% % (c) The University of Glasgow, 1997-2006 % \begin{code} {-# LANGUAGE BangPatterns #-} {-# OPTIONS_GHC -O -funbox-strict-fields #-} -- We always optimise this, otherwise performance of a non-optimised -- compiler is severely affected -- | -- There are two principal string types used internally by GHC: -- -- 'FastString': -- * A compact, hash-consed, representation of character strings. -- * Comparison is O(1), and you can get a 'Unique.Unique' from them. -- * Generated by 'fsLit'. -- * Turn into 'Outputable.SDoc' with 'Outputable.ftext'. -- -- 'LitString': -- * Just a wrapper for the @Addr#@ of a C string (@Ptr CChar@). -- * Practically no operations. -- * Outputing them is fast. -- * Generated by 'sLit'. -- * Turn into 'Outputable.SDoc' with 'Outputable.ptext' -- -- Use 'LitString' unless you want the facilities of 'FastString'. module FastString ( -- * ByteString fastStringToByteString, mkFastStringByteString, fastZStringToByteString, unsafeMkByteString, hashByteString, -- * FastZString FastZString, hPutFZS, zString, lengthFZS, -- * FastStrings FastString(..), -- not abstract, for now. -- ** Construction fsLit, mkFastString, mkFastStringBytes, mkFastStringByteList, mkFastStringForeignPtr, #if defined(__GLASGOW_HASKELL__) mkFastString#, #endif -- ** Deconstruction unpackFS, -- :: FastString -> String bytesFS, -- :: FastString -> [Word8] -- ** Encoding zEncodeFS, -- ** Operations uniqueOfFS, lengthFS, nullFS, appendFS, headFS, tailFS, concatFS, consFS, nilFS, -- ** Outputing hPutFS, -- ** Internal getFastStringTable, hasZEncoding, -- * LitStrings LitString, -- ** Construction sLit, #if defined(__GLASGOW_HASKELL__) mkLitString#, #endif mkLitString, -- ** Deconstruction unpackLitString, -- ** Operations lengthLS ) where #include "HsVersions.h" import Encoding import FastTypes import FastFunctions import Panic import Util import Data.ByteString (ByteString) import qualified Data.ByteString as BS import qualified Data.ByteString.Char8 as BSC import qualified Data.ByteString.Internal as BS import qualified Data.ByteString.Unsafe as BS import Foreign.C import GHC.Exts import System.IO import System.IO.Unsafe ( unsafePerformIO ) import Data.Data import Data.IORef ( IORef, newIORef, readIORef, writeIORef ) import Data.Maybe ( isJust ) import Data.Char import GHC.IO ( IO(..) ) import Foreign.Safe #if STAGE >= 2 import GHC.Conc.Sync (sharedCAF) #endif #if defined(__GLASGOW_HASKELL__) import GHC.Base ( unpackCString# ) #endif #define hASH_TBL_SIZE 4091 #define hASH_TBL_SIZE_UNBOXED 4091# fastStringToByteString :: FastString -> ByteString fastStringToByteString f = fs_bs f fastZStringToByteString :: FastZString -> ByteString fastZStringToByteString (FastZString bs) = bs -- This will drop information if any character > '\xFF' unsafeMkByteString :: String -> ByteString unsafeMkByteString = BSC.pack hashByteString :: ByteString -> Int hashByteString bs = inlinePerformIO $ BS.unsafeUseAsCStringLen bs $ \(ptr, len) -> return $ hashStr (castPtr ptr) len -- ----------------------------------------------------------------------------- newtype FastZString = FastZString ByteString hPutFZS :: Handle -> FastZString -> IO () hPutFZS handle (FastZString bs) = BS.hPut handle bs zString :: FastZString -> String zString (FastZString bs) = inlinePerformIO $ BS.unsafeUseAsCStringLen bs peekCAStringLen lengthFZS :: FastZString -> Int lengthFZS (FastZString bs) = BS.length bs mkFastZStringString :: String -> FastZString mkFastZStringString str = FastZString (BSC.pack str) -- ----------------------------------------------------------------------------- {-| A 'FastString' is an array of bytes, hashed to support fast O(1) comparison. It is also associated with a character encoding, so that we know how to convert a 'FastString' to the local encoding, or to the Z-encoding used by the compiler internally. 'FastString's support a memoized conversion to the Z-encoding via zEncodeFS. -} data FastString = FastString { uniq :: {-# UNPACK #-} !Int, -- unique id n_chars :: {-# UNPACK #-} !Int, -- number of chars fs_bs :: {-# UNPACK #-} !ByteString, fs_ref :: {-# UNPACK #-} !(IORef (Maybe FastZString)) } deriving Typeable instance Eq FastString where f1 == f2 = uniq f1 == uniq f2 instance Ord FastString where -- Compares lexicographically, not by unique a <= b = case cmpFS a b of { LT -> True; EQ -> True; GT -> False } a < b = case cmpFS a b of { LT -> True; EQ -> False; GT -> False } a >= b = case cmpFS a b of { LT -> False; EQ -> True; GT -> True } a > b = case cmpFS a b of { LT -> False; EQ -> False; GT -> True } max x y | x >= y = x | otherwise = y min x y | x <= y = x | otherwise = y compare a b = cmpFS a b instance Show FastString where show fs = show (unpackFS fs) instance Data FastString where -- don't traverse? toConstr _ = abstractConstr "FastString" gunfold _ _ = error "gunfold" dataTypeOf _ = mkNoRepType "FastString" cmpFS :: FastString -> FastString -> Ordering cmpFS f1@(FastString u1 _ _ _) f2@(FastString u2 _ _ _) = if u1 == u2 then EQ else compare (fastStringToByteString f1) (fastStringToByteString f2) foreign import ccall unsafe "ghc_memcmp" memcmp :: Ptr a -> Ptr b -> Int -> IO Int -- ----------------------------------------------------------------------------- -- Construction {- Internally, the compiler will maintain a fast string symbol table, providing sharing and fast comparison. Creation of new @FastString@s then covertly does a lookup, re-using the @FastString@ if there was a hit. -} data FastStringTable = FastStringTable {-# UNPACK #-} !Int (MutableArray# RealWorld [FastString]) string_table :: IORef FastStringTable {-# NOINLINE string_table #-} string_table = unsafePerformIO $ do tab <- IO $ \s1# -> case newArray# hASH_TBL_SIZE_UNBOXED [] s1# of (# s2#, arr# #) -> (# s2#, FastStringTable 0 arr# #) ref <- newIORef tab -- use the support wired into the RTS to share this CAF among all images of -- libHSghc #if STAGE < 2 return ref #else sharedCAF ref getOrSetLibHSghcFastStringTable -- from the RTS; thus we cannot use this mechanism when STAGE<2; the previous -- RTS might not have this symbol foreign import ccall unsafe "getOrSetLibHSghcFastStringTable" getOrSetLibHSghcFastStringTable :: Ptr a -> IO (Ptr a) #endif {- We include the FastString table in the `sharedCAF` mechanism because we'd like FastStrings created by a Core plugin to have the same uniques as corresponding strings created by the host compiler itself. For example, this allows plugins to lookup known names (eg `mkTcOcc "MySpecialType"`) in the GlobalRdrEnv or even re-invoke the parser. In particular, the following little sanity test was failing in a plugin prototyping safe newtype-coercions: GHC.NT.Type.NT was imported, but could not be looked up /by the plugin/. let rdrName = mkModuleName "GHC.NT.Type" `mkRdrQual` mkTcOcc "NT" putMsgS $ showSDoc dflags $ ppr $ lookupGRE_RdrName rdrName $ mg_rdr_env guts `mkTcOcc` involves the lookup (or creation) of a FastString. Since the plugin's FastString.string_table is empty, constructing the RdrName also allocates new uniques for the FastStrings "GHC.NT.Type" and "NT". These uniques are almost certainly unequal to the ones that the host compiler originally assigned to those FastStrings. Thus the lookup fails since the domain of the GlobalRdrEnv is affected by the RdrName's OccName's FastString's unique. The old `reinitializeGlobals` mechanism is enough to provide the plugin with read-access to the table, but it insufficient in the general case where the plugin may allocate FastStrings. This mutates the supply for the FastStrings' unique, and that needs to be propagated back to the compiler's instance of the global variable. Such propagation is beyond the `reinitializeGlobals` mechanism. Maintaining synchronization of the two instances of this global is rather difficult because of the uses of `unsafePerformIO` in this module. Not synchronizing them risks breaking the rather major invariant that two FastStrings with the same unique have the same string. Thus we use the lower-level `sharedCAF` mechanism that relies on Globals.c. -} lookupTbl :: FastStringTable -> Int -> IO [FastString] lookupTbl (FastStringTable _ arr#) (I# i#) = IO $ \ s# -> readArray# arr# i# s# updTbl :: IORef FastStringTable -> FastStringTable -> Int -> [FastString] -> IO () updTbl fs_table_var (FastStringTable uid arr#) (I# i#) ls = do (IO $ \ s# -> case writeArray# arr# i# ls s# of { s2# -> (# s2#, () #) }) writeIORef fs_table_var (FastStringTable (uid+1) arr#) mkFastString# :: Addr# -> FastString mkFastString# a# = mkFastStringBytes ptr (ptrStrLength ptr) where ptr = Ptr a# mkFastStringBytes :: Ptr Word8 -> Int -> FastString mkFastStringBytes ptr len = unsafePerformIO $ do ft@(FastStringTable uid _) <- readIORef string_table let h = hashStr ptr len add_it ls = do fs <- copyNewFastString uid ptr len updTbl string_table ft h (fs:ls) {- _trace ("new: " ++ show f_str) $ -} return fs -- lookup_result <- lookupTbl ft h case lookup_result of [] -> add_it [] ls -> do b <- bucket_match ls len ptr case b of Nothing -> add_it ls Just v -> {- _trace ("re-use: "++show v) $ -} return v -- | Create a 'FastString' from an existing 'ForeignPtr'; the difference -- between this and 'mkFastStringBytes' is that we don't have to copy -- the bytes if the string is new to the table. mkFastStringForeignPtr :: Ptr Word8 -> ForeignPtr Word8 -> Int -> IO FastString mkFastStringForeignPtr ptr fp len = do ft@(FastStringTable uid _) <- readIORef string_table -- _trace ("hashed: "++show (I# h)) $ let h = hashStr ptr len add_it ls = do fs <- mkNewFastString uid ptr fp len updTbl string_table ft h (fs:ls) {- _trace ("new: " ++ show f_str) $ -} return fs -- lookup_result <- lookupTbl ft h case lookup_result of [] -> add_it [] ls -> do b <- bucket_match ls len ptr case b of Nothing -> add_it ls Just v -> {- _trace ("re-use: "++show v) $ -} return v -- | Create a 'FastString' from an existing 'ForeignPtr'; the difference -- between this and 'mkFastStringBytes' is that we don't have to copy -- the bytes if the string is new to the table. mkFastStringByteString :: ByteString -> IO FastString mkFastStringByteString bs = BS.unsafeUseAsCStringLen bs $ \(ptr, len) -> do ft@(FastStringTable uid _) <- readIORef string_table -- _trace ("hashed: "++show (I# h)) $ let ptr' = castPtr ptr h = hashStr ptr' len add_it ls = do fs <- mkNewFastStringByteString uid ptr' len bs updTbl string_table ft h (fs:ls) {- _trace ("new: " ++ show f_str) $ -} return fs -- lookup_result <- lookupTbl ft h case lookup_result of [] -> add_it [] ls -> do b <- bucket_match ls len ptr' case b of Nothing -> add_it ls Just v -> {- _trace ("re-use: "++show v) $ -} return v -- | Creates a UTF-8 encoded 'FastString' from a 'String' mkFastString :: String -> FastString mkFastString str = inlinePerformIO $ do let l = utf8EncodedLength str buf <- mallocForeignPtrBytes l withForeignPtr buf $ \ptr -> do utf8EncodeString ptr str mkFastStringForeignPtr ptr buf l -- | Creates a 'FastString' from a UTF-8 encoded @[Word8]@ mkFastStringByteList :: [Word8] -> FastString mkFastStringByteList str = inlinePerformIO $ do let l = Prelude.length str buf <- mallocForeignPtrBytes l withForeignPtr buf $ \ptr -> do pokeArray (castPtr ptr) str mkFastStringForeignPtr ptr buf l -- | Creates a Z-encoded 'FastString' from a 'String' mkZFastString :: String -> FastZString mkZFastString = mkFastZStringString bucket_match :: [FastString] -> Int -> Ptr Word8 -> IO (Maybe FastString) bucket_match [] _ _ = return Nothing bucket_match (v@(FastString _ _ bs _):ls) len ptr | len == BS.length bs = do b <- BS.unsafeUseAsCString bs $ \buf -> cmpStringPrefix ptr (castPtr buf) len if b then return (Just v) else bucket_match ls len ptr | otherwise = bucket_match ls len ptr mkNewFastString :: Int -> Ptr Word8 -> ForeignPtr Word8 -> Int -> IO FastString mkNewFastString uid ptr fp len = do ref <- newIORef Nothing n_chars <- countUTF8Chars ptr len return (FastString uid n_chars (BS.fromForeignPtr fp 0 len) ref) mkNewFastStringByteString :: Int -> Ptr Word8 -> Int -> ByteString -> IO FastString mkNewFastStringByteString uid ptr len bs = do ref <- newIORef Nothing n_chars <- countUTF8Chars ptr len return (FastString uid n_chars bs ref) copyNewFastString :: Int -> Ptr Word8 -> Int -> IO FastString copyNewFastString uid ptr len = do fp <- copyBytesToForeignPtr ptr len ref <- newIORef Nothing n_chars <- countUTF8Chars ptr len return (FastString uid n_chars (BS.fromForeignPtr fp 0 len) ref) copyBytesToForeignPtr :: Ptr Word8 -> Int -> IO (ForeignPtr Word8) copyBytesToForeignPtr ptr len = do fp <- mallocForeignPtrBytes len withForeignPtr fp $ \ptr' -> copyBytes ptr' ptr len return fp cmpStringPrefix :: Ptr Word8 -> Ptr Word8 -> Int -> IO Bool cmpStringPrefix ptr1 ptr2 len = do r <- memcmp ptr1 ptr2 len return (r == 0) hashStr :: Ptr Word8 -> Int -> Int -- use the Addr to produce a hash value between 0 & m (inclusive) hashStr (Ptr a#) (I# len#) = loop 0# 0# where loop h n | n GHC.Exts.==# len# = I# h | otherwise = loop h2 (n GHC.Exts.+# 1#) where !c = ord# (indexCharOffAddr# a# n) !h2 = (c GHC.Exts.+# (h GHC.Exts.*# 128#)) `remInt#` hASH_TBL_SIZE# -- ----------------------------------------------------------------------------- -- Operations -- | Returns the length of the 'FastString' in characters lengthFS :: FastString -> Int lengthFS f = n_chars f -- | Returns @True@ if this 'FastString' is not Z-encoded but already has -- a Z-encoding cached (used in producing stats). hasZEncoding :: FastString -> Bool hasZEncoding (FastString _ _ _ ref) = inlinePerformIO $ do m <- readIORef ref return (isJust m) -- | Returns @True@ if the 'FastString' is empty nullFS :: FastString -> Bool nullFS f = BS.null (fs_bs f) -- | Unpacks and decodes the FastString unpackFS :: FastString -> String unpackFS (FastString _ _ bs _) = inlinePerformIO $ BS.unsafeUseAsCStringLen bs $ \(ptr, len) -> utf8DecodeString (castPtr ptr) len -- | Gives the UTF-8 encoded bytes corresponding to a 'FastString' bytesFS :: FastString -> [Word8] bytesFS fs = BS.unpack $ fastStringToByteString fs -- | Returns a Z-encoded version of a 'FastString'. This might be the -- original, if it was already Z-encoded. The first time this -- function is applied to a particular 'FastString', the results are -- memoized. -- zEncodeFS :: FastString -> FastZString zEncodeFS fs@(FastString _ _ _ ref) = inlinePerformIO $ do m <- readIORef ref case m of Just zfs -> return zfs Nothing -> do let zfs = mkZFastString (zEncodeString (unpackFS fs)) writeIORef ref (Just zfs) return zfs appendFS :: FastString -> FastString -> FastString appendFS fs1 fs2 = inlinePerformIO $ mkFastStringByteString $ BS.append (fastStringToByteString fs1) (fastStringToByteString fs2) concatFS :: [FastString] -> FastString concatFS ls = mkFastString (Prelude.concat (map unpackFS ls)) -- ToDo: do better headFS :: FastString -> Char headFS (FastString _ 0 _ _) = panic "headFS: Empty FastString" headFS (FastString _ _ bs _) = inlinePerformIO $ BS.unsafeUseAsCString bs $ \ptr -> return (fst (utf8DecodeChar (castPtr ptr))) tailFS :: FastString -> FastString tailFS (FastString _ 0 _ _) = panic "tailFS: Empty FastString" tailFS (FastString _ _ bs _) = inlinePerformIO $ BS.unsafeUseAsCString bs $ \ptr -> do let (_, ptr') = utf8DecodeChar (castPtr ptr) n = ptr' `minusPtr` ptr mkFastStringByteString $ BS.drop n bs consFS :: Char -> FastString -> FastString consFS c fs = mkFastString (c : unpackFS fs) uniqueOfFS :: FastString -> FastInt uniqueOfFS (FastString u _ _ _) = iUnbox u nilFS :: FastString nilFS = mkFastString "" -- ----------------------------------------------------------------------------- -- Stats getFastStringTable :: IO [[FastString]] getFastStringTable = do tbl <- readIORef string_table buckets <- mapM (lookupTbl tbl) [0 .. hASH_TBL_SIZE] return buckets -- ----------------------------------------------------------------------------- -- Outputting 'FastString's -- |Outputs a 'FastString' with /no decoding at all/, that is, you -- get the actual bytes in the 'FastString' written to the 'Handle'. hPutFS :: Handle -> FastString -> IO () hPutFS handle fs = BS.hPut handle $ fastStringToByteString fs -- ToDo: we'll probably want an hPutFSLocal, or something, to output -- in the current locale's encoding (for error messages and suchlike). -- ----------------------------------------------------------------------------- -- LitStrings, here for convenience only. -- hmm, not unboxed (or rather FastPtr), interesting --a.k.a. Ptr CChar, Ptr Word8, Ptr (), hmph. We don't --really care about C types in naming, where we can help it. type LitString = Ptr Word8 --Why do we recalculate length every time it's requested? --If it's commonly needed, we should perhaps have --data LitString = LitString {-#UNPACK#-}!(FastPtr Word8) {-#UNPACK#-}!FastInt #if defined(__GLASGOW_HASKELL__) mkLitString# :: Addr# -> LitString mkLitString# a# = Ptr a# #endif --can/should we use FastTypes here? --Is this likely to be memory-preserving if only used on constant strings? --should we inline it? If lucky, that would make a CAF that wouldn't --be computationally repeated... although admittedly we're not --really intending to use mkLitString when __GLASGOW_HASKELL__... --(I wonder, is unicode / multi-byte characters allowed in LitStrings -- at all?) {-# INLINE mkLitString #-} mkLitString :: String -> LitString mkLitString s = unsafePerformIO (do p <- mallocBytes (length s + 1) let loop :: Int -> String -> IO () loop !n [] = pokeByteOff p n (0 :: Word8) loop n (c:cs) = do pokeByteOff p n (fromIntegral (ord c) :: Word8) loop (1+n) cs loop 0 s return p ) unpackLitString :: LitString -> String unpackLitString p_ = case pUnbox p_ of p -> unpack (_ILIT(0)) where unpack n = case indexWord8OffFastPtrAsFastChar p n of ch -> if ch `eqFastChar` _CLIT('\0') then [] else cBox ch : unpack (n +# _ILIT(1)) lengthLS :: LitString -> Int lengthLS = ptrStrLength -- for now, use a simple String representation --no, let's not do that right now - it's work in other places #if 0 type LitString = String mkLitString :: String -> LitString mkLitString = id unpackLitString :: LitString -> String unpackLitString = id lengthLS :: LitString -> Int lengthLS = length #endif -- ----------------------------------------------------------------------------- -- under the carpet foreign import ccall unsafe "ghc_strlen" ptrStrLength :: Ptr Word8 -> Int {-# NOINLINE sLit #-} sLit :: String -> LitString sLit x = mkLitString x {-# NOINLINE fsLit #-} fsLit :: String -> FastString fsLit x = mkFastString x {-# RULES "slit" forall x . sLit (unpackCString# x) = mkLitString# x #-} {-# RULES "fslit" forall x . fsLit (unpackCString# x) = mkFastString# x #-} \end{code}