = w = 3. The matrix}M is as follows:

6 7 2
5 2 7
1 3 4
First, we divide column O by 6, column 1 by 7 and column 2 by 3ji&dd:
1 1 1
4 3 6
3 7 2

Now, we concentrate on row 1. Its bitmatrix representatias 5+7+7 = 19 ones. If we divide it by 4, the bitmatrix
has 3+4+5 = 12 ones. If we divide it by 3, the bitmatrix has 44-3+11 ones. If we divide it by 6, the bitmatrix has
6+7+3 = 16 ones. So, we replace row 1 with row 1 divided by 3.

We do the same with row 2 and find that it will have the minimaioer of ones when it is divided by three. The
final matrix is:

1 1 1
5 1 2
1 4 7

This matrix has 34 ones, a distinct improvement over themaignatrix that has 46 ones. The best matrix in [PX06]
has 39 ones. This is because the authors simply find theXbastdY’, and do not modify the matrix after creating it.

9 PART 4 OF THE LIBRARY: CAUCHY REED-SOLOMON CODING ROUTINES 27

9.1

The Procedures in cauchy.c

The procedures are:

9.2

int *cauchy _original _coding matrix(k, m, w) : This allocates and returns the originally defined Cauchfrima
from [BKK +95]. This is the same matrix as defined abaV&[i, j] = m

int *cauchy xy_coding matrix(k, m, w, int *X, int *Y) : This allows the user to specify setsandY” to define
the matrix. SetX hasm elements ofGF'(2) and setY” hask elements. Neither set may have duplicate
elements andk N Y = (). The procedure does not double-chétlandY - it assumes that they conform to
these restrictions.

void cauchy.improve_coding_matrix(k, m, w, matrix) : This improves a matrix using the heuristic above, first
dividing each column by its element in row 0, then improvihg test of the rows.

int *cauchy _good. generalcoding.matrix() : This allocates and returns a good matrix. When= 2, w < 11
andk < 1023, it will return the optimal RAID-6 matrix. Otherwise, it gerates a good matrix by calling
cauchy.original _coding matrix() and thercauchy.improve_coding matrix() . If you need to generate RAID-
6 matrices that are beyond the above parameters, see Se&ibalow.

int cauchy_n_ones(int n, w} This returns the number of ones in the bit-matrix represtiorn of the numben
in GF(2™). Itis much more efficient than generating the bit-matrix andnting ones.

Example Programs to Demonstrate Use

There are four example programs to demonstrate the use pfakedures itauchy.h/cauchy.c

cauchy.01.c This takes two parameters:andw. It calls cauchy.n_ones()to determine the number of ones

in the bit-matrix representation of in GF'(2*). Then it converts: to a bit-matrix, prints it and confirms the
number of ones:

<HTML><title>cauchy_01 5 1</title>
<HTML><h3>cauchy 01 5 1</h3>

<pr‘e>

Converted the value 1 (0x1) to the following bitmatrix:

10000
01000
00100
00010
00001

Ones: 5

UNIX> cauchy 01 31 5

<HTML><title>cauchy_01 5 31</title>
<HTML><h3>cauchy 01 5 31</h3>

<pre>

Converted the value 31 (0x1f) to the following bitmatrix:

11110
11111
10001
11000

9 PART 4 OF THE LIBRARY: CAUCHY REED-SOLOMON CODING ROUTINES 28

11100

Ones: 16
UNIX>

This demonstrates usageaafuchy n_ones() jerasure_matrix _to_bitmatrix() andjerasure_print _bitmatrix() .

e cauchy02.c This takes four parameters:;, m, w andseed (In this and the following examplepacket-
sizeis sizeof(long)) It calls cauchy.original_coding matrix() to create an Cauchy matrix, converts it to a
bitmatrix then encodes it twice. The first time is wji#nasure_bitmatrix _encode() and the second is wiflera-
sure_scheduleencode() which needs fewer XOR'’s. It also decodes twice — once jeithsure_bitmatrix _decode()
and once witherasure_scheduledecodelazy(), which requires fewer XOR'’s. Example output of the follogin
command is irhttp://web.eecs.utk.edu/ ~ plank/plank/jerasure/c02_3_3_3_100.html

UNIX> cauchy_02 3 3 3 100

This demonstrates usage @duchy original _coding-matrix() , cauchy.n_ones() jerasure_smart_bitmatrix-
_to_schedule() jerasure_scheduleencode() jerasure_scheduledecodelazy(), jerasure_print _matrix() and
jerasure_get stats().

e cauchy03.c Thisisidentical taccauchy 02.¢ except that it creates the matrix withuchy xy_coding matrix() ,
and improves it withcauchy.improve_coding matrix() . The initial matrix, before improvement, is idential to
the on created witlsauchy_ original _coding_matrix() in cauchy.02.c Example output of the following com-
mand is inhttp://web.eecs.utk.edu/ ~ plank/plank/jerasure/c03_3_3_3_100.html

UNIX> cauchy_03 3 3 3 100

This demonstrates usageaafuchy_xy_coding matrix() , cauchy.improve_coding matrix() , cauchy_n_ones()
jerasure_smart_bitmatrix _to_schedule() jerasure_scheduleencode()jerasure_scheduledecodelazy(), jerasure-
_print _matrix() andjerasure_get stats().

e cauchy.04.c Finally, thisis identical to the previous two, exceptilsgaauchy.good general.coding matrix() .
Note, whenm = 2, w < 11 andk < 1023, these are optimal Cauchy encoding matrices. That's not
to say that they are optimal RAID-6 matrices (RDP encoding®t04], and Liberation encoding [Pla08]
achieve this), but they are the best Cauchy matrices. Examgput of the following command is #tp:
/lweb.eecs.utk.edu/ ~ plank/plank/jerasure/c04_3_3_3_100.html

UNIX> cauchy 04 3 3 3 100

This demonstrates usage @duchy original _coding-matrix() , cauchy.n_ones() jerasure_smart_bitmatrix-
_to_schedule() jerasure_scheduleencode() jerasure_scheduledecodelazy(), jerasure_print _matrix() and
jerasure_get stats()

9.3 Extending the Parameter Space for Optimal Cauchy RAID-@Matrices

Itis easy to prove that as long As< 2%, then any matrix with all ones in row 0 and distinct non-zdesreents in row
1is a valid MDS RAID-6 matrix. Therefore, the best RAID-6 mbafor a given value ofw is one whosé: elements
in row 1 are thek elements with the smallest number of ones in their bit-roasriCauchy.cstores these elements in
global variables fok < 1023 andw < 11. The filecauchy.bestr6.c is identical tocauchy.cexcept that it includes
these values fow < 32. You will likely get compilation warnings when you use thifibut in my tests, all runs fine.
The reason that these values are natdnchy.cis simply to keep the object files small.

10 PART 5 OF THE LIBRARY: MINIMAL DENSITY RAID-6 CODING 29

10 Part 5 of the Library: Minimal Density RAID-6 Coding

Minimal Density RAID-6 codes are MDS codes based on binaryioes which satisfy a lower-bound on the number
of non-zero entries. Unlike Cauchy coding, the bit-mattengents do not correspond to element&if(2%). Instead,
the bit-matrix itself has the proper MDS property. Minimaisity RAID-6 codes perform faster than Reed-Solomon
and Cauchy Reed-Solomon codes for the same parametersatidimecoding, Liber8tion coding, and Blaum-Roth
coding are three examples of this kind of coding that are sttpd injerasure.

With each of these codes; must be equal to two ankl must be less than or equal ta The value ofw has
restrictions based on the code [PBV11]:

e With Liberation codingw must be a prime number.

e With Blaum-Roth codingw + 1 must be a prime number.

e With Liber8tion codingw must equal 8.

The filesliberation.h andliberation.c implement the following procedures:

e int *liberation _coding bitmatrix(k, w) : This allocates and returns the bit-matrix for liberatimding. Al-
thoughw must be a prime number greater than 2, this is not enforcedéyptocedure. If you give it a
non-primew, you will get a non-MDS coding matrix.

e int *liber8tion _coding bitmatrix(int k) : This allocates and returns the bit-matrix for liber8ti@mding. There
is now parameter becausemust equal 8.

e int *blaum _roth _coding bitmatrix(int k, int w) : This allocates and returns the bit-matrix for Blaum Roth
coding. As above, although+1 must be a prime number, this is not enforced.

10.1 Example Program to Demonstrate Use

liberation 01.c This takes three parameters: w, andseed w should be a prime number greater than two &nd
must be less than or equal#o As in other exampleqacketsizés sizeof(long) It sets up a Liberation bit-matrix and
uses it for encoding and decoding. It encodes by convettiadit-matrix to a dumb schedule. The dumb schedule is
used because that schedule cannot be improved upon. Fafidgcemart scheduling is used as it gives a big savings
over dumb scheduling. Example output of the following comaohis in http://web.eecs.utk.edu/ ~ plank/plank/
jerasure/l01_7_7_100.html

UNIX> liberation_01 7 7 100

This demonstrates usage ldferation _coding bitmatrix() , jerasure_.dumb_bitmatrix _to_schedule() jerasure-
_scheduleencode() jerasure_scheduledecodelazy(), jerasure_print _bitmatrix() andjerasure_get.stats().

11 Example Encoder and Decoder

e encoder.c This program is used to encode a file using any of the availatgthods ijerasure. It takes seven
parameters:

— inputfile or negative numbef: either the file to be encoded or a negative num#éndicating that a
random file of size- S should be used rather than an existing file

11 EXAMPLE ENCODER AND DECODER 30

— k: number of data files
— m: number of coding files
— coding techniquemust be one of the following:

*

*

*

reedsolvan: callsreed sol vandermonde coding matrix() andjerasure_matrix _encode()
reedsolr6_op: callsreed_solLr6_encode()

cauchyorig: callscauchy.original _coding matrix() , jerasure_matrix _to_bitmatrix , jerasure_smart-
_bitmatrix _to_schedule andjerasure_scheduleencode()

cauchygood: callscauchy.good generalcoding.matrix() , jerasure_matrix _to_bitmatrix , jerasure-
_smart_bitmatrix _to_schedule andjerasure_scheduleencode()

liberation: calldiberation _coding bitmatrix , jerasure_smart_bitmatrix _to_schedule andjerasure-
_scheduleencode()

blaumroth: callsblaum_roth _coding bitmatrix , jerasure_smart_bitmatrix _to_schedule andjerasure-
_scheduleencode()

liber8tion: calldiber8tion _coding bitmatrix , jerasure_smart_bitmatrix _to_schedule andjerasure-
_scheduleencode()

— w: word size
— packetsizecan be set to 0 if not required by the selected coding method

— buffersize approximate size of data (in bytes) to be read in at a timé;beiadjusted to obtain a proper
multiple and can be set to 0 if desired

This program reads imputfile (or creates random data), breaks the file intadlocks, and encodes the file into
m blocks. It also creates a metadata file to be used for decqdimpses. It writes all of these into a directory
namedCoding. The output of this program is the rate at which the abovetfans run and the total rate of

running of the program, both given in MB/sec.

UNIX> Is -I Movie.wmv
-FWXr-Xr-X
UNIX> encoder Movie.wmv 6 2 liberation 7 1024 500000
Encoding (MB/sec): 1405.3442614500

En_Total (MB/sec): 5.8234765527

UNIX> Is -I Coding

total 143816

1 plank plank 55211097 Aug 14 10:52 Movie.wmv

-FW-[--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_kl.wmv
-FW-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k2.wmv
-TW-[--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k3.wmv
-FW-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k4.wmv
-FW-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k5.wmv
-TW-[--F-- 1 plank plank 9203712 Aug 14 10:54 Movie_k6.wmv
-MW-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_ml.wmv
-TW-[--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m2.wmv
-FW-r--r-- 1 plank plank 54 Aug 14 10:54 Movie_meta.txt
UNIX> echo ™ | awk { print 9203712 *6 Y

55222272

UNIX>

In the above example a 52.7 MB movie file is broken into six datdtwo coding blocks using Liberation codes
with w = 7 andpacketsizef 1K. A buffer of 500000 bytes is specified beicodermodifies the buffer size so
that it is a multiple ofw * packetsize (7 x 1024).

11 EXAMPLE ENCODER AND DECODER 31

The new directoryCoding, contains the six fileMovie_k1.wmv throughMovie_k6.wmv (which are parts of
the original file) plus the two encoded filddovie_m1.wmv andMovie_m2.wmv. Note that the file sizes are
multiples of 7 and 1024 as well — the original file was paddetth weros so that it would encode properly. The
metadata fileMovie_meta.txt contains all information relevant ttiecoder.

e decoder.c This program is used in conjunction wigmcoderto decode any files remaining after erasures and
reconstruct the original file. The only parameterdercoderis inputfile the original file that was encoded. This
file does not have to exist; the file name is needed only to fied fifeated bgncoder, which should be in the
Coding directory.

After some number of erasures, the program locates theviugviles fromencoderand recreates the original
file if at leastk of the files still exist. The rate of decoding and the totag i@trunning the program are given as
output.

Continuing the previous example, suppose that MdZieavmyv and Movieml.wmv are erased.

UNIX> rm Coding/Movie_kl.wmv Coding/Movie_k2.wmv
UNIX> mv Movie.wmv Old-Movie.wmv

UNIX> decoder Movie.wmv

Decoding (MB/sec): 1167.8230894030

De_Total (MB/sec): 16.0071713224

UNIX> Is -I Coding
total 215704

-MW-r--r-- 1 plank plank 55211097 Aug 14 11:02 Movie_decode d.wmv
-TW-[--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k3.wmv

-MW-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k4.wmv

-TW-[--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k5.wmv

-FW-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_k6.wmv

-TW-[--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_ml.wmv

-MW-r--r-- 1 plank plank 9203712 Aug 14 10:54 Movie_m2.wmv

-TW-[--r-- 1 plank plank 54 Aug 14 10:54 Movie_meta.txt

UNIX> diff Coding/Movie_decoded.wmv Old-Movie.wmv

UNIX>

This reads in all of the remaining files and credits/ie_decoded.wmwvhich, as shown by theiff command,
is identical to the originaWlovie.wmv. Note thatdecoderdoes not recreate the lost data files — just the original.

11.1 Judicious Selection of Buffer and Packet Sizes

In our tests, the buffer and packet sizes have as much impgmrdormance as the code used. This has been demon-
strated multiple times by multiple authors (e.g. [P10®, PGM13]). The following timings use the Liberation code t
encode 256MB of randomly created data with- 6 andw = 2. These were taken in 2014 on a MacBook Pro, and
show how the packet and buffer sizes can impact performance.

UNIX> encoder -268435456 6 2 liberation 7 1024 50000000
Encoding (MB/sec): 1593.9637842733
En_Total (MB/sec): 672.1876668353
UNIX> encoder -268435456 6 2 liberation 7 1024 5000000
Encoding (MB/sec): 2490.9393470499
En_Total (MB/sec): 1383.3866387346
UNIX> encoder -268435456 6 2 liberation 7 10240 5000000
Encoding (MB/sec): 2824.2836957036

12 CHANGING THE UNDERLYING GALOIS FIELD 32

En_Total (MB/sec): 1215.1816805228

UNIX> encoder -268435456 6 2 liberation 7 102400 5000000
Encoding (MB/sec): 1969.8973976058

En_Total (MB/sec): 517.6967197425

UNIX>

When using these routines, one should pay attention to paokibuffer sizes.

12 Changing the Underlying Galois Field

The two programseed sol test gf andreed soltime_gf allow you to change the underlying Galois Field from the
command line. We focus firseed sol test gf. It takes at least five command line arguments. The first forika
m, w andseed Following that is a specification of the Galois Field, whigtes the procedurzeate gf_from _argv()
from GF-Complete. If you give it a single dash, it choosesdbfault. The program then creates a generator matrix
for Reed-Solomon coding, encodes and decodes, and makathatidecoding was successful.

Examples: First, we use the default for= 8, and then we change it so that it uses a multiplication tabtber
than the SSE technique from [PGM13], which is the default:

UNIX> reed_sol_test gf 7 4 8 100 -
<HTML><TITLE>reed_sol_test_gf 7 4 8 100 -</TITLE>
<h3>reed_sol_test gf 7 4 8 100 -</h3>

<pre>

Last m rows of the generator matrix (G°T):

1 1 1 1 1 1 1
1 199 210 240 105 121 248
1 70 91 245 56 142 167
1 187 104 210 211 105 186

Encoding and decoding were both successful.
UNIX> reed_sol_test gf 7 4 8 100 -m TABLE -
<HTML><TITLE>reed_sol_test gf 7 4 8 100 -m TABLE -</TITLE>
<h3>reed_sol_test gf 7 4 8 100 -m TABLE -</h3>
<pr‘e>
Last m rows of the generator matrix (G'T):

1 1 1 1 1 1 1

1 199 210 240 105 121 248

1 70 91 245 56 142 167

1 187 104 210 211 105 186

Encoding and decoding were both successful.
UNIX>

In the next example, we change the primitive polynomial t@d walue — as such, decoding doesn’t work:

UNIX> reed_sol_test gf 7 4 8 100 -m SHIFT -p Ox1 -

<HTML><TITLE>reed_sol_test gf 7 4 8 100 -m SHIFT -p Ox1 -</T ITLE>
<h3>reed_sol_test gf 7 4 8 100 -m SHIFT -p Ox1 -</h3>
<pre>

Last m rows of the generator matrix (G°T):

0 1 0 0 O 0 ©O
03304 0 O O O oO

12 CHANGING THE UNDERLYING GALOIS FIELD 33

Decoding failed for 0!
UNIX>

The progranreed.soltime_gf also takes the number of iterations and a buffer size, angstiime performance of
Reed-Solomon coding. Below, we show how the default implaaten is much faster than using tables foe= 8:

UNIX> reed_sol_time_gf 7 4 8 100 1000 102400 -
<HTML><TITLE>reed_sol_time_gf 7 4 8 100 1000 102400 -</TIT LE>
<h3>reed_sol_time_gf 7 4 8 100 1000 102400 -</h3>

<pre>

Last m rows of the generator matrix (G°T):

1 1 1 1 1 1 1
1 199 210 240 105 121 248
1 70 91 245 56 142 167
1 187 104 210 211 105 186

Encode throughput for 1000 iterations: 2006.88 MB/s (0.34 s ec)

Decode throughput for 1000 iterations: 980.71 MB/s (0.70 se c)

UNIX> reed_sol_time_gf 7 4 8 100 1000 102400 -m TABLE -
<HTML><TITLE>reed_sol_time_gf 7 4 8 100 1000 102400 -m TABL E -</TITLE>
<h3>reed_sol_time_gf 7 4 8 100 1000 102400 -m TABLE -</h3>

<pre>

Last m rows of the generator matrix (G'T):

1 1 1 1 1 1 1
1 199 210 240 105 121 248
1 70 91 245 56 142 167
1 187 104 210 211 105 186

Encode throughput for 1000 iterations: 249.56 MB/s (2.74 se c)
Decode throughput for 1000 iterations: 118.02 MB/s (5.79 se c)
UNIX>

Finally, the shell scriptime_all_gfs_argv_init.sh uses the commargf_methodsfrom GF-Complete to list a variety
of methods for specifying the underlying Galois Field amdes them all. As you can see, fer= 16 andw = 32,
there are some faster methods than the defaults. You sheattithe GF-Complete manual to learn about them,
because they have some caveats. (Again, these timingd areraly MacBook Pro from 2014).

UNIX> sh time_all_gfs_argv_init.sh
Testing 12 3 8 1370 128 65536 -

Encode throughput for 128 iterations: 2406.96 MB/s (0.04 se c)
Decode throughput for 128 iterations: 1221.93 MB/s (0.08 se c)
Testing 12 3 8 1370 128 65536 -m TABLE -

Encode throughput for 128 iterations: 327.08 MB/s (0.29 sec)
Decode throughput for 128 iterations: 162.64 MB/s (0.59 sec)
Testing 12 3 8 1370 128 65536 -m TABLE -r DOUBLE -

Encode throughput for 128 iterations: 416.53 MB/s (0.23 sec)
Decode throughput for 128 iterations: 201.12 MB/s (0.48 sec)
Testing 12 3 8 1370 128 65536 -m LOG -

Encode throughput for 128 iterations: 279.85 MB/s (0.34 sec)
Decode throughput for 128 iterations: 135.50 MB/s (0.71 sec)

Testing 12 3 8 1370 128 65536 -m SPLIT 8 4 -

12 CHANGING THE UNDERLYING GALOIS FIELD

Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing
Encode
Decode
Testing

throughput for 128 iterations:
throughput for 128 iterations:

2547.83 MB/s (0.04 se
1266.00 MB/s (0.08 se

12 3 8 1370 128 65536 -m COMPOSITE 2 - -

throughput for 128 iterations:

91.27 MB/s (1.05 sec)

throughput for 128 iterations: 45.79 MB/s (2.10 sec)

12 3 8 1370 128 65536 -m

throughput for
throughput for
12 3 16 1370
throughput for
throughput for
12 3 16 1370
throughput for
throughput for
12 3 16 1370
throughput for
throughput for
12 3 16 1370
throughput for
throughput for
12 3 16 1370
throughput for
throughput for
12 3 16 1370
throughput for
throughput for
12 3 16 1370
throughput for
throughput for
12 3 16 1370
throughput for
throughput for
12 3 16 1370
throughput for
throughput for
12 3 32 1370
throughput for
throughput for
12 3 32 1370
throughput for
throughput for
12 3 32 1370
throughput for
throughput for
12 3 32 1370
throughput for
throughput for
12 3 32 1370
throughput for
throughput for
12 3 32 1370
throughput for
throughput for
12 3 32 1370
throughput for
throughput for
12 3 32 1370

128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128

iterations:
iterations:
65536 -
iterations: 1910.75 MB/s (0.05 se
iterations: 947.93 MB/s (0.10 sec
65536 -m TABLE -

iterations: 19.48 MB/s (4.93 sec)
iterations: 9.32 MB/s (10.30 sec)
65536 -m LOG -

iterations: 272.43 MB/s (0.35 sec
iterations: 132.38 MB/s (0.73 sec
65536 -m SPLIT 16 4 -
iterations: 1758.13 MB/s (0.05 se
iterations: 890.31 MB/s (0.11 sec

2642.65 MB/s (0.04 se
1346.82 MB/s (0.07 se

65536 -m SPLIT 16 4 -r ALTMAP -

iterations: 2259.65 MB/s (0.04 se
iterations: 1147.83 MB/s (0.08 se
65536 -m SPLIT 16 8 -
iterations: 647.10 MB/s (0.15 sec
iterations: 320.29 MB/s (0.30 sec
65536 -m SPLIT 8 8 -
iterations: 646.79 MB/s (0.15 sec
iterations: 316.62 MB/s (0.30 sec
65536 -m COMPOSITE 2 - -
iterations: 162.01 MB/s (0.59 sec
iterations: 79.45 MB/s (1.21 sec)

65536 -m COMPOSITE 2 - -r ALTMAP -

iterations: 2555.99 MB/s (0.04 se
iterations: 1266.64 MB/s (0.08 se
65536 -

iterations: 1230.37 MB/s (0.08 se
iterations: 592.87 MB/s (0.16 sec
65536 -m GROUP 4 8 -
iterations: 92.27 MB/s (1.04 sec)
iterations: 44.65 MB/s (2.15 sec)
65536 -m SPLIT 32 4 -
iterations: 1207.73 MB/s (0.08 se
iterations: 595.01 MB/s (0.16 sec

65536 -m SPLIT 32 4 -r ALTMAP -

iterations: 1641.69 MB/s (0.06 se
iterations: 791.95 MB/s (0.12 sec
65536 -m SPLIT 32 8 -
iterations: 424.79 MB/s (0.23 sec
iterations: 202.66 MB/s (0.47 sec
65536 -m SPLIT 8 8 -
iterations: 423.76 MB/s (0.23 sec
iterations: 202.69 MB/s (0.47 sec
65536 -m COMPOSITE 2 - -
iterations: 125.19 MB/s (0.77 sec
iterations: 60.84 MB/s (1.58 sec)

65536 -m COMPOSITE 2 - -r ALTMAP -

COMPOSITE 2 - -r ALTMAP -

9)
c)

c)
c)

c)
9)

12 CHANGING THE UNDERLYING GALOIS FIELD

Encode throughput for 128 iterations: 1793.63 MB/s (0.05 se
Decode throughput for 128 iterations: 893.84 MB/s (0.11 sec
Passed all tests!

UNIX>

35

REFERENCES 36

References

[Anv07]

[BBBMO95]

[BBV96]

[BKK +95]

[Bla06]

[BR9Y]

[CEG*04]

[HDRTO5]

[HLCO7]

[HXO05]

[PBV11]

[PDO5]

[PG14]

[PGM13]

[Plag7]

H. P. Anvin. The mathematics of RAID-®itp://kernel.org/pub/linux/kernel/people/hpa/
raidé.pdf , 2007.

M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODAN efficient scheme for tolerating double disk
failures in RAID architecturedEEE Transactions on Computing4(2):192— 202, February 1995.

M. Blaum, J. Bruck, and A. Vardy. MDS array codes wiitilependent parity symbollEEE Transactions
on Information Theory42(2):529—- 542, February 1996.

J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, afl Zuckerman. An XOR-based erasure-
resilient coding scheme. Technical Report TR-95-048 rivetional Computer Science Institute, August
1995.

M. Blaum. A family of MDS array codes with minimal nurar of encoding operations. IREE Interna-
tional Symposium on Information ThepBeattle, September 2006.

M. Blaum and R. M. Roth. On lowest density MDS cod&SEE Transactions on Information Theory
45(1):46-59, January 1999.

P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleima,ebng, and S. Sankar. Row diagonal parity for
double disk failure correction. IRAST-2004: 3rd Usenix Conference on File and Storage Tdobies
San Francisco, CA, March 2004.

J. L. Hafner, V. Deenadhayalan, K. K. Rao, and A. TiamMatrix methods for lost data reconstruction in
erasure codes. IRAST-2005: 4th Usenix Conference on File and Storage Tdobies pages 183-196,
San Francisco, December 2005.

C. Huang, J. Li, and M. Chen. On optimizing XOR-basedes for fault-tolerant storage applications. In
ITW07, Information Theory Workshppages 218-223, Tahoe City, CA, September 2007. IEEE.

C. Huang and L. Xu. STAR: An efficient coding scheme farrecting triple storage node failures. In
FAST-2005: 4th Usenix Conference on File and Storage Tdobi®s pages 197-210, San Francisco,
December 2005.

J. S. Plank, A. L. Buchsbaum, and B. T. Vander Zandédimimum density RAID-6 codesACM Trans-
actions on Storages(4), May 2011.

J. S. Plank and Y. Ding. Note: Correction to the 19%drial on Reed-Solomon codingSoftware —
Practice & Experiencg35(2):189-194, February 2005.

J. S. Plank and K. M. Greenan. Jerasure: A library indllifating erasure coding for storage applications
—version 2.0. Technical Report UT-EECS-14-721, UnivgrsitTennessee, January 2014.

J. S. Plank, K. M. Greenan, and E. L. Miller. Screagniast Galois Field arithmetic using Intel SIMD
instructions. IFFAST-2013: 11th Usenix Conference on File and Storage T#obies San Jose, February
2013.

J. S. Plank. A tutorial on Reed-Solomon coding fautféolerance in RAID-like systemsSoftware —
Practice & Experiencg27(9):995-1012, September 1997.

REFERENCES 37

[Pla07a]

[Pla07b]

[Pla08]

[Pla09]

[Pla10]

[PLST09]

[Pre89]

[PSR12]

[PSS08]

[PXO06]

[Rab89]

[RS60]

J. S. Plank. Fast Galois Field arithmetic libraryC/C++. Technical Report CS-07-593, University of
Tennessee, April 2007.

J. S. Plank. Jerasure: A library in C/C++ facilitgterasure coding for storage applications. Technical
Report CS-07-603, University of Tennessee, September.2007

J. S. Plank. The RAID-6 Liberation codes. B&AST-2008: 6th Usenix Conference on File and Storage
Technologiespages 97-110, San Jose, February 2008.

J. S. Plank. The RAID-6 Liber8Tion codaternational Journal of High Performance Computing Appli
cations 23(3):242—-251, 2009.

J. S. Plank. Uber-CSHR and X-Sets: C++ programsitinozing matrix-based erasure codes for fault-
tolerant storage systems. Technical Report CS-10-66%¢dusity of Tennessee, December 2010.

J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-&4rh. A performance evaluation and
examination of open-source erasure coding libraries fmage. INFAST-2009: 7th Usenix Conference
on File and Storage Technologigsmages 253-265, February 2009.

F. P. Preparata. Holographic dispersal and regafanformation. IEEE Transactions on Information
Theory 35(5):1123-1124, September 1989.

J. S. Plank, C. D. Schuman, and B. D. Robison. Hésif&ir optimizing matrix-based erasure codes for
fault-tolerant storage systems. MEN-2012: The International Conference on DependableBysand
Networks Boston, MA, June 2012. IEEE.

J. S. Plank, S. Simmerman, and C. D. Schuman. Jeraslibrary in C/C++ facilitating erasure coding
for storage applications - Version 1.2. Technical Report08327, University of Tennessee, August
2008.

J. S. Plank and L. Xu. Optimizing Cauchy Reed-Soloroodes for fault-tolerant network storage appli-
cations. IlNCA-06: 5th IEEE International Symposium on Network Conmguipplications Cambridge,
MA, July 2006.

M. O. Rabin. Efficient dispersal of information facsirity, load balancing, and fault toleranckurnal
of the Association for Computing MachineB6(2):335-348, April 1989.

I.S. Reed and G. Solomon. Polynomial codes overioditéte fields.Journal of the Society for Industrial
and Applied Mathemati¢c8:300-304, 1960.

