/* * Session management functions. * * Copyright 2000-2012 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct pool_head *pool2_session; struct list sessions; static int conn_session_complete(struct connection *conn); static int conn_session_update(struct connection *conn); static struct task *expire_mini_session(struct task *t); int session_complete(struct session *s); /* data layer callbacks for an embryonic session */ struct data_cb sess_conn_cb = { .recv = NULL, .send = NULL, .wake = conn_session_update, .init = conn_session_complete, }; /* This function is called from the protocol layer accept() in order to * instanciate a new embryonic session on behalf of a given listener and * frontend. It returns a positive value upon success, 0 if the connection * can be ignored, or a negative value upon critical failure. The accepted * file descriptor is closed if we return <= 0. */ int session_accept(struct listener *l, int cfd, struct sockaddr_storage *addr) { struct connection *cli_conn; struct proxy *p = l->frontend; struct session *s; struct task *t; int ret; ret = -1; /* assume unrecoverable error by default */ if (unlikely((cli_conn = conn_new()) == NULL)) goto out_close; conn_prepare(cli_conn, l->proto, l->xprt); cli_conn->t.sock.fd = cfd; cli_conn->addr.from = *addr; cli_conn->flags |= CO_FL_ADDR_FROM_SET; cli_conn->target = &l->obj_type; if (unlikely((s = pool_alloc2(pool2_session)) == NULL)) goto out_free_conn; /* minimum session initialization required for an embryonic session is * fairly low. We need very little to execute L4 ACLs, then we need a * task to make the client-side connection live on its own. * - flags * - stick-entry tracking */ s->flags = 0; s->logs.logwait = p->to_log; s->logs.level = 0; memset(s->stkctr, 0, sizeof(s->stkctr)); s->listener = l; s->fe = p; /* On a mini-session, the connection is directly attached to the * session's target so that we don't need to initialize the stream * interfaces. Another benefit is that it's easy to detect a mini- * session in dumps using this : it's the only one which has a * connection in s->target. */ s->target = &cli_conn->obj_type; s->logs.accept_date = date; /* user-visible date for logging */ s->logs.tv_accept = now; /* corrected date for internal use */ s->uniq_id = global.req_count++; p->feconn++; /* This session was accepted, count it now */ if (p->feconn > p->fe_counters.conn_max) p->fe_counters.conn_max = p->feconn; proxy_inc_fe_conn_ctr(l, p); /* Add the minimum callbacks to prepare the connection's control layer. * We need this so that we can safely execute the ACLs used by the * "tcp-request connection" ruleset. We also carefully attach the * connection to the stream interface without initializing the rest, * so that ACLs can use si[0]->end. */ si_attach_conn(&s->si[0], cli_conn); conn_attach(cli_conn, s, &sess_conn_cb); conn_ctrl_init(cli_conn); /* now evaluate the tcp-request layer4 rules. Since we expect to be able * to abort right here as soon as possible, we check the rules before * even initializing the stream interfaces. */ if ((l->options & LI_O_TCP_RULES) && !tcp_exec_req_rules(s)) { /* let's do a no-linger now to close with a single RST. */ setsockopt(cfd, SOL_SOCKET, SO_LINGER, (struct linger *) &nolinger, sizeof(struct linger)); ret = 0; /* successful termination */ goto out_free_session; } /* monitor-net and health mode are processed immediately after TCP * connection rules. This way it's possible to block them, but they * never use the lower data layers, they send directly over the socket, * as they were designed for. We first flush the socket receive buffer * in order to avoid emission of an RST by the system. We ignore any * error. */ if (unlikely((p->mode == PR_MODE_HEALTH) || ((l->options & LI_O_CHK_MONNET) && addr->ss_family == AF_INET && (((struct sockaddr_in *)addr)->sin_addr.s_addr & p->mon_mask.s_addr) == p->mon_net.s_addr))) { /* we have 4 possibilities here : * - HTTP mode, from monitoring address => send "HTTP/1.0 200 OK" * - HEALTH mode with HTTP check => send "HTTP/1.0 200 OK" * - HEALTH mode without HTTP check => just send "OK" * - TCP mode from monitoring address => just close */ if (l->proto->drain) l->proto->drain(cfd); if (p->mode == PR_MODE_HTTP || (p->mode == PR_MODE_HEALTH && (p->options2 & PR_O2_CHK_ANY) == PR_O2_HTTP_CHK)) send(cfd, "HTTP/1.0 200 OK\r\n\r\n", 19, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE); else if (p->mode == PR_MODE_HEALTH) send(cfd, "OK\n", 3, MSG_DONTWAIT|MSG_NOSIGNAL|MSG_MORE); ret = 0; goto out_free_session; } /* wait for a PROXY protocol header */ if (l->options & LI_O_ACC_PROXY) { cli_conn->flags |= CO_FL_ACCEPT_PROXY; conn_sock_want_recv(cli_conn); } if (unlikely((t = task_new()) == NULL)) goto out_free_session; t->context = s; t->nice = l->nice; s->task = t; /* Finish setting the callbacks. Right now the transport layer is present * but not initialized. Also note we need to be careful as the stream * int is not initialized yet. */ conn_data_want_recv(cli_conn); if (conn_xprt_init(cli_conn) < 0) goto out_free_task; /* OK, now either we have a pending handshake to execute with and * then we must return to the I/O layer, or we can proceed with the * end of the session initialization. In case of handshake, we also * set the I/O timeout to the frontend's client timeout. */ if (cli_conn->flags & CO_FL_HANDSHAKE) { t->process = expire_mini_session; t->expire = tick_add_ifset(now_ms, p->timeout.client); task_queue(t); cli_conn->flags |= CO_FL_INIT_DATA | CO_FL_WAKE_DATA; return 1; } /* OK let's complete session initialization since there is no handshake */ cli_conn->flags |= CO_FL_CONNECTED; ret = session_complete(s); if (ret > 0) return ret; /* Error unrolling */ out_free_task: task_free(t); out_free_session: p->feconn--; session_store_counters(s); pool_free2(pool2_session, s); out_free_conn: cli_conn->flags &= ~CO_FL_XPRT_TRACKED; conn_xprt_close(cli_conn); conn_free(cli_conn); out_close: if (ret < 0 && l->xprt == &raw_sock && p->mode == PR_MODE_HTTP) { /* critical error, no more memory, try to emit a 500 response */ struct chunk *err_msg = &p->errmsg[HTTP_ERR_500]; if (!err_msg->str) err_msg = &http_err_chunks[HTTP_ERR_500]; send(cfd, err_msg->str, err_msg->len, MSG_DONTWAIT|MSG_NOSIGNAL); } if (fdtab[cfd].owner) fd_delete(cfd); else close(cfd); return ret; } /* prepare the trash with a log prefix for session . It only works with * embryonic sessions based on a real connection. This function requires that * at s->target still points to the incoming connection. */ static void prepare_mini_sess_log_prefix(struct session *s) { struct tm tm; char pn[INET6_ADDRSTRLEN]; int ret; char *end; struct connection *cli_conn = __objt_conn(s->target); ret = addr_to_str(&cli_conn->addr.from, pn, sizeof(pn)); if (ret <= 0) chunk_printf(&trash, "unknown ["); else if (ret == AF_UNIX) chunk_printf(&trash, "%s:%d [", pn, s->listener->luid); else chunk_printf(&trash, "%s:%d [", pn, get_host_port(&cli_conn->addr.from)); get_localtime(s->logs.accept_date.tv_sec, &tm); end = date2str_log(trash.str + trash.len, &tm, &(s->logs.accept_date), trash.size - trash.len); trash.len = end - trash.str; if (s->listener->name) chunk_appendf(&trash, "] %s/%s", s->fe->id, s->listener->name); else chunk_appendf(&trash, "] %s/%d", s->fe->id, s->listener->luid); } /* This function kills an existing embryonic session. It stops the connection's * transport layer, releases assigned resources, resumes the listener if it was * disabled and finally kills the file descriptor. This function requires that * at s->target still points to the incoming connection. */ static void kill_mini_session(struct session *s) { int level = LOG_INFO; struct connection *conn = __objt_conn(s->target); unsigned int log = s->logs.logwait; const char *err_msg; if (s->fe->options2 & PR_O2_LOGERRORS) level = LOG_ERR; if (log && (s->fe->options & PR_O_NULLNOLOG)) { /* with "option dontlognull", we don't log connections with no transfer */ if (!conn->err_code || conn->err_code == CO_ER_PRX_EMPTY || conn->err_code == CO_ER_PRX_ABORT || conn->err_code == CO_ER_SSL_EMPTY || conn->err_code == CO_ER_SSL_ABORT) log = 0; } if (log) { if (!conn->err_code && (s->task->state & TASK_WOKEN_TIMER)) { if (conn->flags & CO_FL_ACCEPT_PROXY) conn->err_code = CO_ER_PRX_TIMEOUT; else if (conn->flags & CO_FL_SSL_WAIT_HS) conn->err_code = CO_ER_SSL_TIMEOUT; } prepare_mini_sess_log_prefix(s); err_msg = conn_err_code_str(conn); if (err_msg) send_log(s->fe, level, "%s: %s\n", trash.str, err_msg); else send_log(s->fe, level, "%s: unknown connection error (code=%d flags=%08x)\n", trash.str, conn->err_code, conn->flags); } /* kill the connection now */ conn_force_close(conn); conn_free(conn); s->fe->feconn--; session_store_counters(s); if (!(s->listener->options & LI_O_UNLIMITED)) actconn--; jobs--; s->listener->nbconn--; if (s->listener->state == LI_FULL) resume_listener(s->listener); /* Dequeues all of the listeners waiting for a resource */ if (!LIST_ISEMPTY(&global_listener_queue)) dequeue_all_listeners(&global_listener_queue); if (!LIST_ISEMPTY(&s->fe->listener_queue) && (!s->fe->fe_sps_lim || freq_ctr_remain(&s->fe->fe_sess_per_sec, s->fe->fe_sps_lim, 0) > 0)) dequeue_all_listeners(&s->fe->listener_queue); task_delete(s->task); task_free(s->task); pool_free2(pool2_session, s); } /* Finish initializing a session from a connection, or kills it if the * connection shows and error. Returns <0 if the connection was killed. */ static int conn_session_complete(struct connection *conn) { struct session *s = conn->owner; if (!(conn->flags & CO_FL_ERROR) && (session_complete(s) > 0)) { conn->flags &= ~CO_FL_INIT_DATA; return 0; } /* kill the connection now */ kill_mini_session(s); return -1; } /* Update an embryonic session status. The connection is killed in case of * error, and <0 will be returned. Otherwise it does nothing. */ static int conn_session_update(struct connection *conn) { if (conn->flags & CO_FL_ERROR) { kill_mini_session(conn->owner); return -1; } return 0; } /* Manages embryonic sessions timeout. It is only called when the timeout * strikes and performs the required cleanup. */ static struct task *expire_mini_session(struct task *t) { struct session *s = t->context; if (!(t->state & TASK_WOKEN_TIMER)) return t; kill_mini_session(s); return NULL; } /* This function is called from the I/O handler which detects the end of * handshake, in order to complete initialization of a valid session. It must * be called with an embryonic session. It returns a positive value upon * success, 0 if the connection can be ignored, or a negative value upon * critical failure. The accepted file descriptor is closed if we return <= 0. * The client-side end point is assumed to be a connection, whose pointer is * taken from s->target which is assumed to be valid. If the function fails, * it restores s->target. */ int session_complete(struct session *s) { struct listener *l = s->listener; struct proxy *p = s->fe; struct http_txn *txn; struct task *t = s->task; struct connection *conn = __objt_conn(s->target); int ret; int i; ret = -1; /* assume unrecoverable error by default */ /* OK, we're keeping the session, so let's properly initialize the session */ LIST_ADDQ(&sessions, &s->list); LIST_INIT(&s->back_refs); s->flags |= SN_INITIALIZED; s->unique_id = NULL; t->process = l->handler; t->context = s; t->expire = TICK_ETERNITY; /* Note: initially, the session's backend points to the frontend. * This changes later when switching rules are executed or * when the default backend is assigned. */ s->be = s->fe; s->req = s->rep = NULL; /* will be allocated later */ s->comp_algo = NULL; /* Let's count a session now */ proxy_inc_fe_sess_ctr(l, p); for (i = 0; i < MAX_SESS_STKCTR; i++) { void *ptr; if (!stkctr_entry(&s->stkctr[i])) continue; ptr = stktable_data_ptr(s->stkctr[i].table, stkctr_entry(&s->stkctr[i]), STKTABLE_DT_SESS_CNT); if (ptr) stktable_data_cast(ptr, sess_cnt)++; ptr = stktable_data_ptr(s->stkctr[i].table, stkctr_entry(&s->stkctr[i]), STKTABLE_DT_SESS_RATE); if (ptr) update_freq_ctr_period(&stktable_data_cast(ptr, sess_rate), s->stkctr[i].table->data_arg[STKTABLE_DT_SESS_RATE].u, 1); } /* this part should be common with other protocols */ si_reset(&s->si[0], t); si_set_state(&s->si[0], SI_ST_EST); /* attach the incoming connection to the stream interface now. * We must do that *before* clearing ->target because we need * to keep a pointer to the connection in case we have to call * kill_mini_session(). */ si_attach_conn(&s->si[0], conn); if (likely(s->fe->options2 & PR_O2_INDEPSTR)) s->si[0].flags |= SI_FL_INDEP_STR; /* pre-initialize the other side's stream interface to an INIT state. The * callbacks will be initialized before attempting to connect. */ si_reset(&s->si[1], t); si_detach(&s->si[1]); if (likely(s->fe->options2 & PR_O2_INDEPSTR)) s->si[1].flags |= SI_FL_INDEP_STR; session_init_srv_conn(s); s->target = NULL; s->pend_pos = NULL; /* init store persistence */ s->store_count = 0; if (unlikely((s->req = pool_alloc2(pool2_channel)) == NULL)) goto out_free_task; /* no memory */ if (unlikely((s->req->buf = pool_alloc2(pool2_buffer)) == NULL)) goto out_free_req; /* no memory */ if (unlikely((s->rep = pool_alloc2(pool2_channel)) == NULL)) goto out_free_req_buf; /* no memory */ if (unlikely((s->rep->buf = pool_alloc2(pool2_buffer)) == NULL)) goto out_free_rep; /* no memory */ /* initialize the request buffer */ s->req->buf->size = global.tune.bufsize; channel_init(s->req); s->req->prod = &s->si[0]; s->req->cons = &s->si[1]; s->si[0].ib = s->si[1].ob = s->req; s->req->flags |= CF_READ_ATTACHED; /* the producer is already connected */ /* activate default analysers enabled for this listener */ s->req->analysers = l->analysers; s->req->wto = TICK_ETERNITY; s->req->rto = TICK_ETERNITY; s->req->rex = TICK_ETERNITY; s->req->wex = TICK_ETERNITY; s->req->analyse_exp = TICK_ETERNITY; /* initialize response buffer */ s->rep->buf->size = global.tune.bufsize; channel_init(s->rep); s->rep->prod = &s->si[1]; s->rep->cons = &s->si[0]; s->si[0].ob = s->si[1].ib = s->rep; s->rep->analysers = 0; if (s->fe->options2 & PR_O2_NODELAY) { s->req->flags |= CF_NEVER_WAIT; s->rep->flags |= CF_NEVER_WAIT; } s->rep->rto = TICK_ETERNITY; s->rep->wto = TICK_ETERNITY; s->rep->rex = TICK_ETERNITY; s->rep->wex = TICK_ETERNITY; s->rep->analyse_exp = TICK_ETERNITY; txn = &s->txn; /* Those variables will be checked and freed if non-NULL in * session.c:session_free(). It is important that they are * properly initialized. */ txn->sessid = NULL; txn->srv_cookie = NULL; txn->cli_cookie = NULL; txn->uri = NULL; txn->req.cap = NULL; txn->rsp.cap = NULL; txn->hdr_idx.v = NULL; txn->hdr_idx.size = txn->hdr_idx.used = 0; txn->flags = 0; txn->req.flags = 0; txn->rsp.flags = 0; /* the HTTP messages need to know what buffer they're associated with */ txn->req.chn = s->req; txn->rsp.chn = s->rep; /* finish initialization of the accepted file descriptor */ conn_data_want_recv(conn); if (p->accept && (ret = p->accept(s)) <= 0) { /* Either we had an unrecoverable error (<0) or work is * finished (=0, eg: monitoring), in both situations, * we can release everything and close. */ goto out_free_rep_buf; } /* if logs require transport layer information, note it on the connection */ if (s->logs.logwait & LW_XPRT) conn->flags |= CO_FL_XPRT_TRACKED; /* we want the connection handler to notify the stream interface about updates. */ conn->flags |= CO_FL_WAKE_DATA; /* it is important not to call the wakeup function directly but to * pass through task_wakeup(), because this one knows how to apply * priorities to tasks. */ task_wakeup(t, TASK_WOKEN_INIT); return 1; /* Error unrolling */ out_free_rep_buf: pool_free2(pool2_buffer, s->rep->buf); out_free_rep: pool_free2(pool2_channel, s->rep); out_free_req_buf: pool_free2(pool2_buffer, s->req->buf); out_free_req: pool_free2(pool2_channel, s->req); out_free_task: /* and restore the connection pointer in case we destroyed it, * because kill_mini_session() will need it. */ s->target = &conn->obj_type; return ret; } /* * frees the context associated to a session. It must have been removed first. */ static void session_free(struct session *s) { struct http_txn *txn = &s->txn; struct proxy *fe = s->fe; struct bref *bref, *back; struct connection *cli_conn = objt_conn(s->si[0].end); int i; if (s->pend_pos) pendconn_free(s->pend_pos); if (objt_server(s->target)) { /* there may be requests left pending in queue */ if (s->flags & SN_CURR_SESS) { s->flags &= ~SN_CURR_SESS; objt_server(s->target)->cur_sess--; } if (may_dequeue_tasks(objt_server(s->target), s->be)) process_srv_queue(objt_server(s->target)); } if (unlikely(s->srv_conn)) { /* the session still has a reserved slot on a server, but * it should normally be only the same as the one above, * so this should not happen in fact. */ sess_change_server(s, NULL); } if (s->req->pipe) put_pipe(s->req->pipe); if (s->rep->pipe) put_pipe(s->rep->pipe); pool_free2(pool2_buffer, s->req->buf); pool_free2(pool2_buffer, s->rep->buf); pool_free2(pool2_channel, s->req); pool_free2(pool2_channel, s->rep); http_end_txn(s); /* ensure the client-side transport layer is destroyed */ if (cli_conn) conn_force_close(cli_conn); for (i = 0; i < s->store_count; i++) { if (!s->store[i].ts) continue; stksess_free(s->store[i].table, s->store[i].ts); s->store[i].ts = NULL; } pool_free2(pool2_hdr_idx, txn->hdr_idx.v); if (fe) { pool_free2(fe->rsp_cap_pool, txn->rsp.cap); pool_free2(fe->req_cap_pool, txn->req.cap); } session_store_counters(s); list_for_each_entry_safe(bref, back, &s->back_refs, users) { /* we have to unlink all watchers. We must not relink them if * this session was the last one in the list. */ LIST_DEL(&bref->users); LIST_INIT(&bref->users); if (s->list.n != &sessions) LIST_ADDQ(&LIST_ELEM(s->list.n, struct session *, list)->back_refs, &bref->users); bref->ref = s->list.n; } LIST_DEL(&s->list); si_release_endpoint(&s->si[1]); si_release_endpoint(&s->si[0]); pool_free2(pool2_session, s); /* We may want to free the maximum amount of pools if the proxy is stopping */ if (fe && unlikely(fe->state == PR_STSTOPPED)) { pool_flush2(pool2_buffer); pool_flush2(pool2_channel); pool_flush2(pool2_hdr_idx); pool_flush2(pool2_requri); pool_flush2(pool2_capture); pool_flush2(pool2_session); pool_flush2(fe->req_cap_pool); pool_flush2(fe->rsp_cap_pool); } } /* perform minimal intializations, report 0 in case of error, 1 if OK. */ int init_session() { LIST_INIT(&sessions); pool2_session = create_pool("session", sizeof(struct session), MEM_F_SHARED); return pool2_session != NULL; } void session_process_counters(struct session *s) { unsigned long long bytes; void *ptr; int i; if (s->req) { bytes = s->req->total - s->logs.bytes_in; s->logs.bytes_in = s->req->total; if (bytes) { s->fe->fe_counters.bytes_in += bytes; s->be->be_counters.bytes_in += bytes; if (objt_server(s->target)) objt_server(s->target)->counters.bytes_in += bytes; if (s->listener && s->listener->counters) s->listener->counters->bytes_in += bytes; for (i = 0; i < MAX_SESS_STKCTR; i++) { if (!stkctr_entry(&s->stkctr[i])) continue; ptr = stktable_data_ptr(s->stkctr[i].table, stkctr_entry(&s->stkctr[i]), STKTABLE_DT_BYTES_IN_CNT); if (ptr) stktable_data_cast(ptr, bytes_in_cnt) += bytes; ptr = stktable_data_ptr(s->stkctr[i].table, stkctr_entry(&s->stkctr[i]), STKTABLE_DT_BYTES_IN_RATE); if (ptr) update_freq_ctr_period(&stktable_data_cast(ptr, bytes_in_rate), s->stkctr[i].table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u, bytes); } } } if (s->rep) { bytes = s->rep->total - s->logs.bytes_out; s->logs.bytes_out = s->rep->total; if (bytes) { s->fe->fe_counters.bytes_out += bytes; s->be->be_counters.bytes_out += bytes; if (objt_server(s->target)) objt_server(s->target)->counters.bytes_out += bytes; if (s->listener && s->listener->counters) s->listener->counters->bytes_out += bytes; for (i = 0; i < MAX_SESS_STKCTR; i++) { if (!stkctr_entry(&s->stkctr[i])) continue; ptr = stktable_data_ptr(s->stkctr[i].table, stkctr_entry(&s->stkctr[i]), STKTABLE_DT_BYTES_OUT_CNT); if (ptr) stktable_data_cast(ptr, bytes_out_cnt) += bytes; ptr = stktable_data_ptr(s->stkctr[i].table, stkctr_entry(&s->stkctr[i]), STKTABLE_DT_BYTES_OUT_RATE); if (ptr) update_freq_ctr_period(&stktable_data_cast(ptr, bytes_out_rate), s->stkctr[i].table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u, bytes); } } } } /* This function is called with (si->state == SI_ST_CON) meaning that a * connection was attempted and that the file descriptor is already allocated. * We must check for establishment, error and abort. Possible output states * are SI_ST_EST (established), SI_ST_CER (error), SI_ST_DIS (abort), and * SI_ST_CON (no change). The function returns 0 if it switches to SI_ST_CER, * otherwise 1. This only works with connection-based sessions. */ static int sess_update_st_con_tcp(struct session *s, struct stream_interface *si) { struct channel *req = si->ob; struct channel *rep = si->ib; struct connection *srv_conn = __objt_conn(si->end); /* If we got an error, or if nothing happened and the connection timed * out, we must give up. The CER state handler will take care of retry * attempts and error reports. */ if (unlikely(si->flags & (SI_FL_EXP|SI_FL_ERR))) { if (unlikely(si->ob->flags & CF_WRITE_PARTIAL)) { /* Some data were sent past the connection establishment, * so we need to pretend we're established to log correctly * and let later states handle the failure. */ si->state = SI_ST_EST; si->err_type = SI_ET_DATA_ERR; si->ib->flags |= CF_READ_ERROR | CF_WRITE_ERROR; return 1; } si->exp = TICK_ETERNITY; si->state = SI_ST_CER; conn_force_close(srv_conn); if (si->err_type) return 0; if (si->flags & SI_FL_ERR) si->err_type = SI_ET_CONN_ERR; else si->err_type = SI_ET_CONN_TO; return 0; } /* OK, maybe we want to abort */ if (!(req->flags & CF_WRITE_PARTIAL) && unlikely((rep->flags & CF_SHUTW) || ((req->flags & CF_SHUTW_NOW) && /* FIXME: this should not prevent a connection from establishing */ ((!(req->flags & CF_WRITE_ACTIVITY) && channel_is_empty(req)) || s->be->options & PR_O_ABRT_CLOSE)))) { /* give up */ si_shutw(si); si->err_type |= SI_ET_CONN_ABRT; if (s->srv_error) s->srv_error(s, si); return 1; } /* we need to wait a bit more if there was no activity either */ if (!(req->flags & CF_WRITE_ACTIVITY)) return 1; /* OK, this means that a connection succeeded. The caller will be * responsible for handling the transition from CON to EST. */ si->state = SI_ST_EST; si->err_type = SI_ET_NONE; return 1; } /* This function is called with (si->state == SI_ST_CER) meaning that a * previous connection attempt has failed and that the file descriptor * has already been released. Possible causes include asynchronous error * notification and time out. Possible output states are SI_ST_CLO when * retries are exhausted, SI_ST_TAR when a delay is wanted before a new * connection attempt, SI_ST_ASS when it's wise to retry on the same server, * and SI_ST_REQ when an immediate redispatch is wanted. The buffers are * marked as in error state. It returns 0. */ static int sess_update_st_cer(struct session *s, struct stream_interface *si) { /* we probably have to release last session from the server */ if (objt_server(s->target)) { health_adjust(objt_server(s->target), HANA_STATUS_L4_ERR); if (s->flags & SN_CURR_SESS) { s->flags &= ~SN_CURR_SESS; objt_server(s->target)->cur_sess--; } } /* ensure that we have enough retries left */ si->conn_retries--; if (si->conn_retries < 0) { if (!si->err_type) { si->err_type = SI_ET_CONN_ERR; } if (objt_server(s->target)) objt_server(s->target)->counters.failed_conns++; s->be->be_counters.failed_conns++; sess_change_server(s, NULL); if (may_dequeue_tasks(objt_server(s->target), s->be)) process_srv_queue(objt_server(s->target)); /* shutw is enough so stop a connecting socket */ si_shutw(si); si->ob->flags |= CF_WRITE_ERROR; si->ib->flags |= CF_READ_ERROR; si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return 0; } /* If the "redispatch" option is set on the backend, we are allowed to * retry on another server for the last retry. In order to achieve this, * we must mark the session unassigned, and eventually clear the DIRECT * bit to ignore any persistence cookie. We won't count a retry nor a * redispatch yet, because this will depend on what server is selected. */ if (objt_server(s->target) && si->conn_retries == 0 && s->be->options & PR_O_REDISP && !(s->flags & SN_FORCE_PRST)) { sess_change_server(s, NULL); if (may_dequeue_tasks(objt_server(s->target), s->be)) process_srv_queue(objt_server(s->target)); s->flags &= ~(SN_DIRECT | SN_ASSIGNED | SN_ADDR_SET); si->state = SI_ST_REQ; } else { if (objt_server(s->target)) objt_server(s->target)->counters.retries++; s->be->be_counters.retries++; si->state = SI_ST_ASS; } if (si->flags & SI_FL_ERR) { /* The error was an asynchronous connection error, and we will * likely have to retry connecting to the same server, most * likely leading to the same result. To avoid this, we wait * MIN(one second, connect timeout) before retrying. */ int delay = 1000; if (s->be->timeout.connect && s->be->timeout.connect < delay) delay = s->be->timeout.connect; if (!si->err_type) si->err_type = SI_ET_CONN_ERR; /* only wait when we're retrying on the same server */ if (si->state == SI_ST_ASS || (s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_RR || (s->be->srv_act <= 1)) { si->state = SI_ST_TAR; si->exp = tick_add(now_ms, MS_TO_TICKS(delay)); } return 0; } return 0; } /* * This function handles the transition between the SI_ST_CON state and the * SI_ST_EST state. It must only be called after switching from SI_ST_CON (or * SI_ST_INI) to SI_ST_EST, but only when a ->proto is defined. */ static void sess_establish(struct session *s, struct stream_interface *si) { struct channel *req = si->ob; struct channel *rep = si->ib; /* First, centralize the timers information */ s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now); si->exp = TICK_ETERNITY; if (objt_server(s->target)) health_adjust(objt_server(s->target), HANA_STATUS_L4_OK); if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */ /* if the user wants to log as soon as possible, without counting * bytes from the server, then this is the right moment. */ if (!LIST_ISEMPTY(&s->fe->logformat) && !(s->logs.logwait & LW_BYTES)) { s->logs.t_close = s->logs.t_connect; /* to get a valid end date */ s->do_log(s); } } else { s->txn.rsp.msg_state = HTTP_MSG_RPBEFORE; rep->flags |= CF_READ_DONTWAIT; /* a single read is enough to get response headers */ } rep->analysers |= s->fe->fe_rsp_ana | s->be->be_rsp_ana; rep->flags |= CF_READ_ATTACHED; /* producer is now attached */ if (req->flags & CF_WAKE_CONNECT) { req->flags |= CF_WAKE_ONCE; req->flags &= ~CF_WAKE_CONNECT; } if (objt_conn(si->end)) { /* real connections have timeouts */ req->wto = s->be->timeout.server; rep->rto = s->be->timeout.server; } req->wex = TICK_ETERNITY; } /* Update stream interface status for input states SI_ST_ASS, SI_ST_QUE, SI_ST_TAR. * Other input states are simply ignored. * Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON * and SI_ST_EST. Flags must have previously been updated for timeouts and other * conditions. */ static void sess_update_stream_int(struct session *s, struct stream_interface *si) { struct server *srv = objt_server(s->target); DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n", now_ms, __FUNCTION__, s, s->req, s->rep, s->req->rex, s->rep->wex, s->req->flags, s->rep->flags, s->req->buf->i, s->req->buf->o, s->rep->buf->i, s->rep->buf->o, s->rep->cons->state, s->req->cons->state); if (si->state == SI_ST_ASS) { /* Server assigned to connection request, we have to try to connect now */ int conn_err; conn_err = connect_server(s); srv = objt_server(s->target); if (conn_err == SN_ERR_NONE) { /* state = SI_ST_CON or SI_ST_EST now */ if (srv) srv_inc_sess_ctr(srv); if (srv) srv_set_sess_last(srv); return; } /* We have received a synchronous error. We might have to * abort, retry immediately or redispatch. */ if (conn_err == SN_ERR_INTERNAL) { if (!si->err_type) { si->err_type = SI_ET_CONN_OTHER; } if (srv) srv_inc_sess_ctr(srv); if (srv) srv_set_sess_last(srv); if (srv) srv->counters.failed_conns++; s->be->be_counters.failed_conns++; /* release other sessions waiting for this server */ sess_change_server(s, NULL); if (may_dequeue_tasks(srv, s->be)) process_srv_queue(srv); /* Failed and not retryable. */ si_shutr(si); si_shutw(si); si->ob->flags |= CF_WRITE_ERROR; s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); /* no session was ever accounted for this server */ si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return; } /* We are facing a retryable error, but we don't want to run a * turn-around now, as the problem is likely a source port * allocation problem, so we want to retry now. */ si->state = SI_ST_CER; si->flags &= ~SI_FL_ERR; sess_update_st_cer(s, si); /* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */ return; } else if (si->state == SI_ST_QUE) { /* connection request was queued, check for any update */ if (!s->pend_pos) { /* The connection is not in the queue anymore. Either * we have a server connection slot available and we * go directly to the assigned state, or we need to * load-balance first and go to the INI state. */ si->exp = TICK_ETERNITY; if (unlikely(!(s->flags & SN_ASSIGNED))) si->state = SI_ST_REQ; else { s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); si->state = SI_ST_ASS; } return; } /* Connection request still in queue... */ if (si->flags & SI_FL_EXP) { /* ... and timeout expired */ si->exp = TICK_ETERNITY; s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); if (srv) srv->counters.failed_conns++; s->be->be_counters.failed_conns++; si_shutr(si); si_shutw(si); si->ob->flags |= CF_WRITE_TIMEOUT; if (!si->err_type) si->err_type = SI_ET_QUEUE_TO; si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return; } /* Connection remains in queue, check if we have to abort it */ if ((si->ob->flags & (CF_READ_ERROR)) || ((si->ob->flags & CF_SHUTW_NOW) && /* empty and client aborted */ (channel_is_empty(si->ob) || s->be->options & PR_O_ABRT_CLOSE))) { /* give up */ si->exp = TICK_ETERNITY; s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); si_shutr(si); si_shutw(si); si->err_type |= SI_ET_QUEUE_ABRT; si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return; } /* Nothing changed */ return; } else if (si->state == SI_ST_TAR) { /* Connection request might be aborted */ if ((si->ob->flags & (CF_READ_ERROR)) || ((si->ob->flags & CF_SHUTW_NOW) && /* empty and client aborted */ (channel_is_empty(si->ob) || s->be->options & PR_O_ABRT_CLOSE))) { /* give up */ si->exp = TICK_ETERNITY; si_shutr(si); si_shutw(si); si->err_type |= SI_ET_CONN_ABRT; si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return; } if (!(si->flags & SI_FL_EXP)) return; /* still in turn-around */ si->exp = TICK_ETERNITY; /* we keep trying on the same server as long as the session is * marked "assigned". * FIXME: Should we force a redispatch attempt when the server is down ? */ if (s->flags & SN_ASSIGNED) si->state = SI_ST_ASS; else si->state = SI_ST_REQ; return; } } /* Set correct session termination flags in case no analyser has done it. It * also counts a failed request if the server state has not reached the request * stage. */ static void sess_set_term_flags(struct session *s) { if (!(s->flags & SN_FINST_MASK)) { if (s->si[1].state < SI_ST_REQ) { s->fe->fe_counters.failed_req++; if (s->listener->counters) s->listener->counters->failed_req++; s->flags |= SN_FINST_R; } else if (s->si[1].state == SI_ST_QUE) s->flags |= SN_FINST_Q; else if (s->si[1].state < SI_ST_EST) s->flags |= SN_FINST_C; else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST) s->flags |= SN_FINST_D; else s->flags |= SN_FINST_L; } } /* This function initiates a server connection request on a stream interface * already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS for * a real connection to a server, indicating that a server has been assigned, * or SI_ST_EST for a successful connection to an applet. It may also return * SI_ST_QUE, or SI_ST_CLO upon error. */ static void sess_prepare_conn_req(struct session *s, struct stream_interface *si) { DPRINTF(stderr,"[%u] %s: sess=%p rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d\n", now_ms, __FUNCTION__, s, s->req, s->rep, s->req->rex, s->rep->wex, s->req->flags, s->rep->flags, s->req->buf->i, s->req->buf->o, s->rep->buf->i, s->rep->buf->o, s->rep->cons->state, s->req->cons->state); if (si->state != SI_ST_REQ) return; if (unlikely(obj_type(s->target) == OBJ_TYPE_APPLET)) { /* the applet directly goes to the EST state */ struct appctx *appctx = objt_appctx(si->end); if (!appctx || appctx->applet != __objt_applet(s->target)) appctx = stream_int_register_handler(si, objt_applet(s->target)); if (!appctx) { /* No more memory, let's immediately abort. Force the * error code to ignore the ERR_LOCAL which is not a * real error. */ s->flags &= ~(SN_ERR_MASK | SN_FINST_MASK); si_shutr(si); si_shutw(si); si->ob->flags |= CF_WRITE_ERROR; si->err_type = SI_ET_CONN_RES; si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return; } s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); si->state = SI_ST_EST; si->err_type = SI_ET_NONE; be_set_sess_last(s->be); /* let sess_establish() finish the job */ return; } /* Try to assign a server */ if (srv_redispatch_connect(s) != 0) { /* We did not get a server. Either we queued the * connection request, or we encountered an error. */ if (si->state == SI_ST_QUE) return; /* we did not get any server, let's check the cause */ si_shutr(si); si_shutw(si); si->ob->flags |= CF_WRITE_ERROR; if (!si->err_type) si->err_type = SI_ET_CONN_OTHER; si->state = SI_ST_CLO; if (s->srv_error) s->srv_error(s, si); return; } /* The server is assigned */ s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now); si->state = SI_ST_ASS; be_set_sess_last(s->be); } /* This stream analyser checks the switching rules and changes the backend * if appropriate. The default_backend rule is also considered, then the * target backend's forced persistence rules are also evaluated last if any. * It returns 1 if the processing can continue on next analysers, or zero if it * either needs more data or wants to immediately abort the request. */ static int process_switching_rules(struct session *s, struct channel *req, int an_bit) { struct persist_rule *prst_rule; req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->buf->i, req->analysers); /* now check whether we have some switching rules for this request */ if (!(s->flags & SN_BE_ASSIGNED)) { struct switching_rule *rule; list_for_each_entry(rule, &s->fe->switching_rules, list) { int ret = 1; if (rule->cond) { ret = acl_exec_cond(rule->cond, s->fe, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { /* If the backend name is dynamic, try to resolve the name. * If we can't resolve the name, or if any error occurs, break * the loop and fallback to the default backend. */ struct proxy *backend; if (rule->dynamic) { struct chunk *tmp = get_trash_chunk(); if (!build_logline(s, tmp->str, tmp->size, &rule->be.expr)) break; backend = findproxy(tmp->str, PR_CAP_BE); if (!backend) break; } else backend = rule->be.backend; if (!session_set_backend(s, backend)) goto sw_failed; break; } } /* To ensure correct connection accounting on the backend, we * have to assign one if it was not set (eg: a listen). This * measure also takes care of correctly setting the default * backend if any. */ if (!(s->flags & SN_BE_ASSIGNED)) if (!session_set_backend(s, s->fe->defbe.be ? s->fe->defbe.be : s->be)) goto sw_failed; } /* we don't want to run the TCP or HTTP filters again if the backend has not changed */ if (s->fe == s->be) { s->req->analysers &= ~AN_REQ_INSPECT_BE; s->req->analysers &= ~AN_REQ_HTTP_PROCESS_BE; } /* as soon as we know the backend, we must check if we have a matching forced or ignored * persistence rule, and report that in the session. */ list_for_each_entry(prst_rule, &s->be->persist_rules, list) { int ret = 1; if (prst_rule->cond) { ret = acl_exec_cond(prst_rule->cond, s->be, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (prst_rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { /* no rule, or the rule matches */ if (prst_rule->type == PERSIST_TYPE_FORCE) { s->flags |= SN_FORCE_PRST; } else { s->flags |= SN_IGNORE_PRST; } break; } } return 1; sw_failed: /* immediately abort this request in case of allocation failure */ channel_abort(s->req); channel_abort(s->rep); if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_RESOURCE; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_R; s->txn.status = 500; s->req->analysers = 0; s->req->analyse_exp = TICK_ETERNITY; return 0; } /* This stream analyser works on a request. It applies all use-server rules on * it then returns 1. The data must already be present in the buffer otherwise * they won't match. It always returns 1. */ static int process_server_rules(struct session *s, struct channel *req, int an_bit) { struct proxy *px = s->be; struct server_rule *rule; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bl=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->buf->i + req->buf->o, req->analysers); if (!(s->flags & SN_ASSIGNED)) { list_for_each_entry(rule, &px->server_rules, list) { int ret; ret = acl_exec_cond(rule->cond, s->be, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { struct server *srv = rule->srv.ptr; if ((srv->state != SRV_ST_STOPPED) || (px->options & PR_O_PERSIST) || (s->flags & SN_FORCE_PRST)) { s->flags |= SN_DIRECT | SN_ASSIGNED; s->target = &srv->obj_type; break; } /* if the server is not UP, let's go on with next rules * just in case another one is suited. */ } } } req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; } /* This stream analyser works on a request. It applies all sticking rules on * it then returns 1. The data must already be present in the buffer otherwise * they won't match. It always returns 1. */ static int process_sticking_rules(struct session *s, struct channel *req, int an_bit) { struct proxy *px = s->be; struct sticking_rule *rule; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, req->buf->i, req->analysers); list_for_each_entry(rule, &px->sticking_rules, list) { int ret = 1 ; int i; /* Only the first stick store-request of each table is applied * and other ones are ignored. The purpose is to allow complex * configurations which look for multiple entries by decreasing * order of precision and to stop at the first which matches. * An example could be a store of the IP address from an HTTP * header first, then from the source if not found. */ for (i = 0; i < s->store_count; i++) { if (rule->table.t == s->store[i].table) break; } if (i != s->store_count) continue; if (rule->cond) { ret = acl_exec_cond(rule->cond, px, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { struct stktable_key *key; key = stktable_fetch_key(rule->table.t, px, s, &s->txn, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr); if (!key) continue; if (rule->flags & STK_IS_MATCH) { struct stksess *ts; if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) { if (!(s->flags & SN_ASSIGNED)) { struct eb32_node *node; void *ptr; /* srv found in table */ ptr = stktable_data_ptr(rule->table.t, ts, STKTABLE_DT_SERVER_ID); node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, server_id)); if (node) { struct server *srv; srv = container_of(node, struct server, conf.id); if ((srv->state != SRV_ST_STOPPED) || (px->options & PR_O_PERSIST) || (s->flags & SN_FORCE_PRST)) { s->flags |= SN_DIRECT | SN_ASSIGNED; s->target = &srv->obj_type; } } } stktable_touch(rule->table.t, ts, 1); } } if (rule->flags & STK_IS_STORE) { if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { struct stksess *ts; ts = stksess_new(rule->table.t, key); if (ts) { s->store[s->store_count].table = rule->table.t; s->store[s->store_count++].ts = ts; } } } } } req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; } /* This stream analyser works on a response. It applies all store rules on it * then returns 1. The data must already be present in the buffer otherwise * they won't match. It always returns 1. */ static int process_store_rules(struct session *s, struct channel *rep, int an_bit) { struct proxy *px = s->be; struct sticking_rule *rule; int i; int nbreq = s->store_count; DPRINTF(stderr,"[%u] %s: session=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n", now_ms, __FUNCTION__, s, rep, rep->rex, rep->wex, rep->flags, rep->buf->i, rep->analysers); list_for_each_entry(rule, &px->storersp_rules, list) { int ret = 1 ; /* Only the first stick store-response of each table is applied * and other ones are ignored. The purpose is to allow complex * configurations which look for multiple entries by decreasing * order of precision and to stop at the first which matches. * An example could be a store of a set-cookie value, with a * fallback to a parameter found in a 302 redirect. * * The store-response rules are not allowed to override the * store-request rules for the same table, but they may coexist. * Thus we can have up to one store-request entry and one store- * response entry for the same table at any time. */ for (i = nbreq; i < s->store_count; i++) { if (rule->table.t == s->store[i].table) break; } /* skip existing entries for this table */ if (i < s->store_count) continue; if (rule->cond) { ret = acl_exec_cond(rule->cond, px, s, &s->txn, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { struct stktable_key *key; key = stktable_fetch_key(rule->table.t, px, s, &s->txn, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr); if (!key) continue; if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { struct stksess *ts; ts = stksess_new(rule->table.t, key); if (ts) { s->store[s->store_count].table = rule->table.t; s->store[s->store_count++].ts = ts; } } } } /* process store request and store response */ for (i = 0; i < s->store_count; i++) { struct stksess *ts; void *ptr; if (objt_server(s->target) && objt_server(s->target)->flags & SRV_F_NON_STICK) { stksess_free(s->store[i].table, s->store[i].ts); s->store[i].ts = NULL; continue; } ts = stktable_lookup(s->store[i].table, s->store[i].ts); if (ts) { /* the entry already existed, we can free ours */ stktable_touch(s->store[i].table, ts, 1); stksess_free(s->store[i].table, s->store[i].ts); } else ts = stktable_store(s->store[i].table, s->store[i].ts, 1); s->store[i].ts = NULL; ptr = stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_ID); stktable_data_cast(ptr, server_id) = objt_server(s->target)->puid; } s->store_count = 0; /* everything is stored */ rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; return 1; } /* This macro is very specific to the function below. See the comments in * process_session() below to understand the logic and the tests. */ #define UPDATE_ANALYSERS(real, list, back, flag) { \ list = (((list) & ~(flag)) | ~(back)) & (real); \ back = real; \ if (!(list)) \ break; \ if (((list) ^ ((list) & ((list) - 1))) < (flag)) \ continue; \ } /* Processes the client, server, request and response jobs of a session task, * then puts it back to the wait queue in a clean state, or cleans up its * resources if it must be deleted. Returns in the date the task wants * to be woken up, or TICK_ETERNITY. In order not to call all functions for * nothing too many times, the request and response buffers flags are monitored * and each function is called only if at least another function has changed at * least one flag it is interested in. */ struct task *process_session(struct task *t) { struct server *srv; struct session *s = t->context; unsigned int rqf_last, rpf_last; unsigned int rq_prod_last, rq_cons_last; unsigned int rp_cons_last, rp_prod_last; unsigned int req_ana_back; unsigned int rq_oneshot, rp_oneshot; //DPRINTF(stderr, "%s:%d: cs=%d ss=%d(%d) rqf=0x%08x rpf=0x%08x\n", __FUNCTION__, __LINE__, // s->si[0].state, s->si[1].state, s->si[1].err_type, s->req->flags, s->rep->flags); /* this data may be no longer valid, clear it */ memset(&s->txn.auth, 0, sizeof(s->txn.auth)); /* These flags must explicitly be set every time by the analysers who * need them, but we won't always call them (eg: during a connection * retry). So we need to keep them and only clear them if we're sure * to call the analysers. */ rq_oneshot = s->req->flags & (CF_READ_NOEXP | CF_WAKE_WRITE); rp_oneshot = s->rep->flags & (CF_READ_NOEXP | CF_WAKE_WRITE); /* Keep a copy of req/rep flags so that we can detect shutdowns */ rqf_last = s->req->flags & ~CF_MASK_ANALYSER; rpf_last = s->rep->flags & ~CF_MASK_ANALYSER; /* we don't want the stream interface functions to recursively wake us up */ if (s->req->prod->owner == t) s->req->prod->flags |= SI_FL_DONT_WAKE; if (s->req->cons->owner == t) s->req->cons->flags |= SI_FL_DONT_WAKE; /* 1a: Check for low level timeouts if needed. We just set a flag on * stream interfaces when their timeouts have expired. */ if (unlikely(t->state & TASK_WOKEN_TIMER)) { stream_int_check_timeouts(&s->si[0]); stream_int_check_timeouts(&s->si[1]); /* check channel timeouts, and close the corresponding stream interfaces * for future reads or writes. Note: this will also concern upper layers * but we do not touch any other flag. We must be careful and correctly * detect state changes when calling them. */ channel_check_timeouts(s->req); if (unlikely((s->req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { s->req->cons->flags |= SI_FL_NOLINGER; si_shutw(s->req->cons); } if (unlikely((s->req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { if (s->req->prod->flags & SI_FL_NOHALF) s->req->prod->flags |= SI_FL_NOLINGER; si_shutr(s->req->prod); } channel_check_timeouts(s->rep); if (unlikely((s->rep->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { s->rep->cons->flags |= SI_FL_NOLINGER; si_shutw(s->rep->cons); } if (unlikely((s->rep->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { if (s->rep->prod->flags & SI_FL_NOHALF) s->rep->prod->flags |= SI_FL_NOLINGER; si_shutr(s->rep->prod); } /* Once in a while we're woken up because the task expires. But * this does not necessarily mean that a timeout has been reached. * So let's not run a whole session processing if only an expiration * timeout needs to be refreshed. */ if (!((s->req->flags | s->rep->flags) & (CF_SHUTR|CF_READ_ACTIVITY|CF_READ_TIMEOUT|CF_SHUTW| CF_WRITE_ACTIVITY|CF_WRITE_TIMEOUT|CF_ANA_TIMEOUT)) && !((s->si[0].flags | s->si[1].flags) & (SI_FL_EXP|SI_FL_ERR)) && ((t->state & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER)) goto update_exp_and_leave; } /* 1b: check for low-level errors reported at the stream interface. * First we check if it's a retryable error (in which case we don't * want to tell the buffer). Otherwise we report the error one level * upper by setting flags into the buffers. Note that the side towards * the client cannot have connect (hence retryable) errors. Also, the * connection setup code must be able to deal with any type of abort. */ srv = objt_server(s->target); if (unlikely(s->si[0].flags & SI_FL_ERR)) { if (s->si[0].state == SI_ST_EST || s->si[0].state == SI_ST_DIS) { si_shutr(&s->si[0]); si_shutw(&s->si[0]); stream_int_report_error(&s->si[0]); if (!(s->req->analysers) && !(s->rep->analysers)) { s->be->be_counters.cli_aborts++; s->fe->fe_counters.cli_aborts++; if (srv) srv->counters.cli_aborts++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_CLICL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_D; } } } if (unlikely(s->si[1].flags & SI_FL_ERR)) { if (s->si[1].state == SI_ST_EST || s->si[1].state == SI_ST_DIS) { si_shutr(&s->si[1]); si_shutw(&s->si[1]); stream_int_report_error(&s->si[1]); s->be->be_counters.failed_resp++; if (srv) srv->counters.failed_resp++; if (!(s->req->analysers) && !(s->rep->analysers)) { s->be->be_counters.srv_aborts++; s->fe->fe_counters.srv_aborts++; if (srv) srv->counters.srv_aborts++; if (!(s->flags & SN_ERR_MASK)) s->flags |= SN_ERR_SRVCL; if (!(s->flags & SN_FINST_MASK)) s->flags |= SN_FINST_D; } } /* note: maybe we should process connection errors here ? */ } if (s->si[1].state == SI_ST_CON) { /* we were trying to establish a connection on the server side, * maybe it succeeded, maybe it failed, maybe we timed out, ... */ if (unlikely(!sess_update_st_con_tcp(s, &s->si[1]))) sess_update_st_cer(s, &s->si[1]); else if (s->si[1].state == SI_ST_EST) sess_establish(s, &s->si[1]); /* state is now one of SI_ST_CON (still in progress), SI_ST_EST * (established), SI_ST_DIS (abort), SI_ST_CLO (last error), * SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors. */ } rq_prod_last = s->si[0].state; rq_cons_last = s->si[1].state; rp_cons_last = s->si[0].state; rp_prod_last = s->si[1].state; resync_stream_interface: /* Check for connection closure */ DPRINTF(stderr, "[%u] %s:%d: task=%p s=%p, sfl=0x%08x, rq=%p, rp=%p, exp(r,w)=%u,%u rqf=%08x rpf=%08x rqh=%d rqt=%d rph=%d rpt=%d cs=%d ss=%d, cet=0x%x set=0x%x retr=%d\n", now_ms, __FUNCTION__, __LINE__, t, s, s->flags, s->req, s->rep, s->req->rex, s->rep->wex, s->req->flags, s->rep->flags, s->req->buf->i, s->req->buf->o, s->rep->buf->i, s->rep->buf->o, s->rep->cons->state, s->req->cons->state, s->rep->cons->err_type, s->req->cons->err_type, s->req->cons->conn_retries); /* nothing special to be done on client side */ if (unlikely(s->req->prod->state == SI_ST_DIS)) s->req->prod->state = SI_ST_CLO; /* When a server-side connection is released, we have to count it and * check for pending connections on this server. */ if (unlikely(s->req->cons->state == SI_ST_DIS)) { s->req->cons->state = SI_ST_CLO; srv = objt_server(s->target); if (srv) { if (s->flags & SN_CURR_SESS) { s->flags &= ~SN_CURR_SESS; srv->cur_sess--; } sess_change_server(s, NULL); if (may_dequeue_tasks(srv, s->be)) process_srv_queue(srv); } } /* * Note: of the transient states (REQ, CER, DIS), only REQ may remain * at this point. */ resync_request: /* Analyse request */ if (((s->req->flags & ~rqf_last) & CF_MASK_ANALYSER) || ((s->req->flags ^ rqf_last) & CF_MASK_STATIC) || s->si[0].state != rq_prod_last || s->si[1].state != rq_cons_last) { unsigned int flags = s->req->flags; s->req->flags &= ~rq_oneshot; rq_oneshot = 0; if (s->req->prod->state >= SI_ST_EST) { int max_loops = global.tune.maxpollevents; unsigned int ana_list; unsigned int ana_back; /* it's up to the analysers to stop new connections, * disable reading or closing. Note: if an analyser * disables any of these bits, it is responsible for * enabling them again when it disables itself, so * that other analysers are called in similar conditions. */ channel_auto_read(s->req); channel_auto_connect(s->req); channel_auto_close(s->req); /* We will call all analysers for which a bit is set in * s->req->analysers, following the bit order from LSB * to MSB. The analysers must remove themselves from * the list when not needed. Any analyser may return 0 * to break out of the loop, either because of missing * data to take a decision, or because it decides to * kill the session. We loop at least once through each * analyser, and we may loop again if other analysers * are added in the middle. * * We build a list of analysers to run. We evaluate all * of these analysers in the order of the lower bit to * the higher bit. This ordering is very important. * An analyser will often add/remove other analysers, * including itself. Any changes to itself have no effect * on the loop. If it removes any other analysers, we * want those analysers not to be called anymore during * this loop. If it adds an analyser that is located * after itself, we want it to be scheduled for being * processed during the loop. If it adds an analyser * which is located before it, we want it to switch to * it immediately, even if it has already been called * once but removed since. * * In order to achieve this, we compare the analyser * list after the call with a copy of it before the * call. The work list is fed with analyser bits that * appeared during the call. Then we compare previous * work list with the new one, and check the bits that * appeared. If the lowest of these bits is lower than * the current bit, it means we have enabled a previous * analyser and must immediately loop again. */ ana_list = ana_back = s->req->analysers; while (ana_list && max_loops--) { /* Warning! ensure that analysers are always placed in ascending order! */ if (ana_list & AN_REQ_INSPECT_FE) { if (!tcp_inspect_request(s, s->req, AN_REQ_INSPECT_FE)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_INSPECT_FE); } if (ana_list & AN_REQ_WAIT_HTTP) { if (!http_wait_for_request(s, s->req, AN_REQ_WAIT_HTTP)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_WAIT_HTTP); } if (ana_list & AN_REQ_HTTP_PROCESS_FE) { if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_FE, s->fe)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE); } if (ana_list & AN_REQ_SWITCHING_RULES) { if (!process_switching_rules(s, s->req, AN_REQ_SWITCHING_RULES)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_SWITCHING_RULES); } if (ana_list & AN_REQ_INSPECT_BE) { if (!tcp_inspect_request(s, s->req, AN_REQ_INSPECT_BE)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_INSPECT_BE); } if (ana_list & AN_REQ_HTTP_PROCESS_BE) { if (!http_process_req_common(s, s->req, AN_REQ_HTTP_PROCESS_BE, s->be)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE); } if (ana_list & AN_REQ_HTTP_TARPIT) { if (!http_process_tarpit(s, s->req, AN_REQ_HTTP_TARPIT)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_TARPIT); } if (ana_list & AN_REQ_SRV_RULES) { if (!process_server_rules(s, s->req, AN_REQ_SRV_RULES)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_SRV_RULES); } if (ana_list & AN_REQ_HTTP_INNER) { if (!http_process_request(s, s->req, AN_REQ_HTTP_INNER)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_INNER); } if (ana_list & AN_REQ_HTTP_BODY) { if (!http_wait_for_request_body(s, s->req, AN_REQ_HTTP_BODY)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_BODY); } if (ana_list & AN_REQ_PRST_RDP_COOKIE) { if (!tcp_persist_rdp_cookie(s, s->req, AN_REQ_PRST_RDP_COOKIE)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE); } if (ana_list & AN_REQ_STICKING_RULES) { if (!process_sticking_rules(s, s->req, AN_REQ_STICKING_RULES)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_STICKING_RULES); } if (ana_list & AN_REQ_HTTP_XFER_BODY) { if (!http_request_forward_body(s, s->req, AN_REQ_HTTP_XFER_BODY)) break; UPDATE_ANALYSERS(s->req->analysers, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY); } break; } } rq_prod_last = s->si[0].state; rq_cons_last = s->si[1].state; s->req->flags &= ~CF_WAKE_ONCE; rqf_last = s->req->flags; if ((s->req->flags ^ flags) & CF_MASK_STATIC) goto resync_request; } /* we'll monitor the request analysers while parsing the response, * because some response analysers may indirectly enable new request * analysers (eg: HTTP keep-alive). */ req_ana_back = s->req->analysers; resync_response: /* Analyse response */ if (((s->rep->flags & ~rpf_last) & CF_MASK_ANALYSER) || ((s->rep->flags ^ rpf_last) & CF_MASK_STATIC) || s->si[0].state != rp_cons_last || s->si[1].state != rp_prod_last) { unsigned int flags = s->rep->flags; s->rep->flags &= ~rp_oneshot; rp_oneshot = 0; if ((s->rep->flags & CF_MASK_ANALYSER) && (s->rep->analysers & AN_REQ_WAIT_HTTP)) { /* Due to HTTP pipelining, the HTTP request analyser might be waiting * for some free space in the response buffer, so we might need to call * it when something changes in the response buffer, but still we pass * it the request buffer. Note that the SI state might very well still * be zero due to us returning a flow of redirects! */ s->rep->analysers &= ~AN_REQ_WAIT_HTTP; s->req->flags |= CF_WAKE_ONCE; } if (s->rep->prod->state >= SI_ST_EST) { int max_loops = global.tune.maxpollevents; unsigned int ana_list; unsigned int ana_back; /* it's up to the analysers to stop disable reading or * closing. Note: if an analyser disables any of these * bits, it is responsible for enabling them again when * it disables itself, so that other analysers are called * in similar conditions. */ channel_auto_read(s->rep); channel_auto_close(s->rep); /* We will call all analysers for which a bit is set in * s->rep->analysers, following the bit order from LSB * to MSB. The analysers must remove themselves from * the list when not needed. Any analyser may return 0 * to break out of the loop, either because of missing * data to take a decision, or because it decides to * kill the session. We loop at least once through each * analyser, and we may loop again if other analysers * are added in the middle. */ ana_list = ana_back = s->rep->analysers; while (ana_list && max_loops--) { /* Warning! ensure that analysers are always placed in ascending order! */ if (ana_list & AN_RES_INSPECT) { if (!tcp_inspect_response(s, s->rep, AN_RES_INSPECT)) break; UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_INSPECT); } if (ana_list & AN_RES_WAIT_HTTP) { if (!http_wait_for_response(s, s->rep, AN_RES_WAIT_HTTP)) break; UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_WAIT_HTTP); } if (ana_list & AN_RES_STORE_RULES) { if (!process_store_rules(s, s->rep, AN_RES_STORE_RULES)) break; UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_STORE_RULES); } if (ana_list & AN_RES_HTTP_PROCESS_BE) { if (!http_process_res_common(s, s->rep, AN_RES_HTTP_PROCESS_BE, s->be)) break; UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE); } if (ana_list & AN_RES_HTTP_XFER_BODY) { if (!http_response_forward_body(s, s->rep, AN_RES_HTTP_XFER_BODY)) break; UPDATE_ANALYSERS(s->rep->analysers, ana_list, ana_back, AN_RES_HTTP_XFER_BODY); } break; } } rp_cons_last = s->si[0].state; rp_prod_last = s->si[1].state; rpf_last = s->rep->flags; if ((s->rep->flags ^ flags) & CF_MASK_STATIC) goto resync_response; } /* maybe someone has added some request analysers, so we must check and loop */ if (s->req->analysers & ~req_ana_back) goto resync_request; if ((s->req->flags & ~rqf_last) & CF_MASK_ANALYSER) goto resync_request; /* FIXME: here we should call protocol handlers which rely on * both buffers. */ /* * Now we propagate unhandled errors to the session. Normally * we're just in a data phase here since it means we have not * seen any analyser who could set an error status. */ srv = objt_server(s->target); if (unlikely(!(s->flags & SN_ERR_MASK))) { if (s->req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { /* Report it if the client got an error or a read timeout expired */ s->req->analysers = 0; if (s->req->flags & CF_READ_ERROR) { s->be->be_counters.cli_aborts++; s->fe->fe_counters.cli_aborts++; if (srv) srv->counters.cli_aborts++; s->flags |= SN_ERR_CLICL; } else if (s->req->flags & CF_READ_TIMEOUT) { s->be->be_counters.cli_aborts++; s->fe->fe_counters.cli_aborts++; if (srv) srv->counters.cli_aborts++; s->flags |= SN_ERR_CLITO; } else if (s->req->flags & CF_WRITE_ERROR) { s->be->be_counters.srv_aborts++; s->fe->fe_counters.srv_aborts++; if (srv) srv->counters.srv_aborts++; s->flags |= SN_ERR_SRVCL; } else { s->be->be_counters.srv_aborts++; s->fe->fe_counters.srv_aborts++; if (srv) srv->counters.srv_aborts++; s->flags |= SN_ERR_SRVTO; } sess_set_term_flags(s); } else if (s->rep->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { /* Report it if the server got an error or a read timeout expired */ s->rep->analysers = 0; if (s->rep->flags & CF_READ_ERROR) { s->be->be_counters.srv_aborts++; s->fe->fe_counters.srv_aborts++; if (srv) srv->counters.srv_aborts++; s->flags |= SN_ERR_SRVCL; } else if (s->rep->flags & CF_READ_TIMEOUT) { s->be->be_counters.srv_aborts++; s->fe->fe_counters.srv_aborts++; if (srv) srv->counters.srv_aborts++; s->flags |= SN_ERR_SRVTO; } else if (s->rep->flags & CF_WRITE_ERROR) { s->be->be_counters.cli_aborts++; s->fe->fe_counters.cli_aborts++; if (srv) srv->counters.cli_aborts++; s->flags |= SN_ERR_CLICL; } else { s->be->be_counters.cli_aborts++; s->fe->fe_counters.cli_aborts++; if (srv) srv->counters.cli_aborts++; s->flags |= SN_ERR_CLITO; } sess_set_term_flags(s); } } /* * Here we take care of forwarding unhandled data. This also includes * connection establishments and shutdown requests. */ /* If noone is interested in analysing data, it's time to forward * everything. We configure the buffer to forward indefinitely. * Note that we're checking CF_SHUTR_NOW as an indication of a possible * recent call to channel_abort(). */ if (unlikely(!s->req->analysers && !(s->req->flags & (CF_SHUTW|CF_SHUTR_NOW)) && (s->req->prod->state >= SI_ST_EST) && (s->req->to_forward != CHN_INFINITE_FORWARD))) { /* This buffer is freewheeling, there's no analyser * attached to it. If any data are left in, we'll permit them to * move. */ channel_auto_read(s->req); channel_auto_connect(s->req); channel_auto_close(s->req); buffer_flush(s->req->buf); s->req->flags &= ~rq_oneshot; rq_oneshot = 0; /* We'll let data flow between the producer (if still connected) * to the consumer (which might possibly not be connected yet). */ if (!(s->req->flags & (CF_SHUTR|CF_SHUTW_NOW))) channel_forward(s->req, CHN_INFINITE_FORWARD); } /* check if it is wise to enable kernel splicing to forward request data */ if (!(s->req->flags & (CF_KERN_SPLICING|CF_SHUTR)) && s->req->to_forward && (global.tune.options & GTUNE_USE_SPLICE) && (objt_conn(s->si[0].end) && __objt_conn(s->si[0].end)->xprt && __objt_conn(s->si[0].end)->xprt->rcv_pipe) && (objt_conn(s->si[1].end) && __objt_conn(s->si[1].end)->xprt && __objt_conn(s->si[1].end)->xprt->snd_pipe) && (pipes_used < global.maxpipes) && (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) || (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && (s->req->flags & CF_STREAMER_FAST)))) { s->req->flags |= CF_KERN_SPLICING; } /* reflect what the L7 analysers have seen last */ rqf_last = s->req->flags; /* * Now forward all shutdown requests between both sides of the buffer */ /* first, let's check if the request buffer needs to shutdown(write), which may * happen either because the input is closed or because we want to force a close * once the server has begun to respond. If a half-closed timeout is set, we adjust * the other side's timeout as well. */ if (unlikely((s->req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) == (CF_AUTO_CLOSE|CF_SHUTR))) { channel_shutw_now(s->req); if (tick_isset(s->fe->timeout.clientfin)) { s->rep->wto = s->fe->timeout.clientfin; s->rep->wex = tick_add(now_ms, s->rep->wto); } } /* shutdown(write) pending */ if (unlikely((s->req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && channel_is_empty(s->req))) { if (s->req->flags & CF_READ_ERROR) s->req->cons->flags |= SI_FL_NOLINGER; si_shutw(s->req->cons); if (tick_isset(s->be->timeout.serverfin)) { s->rep->rto = s->be->timeout.serverfin; s->rep->rex = tick_add(now_ms, s->rep->rto); } } /* shutdown(write) done on server side, we must stop the client too */ if (unlikely((s->req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW && !s->req->analysers)) channel_shutr_now(s->req); /* shutdown(read) pending */ if (unlikely((s->req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { if (s->req->prod->flags & SI_FL_NOHALF) s->req->prod->flags |= SI_FL_NOLINGER; si_shutr(s->req->prod); if (tick_isset(s->fe->timeout.clientfin)) { s->rep->wto = s->fe->timeout.clientfin; s->rep->wex = tick_add(now_ms, s->rep->wto); } } /* it's possible that an upper layer has requested a connection setup or abort. * There are 2 situations where we decide to establish a new connection : * - there are data scheduled for emission in the buffer * - the CF_AUTO_CONNECT flag is set (active connection) */ if (s->req->cons->state == SI_ST_INI) { if (!(s->req->flags & CF_SHUTW)) { if ((s->req->flags & CF_AUTO_CONNECT) || !channel_is_empty(s->req)) { /* If we have an appctx, there is no connect method, so we * immediately switch to the connected state, otherwise we * perform a connection request. */ s->req->cons->state = SI_ST_REQ; /* new connection requested */ s->req->cons->conn_retries = s->be->conn_retries; } } else { s->req->cons->state = SI_ST_CLO; /* shutw+ini = abort */ channel_shutw_now(s->req); /* fix buffer flags upon abort */ channel_shutr_now(s->rep); } } /* we may have a pending connection request, or a connection waiting * for completion. */ if (s->si[1].state >= SI_ST_REQ && s->si[1].state < SI_ST_CON) { do { /* nb: step 1 might switch from QUE to ASS, but we first want * to give a chance to step 2 to perform a redirect if needed. */ if (s->si[1].state != SI_ST_REQ) sess_update_stream_int(s, &s->si[1]); if (s->si[1].state == SI_ST_REQ) sess_prepare_conn_req(s, &s->si[1]); /* applets directly go to the ESTABLISHED state. Similarly, * servers experience the same fate when their connection * is reused. */ if (unlikely(s->si[1].state == SI_ST_EST)) sess_establish(s, &s->si[1]); /* Now we can add the server name to a header (if requested) */ /* check for HTTP mode and proxy server_name_hdr_name != NULL */ if ((s->si[1].state >= SI_ST_CON) && (s->be->server_id_hdr_name != NULL) && (s->be->mode == PR_MODE_HTTP) && objt_server(s->target)) { http_send_name_header(&s->txn, s->be, objt_server(s->target)->id); } srv = objt_server(s->target); if (s->si[1].state == SI_ST_ASS && srv && srv->rdr_len && (s->flags & SN_REDIRECTABLE)) http_perform_server_redirect(s, &s->si[1]); } while (s->si[1].state == SI_ST_ASS); } /* Benchmarks have shown that it's optimal to do a full resync now */ if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS) goto resync_stream_interface; /* otherwise we want to check if we need to resync the req buffer or not */ if ((s->req->flags ^ rqf_last) & CF_MASK_STATIC) goto resync_request; /* perform output updates to the response buffer */ /* If noone is interested in analysing data, it's time to forward * everything. We configure the buffer to forward indefinitely. * Note that we're checking CF_SHUTR_NOW as an indication of a possible * recent call to channel_abort(). */ if (unlikely(!s->rep->analysers && !(s->rep->flags & (CF_SHUTW|CF_SHUTR_NOW)) && (s->rep->prod->state >= SI_ST_EST) && (s->rep->to_forward != CHN_INFINITE_FORWARD))) { /* This buffer is freewheeling, there's no analyser * attached to it. If any data are left in, we'll permit them to * move. */ channel_auto_read(s->rep); channel_auto_close(s->rep); buffer_flush(s->rep->buf); s->rep->flags &= ~rp_oneshot; rp_oneshot = 0; /* We'll let data flow between the producer (if still connected) * to the consumer. */ if (!(s->rep->flags & (CF_SHUTR|CF_SHUTW_NOW))) channel_forward(s->rep, CHN_INFINITE_FORWARD); /* if we have no analyser anymore in any direction and have a * tunnel timeout set, use it now. Note that we must respect * the half-closed timeouts as well. */ if (!s->req->analysers && s->be->timeout.tunnel) { s->req->rto = s->req->wto = s->rep->rto = s->rep->wto = s->be->timeout.tunnel; if ((s->req->flags & CF_SHUTR) && tick_isset(s->fe->timeout.clientfin)) s->rep->wto = s->fe->timeout.clientfin; if ((s->req->flags & CF_SHUTW) && tick_isset(s->be->timeout.serverfin)) s->rep->rto = s->be->timeout.serverfin; if ((s->rep->flags & CF_SHUTR) && tick_isset(s->be->timeout.serverfin)) s->req->wto = s->be->timeout.serverfin; if ((s->rep->flags & CF_SHUTW) && tick_isset(s->fe->timeout.clientfin)) s->req->rto = s->fe->timeout.clientfin; s->req->rex = tick_add(now_ms, s->req->rto); s->req->wex = tick_add(now_ms, s->req->wto); s->rep->rex = tick_add(now_ms, s->rep->rto); s->rep->wex = tick_add(now_ms, s->rep->wto); } } /* check if it is wise to enable kernel splicing to forward response data */ if (!(s->rep->flags & (CF_KERN_SPLICING|CF_SHUTR)) && s->rep->to_forward && (global.tune.options & GTUNE_USE_SPLICE) && (objt_conn(s->si[0].end) && __objt_conn(s->si[0].end)->xprt && __objt_conn(s->si[0].end)->xprt->snd_pipe) && (objt_conn(s->si[1].end) && __objt_conn(s->si[1].end)->xprt && __objt_conn(s->si[1].end)->xprt->rcv_pipe) && (pipes_used < global.maxpipes) && (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) || (((s->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && (s->rep->flags & CF_STREAMER_FAST)))) { s->rep->flags |= CF_KERN_SPLICING; } /* reflect what the L7 analysers have seen last */ rpf_last = s->rep->flags; /* * Now forward all shutdown requests between both sides of the buffer */ /* * FIXME: this is probably where we should produce error responses. */ /* first, let's check if the response buffer needs to shutdown(write) */ if (unlikely((s->rep->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) == (CF_AUTO_CLOSE|CF_SHUTR))) { channel_shutw_now(s->rep); if (tick_isset(s->be->timeout.serverfin)) { s->req->wto = s->be->timeout.serverfin; s->req->wex = tick_add(now_ms, s->req->wto); } } /* shutdown(write) pending */ if (unlikely((s->rep->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && channel_is_empty(s->rep))) { si_shutw(s->rep->cons); if (tick_isset(s->fe->timeout.clientfin)) { s->req->rto = s->fe->timeout.clientfin; s->req->rex = tick_add(now_ms, s->req->rto); } } /* shutdown(write) done on the client side, we must stop the server too */ if (unlikely((s->rep->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) && !s->rep->analysers) channel_shutr_now(s->rep); /* shutdown(read) pending */ if (unlikely((s->rep->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { if (s->rep->prod->flags & SI_FL_NOHALF) s->rep->prod->flags |= SI_FL_NOLINGER; si_shutr(s->rep->prod); if (tick_isset(s->be->timeout.serverfin)) { s->req->wto = s->be->timeout.serverfin; s->req->wex = tick_add(now_ms, s->req->wto); } } if (s->req->prod->state == SI_ST_DIS || s->req->cons->state == SI_ST_DIS) goto resync_stream_interface; if (s->req->flags != rqf_last) goto resync_request; if ((s->rep->flags ^ rpf_last) & CF_MASK_STATIC) goto resync_response; /* we're interested in getting wakeups again */ s->req->prod->flags &= ~SI_FL_DONT_WAKE; s->req->cons->flags &= ~SI_FL_DONT_WAKE; /* This is needed only when debugging is enabled, to indicate * client-side or server-side close. Please note that in the unlikely * event where both sides would close at once, the sequence is reported * on the server side first. */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { if (s->si[1].state == SI_ST_CLO && s->si[1].prev_state == SI_ST_EST) { chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n", s->uniq_id, s->be->id, objt_conn(s->si[0].end) ? (unsigned short)objt_conn(s->si[0].end)->t.sock.fd : -1, objt_conn(s->si[1].end) ? (unsigned short)objt_conn(s->si[1].end)->t.sock.fd : -1); shut_your_big_mouth_gcc(write(1, trash.str, trash.len)); } if (s->si[0].state == SI_ST_CLO && s->si[0].prev_state == SI_ST_EST) { chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n", s->uniq_id, s->be->id, objt_conn(s->si[0].end) ? (unsigned short)objt_conn(s->si[0].end)->t.sock.fd : -1, objt_conn(s->si[1].end) ? (unsigned short)objt_conn(s->si[1].end)->t.sock.fd : -1); shut_your_big_mouth_gcc(write(1, trash.str, trash.len)); } } if (likely((s->rep->cons->state != SI_ST_CLO) || (s->req->cons->state > SI_ST_INI && s->req->cons->state < SI_ST_CLO))) { if ((s->fe->options & PR_O_CONTSTATS) && (s->flags & SN_BE_ASSIGNED)) session_process_counters(s); if (s->rep->cons->state == SI_ST_EST && obj_type(s->rep->cons->end) != OBJ_TYPE_APPCTX) si_update(s->rep->cons); if (s->req->cons->state == SI_ST_EST && obj_type(s->req->cons->end) != OBJ_TYPE_APPCTX) si_update(s->req->cons); s->req->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED); s->rep->flags &= ~(CF_READ_NULL|CF_READ_PARTIAL|CF_WRITE_NULL|CF_WRITE_PARTIAL|CF_READ_ATTACHED); s->si[0].prev_state = s->si[0].state; s->si[1].prev_state = s->si[1].state; s->si[0].flags &= ~(SI_FL_ERR|SI_FL_EXP); s->si[1].flags &= ~(SI_FL_ERR|SI_FL_EXP); /* When any of the stream interfaces is attached to an applet, * we have to call it here. Note that this one may wake the * task up again. If at least one applet was called, the current * task might have been woken up, in which case we don't want it * to be requeued to the wait queue but rather to the run queue * to run ASAP. The bitwise "or" in the condition ensures that * both functions are always called and that we wake up if at * least one did something. */ if ((si_applet_call(s->req->cons) | si_applet_call(s->rep->cons)) != 0) { if (task_in_rq(t)) { t->expire = TICK_ETERNITY; return t; } } update_exp_and_leave: t->expire = tick_first(tick_first(s->req->rex, s->req->wex), tick_first(s->rep->rex, s->rep->wex)); if (s->req->analysers) t->expire = tick_first(t->expire, s->req->analyse_exp); if (s->si[0].exp) t->expire = tick_first(t->expire, s->si[0].exp); if (s->si[1].exp) t->expire = tick_first(t->expire, s->si[1].exp); #ifdef DEBUG_FULL fprintf(stderr, "[%u] queuing with exp=%u req->rex=%u req->wex=%u req->ana_exp=%u" " rep->rex=%u rep->wex=%u, si[0].exp=%u, si[1].exp=%u, cs=%d, ss=%d\n", now_ms, t->expire, s->req->rex, s->req->wex, s->req->analyse_exp, s->rep->rex, s->rep->wex, s->si[0].exp, s->si[1].exp, s->si[0].state, s->si[1].state); #endif #ifdef DEBUG_DEV /* this may only happen when no timeout is set or in case of an FSM bug */ if (!tick_isset(t->expire)) ABORT_NOW(); #endif return t; /* nothing more to do */ } s->fe->feconn--; if (s->flags & SN_BE_ASSIGNED) s->be->beconn--; jobs--; if (s->listener) { if (!(s->listener->options & LI_O_UNLIMITED)) actconn--; s->listener->nbconn--; if (s->listener->state == LI_FULL) resume_listener(s->listener); /* Dequeues all of the listeners waiting for a resource */ if (!LIST_ISEMPTY(&global_listener_queue)) dequeue_all_listeners(&global_listener_queue); if (!LIST_ISEMPTY(&s->fe->listener_queue) && (!s->fe->fe_sps_lim || freq_ctr_remain(&s->fe->fe_sess_per_sec, s->fe->fe_sps_lim, 0) > 0)) dequeue_all_listeners(&s->fe->listener_queue); } if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n", s->uniq_id, s->be->id, objt_conn(s->si[0].end) ? (unsigned short)objt_conn(s->si[0].end)->t.sock.fd : -1, objt_conn(s->si[1].end) ? (unsigned short)objt_conn(s->si[1].end)->t.sock.fd : -1); shut_your_big_mouth_gcc(write(1, trash.str, trash.len)); } s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); session_process_counters(s); if (s->txn.status) { int n; n = s->txn.status / 100; if (n < 1 || n > 5) n = 0; if (s->fe->mode == PR_MODE_HTTP) { s->fe->fe_counters.p.http.rsp[n]++; if (s->comp_algo && (s->flags & SN_COMP_READY)) s->fe->fe_counters.p.http.comp_rsp++; } if ((s->flags & SN_BE_ASSIGNED) && (s->be->mode == PR_MODE_HTTP)) { s->be->be_counters.p.http.rsp[n]++; s->be->be_counters.p.http.cum_req++; if (s->comp_algo && (s->flags & SN_COMP_READY)) s->be->be_counters.p.http.comp_rsp++; } } /* let's do a final log if we need it */ if (!LIST_ISEMPTY(&s->fe->logformat) && s->logs.logwait && !(s->flags & SN_MONITOR) && (!(s->fe->options & PR_O_NULLNOLOG) || s->req->total)) { s->do_log(s); } /* the task MUST not be in the run queue anymore */ session_free(s); task_delete(t); task_free(t); return NULL; } /* * This function adjusts sess->srv_conn and maintains the previous and new * server's served session counts. Setting newsrv to NULL is enough to release * current connection slot. This function also notifies any LB algo which might * expect to be informed about any change in the number of active sessions on a * server. */ void sess_change_server(struct session *sess, struct server *newsrv) { if (sess->srv_conn == newsrv) return; if (sess->srv_conn) { sess->srv_conn->served--; if (sess->srv_conn->proxy->lbprm.server_drop_conn) sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn); session_del_srv_conn(sess); } if (newsrv) { newsrv->served++; if (newsrv->proxy->lbprm.server_take_conn) newsrv->proxy->lbprm.server_take_conn(newsrv); session_add_srv_conn(sess, newsrv); } } /* Handle server-side errors for default protocols. It is called whenever a a * connection setup is aborted or a request is aborted in queue. It sets the * session termination flags so that the caller does not have to worry about * them. It's installed as ->srv_error for the server-side stream_interface. */ void default_srv_error(struct session *s, struct stream_interface *si) { int err_type = si->err_type; int err = 0, fin = 0; if (err_type & SI_ET_QUEUE_ABRT) { err = SN_ERR_CLICL; fin = SN_FINST_Q; } else if (err_type & SI_ET_CONN_ABRT) { err = SN_ERR_CLICL; fin = SN_FINST_C; } else if (err_type & SI_ET_QUEUE_TO) { err = SN_ERR_SRVTO; fin = SN_FINST_Q; } else if (err_type & SI_ET_QUEUE_ERR) { err = SN_ERR_SRVCL; fin = SN_FINST_Q; } else if (err_type & SI_ET_CONN_TO) { err = SN_ERR_SRVTO; fin = SN_FINST_C; } else if (err_type & SI_ET_CONN_ERR) { err = SN_ERR_SRVCL; fin = SN_FINST_C; } else if (err_type & SI_ET_CONN_RES) { err = SN_ERR_RESOURCE; fin = SN_FINST_C; } else /* SI_ET_CONN_OTHER and others */ { err = SN_ERR_INTERNAL; fin = SN_FINST_C; } if (!(s->flags & SN_ERR_MASK)) s->flags |= err; if (!(s->flags & SN_FINST_MASK)) s->flags |= fin; } /* kill a session and set the termination flags to (one of SN_ERR_*) */ void session_shutdown(struct session *session, int why) { if (session->req->flags & (CF_SHUTW|CF_SHUTW_NOW)) return; channel_shutw_now(session->req); channel_shutr_now(session->rep); session->task->nice = 1024; if (!(session->flags & SN_ERR_MASK)) session->flags |= why; task_wakeup(session->task, TASK_WOKEN_OTHER); } /************************************************************************/ /* All supported ACL keywords must be declared here. */ /************************************************************************/ /* Returns a pointer to a stkctr depending on the fetch keyword name. * It is designed to be called as sc[0-9]_* sc_* or src_* exclusively. * sc[0-9]_* will return a pointer to the respective field in the * session . sc_* requires an UINT argument specifying the stick * counter number. src_* will fill a locally allocated structure with * the table and entry corresponding to what is specified with src_*. * NULL may be returned if the designated stkctr is not tracked. For * the sc_* and sc[0-9]_* forms, an optional table argument may be * passed. When present, the currently tracked key is then looked up * in the specified table instead of the current table. The purpose is * to be able to convery multiple values per key (eg: have gpc0 from * multiple tables). */ static struct stkctr * smp_fetch_sc_stkctr(struct session *l4, const struct arg *args, const char *kw) { static struct stkctr stkctr; struct stksess *stksess; unsigned int num = kw[2] - '0'; int arg = 0; if (num == '_' - '0') { /* sc_* variant, args[0] = ctr# (mandatory) */ num = args[arg++].data.uint; if (num >= MAX_SESS_STKCTR) return NULL; } else if (num > 9) { /* src_* variant, args[0] = table */ struct stktable_key *key; struct connection *conn = objt_conn(l4->si[0].end); if (!conn) return NULL; key = addr_to_stktable_key(&conn->addr.from, args->data.prx->table.type); if (!key) return NULL; stkctr.table = &args->data.prx->table; stkctr_set_entry(&stkctr, stktable_lookup_key(stkctr.table, key)); return &stkctr; } /* Here, contains the counter number from 0 to 9 for * the sc[0-9]_ form, or even higher using sc_(num) if needed. * args[arg] is the first optional argument. */ stksess = stkctr_entry(&l4->stkctr[num]); if (!stksess) return NULL; if (unlikely(args[arg].type == ARGT_TAB)) { /* an alternate table was specified, let's look up the same key there */ stkctr.table = &args[arg].data.prx->table; stkctr_set_entry(&stkctr, stktable_lookup(stkctr.table, stksess)); return &stkctr; } return &l4->stkctr[num]; } /* set return a boolean indicating if the requested session counter is * currently being tracked or not. * Supports being called as "sc[0-9]_tracked" only. */ static int smp_fetch_sc_tracked(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_BOOL; smp->data.uint = !!smp_fetch_sc_stkctr(l4, args, kw); return 1; } /* set to the General Purpose Counter 0 value from the session's tracked * frontend counters or from the src. * Supports being called as "sc[0-9]_get_gpc0" or "src_get_gpc0" only. Value * zero is returned if the key is new. */ static int smp_fetch_sc_get_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = stktable_data_cast(ptr, gpc0); } return 1; } /* set to the General Purpose Counter 0's event rate from the session's * tracked frontend counters or from the src. * Supports being called as "sc[0-9]_gpc0_rate" or "src_gpc0_rate" only. * Value zero is returned if the key is new. */ static int smp_fetch_sc_gpc0_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0_RATE); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, gpc0_rate), stkctr->table->data_arg[STKTABLE_DT_GPC0_RATE].u); } return 1; } /* Increment the General Purpose Counter 0 value from the session's tracked * frontend counters and return it into temp integer. * Supports being called as "sc[0-9]_inc_gpc0" or "src_inc_gpc0" only. */ static int smp_fetch_sc_inc_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr; /* First, update gpc0_rate if it's tracked. Second, update its * gpc0 if tracked. Returns gpc0's value otherwise the curr_ctr. */ ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0_RATE); if (ptr) { update_freq_ctr_period(&stktable_data_cast(ptr, gpc0_rate), stkctr->table->data_arg[STKTABLE_DT_GPC0_RATE].u, 1); smp->data.uint = (&stktable_data_cast(ptr, gpc0_rate))->curr_ctr; } ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0); if (ptr) smp->data.uint = ++stktable_data_cast(ptr, gpc0); } return 1; } /* Clear the General Purpose Counter 0 value from the session's tracked * frontend counters and return its previous value into temp integer. * Supports being called as "sc[0-9]_clr_gpc0" or "src_clr_gpc0" only. */ static int smp_fetch_sc_clr_gpc0(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_GPC0); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = stktable_data_cast(ptr, gpc0); stktable_data_cast(ptr, gpc0) = 0; } return 1; } /* set to the cumulated number of connections from the session's tracked * frontend counters. Supports being called as "sc[0-9]_conn_cnt" or * "src_conn_cnt" only. */ static int smp_fetch_sc_conn_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_CNT); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = stktable_data_cast(ptr, conn_cnt); } return 1; } /* set to the connection rate from the session's tracked frontend * counters. Supports being called as "sc[0-9]_conn_rate" or "src_conn_rate" * only. */ static int smp_fetch_sc_conn_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_RATE); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, conn_rate), stkctr->table->data_arg[STKTABLE_DT_CONN_RATE].u); } return 1; } /* set temp integer to the number of connections from the session's source address * in the table pointed to by expr, after updating it. * Accepts exactly 1 argument of type table. */ static int smp_fetch_src_updt_conn_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct connection *conn = objt_conn(l4->si[0].end); struct stksess *ts; struct stktable_key *key; void *ptr; if (!conn) return 0; key = addr_to_stktable_key(&conn->addr.from, px->table.type); if (!key) return 0; px = args->data.prx; if ((ts = stktable_update_key(&px->table, key)) == NULL) /* entry does not exist and could not be created */ return 0; ptr = stktable_data_ptr(&px->table, ts, STKTABLE_DT_CONN_CNT); if (!ptr) return 0; /* parameter not stored in this table */ smp->type = SMP_T_UINT; smp->data.uint = ++stktable_data_cast(ptr, conn_cnt); smp->flags = SMP_F_VOL_TEST; return 1; } /* set to the number of concurrent connections from the session's tracked * frontend counters. Supports being called as "sc[0-9]_conn_cur" or * "src_conn_cur" only. */ static int smp_fetch_sc_conn_cur(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_CONN_CUR); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = stktable_data_cast(ptr, conn_cur); } return 1; } /* set to the cumulated number of sessions from the session's tracked * frontend counters. Supports being called as "sc[0-9]_sess_cnt" or * "src_sess_cnt" only. */ static int smp_fetch_sc_sess_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_CNT); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = stktable_data_cast(ptr, sess_cnt); } return 1; } /* set to the session rate from the session's tracked frontend counters. * Supports being called as "sc[0-9]_sess_rate" or "src_sess_rate" only. */ static int smp_fetch_sc_sess_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_SESS_RATE); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, sess_rate), stkctr->table->data_arg[STKTABLE_DT_SESS_RATE].u); } return 1; } /* set to the cumulated number of HTTP requests from the session's tracked * frontend counters. Supports being called as "sc[0-9]_http_req_cnt" or * "src_http_req_cnt" only. */ static int smp_fetch_sc_http_req_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_REQ_CNT); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = stktable_data_cast(ptr, http_req_cnt); } return 1; } /* set to the HTTP request rate from the session's tracked frontend * counters. Supports being called as "sc[0-9]_http_req_rate" or * "src_http_req_rate" only. */ static int smp_fetch_sc_http_req_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_REQ_RATE); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, http_req_rate), stkctr->table->data_arg[STKTABLE_DT_HTTP_REQ_RATE].u); } return 1; } /* set to the cumulated number of HTTP requests errors from the session's * tracked frontend counters. Supports being called as "sc[0-9]_http_err_cnt" or * "src_http_err_cnt" only. */ static int smp_fetch_sc_http_err_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_ERR_CNT); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = stktable_data_cast(ptr, http_err_cnt); } return 1; } /* set to the HTTP request error rate from the session's tracked frontend * counters. Supports being called as "sc[0-9]_http_err_rate" or * "src_http_err_rate" only. */ static int smp_fetch_sc_http_err_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_HTTP_ERR_RATE); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, http_err_rate), stkctr->table->data_arg[STKTABLE_DT_HTTP_ERR_RATE].u); } return 1; } /* set to the number of kbytes received from clients, as found in the * session's tracked frontend counters. Supports being called as * "sc[0-9]_kbytes_in" or "src_kbytes_in" only. */ static int smp_fetch_sc_kbytes_in(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_CNT); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = stktable_data_cast(ptr, bytes_in_cnt) >> 10; } return 1; } /* set to the data rate received from clients in bytes/s, as found * in the session's tracked frontend counters. Supports being called as * "sc[0-9]_bytes_in_rate" or "src_bytes_in_rate" only. */ static int smp_fetch_sc_bytes_in_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_IN_RATE); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_in_rate), stkctr->table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u); } return 1; } /* set to the number of kbytes sent to clients, as found in the * session's tracked frontend counters. Supports being called as * "sc[0-9]_kbytes_out" or "src_kbytes_out" only. */ static int smp_fetch_sc_kbytes_out(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_CNT); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = stktable_data_cast(ptr, bytes_out_cnt) >> 10; } return 1; } /* set to the data rate sent to clients in bytes/s, as found in the * session's tracked frontend counters. Supports being called as * "sc[0-9]_bytes_out_rate" or "src_bytes_out_rate" only. */ static int smp_fetch_sc_bytes_out_rate(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = 0; if (stkctr_entry(stkctr) != NULL) { void *ptr = stktable_data_ptr(stkctr->table, stkctr_entry(stkctr), STKTABLE_DT_BYTES_OUT_RATE); if (!ptr) return 0; /* parameter not stored */ smp->data.uint = read_freq_ctr_period(&stktable_data_cast(ptr, bytes_out_rate), stkctr->table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u); } return 1; } /* set to the number of active trackers on the SC entry in the session's * tracked frontend counters. Supports being called as "sc[0-9]_trackers" only. */ static int smp_fetch_sc_trackers(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { struct stkctr *stkctr = smp_fetch_sc_stkctr(l4, args, kw); if (!stkctr) return 0; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = stkctr_entry(stkctr)->ref_cnt; return 1; } /* set temp integer to the number of used entries in the table pointed to by expr. * Accepts exactly 1 argument of type table. */ static int smp_fetch_table_cnt(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = args->data.prx->table.current; return 1; } /* set temp integer to the number of free entries in the table pointed to by expr. * Accepts exactly 1 argument of type table. */ static int smp_fetch_table_avl(struct proxy *px, struct session *l4, void *l7, unsigned int opt, const struct arg *args, struct sample *smp, const char *kw) { px = args->data.prx; smp->flags = SMP_F_VOL_TEST; smp->type = SMP_T_UINT; smp->data.uint = px->table.size - px->table.current; return 1; } /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct acl_kw_list acl_kws = {ILH, { { /* END */ }, }}; /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct sample_fetch_kw_list smp_fetch_keywords = {ILH, { { "sc_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_conn_cnt", smp_fetch_sc_conn_cnt, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_conn_cur", smp_fetch_sc_conn_cur, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_conn_rate", smp_fetch_sc_conn_rate, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_get_gpc0", smp_fetch_sc_get_gpc0, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_http_err_rate", smp_fetch_sc_http_err_rate, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_http_req_rate", smp_fetch_sc_http_req_rate, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_kbytes_in", smp_fetch_sc_kbytes_in, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "sc_kbytes_out", smp_fetch_sc_kbytes_out, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "sc_sess_cnt", smp_fetch_sc_sess_cnt, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_sess_rate", smp_fetch_sc_sess_rate, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc_tracked", smp_fetch_sc_tracked, ARG2(1,UINT,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, { "sc_trackers", smp_fetch_sc_trackers, ARG2(1,UINT,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "sc0_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "sc0_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc0_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, { "sc0_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "sc1_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "sc1_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc1_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, { "sc1_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_conn_cur", smp_fetch_sc_conn_cur, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_conn_rate", smp_fetch_sc_conn_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "sc2_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "sc2_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_sess_rate", smp_fetch_sc_sess_rate, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "sc2_tracked", smp_fetch_sc_tracked, ARG1(0,TAB), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, { "sc2_trackers", smp_fetch_sc_trackers, ARG1(0,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "src_bytes_in_rate", smp_fetch_sc_bytes_in_rate, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_bytes_out_rate", smp_fetch_sc_bytes_out_rate, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_clr_gpc0", smp_fetch_sc_clr_gpc0, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_conn_cnt", smp_fetch_sc_conn_cnt, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_conn_cur", smp_fetch_sc_conn_cur, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_conn_rate", smp_fetch_sc_conn_rate, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_get_gpc0", smp_fetch_sc_get_gpc0, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_gpc0_rate", smp_fetch_sc_gpc0_rate, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_http_err_cnt", smp_fetch_sc_http_err_cnt, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_http_err_rate", smp_fetch_sc_http_err_rate, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_http_req_cnt", smp_fetch_sc_http_req_cnt, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_http_req_rate", smp_fetch_sc_http_req_rate, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_inc_gpc0", smp_fetch_sc_inc_gpc0, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_kbytes_in", smp_fetch_sc_kbytes_in, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_kbytes_out", smp_fetch_sc_kbytes_out, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_sess_cnt", smp_fetch_sc_sess_cnt, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_sess_rate", smp_fetch_sc_sess_rate, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "src_updt_conn_cnt", smp_fetch_src_updt_conn_cnt, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_L4CLI, }, { "table_avl", smp_fetch_table_avl, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { "table_cnt", smp_fetch_table_cnt, ARG1(1,TAB), NULL, SMP_T_UINT, SMP_USE_INTRN, }, { /* END */ }, }}; __attribute__((constructor)) static void __session_init(void) { sample_register_fetches(&smp_fetch_keywords); acl_register_keywords(&acl_kws); } /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */