summaryrefslogtreecommitdiff
path: root/ghc/rts/Schedule.c
blob: b0271153a63fd53b328f8c66ea23e94412966761 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
/* ---------------------------------------------------------------------------
 * $Id: Schedule.c,v 1.108 2001/11/26 16:54:22 simonmar Exp $
 *
 * (c) The GHC Team, 1998-2000
 *
 * Scheduler
 *
 * Different GHC ways use this scheduler quite differently (see comments below)
 * Here is the global picture:
 *
 * WAY  Name     CPP flag  What's it for
 * --------------------------------------
 * mp   GUM      PAR       Parallel execution on a distributed memory machine
 * s    SMP      SMP       Parallel execution on a shared memory machine
 * mg   GranSim  GRAN      Simulation of parallel execution
 * md   GUM/GdH  DIST      Distributed execution (based on GUM)
 * --------------------------------------------------------------------------*/

//@node Main scheduling code, , ,
//@section Main scheduling code

/* 
 * Version with scheduler monitor support for SMPs (WAY=s):

   This design provides a high-level API to create and schedule threads etc.
   as documented in the SMP design document.

   It uses a monitor design controlled by a single mutex to exercise control
   over accesses to shared data structures, and builds on the Posix threads
   library.

   The majority of state is shared.  In order to keep essential per-task state,
   there is a Capability structure, which contains all the information
   needed to run a thread: its STG registers, a pointer to its TSO, a
   nursery etc.  During STG execution, a pointer to the capability is
   kept in a register (BaseReg).

   In a non-SMP build, there is one global capability, namely MainRegTable.

   SDM & KH, 10/99

 * Version with support for distributed memory parallelism aka GUM (WAY=mp):

   The main scheduling loop in GUM iterates until a finish message is received.
   In that case a global flag @receivedFinish@ is set and this instance of
   the RTS shuts down. See ghc/rts/parallel/HLComms.c:processMessages()
   for the handling of incoming messages, such as PP_FINISH.
   Note that in the parallel case we have a system manager that coordinates
   different PEs, each of which are running one instance of the RTS.
   See ghc/rts/parallel/SysMan.c for the main routine of the parallel program.
   From this routine processes executing ghc/rts/Main.c are spawned. -- HWL

 * Version with support for simulating parallel execution aka GranSim (WAY=mg):

   The main scheduling code in GranSim is quite different from that in std
   (concurrent) Haskell: while concurrent Haskell just iterates over the
   threads in the runnable queue, GranSim is event driven, i.e. it iterates
   over the events in the global event queue.  -- HWL
*/

//@menu
//* Includes::			
//* Variables and Data structures::  
//* Main scheduling loop::	
//* Suspend and Resume::	
//* Run queue code::		
//* Garbage Collextion Routines::  
//* Blocking Queue Routines::	
//* Exception Handling Routines::  
//* Debugging Routines::	
//* Index::			
//@end menu

//@node Includes, Variables and Data structures, Main scheduling code, Main scheduling code
//@subsection Includes

#include "PosixSource.h"
#include "Rts.h"
#include "SchedAPI.h"
#include "RtsUtils.h"
#include "RtsFlags.h"
#include "Storage.h"
#include "StgRun.h"
#include "StgStartup.h"
#include "Hooks.h"
#include "Schedule.h"
#include "StgMiscClosures.h"
#include "Storage.h"
#include "Interpreter.h"
#include "Exception.h"
#include "Printer.h"
#include "Main.h"
#include "Signals.h"
#include "Sanity.h"
#include "Stats.h"
#include "Itimer.h"
#include "Prelude.h"
#ifdef PROFILING
#include "Proftimer.h"
#include "ProfHeap.h"
#include "RetainerProfile.h"
#endif
#if defined(GRAN) || defined(PAR)
# include "GranSimRts.h"
# include "GranSim.h"
# include "ParallelRts.h"
# include "Parallel.h"
# include "ParallelDebug.h"
# include "FetchMe.h"
# include "HLC.h"
#endif
#include "Sparks.h"

#include <stdarg.h>

//@node Variables and Data structures, Prototypes, Includes, Main scheduling code
//@subsection Variables and Data structures

/* Main threads:
 *
 * These are the threads which clients have requested that we run.  
 *
 * In an SMP build, we might have several concurrent clients all
 * waiting for results, and each one will wait on a condition variable
 * until the result is available.
 *
 * In non-SMP, clients are strictly nested: the first client calls
 * into the RTS, which might call out again to C with a _ccall_GC, and
 * eventually re-enter the RTS.
 *
 * Main threads information is kept in a linked list:
 */
//@cindex StgMainThread
typedef struct StgMainThread_ {
  StgTSO *         tso;
  SchedulerStatus  stat;
  StgClosure **    ret;
#ifdef SMP
  pthread_cond_t wakeup;
#endif
  struct StgMainThread_ *link;
} StgMainThread;

/* Main thread queue.
 * Locks required: sched_mutex.
 */
static StgMainThread *main_threads;

/* Thread queues.
 * Locks required: sched_mutex.
 */
#if defined(GRAN)

StgTSO* ActiveTSO = NULL; /* for assigning system costs; GranSim-Light only */
/* rtsTime TimeOfNextEvent, EndOfTimeSlice;            now in GranSim.c */

/* 
   In GranSim we have a runable and a blocked queue for each processor.
   In order to minimise code changes new arrays run_queue_hds/tls
   are created. run_queue_hd is then a short cut (macro) for
   run_queue_hds[CurrentProc] (see GranSim.h).
   -- HWL
*/
StgTSO *run_queue_hds[MAX_PROC], *run_queue_tls[MAX_PROC];
StgTSO *blocked_queue_hds[MAX_PROC], *blocked_queue_tls[MAX_PROC];
StgTSO *ccalling_threadss[MAX_PROC];
/* We use the same global list of threads (all_threads) in GranSim as in
   the std RTS (i.e. we are cheating). However, we don't use this list in
   the GranSim specific code at the moment (so we are only potentially
   cheating).  */

#else /* !GRAN */

StgTSO *run_queue_hd, *run_queue_tl;
StgTSO *blocked_queue_hd, *blocked_queue_tl;
StgTSO *sleeping_queue;		/* perhaps replace with a hash table? */

#endif

/* Linked list of all threads.
 * Used for detecting garbage collected threads.
 */
StgTSO *all_threads;

/* Threads suspended in _ccall_GC.
 */
static StgTSO *suspended_ccalling_threads;

static StgTSO *threadStackOverflow(StgTSO *tso);

/* KH: The following two flags are shared memory locations.  There is no need
       to lock them, since they are only unset at the end of a scheduler
       operation.
*/

/* flag set by signal handler to precipitate a context switch */
//@cindex context_switch
nat context_switch;

/* if this flag is set as well, give up execution */
//@cindex interrupted
rtsBool interrupted;

/* Next thread ID to allocate.
 * Locks required: sched_mutex
 */
//@cindex next_thread_id
StgThreadID next_thread_id = 1;

/*
 * Pointers to the state of the current thread.
 * Rule of thumb: if CurrentTSO != NULL, then we're running a Haskell
 * thread.  If CurrentTSO == NULL, then we're at the scheduler level.
 */
 
/* The smallest stack size that makes any sense is:
 *    RESERVED_STACK_WORDS    (so we can get back from the stack overflow)
 *  + sizeofW(StgStopFrame)   (the stg_stop_thread_info frame)
 *  + 1                       (the realworld token for an IO thread)
 *  + 1                       (the closure to enter)
 *
 * A thread with this stack will bomb immediately with a stack
 * overflow, which will increase its stack size.  
 */

#define MIN_STACK_WORDS (RESERVED_STACK_WORDS + sizeofW(StgStopFrame) + 2)

/* Free capability list.
 * Locks required: sched_mutex.
 */
#ifdef SMP
Capability *free_capabilities; /* Available capabilities for running threads */
nat n_free_capabilities;       /* total number of available capabilities */
#else
Capability MainCapability;     /* for non-SMP, we have one global capability */
#endif

#if defined(GRAN)
StgTSO *CurrentTSO;
#endif

/*  This is used in `TSO.h' and gcc 2.96 insists that this variable actually 
 *  exists - earlier gccs apparently didn't.
 *  -= chak
 */
StgTSO dummy_tso;

rtsBool ready_to_gc;

/* All our current task ids, saved in case we need to kill them later.
 */
#ifdef SMP
//@cindex task_ids
task_info *task_ids;
#endif

void            addToBlockedQueue ( StgTSO *tso );

static void     schedule          ( void );
       void     interruptStgRts   ( void );
#if defined(GRAN)
static StgTSO * createThread_     ( nat size, rtsBool have_lock, StgInt pri );
#else
static StgTSO * createThread_     ( nat size, rtsBool have_lock );
#endif

static void     detectBlackHoles  ( void );

#ifdef DEBUG
static void sched_belch(char *s, ...);
#endif

#ifdef SMP
//@cindex sched_mutex
//@cindex term_mutex
//@cindex thread_ready_cond
//@cindex gc_pending_cond
pthread_mutex_t sched_mutex       = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t term_mutex        = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t  thread_ready_cond = PTHREAD_COND_INITIALIZER;
pthread_cond_t  gc_pending_cond   = PTHREAD_COND_INITIALIZER;

nat await_death;
#endif

#if defined(PAR)
StgTSO *LastTSO;
rtsTime TimeOfLastYield;
rtsBool emitSchedule = rtsTrue;
#endif

#if DEBUG
char *whatNext_strs[] = {
  "ThreadEnterGHC",
  "ThreadRunGHC",
  "ThreadEnterInterp",
  "ThreadKilled",
  "ThreadComplete"
};

char *threadReturnCode_strs[] = {
  "HeapOverflow",			/* might also be StackOverflow */
  "StackOverflow",
  "ThreadYielding",
  "ThreadBlocked",
  "ThreadFinished"
};
#endif

#ifdef PAR
StgTSO * createSparkThread(rtsSpark spark);
StgTSO * activateSpark (rtsSpark spark);  
#endif

/*
 * The thread state for the main thread.
// ToDo: check whether not needed any more
StgTSO   *MainTSO;
 */

//@node Main scheduling loop, Suspend and Resume, Prototypes, Main scheduling code
//@subsection Main scheduling loop

/* ---------------------------------------------------------------------------
   Main scheduling loop.

   We use round-robin scheduling, each thread returning to the
   scheduler loop when one of these conditions is detected:

      * out of heap space
      * timer expires (thread yields)
      * thread blocks
      * thread ends
      * stack overflow

   Locking notes:  we acquire the scheduler lock once at the beginning
   of the scheduler loop, and release it when
    
      * running a thread, or
      * waiting for work, or
      * waiting for a GC to complete.

   GRAN version:
     In a GranSim setup this loop iterates over the global event queue.
     This revolves around the global event queue, which determines what 
     to do next. Therefore, it's more complicated than either the 
     concurrent or the parallel (GUM) setup.

   GUM version:
     GUM iterates over incoming messages.
     It starts with nothing to do (thus CurrentTSO == END_TSO_QUEUE),
     and sends out a fish whenever it has nothing to do; in-between
     doing the actual reductions (shared code below) it processes the
     incoming messages and deals with delayed operations 
     (see PendingFetches).
     This is not the ugliest code you could imagine, but it's bloody close.

   ------------------------------------------------------------------------ */
//@cindex schedule
static void
schedule( void )
{
  StgTSO *t;
  Capability *cap;
  StgThreadReturnCode ret;
#if defined(GRAN)
  rtsEvent *event;
#elif defined(PAR)
  StgSparkPool *pool;
  rtsSpark spark;
  StgTSO *tso;
  GlobalTaskId pe;
  rtsBool receivedFinish = rtsFalse;
# if defined(DEBUG)
  nat tp_size, sp_size; // stats only
# endif
#endif
  rtsBool was_interrupted = rtsFalse;
  
  ACQUIRE_LOCK(&sched_mutex);

#if defined(GRAN)

  /* set up first event to get things going */
  /* ToDo: assign costs for system setup and init MainTSO ! */
  new_event(CurrentProc, CurrentProc, CurrentTime[CurrentProc],
	    ContinueThread, 
	    CurrentTSO, (StgClosure*)NULL, (rtsSpark*)NULL);

  IF_DEBUG(gran,
	   fprintf(stderr, "GRAN: Init CurrentTSO (in schedule) = %p\n", CurrentTSO);
	   G_TSO(CurrentTSO, 5));

  if (RtsFlags.GranFlags.Light) {
    /* Save current time; GranSim Light only */
    CurrentTSO->gran.clock = CurrentTime[CurrentProc];
  }      

  event = get_next_event();

  while (event!=(rtsEvent*)NULL) {
    /* Choose the processor with the next event */
    CurrentProc = event->proc;
    CurrentTSO = event->tso;

#elif defined(PAR)

  while (!receivedFinish) {    /* set by processMessages */
                               /* when receiving PP_FINISH message         */ 
#else

  while (1) {

#endif

    IF_DEBUG(scheduler, printAllThreads());

    /* If we're interrupted (the user pressed ^C, or some other
     * termination condition occurred), kill all the currently running
     * threads.
     */
    if (interrupted) {
      IF_DEBUG(scheduler, sched_belch("interrupted"));
      deleteAllThreads();
      interrupted = rtsFalse;
      was_interrupted = rtsTrue;
    }

    /* Go through the list of main threads and wake up any
     * clients whose computations have finished.  ToDo: this
     * should be done more efficiently without a linear scan
     * of the main threads list, somehow...
     */
#ifdef SMP
    { 
      StgMainThread *m, **prev;
      prev = &main_threads;
      for (m = main_threads; m != NULL; m = m->link) {
	switch (m->tso->what_next) {
	case ThreadComplete:
	  if (m->ret) {
	    *(m->ret) = (StgClosure *)m->tso->sp[0];
	  }
	  *prev = m->link;
	  m->stat = Success;
	  pthread_cond_broadcast(&m->wakeup);
	  break;
	case ThreadKilled:
	  if (m->ret) *(m->ret) = NULL;
	  *prev = m->link;
	  if (was_interrupted) {
	    m->stat = Interrupted;
	  } else {
	    m->stat = Killed;
	  }
	  pthread_cond_broadcast(&m->wakeup);
	  break;
	default:
	  break;
	}
      }
    }

#else // not SMP

# if defined(PAR)
    /* in GUM do this only on the Main PE */
    if (IAmMainThread)
# endif
    /* If our main thread has finished or been killed, return.
     */
    {
      StgMainThread *m = main_threads;
      if (m->tso->what_next == ThreadComplete
	  || m->tso->what_next == ThreadKilled) {
	main_threads = main_threads->link;
	if (m->tso->what_next == ThreadComplete) {
	  /* we finished successfully, fill in the return value */
	  if (m->ret) { *(m->ret) = (StgClosure *)m->tso->sp[0]; };
	  m->stat = Success;
	  return;
	} else {
	  if (m->ret) { *(m->ret) = NULL; };
	  if (was_interrupted) {
	    m->stat = Interrupted;
	  } else {
	    m->stat = Killed;
	  }
	  return;
	}
      }
    }
#endif

    /* Top up the run queue from our spark pool.  We try to make the
     * number of threads in the run queue equal to the number of
     * free capabilities.
     */
#if defined(SMP)
    {
      nat n = n_free_capabilities;
      StgTSO *tso = run_queue_hd;

      /* Count the run queue */
      while (n > 0 && tso != END_TSO_QUEUE) {
	tso = tso->link;
	n--;
      }

      for (; n > 0; n--) {
	StgClosure *spark;
	spark = findSpark(rtsFalse);
	if (spark == NULL) {
	  break; /* no more sparks in the pool */
	} else {
	  /* I'd prefer this to be done in activateSpark -- HWL */
	  /* tricky - it needs to hold the scheduler lock and
	   * not try to re-acquire it -- SDM */
	  createSparkThread(spark);	  
	  IF_DEBUG(scheduler,
		   sched_belch("==^^ turning spark of closure %p into a thread",
			       (StgClosure *)spark));
	}
      }
      /* We need to wake up the other tasks if we just created some
       * work for them.
       */
      if (n_free_capabilities - n > 1) {
	  pthread_cond_signal(&thread_ready_cond);
      }
    }
#endif // SMP

    /* check for signals each time around the scheduler */
#ifndef mingw32_TARGET_OS
    if (signals_pending()) {
      startSignalHandlers();
    }
#endif

    /* Check whether any waiting threads need to be woken up.  If the
     * run queue is empty, and there are no other tasks running, we
     * can wait indefinitely for something to happen.
     * ToDo: what if another client comes along & requests another
     * main thread?
     */
    if (blocked_queue_hd != END_TSO_QUEUE || sleeping_queue != END_TSO_QUEUE) {
      awaitEvent(
	   (run_queue_hd == END_TSO_QUEUE)
#ifdef SMP
	&& (n_free_capabilities == RtsFlags.ParFlags.nNodes)
#endif
	);
    }
    /* we can be interrupted while waiting for I/O... */
    if (interrupted) continue;

    /* 
     * Detect deadlock: when we have no threads to run, there are no
     * threads waiting on I/O or sleeping, and all the other tasks are
     * waiting for work, we must have a deadlock of some description.
     *
     * We first try to find threads blocked on themselves (ie. black
     * holes), and generate NonTermination exceptions where necessary.
     *
     * If no threads are black holed, we have a deadlock situation, so
     * inform all the main threads.
     */
#ifndef PAR
    if (blocked_queue_hd == END_TSO_QUEUE
	&& run_queue_hd == END_TSO_QUEUE
	&& sleeping_queue == END_TSO_QUEUE
#ifdef SMP
	&& (n_free_capabilities == RtsFlags.ParFlags.nNodes)
#endif
	)
    {
	IF_DEBUG(scheduler, sched_belch("deadlocked, forcing major GC..."));
	GarbageCollect(GetRoots,rtsTrue);
	if (blocked_queue_hd == END_TSO_QUEUE
	    && run_queue_hd == END_TSO_QUEUE
	    && sleeping_queue == END_TSO_QUEUE) {
	    IF_DEBUG(scheduler, sched_belch("still deadlocked, checking for black holes..."));
	    detectBlackHoles();
	    if (run_queue_hd == END_TSO_QUEUE) {
		StgMainThread *m = main_threads;
#ifdef SMP
		for (; m != NULL; m = m->link) {
		    deleteThread(m->tso);
		    m->ret = NULL;
		    m->stat = Deadlock;
		    pthread_cond_broadcast(&m->wakeup);
		}
		main_threads = NULL;
#else
		deleteThread(m->tso);
		m->ret = NULL;
		m->stat = Deadlock;
		main_threads = m->link;
		return;
#endif
	    }
	}
    }
#elif defined(PAR)
    /* ToDo: add deadlock detection in GUM (similar to SMP) -- HWL */
#endif

#ifdef SMP
    /* If there's a GC pending, don't do anything until it has
     * completed.
     */
    if (ready_to_gc) {
      IF_DEBUG(scheduler,sched_belch("waiting for GC"));
      pthread_cond_wait(&gc_pending_cond, &sched_mutex);
    }
    
    /* block until we've got a thread on the run queue and a free
     * capability.
     */
    while (run_queue_hd == END_TSO_QUEUE || free_capabilities == NULL) {
      IF_DEBUG(scheduler, sched_belch("waiting for work"));
      pthread_cond_wait(&thread_ready_cond, &sched_mutex);
      IF_DEBUG(scheduler, sched_belch("work now available"));
    }
#endif

#if defined(GRAN)

    if (RtsFlags.GranFlags.Light)
      GranSimLight_enter_system(event, &ActiveTSO); // adjust ActiveTSO etc

    /* adjust time based on time-stamp */
    if (event->time > CurrentTime[CurrentProc] &&
        event->evttype != ContinueThread)
      CurrentTime[CurrentProc] = event->time;
    
    /* Deal with the idle PEs (may issue FindWork or MoveSpark events) */
    if (!RtsFlags.GranFlags.Light)
      handleIdlePEs();

    IF_DEBUG(gran, fprintf(stderr, "GRAN: switch by event-type\n"));

    /* main event dispatcher in GranSim */
    switch (event->evttype) {
      /* Should just be continuing execution */
    case ContinueThread:
      IF_DEBUG(gran, fprintf(stderr, "GRAN: doing ContinueThread\n"));
      /* ToDo: check assertion
      ASSERT(run_queue_hd != (StgTSO*)NULL &&
	     run_queue_hd != END_TSO_QUEUE);
      */
      /* Ignore ContinueThreads for fetching threads (if synchr comm) */
      if (!RtsFlags.GranFlags.DoAsyncFetch &&
	  procStatus[CurrentProc]==Fetching) {
	belch("ghuH: Spurious ContinueThread while Fetching ignored; TSO %d (%p) [PE %d]",
	      CurrentTSO->id, CurrentTSO, CurrentProc);
	goto next_thread;
      }	
      /* Ignore ContinueThreads for completed threads */
      if (CurrentTSO->what_next == ThreadComplete) {
	belch("ghuH: found a ContinueThread event for completed thread %d (%p) [PE %d] (ignoring ContinueThread)", 
	      CurrentTSO->id, CurrentTSO, CurrentProc);
	goto next_thread;
      }	
      /* Ignore ContinueThreads for threads that are being migrated */
      if (PROCS(CurrentTSO)==Nowhere) { 
	belch("ghuH: trying to run the migrating TSO %d (%p) [PE %d] (ignoring ContinueThread)",
	      CurrentTSO->id, CurrentTSO, CurrentProc);
	goto next_thread;
      }
      /* The thread should be at the beginning of the run queue */
      if (CurrentTSO!=run_queue_hds[CurrentProc]) { 
	belch("ghuH: TSO %d (%p) [PE %d] is not at the start of the run_queue when doing a ContinueThread",
	      CurrentTSO->id, CurrentTSO, CurrentProc);
	break; // run the thread anyway
      }
      /*
      new_event(proc, proc, CurrentTime[proc],
		FindWork,
		(StgTSO*)NULL, (StgClosure*)NULL, (rtsSpark*)NULL);
      goto next_thread; 
      */ /* Catches superfluous CONTINUEs -- should be unnecessary */
      break; // now actually run the thread; DaH Qu'vam yImuHbej 

    case FetchNode:
      do_the_fetchnode(event);
      goto next_thread;             /* handle next event in event queue  */
      
    case GlobalBlock:
      do_the_globalblock(event);
      goto next_thread;             /* handle next event in event queue  */
      
    case FetchReply:
      do_the_fetchreply(event);
      goto next_thread;             /* handle next event in event queue  */
      
    case UnblockThread:   /* Move from the blocked queue to the tail of */
      do_the_unblock(event);
      goto next_thread;             /* handle next event in event queue  */
      
    case ResumeThread:  /* Move from the blocked queue to the tail of */
      /* the runnable queue ( i.e. Qu' SImqa'lu') */ 
      event->tso->gran.blocktime += 
	CurrentTime[CurrentProc] - event->tso->gran.blockedat;
      do_the_startthread(event);
      goto next_thread;             /* handle next event in event queue  */
      
    case StartThread:
      do_the_startthread(event);
      goto next_thread;             /* handle next event in event queue  */
      
    case MoveThread:
      do_the_movethread(event);
      goto next_thread;             /* handle next event in event queue  */
      
    case MoveSpark:
      do_the_movespark(event);
      goto next_thread;             /* handle next event in event queue  */
      
    case FindWork:
      do_the_findwork(event);
      goto next_thread;             /* handle next event in event queue  */
      
    default:
      barf("Illegal event type %u\n", event->evttype);
    }  /* switch */
    
    /* This point was scheduler_loop in the old RTS */

    IF_DEBUG(gran, belch("GRAN: after main switch"));

    TimeOfLastEvent = CurrentTime[CurrentProc];
    TimeOfNextEvent = get_time_of_next_event();
    IgnoreEvents=(TimeOfNextEvent==0); // HWL HACK
    // CurrentTSO = ThreadQueueHd;

    IF_DEBUG(gran, belch("GRAN: time of next event is: %ld", 
			 TimeOfNextEvent));

    if (RtsFlags.GranFlags.Light) 
      GranSimLight_leave_system(event, &ActiveTSO); 

    EndOfTimeSlice = CurrentTime[CurrentProc]+RtsFlags.GranFlags.time_slice;

    IF_DEBUG(gran, 
	     belch("GRAN: end of time-slice is %#lx", EndOfTimeSlice));

    /* in a GranSim setup the TSO stays on the run queue */
    t = CurrentTSO;
    /* Take a thread from the run queue. */
    t = POP_RUN_QUEUE(); // take_off_run_queue(t);

    IF_DEBUG(gran, 
	     fprintf(stderr, "GRAN: About to run current thread, which is\n");
	     G_TSO(t,5));

    context_switch = 0; // turned on via GranYield, checking events and time slice

    IF_DEBUG(gran, 
	     DumpGranEvent(GR_SCHEDULE, t));

    procStatus[CurrentProc] = Busy;

#elif defined(PAR)
    if (PendingFetches != END_BF_QUEUE) {
        processFetches();
    }

    /* ToDo: phps merge with spark activation above */
    /* check whether we have local work and send requests if we have none */
    if (EMPTY_RUN_QUEUE()) {  /* no runnable threads */
      /* :-[  no local threads => look out for local sparks */
      /* the spark pool for the current PE */
      pool = &(MainRegTable.rSparks); // generalise to cap = &MainRegTable
      if (advisory_thread_count < RtsFlags.ParFlags.maxThreads &&
	  pool->hd < pool->tl) {
	/* 
	 * ToDo: add GC code check that we really have enough heap afterwards!!
	 * Old comment:
	 * If we're here (no runnable threads) and we have pending
	 * sparks, we must have a space problem.  Get enough space
	 * to turn one of those pending sparks into a
	 * thread... 
	 */

	spark = findSpark(rtsFalse);                /* get a spark */
	if (spark != (rtsSpark) NULL) {
	  tso = activateSpark(spark);       /* turn the spark into a thread */
	  IF_PAR_DEBUG(schedule,
		       belch("==== schedule: Created TSO %d (%p); %d threads active",
			     tso->id, tso, advisory_thread_count));

	  if (tso==END_TSO_QUEUE) { /* failed to activate spark->back to loop */
	    belch("==^^ failed to activate spark");
	    goto next_thread;
	  }               /* otherwise fall through & pick-up new tso */
	} else {
	  IF_PAR_DEBUG(verbose,
		       belch("==^^ no local sparks (spark pool contains only NFs: %d)", 
			     spark_queue_len(pool)));
	  goto next_thread;
	}
      }

      /* If we still have no work we need to send a FISH to get a spark
	 from another PE 
      */
      if (EMPTY_RUN_QUEUE()) {
      /* =8-[  no local sparks => look for work on other PEs */
	/*
	 * We really have absolutely no work.  Send out a fish
	 * (there may be some out there already), and wait for
	 * something to arrive.  We clearly can't run any threads
	 * until a SCHEDULE or RESUME arrives, and so that's what
	 * we're hoping to see.  (Of course, we still have to
	 * respond to other types of messages.)
	 */
	TIME now = msTime() /*CURRENT_TIME*/;
	IF_PAR_DEBUG(verbose, 
		     belch("--  now=%ld", now));
	IF_PAR_DEBUG(verbose,
		     if (outstandingFishes < RtsFlags.ParFlags.maxFishes &&
			 (last_fish_arrived_at!=0 &&
			  last_fish_arrived_at+RtsFlags.ParFlags.fishDelay > now)) {
		       belch("--$$ delaying FISH until %ld (last fish %ld, delay %ld, now %ld)",
			     last_fish_arrived_at+RtsFlags.ParFlags.fishDelay,
			     last_fish_arrived_at,
			     RtsFlags.ParFlags.fishDelay, now);
		     });
	
	if (outstandingFishes < RtsFlags.ParFlags.maxFishes &&
	    (last_fish_arrived_at==0 ||
	     (last_fish_arrived_at+RtsFlags.ParFlags.fishDelay <= now))) {
	  /* outstandingFishes is set in sendFish, processFish;
	     avoid flooding system with fishes via delay */
	  pe = choosePE();
	  sendFish(pe, mytid, NEW_FISH_AGE, NEW_FISH_HISTORY, 
		   NEW_FISH_HUNGER);

	  // Global statistics: count no. of fishes
	  if (RtsFlags.ParFlags.ParStats.Global &&
	      RtsFlags.GcFlags.giveStats > NO_GC_STATS) {
	    globalParStats.tot_fish_mess++;
	  }
	}
      
	receivedFinish = processMessages();
	goto next_thread;
      }
    } else if (PacketsWaiting()) {  /* Look for incoming messages */
      receivedFinish = processMessages();
    }

    /* Now we are sure that we have some work available */
    ASSERT(run_queue_hd != END_TSO_QUEUE);

    /* Take a thread from the run queue, if we have work */
    t = POP_RUN_QUEUE();  // take_off_run_queue(END_TSO_QUEUE);
    IF_DEBUG(sanity,checkTSO(t));

    /* ToDo: write something to the log-file
    if (RTSflags.ParFlags.granSimStats && !sameThread)
        DumpGranEvent(GR_SCHEDULE, RunnableThreadsHd);

    CurrentTSO = t;
    */
    /* the spark pool for the current PE */
    pool = &(MainRegTable.rSparks); // generalise to cap = &MainRegTable

    IF_DEBUG(scheduler, 
	     belch("--=^ %d threads, %d sparks on [%#x]", 
		   run_queue_len(), spark_queue_len(pool), CURRENT_PROC));

#if 1
    if (0 && RtsFlags.ParFlags.ParStats.Full && 
	t && LastTSO && t->id != LastTSO->id && 
	LastTSO->why_blocked == NotBlocked && 
	LastTSO->what_next != ThreadComplete) {
      // if previously scheduled TSO not blocked we have to record the context switch
      DumpVeryRawGranEvent(TimeOfLastYield, CURRENT_PROC, CURRENT_PROC,
			   GR_DESCHEDULE, LastTSO, (StgClosure *)NULL, 0, 0);
    }

    if (RtsFlags.ParFlags.ParStats.Full && 
	(emitSchedule /* forced emit */ ||
        (t && LastTSO && t->id != LastTSO->id))) {
      /* 
	 we are running a different TSO, so write a schedule event to log file
	 NB: If we use fair scheduling we also have to write  a deschedule 
	     event for LastTSO; with unfair scheduling we know that the
	     previous tso has blocked whenever we switch to another tso, so
	     we don't need it in GUM for now
      */
      DumpRawGranEvent(CURRENT_PROC, CURRENT_PROC,
		       GR_SCHEDULE, t, (StgClosure *)NULL, 0, 0);
      emitSchedule = rtsFalse;
    }
     
#endif
#else /* !GRAN && !PAR */
  
    /* grab a thread from the run queue
     */
    ASSERT(run_queue_hd != END_TSO_QUEUE);
    t = POP_RUN_QUEUE();

    // Sanity check the thread we're about to run.  This can be
    // expensive if there is lots of thread switching going on...
    IF_DEBUG(sanity,checkTSO(t));

#endif
    
    /* grab a capability
     */
#ifdef SMP
    cap = free_capabilities;
    free_capabilities = cap->link;
    n_free_capabilities--;
#else
    cap = &MainCapability;
#endif

    cap->r.rCurrentTSO = t;
    
    /* context switches are now initiated by the timer signal, unless
     * the user specified "context switch as often as possible", with
     * +RTS -C0
     */
    if (
#ifdef PROFILING
	RtsFlags.ProfFlags.profileInterval == 0 ||
#endif
	(RtsFlags.ConcFlags.ctxtSwitchTicks == 0
	 && (run_queue_hd != END_TSO_QUEUE
	     || blocked_queue_hd != END_TSO_QUEUE
	     || sleeping_queue != END_TSO_QUEUE)))
	context_switch = 1;
    else
	context_switch = 0;

    RELEASE_LOCK(&sched_mutex);

    IF_DEBUG(scheduler, sched_belch("-->> Running TSO %ld (%p) %s ...", 
			      t->id, t, whatNext_strs[t->what_next]));

#ifdef PROFILING
    startHeapProfTimer();
#endif

    /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
    /* Run the current thread 
     */
    switch (cap->r.rCurrentTSO->what_next) {
    case ThreadKilled:
    case ThreadComplete:
	/* Thread already finished, return to scheduler. */
	ret = ThreadFinished;
	break;
    case ThreadEnterGHC:
	ret = StgRun((StgFunPtr) stg_enterStackTop, &cap->r);
	break;
    case ThreadRunGHC:
	ret = StgRun((StgFunPtr) stg_returnToStackTop, &cap->r);
	break;
    case ThreadEnterInterp:
	ret = interpretBCO(cap);
	break;
    default:
      barf("schedule: invalid what_next field");
    }
    /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
    
    /* Costs for the scheduler are assigned to CCS_SYSTEM */
#ifdef PROFILING
    stopHeapProfTimer();
    CCCS = CCS_SYSTEM;
#endif
    
    ACQUIRE_LOCK(&sched_mutex);

#ifdef SMP
    IF_DEBUG(scheduler,fprintf(stderr,"scheduler (task %ld): ", pthread_self()););
#elif !defined(GRAN) && !defined(PAR)
    IF_DEBUG(scheduler,fprintf(stderr,"scheduler: "););
#endif
    t = cap->r.rCurrentTSO;
    
#if defined(PAR)
    /* HACK 675: if the last thread didn't yield, make sure to print a 
       SCHEDULE event to the log file when StgRunning the next thread, even
       if it is the same one as before */
    LastTSO = t; 
    TimeOfLastYield = CURRENT_TIME;
#endif

    switch (ret) {
    case HeapOverflow:
#if defined(GRAN)
      IF_DEBUG(gran, DumpGranEvent(GR_DESCHEDULE, t));
      globalGranStats.tot_heapover++;
#elif defined(PAR)
      globalParStats.tot_heapover++;
#endif

      // did the task ask for a large block?
      if (cap->r.rHpAlloc > BLOCK_SIZE_W) {
	  // if so, get one and push it on the front of the nursery.
	  bdescr *bd;
	  nat blocks;
	  
	  blocks = (nat)BLOCK_ROUND_UP(cap->r.rHpAlloc * sizeof(W_)) / BLOCK_SIZE;

	  IF_DEBUG(scheduler,belch("--<< thread %ld (%p; %s) stopped: requesting a large block (size %d)", 
				   t->id, t,
				   whatNext_strs[t->what_next], blocks));

	  // don't do this if it would push us over the
	  // alloc_blocks_lim limit; we'll GC first.
	  if (alloc_blocks + blocks < alloc_blocks_lim) {

	      alloc_blocks += blocks;
	      bd = allocGroup( blocks );

	      // link the new group into the list
	      bd->link = cap->r.rCurrentNursery;
	      bd->u.back = cap->r.rCurrentNursery->u.back;
	      if (cap->r.rCurrentNursery->u.back != NULL) {
		  cap->r.rCurrentNursery->u.back->link = bd;
	      } else {
		  ASSERT(g0s0->blocks == cap->r.rCurrentNursery &&
			 g0s0->blocks == cap->r.rNursery);
		  cap->r.rNursery = g0s0->blocks = bd;
	      }		  
	      cap->r.rCurrentNursery->u.back = bd;

	      // initialise it as a nursery block
	      bd->step = g0s0;
	      bd->gen_no = 0;
	      bd->flags = 0;
	      bd->free = bd->start;

	      // don't forget to update the block count in g0s0.
	      g0s0->n_blocks += blocks;
	      ASSERT(countBlocks(g0s0->blocks) == g0s0->n_blocks);

	      // now update the nursery to point to the new block
	      cap->r.rCurrentNursery = bd;

	      // we might be unlucky and have another thread get on the
	      // run queue before us and steal the large block, but in that
	      // case the thread will just end up requesting another large
	      // block.
	      PUSH_ON_RUN_QUEUE(t);
	      break;
	  }
      }

      /* make all the running tasks block on a condition variable,
       * maybe set context_switch and wait till they all pile in,
       * then have them wait on a GC condition variable.
       */
      IF_DEBUG(scheduler,belch("--<< thread %ld (%p; %s) stopped: HeapOverflow", 
			       t->id, t, whatNext_strs[t->what_next]));
      threadPaused(t);
#if defined(GRAN)
      ASSERT(!is_on_queue(t,CurrentProc));
#elif defined(PAR)
      /* Currently we emit a DESCHEDULE event before GC in GUM.
         ToDo: either add separate event to distinguish SYSTEM time from rest
	       or just nuke this DESCHEDULE (and the following SCHEDULE) */
      if (0 && RtsFlags.ParFlags.ParStats.Full) {
	DumpRawGranEvent(CURRENT_PROC, CURRENT_PROC,
			 GR_DESCHEDULE, t, (StgClosure *)NULL, 0, 0);
	emitSchedule = rtsTrue;
      }
#endif
      
      ready_to_gc = rtsTrue;
      context_switch = 1;		/* stop other threads ASAP */
      PUSH_ON_RUN_QUEUE(t);
      /* actual GC is done at the end of the while loop */
      break;
      
    case StackOverflow:
#if defined(GRAN)
      IF_DEBUG(gran, 
	       DumpGranEvent(GR_DESCHEDULE, t));
      globalGranStats.tot_stackover++;
#elif defined(PAR)
      // IF_DEBUG(par, 
      // DumpGranEvent(GR_DESCHEDULE, t);
      globalParStats.tot_stackover++;
#endif
      IF_DEBUG(scheduler,belch("--<< thread %ld (%p; %s) stopped, StackOverflow", 
			       t->id, t, whatNext_strs[t->what_next]));
      /* just adjust the stack for this thread, then pop it back
       * on the run queue.
       */
      threadPaused(t);
      { 
	StgMainThread *m;
	/* enlarge the stack */
	StgTSO *new_t = threadStackOverflow(t);
	
	/* This TSO has moved, so update any pointers to it from the
	 * main thread stack.  It better not be on any other queues...
	 * (it shouldn't be).
	 */
	for (m = main_threads; m != NULL; m = m->link) {
	  if (m->tso == t) {
	    m->tso = new_t;
	  }
	}
	threadPaused(new_t);
	PUSH_ON_RUN_QUEUE(new_t);
      }
      break;

    case ThreadYielding:
#if defined(GRAN)
      IF_DEBUG(gran, 
	       DumpGranEvent(GR_DESCHEDULE, t));
      globalGranStats.tot_yields++;
#elif defined(PAR)
      // IF_DEBUG(par, 
      // DumpGranEvent(GR_DESCHEDULE, t);
      globalParStats.tot_yields++;
#endif
      /* put the thread back on the run queue.  Then, if we're ready to
       * GC, check whether this is the last task to stop.  If so, wake
       * up the GC thread.  getThread will block during a GC until the
       * GC is finished.
       */
      IF_DEBUG(scheduler,
               if (t->what_next == ThreadEnterInterp) {
		   /* ToDo: or maybe a timer expired when we were in Hugs?
		    * or maybe someone hit ctrl-C
                    */
                   belch("--<< thread %ld (%p; %s) stopped to switch to Hugs", 
			 t->id, t, whatNext_strs[t->what_next]);
               } else {
                   belch("--<< thread %ld (%p; %s) stopped, yielding", 
			 t->id, t, whatNext_strs[t->what_next]);
               }
               );

      threadPaused(t);

      IF_DEBUG(sanity,
	       //belch("&& Doing sanity check on yielding TSO %ld.", t->id);
	       checkTSO(t));
      ASSERT(t->link == END_TSO_QUEUE);
#if defined(GRAN)
      ASSERT(!is_on_queue(t,CurrentProc));

      IF_DEBUG(sanity,
	       //belch("&& Doing sanity check on all ThreadQueues (and their TSOs).");
	       checkThreadQsSanity(rtsTrue));
#endif
#if defined(PAR)
      if (RtsFlags.ParFlags.doFairScheduling) { 
	/* this does round-robin scheduling; good for concurrency */
	APPEND_TO_RUN_QUEUE(t);
      } else {
	/* this does unfair scheduling; good for parallelism */
	PUSH_ON_RUN_QUEUE(t);
      }
#else
      /* this does round-robin scheduling; good for concurrency */
      APPEND_TO_RUN_QUEUE(t);
#endif
#if defined(GRAN)
      /* add a ContinueThread event to actually process the thread */
      new_event(CurrentProc, CurrentProc, CurrentTime[CurrentProc],
		ContinueThread,
		t, (StgClosure*)NULL, (rtsSpark*)NULL);
      IF_GRAN_DEBUG(bq, 
	       belch("GRAN: eventq and runnableq after adding yielded thread to queue again:");
	       G_EVENTQ(0);
	       G_CURR_THREADQ(0));
#endif /* GRAN */
      break;
      
    case ThreadBlocked:
#if defined(GRAN)
      IF_DEBUG(scheduler,
	       belch("--<< thread %ld (%p; %s) stopped, blocking on node %p [PE %d] with BQ: ", 
			       t->id, t, whatNext_strs[t->what_next], t->block_info.closure, (t->block_info.closure==(StgClosure*)NULL ? 99 : where_is(t->block_info.closure)));
	       if (t->block_info.closure!=(StgClosure*)NULL) print_bq(t->block_info.closure));

      // ??? needed; should emit block before
      IF_DEBUG(gran, 
	       DumpGranEvent(GR_DESCHEDULE, t)); 
      prune_eventq(t, (StgClosure *)NULL); // prune ContinueThreads for t
      /*
	ngoq Dogh!
      ASSERT(procStatus[CurrentProc]==Busy || 
	      ((procStatus[CurrentProc]==Fetching) && 
	      (t->block_info.closure!=(StgClosure*)NULL)));
      if (run_queue_hds[CurrentProc] == END_TSO_QUEUE &&
	  !(!RtsFlags.GranFlags.DoAsyncFetch &&
	    procStatus[CurrentProc]==Fetching)) 
	procStatus[CurrentProc] = Idle;
      */
#elif defined(PAR)
      IF_DEBUG(scheduler,
	       belch("--<< thread %ld (%p; %s) stopped, blocking on node %p with BQ: ", 
		     t->id, t, whatNext_strs[t->what_next], t->block_info.closure));
      IF_PAR_DEBUG(bq,

		   if (t->block_info.closure!=(StgClosure*)NULL) 
		     print_bq(t->block_info.closure));

      /* Send a fetch (if BlockedOnGA) and dump event to log file */
      blockThread(t);

      /* whatever we schedule next, we must log that schedule */
      emitSchedule = rtsTrue;

#else /* !GRAN */
      /* don't need to do anything.  Either the thread is blocked on
       * I/O, in which case we'll have called addToBlockedQueue
       * previously, or it's blocked on an MVar or Blackhole, in which
       * case it'll be on the relevant queue already.
       */
      IF_DEBUG(scheduler,
	       fprintf(stderr, "--<< thread %d (%p) stopped: ", t->id, t);
	       printThreadBlockage(t);
	       fprintf(stderr, "\n"));

      /* Only for dumping event to log file 
	 ToDo: do I need this in GranSim, too?
      blockThread(t);
      */
#endif
      threadPaused(t);
      break;
      
    case ThreadFinished:
      /* Need to check whether this was a main thread, and if so, signal
       * the task that started it with the return value.  If we have no
       * more main threads, we probably need to stop all the tasks until
       * we get a new one.
       */
      /* We also end up here if the thread kills itself with an
       * uncaught exception, see Exception.hc.
       */
      IF_DEBUG(scheduler,belch("--++ thread %d (%p) finished", t->id, t));
#if defined(GRAN)
      endThread(t, CurrentProc); // clean-up the thread
#elif defined(PAR)
      /* For now all are advisory -- HWL */
      //if(t->priority==AdvisoryPriority) ??
      advisory_thread_count--;
      
# ifdef DIST
      if(t->dist.priority==RevalPriority)
	FinishReval(t);
# endif
      
      if (RtsFlags.ParFlags.ParStats.Full &&
	  !RtsFlags.ParFlags.ParStats.Suppressed) 
	DumpEndEvent(CURRENT_PROC, t, rtsFalse /* not mandatory */);
#endif
      break;
      
    default:
      barf("schedule: invalid thread return code %d", (int)ret);
    }
    
#ifdef SMP
    cap->link = free_capabilities;
    free_capabilities = cap;
    n_free_capabilities++;
#endif

#ifdef PROFILING
    if (RtsFlags.ProfFlags.profileInterval==0 || performHeapProfile) {
	GarbageCollect(GetRoots, rtsTrue);
	heapCensus();
	performHeapProfile = rtsFalse;
	ready_to_gc = rtsFalse;	// we already GC'd
    }
#endif

#ifdef SMP
    if (ready_to_gc && n_free_capabilities == RtsFlags.ParFlags.nNodes) 
#else
    if (ready_to_gc) 
#endif
      {
      /* everybody back, start the GC.
       * Could do it in this thread, or signal a condition var
       * to do it in another thread.  Either way, we need to
       * broadcast on gc_pending_cond afterward.
       */
#ifdef SMP
      IF_DEBUG(scheduler,sched_belch("doing GC"));
#endif
      GarbageCollect(GetRoots,rtsFalse);
      ready_to_gc = rtsFalse;
#ifdef SMP
      pthread_cond_broadcast(&gc_pending_cond);
#endif
#if defined(GRAN)
      /* add a ContinueThread event to continue execution of current thread */
      new_event(CurrentProc, CurrentProc, CurrentTime[CurrentProc],
		ContinueThread,
		t, (StgClosure*)NULL, (rtsSpark*)NULL);
      IF_GRAN_DEBUG(bq, 
	       fprintf(stderr, "GRAN: eventq and runnableq after Garbage collection:\n");
	       G_EVENTQ(0);
	       G_CURR_THREADQ(0));
#endif /* GRAN */
    }

#if defined(GRAN)
  next_thread:
    IF_GRAN_DEBUG(unused,
		  print_eventq(EventHd));

    event = get_next_event();
#elif defined(PAR)
  next_thread:
    /* ToDo: wait for next message to arrive rather than busy wait */
#endif /* GRAN */

  } /* end of while(1) */

  IF_PAR_DEBUG(verbose,
	       belch("== Leaving schedule() after having received Finish"));
}

/* ---------------------------------------------------------------------------
 * deleteAllThreads():  kill all the live threads.
 *
 * This is used when we catch a user interrupt (^C), before performing
 * any necessary cleanups and running finalizers.
 * ------------------------------------------------------------------------- */
   
void deleteAllThreads ( void )
{
  StgTSO* t;
  IF_DEBUG(scheduler,sched_belch("deleting all threads"));
  for (t = run_queue_hd; t != END_TSO_QUEUE; t = t->link) {
      deleteThread(t);
  }
  for (t = blocked_queue_hd; t != END_TSO_QUEUE; t = t->link) {
      deleteThread(t);
  }
  for (t = sleeping_queue; t != END_TSO_QUEUE; t = t->link) {
      deleteThread(t);
  }
  run_queue_hd = run_queue_tl = END_TSO_QUEUE;
  blocked_queue_hd = blocked_queue_tl = END_TSO_QUEUE;
  sleeping_queue = END_TSO_QUEUE;
}

/* startThread and  insertThread are now in GranSim.c -- HWL */

//@node Suspend and Resume, Run queue code, Main scheduling loop, Main scheduling code
//@subsection Suspend and Resume

/* ---------------------------------------------------------------------------
 * Suspending & resuming Haskell threads.
 * 
 * When making a "safe" call to C (aka _ccall_GC), the task gives back
 * its capability before calling the C function.  This allows another
 * task to pick up the capability and carry on running Haskell
 * threads.  It also means that if the C call blocks, it won't lock
 * the whole system.
 *
 * The Haskell thread making the C call is put to sleep for the
 * duration of the call, on the susepended_ccalling_threads queue.  We
 * give out a token to the task, which it can use to resume the thread
 * on return from the C function.
 * ------------------------------------------------------------------------- */
   
StgInt
suspendThread( StgRegTable *reg )
{
  nat tok;
  Capability *cap;

  // assume that *reg is a pointer to the StgRegTable part of a Capability
  cap = (Capability *)((void *)reg - sizeof(StgFunTable));

  ACQUIRE_LOCK(&sched_mutex);

  IF_DEBUG(scheduler,
	   sched_belch("thread %d did a _ccall_gc", cap->r.rCurrentTSO->id));

  threadPaused(cap->r.rCurrentTSO);
  cap->r.rCurrentTSO->link = suspended_ccalling_threads;
  suspended_ccalling_threads = cap->r.rCurrentTSO;

  /* Use the thread ID as the token; it should be unique */
  tok = cap->r.rCurrentTSO->id;

#ifdef SMP
  cap->link = free_capabilities;
  free_capabilities = cap;
  n_free_capabilities++;
#endif

  RELEASE_LOCK(&sched_mutex);
  return tok; 
}

StgRegTable *
resumeThread( StgInt tok )
{
  StgTSO *tso, **prev;
  Capability *cap;

  ACQUIRE_LOCK(&sched_mutex);

  prev = &suspended_ccalling_threads;
  for (tso = suspended_ccalling_threads; 
       tso != END_TSO_QUEUE; 
       prev = &tso->link, tso = tso->link) {
    if (tso->id == (StgThreadID)tok) {
      *prev = tso->link;
      break;
    }
  }
  if (tso == END_TSO_QUEUE) {
    barf("resumeThread: thread not found");
  }
  tso->link = END_TSO_QUEUE;

#ifdef SMP
  while (free_capabilities == NULL) {
    IF_DEBUG(scheduler, sched_belch("waiting to resume"));
    pthread_cond_wait(&thread_ready_cond, &sched_mutex);
    IF_DEBUG(scheduler, sched_belch("resuming thread %d", tso->id));
  }
  cap = free_capabilities;
  free_capabilities = cap->link;
  n_free_capabilities--;
#else  
  cap = &MainCapability;
#endif

  cap->r.rCurrentTSO = tso;

  RELEASE_LOCK(&sched_mutex);
  return &cap->r;
}


/* ---------------------------------------------------------------------------
 * Static functions
 * ------------------------------------------------------------------------ */
static void unblockThread(StgTSO *tso);

/* ---------------------------------------------------------------------------
 * Comparing Thread ids.
 *
 * This is used from STG land in the implementation of the
 * instances of Eq/Ord for ThreadIds.
 * ------------------------------------------------------------------------ */

int cmp_thread(const StgTSO *tso1, const StgTSO *tso2) 
{ 
  StgThreadID id1 = tso1->id; 
  StgThreadID id2 = tso2->id;
 
  if (id1 < id2) return (-1);
  if (id1 > id2) return 1;
  return 0;
}

/* ---------------------------------------------------------------------------
 * Fetching the ThreadID from an StgTSO.
 *
 * This is used in the implementation of Show for ThreadIds.
 * ------------------------------------------------------------------------ */
int rts_getThreadId(const StgTSO *tso) 
{
  return tso->id;
}

/* ---------------------------------------------------------------------------
   Create a new thread.

   The new thread starts with the given stack size.  Before the
   scheduler can run, however, this thread needs to have a closure
   (and possibly some arguments) pushed on its stack.  See
   pushClosure() in Schedule.h.

   createGenThread() and createIOThread() (in SchedAPI.h) are
   convenient packaged versions of this function.

   currently pri (priority) is only used in a GRAN setup -- HWL
   ------------------------------------------------------------------------ */
//@cindex createThread
#if defined(GRAN)
/*   currently pri (priority) is only used in a GRAN setup -- HWL */
StgTSO *
createThread(nat stack_size, StgInt pri)
{
  return createThread_(stack_size, rtsFalse, pri);
}

static StgTSO *
createThread_(nat size, rtsBool have_lock, StgInt pri)
{
#else
StgTSO *
createThread(nat stack_size)
{
  return createThread_(stack_size, rtsFalse);
}

static StgTSO *
createThread_(nat size, rtsBool have_lock)
{
#endif

    StgTSO *tso;
    nat stack_size;

    /* First check whether we should create a thread at all */
#if defined(PAR)
  /* check that no more than RtsFlags.ParFlags.maxThreads threads are created */
  if (advisory_thread_count >= RtsFlags.ParFlags.maxThreads) {
    threadsIgnored++;
    belch("{createThread}Daq ghuH: refusing to create another thread; no more than %d threads allowed (currently %d)",
	  RtsFlags.ParFlags.maxThreads, advisory_thread_count);
    return END_TSO_QUEUE;
  }
  threadsCreated++;
#endif

#if defined(GRAN)
  ASSERT(!RtsFlags.GranFlags.Light || CurrentProc==0);
#endif

  // ToDo: check whether size = stack_size - TSO_STRUCT_SIZEW

  /* catch ridiculously small stack sizes */
  if (size < MIN_STACK_WORDS + TSO_STRUCT_SIZEW) {
    size = MIN_STACK_WORDS + TSO_STRUCT_SIZEW;
  }

  stack_size = size - TSO_STRUCT_SIZEW;

  tso = (StgTSO *)allocate(size);
  TICK_ALLOC_TSO(size-TSO_STRUCT_SIZEW, 0);

  SET_HDR(tso, &stg_TSO_info, CCS_SYSTEM);
#if defined(GRAN)
  SET_GRAN_HDR(tso, ThisPE);
#endif
  tso->what_next     = ThreadEnterGHC;

  /* tso->id needs to be unique.  For now we use a heavyweight mutex to
   * protect the increment operation on next_thread_id.
   * In future, we could use an atomic increment instead.
   */
  if (!have_lock) { ACQUIRE_LOCK(&sched_mutex); }
  tso->id = next_thread_id++; 
  if (!have_lock) { RELEASE_LOCK(&sched_mutex); }

  tso->why_blocked  = NotBlocked;
  tso->blocked_exceptions = NULL;

  tso->stack_size   = stack_size;
  tso->max_stack_size = round_to_mblocks(RtsFlags.GcFlags.maxStkSize) 
                              - TSO_STRUCT_SIZEW;
  tso->sp           = (P_)&(tso->stack) + stack_size;

#ifdef PROFILING
  tso->prof.CCCS = CCS_MAIN;
#endif

  /* put a stop frame on the stack */
  tso->sp -= sizeofW(StgStopFrame);
  SET_HDR((StgClosure*)tso->sp,(StgInfoTable *)&stg_stop_thread_info,CCS_SYSTEM);
  tso->su = (StgUpdateFrame*)tso->sp;

  // ToDo: check this
#if defined(GRAN)
  tso->link = END_TSO_QUEUE;
  /* uses more flexible routine in GranSim */
  insertThread(tso, CurrentProc);
#else
  /* In a non-GranSim setup the pushing of a TSO onto the runq is separated
   * from its creation
   */
#endif

#if defined(GRAN) 
  if (RtsFlags.GranFlags.GranSimStats.Full) 
    DumpGranEvent(GR_START,tso);
#elif defined(PAR)
  if (RtsFlags.ParFlags.ParStats.Full) 
    DumpGranEvent(GR_STARTQ,tso);
  /* HACk to avoid SCHEDULE 
     LastTSO = tso; */
#endif

  /* Link the new thread on the global thread list.
   */
  tso->global_link = all_threads;
  all_threads = tso;

#if defined(DIST)
  tso->dist.priority = MandatoryPriority; //by default that is...
#endif

#if defined(GRAN)
  tso->gran.pri = pri;
# if defined(DEBUG)
  tso->gran.magic = TSO_MAGIC; // debugging only
# endif
  tso->gran.sparkname   = 0;
  tso->gran.startedat   = CURRENT_TIME; 
  tso->gran.exported    = 0;
  tso->gran.basicblocks = 0;
  tso->gran.allocs      = 0;
  tso->gran.exectime    = 0;
  tso->gran.fetchtime   = 0;
  tso->gran.fetchcount  = 0;
  tso->gran.blocktime   = 0;
  tso->gran.blockcount  = 0;
  tso->gran.blockedat   = 0;
  tso->gran.globalsparks = 0;
  tso->gran.localsparks  = 0;
  if (RtsFlags.GranFlags.Light)
    tso->gran.clock  = Now; /* local clock */
  else
    tso->gran.clock  = 0;

  IF_DEBUG(gran,printTSO(tso));
#elif defined(PAR)
# if defined(DEBUG)
  tso->par.magic = TSO_MAGIC; // debugging only
# endif
  tso->par.sparkname   = 0;
  tso->par.startedat   = CURRENT_TIME; 
  tso->par.exported    = 0;
  tso->par.basicblocks = 0;
  tso->par.allocs      = 0;
  tso->par.exectime    = 0;
  tso->par.fetchtime   = 0;
  tso->par.fetchcount  = 0;
  tso->par.blocktime   = 0;
  tso->par.blockcount  = 0;
  tso->par.blockedat   = 0;
  tso->par.globalsparks = 0;
  tso->par.localsparks  = 0;
#endif

#if defined(GRAN)
  globalGranStats.tot_threads_created++;
  globalGranStats.threads_created_on_PE[CurrentProc]++;
  globalGranStats.tot_sq_len += spark_queue_len(CurrentProc);
  globalGranStats.tot_sq_probes++;
#elif defined(PAR)
  // collect parallel global statistics (currently done together with GC stats)
  if (RtsFlags.ParFlags.ParStats.Global &&
      RtsFlags.GcFlags.giveStats > NO_GC_STATS) {
    //fprintf(stderr, "Creating thread %d @ %11.2f\n", tso->id, usertime()); 
    globalParStats.tot_threads_created++;
  }
#endif 

#if defined(GRAN)
  IF_GRAN_DEBUG(pri,
		belch("==__ schedule: Created TSO %d (%p);",
		      CurrentProc, tso, tso->id));
#elif defined(PAR)
    IF_PAR_DEBUG(verbose,
		 belch("==__ schedule: Created TSO %d (%p); %d threads active",
		       tso->id, tso, advisory_thread_count));
#else
  IF_DEBUG(scheduler,sched_belch("created thread %ld, stack size = %lx words", 
				 tso->id, tso->stack_size));
#endif    
  return tso;
}

#if defined(PAR)
/* RFP:
   all parallel thread creation calls should fall through the following routine.
*/
StgTSO *
createSparkThread(rtsSpark spark) 
{ StgTSO *tso;
  ASSERT(spark != (rtsSpark)NULL);
  if (advisory_thread_count >= RtsFlags.ParFlags.maxThreads) 
  { threadsIgnored++;
    barf("{createSparkThread}Daq ghuH: refusing to create another thread; no more than %d threads allowed (currently %d)",
	  RtsFlags.ParFlags.maxThreads, advisory_thread_count);    
    return END_TSO_QUEUE;
  }
  else
  { threadsCreated++;
    tso = createThread_(RtsFlags.GcFlags.initialStkSize, rtsTrue);
    if (tso==END_TSO_QUEUE)	
      barf("createSparkThread: Cannot create TSO");
#if defined(DIST)
    tso->priority = AdvisoryPriority;
#endif
    pushClosure(tso,spark);
    PUSH_ON_RUN_QUEUE(tso);
    advisory_thread_count++;    
  }
  return tso;
}
#endif

/*
  Turn a spark into a thread.
  ToDo: fix for SMP (needs to acquire SCHED_MUTEX!)
*/
#if defined(PAR)
//@cindex activateSpark
StgTSO *
activateSpark (rtsSpark spark) 
{
  StgTSO *tso;

  tso = createSparkThread(spark);
  if (RtsFlags.ParFlags.ParStats.Full) {   
    //ASSERT(run_queue_hd == END_TSO_QUEUE); // I think ...
    IF_PAR_DEBUG(verbose,
		 belch("==^^ activateSpark: turning spark of closure %p (%s) into a thread",
		       (StgClosure *)spark, info_type((StgClosure *)spark)));
  }
  // ToDo: fwd info on local/global spark to thread -- HWL
  // tso->gran.exported =  spark->exported;
  // tso->gran.locked =   !spark->global;
  // tso->gran.sparkname = spark->name;

  return tso;
}
#endif

/* ---------------------------------------------------------------------------
 * scheduleThread()
 *
 * scheduleThread puts a thread on the head of the runnable queue.
 * This will usually be done immediately after a thread is created.
 * The caller of scheduleThread must create the thread using e.g.
 * createThread and push an appropriate closure
 * on this thread's stack before the scheduler is invoked.
 * ------------------------------------------------------------------------ */

void
scheduleThread(StgTSO *tso)
{
  if (tso==END_TSO_QUEUE){    
    schedule();
    return;
  }

  ACQUIRE_LOCK(&sched_mutex);

  /* Put the new thread on the head of the runnable queue.  The caller
   * better push an appropriate closure on this thread's stack
   * beforehand.  In the SMP case, the thread may start running as
   * soon as we release the scheduler lock below.
   */
  PUSH_ON_RUN_QUEUE(tso);
  THREAD_RUNNABLE();

#if 0
  IF_DEBUG(scheduler,printTSO(tso));
#endif
  RELEASE_LOCK(&sched_mutex);
}

/* ---------------------------------------------------------------------------
 * startTasks()
 *
 * Start up Posix threads to run each of the scheduler tasks.
 * I believe the task ids are not needed in the system as defined.
 *  KH @ 25/10/99
 * ------------------------------------------------------------------------ */

#if defined(PAR) || defined(SMP)
void
taskStart(void) /*  ( void *arg STG_UNUSED)  */
{
  scheduleThread(END_TSO_QUEUE);
}
#endif

/* ---------------------------------------------------------------------------
 * initScheduler()
 *
 * Initialise the scheduler.  This resets all the queues - if the
 * queues contained any threads, they'll be garbage collected at the
 * next pass.
 *
 * This now calls startTasks(), so should only be called once!  KH @ 25/10/99
 * ------------------------------------------------------------------------ */

#ifdef SMP
static void
term_handler(int sig STG_UNUSED)
{
  stat_workerStop();
  ACQUIRE_LOCK(&term_mutex);
  await_death--;
  RELEASE_LOCK(&term_mutex);
  pthread_exit(NULL);
}
#endif

static void
initCapability( Capability *cap )
{
    cap->f.stgChk0         = (F_)__stg_chk_0;
    cap->f.stgChk1         = (F_)__stg_chk_1;
    cap->f.stgGCEnter1     = (F_)__stg_gc_enter_1;
    cap->f.stgUpdatePAP    = (F_)__stg_update_PAP;
}

void 
initScheduler(void)
{
#if defined(GRAN)
  nat i;

  for (i=0; i<=MAX_PROC; i++) {
    run_queue_hds[i]      = END_TSO_QUEUE;
    run_queue_tls[i]      = END_TSO_QUEUE;
    blocked_queue_hds[i]  = END_TSO_QUEUE;
    blocked_queue_tls[i]  = END_TSO_QUEUE;
    ccalling_threadss[i]  = END_TSO_QUEUE;
    sleeping_queue        = END_TSO_QUEUE;
  }
#else
  run_queue_hd      = END_TSO_QUEUE;
  run_queue_tl      = END_TSO_QUEUE;
  blocked_queue_hd  = END_TSO_QUEUE;
  blocked_queue_tl  = END_TSO_QUEUE;
  sleeping_queue    = END_TSO_QUEUE;
#endif 

  suspended_ccalling_threads  = END_TSO_QUEUE;

  main_threads = NULL;
  all_threads  = END_TSO_QUEUE;

  context_switch = 0;
  interrupted    = 0;

  RtsFlags.ConcFlags.ctxtSwitchTicks =
      RtsFlags.ConcFlags.ctxtSwitchTime / TICK_MILLISECS;

  /* Install the SIGHUP handler */
#ifdef SMP
  {
    struct sigaction action,oact;

    action.sa_handler = term_handler;
    sigemptyset(&action.sa_mask);
    action.sa_flags = 0;
    if (sigaction(SIGTERM, &action, &oact) != 0) {
      barf("can't install TERM handler");
    }
  }
#endif

#ifdef SMP
  /* Allocate N Capabilities */
  {
    nat i;
    Capability *cap, *prev;
    cap  = NULL;
    prev = NULL;
    for (i = 0; i < RtsFlags.ParFlags.nNodes; i++) {
      cap = stgMallocBytes(sizeof(Capability), "initScheduler:capabilities");
      initCapability(cap);
      cap->link = prev;
      prev = cap;
    }
    free_capabilities = cap;
    n_free_capabilities = RtsFlags.ParFlags.nNodes;
  }
  IF_DEBUG(scheduler,fprintf(stderr,"scheduler: Allocated %d capabilities\n",
			     n_free_capabilities););
#else
  initCapability(&MainCapability);
#endif

#if defined(SMP) || defined(PAR)
  initSparkPools();
#endif
}

#ifdef SMP
void
startTasks( void )
{
  nat i;
  int r;
  pthread_t tid;
  
  /* make some space for saving all the thread ids */
  task_ids = stgMallocBytes(RtsFlags.ParFlags.nNodes * sizeof(task_info),
			    "initScheduler:task_ids");
  
  /* and create all the threads */
  for (i = 0; i < RtsFlags.ParFlags.nNodes; i++) {
    r = pthread_create(&tid,NULL,taskStart,NULL);
    if (r != 0) {
      barf("startTasks: Can't create new Posix thread");
    }
    task_ids[i].id = tid;
    task_ids[i].mut_time = 0.0;
    task_ids[i].mut_etime = 0.0;
    task_ids[i].gc_time = 0.0;
    task_ids[i].gc_etime = 0.0;
    task_ids[i].elapsedtimestart = elapsedtime();
    IF_DEBUG(scheduler,fprintf(stderr,"scheduler: Started task: %ld\n",tid););
  }
}
#endif

void
exitScheduler( void )
{
#ifdef SMP
  nat i;

  /* Don't want to use pthread_cancel, since we'd have to install
   * these silly exception handlers (pthread_cleanup_{push,pop}) around
   * all our locks.
   */
#if 0
  /* Cancel all our tasks */
  for (i = 0; i < RtsFlags.ParFlags.nNodes; i++) {
    pthread_cancel(task_ids[i].id);
  }
  
  /* Wait for all the tasks to terminate */
  for (i = 0; i < RtsFlags.ParFlags.nNodes; i++) {
    IF_DEBUG(scheduler,fprintf(stderr,"scheduler: waiting for task %ld\n", 
			       task_ids[i].id));
    pthread_join(task_ids[i].id, NULL);
  }
#endif

  /* Send 'em all a SIGHUP.  That should shut 'em up.
   */
  await_death = RtsFlags.ParFlags.nNodes;
  for (i = 0; i < RtsFlags.ParFlags.nNodes; i++) {
    pthread_kill(task_ids[i].id,SIGTERM);
  }
  while (await_death > 0) {
    sched_yield();
  }
#endif
}

/* -----------------------------------------------------------------------------
   Managing the per-task allocation areas.
   
   Each capability comes with an allocation area.  These are
   fixed-length block lists into which allocation can be done.

   ToDo: no support for two-space collection at the moment???
   -------------------------------------------------------------------------- */

/* -----------------------------------------------------------------------------
 * waitThread is the external interface for running a new computation
 * and waiting for the result.
 *
 * In the non-SMP case, we create a new main thread, push it on the 
 * main-thread stack, and invoke the scheduler to run it.  The
 * scheduler will return when the top main thread on the stack has
 * completed or died, and fill in the necessary fields of the
 * main_thread structure.
 *
 * In the SMP case, we create a main thread as before, but we then
 * create a new condition variable and sleep on it.  When our new
 * main thread has completed, we'll be woken up and the status/result
 * will be in the main_thread struct.
 * -------------------------------------------------------------------------- */

int 
howManyThreadsAvail ( void )
{
   int i = 0;
   StgTSO* q;
   for (q = run_queue_hd; q != END_TSO_QUEUE; q = q->link)
      i++;
   for (q = blocked_queue_hd; q != END_TSO_QUEUE; q = q->link)
      i++;
   for (q = sleeping_queue; q != END_TSO_QUEUE; q = q->link)
      i++;
   return i;
}

void
finishAllThreads ( void )
{
   do {
      while (run_queue_hd != END_TSO_QUEUE) {
         waitThread ( run_queue_hd, NULL );
      }
      while (blocked_queue_hd != END_TSO_QUEUE) {
         waitThread ( blocked_queue_hd, NULL );
      }
      while (sleeping_queue != END_TSO_QUEUE) {
         waitThread ( blocked_queue_hd, NULL );
      }
   } while 
      (blocked_queue_hd != END_TSO_QUEUE || 
       run_queue_hd     != END_TSO_QUEUE ||
       sleeping_queue   != END_TSO_QUEUE);
}

SchedulerStatus
waitThread(StgTSO *tso, /*out*/StgClosure **ret)
{
  StgMainThread *m;
  SchedulerStatus stat;

  ACQUIRE_LOCK(&sched_mutex);
  
  m = stgMallocBytes(sizeof(StgMainThread), "waitThread");

  m->tso = tso;
  m->ret = ret;
  m->stat = NoStatus;
#ifdef SMP
  pthread_cond_init(&m->wakeup, NULL);
#endif

  m->link = main_threads;
  main_threads = m;

  IF_DEBUG(scheduler, fprintf(stderr, "== scheduler: new main thread (%d)\n", 
			      m->tso->id));

#ifdef SMP
  do {
    pthread_cond_wait(&m->wakeup, &sched_mutex);
  } while (m->stat == NoStatus);
#elif defined(GRAN)
  /* GranSim specific init */
  CurrentTSO = m->tso;                // the TSO to run
  procStatus[MainProc] = Busy;        // status of main PE
  CurrentProc = MainProc;             // PE to run it on

  schedule();
#else
  schedule();
  ASSERT(m->stat != NoStatus);
#endif

  stat = m->stat;

#ifdef SMP
  pthread_cond_destroy(&m->wakeup);
#endif

  IF_DEBUG(scheduler, fprintf(stderr, "== scheduler: main thread (%d) finished\n", 
			      m->tso->id));
  free(m);

  RELEASE_LOCK(&sched_mutex);

  return stat;
}

//@node Run queue code, Garbage Collextion Routines, Suspend and Resume, Main scheduling code
//@subsection Run queue code 

#if 0
/* 
   NB: In GranSim we have many run queues; run_queue_hd is actually a macro
       unfolding to run_queue_hds[CurrentProc], thus CurrentProc is an
       implicit global variable that has to be correct when calling these
       fcts -- HWL 
*/

/* Put the new thread on the head of the runnable queue.
 * The caller of createThread better push an appropriate closure
 * on this thread's stack before the scheduler is invoked.
 */
static /* inline */ void
add_to_run_queue(tso)
StgTSO* tso; 
{
  ASSERT(tso!=run_queue_hd && tso!=run_queue_tl);
  tso->link = run_queue_hd;
  run_queue_hd = tso;
  if (run_queue_tl == END_TSO_QUEUE) {
    run_queue_tl = tso;
  }
}

/* Put the new thread at the end of the runnable queue. */
static /* inline */ void
push_on_run_queue(tso)
StgTSO* tso; 
{
  ASSERT(get_itbl((StgClosure *)tso)->type == TSO);
  ASSERT(run_queue_hd!=NULL && run_queue_tl!=NULL);
  ASSERT(tso!=run_queue_hd && tso!=run_queue_tl);
  if (run_queue_hd == END_TSO_QUEUE) {
    run_queue_hd = tso;
  } else {
    run_queue_tl->link = tso;
  }
  run_queue_tl = tso;
}

/* 
   Should be inlined because it's used very often in schedule.  The tso
   argument is actually only needed in GranSim, where we want to have the
   possibility to schedule *any* TSO on the run queue, irrespective of the
   actual ordering. Therefore, if tso is not the nil TSO then we traverse
   the run queue and dequeue the tso, adjusting the links in the queue. 
*/
//@cindex take_off_run_queue
static /* inline */ StgTSO*
take_off_run_queue(StgTSO *tso) {
  StgTSO *t, *prev;

  /* 
     qetlaHbogh Qu' ngaSbogh ghomDaQ {tso} yIteq!

     if tso is specified, unlink that tso from the run_queue (doesn't have
     to be at the beginning of the queue); GranSim only 
  */
  if (tso!=END_TSO_QUEUE) {
    /* find tso in queue */
    for (t=run_queue_hd, prev=END_TSO_QUEUE; 
	 t!=END_TSO_QUEUE && t!=tso;
	 prev=t, t=t->link) 
      /* nothing */ ;
    ASSERT(t==tso);
    /* now actually dequeue the tso */
    if (prev!=END_TSO_QUEUE) {
      ASSERT(run_queue_hd!=t);
      prev->link = t->link;
    } else {
      /* t is at beginning of thread queue */
      ASSERT(run_queue_hd==t);
      run_queue_hd = t->link;
    }
    /* t is at end of thread queue */
    if (t->link==END_TSO_QUEUE) {
      ASSERT(t==run_queue_tl);
      run_queue_tl = prev;
    } else {
      ASSERT(run_queue_tl!=t);
    }
    t->link = END_TSO_QUEUE;
  } else {
    /* take tso from the beginning of the queue; std concurrent code */
    t = run_queue_hd;
    if (t != END_TSO_QUEUE) {
      run_queue_hd = t->link;
      t->link = END_TSO_QUEUE;
      if (run_queue_hd == END_TSO_QUEUE) {
	run_queue_tl = END_TSO_QUEUE;
      }
    }
  }
  return t;
}

#endif /* 0 */

//@node Garbage Collextion Routines, Blocking Queue Routines, Run queue code, Main scheduling code
//@subsection Garbage Collextion Routines

/* ---------------------------------------------------------------------------
   Where are the roots that we know about?

        - all the threads on the runnable queue
        - all the threads on the blocked queue
        - all the threads on the sleeping queue
	- all the thread currently executing a _ccall_GC
        - all the "main threads"
     
   ------------------------------------------------------------------------ */

/* This has to be protected either by the scheduler monitor, or by the
	garbage collection monitor (probably the latter).
	KH @ 25/10/99
*/

void
GetRoots(evac_fn evac)
{
  StgMainThread *m;

#if defined(GRAN)
  {
    nat i;
    for (i=0; i<=RtsFlags.GranFlags.proc; i++) {
      if ((run_queue_hds[i] != END_TSO_QUEUE) && ((run_queue_hds[i] != NULL)))
	  evac((StgClosure **)&run_queue_hds[i]);
      if ((run_queue_tls[i] != END_TSO_QUEUE) && ((run_queue_tls[i] != NULL)))
	  evac((StgClosure **)&run_queue_tls[i]);
      
      if ((blocked_queue_hds[i] != END_TSO_QUEUE) && ((blocked_queue_hds[i] != NULL)))
	  evac((StgClosure **)&blocked_queue_hds[i]);
      if ((blocked_queue_tls[i] != END_TSO_QUEUE) && ((blocked_queue_tls[i] != NULL)))
	  evac((StgClosure **)&blocked_queue_tls[i]);
      if ((ccalling_threadss[i] != END_TSO_QUEUE) && ((ccalling_threadss[i] != NULL)))
	  evac((StgClosure **)&ccalling_threads[i]);
    }
  }

  markEventQueue();

#else /* !GRAN */
  if (run_queue_hd != END_TSO_QUEUE) {
      ASSERT(run_queue_tl != END_TSO_QUEUE);
      evac((StgClosure **)&run_queue_hd);
      evac((StgClosure **)&run_queue_tl);
  }
  
  if (blocked_queue_hd != END_TSO_QUEUE) {
      ASSERT(blocked_queue_tl != END_TSO_QUEUE);
      evac((StgClosure **)&blocked_queue_hd);
      evac((StgClosure **)&blocked_queue_tl);
  }
  
  if (sleeping_queue != END_TSO_QUEUE) {
      evac((StgClosure **)&sleeping_queue);
  }
#endif 

  for (m = main_threads; m != NULL; m = m->link) {
      evac((StgClosure **)&m->tso);
  }
  if (suspended_ccalling_threads != END_TSO_QUEUE) {
      evac((StgClosure **)&suspended_ccalling_threads);
  }

#if defined(SMP) || defined(PAR) || defined(GRAN)
  markSparkQueue(evac);
#endif
}

/* -----------------------------------------------------------------------------
   performGC

   This is the interface to the garbage collector from Haskell land.
   We provide this so that external C code can allocate and garbage
   collect when called from Haskell via _ccall_GC.

   It might be useful to provide an interface whereby the programmer
   can specify more roots (ToDo).
   
   This needs to be protected by the GC condition variable above.  KH.
   -------------------------------------------------------------------------- */

void (*extra_roots)(evac_fn);

void
performGC(void)
{
  GarbageCollect(GetRoots,rtsFalse);
}

void
performMajorGC(void)
{
  GarbageCollect(GetRoots,rtsTrue);
}

static void
AllRoots(evac_fn evac)
{
    GetRoots(evac);		// the scheduler's roots
    extra_roots(evac);		// the user's roots
}

void
performGCWithRoots(void (*get_roots)(evac_fn))
{
  extra_roots = get_roots;
  GarbageCollect(AllRoots,rtsFalse);
}

/* -----------------------------------------------------------------------------
   Stack overflow

   If the thread has reached its maximum stack size, then raise the
   StackOverflow exception in the offending thread.  Otherwise
   relocate the TSO into a larger chunk of memory and adjust its stack
   size appropriately.
   -------------------------------------------------------------------------- */

static StgTSO *
threadStackOverflow(StgTSO *tso)
{
  nat new_stack_size, new_tso_size, diff, stack_words;
  StgPtr new_sp;
  StgTSO *dest;

  IF_DEBUG(sanity,checkTSO(tso));
  if (tso->stack_size >= tso->max_stack_size) {

    IF_DEBUG(gc,
	     belch("@@ threadStackOverflow of TSO %d (%p): stack too large (now %ld; max is %ld",
		   tso->id, tso, tso->stack_size, tso->max_stack_size);
	     /* If we're debugging, just print out the top of the stack */
	     printStackChunk(tso->sp, stg_min(tso->stack+tso->stack_size, 
					      tso->sp+64)));

    /* Send this thread the StackOverflow exception */
    raiseAsync(tso, (StgClosure *)stackOverflow_closure);
    return tso;
  }

  /* Try to double the current stack size.  If that takes us over the
   * maximum stack size for this thread, then use the maximum instead.
   * Finally round up so the TSO ends up as a whole number of blocks.
   */
  new_stack_size = stg_min(tso->stack_size * 2, tso->max_stack_size);
  new_tso_size   = (nat)BLOCK_ROUND_UP(new_stack_size * sizeof(W_) + 
				       TSO_STRUCT_SIZE)/sizeof(W_);
  new_tso_size = round_to_mblocks(new_tso_size);  /* Be MBLOCK-friendly */
  new_stack_size = new_tso_size - TSO_STRUCT_SIZEW;

  IF_DEBUG(scheduler, fprintf(stderr,"== scheduler: increasing stack size from %d words to %d.\n", tso->stack_size, new_stack_size));

  dest = (StgTSO *)allocate(new_tso_size);
  TICK_ALLOC_TSO(new_tso_size-sizeofW(StgTSO),0);

  /* copy the TSO block and the old stack into the new area */
  memcpy(dest,tso,TSO_STRUCT_SIZE);
  stack_words = tso->stack + tso->stack_size - tso->sp;
  new_sp = (P_)dest + new_tso_size - stack_words;
  memcpy(new_sp, tso->sp, stack_words * sizeof(W_));

  /* relocate the stack pointers... */
  diff = (P_)new_sp - (P_)tso->sp; /* In *words* */
  dest->su    = (StgUpdateFrame *) ((P_)dest->su + diff);
  dest->sp    = new_sp;
  dest->stack_size = new_stack_size;
	
  /* and relocate the update frame list */
  relocate_stack(dest, diff);

  /* Mark the old TSO as relocated.  We have to check for relocated
   * TSOs in the garbage collector and any primops that deal with TSOs.
   *
   * It's important to set the sp and su values to just beyond the end
   * of the stack, so we don't attempt to scavenge any part of the
   * dead TSO's stack.
   */
  tso->what_next = ThreadRelocated;
  tso->link = dest;
  tso->sp = (P_)&(tso->stack[tso->stack_size]);
  tso->su = (StgUpdateFrame *)tso->sp;
  tso->why_blocked = NotBlocked;
  dest->mut_link = NULL;

  IF_PAR_DEBUG(verbose,
	       belch("@@ threadStackOverflow of TSO %d (now at %p): stack size increased to %ld",
		     tso->id, tso, tso->stack_size);
	       /* If we're debugging, just print out the top of the stack */
	       printStackChunk(tso->sp, stg_min(tso->stack+tso->stack_size, 
						tso->sp+64)));
  
  IF_DEBUG(sanity,checkTSO(tso));
#if 0
  IF_DEBUG(scheduler,printTSO(dest));
#endif

  return dest;
}

//@node Blocking Queue Routines, Exception Handling Routines, Garbage Collextion Routines, Main scheduling code
//@subsection Blocking Queue Routines

/* ---------------------------------------------------------------------------
   Wake up a queue that was blocked on some resource.
   ------------------------------------------------------------------------ */

#if defined(GRAN)
static inline void
unblockCount ( StgBlockingQueueElement *bqe, StgClosure *node )
{
}
#elif defined(PAR)
static inline void
unblockCount ( StgBlockingQueueElement *bqe, StgClosure *node )
{
  /* write RESUME events to log file and
     update blocked and fetch time (depending on type of the orig closure) */
  if (RtsFlags.ParFlags.ParStats.Full) {
    DumpRawGranEvent(CURRENT_PROC, CURRENT_PROC, 
		     GR_RESUMEQ, ((StgTSO *)bqe), ((StgTSO *)bqe)->block_info.closure,
		     0, 0 /* spark_queue_len(ADVISORY_POOL) */);
    if (EMPTY_RUN_QUEUE())
      emitSchedule = rtsTrue;

    switch (get_itbl(node)->type) {
	case FETCH_ME_BQ:
	  ((StgTSO *)bqe)->par.fetchtime += CURRENT_TIME-((StgTSO *)bqe)->par.blockedat;
	  break;
	case RBH:
	case FETCH_ME:
	case BLACKHOLE_BQ:
	  ((StgTSO *)bqe)->par.blocktime += CURRENT_TIME-((StgTSO *)bqe)->par.blockedat;
	  break;
#ifdef DIST
        case MVAR:
          break;
#endif	  
	default:
	  barf("{unblockOneLocked}Daq Qagh: unexpected closure in blocking queue");
	}
      }
}
#endif

#if defined(GRAN)
static StgBlockingQueueElement *
unblockOneLocked(StgBlockingQueueElement *bqe, StgClosure *node)
{
    StgTSO *tso;
    PEs node_loc, tso_loc;

    node_loc = where_is(node); // should be lifted out of loop
    tso = (StgTSO *)bqe;  // wastes an assignment to get the type right
    tso_loc = where_is((StgClosure *)tso);
    if (IS_LOCAL_TO(PROCS(node),tso_loc)) { // TSO is local
      /* !fake_fetch => TSO is on CurrentProc is same as IS_LOCAL_TO */
      ASSERT(CurrentProc!=node_loc || tso_loc==CurrentProc);
      CurrentTime[CurrentProc] += RtsFlags.GranFlags.Costs.lunblocktime;
      // insertThread(tso, node_loc);
      new_event(tso_loc, tso_loc, CurrentTime[CurrentProc],
		ResumeThread,
		tso, node, (rtsSpark*)NULL);
      tso->link = END_TSO_QUEUE; // overwrite link just to be sure 
      // len_local++;
      // len++;
    } else { // TSO is remote (actually should be FMBQ)
      CurrentTime[CurrentProc] += RtsFlags.GranFlags.Costs.mpacktime +
                                  RtsFlags.GranFlags.Costs.gunblocktime +
	                          RtsFlags.GranFlags.Costs.latency;
      new_event(tso_loc, CurrentProc, CurrentTime[CurrentProc],
		UnblockThread,
		tso, node, (rtsSpark*)NULL);
      tso->link = END_TSO_QUEUE; // overwrite link just to be sure 
      // len++;
    }
    /* the thread-queue-overhead is accounted for in either Resume or UnblockThread */
    IF_GRAN_DEBUG(bq,
		  fprintf(stderr," %s TSO %d (%p) [PE %d] (block_info.closure=%p) (next=%p) ,",
			  (node_loc==tso_loc ? "Local" : "Global"), 
			  tso->id, tso, CurrentProc, tso->block_info.closure, tso->link));
    tso->block_info.closure = NULL;
    IF_DEBUG(scheduler,belch("-- Waking up thread %ld (%p)", 
			     tso->id, tso));
}
#elif defined(PAR)
static StgBlockingQueueElement *
unblockOneLocked(StgBlockingQueueElement *bqe, StgClosure *node)
{
    StgBlockingQueueElement *next;

    switch (get_itbl(bqe)->type) {
    case TSO:
      ASSERT(((StgTSO *)bqe)->why_blocked != NotBlocked);
      /* if it's a TSO just push it onto the run_queue */
      next = bqe->link;
      // ((StgTSO *)bqe)->link = END_TSO_QUEUE; // debugging?
      PUSH_ON_RUN_QUEUE((StgTSO *)bqe); 
      THREAD_RUNNABLE();
      unblockCount(bqe, node);
      /* reset blocking status after dumping event */
      ((StgTSO *)bqe)->why_blocked = NotBlocked;
      break;

    case BLOCKED_FETCH:
      /* if it's a BLOCKED_FETCH put it on the PendingFetches list */
      next = bqe->link;
      bqe->link = (StgBlockingQueueElement *)PendingFetches;
      PendingFetches = (StgBlockedFetch *)bqe;
      break;

# if defined(DEBUG)
      /* can ignore this case in a non-debugging setup; 
	 see comments on RBHSave closures above */
    case CONSTR:
      /* check that the closure is an RBHSave closure */
      ASSERT(get_itbl((StgClosure *)bqe) == &stg_RBH_Save_0_info ||
	     get_itbl((StgClosure *)bqe) == &stg_RBH_Save_1_info ||
	     get_itbl((StgClosure *)bqe) == &stg_RBH_Save_2_info);
      break;

    default:
      barf("{unblockOneLocked}Daq Qagh: Unexpected IP (%#lx; %s) in blocking queue at %#lx\n",
	   get_itbl((StgClosure *)bqe), info_type((StgClosure *)bqe), 
	   (StgClosure *)bqe);
# endif
    }
  IF_PAR_DEBUG(bq, fprintf(stderr, ", %p (%s)", bqe, info_type((StgClosure*)bqe)));
  return next;
}

#else /* !GRAN && !PAR */
static StgTSO *
unblockOneLocked(StgTSO *tso)
{
  StgTSO *next;

  ASSERT(get_itbl(tso)->type == TSO);
  ASSERT(tso->why_blocked != NotBlocked);
  tso->why_blocked = NotBlocked;
  next = tso->link;
  PUSH_ON_RUN_QUEUE(tso);
  THREAD_RUNNABLE();
  IF_DEBUG(scheduler,sched_belch("waking up thread %ld", tso->id));
  return next;
}
#endif

#if defined(GRAN) || defined(PAR)
inline StgBlockingQueueElement *
unblockOne(StgBlockingQueueElement *bqe, StgClosure *node)
{
  ACQUIRE_LOCK(&sched_mutex);
  bqe = unblockOneLocked(bqe, node);
  RELEASE_LOCK(&sched_mutex);
  return bqe;
}
#else
inline StgTSO *
unblockOne(StgTSO *tso)
{
  ACQUIRE_LOCK(&sched_mutex);
  tso = unblockOneLocked(tso);
  RELEASE_LOCK(&sched_mutex);
  return tso;
}
#endif

#if defined(GRAN)
void 
awakenBlockedQueue(StgBlockingQueueElement *q, StgClosure *node)
{
  StgBlockingQueueElement *bqe;
  PEs node_loc;
  nat len = 0; 

  IF_GRAN_DEBUG(bq, 
		belch("##-_ AwBQ for node %p on PE %d @ %ld by TSO %d (%p): ", \
		      node, CurrentProc, CurrentTime[CurrentProc], 
		      CurrentTSO->id, CurrentTSO));

  node_loc = where_is(node);

  ASSERT(q == END_BQ_QUEUE ||
	 get_itbl(q)->type == TSO ||   // q is either a TSO or an RBHSave
	 get_itbl(q)->type == CONSTR); // closure (type constructor)
  ASSERT(is_unique(node));

  /* FAKE FETCH: magically copy the node to the tso's proc;
     no Fetch necessary because in reality the node should not have been 
     moved to the other PE in the first place
  */
  if (CurrentProc!=node_loc) {
    IF_GRAN_DEBUG(bq, 
		  belch("## node %p is on PE %d but CurrentProc is %d (TSO %d); assuming fake fetch and adjusting bitmask (old: %#x)",
			node, node_loc, CurrentProc, CurrentTSO->id, 
			// CurrentTSO, where_is(CurrentTSO),
			node->header.gran.procs));
    node->header.gran.procs = (node->header.gran.procs) | PE_NUMBER(CurrentProc);
    IF_GRAN_DEBUG(bq, 
		  belch("## new bitmask of node %p is %#x",
			node, node->header.gran.procs));
    if (RtsFlags.GranFlags.GranSimStats.Global) {
      globalGranStats.tot_fake_fetches++;
    }
  }

  bqe = q;
  // ToDo: check: ASSERT(CurrentProc==node_loc);
  while (get_itbl(bqe)->type==TSO) { // q != END_TSO_QUEUE) {
    //next = bqe->link;
    /* 
       bqe points to the current element in the queue
       next points to the next element in the queue
    */
    //tso = (StgTSO *)bqe;  // wastes an assignment to get the type right
    //tso_loc = where_is(tso);
    len++;
    bqe = unblockOneLocked(bqe, node);
  }

  /* if this is the BQ of an RBH, we have to put back the info ripped out of
     the closure to make room for the anchor of the BQ */
  if (bqe!=END_BQ_QUEUE) {
    ASSERT(get_itbl(node)->type == RBH && get_itbl(bqe)->type == CONSTR);
    /*
    ASSERT((info_ptr==&RBH_Save_0_info) ||
	   (info_ptr==&RBH_Save_1_info) ||
	   (info_ptr==&RBH_Save_2_info));
    */
    /* cf. convertToRBH in RBH.c for writing the RBHSave closure */
    ((StgRBH *)node)->blocking_queue = (StgBlockingQueueElement *)((StgRBHSave *)bqe)->payload[0];
    ((StgRBH *)node)->mut_link       = (StgMutClosure *)((StgRBHSave *)bqe)->payload[1];

    IF_GRAN_DEBUG(bq,
		  belch("## Filled in RBH_Save for %p (%s) at end of AwBQ",
			node, info_type(node)));
  }

  /* statistics gathering */
  if (RtsFlags.GranFlags.GranSimStats.Global) {
    // globalGranStats.tot_bq_processing_time += bq_processing_time;
    globalGranStats.tot_bq_len += len;      // total length of all bqs awakened
    // globalGranStats.tot_bq_len_local += len_local;  // same for local TSOs only
    globalGranStats.tot_awbq++;             // total no. of bqs awakened
  }
  IF_GRAN_DEBUG(bq,
		fprintf(stderr,"## BQ Stats of %p: [%d entries] %s\n",
			node, len, (bqe!=END_BQ_QUEUE) ? "RBH" : ""));
}
#elif defined(PAR)
void 
awakenBlockedQueue(StgBlockingQueueElement *q, StgClosure *node)
{
  StgBlockingQueueElement *bqe;

  ACQUIRE_LOCK(&sched_mutex);

  IF_PAR_DEBUG(verbose, 
	       belch("##-_ AwBQ for node %p on [%x]: ",
		     node, mytid));
#ifdef DIST  
  //RFP
  if(get_itbl(q)->type == CONSTR || q==END_BQ_QUEUE) {
    IF_PAR_DEBUG(verbose, belch("## ... nothing to unblock so lets just return. RFP (BUG?)"));
    return;
  }
#endif
  
  ASSERT(q == END_BQ_QUEUE ||
	 get_itbl(q)->type == TSO ||           
  	 get_itbl(q)->type == BLOCKED_FETCH || 
  	 get_itbl(q)->type == CONSTR); 

  bqe = q;
  while (get_itbl(bqe)->type==TSO || 
	 get_itbl(bqe)->type==BLOCKED_FETCH) {
    bqe = unblockOneLocked(bqe, node);
  }
  RELEASE_LOCK(&sched_mutex);
}

#else   /* !GRAN && !PAR */
void
awakenBlockedQueue(StgTSO *tso)
{
  ACQUIRE_LOCK(&sched_mutex);
  while (tso != END_TSO_QUEUE) {
    tso = unblockOneLocked(tso);
  }
  RELEASE_LOCK(&sched_mutex);
}
#endif

//@node Exception Handling Routines, Debugging Routines, Blocking Queue Routines, Main scheduling code
//@subsection Exception Handling Routines

/* ---------------------------------------------------------------------------
   Interrupt execution
   - usually called inside a signal handler so it mustn't do anything fancy.   
   ------------------------------------------------------------------------ */

void
interruptStgRts(void)
{
    interrupted    = 1;
    context_switch = 1;
}

/* -----------------------------------------------------------------------------
   Unblock a thread

   This is for use when we raise an exception in another thread, which
   may be blocked.
   This has nothing to do with the UnblockThread event in GranSim. -- HWL
   -------------------------------------------------------------------------- */

#if defined(GRAN) || defined(PAR)
/*
  NB: only the type of the blocking queue is different in GranSim and GUM
      the operations on the queue-elements are the same
      long live polymorphism!
*/
static void
unblockThread(StgTSO *tso)
{
  StgBlockingQueueElement *t, **last;

  ACQUIRE_LOCK(&sched_mutex);
  switch (tso->why_blocked) {

  case NotBlocked:
    return;  /* not blocked */

  case BlockedOnMVar:
    ASSERT(get_itbl(tso->block_info.closure)->type == MVAR);
    {
      StgBlockingQueueElement *last_tso = END_BQ_QUEUE;
      StgMVar *mvar = (StgMVar *)(tso->block_info.closure);

      last = (StgBlockingQueueElement **)&mvar->head;
      for (t = (StgBlockingQueueElement *)mvar->head; 
	   t != END_BQ_QUEUE; 
	   last = &t->link, last_tso = t, t = t->link) {
	if (t == (StgBlockingQueueElement *)tso) {
	  *last = (StgBlockingQueueElement *)tso->link;
	  if (mvar->tail == tso) {
	    mvar->tail = (StgTSO *)last_tso;
	  }
	  goto done;
	}
      }
      barf("unblockThread (MVAR): TSO not found");
    }

  case BlockedOnBlackHole:
    ASSERT(get_itbl(tso->block_info.closure)->type == BLACKHOLE_BQ);
    {
      StgBlockingQueue *bq = (StgBlockingQueue *)(tso->block_info.closure);

      last = &bq->blocking_queue;
      for (t = bq->blocking_queue; 
	   t != END_BQ_QUEUE; 
	   last = &t->link, t = t->link) {
	if (t == (StgBlockingQueueElement *)tso) {
	  *last = (StgBlockingQueueElement *)tso->link;
	  goto done;
	}
      }
      barf("unblockThread (BLACKHOLE): TSO not found");
    }

  case BlockedOnException:
    {
      StgTSO *target  = tso->block_info.tso;

      ASSERT(get_itbl(target)->type == TSO);

      if (target->what_next == ThreadRelocated) {
	  target = target->link;
	  ASSERT(get_itbl(target)->type == TSO);
      }

      ASSERT(target->blocked_exceptions != NULL);

      last = (StgBlockingQueueElement **)&target->blocked_exceptions;
      for (t = (StgBlockingQueueElement *)target->blocked_exceptions; 
	   t != END_BQ_QUEUE; 
	   last = &t->link, t = t->link) {
	ASSERT(get_itbl(t)->type == TSO);
	if (t == (StgBlockingQueueElement *)tso) {
	  *last = (StgBlockingQueueElement *)tso->link;
	  goto done;
	}
      }
      barf("unblockThread (Exception): TSO not found");
    }

  case BlockedOnRead:
  case BlockedOnWrite:
    {
      /* take TSO off blocked_queue */
      StgBlockingQueueElement *prev = NULL;
      for (t = (StgBlockingQueueElement *)blocked_queue_hd; t != END_BQ_QUEUE; 
	   prev = t, t = t->link) {
	if (t == (StgBlockingQueueElement *)tso) {
	  if (prev == NULL) {
	    blocked_queue_hd = (StgTSO *)t->link;
	    if ((StgBlockingQueueElement *)blocked_queue_tl == t) {
	      blocked_queue_tl = END_TSO_QUEUE;
	    }
	  } else {
	    prev->link = t->link;
	    if ((StgBlockingQueueElement *)blocked_queue_tl == t) {
	      blocked_queue_tl = (StgTSO *)prev;
	    }
	  }
	  goto done;
	}
      }
      barf("unblockThread (I/O): TSO not found");
    }

  case BlockedOnDelay:
    {
      /* take TSO off sleeping_queue */
      StgBlockingQueueElement *prev = NULL;
      for (t = (StgBlockingQueueElement *)sleeping_queue; t != END_BQ_QUEUE; 
	   prev = t, t = t->link) {
	if (t == (StgBlockingQueueElement *)tso) {
	  if (prev == NULL) {
	    sleeping_queue = (StgTSO *)t->link;
	  } else {
	    prev->link = t->link;
	  }
	  goto done;
	}
      }
      barf("unblockThread (I/O): TSO not found");
    }

  default:
    barf("unblockThread");
  }

 done:
  tso->link = END_TSO_QUEUE;
  tso->why_blocked = NotBlocked;
  tso->block_info.closure = NULL;
  PUSH_ON_RUN_QUEUE(tso);
  RELEASE_LOCK(&sched_mutex);
}
#else
static void
unblockThread(StgTSO *tso)
{
  StgTSO *t, **last;

  ACQUIRE_LOCK(&sched_mutex);
  switch (tso->why_blocked) {

  case NotBlocked:
    return;  /* not blocked */

  case BlockedOnMVar:
    ASSERT(get_itbl(tso->block_info.closure)->type == MVAR);
    {
      StgTSO *last_tso = END_TSO_QUEUE;
      StgMVar *mvar = (StgMVar *)(tso->block_info.closure);

      last = &mvar->head;
      for (t = mvar->head; t != END_TSO_QUEUE; 
	   last = &t->link, last_tso = t, t = t->link) {
	if (t == tso) {
	  *last = tso->link;
	  if (mvar->tail == tso) {
	    mvar->tail = last_tso;
	  }
	  goto done;
	}
      }
      barf("unblockThread (MVAR): TSO not found");
    }

  case BlockedOnBlackHole:
    ASSERT(get_itbl(tso->block_info.closure)->type == BLACKHOLE_BQ);
    {
      StgBlockingQueue *bq = (StgBlockingQueue *)(tso->block_info.closure);

      last = &bq->blocking_queue;
      for (t = bq->blocking_queue; t != END_TSO_QUEUE; 
	   last = &t->link, t = t->link) {
	if (t == tso) {
	  *last = tso->link;
	  goto done;
	}
      }
      barf("unblockThread (BLACKHOLE): TSO not found");
    }

  case BlockedOnException:
    {
      StgTSO *target  = tso->block_info.tso;

      ASSERT(get_itbl(target)->type == TSO);

      while (target->what_next == ThreadRelocated) {
	  target = target->link;
	  ASSERT(get_itbl(target)->type == TSO);
      }
      
      ASSERT(target->blocked_exceptions != NULL);

      last = &target->blocked_exceptions;
      for (t = target->blocked_exceptions; t != END_TSO_QUEUE; 
	   last = &t->link, t = t->link) {
	ASSERT(get_itbl(t)->type == TSO);
	if (t == tso) {
	  *last = tso->link;
	  goto done;
	}
      }
      barf("unblockThread (Exception): TSO not found");
    }

  case BlockedOnRead:
  case BlockedOnWrite:
    {
      StgTSO *prev = NULL;
      for (t = blocked_queue_hd; t != END_TSO_QUEUE; 
	   prev = t, t = t->link) {
	if (t == tso) {
	  if (prev == NULL) {
	    blocked_queue_hd = t->link;
	    if (blocked_queue_tl == t) {
	      blocked_queue_tl = END_TSO_QUEUE;
	    }
	  } else {
	    prev->link = t->link;
	    if (blocked_queue_tl == t) {
	      blocked_queue_tl = prev;
	    }
	  }
	  goto done;
	}
      }
      barf("unblockThread (I/O): TSO not found");
    }

  case BlockedOnDelay:
    {
      StgTSO *prev = NULL;
      for (t = sleeping_queue; t != END_TSO_QUEUE; 
	   prev = t, t = t->link) {
	if (t == tso) {
	  if (prev == NULL) {
	    sleeping_queue = t->link;
	  } else {
	    prev->link = t->link;
	  }
	  goto done;
	}
      }
      barf("unblockThread (I/O): TSO not found");
    }

  default:
    barf("unblockThread");
  }

 done:
  tso->link = END_TSO_QUEUE;
  tso->why_blocked = NotBlocked;
  tso->block_info.closure = NULL;
  PUSH_ON_RUN_QUEUE(tso);
  RELEASE_LOCK(&sched_mutex);
}
#endif

/* -----------------------------------------------------------------------------
 * raiseAsync()
 *
 * The following function implements the magic for raising an
 * asynchronous exception in an existing thread.
 *
 * We first remove the thread from any queue on which it might be
 * blocked.  The possible blockages are MVARs and BLACKHOLE_BQs.
 *
 * We strip the stack down to the innermost CATCH_FRAME, building
 * thunks in the heap for all the active computations, so they can 
 * be restarted if necessary.  When we reach a CATCH_FRAME, we build
 * an application of the handler to the exception, and push it on
 * the top of the stack.
 * 
 * How exactly do we save all the active computations?  We create an
 * AP_UPD for every UpdateFrame on the stack.  Entering one of these
 * AP_UPDs pushes everything from the corresponding update frame
 * upwards onto the stack.  (Actually, it pushes everything up to the
 * next update frame plus a pointer to the next AP_UPD object.
 * Entering the next AP_UPD object pushes more onto the stack until we
 * reach the last AP_UPD object - at which point the stack should look
 * exactly as it did when we killed the TSO and we can continue
 * execution by entering the closure on top of the stack.
 *
 * We can also kill a thread entirely - this happens if either (a) the 
 * exception passed to raiseAsync is NULL, or (b) there's no
 * CATCH_FRAME on the stack.  In either case, we strip the entire
 * stack and replace the thread with a zombie.
 *
 * -------------------------------------------------------------------------- */
 
void 
deleteThread(StgTSO *tso)
{
  raiseAsync(tso,NULL);
}

void
raiseAsync(StgTSO *tso, StgClosure *exception)
{
  StgUpdateFrame* su = tso->su;
  StgPtr          sp = tso->sp;
  
  /* Thread already dead? */
  if (tso->what_next == ThreadComplete || tso->what_next == ThreadKilled) {
    return;
  }

  IF_DEBUG(scheduler, sched_belch("raising exception in thread %ld.", tso->id));

  /* Remove it from any blocking queues */
  unblockThread(tso);

  /* The stack freezing code assumes there's a closure pointer on
   * the top of the stack.  This isn't always the case with compiled
   * code, so we have to push a dummy closure on the top which just
   * returns to the next return address on the stack.
   */
  if ( LOOKS_LIKE_GHC_INFO((void*)*sp) ) {
    *(--sp) = (W_)&stg_dummy_ret_closure;
  }

  while (1) {
    nat words = ((P_)su - (P_)sp) - 1;
    nat i;
    StgAP_UPD * ap;

    /* If we find a CATCH_FRAME, and we've got an exception to raise,
     * then build PAP(handler,exception,realworld#), and leave it on
     * top of the stack ready to enter.
     */
    if (get_itbl(su)->type == CATCH_FRAME && exception != NULL) {
      StgCatchFrame *cf = (StgCatchFrame *)su;
      /* we've got an exception to raise, so let's pass it to the
       * handler in this frame.
       */
      ap = (StgAP_UPD *)allocate(sizeofW(StgPAP) + 2);
      TICK_ALLOC_UPD_PAP(3,0);
      SET_HDR(ap,&stg_PAP_info,cf->header.prof.ccs);
	      
      ap->n_args = 2;
      ap->fun = cf->handler;	/* :: Exception -> IO a */
      ap->payload[0] = exception;
      ap->payload[1] = ARG_TAG(0); /* realworld token */

      /* throw away the stack from Sp up to and including the
       * CATCH_FRAME.
       */
      sp = (P_)su + sizeofW(StgCatchFrame) - 1; 
      tso->su = cf->link;

      /* Restore the blocked/unblocked state for asynchronous exceptions
       * at the CATCH_FRAME.  
       *
       * If exceptions were unblocked at the catch, arrange that they
       * are unblocked again after executing the handler by pushing an
       * unblockAsyncExceptions_ret stack frame.
       */
      if (!cf->exceptions_blocked) {
	*(sp--) = (W_)&stg_unblockAsyncExceptionszh_ret_info;
      }
      
      /* Ensure that async exceptions are blocked when running the handler.
       */
      if (tso->blocked_exceptions == NULL) {
	tso->blocked_exceptions = END_TSO_QUEUE;
      }
      
      /* Put the newly-built PAP on top of the stack, ready to execute
       * when the thread restarts.
       */
      sp[0] = (W_)ap;
      tso->sp = sp;
      tso->what_next = ThreadEnterGHC;
      IF_DEBUG(sanity, checkTSO(tso));
      return;
    }

    /* First build an AP_UPD consisting of the stack chunk above the
     * current update frame, with the top word on the stack as the
     * fun field.
     */
    ap = (StgAP_UPD *)allocate(AP_sizeW(words));
    
    ASSERT(words >= 0);
    
    ap->n_args = words;
    ap->fun    = (StgClosure *)sp[0];
    sp++;
    for(i=0; i < (nat)words; ++i) {
      ap->payload[i] = (StgClosure *)*sp++;
    }
    
    switch (get_itbl(su)->type) {
      
    case UPDATE_FRAME:
      {
	SET_HDR(ap,&stg_AP_UPD_info,su->header.prof.ccs /* ToDo */); 
	TICK_ALLOC_UP_THK(words+1,0);
	
	IF_DEBUG(scheduler,
		 fprintf(stderr,  "scheduler: Updating ");
		 printPtr((P_)su->updatee); 
		 fprintf(stderr,  " with ");
		 printObj((StgClosure *)ap);
		 );
	
	/* Replace the updatee with an indirection - happily
	 * this will also wake up any threads currently
	 * waiting on the result.
	 *
	 * Warning: if we're in a loop, more than one update frame on
	 * the stack may point to the same object.  Be careful not to
	 * overwrite an IND_OLDGEN in this case, because we'll screw
	 * up the mutable lists.  To be on the safe side, don't
	 * overwrite any kind of indirection at all.  See also
	 * threadSqueezeStack in GC.c, where we have to make a similar
	 * check.
	 */
	if (!closure_IND(su->updatee)) {
	    UPD_IND_NOLOCK(su->updatee,ap);  /* revert the black hole */
	}
	su = su->link;
	sp += sizeofW(StgUpdateFrame) -1;
	sp[0] = (W_)ap; /* push onto stack */
	break;
      }

    case CATCH_FRAME:
      {
	StgCatchFrame *cf = (StgCatchFrame *)su;
	StgClosure* o;
	
	/* We want a PAP, not an AP_UPD.  Fortunately, the
	 * layout's the same.
	 */
	SET_HDR(ap,&stg_PAP_info,su->header.prof.ccs /* ToDo */);
	TICK_ALLOC_UPD_PAP(words+1,0);
	
	/* now build o = FUN(catch,ap,handler) */
	o = (StgClosure *)allocate(sizeofW(StgClosure)+2);
	TICK_ALLOC_FUN(2,0);
	SET_HDR(o,&stg_catch_info,su->header.prof.ccs /* ToDo */);
	o->payload[0] = (StgClosure *)ap;
	o->payload[1] = cf->handler;
	
	IF_DEBUG(scheduler,
		 fprintf(stderr,  "scheduler: Built ");
		 printObj((StgClosure *)o);
		 );
	
	/* pop the old handler and put o on the stack */
	su = cf->link;
	sp += sizeofW(StgCatchFrame) - 1;
	sp[0] = (W_)o;
	break;
      }
      
    case SEQ_FRAME:
      {
	StgSeqFrame *sf = (StgSeqFrame *)su;
	StgClosure* o;
	
	SET_HDR(ap,&stg_PAP_info,su->header.prof.ccs /* ToDo */);
	TICK_ALLOC_UPD_PAP(words+1,0);
	
	/* now build o = FUN(seq,ap) */
	o = (StgClosure *)allocate(sizeofW(StgClosure)+1);
	TICK_ALLOC_SE_THK(1,0);
	SET_HDR(o,&stg_seq_info,su->header.prof.ccs /* ToDo */);
	o->payload[0] = (StgClosure *)ap;
	
	IF_DEBUG(scheduler,
		 fprintf(stderr,  "scheduler: Built ");
		 printObj((StgClosure *)o);
		 );
	
	/* pop the old handler and put o on the stack */
	su = sf->link;
	sp += sizeofW(StgSeqFrame) - 1;
	sp[0] = (W_)o;
	break;
      }
      
    case STOP_FRAME:
      /* We've stripped the entire stack, the thread is now dead. */
      sp += sizeofW(StgStopFrame) - 1;
      sp[0] = (W_)exception;	/* save the exception */
      tso->what_next = ThreadKilled;
      tso->su = (StgUpdateFrame *)(sp+1);
      tso->sp = sp;
      return;

    default:
      barf("raiseAsync");
    }
  }
  barf("raiseAsync");
}

/* -----------------------------------------------------------------------------
   resurrectThreads is called after garbage collection on the list of
   threads found to be garbage.  Each of these threads will be woken
   up and sent a signal: BlockedOnDeadMVar if the thread was blocked
   on an MVar, or NonTermination if the thread was blocked on a Black
   Hole.
   -------------------------------------------------------------------------- */

void
resurrectThreads( StgTSO *threads )
{
  StgTSO *tso, *next;

  for (tso = threads; tso != END_TSO_QUEUE; tso = next) {
    next = tso->global_link;
    tso->global_link = all_threads;
    all_threads = tso;
    IF_DEBUG(scheduler, sched_belch("resurrecting thread %d", tso->id));

    switch (tso->why_blocked) {
    case BlockedOnMVar:
    case BlockedOnException:
      raiseAsync(tso,(StgClosure *)BlockedOnDeadMVar_closure);
      break;
    case BlockedOnBlackHole:
      raiseAsync(tso,(StgClosure *)NonTermination_closure);
      break;
    case NotBlocked:
      /* This might happen if the thread was blocked on a black hole
       * belonging to a thread that we've just woken up (raiseAsync
       * can wake up threads, remember...).
       */
      continue;
    default:
      barf("resurrectThreads: thread blocked in a strange way");
    }
  }
}

/* -----------------------------------------------------------------------------
 * Blackhole detection: if we reach a deadlock, test whether any
 * threads are blocked on themselves.  Any threads which are found to
 * be self-blocked get sent a NonTermination exception.
 *
 * This is only done in a deadlock situation in order to avoid
 * performance overhead in the normal case.
 * -------------------------------------------------------------------------- */

static void
detectBlackHoles( void )
{
    StgTSO *t = all_threads;
    StgUpdateFrame *frame;
    StgClosure *blocked_on;

    for (t = all_threads; t != END_TSO_QUEUE; t = t->global_link) {

	while (t->what_next == ThreadRelocated) {
	    t = t->link;
	    ASSERT(get_itbl(t)->type == TSO);
	}
      
	if (t->why_blocked != BlockedOnBlackHole) {
	    continue;
	}

	blocked_on = t->block_info.closure;

	for (frame = t->su; ; frame = frame->link) {
	    switch (get_itbl(frame)->type) {

	    case UPDATE_FRAME:
		if (frame->updatee == blocked_on) {
		    /* We are blocking on one of our own computations, so
		     * send this thread the NonTermination exception.  
		     */
		    IF_DEBUG(scheduler, 
			     sched_belch("thread %d is blocked on itself", t->id));
		    raiseAsync(t, (StgClosure *)NonTermination_closure);
		    goto done;
		}
		else {
		    continue;
		}

	    case CATCH_FRAME:
	    case SEQ_FRAME:
		continue;
		
	    case STOP_FRAME:
		break;
	    }
	    break;
	}

    done: ;
    }   
}

//@node Debugging Routines, Index, Exception Handling Routines, Main scheduling code
//@subsection Debugging Routines

/* -----------------------------------------------------------------------------
   Debugging: why is a thread blocked
   -------------------------------------------------------------------------- */

#ifdef DEBUG

void
printThreadBlockage(StgTSO *tso)
{
  switch (tso->why_blocked) {
  case BlockedOnRead:
    fprintf(stderr,"is blocked on read from fd %d", tso->block_info.fd);
    break;
  case BlockedOnWrite:
    fprintf(stderr,"is blocked on write to fd %d", tso->block_info.fd);
    break;
  case BlockedOnDelay:
    fprintf(stderr,"is blocked until %d", tso->block_info.target);
    break;
  case BlockedOnMVar:
    fprintf(stderr,"is blocked on an MVar");
    break;
  case BlockedOnException:
    fprintf(stderr,"is blocked on delivering an exception to thread %d",
	    tso->block_info.tso->id);
    break;
  case BlockedOnBlackHole:
    fprintf(stderr,"is blocked on a black hole");
    break;
  case NotBlocked:
    fprintf(stderr,"is not blocked");
    break;
#if defined(PAR)
  case BlockedOnGA:
    fprintf(stderr,"is blocked on global address; local FM_BQ is %p (%s)",
	    tso->block_info.closure, info_type(tso->block_info.closure));
    break;
  case BlockedOnGA_NoSend:
    fprintf(stderr,"is blocked on global address (no send); local FM_BQ is %p (%s)",
	    tso->block_info.closure, info_type(tso->block_info.closure));
    break;
#endif
  default:
    barf("printThreadBlockage: strange tso->why_blocked: %d for TSO %d (%d)",
	 tso->why_blocked, tso->id, tso);
  }
}

void
printThreadStatus(StgTSO *tso)
{
  switch (tso->what_next) {
  case ThreadKilled:
    fprintf(stderr,"has been killed");
    break;
  case ThreadComplete:
    fprintf(stderr,"has completed");
    break;
  default:
    printThreadBlockage(tso);
  }
}

void
printAllThreads(void)
{
  StgTSO *t;

# if defined(GRAN)
  char time_string[TIME_STR_LEN], node_str[NODE_STR_LEN];
  ullong_format_string(TIME_ON_PROC(CurrentProc), 
		       time_string, rtsFalse/*no commas!*/);

  sched_belch("all threads at [%s]:", time_string);
# elif defined(PAR)
  char time_string[TIME_STR_LEN], node_str[NODE_STR_LEN];
  ullong_format_string(CURRENT_TIME,
		       time_string, rtsFalse/*no commas!*/);

  sched_belch("all threads at [%s]:", time_string);
# else
  sched_belch("all threads:");
# endif

  for (t = all_threads; t != END_TSO_QUEUE; t = t->global_link) {
    fprintf(stderr, "\tthread %d ", t->id);
    printThreadStatus(t);
    fprintf(stderr,"\n");
  }
}
    
/* 
   Print a whole blocking queue attached to node (debugging only).
*/
//@cindex print_bq
# if defined(PAR)
void 
print_bq (StgClosure *node)
{
  StgBlockingQueueElement *bqe;
  StgTSO *tso;
  rtsBool end;

  fprintf(stderr,"## BQ of closure %p (%s): ",
	  node, info_type(node));

  /* should cover all closures that may have a blocking queue */
  ASSERT(get_itbl(node)->type == BLACKHOLE_BQ ||
	 get_itbl(node)->type == FETCH_ME_BQ ||
	 get_itbl(node)->type == RBH ||
	 get_itbl(node)->type == MVAR);
    
  ASSERT(node!=(StgClosure*)NULL);         // sanity check

  print_bqe(((StgBlockingQueue*)node)->blocking_queue);
}

/* 
   Print a whole blocking queue starting with the element bqe.
*/
void 
print_bqe (StgBlockingQueueElement *bqe)
{
  rtsBool end;

  /* 
     NB: In a parallel setup a BQ of an RBH must end with an RBH_Save closure;
  */
  for (end = (bqe==END_BQ_QUEUE);
       !end; // iterate until bqe points to a CONSTR
       end = (get_itbl(bqe)->type == CONSTR) || (bqe->link==END_BQ_QUEUE), 
       bqe = end ? END_BQ_QUEUE : bqe->link) {
    ASSERT(bqe != END_BQ_QUEUE);                               // sanity check
    ASSERT(bqe != (StgBlockingQueueElement *)NULL);            // sanity check
    /* types of closures that may appear in a blocking queue */
    ASSERT(get_itbl(bqe)->type == TSO ||           
	   get_itbl(bqe)->type == BLOCKED_FETCH || 
	   get_itbl(bqe)->type == CONSTR); 
    /* only BQs of an RBH end with an RBH_Save closure */
    //ASSERT(get_itbl(bqe)->type != CONSTR || get_itbl(node)->type == RBH);

    switch (get_itbl(bqe)->type) {
    case TSO:
      fprintf(stderr," TSO %u (%x),",
	      ((StgTSO *)bqe)->id, ((StgTSO *)bqe));
      break;
    case BLOCKED_FETCH:
      fprintf(stderr," BF (node=%p, ga=((%x, %d, %x)),",
	      ((StgBlockedFetch *)bqe)->node, 
	      ((StgBlockedFetch *)bqe)->ga.payload.gc.gtid,
	      ((StgBlockedFetch *)bqe)->ga.payload.gc.slot,
	      ((StgBlockedFetch *)bqe)->ga.weight);
      break;
    case CONSTR:
      fprintf(stderr," %s (IP %p),",
	      (get_itbl(bqe) == &stg_RBH_Save_0_info ? "RBH_Save_0" :
	       get_itbl(bqe) == &stg_RBH_Save_1_info ? "RBH_Save_1" :
	       get_itbl(bqe) == &stg_RBH_Save_2_info ? "RBH_Save_2" :
	       "RBH_Save_?"), get_itbl(bqe));
      break;
    default:
      barf("Unexpected closure type %s in blocking queue", // of %p (%s)",
	   info_type((StgClosure *)bqe)); // , node, info_type(node));
      break;
    }
  } /* for */
  fputc('\n', stderr);
}
# elif defined(GRAN)
void 
print_bq (StgClosure *node)
{
  StgBlockingQueueElement *bqe;
  PEs node_loc, tso_loc;
  rtsBool end;

  /* should cover all closures that may have a blocking queue */
  ASSERT(get_itbl(node)->type == BLACKHOLE_BQ ||
	 get_itbl(node)->type == FETCH_ME_BQ ||
	 get_itbl(node)->type == RBH);
    
  ASSERT(node!=(StgClosure*)NULL);         // sanity check
  node_loc = where_is(node);

  fprintf(stderr,"## BQ of closure %p (%s) on [PE %d]: ",
	  node, info_type(node), node_loc);

  /* 
     NB: In a parallel setup a BQ of an RBH must end with an RBH_Save closure;
  */
  for (bqe = ((StgBlockingQueue*)node)->blocking_queue, end = (bqe==END_BQ_QUEUE);
       !end; // iterate until bqe points to a CONSTR
       end = (get_itbl(bqe)->type == CONSTR) || (bqe->link==END_BQ_QUEUE), bqe = end ? END_BQ_QUEUE : bqe->link) {
    ASSERT(bqe != END_BQ_QUEUE);             // sanity check
    ASSERT(bqe != (StgBlockingQueueElement *)NULL);  // sanity check
    /* types of closures that may appear in a blocking queue */
    ASSERT(get_itbl(bqe)->type == TSO ||           
	   get_itbl(bqe)->type == CONSTR); 
    /* only BQs of an RBH end with an RBH_Save closure */
    ASSERT(get_itbl(bqe)->type != CONSTR || get_itbl(node)->type == RBH);

    tso_loc = where_is((StgClosure *)bqe);
    switch (get_itbl(bqe)->type) {
    case TSO:
      fprintf(stderr," TSO %d (%p) on [PE %d],",
	      ((StgTSO *)bqe)->id, (StgTSO *)bqe, tso_loc);
      break;
    case CONSTR:
      fprintf(stderr," %s (IP %p),",
	      (get_itbl(bqe) == &stg_RBH_Save_0_info ? "RBH_Save_0" :
	       get_itbl(bqe) == &stg_RBH_Save_1_info ? "RBH_Save_1" :
	       get_itbl(bqe) == &stg_RBH_Save_2_info ? "RBH_Save_2" :
	       "RBH_Save_?"), get_itbl(bqe));
      break;
    default:
      barf("Unexpected closure type %s in blocking queue of %p (%s)",
	   info_type((StgClosure *)bqe), node, info_type(node));
      break;
    }
  } /* for */
  fputc('\n', stderr);
}
#else
/* 
   Nice and easy: only TSOs on the blocking queue
*/
void 
print_bq (StgClosure *node)
{
  StgTSO *tso;

  ASSERT(node!=(StgClosure*)NULL);         // sanity check
  for (tso = ((StgBlockingQueue*)node)->blocking_queue;
       tso != END_TSO_QUEUE; 
       tso=tso->link) {
    ASSERT(tso!=NULL && tso!=END_TSO_QUEUE);   // sanity check
    ASSERT(get_itbl(tso)->type == TSO);  // guess what, sanity check
    fprintf(stderr," TSO %d (%p),", tso->id, tso);
  }
  fputc('\n', stderr);
}
# endif

#if defined(PAR)
static nat
run_queue_len(void)
{
  nat i;
  StgTSO *tso;

  for (i=0, tso=run_queue_hd; 
       tso != END_TSO_QUEUE;
       i++, tso=tso->link)
    /* nothing */

  return i;
}
#endif

static void
sched_belch(char *s, ...)
{
  va_list ap;
  va_start(ap,s);
#ifdef SMP
  fprintf(stderr, "scheduler (task %ld): ", pthread_self());
#elif defined(PAR)
  fprintf(stderr, "== ");
#else
  fprintf(stderr, "scheduler: ");
#endif
  vfprintf(stderr, s, ap);
  fprintf(stderr, "\n");
}

#endif /* DEBUG */


//@node Index,  , Debugging Routines, Main scheduling code
//@subsection Index

//@index
//* MainRegTable::  @cindex\s-+MainRegTable
//* StgMainThread::  @cindex\s-+StgMainThread
//* awaken_blocked_queue::  @cindex\s-+awaken_blocked_queue
//* blocked_queue_hd::  @cindex\s-+blocked_queue_hd
//* blocked_queue_tl::  @cindex\s-+blocked_queue_tl
//* context_switch::  @cindex\s-+context_switch
//* createThread::  @cindex\s-+createThread
//* free_capabilities::  @cindex\s-+free_capabilities
//* gc_pending_cond::  @cindex\s-+gc_pending_cond
//* initScheduler::  @cindex\s-+initScheduler
//* interrupted::  @cindex\s-+interrupted
//* n_free_capabilities::  @cindex\s-+n_free_capabilities
//* next_thread_id::  @cindex\s-+next_thread_id
//* print_bq::  @cindex\s-+print_bq
//* run_queue_hd::  @cindex\s-+run_queue_hd
//* run_queue_tl::  @cindex\s-+run_queue_tl
//* sched_mutex::  @cindex\s-+sched_mutex
//* schedule::  @cindex\s-+schedule
//* take_off_run_queue::  @cindex\s-+take_off_run_queue
//* task_ids::  @cindex\s-+task_ids
//* term_mutex::  @cindex\s-+term_mutex
//* thread_ready_cond::  @cindex\s-+thread_ready_cond
//@end index