% % (c) The GRASP/AQUA Project, Glasgow University, 1993-2000 % \section{Generate Java} Name mangling for Java. ~~~~~~~~~~~~~~~~~~~~~~ Haskell has a number of namespaces. The Java translator uses the standard Haskell mangles (see OccName.lhs), and some extra mangles. All names are hidden inside packages. module name: - becomes a first level java package. - can not clash with java, because haskell modules are upper case, java default packages are lower case. function names: - these turn into classes - java keywords (eg. private) have the suffix "zdk" ($k) added. data *types* - These have a base class, so need to appear in the same name space as other object. for example data Foo = Foo - We add a postfix to types: "zdt" ($t) - Types are upper case, so never clash with keywords data constructors - There are tWO classes for each Constructor (1) - Class with the payload extends the relevent datatype baseclass. - This class has the prefix zdw ($W) (2) - Constructor *wrapper* just use their own name. - Constructors are upper case, so never clash with keywords - So Foo would become 2 classes. * Foo -- the constructor wrapper * zdwFoo -- the worker, with the payload \begin{code} module JavaGen( javaGen ) where import Java import Literal ( Literal(..) ) import Id ( Id, isDataConId_maybe, isId, idName, isDeadBinder, idPrimRep ) import Name ( NamedThing(..), getOccString, isGlobalName , nameModule ) import PrimRep ( PrimRep(..) ) import DataCon ( DataCon, dataConRepArity, dataConRepArgTys, dataConId ) import qualified TypeRep import qualified Type import qualified CoreSyn import CoreSyn ( CoreBind, CoreExpr, CoreAlt, CoreBndr, Bind(..), Alt, AltCon(..), collectBinders, isValArg ) import CoreUtils( exprIsValue, exprIsTrivial ) import Module ( Module, moduleString ) import TyCon ( TyCon, isDataTyCon, tyConDataCons ) import Outputable #include "HsVersions.h" \end{code} \begin{code} javaGen :: Module -> [Module] -> [TyCon] -> [CoreBind] -> CompilationUnit javaGen mod import_mods tycons binds = liftCompilationUnit package where decls = [Import "haskell.runtime.*"] ++ [Import (moduleString mod) | mod <- import_mods] ++ concat (map javaTyCon (filter isDataTyCon tycons)) ++ concat (map javaTopBind binds) package = Package (moduleString mod) decls \end{code} %************************************************************************ %* * \subsection{Type declarations} %* * %************************************************************************ \begin{code} javaTyCon :: TyCon -> [Decl] -- public class List {} -- -- public class $wCons extends List { -- Object f1; Object f2 -- } -- public class $wNil extends List {} javaTyCon tycon = tycon_jclass : concat (map constr_class constrs) where constrs = tyConDataCons tycon tycon_jclass_jname = addCons (javaName tycon) tycon_jclass = Class [Public] (shortName tycon_jclass_jname) [] [] [] constr_class data_con = [ Class [Public] (shortName constr_jname) [tycon_jclass_jname] [] (field_decls ++ [cons_meth,debug_meth]) ] where constr_jname = javaConstrWkrName data_con constr_jtype = javaConstrWkrType data_con field_names = constrToFields data_con field_decls = [ Field [Public] t f Nothing | (f,t) <- field_names ] cons_meth = mkCons (shortName constr_jname) field_names debug_meth = Method [Public] stringT "toString" [] [] ( [ Declaration (Field [] stringT "__txt" Nothing) ] ++ [ ExprStatement (Assign txt (Literal (StringLit ("( " ++ getOccString data_con ++ " ") ) stringT ) ) ] ++ [ ExprStatement (Assign txt (Op txt "+" (Op (Var f t) "+" litSp) ) ) | (f,t) <- field_names ] ++ [ Return (Op txt "+" (Literal (StringLit ")") stringT) ) ] ) stringT = Type "java.lang.String" litSp = Literal (StringLit " ") stringT txt = Var "__txt" stringT mkNew :: Type -> [Expr] -> Expr mkNew t@(PrimType primType) [] = error "new primitive???" mkNew t@(Type _) es = New t es Nothing mkNew _ _ = error "new with strange arguments" addCons :: Name -> Name addCons name = name ++ "zdc" constrToFields :: DataCon -> [(Name,Type)] constrToFields cons = zip (map fieldName [1..]) (map javaTauType (dataConRepArgTys cons)) mkCons :: Name -> [(Name,Type)] -> Decl mkCons name args = Constructor [Public] name [ Parameter [] t n | (n,t) <- args ] [ ExprStatement (Assign (Access this n) (Var n t) ) | (n,t) <- args ] \end{code} %************************************************************************ %* * \subsection{Bindings} %* * %************************************************************************ \begin{code} javaTopBind :: CoreBind -> [Decl] javaTopBind (NonRec bndr rhs) = [java_top_bind bndr rhs] javaTopBind (Rec prs) = [java_top_bind bndr rhs | (bndr,rhs) <- prs] java_top_bind :: Id -> CoreExpr -> Decl -- public class f implements Code { -- public Object ENTER() { ...translation of rhs... } -- } java_top_bind bndr rhs = Class [Public] (shortName (javaName bndr)) [] [codeName] [enter_meth] where enter_meth = Method [Public] objectType enterName [vmArg] [excName] (javaExpr vmRETURN rhs) \end{code} %************************************************************************ %* * \subsection{Expressions} %* * %************************************************************************ \begin{code} javaVar :: Id -> Expr javaVar v | isGlobalName (idName v) = mkNew (javaGlobType v) [] | otherwise = Var (javaName v) (javaType v) javaLit :: Literal.Literal -> Expr javaLit (MachInt i) = Literal (IntLit (fromInteger i)) (PrimType PrimInt) javaLit (MachChar c) = Literal (CharLit c) (PrimType PrimChar) javaLit other = pprPanic "javaLit" (ppr other) javaExpr :: (Expr -> Expr) -> CoreExpr -> [Statement] -- Generate code to apply the value of -- the expression to the arguments aleady on the stack javaExpr r (CoreSyn.Var v) = [Return (r (javaVar v))] javaExpr r (CoreSyn.Lit l) = [Return (r (javaLit l))] javaExpr r (CoreSyn.App f a) = javaApp r f [a] javaExpr r e@(CoreSyn.Lam _ _) = javaLam r (collectBinders e) javaExpr r (CoreSyn.Case e x alts) = javaCase r e x alts javaExpr r (CoreSyn.Let bind body) = javaBind bind ++ javaExpr r body javaExpr r (CoreSyn.Note _ e) = javaExpr r e javaCase :: (Expr -> Expr) -> CoreExpr -> Id -> [CoreAlt] -> [Statement] -- case e of x { Nil -> r1 -- Cons p q -> r2 } -- ==> -- final Object x = VM.WHNF(...code for e...) -- else if x instance_of Nil { -- ...translation of r1... -- } else if x instance_of Cons { -- final Object p = ((Cons) x).f1 -- final Object q = ((Cons) x).f2 -- ...translation of r2... -- } else return null javaCase r e x alts = [var [Final] objectType (javaName x) (vmWHNF (javaArg e)), IfThenElse (map mk_alt alts) Nothing] where mk_alt (DEFAULT, [], rhs) = (true, Block (javaExpr r rhs)) mk_alt (DataAlt d, bs, rhs) = (instanceOf x d, Block (bind_args d bs ++ javaExpr r rhs)) mk_alt alt@(LitAlt lit, [], rhs) = (eqLit lit , Block (javaExpr r rhs)) mk_alt alt@(LitAlt _, _, _) = pprPanic "mk_alt" (ppr alt) eqLit (MachInt n) = Op (Literal (IntLit n) (PrimType PrimInt)) "==" (Var (javaName x) (PrimType PrimInt)) eqLit other = pprPanic "eqLit" (ppr other) bind_args d bs = [var [Final] t (javaName b) (Access (Cast (javaConstrWkrType d) (javaVar x)) f) | (b, (f,t)) <- filter isId bs `zip` (constrToFields d) , not (isDeadBinder b) ] javaBind (NonRec x rhs) {- x = ...rhs_x... ==> final Object x = new Thunk( new Code() { ...code for rhs_x... } ) -} = [var [Final] objectType (javaName x) (newThunk (newCode (javaExpr vmRETURN rhs)))] javaBind (Rec prs) {- rec { x = ...rhs_x...; y = ...rhs_y... } ==> class x implements Code { Code x, y; public Object ENTER() { ...code for rhs_x...} } ...ditto for y... final x x_inst = new x(); ...ditto for y... final Thunk x = new Thunk( x_inst ); ...ditto for y... x_inst.x = x; x_inst.y = y; ...ditto for y... -} = (map mk_class prs) ++ (map mk_inst prs) ++ (map mk_thunk prs) ++ concat (map mk_knot prs) where mk_class (b,r) = Declaration (Class [] (javaName b) [] [codeName] stmts) where stmts = [Field [] codeType (javaName b) Nothing | (b,_) <- prs] ++ [Method [Public] objectType enterName [vmArg] [excName] (javaExpr vmRETURN r)] mk_inst (b,r) = var [Final] (javaGlobType b) (javaInstName b) (New (javaGlobType b) [] Nothing) mk_thunk (b,r) = var [Final] thunkType (javaName b) (New thunkType [Var (javaInstName b) (Type "")] Nothing) mk_knot (b,_) = [ExprStatement (Assign lhs rhs) | (b',_) <- prs, let lhs = Access (Var (javaInstName b) (Type "")) (javaName b'), let rhs = Var (javaName b') (Type "") ] javaLam :: (Expr -> Expr) -> ([CoreBndr], CoreExpr) -> [Statement] javaLam r (bndrs, body) | null val_bndrs = javaExpr r body | otherwise = vmCOLLECT (length val_bndrs) this ++ [var [Final] t (javaName n) (vmPOP t) | (n,t) <- val_bndrs] ++ javaExpr r body where val_bndrs = map (\ id -> (id,javaType id)) (filter isId bndrs) javaApp :: (Expr -> Expr) -> CoreExpr -> [CoreExpr] -> [Statement] javaApp r (CoreSyn.App f a) as = javaApp r f (a:as) javaApp r (CoreSyn.Var f) as = case isDataConId_maybe f of { Just dc | length as == dataConRepArity dc -> -- Saturated constructors [Return (New (javaGlobType f) (javaArgs as) Nothing)] ; other -> -- Not a saturated constructor java_apply r (CoreSyn.Var f) as } javaApp r f as = java_apply r f as java_apply :: (Expr -> Expr) -> CoreExpr -> [CoreExpr] -> [Statement] java_apply r f as = [ExprStatement (vmPUSH arg) | arg <- javaArgs as] ++ javaExpr r f javaArgs :: [CoreExpr] -> [Expr] javaArgs args = [javaArg a | a <- args, isValArg a] javaArg :: CoreExpr -> Expr javaArg (CoreSyn.Type t) = pprPanic "javaArg" (ppr t) javaArg e | exprIsValue e || exprIsTrivial e = newCode (javaExpr id e) | otherwise = newThunk (newCode (javaExpr id e)) \end{code} %************************************************************************ %* * \subsection{Helper functions} %* * %************************************************************************ \begin{code} true, this :: Expr this = Var thisName (Type "") true = Var "true" (PrimType PrimBoolean) vmCOLLECT :: Int -> Expr -> [Statement] vmCOLLECT 0 e = [] vmCOLLECT n e = [ExprStatement (Call varVM "COLLECT" [Literal (IntLit (toInteger n)) (PrimType PrimInt), e])] vmPOP :: Type -> Expr vmPOP ty = Call varVM ("POP" ++ suffix ty) [] vmPUSH :: Expr -> Expr vmPUSH e = Call varVM ("PUSH" ++ suffix (exprType e)) [e] vmRETURN :: Expr -> Expr vmRETURN e = case ty of PrimType _ -> Call varVM ("RETURN" ++ suffix (exprType e)) [e] _ -> e where ty = exprType e var :: [Modifier] -> Type -> Name -> Expr -> Statement var ms ty field_name value = Declaration (Field ms ty field_name (Just value)) vmWHNF :: Expr -> Expr vmWHNF e = Call varVM "WHNF" [e] suffix :: Type -> String suffix (PrimType t) = primName t suffix _ = "" primName :: PrimType -> String primName PrimInt = "int" primName PrimChar = "char" primName _ = error "unsupported primitive" varVM :: Expr varVM = Var vmName (Type "haskell.runtime.VMEngine") instanceOf :: Id -> DataCon -> Expr instanceOf x data_con = InstanceOf (Var (javaName x) (Type "")) (javaConstrWkrType data_con) newCode :: [Statement] -> Expr newCode [Return e] = e newCode stmts = New codeType [] (Just [Method [Public] objectType enterName [vmArg] [excName] stmts]) newThunk :: Expr -> Expr newThunk e = New thunkType [e] Nothing vmArg :: Parameter vmArg = Parameter [Final] (Type "haskell.runtime.VMEngine") vmName \end{code} %************************************************************************ %* * \subsection{Haskell to Java Types} %* * %************************************************************************ \begin{code} exprType (Var _ t) = t exprType (Literal _ t) = t exprType (Cast t _) = t exprType (New t _ _) = t exprType _ = error "can't figure out an expression type" \end{code} %************************************************************************ %* * \subsection{Name mangling} %* * %************************************************************************ \begin{code} codeName, thunkName, enterName, vmName,excName :: Name codeName = "haskell.runtime.Code" thunkName = "haskell.runtime.Thunk" enterName = "ENTER" vmName = "VM" thisName = "this" excName = "Exception" fieldName :: Int -> Name -- Names for fields of a constructor fieldName n = "f" ++ show n javaName :: NamedThing a => a -> Name javaName n = if isGlobalName n' then moduleString (nameModule n') ++ "." ++ getOccString n else getOccString n where n' = getName n -- this is used for getting the name of a class when defining it. shortName = reverse . takeWhile (/= '.') . reverse javaConstrWkrName :: DataCon -> Name -- The function that makes the constructor javaConstrWkrName con = javaName (dataConId con) javaInstName :: NamedThing a => a -> Name -- Makes x_inst for Rec decls javaInstName n = getOccString n ++ "_inst" \end{code} %************************************************************************ %* * \subsection{Type mangling} %* * %************************************************************************ \begin{code} -- This mapping a global haskell name (typically a function name) -- to the name of the class that handles it. -- The name must be global. So "Test.foo" maps to Type "Test.foo" javaGlobType :: NamedThing a => a -> Type javaGlobType n | '.' `notElem` name = error ("not using a fully qualified name for javaGlobalType: " ++ name) | otherwise = mkType name where name = javaName n -- This takes an id, and finds the ids *type* (for example, Int, Bool, a, etc). javaType :: Id -> Type javaType id = case (idPrimRep id) of IntRep -> PrimType PrimInt _ -> if isGlobalName (idName id) then Type (javaName id) else objectType -- TODO: ?? for now ?? -- This is where we map from type to possible primitive mkType "PrelGHC.Intzh" = PrimType PrimInt mkType other = Type other javaTauType :: Type.TauType -> Type javaTauType (TypeRep.TyConApp tycon _) = javaGlobType tycon javaTauType (TypeRep.NoteTy _ t) = javaTauType t javaTauType _ = objectType javaConstrWkrType :: DataCon -> Type -- The function that makes the constructor javaConstrWkrType con = Type (javaConstrWkrName con) codeType, thunkType, objectType :: Type objectType = Type ("java.lang.Object") codeType = Type codeName thunkType = Type thunkName \end{code} %************************************************************************ %* * \subsection{Class Lifting} %* * %************************************************************************ This is a very simple class lifter. It works by carrying inwards a list of bound variables (things that might need to be passed to a lifted inner class). * Any variable references is check with this list, and if it is bound, then it is not top level, external reference. * This means that for the purposes of lifting, it might be free inside a lifted inner class. * We remember these "free inside the inner class" values, and use this list (which is passed, via the monad, outwards) when lifting. \begin{code} type Bound = [Name] type Frees = [Name] combine :: [Name] -> [Name] -> [Name] combine [] names = names combine names [] = names combine (name:names) (name':names') | name < name' = name : combine names (name':names') | name > name' = name' : combine (name:names) names' | name == name = name : combine names names' | otherwise = error "names are not a total order" both :: [Name] -> [Name] -> [Name] both [] names = [] both names [] = [] both (name:names) (name':names') | name < name' = both names (name':names') | name > name' = both (name:names) names' | name == name = name : both names names' | otherwise = error "names are not a total order" combineEnv :: Env -> [Name] -> Env combineEnv (Env bound env) new = Env (bound `combine` new) env addTypeMapping :: Name -> Name -> [Name] -> Env -> Env addTypeMapping origName newName frees (Env bound env) = Env bound ((origName,(newName,frees)) : env) -- This a list of bound vars (with types) -- and a mapping from types (?) to (result * [arg]) pairs data Env = Env Bound [(Name,(Name,[Name]))] newtype LifterM a = LifterM { unLifterM :: Name -> Int -> ( a -- * , Frees -- frees , [Decl] -- lifted classes , Int -- The uniqs ) } instance Monad LifterM where return a = LifterM (\ n s -> (a,[],[],s)) (LifterM m) >>= fn = LifterM (\ n s -> case m n s of (a,frees,lifted,s) -> case unLifterM (fn a) n s of (a,frees2,lifted2,s) -> ( a , combine frees frees2 , lifted ++ lifted2 , s) ) access :: Env -> Name -> LifterM () access env@(Env bound _) name | name `elem` bound = LifterM (\ n s -> ((),[name],[],s)) | otherwise = return () scopedName :: Name -> LifterM a -> LifterM a scopedName name (LifterM m) = LifterM (\ _ s -> case m name 1 of (a,frees,lifted,_) -> (a,frees,lifted,s) ) genAnonInnerClassName :: LifterM Name genAnonInnerClassName = LifterM (\ n s -> ( n ++ "$" ++ show s , [] , [] , s + 1 ) ) genInnerClassName :: Name -> LifterM Name genInnerClassName name = LifterM (\ n s -> ( n ++ "$" ++ name , [] , [] , s ) ) getFrees :: LifterM a -> LifterM (a,Frees) getFrees (LifterM m) = LifterM (\ n s -> case m n s of (a,frees,lifted,n) -> ((a,frees),frees,lifted,n) ) rememberClass :: Decl -> LifterM () rememberClass decl = LifterM (\ n s -> ((),[],[decl],s)) liftCompilationUnit :: CompilationUnit -> CompilationUnit liftCompilationUnit (Package name ds) = Package name (concatMap liftCompilationUnit' ds) liftCompilationUnit' :: Decl -> [Decl] liftCompilationUnit' decl = case unLifterM (liftDecls True (Env [] []) [decl]) [] 1 of (ds,_,ds',_) -> ds ++ ds' -- The bound vars for the current class have -- already be captured before calling liftDecl, -- because they are in scope everywhere inside the class. liftDecl :: Bool -> Env -> Decl -> LifterM Decl liftDecl = \ top env decl -> case decl of { Import n -> return (Import n) ; Field mfs t n e -> do { e <- liftMaybeExpr env e ; return (Field mfs (liftType env t) n e) } ; Constructor mfs n as ss -> do { let newBound = getBoundAtParameters as ; (ss,_) <- liftStatements (combineEnv env newBound) ss ; return (Constructor mfs n (liftParameters env as) ss) } ; Method mfs t n as ts ss -> do { let newBound = getBoundAtParameters as ; (ss,_) <- liftStatements (combineEnv env newBound) ss ; return (Method mfs (liftType env t) n (liftParameters env as) ts ss) } ; Comment s -> return (Comment s) ; Interface mfs n is ms -> error "interfaces not supported" ; Class mfs n x is ms -> do { let newBound = getBoundAtDecls ms ; ms <- scopedName n (liftDecls False (combineEnv env newBound) ms) ; return (Class mfs n x is ms) } } liftDecls :: Bool -> Env -> [Decl] -> LifterM [Decl] liftDecls top env = mapM (liftDecl top env) getBoundAtDecls :: [Decl] -> Bound getBoundAtDecls = foldr combine [] . map getBoundAtDecl -- TODO getBoundAtDecl :: Decl -> Bound getBoundAtDecl (Field _ _ n _) = [n] getBoundAtDecl _ = [] getBoundAtParameters :: [Parameter] -> Bound getBoundAtParameters = foldr combine [] . map getBoundAtParameter -- TODO getBoundAtParameter :: Parameter -> Bound getBoundAtParameter (Parameter _ _ n) = [n] liftStatement :: Env -> Statement -> LifterM (Statement,Env) liftStatement = \ env stmt -> case stmt of { Skip -> return (stmt,env) ; Return e -> do { e <- liftExpr env e ; return (Return e,env) } ; Block ss -> do { (ss,env) <- liftStatements env ss ; return (Block ss,env) } ; ExprStatement e -> do { e <- liftExpr env e ; return (ExprStatement e,env) } ; Declaration decl@(Field mfs t n e) -> do { e <- liftMaybeExpr env e ; return ( Declaration (Field mfs t n e) , env `combineEnv` getBoundAtDecl decl ) } ; Declaration decl@(Class mfs n x is ms) -> do { innerName <- genInnerClassName n ; frees <- liftClass env innerName ms x is ; return ( Declaration (Comment ["lifted " ++ n]) , addTypeMapping n innerName frees env ) } ; Declaration d -> error "general Decl not supported" ; IfThenElse ecs s -> ifthenelse env ecs s ; Switch e as d -> error "switch not supported" } ifthenelse :: Env -> [(Expr,Statement)] -> (Maybe Statement) -> LifterM (Statement,Env) ifthenelse env pairs may_stmt = do { let (exprs,stmts) = unzip pairs ; exprs <- liftExprs env exprs ; (stmts,_) <- liftStatements env stmts ; may_stmt <- case may_stmt of Just stmt -> do { (stmt,_) <- liftStatement env stmt ; return (Just stmt) } Nothing -> return Nothing ; return (IfThenElse (zip exprs stmts) may_stmt,env) } liftStatements :: Env -> [Statement] -> LifterM ([Statement],Env) liftStatements env [] = return ([],env) liftStatements env (s:ss) = do { (s,env) <- liftStatement env s ; (ss,env) <- liftStatements env ss ; return (s:ss,env) } liftExpr :: Env -> Expr -> LifterM Expr liftExpr = \ env expr -> case expr of { Var n t -> do { access env n ; return (Var n t) } ; Literal l _ -> return expr ; Cast t e -> do { e <- liftExpr env e ; return (Cast (liftType env t) e) } ; Access e n -> do { e <- liftExpr env e -- do not consider n as an access, because -- this is a indirection via a reference ; return (Access e n) } ; Assign l r -> do { l <- liftExpr env l ; r <- liftExpr env r ; return (Assign l r) } ; InstanceOf e t -> do { e <- liftExpr env e ; return (InstanceOf e (liftType env t)) } ; Call e n es -> do { e <- liftExpr env e ; es <- mapM (liftExpr env) es ; return (Call e n es) } ; Op e1 o e2 -> do { e1 <- liftExpr env e1 ; e2 <- liftExpr env e2 ; return (Op e1 o e2) } ; New n es ds -> new env n es ds } liftParameter env (Parameter ms t n) = Parameter ms (liftType env t) n liftParameters env = map (liftParameter env) liftExprs :: Env -> [Expr] -> LifterM [Expr] liftExprs = mapM . liftExpr liftMaybeExpr :: Env -> (Maybe Expr) -> LifterM (Maybe Expr) liftMaybeExpr env Nothing = return Nothing liftMaybeExpr env (Just stmt) = do { stmt <- liftExpr env stmt ; return (Just stmt) } new :: Env -> Type -> [Expr] -> Maybe [Decl] -> LifterM Expr new env@(Env _ pairs) typ args Nothing = do { args <- liftExprs env args ; return (listNew env typ args) } new env typ [] (Just inner) = -- anon. inner class do { innerName <- genAnonInnerClassName ; frees <- liftClass env innerName inner [] [unType typ] ; return (New (Type (innerName)) [ Var name (Type "") | name <- frees ] Nothing) } where unType (Type name) = name unType _ = error "incorrect type style" new env typ _ (Just inner) = error "cant handle inner class with args" liftClass :: Env -> Name -> [Decl] -> [Name] -> [Name] -> LifterM [ Name ] liftClass env@(Env bound _) innerName inner xs is = do { let newBound = getBoundAtDecls inner ; (inner,frees) <- getFrees (liftDecls False (env `combineEnv` newBound) inner) ; let trueFrees = filter (\ xs -> xs /= "VM") (both frees bound) ; let freeDefs = [ Field [Final] objectType n Nothing | n <- trueFrees ] ; let cons = mkCons innerName [(name,objectType) | name <- trueFrees ] ; let innerClass = Class [] innerName xs is (freeDefs ++ [cons] ++ inner) ; rememberClass innerClass ; return trueFrees } liftType :: Env -> Type -> Type liftType (Env _ env) typ@(Type name) = case lookup name env of Nothing -> typ Just (nm,_) -> Type nm liftType _ typ = typ liftNew :: Env -> Type -> [Expr] -> Expr liftNew (Env _ env) typ@(Type name) exprs = case lookup name env of Nothing -> New typ exprs Nothing Just (nm,args) | null exprs -> New (Type nm) (map (\ v -> Var v (Type "")) args) Nothing _ -> error "pre-lifted constructor with arguments" listNew _ typ exprs = New typ exprs Nothing \end{code}