----------------------------------------------------------------------------- -- -- Monad for Stg to C-- code generation -- -- (c) The University of Glasgow 2004-2006 -- ----------------------------------------------------------------------------- module StgCmmMonad ( FCode, -- type initC, thenC, thenFC, listCs, listFCs, mapCs, mapFCs, returnFC, fixC, nopC, whenC, newUnique, newUniqSupply, emit, emitData, emitProc, emitProcWithConvention, emitSimpleProc, getCmm, cgStmtsToBlocks, getCodeR, getCode, getHeapUsage, forkClosureBody, forkStatics, forkAlts, forkProc, codeOnly, ConTagZ, Sequel(..), withSequel, getSequel, setSRTLabel, getSRTLabel, setTickyCtrLabel, getTickyCtrLabel, withUpdFrameOff, getUpdFrameOff, initUpdFrameOff, HeapUsage(..), VirtualHpOffset, initHpUsage, getHpUsage, setHpUsage, heapHWM, setVirtHp, getVirtHp, setRealHp, getModuleName, -- ideally we wouldn't export these, but some other modules access internal state getState, setState, getInfoDown, getDynFlags, getThisPackage, -- more localised access to monad state CgIdInfo(..), CgLoc(..), getBinds, setBinds, getStaticBinds, -- out of general friendliness, we also export ... CgInfoDownwards(..), CgState(..) -- non-abstract ) where #include "HsVersions.h" import StgCmmClosure import DynFlags import MkZipCfgCmm import ZipCfgCmmRep (UpdFrameOffset) import BlockId import Cmm import CLabel import TyCon ( PrimRep ) import SMRep import Module import Id import VarEnv import OrdList import Unique import Util() import UniqSupply import FastString(sLit) import Outputable import Control.Monad import Data.List import Prelude hiding( sequence ) import qualified Prelude( sequence ) infixr 9 `thenC` -- Right-associative! infixr 9 `thenFC` -------------------------------------------------------- -- The FCode monad and its types -------------------------------------------------------- newtype FCode a = FCode (CgInfoDownwards -> CgState -> (a, CgState)) instance Monad FCode where (>>=) = thenFC return = returnFC {-# INLINE thenC #-} {-# INLINE thenFC #-} {-# INLINE returnFC #-} initC :: DynFlags -> Module -> FCode a -> IO a initC dflags mod (FCode code) = do { uniqs <- mkSplitUniqSupply 'c' ; case code (initCgInfoDown dflags mod) (initCgState uniqs) of (res, _) -> return res } returnFC :: a -> FCode a returnFC val = FCode (\_info_down state -> (val, state)) thenC :: FCode () -> FCode a -> FCode a thenC (FCode m) (FCode k) = FCode (\info_down state -> let (_,new_state) = m info_down state in k info_down new_state) nopC :: FCode () nopC = return () whenC :: Bool -> FCode () -> FCode () whenC True code = code whenC False _code = nopC listCs :: [FCode ()] -> FCode () listCs [] = return () listCs (fc:fcs) = do fc listCs fcs mapCs :: (a -> FCode ()) -> [a] -> FCode () mapCs = mapM_ thenFC :: FCode a -> (a -> FCode c) -> FCode c thenFC (FCode m) k = FCode ( \info_down state -> let (m_result, new_state) = m info_down state (FCode kcode) = k m_result in kcode info_down new_state ) listFCs :: [FCode a] -> FCode [a] listFCs = Prelude.sequence mapFCs :: (a -> FCode b) -> [a] -> FCode [b] mapFCs = mapM fixC :: (a -> FCode a) -> FCode a fixC fcode = FCode ( \info_down state -> let FCode fc = fcode v result@(v,_) = fc info_down state -- ^--------^ in result ) -------------------------------------------------------- -- The code generator environment -------------------------------------------------------- -- This monadery has some information that it only passes -- *downwards*, as well as some ``state'' which is modified -- as we go along. data CgInfoDownwards -- information only passed *downwards* by the monad = MkCgInfoDown { cgd_dflags :: DynFlags, cgd_mod :: Module, -- Module being compiled cgd_statics :: CgBindings, -- [Id -> info] : static environment cgd_srt_lbl :: CLabel, -- Label of the current top-level SRT cgd_updfr_off :: UpdFrameOffset, -- Size of current update frame cgd_ticky :: CLabel, -- Current destination for ticky counts cgd_sequel :: Sequel -- What to do at end of basic block } type CgBindings = IdEnv CgIdInfo data CgIdInfo = CgIdInfo { cg_id :: Id -- Id that this is the info for -- Can differ from the Id at occurrence sites by -- virtue of being externalised, for splittable C , cg_lf :: LambdaFormInfo , cg_loc :: CgLoc -- CmmExpr for the *tagged* value , cg_rep :: PrimRep -- Cache for (idPrimRep id) , cg_tag :: {-# UNPACK #-} !DynTag -- Cache for (lfDynTag cg_lf) } data CgLoc = CmmLoc CmmExpr -- A stable CmmExpr; that is, one not mentioning -- Hp, so that it remains valid across calls | LneLoc BlockId [LocalReg] -- A join point -- A join point (= let-no-escape) should only -- be tail-called, and in a saturated way. -- To tail-call it, assign to these locals, -- and branch to the block id instance Outputable CgIdInfo where ppr (CgIdInfo { cg_id = id, cg_loc = loc }) = ppr id <+> ptext (sLit "-->") <+> ppr loc instance Outputable CgLoc where ppr (CmmLoc e) = ptext (sLit "cmm") <+> ppr e ppr (LneLoc b rs) = ptext (sLit "lne") <+> ppr b <+> ppr rs -- Sequel tells what to do with the result of this expression data Sequel = Return Bool -- Return result(s) to continuation found on the stack -- True <=> the continuation is update code (???) | AssignTo [LocalReg] -- Put result(s) in these regs and fall through -- NB: no void arguments here Bool -- Should we adjust the heap pointer back to recover -- space that's unused on this path? -- We need to do this only if the expression may -- allocate (e.g. it's a foreign call or allocating primOp) instance Show Sequel where show (Return _) = "Sequel: Return" show (AssignTo _ _) = "Sequel: Assign" initCgInfoDown :: DynFlags -> Module -> CgInfoDownwards initCgInfoDown dflags mod = MkCgInfoDown { cgd_dflags = dflags, cgd_mod = mod, cgd_statics = emptyVarEnv, cgd_srt_lbl = error "initC: srt_lbl", cgd_updfr_off = initUpdFrameOff, cgd_ticky = mkTopTickyCtrLabel, cgd_sequel = initSequel } initSequel :: Sequel initSequel = Return False initUpdFrameOff :: UpdFrameOffset initUpdFrameOff = widthInBytes wordWidth -- space for the RA -------------------------------------------------------- -- The code generator state -------------------------------------------------------- data CgState = MkCgState { cgs_stmts :: CmmAGraph, -- Current procedure cgs_tops :: OrdList CmmTopZ, -- Other procedures and data blocks in this compilation unit -- Both are ordered only so that we can -- reduce forward references, when it's easy to do so cgs_binds :: CgBindings, -- [Id -> info] : *local* bindings environment -- Bindings for top-level things are given in -- the info-down part cgs_hp_usg :: HeapUsage, cgs_uniqs :: UniqSupply } data HeapUsage = HeapUsage { virtHp :: VirtualHpOffset, -- Virtual offset of highest-allocated word realHp :: VirtualHpOffset -- realHp: Virtual offset of real heap ptr } type VirtualHpOffset = WordOff initCgState :: UniqSupply -> CgState initCgState uniqs = MkCgState { cgs_stmts = mkNop, cgs_tops = nilOL, cgs_binds = emptyVarEnv, cgs_hp_usg = initHpUsage, cgs_uniqs = uniqs } stateIncUsage :: CgState -> CgState -> CgState -- stateIncUsage@ e1 e2 incorporates in e1 -- the heap high water mark found in e2. stateIncUsage s1 s2@(MkCgState { cgs_hp_usg = hp_usg }) = s1 { cgs_hp_usg = cgs_hp_usg s1 `maxHpHw` virtHp hp_usg } `addCodeBlocksFrom` s2 addCodeBlocksFrom :: CgState -> CgState -> CgState -- Add code blocks from the latter to the former -- (The cgs_stmts will often be empty, but not always; see codeOnly) s1 `addCodeBlocksFrom` s2 = s1 { cgs_stmts = cgs_stmts s1 <*> cgs_stmts s2, cgs_tops = cgs_tops s1 `appOL` cgs_tops s2 } -- The heap high water mark is the larger of virtHp and hwHp. The latter is -- only records the high water marks of forked-off branches, so to find the -- heap high water mark you have to take the max of virtHp and hwHp. Remember, -- virtHp never retreats! -- -- Note Jan 04: ok, so why do we only look at the virtual Hp?? heapHWM :: HeapUsage -> VirtualHpOffset heapHWM = virtHp initHpUsage :: HeapUsage initHpUsage = HeapUsage { virtHp = 0, realHp = 0 } maxHpHw :: HeapUsage -> VirtualHpOffset -> HeapUsage hp_usg `maxHpHw` hw = hp_usg { virtHp = virtHp hp_usg `max` hw } -------------------------------------------------------- -- Operators for getting and setting the state and "info_down". -------------------------------------------------------- getState :: FCode CgState getState = FCode $ \_info_down state -> (state,state) setState :: CgState -> FCode () setState state = FCode $ \_info_down _ -> ((),state) getHpUsage :: FCode HeapUsage getHpUsage = do state <- getState return $ cgs_hp_usg state setHpUsage :: HeapUsage -> FCode () setHpUsage new_hp_usg = do state <- getState setState $ state {cgs_hp_usg = new_hp_usg} setVirtHp :: VirtualHpOffset -> FCode () setVirtHp new_virtHp = do { hp_usage <- getHpUsage ; setHpUsage (hp_usage {virtHp = new_virtHp}) } getVirtHp :: FCode VirtualHpOffset getVirtHp = do { hp_usage <- getHpUsage ; return (virtHp hp_usage) } setRealHp :: VirtualHpOffset -> FCode () setRealHp new_realHp = do { hp_usage <- getHpUsage ; setHpUsage (hp_usage {realHp = new_realHp}) } getBinds :: FCode CgBindings getBinds = do state <- getState return $ cgs_binds state setBinds :: CgBindings -> FCode () setBinds new_binds = do state <- getState setState $ state {cgs_binds = new_binds} getStaticBinds :: FCode CgBindings getStaticBinds = do info <- getInfoDown return (cgd_statics info) withState :: FCode a -> CgState -> FCode (a,CgState) withState (FCode fcode) newstate = FCode $ \info_down state -> let (retval, state2) = fcode info_down newstate in ((retval,state2), state) newUniqSupply :: FCode UniqSupply newUniqSupply = do state <- getState let (us1, us2) = splitUniqSupply (cgs_uniqs state) setState $ state { cgs_uniqs = us1 } return us2 newUnique :: FCode Unique newUnique = do us <- newUniqSupply return (uniqFromSupply us) ------------------ getInfoDown :: FCode CgInfoDownwards getInfoDown = FCode $ \info_down state -> (info_down,state) getDynFlags :: FCode DynFlags getDynFlags = liftM cgd_dflags getInfoDown getThisPackage :: FCode PackageId getThisPackage = liftM thisPackage getDynFlags withInfoDown :: FCode a -> CgInfoDownwards -> FCode a withInfoDown (FCode fcode) info_down = FCode $ \_ state -> fcode info_down state doFCode :: FCode a -> CgInfoDownwards -> CgState -> (a,CgState) doFCode (FCode fcode) info_down state = fcode info_down state -- ---------------------------------------------------------------------------- -- Get the current module name getModuleName :: FCode Module getModuleName = do { info <- getInfoDown; return (cgd_mod info) } -- ---------------------------------------------------------------------------- -- Get/set the end-of-block info withSequel :: Sequel -> FCode () -> FCode () withSequel sequel code = do { info <- getInfoDown ; withInfoDown code (info {cgd_sequel = sequel }) } getSequel :: FCode Sequel getSequel = do { info <- getInfoDown ; return (cgd_sequel info) } -- ---------------------------------------------------------------------------- -- Get/set the current SRT label -- There is just one SRT for each top level binding; all the nested -- bindings use sub-sections of this SRT. The label is passed down to -- the nested bindings via the monad. getSRTLabel :: FCode CLabel -- Used only by cgPanic getSRTLabel = do info <- getInfoDown return (cgd_srt_lbl info) setSRTLabel :: CLabel -> FCode a -> FCode a setSRTLabel srt_lbl code = do info <- getInfoDown withInfoDown code (info { cgd_srt_lbl = srt_lbl}) -- ---------------------------------------------------------------------------- -- Get/set the size of the update frame -- We keep track of the size of the update frame so that we -- can set the stack pointer to the proper address on return -- (or tail call) from the closure. -- There should be at most one update frame for each closure. -- Note: I'm including the size of the original return address -- in the size of the update frame -- hence the default case on `get'. withUpdFrameOff :: UpdFrameOffset -> FCode () -> FCode () withUpdFrameOff size code = do { info <- getInfoDown ; withInfoDown code (info {cgd_updfr_off = size }) } getUpdFrameOff :: FCode UpdFrameOffset getUpdFrameOff = do { info <- getInfoDown ; return $ cgd_updfr_off info } -- ---------------------------------------------------------------------------- -- Get/set the current ticky counter label getTickyCtrLabel :: FCode CLabel getTickyCtrLabel = do info <- getInfoDown return (cgd_ticky info) setTickyCtrLabel :: CLabel -> FCode () -> FCode () setTickyCtrLabel ticky code = do info <- getInfoDown withInfoDown code (info {cgd_ticky = ticky}) -------------------------------------------------------- -- Forking -------------------------------------------------------- forkClosureBody :: FCode () -> FCode () -- forkClosureBody takes a code, $c$, and compiles it in a -- fresh environment, except that: -- - compilation info and statics are passed in unchanged. -- - local bindings are passed in unchanged -- (it's up to the enclosed code to re-bind the -- free variables to a field of the closure) -- -- The current state is passed on completely unaltered, except that -- C-- from the fork is incorporated. forkClosureBody body_code = do { info <- getInfoDown ; us <- newUniqSupply ; state <- getState ; let body_info_down = info { cgd_sequel = initSequel , cgd_updfr_off = initUpdFrameOff } fork_state_in = (initCgState us) { cgs_binds = cgs_binds state } ((),fork_state_out) = doFCode body_code body_info_down fork_state_in ; setState $ state `addCodeBlocksFrom` fork_state_out } forkStatics :: FCode a -> FCode a -- @forkStatics@ $fc$ compiles $fc$ in an environment whose *statics* come -- from the current *local bindings*, but which is otherwise freshly initialised. -- The Abstract~C returned is attached to the current state, but the -- bindings and usage information is otherwise unchanged. forkStatics body_code = do { info <- getInfoDown ; us <- newUniqSupply ; state <- getState ; let rhs_info_down = info { cgd_statics = cgs_binds state , cgd_sequel = initSequel , cgd_updfr_off = initUpdFrameOff } (result, fork_state_out) = doFCode body_code rhs_info_down (initCgState us) ; setState (state `addCodeBlocksFrom` fork_state_out) ; return result } forkProc :: FCode a -> FCode a -- 'forkProc' takes a code and compiles it in the *current* environment, -- returning the graph thus constructed. -- -- The current environment is passed on completely unchanged to -- the successor. In particular, any heap usage from the enclosed -- code is discarded; it should deal with its own heap consumption forkProc body_code = do { info_down <- getInfoDown ; us <- newUniqSupply ; state <- getState ; let info_down' = info_down -- { cgd_sequel = initSequel } fork_state_in = (initCgState us) { cgs_binds = cgs_binds state } (result, fork_state_out) = doFCode body_code info_down' fork_state_in ; setState $ state `addCodeBlocksFrom` fork_state_out ; return result } codeOnly :: FCode () -> FCode () -- Emit any code from the inner thing into the outer thing -- Do not affect anything else in the outer state -- Used in almost-circular code to prevent false loop dependencies codeOnly body_code = do { info_down <- getInfoDown ; us <- newUniqSupply ; state <- getState ; let fork_state_in = (initCgState us) { cgs_binds = cgs_binds state, cgs_hp_usg = cgs_hp_usg state } ((), fork_state_out) = doFCode body_code info_down fork_state_in ; setState $ state `addCodeBlocksFrom` fork_state_out } forkAlts :: [FCode a] -> FCode [a] -- (forkAlts' bs d) takes fcodes 'bs' for the branches of a 'case', and -- an fcode for the default case 'd', and compiles each in the current -- environment. The current environment is passed on unmodified, except -- that the virtual Hp is moved on to the worst virtual Hp for the branches forkAlts branch_fcodes = do { info_down <- getInfoDown ; us <- newUniqSupply ; state <- getState ; let compile us branch = (us2, doFCode branch info_down branch_state) where (us1,us2) = splitUniqSupply us branch_state = (initCgState us1) { cgs_binds = cgs_binds state, cgs_hp_usg = cgs_hp_usg state } (_us, results) = mapAccumL compile us branch_fcodes (branch_results, branch_out_states) = unzip results ; setState $ foldl stateIncUsage state branch_out_states -- NB foldl. state is the *left* argument to stateIncUsage ; return branch_results } -- collect the code emitted by an FCode computation getCodeR :: FCode a -> FCode (a, CmmAGraph) getCodeR fcode = do { state1 <- getState ; (a, state2) <- withState fcode (state1 { cgs_stmts = mkNop }) ; setState $ state2 { cgs_stmts = cgs_stmts state1 } ; return (a, cgs_stmts state2) } getCode :: FCode a -> FCode CmmAGraph getCode fcode = do { (_,stmts) <- getCodeR fcode; return stmts } -- 'getHeapUsage' applies a function to the amount of heap that it uses. -- It initialises the heap usage to zeros, and passes on an unchanged -- heap usage. -- -- It is usually a prelude to performing a GC check, so everything must -- be in a tidy and consistent state. -- -- Note the slightly subtle fixed point behaviour needed here getHeapUsage :: (VirtualHpOffset -> FCode a) -> FCode a getHeapUsage fcode = do { info_down <- getInfoDown ; state <- getState ; let fstate_in = state { cgs_hp_usg = initHpUsage } (r, fstate_out) = doFCode (fcode hp_hw) info_down fstate_in hp_hw = heapHWM (cgs_hp_usg fstate_out) -- Loop here! ; setState $ fstate_out { cgs_hp_usg = cgs_hp_usg state } ; return r } -- ---------------------------------------------------------------------------- -- Combinators for emitting code emit :: CmmAGraph -> FCode () emit ag = do { state <- getState ; setState $ state { cgs_stmts = cgs_stmts state <*> ag } } emitData :: Section -> [CmmStatic] -> FCode () emitData sect lits = do { state <- getState ; setState $ state { cgs_tops = cgs_tops state `snocOL` data_block } } where data_block = CmmData sect lits emitProcWithConvention :: Convention -> CmmInfo -> CLabel -> CmmFormals -> CmmAGraph -> FCode () emitProcWithConvention conv info lbl args blocks = do { us <- newUniqSupply ; let (offset, entry) = mkEntry (mkBlockId $ uniqFromSupply us) conv args blks = initUs_ us $ lgraphOfAGraph $ entry <*> blocks ; let proc_block = CmmProc info lbl args ((offset, Just initUpdFrameOff), blks) ; state <- getState ; setState $ state { cgs_tops = cgs_tops state `snocOL` proc_block } } emitProc :: CmmInfo -> CLabel -> CmmFormals -> CmmAGraph -> FCode () emitProc = emitProcWithConvention NativeNodeCall emitSimpleProc :: CLabel -> CmmAGraph -> FCode () emitSimpleProc lbl code = emitProc (CmmInfo Nothing Nothing CmmNonInfoTable) lbl [] code getCmm :: FCode () -> FCode CmmZ -- Get all the CmmTops (there should be no stmts) -- Return a single Cmm which may be split from other Cmms by -- object splitting (at a later stage) getCmm code = do { state1 <- getState ; ((), state2) <- withState code (state1 { cgs_tops = nilOL }) ; setState $ state2 { cgs_tops = cgs_tops state1 } ; return (Cmm (fromOL (cgs_tops state2))) } -- ---------------------------------------------------------------------------- -- CgStmts -- These functions deal in terms of CgStmts, which is an abstract type -- representing the code in the current proc. -- turn CgStmts into [CmmBasicBlock], for making a new proc. cgStmtsToBlocks :: CmmAGraph -> FCode CmmGraph cgStmtsToBlocks stmts = do { us <- newUniqSupply ; return (initUs_ us (lgraphOfAGraph stmts)) }