% % (c) The AQUA Project, Glasgow University, 1993-1998 % \section[CoreMonad]{The core pipeline monad} \begin{code} {-# LANGUAGE UndecidableInstances #-} module CoreMonad ( -- * Configuration of the core-to-core passes CoreToDo(..), SimplifierMode(..), FloatOutSwitches(..), getCoreToDo, dumpSimplPhase, -- * Counting SimplCount, doSimplTick, doFreeSimplTick, simplCountN, pprSimplCount, plusSimplCount, zeroSimplCount, isZeroSimplCount, Tick(..), -- * The monad CoreM, runCoreM, -- ** Reading from the monad getHscEnv, getRuleBase, getModule, getDynFlags, getOrigNameCache, -- ** Writing to the monad addSimplCount, -- ** Lifting into the monad liftIO, liftIOWithCount, liftIO1, liftIO2, liftIO3, liftIO4, -- ** Dealing with annotations getAnnotations, getFirstAnnotations, -- ** Debug output showPass, endPass, endIteration, dumpIfSet, -- ** Screen output putMsg, putMsgS, errorMsg, errorMsgS, fatalErrorMsg, fatalErrorMsgS, debugTraceMsg, debugTraceMsgS, dumpIfSet_dyn, #ifdef GHCI -- * Getting 'Name's thNameToGhcName #endif ) where #ifdef GHCI import Name( Name ) #endif import CoreSyn import PprCore import CoreUtils import CoreLint ( lintCoreBindings ) import PrelNames ( iNTERACTIVE ) import HscTypes import Module ( Module ) import DynFlags import StaticFlags import Rules ( RuleBase ) import BasicTypes ( CompilerPhase(..) ) import Annotations import Id ( Id ) import IOEnv hiding ( liftIO, failM, failWithM ) import qualified IOEnv ( liftIO ) import TcEnv ( tcLookupGlobal ) import TcRnMonad ( TcM, initTc ) import Outputable import FastString import qualified ErrUtils as Err import Bag import Maybes import UniqSupply import UniqFM ( UniqFM, mapUFM, filterUFM ) import MonadUtils import Util ( split ) import Data.List ( intersperse ) import Data.Dynamic import Data.IORef import Data.Map (Map) import qualified Data.Map as Map import Data.Word import Control.Monad import Prelude hiding ( read ) #ifdef GHCI import {-# SOURCE #-} TcSplice ( lookupThName_maybe ) import qualified Language.Haskell.TH as TH #endif \end{code} %************************************************************************ %* * Debug output %* * %************************************************************************ These functions are not CoreM monad stuff, but they probably ought to be, and it makes a conveneint place. place for them. They print out stuff before and after core passes, and do Core Lint when necessary. \begin{code} showPass :: DynFlags -> CoreToDo -> IO () showPass dflags pass = Err.showPass dflags (showSDoc (ppr pass)) endPass :: DynFlags -> CoreToDo -> [CoreBind] -> [CoreRule] -> IO () endPass dflags pass = dumpAndLint dflags True pass empty (coreDumpFlag pass) -- Same as endPass but doesn't dump Core even with -dverbose-core2core endIteration :: DynFlags -> CoreToDo -> Int -> [CoreBind] -> [CoreRule] -> IO () endIteration dflags pass n = dumpAndLint dflags False pass (ptext (sLit "iteration=") <> int n) (Just Opt_D_dump_simpl_iterations) dumpIfSet :: DynFlags -> Bool -> CoreToDo -> SDoc -> SDoc -> IO () dumpIfSet dflags dump_me pass extra_info doc = Err.dumpIfSet dflags dump_me (showSDoc (ppr pass <+> extra_info)) doc dumpAndLint :: DynFlags -> Bool -> CoreToDo -> SDoc -> Maybe DynFlag -> [CoreBind] -> [CoreRule] -> IO () -- The "show_all" parameter says to print dump if -dverbose-core2core is on dumpAndLint dflags show_all pass extra_info mb_dump_flag binds rules = do { -- Report result size if required -- This has the side effect of forcing the intermediate to be evaluated ; Err.debugTraceMsg dflags 2 $ (text " Result size =" <+> int (coreBindsSize binds)) -- Report verbosely, if required ; let pass_name = showSDoc (ppr pass <+> extra_info) dump_doc = pprCoreBindings binds $$ ppUnless (null rules) pp_rules ; case mb_dump_flag of Nothing -> return () Just dump_flag -> Err.dumpIfSet_dyn_or dflags dump_flags pass_name dump_doc where dump_flags | show_all = [dump_flag, Opt_D_verbose_core2core] | otherwise = [dump_flag] -- Type check ; when (dopt Opt_DoCoreLinting dflags) $ do { let (warns, errs) = lintCoreBindings binds ; Err.showPass dflags ("Core Linted result of " ++ pass_name) ; displayLintResults dflags pass warns errs binds } } where pp_rules = vcat [ blankLine , ptext (sLit "------ Local rules for imported ids --------") , pprRules rules ] displayLintResults :: DynFlags -> CoreToDo -> Bag Err.Message -> Bag Err.Message -> [CoreBind] -> IO () displayLintResults dflags pass warns errs binds | not (isEmptyBag errs) = do { printDump dflags (vcat [ banner "errors", Err.pprMessageBag errs , ptext (sLit "*** Offending Program ***") , pprCoreBindings binds , ptext (sLit "*** End of Offense ***") ]) ; Err.ghcExit dflags 1 } | not (isEmptyBag warns) , not (case pass of { CoreDesugar -> True; _ -> False }) -- Suppress warnings after desugaring pass because some -- are legitimate. Notably, the desugarer generates instance -- methods with INLINE pragmas that form a mutually recursive -- group. Only afer a round of simplification are they unravelled. , not opt_NoDebugOutput , showLintWarnings pass = printDump dflags (banner "warnings" $$ Err.pprMessageBag warns) | otherwise = return () where banner string = ptext (sLit "*** Core Lint") <+> text string <+> ptext (sLit ": in result of") <+> ppr pass <+> ptext (sLit "***") showLintWarnings :: CoreToDo -> Bool -- Disable Lint warnings on the first simplifier pass, because -- there may be some INLINE knots still tied, which is tiresomely noisy showLintWarnings (CoreDoSimplify _ (SimplMode { sm_phase = InitialPhase })) = False showLintWarnings _ = True \end{code} %************************************************************************ %* * The CoreToDo type and related types Abstraction of core-to-core passes to run. %* * %************************************************************************ \begin{code} data CoreToDo -- These are diff core-to-core passes, -- which may be invoked in any order, -- as many times as you like. = CoreDoSimplify -- The core-to-core simplifier. Int -- Max iterations SimplifierMode | CoreDoFloatInwards | CoreDoFloatOutwards FloatOutSwitches | CoreLiberateCase | CoreDoPrintCore | CoreDoStaticArgs | CoreDoStrictness | CoreDoWorkerWrapper | CoreDoSpecialising | CoreDoSpecConstr | CoreDoGlomBinds | CoreCSE | CoreDoRuleCheck CompilerPhase String -- Check for non-application of rules -- matching this string | CoreDoVectorisation | CoreDoNothing -- Useful when building up | CoreDoPasses [CoreToDo] -- lists of these things | CoreDesugar -- Not strictly a core-to-core pass, but produces -- Core output, and hence useful to pass to endPass | CoreTidy | CorePrep coreDumpFlag :: CoreToDo -> Maybe DynFlag coreDumpFlag (CoreDoSimplify {}) = Just Opt_D_dump_simpl_phases coreDumpFlag CoreDoFloatInwards = Just Opt_D_verbose_core2core coreDumpFlag (CoreDoFloatOutwards {}) = Just Opt_D_verbose_core2core coreDumpFlag CoreLiberateCase = Just Opt_D_verbose_core2core coreDumpFlag CoreDoStaticArgs = Just Opt_D_verbose_core2core coreDumpFlag CoreDoStrictness = Just Opt_D_dump_stranal coreDumpFlag CoreDoWorkerWrapper = Just Opt_D_dump_worker_wrapper coreDumpFlag CoreDoSpecialising = Just Opt_D_dump_spec coreDumpFlag CoreDoSpecConstr = Just Opt_D_dump_spec coreDumpFlag CoreCSE = Just Opt_D_dump_cse coreDumpFlag CoreDoVectorisation = Just Opt_D_dump_vect coreDumpFlag CoreDesugar = Just Opt_D_dump_ds coreDumpFlag CoreTidy = Just Opt_D_dump_simpl coreDumpFlag CorePrep = Just Opt_D_dump_prep coreDumpFlag CoreDoPrintCore = Nothing coreDumpFlag (CoreDoRuleCheck {}) = Nothing coreDumpFlag CoreDoNothing = Nothing coreDumpFlag CoreDoGlomBinds = Nothing coreDumpFlag (CoreDoPasses {}) = Nothing instance Outputable CoreToDo where ppr (CoreDoSimplify n md) = ptext (sLit "Simplifier") <+> ppr md <+> ptext (sLit "max-iterations=") <> int n ppr CoreDoFloatInwards = ptext (sLit "Float inwards") ppr (CoreDoFloatOutwards f) = ptext (sLit "Float out") <> parens (ppr f) ppr CoreLiberateCase = ptext (sLit "Liberate case") ppr CoreDoStaticArgs = ptext (sLit "Static argument") ppr CoreDoStrictness = ptext (sLit "Demand analysis") ppr CoreDoWorkerWrapper = ptext (sLit "Worker Wrapper binds") ppr CoreDoSpecialising = ptext (sLit "Specialise") ppr CoreDoSpecConstr = ptext (sLit "SpecConstr") ppr CoreCSE = ptext (sLit "Common sub-expression") ppr CoreDoVectorisation = ptext (sLit "Vectorisation") ppr CoreDesugar = ptext (sLit "Desugar") ppr CoreTidy = ptext (sLit "Tidy Core") ppr CorePrep = ptext (sLit "CorePrep") ppr CoreDoPrintCore = ptext (sLit "Print core") ppr (CoreDoRuleCheck {}) = ptext (sLit "Rule check") ppr CoreDoGlomBinds = ptext (sLit "Glom binds") ppr CoreDoNothing = ptext (sLit "CoreDoNothing") ppr (CoreDoPasses {}) = ptext (sLit "CoreDoPasses") \end{code} \begin{code} data SimplifierMode -- See comments in SimplMonad = SimplMode { sm_names :: [String] -- Name(s) of the phase , sm_phase :: CompilerPhase , sm_rules :: Bool -- Whether RULES are enabled , sm_inline :: Bool -- Whether inlining is enabled , sm_case_case :: Bool -- Whether case-of-case is enabled , sm_eta_expand :: Bool -- Whether eta-expansion is enabled } instance Outputable SimplifierMode where ppr (SimplMode { sm_phase = p, sm_names = ss , sm_rules = r, sm_inline = i , sm_eta_expand = eta, sm_case_case = cc }) = ptext (sLit "SimplMode") <+> braces ( sep [ ptext (sLit "Phase =") <+> ppr p <+> brackets (text (concat $ intersperse "," ss)) <> comma , pp_flag i (sLit "inline") <> comma , pp_flag r (sLit "rules") <> comma , pp_flag eta (sLit "eta-expand") <> comma , pp_flag cc (sLit "case-of-case") ]) where pp_flag f s = ppUnless f (ptext (sLit "no")) <+> ptext s \end{code} \begin{code} data FloatOutSwitches = FloatOutSwitches { floatOutLambdas :: Maybe Int, -- ^ Just n <=> float lambdas to top level, if -- doing so will abstract over n or fewer -- value variables -- Nothing <=> float all lambdas to top level, -- regardless of how many free variables -- Just 0 is the vanilla case: float a lambda -- iff it has no free vars floatOutConstants :: Bool, -- ^ True <=> float constants to top level, -- even if they do not escape a lambda floatOutPartialApplications :: Bool -- ^ True <=> float out partial applications -- based on arity information. } instance Outputable FloatOutSwitches where ppr = pprFloatOutSwitches pprFloatOutSwitches :: FloatOutSwitches -> SDoc pprFloatOutSwitches sw = ptext (sLit "FOS") <+> (braces $ sep $ punctuate comma $ [ ptext (sLit "Lam =") <+> ppr (floatOutLambdas sw) , ptext (sLit "Consts =") <+> ppr (floatOutConstants sw) , ptext (sLit "PAPs =") <+> ppr (floatOutPartialApplications sw) ]) \end{code} %************************************************************************ %* * Generating the main optimisation pipeline %* * %************************************************************************ \begin{code} getCoreToDo :: DynFlags -> [CoreToDo] getCoreToDo dflags = core_todo where opt_level = optLevel dflags phases = simplPhases dflags max_iter = maxSimplIterations dflags rule_check = ruleCheck dflags strictness = dopt Opt_Strictness dflags full_laziness = dopt Opt_FullLaziness dflags do_specialise = dopt Opt_Specialise dflags do_float_in = dopt Opt_FloatIn dflags cse = dopt Opt_CSE dflags spec_constr = dopt Opt_SpecConstr dflags liberate_case = dopt Opt_LiberateCase dflags static_args = dopt Opt_StaticArgumentTransformation dflags rules_on = dopt Opt_EnableRewriteRules dflags eta_expand_on = dopt Opt_DoLambdaEtaExpansion dflags maybe_rule_check phase = runMaybe rule_check (CoreDoRuleCheck phase) maybe_strictness_before phase = runWhen (phase `elem` strictnessBefore dflags) CoreDoStrictness base_mode = SimplMode { sm_phase = panic "base_mode" , sm_names = [] , sm_rules = rules_on , sm_eta_expand = eta_expand_on , sm_inline = True , sm_case_case = True } simpl_phase phase names iter = CoreDoPasses $ [ maybe_strictness_before phase , CoreDoSimplify iter (base_mode { sm_phase = Phase phase , sm_names = names }) , maybe_rule_check (Phase phase) ] -- Vectorisation can introduce a fair few common sub expressions involving -- DPH primitives. For example, see the Reverse test from dph-examples. -- We need to eliminate these common sub expressions before their definitions -- are inlined in phase 2. The CSE introduces lots of v1 = v2 bindings, -- so we also run simpl_gently to inline them. ++ (if dopt Opt_Vectorise dflags && phase == 3 then [CoreCSE, simpl_gently] else []) vectorisation = runWhen (dopt Opt_Vectorise dflags) $ CoreDoPasses [ simpl_gently, CoreDoVectorisation ] -- By default, we have 2 phases before phase 0. -- Want to run with inline phase 2 after the specialiser to give -- maximum chance for fusion to work before we inline build/augment -- in phase 1. This made a difference in 'ansi' where an -- overloaded function wasn't inlined till too late. -- Need phase 1 so that build/augment get -- inlined. I found that spectral/hartel/genfft lost some useful -- strictness in the function sumcode' if augment is not inlined -- before strictness analysis runs simpl_phases = CoreDoPasses [ simpl_phase phase ["main"] max_iter | phase <- [phases, phases-1 .. 1] ] -- initial simplify: mk specialiser happy: minimum effort please simpl_gently = CoreDoSimplify max_iter (base_mode { sm_phase = InitialPhase , sm_names = ["Gentle"] , sm_rules = rules_on -- Note [RULEs enabled in SimplGently] , sm_inline = False , sm_case_case = False }) -- Don't do case-of-case transformations. -- This makes full laziness work better core_todo = if opt_level == 0 then [vectorisation, simpl_phase 0 ["final"] max_iter] else {- opt_level >= 1 -} [ -- We want to do the static argument transform before full laziness as it -- may expose extra opportunities to float things outwards. However, to fix -- up the output of the transformation we need at do at least one simplify -- after this before anything else runWhen static_args (CoreDoPasses [ simpl_gently, CoreDoStaticArgs ]), -- We run vectorisation here for now, but we might also try to run -- it later vectorisation, -- initial simplify: mk specialiser happy: minimum effort please simpl_gently, -- Specialisation is best done before full laziness -- so that overloaded functions have all their dictionary lambdas manifest runWhen do_specialise CoreDoSpecialising, runWhen full_laziness $ CoreDoFloatOutwards FloatOutSwitches { floatOutLambdas = Just 0, floatOutConstants = True, floatOutPartialApplications = False }, -- Was: gentleFloatOutSwitches -- -- I have no idea why, but not floating constants to -- top level is very bad in some cases. -- -- Notably: p_ident in spectral/rewrite -- Changing from "gentle" to "constantsOnly" -- improved rewrite's allocation by 19%, and -- made 0.0% difference to any other nofib -- benchmark -- -- Not doing floatOutPartialApplications yet, we'll do -- that later on when we've had a chance to get more -- accurate arity information. In fact it makes no -- difference at all to performance if we do it here, -- but maybe we save some unnecessary to-and-fro in -- the simplifier. runWhen do_float_in CoreDoFloatInwards, simpl_phases, -- Phase 0: allow all Ids to be inlined now -- This gets foldr inlined before strictness analysis -- At least 3 iterations because otherwise we land up with -- huge dead expressions because of an infelicity in the -- simpifier. -- let k = BIG in foldr k z xs -- ==> let k = BIG in letrec go = \xs -> ...(k x).... in go xs -- ==> let k = BIG in letrec go = \xs -> ...(BIG x).... in go xs -- Don't stop now! simpl_phase 0 ["main"] (max max_iter 3), runWhen strictness (CoreDoPasses [ CoreDoStrictness, CoreDoWorkerWrapper, CoreDoGlomBinds, simpl_phase 0 ["post-worker-wrapper"] max_iter ]), runWhen full_laziness $ CoreDoFloatOutwards FloatOutSwitches { floatOutLambdas = floatLamArgs dflags, floatOutConstants = True, floatOutPartialApplications = True }, -- nofib/spectral/hartel/wang doubles in speed if you -- do full laziness late in the day. It only happens -- after fusion and other stuff, so the early pass doesn't -- catch it. For the record, the redex is -- f_el22 (f_el21 r_midblock) runWhen cse CoreCSE, -- We want CSE to follow the final full-laziness pass, because it may -- succeed in commoning up things floated out by full laziness. -- CSE used to rely on the no-shadowing invariant, but it doesn't any more runWhen do_float_in CoreDoFloatInwards, maybe_rule_check (Phase 0), -- Case-liberation for -O2. This should be after -- strictness analysis and the simplification which follows it. runWhen liberate_case (CoreDoPasses [ CoreLiberateCase, simpl_phase 0 ["post-liberate-case"] max_iter ]), -- Run the simplifier after LiberateCase to vastly -- reduce the possiblility of shadowing -- Reason: see Note [Shadowing] in SpecConstr.lhs runWhen spec_constr CoreDoSpecConstr, maybe_rule_check (Phase 0), -- Final clean-up simplification: simpl_phase 0 ["final"] max_iter ] -- The core-to-core pass ordering is derived from the DynFlags: runWhen :: Bool -> CoreToDo -> CoreToDo runWhen True do_this = do_this runWhen False _ = CoreDoNothing runMaybe :: Maybe a -> (a -> CoreToDo) -> CoreToDo runMaybe (Just x) f = f x runMaybe Nothing _ = CoreDoNothing dumpSimplPhase :: DynFlags -> SimplifierMode -> Bool dumpSimplPhase dflags mode | Just spec_string <- shouldDumpSimplPhase dflags = match_spec spec_string | otherwise = dopt Opt_D_verbose_core2core dflags where match_spec :: String -> Bool match_spec spec_string = or $ map (and . map match . split ':') $ split ',' spec_string match :: String -> Bool match "" = True match s = case reads s of [(n,"")] -> phase_num n _ -> phase_name s phase_num :: Int -> Bool phase_num n = case sm_phase mode of Phase k -> n == k _ -> False phase_name :: String -> Bool phase_name s = s `elem` sm_names mode \end{code} Note [RULEs enabled in SimplGently] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RULES are enabled when doing "gentle" simplification. Two reasons: * We really want the class-op cancellation to happen: op (df d1 d2) --> $cop3 d1 d2 because this breaks the mutual recursion between 'op' and 'df' * I wanted the RULE lift String ===> ... to work in Template Haskell when simplifying splices, so we get simpler code for literal strings But watch out: list fusion can prevent floating. So use phase control to switch off those rules until after floating. %************************************************************************ %* * Counting and logging %* * %************************************************************************ \begin{code} verboseSimplStats :: Bool verboseSimplStats = opt_PprStyle_Debug -- For now, anyway zeroSimplCount :: DynFlags -> SimplCount isZeroSimplCount :: SimplCount -> Bool pprSimplCount :: SimplCount -> SDoc doSimplTick, doFreeSimplTick :: Tick -> SimplCount -> SimplCount plusSimplCount :: SimplCount -> SimplCount -> SimplCount \end{code} \begin{code} data SimplCount = VerySimplCount !Int -- Used when don't want detailed stats | SimplCount { ticks :: !Int, -- Total ticks details :: !TickCounts, -- How many of each type n_log :: !Int, -- N log1 :: [Tick], -- Last N events; <= opt_HistorySize, -- most recent first log2 :: [Tick] -- Last opt_HistorySize events before that -- Having log1, log2 lets us accumulate the -- recent history reasonably efficiently } type TickCounts = Map Tick Int simplCountN :: SimplCount -> Int simplCountN (VerySimplCount n) = n simplCountN (SimplCount { ticks = n }) = n zeroSimplCount dflags -- This is where we decide whether to do -- the VerySimpl version or the full-stats version | dopt Opt_D_dump_simpl_stats dflags = SimplCount {ticks = 0, details = Map.empty, n_log = 0, log1 = [], log2 = []} | otherwise = VerySimplCount 0 isZeroSimplCount (VerySimplCount n) = n==0 isZeroSimplCount (SimplCount { ticks = n }) = n==0 doFreeSimplTick tick sc@SimplCount { details = dts } = sc { details = dts `addTick` tick } doFreeSimplTick _ sc = sc doSimplTick tick sc@SimplCount { ticks = tks, details = dts, n_log = nl, log1 = l1 } | nl >= opt_HistorySize = sc1 { n_log = 1, log1 = [tick], log2 = l1 } | otherwise = sc1 { n_log = nl+1, log1 = tick : l1 } where sc1 = sc { ticks = tks+1, details = dts `addTick` tick } doSimplTick _ (VerySimplCount n) = VerySimplCount (n+1) -- Don't use Map.unionWith because that's lazy, and we want to -- be pretty strict here! addTick :: TickCounts -> Tick -> TickCounts addTick fm tick = case Map.lookup tick fm of Nothing -> Map.insert tick 1 fm Just n -> n1 `seq` Map.insert tick n1 fm where n1 = n+1 plusSimplCount sc1@(SimplCount { ticks = tks1, details = dts1 }) sc2@(SimplCount { ticks = tks2, details = dts2 }) = log_base { ticks = tks1 + tks2, details = Map.unionWith (+) dts1 dts2 } where -- A hackish way of getting recent log info log_base | null (log1 sc2) = sc1 -- Nothing at all in sc2 | null (log2 sc2) = sc2 { log2 = log1 sc1 } | otherwise = sc2 plusSimplCount (VerySimplCount n) (VerySimplCount m) = VerySimplCount (n+m) plusSimplCount _ _ = panic "plusSimplCount" -- We use one or the other consistently pprSimplCount (VerySimplCount n) = ptext (sLit "Total ticks:") <+> int n pprSimplCount (SimplCount { ticks = tks, details = dts, log1 = l1, log2 = l2 }) = vcat [ptext (sLit "Total ticks: ") <+> int tks, blankLine, pprTickCounts (Map.toList dts), if verboseSimplStats then vcat [blankLine, ptext (sLit "Log (most recent first)"), nest 4 (vcat (map ppr l1) $$ vcat (map ppr l2))] else empty ] pprTickCounts :: [(Tick,Int)] -> SDoc pprTickCounts [] = empty pprTickCounts ((tick1,n1):ticks) = vcat [int tot_n <+> text (tickString tick1), pprTCDetails real_these, pprTickCounts others ] where tick1_tag = tickToTag tick1 (these, others) = span same_tick ticks real_these = (tick1,n1):these same_tick (tick2,_) = tickToTag tick2 == tick1_tag tot_n = sum [n | (_,n) <- real_these] pprTCDetails :: [(Tick, Int)] -> SDoc pprTCDetails ticks = nest 4 (vcat [int n <+> pprTickCts tick | (tick,n) <- ticks]) \end{code} \begin{code} data Tick = PreInlineUnconditionally Id | PostInlineUnconditionally Id | UnfoldingDone Id | RuleFired FastString -- Rule name | LetFloatFromLet | EtaExpansion Id -- LHS binder | EtaReduction Id -- Binder on outer lambda | BetaReduction Id -- Lambda binder | CaseOfCase Id -- Bndr on *inner* case | KnownBranch Id -- Case binder | CaseMerge Id -- Binder on outer case | AltMerge Id -- Case binder | CaseElim Id -- Case binder | CaseIdentity Id -- Case binder | FillInCaseDefault Id -- Case binder | BottomFound | SimplifierDone -- Ticked at each iteration of the simplifier instance Outputable Tick where ppr tick = text (tickString tick) <+> pprTickCts tick instance Eq Tick where a == b = case a `cmpTick` b of EQ -> True _ -> False instance Ord Tick where compare = cmpTick tickToTag :: Tick -> Int tickToTag (PreInlineUnconditionally _) = 0 tickToTag (PostInlineUnconditionally _) = 1 tickToTag (UnfoldingDone _) = 2 tickToTag (RuleFired _) = 3 tickToTag LetFloatFromLet = 4 tickToTag (EtaExpansion _) = 5 tickToTag (EtaReduction _) = 6 tickToTag (BetaReduction _) = 7 tickToTag (CaseOfCase _) = 8 tickToTag (KnownBranch _) = 9 tickToTag (CaseMerge _) = 10 tickToTag (CaseElim _) = 11 tickToTag (CaseIdentity _) = 12 tickToTag (FillInCaseDefault _) = 13 tickToTag BottomFound = 14 tickToTag SimplifierDone = 16 tickToTag (AltMerge _) = 17 tickString :: Tick -> String tickString (PreInlineUnconditionally _) = "PreInlineUnconditionally" tickString (PostInlineUnconditionally _)= "PostInlineUnconditionally" tickString (UnfoldingDone _) = "UnfoldingDone" tickString (RuleFired _) = "RuleFired" tickString LetFloatFromLet = "LetFloatFromLet" tickString (EtaExpansion _) = "EtaExpansion" tickString (EtaReduction _) = "EtaReduction" tickString (BetaReduction _) = "BetaReduction" tickString (CaseOfCase _) = "CaseOfCase" tickString (KnownBranch _) = "KnownBranch" tickString (CaseMerge _) = "CaseMerge" tickString (AltMerge _) = "AltMerge" tickString (CaseElim _) = "CaseElim" tickString (CaseIdentity _) = "CaseIdentity" tickString (FillInCaseDefault _) = "FillInCaseDefault" tickString BottomFound = "BottomFound" tickString SimplifierDone = "SimplifierDone" pprTickCts :: Tick -> SDoc pprTickCts (PreInlineUnconditionally v) = ppr v pprTickCts (PostInlineUnconditionally v)= ppr v pprTickCts (UnfoldingDone v) = ppr v pprTickCts (RuleFired v) = ppr v pprTickCts LetFloatFromLet = empty pprTickCts (EtaExpansion v) = ppr v pprTickCts (EtaReduction v) = ppr v pprTickCts (BetaReduction v) = ppr v pprTickCts (CaseOfCase v) = ppr v pprTickCts (KnownBranch v) = ppr v pprTickCts (CaseMerge v) = ppr v pprTickCts (AltMerge v) = ppr v pprTickCts (CaseElim v) = ppr v pprTickCts (CaseIdentity v) = ppr v pprTickCts (FillInCaseDefault v) = ppr v pprTickCts _ = empty cmpTick :: Tick -> Tick -> Ordering cmpTick a b = case (tickToTag a `compare` tickToTag b) of GT -> GT EQ -> cmpEqTick a b LT -> LT cmpEqTick :: Tick -> Tick -> Ordering cmpEqTick (PreInlineUnconditionally a) (PreInlineUnconditionally b) = a `compare` b cmpEqTick (PostInlineUnconditionally a) (PostInlineUnconditionally b) = a `compare` b cmpEqTick (UnfoldingDone a) (UnfoldingDone b) = a `compare` b cmpEqTick (RuleFired a) (RuleFired b) = a `compare` b cmpEqTick (EtaExpansion a) (EtaExpansion b) = a `compare` b cmpEqTick (EtaReduction a) (EtaReduction b) = a `compare` b cmpEqTick (BetaReduction a) (BetaReduction b) = a `compare` b cmpEqTick (CaseOfCase a) (CaseOfCase b) = a `compare` b cmpEqTick (KnownBranch a) (KnownBranch b) = a `compare` b cmpEqTick (CaseMerge a) (CaseMerge b) = a `compare` b cmpEqTick (AltMerge a) (AltMerge b) = a `compare` b cmpEqTick (CaseElim a) (CaseElim b) = a `compare` b cmpEqTick (CaseIdentity a) (CaseIdentity b) = a `compare` b cmpEqTick (FillInCaseDefault a) (FillInCaseDefault b) = a `compare` b cmpEqTick _ _ = EQ \end{code} %************************************************************************ %* * Monad and carried data structure definitions %* * %************************************************************************ \begin{code} newtype CoreState = CoreState { cs_uniq_supply :: UniqSupply } data CoreReader = CoreReader { cr_hsc_env :: HscEnv, cr_rule_base :: RuleBase, cr_module :: Module } data CoreWriter = CoreWriter { cw_simpl_count :: SimplCount } emptyWriter :: DynFlags -> CoreWriter emptyWriter dflags = CoreWriter { cw_simpl_count = zeroSimplCount dflags } plusWriter :: CoreWriter -> CoreWriter -> CoreWriter plusWriter w1 w2 = CoreWriter { cw_simpl_count = (cw_simpl_count w1) `plusSimplCount` (cw_simpl_count w2) } type CoreIOEnv = IOEnv CoreReader -- | The monad used by Core-to-Core passes to access common state, register simplification -- statistics and so on newtype CoreM a = CoreM { unCoreM :: CoreState -> CoreIOEnv (a, CoreState, CoreWriter) } instance Functor CoreM where fmap f ma = do a <- ma return (f a) instance Monad CoreM where return x = CoreM (\s -> nop s x) mx >>= f = CoreM $ \s -> do (x, s', w1) <- unCoreM mx s (y, s'', w2) <- unCoreM (f x) s' return (y, s'', w1 `plusWriter` w2) instance Applicative CoreM where pure = return (<*>) = ap -- For use if the user has imported Control.Monad.Error from MTL -- Requires UndecidableInstances instance MonadPlus IO => MonadPlus CoreM where mzero = CoreM (const mzero) m `mplus` n = CoreM (\rs -> unCoreM m rs `mplus` unCoreM n rs) instance MonadUnique CoreM where getUniqueSupplyM = do us <- getS cs_uniq_supply let (us1, us2) = splitUniqSupply us modifyS (\s -> s { cs_uniq_supply = us2 }) return us1 runCoreM :: HscEnv -> RuleBase -> UniqSupply -> Module -> CoreM a -> IO (a, SimplCount) runCoreM hsc_env rule_base us mod m = liftM extract $ runIOEnv reader $ unCoreM m state where reader = CoreReader { cr_hsc_env = hsc_env, cr_rule_base = rule_base, cr_module = mod } state = CoreState { cs_uniq_supply = us } extract :: (a, CoreState, CoreWriter) -> (a, SimplCount) extract (value, _, writer) = (value, cw_simpl_count writer) \end{code} %************************************************************************ %* * Core combinators, not exported %* * %************************************************************************ \begin{code} nop :: CoreState -> a -> CoreIOEnv (a, CoreState, CoreWriter) nop s x = do r <- getEnv return (x, s, emptyWriter $ (hsc_dflags . cr_hsc_env) r) read :: (CoreReader -> a) -> CoreM a read f = CoreM (\s -> getEnv >>= (\r -> nop s (f r))) getS :: (CoreState -> a) -> CoreM a getS f = CoreM (\s -> nop s (f s)) modifyS :: (CoreState -> CoreState) -> CoreM () modifyS f = CoreM (\s -> nop (f s) ()) write :: CoreWriter -> CoreM () write w = CoreM (\s -> return ((), s, w)) \end{code} \subsection{Lifting IO into the monad} \begin{code} -- | Lift an 'IOEnv' operation into 'CoreM' liftIOEnv :: CoreIOEnv a -> CoreM a liftIOEnv mx = CoreM (\s -> mx >>= (\x -> nop s x)) instance MonadIO CoreM where liftIO = liftIOEnv . IOEnv.liftIO -- | Lift an 'IO' operation into 'CoreM' while consuming its 'SimplCount' liftIOWithCount :: IO (SimplCount, a) -> CoreM a liftIOWithCount what = liftIO what >>= (\(count, x) -> addSimplCount count >> return x) \end{code} %************************************************************************ %* * Reader, writer and state accessors %* * %************************************************************************ \begin{code} getHscEnv :: CoreM HscEnv getHscEnv = read cr_hsc_env getRuleBase :: CoreM RuleBase getRuleBase = read cr_rule_base getModule :: CoreM Module getModule = read cr_module addSimplCount :: SimplCount -> CoreM () addSimplCount count = write (CoreWriter { cw_simpl_count = count }) -- Convenience accessors for useful fields of HscEnv getDynFlags :: CoreM DynFlags getDynFlags = fmap hsc_dflags getHscEnv -- | The original name cache is the current mapping from 'Module' and -- 'OccName' to a compiler-wide unique 'Name' getOrigNameCache :: CoreM OrigNameCache getOrigNameCache = do nameCacheRef <- fmap hsc_NC getHscEnv liftIO $ fmap nsNames $ readIORef nameCacheRef \end{code} %************************************************************************ %* * Dealing with annotations %* * %************************************************************************ \begin{code} -- | Get all annotations of a given type. This happens lazily, that is -- no deserialization will take place until the [a] is actually demanded and -- the [a] can also be empty (the UniqFM is not filtered). -- -- This should be done once at the start of a Core-to-Core pass that uses -- annotations. -- -- See Note [Annotations] getAnnotations :: Typeable a => ([Word8] -> a) -> ModGuts -> CoreM (UniqFM [a]) getAnnotations deserialize guts = do hsc_env <- getHscEnv ann_env <- liftIO $ prepareAnnotations hsc_env (Just guts) return (deserializeAnns deserialize ann_env) -- | Get at most one annotation of a given type per Unique. getFirstAnnotations :: Typeable a => ([Word8] -> a) -> ModGuts -> CoreM (UniqFM a) getFirstAnnotations deserialize guts = liftM (mapUFM head . filterUFM (not . null)) $ getAnnotations deserialize guts \end{code} Note [Annotations] ~~~~~~~~~~~~~~~~~~ A Core-to-Core pass that wants to make use of annotations calls getAnnotations or getFirstAnnotations at the beginning to obtain a UniqFM with annotations of a specific type. This produces all annotations from interface files read so far. However, annotations from interface files read during the pass will not be visible until getAnnotations is called again. This is similar to how rules work and probably isn't too bad. The current implementation could be optimised a bit: when looking up annotations for a thing from the HomePackageTable, we could search directly in the module where the thing is defined rather than building one UniqFM which contains all annotations we know of. This would work because annotations can only be given to things defined in the same module. However, since we would only want to deserialise every annotation once, we would have to build a cache for every module in the HTP. In the end, it's probably not worth it as long as we aren't using annotations heavily. %************************************************************************ %* * Direct screen output %* * %************************************************************************ \begin{code} msg :: (DynFlags -> SDoc -> IO ()) -> SDoc -> CoreM () msg how doc = do dflags <- getDynFlags liftIO $ how dflags doc -- | Output a String message to the screen putMsgS :: String -> CoreM () putMsgS = putMsg . text -- | Output a message to the screen putMsg :: SDoc -> CoreM () putMsg = msg Err.putMsg -- | Output a string error to the screen errorMsgS :: String -> CoreM () errorMsgS = errorMsg . text -- | Output an error to the screen errorMsg :: SDoc -> CoreM () errorMsg = msg Err.errorMsg -- | Output a fatal string error to the screen. Note this does not by itself cause the compiler to die fatalErrorMsgS :: String -> CoreM () fatalErrorMsgS = fatalErrorMsg . text -- | Output a fatal error to the screen. Note this does not by itself cause the compiler to die fatalErrorMsg :: SDoc -> CoreM () fatalErrorMsg = msg Err.fatalErrorMsg -- | Output a string debugging message at verbosity level of @-v@ or higher debugTraceMsgS :: String -> CoreM () debugTraceMsgS = debugTraceMsg . text -- | Outputs a debugging message at verbosity level of @-v@ or higher debugTraceMsg :: SDoc -> CoreM () debugTraceMsg = msg (flip Err.debugTraceMsg 3) -- | Show some labelled 'SDoc' if a particular flag is set or at a verbosity level of @-v -ddump-most@ or higher dumpIfSet_dyn :: DynFlag -> String -> SDoc -> CoreM () dumpIfSet_dyn flag str = msg (\dflags -> Err.dumpIfSet_dyn dflags flag str) \end{code} \begin{code} initTcForLookup :: HscEnv -> TcM a -> IO a initTcForLookup hsc_env = liftM (expectJust "initTcInteractive" . snd) . initTc hsc_env HsSrcFile False iNTERACTIVE \end{code} %************************************************************************ %* * Finding TyThings %* * %************************************************************************ \begin{code} instance MonadThings CoreM where lookupThing name = do hsc_env <- getHscEnv liftIO $ initTcForLookup hsc_env (tcLookupGlobal name) \end{code} %************************************************************************ %* * Template Haskell interoperability %* * %************************************************************************ \begin{code} #ifdef GHCI -- | Attempt to convert a Template Haskell name to one that GHC can -- understand. Original TH names such as those you get when you use -- the @'foo@ syntax will be translated to their equivalent GHC name -- exactly. Qualified or unqualifed TH names will be dynamically bound -- to names in the module being compiled, if possible. Exact TH names -- will be bound to the name they represent, exactly. thNameToGhcName :: TH.Name -> CoreM (Maybe Name) thNameToGhcName th_name = do hsc_env <- getHscEnv liftIO $ initTcForLookup hsc_env (lookupThName_maybe th_name) #endif \end{code}